
Parallel and Hybrid Soft-Thresholding Algorithms with Line

Search for Sparse Nonlinear Regression

Yang Yang1, Marius Pesavento2, Symeon Chatzinotas1 and Björn Ottersten1

1. Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, L-1855 Luxembourg.

2. Communication Systems Group, Technische Universität Darmstadt, Darmstadt 64283, Germany.

Email: yang.yang@uni.lu, pesavento@nt.tu-darmstadt.de, symeon.chatzinotas@uni.lu, bjorn.ottersten@uni.lu

Abstract—In this paper, we propose a convergent iterative algorithm

for nondifferentiable nonconvex nonlinear regression problems. The pro-
posed parallel algorithm consists in optimizing a sequence of successively

refined approximate functions. Compared with the popular iterative

soft-thresholding algorithm commonly known as ISTA, which is the
benchmark algorithm for such problems, it has two attractive features

which lead to a notable reduction in the algorithm’s complexity: the

proposed approximate function does not have to be a global upper bound

of the original function, and the stepsize can be efficiently computed by
the line search scheme which is carried out over a properly constructed

differentiable function. Furthermore, when the parallel algorithm cannot

be fully parallelized due to memory/processor constraints, we propose
a hybrid updating scheme that divides the whole set of variables into

blocks which are updated sequentially. Since the stepsize is obtained by

performing the line search along the coordinate of each block variable,

the proposed hybrid algorithm converges faster than state-of-the-art
hybrid algorithms based on constant stepsizes and/or decreasing stepsizes.

Finally, the proposed algorithms are numerically tested.

Index Terms—Big Data, Block Coordinate Descent, Line Search, Linear

Regression, Nonlinear Regression, Successive Convex Approximation

I. INTRODUCTION

In this paper, we consider the problem of estimating a sparse signal

x ∈ R
I×1 from a noisy measurement y ∈ R

N×1 which is the output

of a nonlinear system:

yn = σ(aT
nx) + vn, n = 1, . . . , N, (1)

where vn is the noise, (an)
N
n=1 is the covariate and σ specifies the

nonlinear regression model. Common choices of σ are cosine and

sigmoid functions. If σ is the identity function, (2) reduces to the

well known linear regression problem.

A natural measure for the data mismatch is the least square error

augmented by regularization functions to promote the sparsity of x:

minimize
x

1

2

∑N

n=1

(

yn − σ(aT
nx)

)2
+ λ ‖x‖1 . (2)

The objective function can be written as the sum of a differentiable

function f(x) and a nondifferentiable but convex function g(x):

f(x) ,
1

2

∑N

n=1

(

yn − σ(aT
nx)

)2
, and g(x) , λ ‖x‖1 . (3)

As a special case of (2) when σ is the identity function, the

linear regression problem has received extensive attention because

it plays a fundamental role in many applications, for example, image

processing, parameter estimation and subspace clustering. Neverthe-

less, it is typically a large scale optimization problem and cannot

be solved by traditional convex optimization algorithms such as the

interior point method that do not scale well. Many new algorithms

have been proposed, for example, fast iterative soft-thresholding

The work of Yang, Chatzinotas and Ottersten is supported by the ERC
project AGNOSTIC, and the work of Pesavento is supported by the EXPRESS
Project within the DFG Priority Program CoSIP (DFG-SPP 1798).

algorithm (FISTA), (greedy) block coordinate descent (BCD) method,

and alternating direction method of multiplier (ADMM).

When σ is nonlinear, f(x) is in general a nonconvex function. It

was shown in [1] that under mild conditions, every stationary point of

the nonconvex optimization problem (2) enjoys an optimal statistical

rate of convergence. An iterative soft-thresholding algorithm (ISTA)

was then proposed in [1] to find a stationary point of (2). However,

its convergence speed is typically slow. Besides, the complexity per

iteration is high because a successive line search scheme is employed

to estimate the Lipschitz constant of ∇f and the soft-thresholding

operator must be called several times inside a single iteration.

