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1.  Introduction

Nd–Fe–B based nanocomposite materials for permanent 
magnets are currently the subject of intensive research 
efforts due to their promising magnetic properties such as 
high remanence and large magnetic energy product, which 
render them attractive for potential applications in electronic 
devices, motors, and other numerous applications [1–6]. 
These materials consist of exchange-coupled nanocrystalline 

hard (Nd2Fe14B) and soft (α-Fe or Fe3B) magnetic phases. 
The major challenge is the understanding of how the fea-
tures of the microstructure (e.g. average Nd2Fe14B particle 
size and shape, volume fraction of the soft phase, composite 
texture, interfacial chemical composition) correlate with their 
macroscopic magnetic properties. This task poses enormous 
demands both on state-of-the-art experimental methods—
such as high-resolution electron microscopy, electron 
backscattering diffraction, three-dimensional atom-probe 
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Abstract
We demonstrate how micromagnetic simulations can be employed in order to characterize and 
analyze the magnetic microstructure of nanocomposites. For the example of nanocrystalline 
Nd–Fe–B, which is a potential material for future permanent-magnet applications, we have 
compared three different models for the micromagnetic analysis of this material class: (i) a 
description of the nanocomposite microstructure in terms of Stoner–Wohlfarth particles with 
and without the magnetodipolar interaction; (ii) a model based on the core-shell representation 
of the nanograins; (iii) the latter model including a contribution of superparamagnetic clusters. 
The relevant parameter spaces have been systematically scanned with the aim to establish 
which micromagnetic approach can most adequately describe experimental data for this 
material. According to our results, only the last, most sophisticated model is able to provide 
an excellent agreement with the measured hysteresis loop. The presented methodology is 
generally applicable to multiphase magnetic nanocomposites and it highligths the complex 
interrelationship between the microstructure, magnetic interactions, and the macroscopic 
magnetic properties.
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analysis, Lorentz and Kerr microscopy, small-angle neutron 
scattering—and on atomistic and mesoscopic micromagnetic 
simulations of these materials.

Recent experimental and theoretical studies (see, e.g. [7–
11]) have focused on the role of the interface regions sepa-
rating the Nd2Fe14B grains. These intergranular regions play 
an important role for the coercivity of the material, since the 
magnetic parameters (saturation magnetization, exchange 
stiffness, magnetocrystalline anisotropy) of grain-boundary 
layers are different as compared to the Nd2Fe14B crystallites. 
Hence the intergrain boundary regions represent potential 
sources for the nucleation of inhomogeneous spin textures 
during magnetization reversal. Besides the different magnetic 
parameters, the grain-boundaries in Nd–Fe–B based nano-
composites (with a thickness of about 1–15 nm) can exist both 
in a crystalline and in an amorphous state [8].

In order to reveal the relationship between the microstruc-
ture and macroscopic magnetic properties, it is important to 
have a method at hand which allows for the fast and efficient 
scanning of the multidimensional parameter space required to 
characterize magnetic nanocomposites. Micromagnetic com-
putations—mainly adopting the meanwhile standard finite-
element approach based on tetrahedral finite elements—have 
been employed for understanding, for example, the coercivity 
mechanism in Nd–Fe–B magnets [10–19]. In this paper, we 
report on high-throughput simulations of the magnetic micro-
structure of nanocrystalline Nd–Fe–B using our new poly-
hedron-based micromagnetic paradigm, which combines the 
advantage of a highly flexible meshing with the speed of an 
FFT-based evaluation of the magnetodipolar field [20–23]. 
Simulation results are compared to an experimental hysteresis 
loop of a Nd2Fe14B/α-Fe nanocomposite. We demonstrate 
that a model where the Nd–Fe–B grains are represented as 
Stoner–Wohlfarth (SW) particles—even taking into account 
the magnetodipolar interaction and the interparticle exchange 
coupling—cannot satisfactorily explain the measured hyster-
esis loop. We show that in order to adequately understand the 
observed hysteresis, we have to invoke a core-shell model of 
Nd–Fe–B grains (with reduced values of the anisotropy con-
stant and exchange coupling within the shells and between 
different grains) supplemented by a Langevin-type (superpar-
amagnetic) high-field contribution.

2.  Methods

2.1.  Sample under study

The Nd2Fe14B/α-Fe nanocomposite (containing 5 wt. % of 
α-Fe) was prepared by means of the melt-spinning technique. 
Sample characterization was carried out using transmission 
electron microscopy and synchrotron x-ray scattering (see [24] 
for details). The melt-spun sample had an average Nd2Fe14B 
grain size of about 20 nm ; it represents a nanocomposite 
material with Nd2Fe14B as the hard magnetic phase and α-Fe 
as the soft phase. Magnetization data (up to µ0Hmax = 14 T) 
were recorded at 300 K using a Cryogenic vibrating sample 
magnetometer.