ISTA proposed in [1] is fully parallelizable. Fully parallelizable

algorithms are generally desirable because all elements can be

updated simultaneously and the convergence speed is typically faster

than sequential update such as BCD algorithms [2]. However, fully

parallelizable algorithms pose a demanding requirement on the mem-

ory and processing units due to the formidable sheer data volume. For

example, to load the matrix A , [a1 a2 . . . aN] with a dimension

of 0.1 Million×1 Million while each element is represented by a full

double-precision floating point, the memory capacity needs to be as

large as 745 GB. In this case, the requirement on the hardware is

really demanding and difficult to satisfy all the time. It is possible

to divide the fully parallelizable algorithms into blocks which are

then executed sequentially. However, this is a rather naive approach

because when a particular block is executed, the most recent updates

of previous blocks will not be exploited.

To address this issue, several hybrid update schemes have been

proposed in literature [3, 4, 5]: the whole set of variables x is divided

into K block variables x = (xk)
K
k=1, such that the iterative algorithm

can be fully parallelized when being applied to solve the optimization

problem (2) with respect to (w.r.t.) the block variable xk (rather than

the full variable x). In the hybrid update scheme, all elements of xk

are updated simultaneously, and different block variables (xk)
K
k=1

are updated sequentially. Nevertheless, such schemes also have their

limitations. The hybrid algorithm proposed in [3] is not applicable

when the objective function is nonsmooth. The convergence of hybrid

algorithms proposed in [4, 5] is only established under decreasing

stepsizes, for example, γt = 1/t. On the one hand, a slow decay

of the stepsize is preferable to make notable progress and to achieve

satisfactory convergence speed; on the other hand, theoretical con-

vergence is guaranteed only when the stepsize decays fast enough.

In practice, it is a difficult task on its own to find a decay rate

for the stepsize that provides a good trade-off between convergence

speed and convergence guarantee, and current practices mainly rely

on heuristics [5]. Although it is shown in [4, 5] that constant stepsizes

can also be used, the choice of the constant stepsizes depends on

unknown parameters that are not easy to obtain/estimate.

In this paper, we first propose a parallel and then a hybrid

iterative Soft-ThrEsholding with Line search Algorithm (STELA) for

problem (2). The proposed parallel STELA consists in optimizing a

sequence of successively refined approximate functions and it has

several attractive features: i) the approximate function is a convex

approximation of the original function but it does not need to be

a global upper bound of the original function; ii) the (exact or

successive) line search scheme to calculate the stepsize is carried

out over a properly constructed differentiable function. The parallel

STELA has a faster convergence than constant/decreasing stepsizes

and a lower complexity than the traditional line search which is

carried out over the original nonsmooth objective function. The

proposed line search scheme is then extended to the hybrid STELA:

when xk is being updated, the stepsize is obtained by performing

the line search along the coordinate of xk. Both the parallel and the

hybrid STELA converge to a stationary point of (2).

II. THE PROPOSED PARALLEL SUCCESSIVE CONVEX

APPROXIMATION ALGORITHMS

In this section, we propose an iterative algorithm to find a sta-

tionary point of problem (2). It consists of solving a sequence of

successively refined approximate problems, which are presumably

much easier to solve than the original problem.

To this end, given xt at iteration t, we define the approximate

function of f(x) at xt as f̃(x;xt):

f̃(x;xt) = f(xt)+(x−xt)T∇f(xt)+
1

2
(x−xt)THt(x−xt), (4)

where Ht ≻ 0 is a diagonal matrix so that f̃(x;xt) is separable

among the different scalar elements (xi)
I
i=1. Note that f̃(x;xt) is

strongly convex and its function value is equal to f(x) at x = xt,

but f̃(x;xt) is not necessarily a global upper bound of f(x).

The approximate problem is

minimize
x∈X

f̃(x;xt) + g(x), (5)

and its optimal point is denoted as

Bx
t
, argmin

x∈X

f̃(x;xt) + g(x) (6a)

= S(Ht)−1λ(x
t − (Ht)−1∇f(xt)), (6b)

where Sa(b) is the soft-thresholding operator and Sa(b) ,

[b− a]+ − [−b− a]+.

Note that Bxt is always unique because f̃(x;xt) is strongly convex

in x for any given and fixed xt. Furthermore, gradient of f̃(x;xt)
and f(x) are identical at x = xt:

∇f(x;xt)
∣

∣

x=xt
= ∇f(xt) +H

t(x− x
t)
∣

∣

x=xt
= ∇f(x)

∣

∣

x=xt
.

It follows from [2, Prop. 1] that Bxt − xt is a descent direction and

if we update the variable x according to the following rule:

x
t+1 = x

t + γ(Bxt − x
t), (7)

then there exists a stepsize γ ∈ [0, 1] such that f(xt+1) < f(xt).
A natural (and traditional) choice of the stepsize γ is given by the

exact line search:

min
0≤γ≤1

{

f(xt + γ(Bxt − x
t)) + g(xt + γ(Bxt − x

t))
}

, (8)

in which the stepsize that yields the largest decrease in objective

function value along the direction Bxt−xt is selected. Nevertheless,

this choice leads to high computational complexity, because f(x)
is nonconvex and g(x) is nondifferentiable, and the exact line

search involves minimizing a nonconvex nondifferentiable function.

To reduce the complexity, an alternative is to employ the so-called

successive line search: given predefined constants α ∈ (0, 1) and

Algorithm 1 The parallel STELA for the sparse nonlinear regression

problem (2)

Data: t = 0, x0 (arbitrary but fixed, e.g., x0 = 0), stop criterion δ.

S1: Compute Bxt according to (6a).

S2: Determine the stepsize γt by the exact line search (10) or the

successive line search (11).

S3: Update x according to (7).

S4: If |∇f(xt)T (Bxt−xt)+g(Bxt)−g(xt)| < δ, STOP; otherwise

t← t+ 1 and go to S1.

β ∈ (0, 1), the stepsize γt is set to be γt = βmt where mt is the

smallest nonnegative integer that satisfies the inequality:

f(xt + βm(Bxt − x
t)) + g(xt + βm(Bxt − x

t))

≤ f(xt) + g(xt)− αβm
∥

∥Bx
t − x

t
∥

∥

2
. (9)

The complexity of the successive line search lies in the repeated

evaluation of the nondifferentiable function g(xt+βm(Bxt−xt)) for

m = 0, . . . ,mt. This could be further saved by using constant and

decreasing stepsizes. However, both of these stepsize rules usually

lead to slow convergence and suffer from parameter tuning (cf. [2]),

except for the case that Ht = cI and c > L∇f (L∇f is the Lipschitz

constant of ∇f): it is shown in [2] that a constant unit stepsize

γt = 1 always yields a larger decrease than the successive line

search scheme. As a matter of fact, the meticulous choice of stepsizes

have become a major bottleneck for successive convex approximation

algorithm [6].

To reduce the complexity of traditional exact line search scheme

(8), it is shown in [2, Sec. III-A] that it suffices to perform the exact

line search over the following differentiable function:

min
0≤γ≤1

{

f(xt + γ(Bxt − x
t)) + g(xt) + γ(g(Bxt)− g(xt))

}

,

(10)

which is an upper bound of the objective function in (8) after applying

Jensen’s inequality to the convex nondifferentiable function g(S):

g(xt + γ(Bxt − x
t)) ≤ g(xt) + γ(g(Bxt)− g(xt)).

This exact line search scheme (10) has a much lower complexity than

the traditional scheme (8) because the objective function in (10) is

differentiable. Sometimes the optimal point of (10) may even have

a closed-form solution, even though f(x) is nonconvex; see [7] for

such an example.

If the nonconvex differentiable function in (10) is still difficult

to optimize, we could instead perform the successive version of the

exact line search (10): given predefined constants α ∈ (0, 1) and

β ∈ (0, 1), the stepsize is set to γt = βmt , where mt is the smallest

nonnegative integer satisfying the inequality:

f(xt + βm(Bxt − x
t)) + g(xt) + βm(g(Bxt)− g(xt))

≤f(xt) + g(xt) + αβm
(

∇f(xt)T (Bxt − x
t) + g(Bxt)− g(xt)

)

.
(11)

This has a much lower complexity than the traditional successive line

search scheme (9) because g(Bxt) only needs to be calculated once.