2.2.  Micromagnetic simulation methodology

The micromagnetic algorithm used in this study and its corre
sponding software realization were originally developed by us 
for the simulation of the magnetization distribution of magn
etic nanocomposites and the computation of the related magn
etic-field-dependent neutron scattering cross sections  (see 
[20–23] for details). The four standard contributions to the 
total magnetic energy (external field, magnetic anisotropy, 
exchange, and dipolar interaction) are taken into account. 
In the present study, we have employed two different micro-
magnetic models, as will be motivated below: the first model 
was based on the assumption that Nd–Fe–B grains inside the 
sample can be represented as uniformly-magnetized Stoner–
Wohlfarth (SW) particles; the second model was based on a 
core-shell-type description of the Nd–Fe–B grains. Further, 
the second model has been extended by taking into account 
the possibility of a superparamagnetic contribution (arising 
from small magnetic clusters inside the sample) to the mea-
sured hysteresis loop.

For the SW model, the simulation volume was 
1.4 × 1.4 × 1.4 µm3, discretized into 4 × 105 mesh ele-
ments. Each mesh element—a polyhedron with a size of   
∼20 nm—was supposed to represent one Nd–Fe–B crystallite. 
The influence of the soft phase (α-Fe) was neglected in this 
model due to its very low volume fraction (∼5%) in the exper
imentally studied sample. In the simulations of the core-shell 
model, we had to employ a finer discretization of the simulated 
sample, because of the more complex structure of the crystal-
lites. This finer discretization has led to an increased computa-
tional time, so that the number of mesh elements for this model 
was limited to 2 × 105. For this model we could simulate the 
magnetization reversal of a system consisting of 260 core-shell 
nanograins (sample volume: 115 × 115 × 115 nm). The shape 
of the grains’ core was spherical; the core volume fraction could 
be varied in order to study the effect of this parameter on the 
hysteresis loop. However, for the majority of simulations, the 
core volume fraction was fixed at 40%, which corresponds to 
a shell thickness of  ∼2.6 nm (equal to 2 elementary cells of the 
Nd–Fe–B crystal lattice) for an average grain size of 20 nm .

Periodic boundary conditions were applied in all simula-
tions. Material parameters used correspond to the standard 
values of bulk Nd2Fe14B (see below for further details): 
saturation magnetization MS = 1300 G, uniaxial magneto
crystalline anisotropy with Kbulk = 4.3 × 107 erg cm−3, and 
exchange-stiffness constant of Abulk = 1.25 × 10−6 erg cm−1. 
As we will discuss below, these parameters can take on dif-
ferent values in the shell regions. The direction of the aniso
tropy axis varies randomly from crystallite to crystallite in 
both models; for the core-shell structure, the directions of the 
anisotropy axes of both the core and the shell are the same 
for each individual grain. Throughout the paper, the quality of 
the fitting is estimated by the normalized difference between 
experimental and simulated hysteresis loops,

∆ =
1

NH

NH∑
i=1

∣∣Mexp
i − Msim

i

∣∣ ,� (1)
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where NH is the total number of simulated field values, and 
Mexp (Msim) represent the total measured (simulated) magne-
tization projections on the initial applied field direction.

3.  Results and discussion

3.1.  Model based on Stoner–Wohlfarth particles

Taking into account the large magnetocrystalline anisotropy 
of Nd–Fe–B and the small size of its grains in the exper
imental sample (≈20 nm), one would expect that the indi-
vidual grains of this sample remain in a single-domain state 
during the magnetization-reversal process. We emphasize that 
the often used estimation of the single-domain critical size 
acr, based on the comparison of the domain wall (DW) width 
δdw and the particle size a is not applicable here. We remind 
that this ‘criterion’ (acr ∼ δdw) leads to the statement that the 
particle remains single-domain as long as its size is smaller 
than one of the two characteristic micromagnetic lengths: 
the demagnetizing (magnetostatic) length ldem ∼ (A/M2

S)
1/2 

or the exchange length lexch ∼ (A/K)1/2. The second length 
for Nd–Fe–B is very small due to its very large anisotropy 
constant: lNd−Fe−B

exch ≈ 1.7 nm, so that a (Landau–Bloch) DW 
would easily ‘fit’ in a 20 nm-large Nd–Fe–B grain.