The proposed variable update (6)-(7) with stepsizes given by (10)

or (11) is summarized in Algorithm 1, and we name it as Soft-

ThrEsholding with successive Line search Algorithm (STELA). In

what follows, we draw comments on the important aspects of the

proposed parallel STELA for problem (2).

On the convergence of STELA in Algorithm 1. It follows from

[2, Theorem 1] that any limit point of the sequence {xt}t generated

by STELA described in Algorithm 1 is a stationary point of problem

(2). This statement is still valid when H is a positive definite matrix

but not a diagonal matrix. In this case, however, the problem (5)

cannot be decomposed among the elements of x, and Bxt must be

found iteratively.

On the choice of H. One common choice of Ht is Ht = cI where

c is some given positive constant. Besides, if the matrix Ht contains

second order information, the algorithm could be further accelerated.

For example, if f(x) is strictly convex in xk (recall that f(x) may

not be convex in x), then Ht
kk = ∇2

xk
f(xt) > 0 for all k. If f(x)

is not convex in xk, then Ht
kk = ∇2

xk
f(xt)+ ct and c must be large

enough to guarantee that Ht ≻ 0, e.g., ct > |mink∇
2
xk

f(xt)|.
On the connection to ISTA. In ISTA proposed in [1], the variable

is updated as follows:

x
t+1 = argmin

x

f(xt)+(x−x
t)∇f(xt)+

ct

2

∥

∥x− x
t
∥

∥

2
+λ ‖x‖1 .

(12)

This is a special case of Algorithm 1 when Ht = ctI in (4) and

the stepsize γ = 1 in (7), and convergence is guaranteed if ct >
L∇f , where L∇f is the Lipschitz constant of ∇f . To see this, it

follows from the descent lemma [8] that f̃(x;xt) ≥ f(x) if ct >
L∇f . According to [2], if the approximate function f̃(x;xt) is a

global upper bound of the original function f(x), the convergence

of Algorithm 1 is guaranteed under the constant unit stepsize, i.e.,

γt = 1 for all t.
On the complexity of STELA and ISTA. When the value of

L∇f is not known, ct should be estimated iteratively: for a constant

β > 1, define x⋆(βm) as

x
⋆(βm) , argmin

x

{

f(xt) + (x− xt)∇f(xt)

+βm

2

∥

∥x− xt
∥

∥

2
+ λ ‖x‖1

}

. (13)

Then xt+1 = x⋆(βmt) while mt is the first nonnegative integer such

that the following inequality is satisfied for some α ∈ (0, 1):

f(x⋆(βm)) + g(x⋆(βm))

< f(xt) + g(xt)− αβm
∥

∥x
⋆(βm)− x

t
∥

∥

2
.

In other words, x⋆(βm) should be evaluated according to (13) for mt

times, namely, m = 0, 1, . . . ,mt. This is however not necessary in

the proposed algorithm STELA, because computing Bxt according

to (6) does not depend on any unknown parameters and the soft-

thresholding operator only needs to be called once.

III. THE PROPOSED HYBRID SUCCESSIVE CONVEX

APPROXIMATION ALGORITHMS

The Algorithm 1 proposed for (2) in the previous section is fully

parallelizable. When the problem dimension is extremely large and

there is only a limited number of processors/clusters, Algorithm 1

may not be fully parallelized due to hardware constraints. We could

naively divide it into blocks which are then executed sequentially.

However, when a particular block variable xk is updated, the most

recent updates of the previous block variables (xj)
k−1
j=1 will not be

exploited. To address this issue, we design in this section a hybrid

successive convex approximation algorithm.