However, the domain wall energy (per unit area) 
γdw = 4

√
AK  is very high for Nd–Fe–B due to the large 

anisotropy constant of this material. Hence, we need a more 
rigorous estimation of the critical size acr. This estimation can 
be done based on standard energy arguments: the energy of 
the multi-domain state must be smaller than that of the single-
domain state. For Nd–Fe–B, its large anisotropy allows one 
to neglect the magnetodipolar energy contribution, greatly 
simplifying the estimation. Further, we assume that inside the 
domains in a Nd–Fe–B particle the magnetization is directed 
approximately along the particle anisotropy axis, so that we 
have to compare contributions from the external field energy 
and the DW energy only. For a rough estimation of acr, we 
consider the situation in a negative external field (i.e. the field 
is directed opposite to the initial saturation direction). In this 
case the energy difference ∆E between the state saturated in 
the initial field direction and the state containing a domain with 
a characteristic size a, surface area Sdw, and volume Vnuc is

∆E = − 2MSHextVnuc + γdwSdw

= −2cva3MSHext + csa24
√

AK,
�

(2)

where we have used the above mentioned expression for the 
DW energy γdw and introduced the proportionality coeffi-
cients cv (cs) between the domain volume (surface area) and 
the corresponding powers of the domain size a as Vnuc = cva3 
and Sdw = csa2. The critical single-domain size deduced from 
the statement that the particle remains single-domain as long 
as ∆E � 0 leads to the following critical size:

acr = 2
cs

cv

√
AK

MSHext
.� (3)

We note that the critical size obtained in this way depends 
not only on the magnetic material parameters and the domain 

shape (via the relation cs/cv), but also on the external field 
value Hext. This is a natural consequence of the fact that the 
energy competing with the domain wall energy is in our case 
the energy due to the external field.

For a domain inside the bulk of the material, we have 
cs/cv = 6 both for a spherical and a cubical domain. 
Substituting into equation  (3) the standard materials param
eters of Nd–Fe–B and the experimentally found coercivity 
Hc ≈ 6 kOe for the external field value Hext, we obtain 
acr ≈ 110 nm . This critical size is far above the particle diam-
eter of the here studied Nd–Fe–B sample. An energetically 
more favorable configuration is the formation of a domain as 
a spherical segment with the height a near the surface of the 
particle with radius R. In this case the estimation of acr can 
also be cast into the form of equation (3) with the geometrical 
factor cs/cv  varying between 1.5 and 2.0, depending on the 
relation between a and R. For such a domain, we obtain in the 
‘best’ case the value acr ≈ 30 nm , which is still considerably 
larger than the experimental particle size.

It is important to understand that the estimation above 
is based on the comparison of system energies in the initial 
(single-domain) and final (multi-domain) states and thus pro-
vides only the critical size of the nucleation region in com-
plete equilibrium (we note in passing that in order to make 
this estimation more rigorous, the entropic contribution must 
be added, which should be evaluated for each particular con-
figuration and most probably will not significantly change 
the final result). By studying real magnetization reversal, the 
height of the energy barrier between the initial and final states 
should be taken into account, in order to be able to estimate 
the transition time between the two states. In our case, this 
transition corresponds to the path over the anisotropy energy 
barrier by the magnetization rotation inside the nucleation 
region. The height of this barrier Eanis = KV  is (for Nd–Fe–B) 
much higher than the thermal energy kT already for very small 
nucleation region sizes: for a spherical nucleus Eanis = 100 kT  
for a ≈ 5.7 nm and at T = 300 K . Hence, for sizes larger 
than a few nanometers, a corresponding transition is not pos-
sible within a realistic time scale. This argument additionally 
supports the expectation that magnetization reversal of a Nd–
Fe–B particle with a diameter of about 20 nm  and an intact 
crystal structure should be well described by the SW model.

Therefore, our first model of the Nd2Fe14B nanocomposite 
is based on the representation of the sample as an ensemble 
of SW particles, i.e. homogeneously magnetized particles 
having uniaxial magnetic anisotropy. Between these parti-
cles both the magnetodipolar and the exchange interactions 
may be present. In order to study the influence of different 
magnetic parameters on the magnetization process separately, 
we have run a large set of micromagnetic simulations where 
both the anisotropy constant of the particles and the exchange-
coupling constant between them have been varied. The phys-
ical reasons behind this approach were the following: (i) the 
anisotropy constant of nanosized magnetic particles could 
significantly deviate form its bulk value due to the disturbed 
crystal structure of such particles (especially near their sur-
face) and (ii) the interparticle exchange interaction can be 
arbitrary small due to the poor quality of intergrain boundaries 
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in such materials. From the methodological point of view, it 
was important to find out whether the collection of nanosized 
Nd–Fe–B particles obtained via the melt-spinning technique 
can be described by the SW model, being extended to include 
interparticle interactions.