We divide the variable x into K block variables (x1,x2, . . . ,xK),
such that Algorithm 1 could be fully parallelized when being applied

to the following optimization problem w.r.t. the block variable xk

(rather than the full variable x):

min
xk

f(x1,x2, . . . ,xK) +
∑K

k=1g(xk). (14)

If all block variables are updated sequentially (in a cyclic order)

based on (14), and when one block variable xk is being updated,

the other block variables x−k , (xj)j 6=k are fixed, the resulting

block coordinate descent algorithm converges to a stationary point of

problem (2) under certain conditions [9]. However, the optimization

problem (14) may not be easy to solve. One solution approach would

be to apply Algorithm 1 to solve (14) iteratively, and the resulting

algorithm will be of two layers, while the parallel STELA is in the

inner layer and the block variables are sequentially alternated in the

outer layer.

To reduce the complexity, we propose an iterative algorithm in

which the block variable xk is being updated, all elements of xk are

updated in parallel by solving an approximate problem that is much

easier to optimize than the original problem (14). To start with, we

reformulate problem (2) into the following equivalent one:

minimize
x,y

f(x1, . . . ,xK) + 1
T
y

subject to g(xk) ≤ yk,∀k. (15)

Suppose block variable (xk, yk) will be updated at iteration t. Define

(Bkx
t, y⋆

k(x
t)) , argmin

g(xk)≤yk

f̃(xk;x
t) + yk, (16)

with y⋆
k(x

t) = g(Bkx
t). Note that f̃(xk;x

t) defined in (4) is

an approximate function of f(xk,x
t
−k) at x = xt and it is not

necessarily a global upper bound of f(x). Moreover, Bkx
t can be

computed in closed-form by the soft-thresholding operator, cf. (6).

Since the objective function in (16) is convex, (Bkx
t, y⋆(xt)) −

(xt
k, y

t
k) is a descent direction of f(x) at x = xt along the coordinate

of xk:

(Bkx
t − x

t)∇f̃k(xk;x
t) + y⋆(xt)− yt

k < 0.

Then x is updated according to the following expression: xt+1 =
(xt+1

j)Kj=1 and

x
t+1
j =

{

xt
k + γt

k(Bkx
t − xt

k), if j = k,

xt
j , otherwise.

(17)

In other words, only the block variable xk is updated according to

(17) while other block variables (xj)j 6=k are equal to their value in

the previous iteration. The stepsize γt
k in (17) could be determined

efficiently by the line search introduced in the previous section,

namely, either the exact line search

min
0≤γ≤1

{

f(xt
−k,x

t
k + γ(Bkx

t − x
t
k)) + γ(g(Bkx

t)− g(xt
k))

}

,

(18)

where x−k , (xj)j 6=k, or the successive line search

f(xt
k + βm(Bkx

t − x
t
k),x

t
−k) + yt

k + βm(y⋆(xt)− yt
k) +

∑

j 6=k

yt
j

≤f(xt) +

K
∑

j=1

yt
j + αβm(∇kf(x

t)T (Bkx
t − x

t
k) + y⋆

k(x
t)− yt

k)

(19)

It may be tempting to update yt+1
k as yt+1

k = yt
k+γt(y⋆(xt)−yt),

but we propose the following update rule: yt+1 = (yt+1
j)Kj=1 and

yt+1
j =

{

g(xt
k + γt(Bkx

t − xt
k)), if j = k,

yt
j , otherwise,

(20)

because it yields a lower value:

yt+1
k ≤ (1− γt)g(xt

k) + γtg(Bkx
t)

≤ (1− γt)yt
k + γty⋆(xt) = yt

k + γt(y⋆(xt)− yt),

Algorithm 2 The Hybrid STELA for the sparse nonlinear regression

problem (2)

Data: t = 0, x0 (arbitrary but fixed, e.g., x0 = 0).

Repeat the following steps until convergence:

S1: Set k = mod (t,K) + 1. Compute (Bkx
t, y⋆

k(x
t)) according

to (16).

S2: Determine the stepsize γt by the exact line search (18) or the

successive line search (19).

S3: Update x and y according to (17) and (20), respectively.