Figure 1 displays a subset of results of these simula-
tions, where the magnetodipolar interparticle interaction 
and exchange interaction are taken into account. The more 
complete ‘matrices’ of hysteresis loops in the coordinates 
‘exchange constant–anisotropy constant’ are presented in the 
supplemental material (stacks.iop.org/JPhysCM/30/125802/
mmedia). In figure 1 the values of the grain anisotropy constant 
K and the intergrain exchange constant A are shown on each 
plot as the values of the reduced constants q and κ, which are 
defined via the corresponding bulk parameters as K = qKbulk 
and A = κAbulk (so that 0 � q � 1 and 0 � κ � 1).

This figure and the loop ‘matrices’ displayed in the supple-
mental material clearly demonstrate that the model based on 
the SW particles does not provide a satisfying agreement with 
experiment for any possible combination of its main param
eters (anisotropy and exchange constants). The main problem 
is the combination of the relatively low coercivity (6 kOe) and 
the very slow approach to saturation in the measured hyster-
esis loop, where even at 50 kOe the sample is not completely 
saturated. These features lead to the inherent contradiction 
in frames of the SW model (even extended by the two inter-
particle interactions listed above). In particular, the simulated 
coercivity value coincides with experiment for q  =  0.2 (i.e. 
for the anisotropy being five times smaller than the bulk value 

of Nd–Fe–B), while the simulated magnetization behavior at 
large fields for this particular q is completely different than 
the measured data. On the other hand, the slow approach to 
saturation at large fields could be well reproduced in simula-
tions only by using the bulk anisotropy value (q  =  1), while 
this value of K, in turn, resulted in a simulated coercivity 
Hc ≈ 33 kOe, which is five times larger than the measured 
one.

The overall quality of the fit Δ computed according 
to equation  (1) is shown in figure  2 as a color-coded plot 
∆(κ, q). Results for the SW-based model both without (figure 
2(a)) and with (figure 2(b)) the magnetodipolar interaction 
are presented. To obtain this set of results, simulations have 
been performed for Nq × Nκ = 21 × 9 = 189 parameter 
pairs for the model without the magnetodipolar interaction 
and for Nq × Nκ = 9 × 9 = 81 (q,κ)-pairs including this 
interaction. The leftmost column (κ = 0) in figure 2(a) cor-
responds to the standard SW model of non-interacting single-
domain magnetic particles with uniaxial anisotropy. We note 
that exchange values of κ > 1 cannot correspond to a real 
Nd–Fe–B-based material; these values have been used solely 
to understand the model behavior for a very strong exchange 
interaction.

Analyzing both data sets, we note, first of all, that the 
magnetodipolar interaction plays a significant role only when 
the anisotropy constant is relatively low (q � 0.2) and the 
exchange constant is high κ � 1. This observation is natu-
rally explained by the well known ‘averaging-out’ of the 
random single-grain anisotropy in exchange-interacting sys-
tems (Herzer model, see [25]). Furthermore, we emphasize 
that even in the parameter region with the best fit quality 
(blue regions in color plots), the average deviation per point 
Δ between measured and experimental data is unacceptably 
high (∆ > 0.14). Taking into account that experimental errors 
and statistical errors of simulated results are both very small 
(the latter is due to the large number of grains which we could 
simulate), we point out that this deviation is due to a signifi-
cant systematic discrepancy between measured and simulated 
results in the whole scanned parameter space.

Thus we conclude that the modified SW model based on 
single-domain grains with uniaxial anisotropy, including inter-
grain exchange and magnetodipolar interactions, cannot fit the 
experimental result in a satisfactory manner. The quality of the fit  
remains unacceptably poor even if we assume that (i) the 
anisotropy of the Nd–Fe–B nanograins may significantly 
deviate from the bulk value of Nd–Fe–B and (ii) the intergrain 
exchange may be arbitrarily weak (0 < κ < 1). We point out 
that the major problem of this model is the incompatibility of the  
very slow approach-to-saturation behavior on one side (which 
could only be fitted using very high anisotropy values close 
to the bulk value of Nd–Fe–B) and the relatively low exper
imental coercivity Hc = 6.1 kOe on the other side (which  
can be fitted only using a relatively low anisotropy of 
K ≈ HcMS ≈ 7.9 × 106 erg cm−3). Here we also note that the coer-
civity estimation using the SW model with standard Nd–Fe–B 
parameters (MS = 1300 G and Kbulk = 4.3 × 107 erg cm−3) 
results in HSW

c ≈ K/MS ≈ 33 kOe.

Figure 1.  Simulated hysteresis loops (green) obtained for the 
model based on Stoner–Wohlfarth particles with magnetodipolar 
interaction for different anisotropy constants (exchange-coupling 
constant κ = 0.33 for all loops). Black curve on each graph is the 
experimentally measured loop.
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3.2.  Model based on core-shell particles

With the aim to achieve a better understanding of the magne-
tization reversal of the Nd2Fe14B/α-Fe nanocomposite and to 
resolve the contradiction described in the previous section, we 
have implemented a core-shell particle model for the descrip-
tion of the Nd–Fe–B grains. In this model each 20 nm-sized 
grain is supposed to consist of a magnetically hard core with 
parameters as for bulk Nd–Fe–B, which is surrounded by 
a shell with different magnetic parameters. The core-shell 
model should take into account changes in the magnetic 
characteristics of the Nd–Fe–B crystallites near their surface, 
which may be imperfect due to the melt-spinning manufac-
turing process. A typical core-shell microstructure used in 
our simulations is shown in figure  3(a). In order to resolve 
the magnetization distribution inside a shell within a standard 
micromagnetic paradigm, we have set the mesh-element size 
to 2 nm ; a small part of the corresponding mesh structure is 
presented in figure 3(b).

In order to gain physical insights into the role of the 
system parameters characterizing the particle shells, we 
carried out micromagnetic simulations for different aniso
tropy constants and exchange-stiffness values of the shells. 
Specifically, we have introduced dimensionless coefficients 
qs, as, and κss, which describe the change of the anisotropy and 
exchange interactions within the shell as Kshell = qsKbulk and 
Ashell = asAbulk, and the exchange between different shells 
as Ashell−shell = κssAbulk. For the exchange coupling between 
the core and its shell, the bulk value of the exchange stiff-
ness of Nd2Fe14B was chosen. We remind the reader that for 
all results shown below the average grain size is dav = 20 nm 
with a core volume fraction of ccore = 40%, so that the shell 
thickness is hsh ≈ 2.6 nm, if not stated otherwise.

Figure 4 depicts an overview of the parameter space used in 
our simulations. Three large sets of micromagnetic modeling 
corresponding to ‘plane cuts’ in this parameter space were car-
ried out: (i) {qs − as}-plane at κss = 0.1; (ii) {qs − κss}-plane 
at as = 0.2; (iii) {as − κss}-plane at qs = 0.2. Points with 
κss > as have been removed from the diagram, because for 
physical reasons the intergrain exchange can not be larger 
than the exchange within the grain shell. The magnetodipolar 
interaction was neglected in these calculations; its role will be 
discussed separately. Selected results from these three sets are 

presented in figures 5 and 6, where the complete experimental 
loops (black) and upper parts of simulated loops (green) are 
plotted. Additionally—and this is a great advantage of micro-
magnetic modeling—we can extract and plot separately the 
normalized magnetization reversal curves of all cores (blue 
dashed lines) and of all shells (red dashed lines). This pos-
sibility allows us to analyze the behavior of these constituents 
of the microstructure separately. In order not to overload the 
figures, only the lower parts of these core and shell loops are 
shown in figures 5 and 6. Complete ‘matrices’ of hysteresis 
loops for all parameter points shown in figure 4 are contained 
in the supplemental material. Based on these results, we are 
able to analyze separately the influence of each shell param
eter which was varied in simulations.

For low values of the anisotropy qs and intrashell exchange 
as constants (so that κss < as is also small), the simulated 
loops exhibit a two-phase behavior with a kink at about 
−15 kOe, as it can be seen in figure  5(a). The reason for 
this behavior is evident from the inspection of partial loops 
for the magnetization reversal of cores (blue dashed lines) 
and shells (red dashed lines): due to the much lower aniso
tropy and weak intrashell coupling the grain shells reverse 
in much smaller fields than the cores, producing a kink in 
the total hysteresis. Increase of the shell anisotropy towards 
the bulk value results in the increase of the system coer-
civity Hcs

c  and the gradual disappearance of the two-phase 

Figure 2.  Difference Δ between experiment and simulation for the model based on SW particles without (a) and with (b) the 
magnetodipolar interaction as a function of the anisotropy-constant factor q and the exchange-coupling factor κ. Note the different q-scales.