S4: t← t+ 1 and go to S1.

where the first inequality is based on the convexity of g(x) and the

second inequality comes from the fact that y⋆(xt) = g(Bkx
t) and

yt
k ≥ g(xt).
The proposed hybrid STELA is summarized in Algorithm 2, and

its convergence properties are given in the following theorem.

Theorem 1. Every limit point of the sequence {xt}t generated by

the hybrid STELA in Algorithm 2 is a stationary point of (2).

Proof: We need to show that every limit point of the sequence

{xt,yt}t generated by Algorithm 2 is a stationary point of (15).

We remark that the approximate function f̃k(xk;x
t) + yk satisfies

the assumptions made in [3, Theorem 4], except that f̃k(xk;x
t) +

y is a convex function. However, the strict convexity assumed in

[3, Theorem 4] is just an intermediate result and we show that the

conclusion (cf. [3, Eq. (6.9)]) drawn from the strict convexity is still

satisfied, namely, for any limit point (x,y) of the sequence generated

by Algorithm 2, if (Bkx, y
⋆
k(x)) 6= (xk, yk), then

f̃k(xk + γ(Bkx− xk);x) + yk + γ(y⋆
k(x)− yk)

>f̃k(xk;x
t) + yk + γ(Bkx− xk)

T∇f̃k(xk;x
t) + γ(y⋆

k(x)− yk),

which, after removing the common terms on both sides of the

inequality, is equivalent to

f̃k(xk+γ(Bkx−xk);x) > f̃k(xk;x
t)+γ(Bkx−xk)

T∇f̃k(xk;x
t).

(21)

To see this, we first discuss the three possible cases implied if

(Bkx, y
⋆
k(x)) 6= (xk, yk):

(Bkx, y
⋆
k(x)) 6= (xk, yk)⇔















Case 1: Bkx 6= xk, y
⋆
k(x) 6= yk,

or Case 2: Bkx 6= xk, y
⋆
k(x) = yk,

or Case 3: Bkx = xk, y
⋆
k(x) 6= yk.

Case 3 can be excluded because y⋆
k = g(Bkx) and it follows from the

update rule of y in (20) and the Maximum Theorem in [10, VI. 3] that

y = g(x). In view of Case 1 and Case 2, (Bkx, y
⋆
k(x)) 6= (xk, yk) is

equivalent to Bkx 6= xk. Then (21) follows directly from the strong

(and thus strict) convexity of f̃k(xk;x
t) w.r.t. xk:

f̃k(xk+γ(Bkx−xk);x) > f̃k(xk;x)+γ(Bkx−xk)
T∇f̃k(xk;x

t).

Therefore, (21) is satisfied and the proof of Theorem 1 follows the

same line of argument of [3, Theorem 4].

The hybrid STELA in Algorithm 2 is complementary to the parallel

STELA in Algorithm 1. On the one hand, the update of the elements

of a particular block variable in the hybrid STELA is based on the

same principle as the parallel STELA, namely, the construction of

an approximate function and the line search scheme to calculate

the stepsize. As a result, the hybrid STELA in Algorithm 2 has

the same features as the parallel STELA in Algorithm 1. On the

other hand, the approximate problem solved in each iteration of the

hybrid STELA has a much smaller dimension than that of the parallel

0 5 10 15 20 25 30 35 40 45 50

(a): number of iterations

2000

4000

6000

fu
n
c
ti
o
n
 v

a
lu

e Parallel STELA (proposed)

Parallel ISTA (state-of-the-art)

0 10 20 30 40 50 60 70 80 90

(b): CPU time (seconds)

2000

4000

6000

fu
n
c
ti
o
n
 v

a
lu

e Parallel STELA (proposed)

Parallel ISTA (state-of-the-art)

Figure 1. Nonlinear regression problem: Achieved objective function value
versus the number of iterations and CPU time.

STELA. Therefore, a problem that is for example handled by a single

memory/processing unit could be of a much larger size. Furthermore,

due to the use of the line search schemes (18)-(19), the convergence

speed of the proposed hybrid STELA is much faster than state-of-

the-art hybrid algorithms whose convergence is only proved under

constant and decreasing stepsizes [4, 5].