Figure 3.  (a) Vertical cut through the core-shell microstructure used 
in the micromagnetic simulations of the Nd–Fe–B nanocomposite. 
(b) Example of a particular mesh-element distribution; the 
typical mesh-element size is 2 nm . Cold (warm) colors represent, 
respectively, cores (shell) regions.
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Figure 5.  Upper part of simulated hysteresis loops (green) obtained by the core-shell model without the magnetodipolar interaction for 
different shell anisotropy constants qs (a)–(c) and different intrashell exchange constants as (d)–(f) (κss = 0.1 for all loops). Lower parts 
of the core (blue dashed lines) and shell (red dashed lines) hysteresis loops are also shown. The experimentally measured loop is drawn in 
black.

Figure 6.  Same as figure 5, but for different exchange coupling constants κss between the shells (as = 0.8, qs = 0.2).

Figure 4.  Parameter space used in the micromagnetic simulations of core-shell-based nanocomposites and quality-of-fit parameter Δ 
(shown as color circles) for various shell parameters.

J. Phys.: Condens. Matter 30 (2018) 125802
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behavior (see the sequence of loops (a)  →  (c) in figure 5). 
Due to the exchange coupling between the core and its shell, 
their reversal fields nearly coincide already for qs = 0.5. 
We note that for this shell anisotropy the coercivity Hcs

c  of 
the whole system is still considerably smaller than HSW

c  for 
the SW-based model. The relation between the coercivities 
Hcs

c /HSW
c  approximately corresponds to the relation between 

the effective grain anisotropy and the bulk anisotropy 
Keff/Kbulk = ccore + qs(1 − ccore) (we remind the reader that 
the directions of the anisotropy axes of the core and the shell 
are assumed to be the same). In addition, increasing of qs 
leads to a small decrease of remanence in the studied param
eter region, because various grains become more independent 

and the remanence tends to its ideal value of j(0)
R = 0.5 in the 

disordered system of uniaxial particles.
The increase of the exchange coupling within the shell 

as also eliminates the kink in the hysteresis loop, but leads 
only to a minor increase of Hcs

c  for the given value of qs (see 
loops (d)  →  (f) in figure 5). This effect can be explained by 
a more coherent reversal of the shell for higher values of as; 
due to the strong core-shell coupling this reversal leads to the 
switching of the core magnetization in much smaller fields 
than Hcore

K ∼ Kbulk/MS, strongly decreasing the coercivity of 
the whole system. If the exchange coupling between different 
shells (grains) κss increases, then the coercivity decreases and 
the remanence increases (figure 6). Both effects are a direct 
consequence of the more cooperative magnetization reversal 
of different grains for larger intergrain exchange (larger κss). 
Based on the above results we conclude that the ranges of 
parameters where a better agreement between experiment 
and simulations is achieved (as = 0.1 ... 0.2; κss = 0.0 ... 0.2; 
qs = 0.05 ... 0.2) correspond to the physical picture of a nano-
composite in which the regions near grain surfaces—repre-
sented by shells in our model—have ‘deteriorated’ magnetic 
properties in comparison to the bulk material. This deteriora-
tion could occur due to various technological reasons during 
the nanocomposite manufacturing.

The role of the magnetodipolar interaction in our core-
shell model of the grain structure is demonstrated in figure 7 
for the sets of magnetic parameters chosen based on the pre-
vious calculations (with as = 0.2 held fixed). As it can be seen 
from the comparison of corresponding loops, the main effect 
of the magnetodipolar interaction is the diminishing or even 
complete elimination of the two-step character of the mag-
netization reversal of a nanocomposite (figures 7(a)–(c)). The 
most probable reason for this effect is the long-range nature 
of the magnetodipolar interaction. Moreover, this interaction 
results in a decreased coercivity, even in systems with a rela-
tively large shell anisotropy (see figure 7(d)). Similar to the 
increase of κss (figure 6), the presence of the magnetodipolar 
interaction also increases the intergrain coupling, resulting 
in a more cooperative magnetization reversal of the particle 
shells (‘softer’ phase in our material); the reversal of the shells 
magnetization leads, in turn, to the magnetization switching 
of the whole particle in smaller external fields. This effect has 
already been been observed in [12], where isotropic nanocrys-
talline Nd–Fe–B was simulated.

To establish the relation between the microstructure and 
the magnetization configuration in our system, we show in 
figure 8 the magnetization distribution at selected points of the 
hysteresis curve ((a) large positive field; (b) remanence; (c) 
coercivity). It can be clearly seen that in high fields the shells 
exhibit a larger magnetization projection in the field direction 
than the cores, since the shell anisotropy constants are reduced 
compared to the core regions. This situation prevails down to 
the remanent state, where a qualitatively similar spin distribu-
tion is observed. However, at negative fields—see panel (c) 
for H = −Hc—the shells reverse their magnetization ‘easier’ 
than the cores (compare, e.g. the dashed curves in figure 9), 
which again can be attributed to the reduced anisotropy in the 
shell region.

In order to complete the analysis of the core-shell-based 
model, we have studied the effect of its most important struc-
tural parameter, the core volume fraction ccore. Corresponding 
selected results are displayed in figure  9, where the values 
of the core diameter dcore representing the increasing core 
volume fraction are shown. A more complete data set in form 
of a ‘matrix’ of hysteresis loops in the (dcore − qs)-plane is 
presented in the supplemental material. As expected, the 
coercivity increases with increasing volume fraction of the 
hard magnetic material, while the remanent magnetization 
remains nearly constant in the studied range of dcore. In par
ticular, for the coercivity the best agreement between simu-
lations and experiment is found for the following parameter 
set: qs = 0.16, as = 0.20, κss = 0.20, dcore = 14.1 nm. The 
hysteresis loop corresponding to this set of parameters is 
shown in figure 10(b) in green. We emphasize that while the 
Hc is perfectly fitted, the high-field behavior is not reproduced 

Figure 7.  Comparison between core-shell systems without (green 
solid curve) and with (orange dashed curve) the magnetodipolar 
interaction for different shell anisotropy constants qs (as = 0.2; 
κss = 0.05).
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adequately (although the agreement for this behavior is much 
better than for the SW-based model, see figure 1(b)). Hence, 
we come to the conclusion that even the much more sophis-
ticated model based on the core-shell structure of Nd–Fe–B 
grains cannot satisfactorily explain the measured hysteresis 
loop for the Nd–Fe–B nanocomposite under study.

3.3.  Core-shell model including superparamagnetic clusters

A possible explanation for the deviation between simulation 
and experiment, in particular, in the approach-to-saturation 
regime, might be the existence of small clusters in the super-
paramagnetic state. In order to achieve a better understanding 
of the magnetization reversal processes of Nd–Fe–B com-
posites consisting of nanosized Nd–Fe–B grains, we have 

included into our model a contribution to the system mag-
netization arising from magnetic clusters within the sample 
which are so small that they would exhibit a superparamagn
etic behavior at room temperature. Such clusters could e.g. 
form in the intergrain regions of a nanocomposite. In standard 
coarse-grained magnetic materials the corresponding contrib
ution is negligibly small, because the surface-to-volume ratio 
for relatively large grains (with a grain size larger than about 
1 µm) is very small. However, for composites with grains in 
the nm-regime the contribution from small clusters, formed in 
the interface regions between ferromagnetic grains, could be 
substantial. In our system such clusters can be formed prefer-
ably from the α-Fe phase, but can also be represented by very 
small (<1 nm) Nd–Fe–B particles.

It is commonly known that the field dependence of the 
magnetization of a system of superparamagnetic particles is 
given by the Langevin function L(x) = coth(x)− 1/x , where 
x = µH/kT , with μ being the particle magnetic moment. 
Taking into account this contribution, we have fitted the nor
malized total experimental magnetization loop as the sum of 
ferro- and superparamagnetic terms:

Mexp
tot =

cfm Mcs
s mcs(H) + (1 − cfm)MFe

s L(H/HL)

cfm Mcs
s + (1 − cfm)MFe

s
.� (4)

Here, cfm denotes the volume fraction of the ferromagnetic 
material in the sample, mcs(H) represents the normalized 
hysteresis loop of the Nd–Fe–B core-shell particles and 

Figure 8.  Magnetization distribution (two-dimensional cut out of the three-dimensional distribution) at selected points on the hysteresis 
curve (approach-to-saturation, remanence, coercivity) using the core-shell model (qs = 0.16, as = 0.20, κss = 0.20, dcore = 14.1 nm).

Figure 9.  Hysteresis loops (green, upper part) obtained in the core-
shell model with the magnetodipolar interaction for different core-
volume fractions (qs = 0.05; as = 0.2; κss = 0.2). Only the lower 
parts of the core (blue dashed lines) and shell (red dashed lines) 
hysteresis loops are shown. Experimentally measured loop is shown 
in black.

Figure 10.  (a) Difference Δ between the measured and simulated 
hysteresis curve computed using equation (4) as a function of the 
volume fraction cfm  and the Langevin field HL; the best-fit loop 
from the pure core-shell model (green curve in panel (b)) was used 
as the term mcs(H) in equation (4). (b) Comparison between the 
best-fit loop (red) (based on equation (4)) and the experimental data 
(black). The Langevin contribution is drawn as the blue curve.
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Mcs
s = 1281 G is the saturation magnetization of these par-

ticles. In the superparamagnetic term, HL = kT/µ is the 
characteristic Langevin field and MFe

s = 1750 G is the satur
ation magnetization of Fe (we assume that superparamagnetic 
particles consist of Fe atoms). For the ferromagnetic contrib
ution mcs(H) we have used the hysteresis loop of the core-
shell model which provided the best fit of the coercivity Hc as 
explained at the end of the previous subsection. The Langevin 
field HL and the volume fraction cfm of the ferromagnetic 
material are the fitting parameters.

The result of this fitting procedure is presented by the 
two-dimensional color-coded plot in figure 10(a) and by the 
red curve in panel (b) of the same figure. The best-fit mag-
netization curve shows an excellent agreement with experi-
ment. The volume fraction of superparamagnetic particles 
extracted from this fit is  ≈20%. From the obtained Langevin 
field HL = 25 kOe and using T = 300 K , we have estimated 
the diameter of the Fe particles (assuming a spherical shape) 
as 1.2 nm, which represents a reasonable value for superpara-
magnetic clusters consisting of α-Fe.

The estimated best-fit value of 20% for the volume frac-
tion of superparamagnetic Fe clusters appears to be too high 
as compared to the nominal 5 wt. % Fe content of the exper
imental Nd–Fe–B sample (5 wt. % correspond to 4.7 vol. % 
assuming a mass density of 7.4 g cm−3 for Nd2Fe14B). There 
are several possible explanations for this mismatch: (i) In 
the fitting procedure, we have not taken into account a pos-
sible size distribution of superparamagnetic clusters. (ii) The 
superparamagnetic contribution was introduced phenomeno-
logically via equation  (4). A more rigorous implementation 
of this feature into the micromagnetic code would require an 
additional step in the energy minimization algorithm: namely, 
the local dipolar fields from ferromagnetic grains affect the 
magnetization of superparamagnetic clusters and vice versa, 
so that this interaction should be taken into account via an 
iterative convergence procedure; the corresponding imple-
mentation is in progress. (iii) Besides the possible superpara-
magnetic Fe clusters, other weakly magnetic or nonmagnetic 
phases may have formed during the crystallization process of 
the amorphous melt-spun precursor material [26].

We emphasize that the same procedure applied for the 
model based on SW particles yields, first, a large systematic 
difference between the simulated and measured loop in both 
positive and negative fields with |H| � Hc (see figure 11(b)) 
and, second, a much larger volume fraction of superpara-
magnetic particles (≈30%). This result demonstrates that the 
SW-based model is not at all suitable for the description of our 
system even when it is complemented by a superparamagnetic 
contribution.

If the above postulated superparamagnetic contribution 
corresponds to physical reality, then one would expect this part 
of the system magnetization to scale with temperature. This 
question can be experimentally investigated, e.g. using AC/
DC magnetometry. However, the assumed superparamagn
etic effect might not be unambiguously disentangled from 
the dominant ferromagnetic contribution, because the magn
etic parameters of Nd–Fe–B itself significantly depend on 
temperature, and these dependencies for the nanocrystalline 

material are not known with the desired accuracy. Moreover, 
the straightforward inclusion of the temperature dependence 
of the superparamagnetic phase magnetization into the micro-
magnetic algorithm is nontrivial for the following reason: 
the magnetization of a particular superparamagnetic cluster 
strongly depends on the local dipolar field, which arises from 
the magnetizations of both the ferromagnetic and the super-
paramagnetic phases. This nonlocal interaction should be 
implemented in the total-energy minimization procedure as 
an additional iterative procedure. Work in this direction is cur
rently in progress.

4.  Conclusion

We have carried out micromagnetic simulations of the mag-
netization reversal of a nanocrystalline Nd–Fe–B based mat
erial and compared the simulation results to experimental 
magnetization data obtained on a Nd2Fe14B/α-Fe nano-
composite (containing 5 wt. % of α-Fe). It was shown that 
a model based on Stoner–Wohlfarth particles cannot account 
for the hysteresis curve, even when the magnetodipolar inter-
action and the exchange coupling between the particles are 
taken into account. A better agreement between simulation 
and experiment could be achieved by employing a core-shell 
model of Nd–Fe–B grains, but significant systematic discrep-
ancies between simulations and experiment were still present. 
Inclusion of a superparamagnetic contribution originating 
from very small clusters, which accounts for the high-field 
magnetization behavior, allowed us to achieve a very good 
agreement between the simulated and measured hysteresis 
loops. A particular strength of the presented micromagnetic 
approach is the possibility to systematically scan the multi-
dimensional parameter space required to describe a realistic 
microstructure of a nanocomposite material, involving sample 
regions where the magnetic parameters are different from 
those of the bulk material.
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