IV. NUMERICAL RESULTS

In this section, we perform numerical tests to compare the proposed

parallel STELA with ISTA proposed in [1] and to illustrate the

advantage of the hybrid STELA. All algorithms are tested under

identical conditions in Matlab R2017a on a PC equipped with an

operating system of Windows 10 64-bit, an Intel i7-7600U 2.80GHz

CPU, and a 16GB RAM. All of the Matlab codes are available online

at http://orbilu.uni.lu/handle/10993/35047.

The dimension of A and x is 50000 × 10000 and 50000 × 1,

respectively. The elements of A are first generated according to the

normal distribution, and each column is then normalized to unity. The

density (the proportion of nonzero elements) of the sparse vector xtrue

is 0.1. The vector y is generated as y = ATxtrue + e where e is

drawn from an i.i.d. Gaussian distribution with variance 10−4. The

regularization gain λ is set to λ = 0.1 ‖Ay‖∞, which allows xtrue

to be recovered to a high accuracy [2]. The simulation results are

averaged over 10 repetitions.

We first test the performance of the proposed parallel STELA for

the nonlinear regression problem (2) with σ(x) = 2x + cos(x) [1],

while the benchmark algorithm is the parallel ISTA. The numerical

result is shown in Figure 1, where the achieved objective function

value versus the number of iterations and the CPU time (in seconds)

is plotted in Figure 1 (a) and Figure 1 (b), respectively. Firstly, we

see from Figure 1 (a) that the proposed parallel STELA converges

faster in the first few iterations than the parallel ISTA. This is due

to the fact that the proposed approximate function is not necessarily

a global upper bound of the original function, and we have more

freedom constructing the approximate function than in the parallel

ISTA. Then we see from Figure 1 (b) that the improvement in

terms of the required CPU time is notable: the proposed parallel

STELA converges in 20 seconds and the parallel ISTA converges in

60 seconds. The resulting acceleration factor is 3, and this factor is

consistent with the total CPU time for 50 iterations of the proposed

0 10 20 30 40 50 60 70 80 90 100

(a): number of iterations

10-10

100

1010

e
rr

o
r

e
(x

t)

Parallel STELA (proposed)

Hybrid STELA (proposed)

BSCA (state-of-the-art)

0 50 100 150 200 250 300

(b): CPU time (seconds)

10-10

100

1010

e
rr

o
r

e
(x

t)

Parallel STELA (proposed)

Hybrid STELA (proposed)

BSCA (state-of-the-art)

Figure 2. Linear regression problem (LASSO): Achieved error versus the
number of iterations and CPU time.

parallel STELA and the parallel ISTA, namely from 30 seconds and

90 seconds. The acceleration in CPU time comes from the reduction

in the complexity per iteration. In particular, the soft-thresholding

operator is only called once in the proposed parallel STELA, while

it must be called several times in the parallel ISTA because of the

successive line search scheme to estimate L∇f , as described in (13).

We then compare the parallel STELA, hybrid STELA, and the

block successive convex approximation (BSCA) algorithm proposed

in [4] for the linear regression problem (LASSO), i.e., σ(x) = x.

In this case, the function f(x) =
∑N

n=1

(

yn − aT
nx

)2
is a quadratic

function and (2) is convex. For the parallel STELA, we set Ht in

(4) as the diagonal of AAT while A = [a1 a2 . . . aN], and the

stepsize is calculated by the exact line search as it has a closed-

form expression, see [2, Sec. IV-III]. The approximate functions for

the hybrid STELA and the BSCA algorithm are defined in the same

manner, except that the approximation is w.r.t. a block variable, say

xk (rather than the whole set of variables x as in the parallel STELA).

Note that the hybrid STELA and the BSCA algorithm have the

same approximate function, and their only difference lies in the

stepsize: the stepsize of the hybrid STELA is obtained by the exact

line search along the coordinate of the block variable being updated

(cf. (18)), which has a closed-form expression, see [2, Sec. IV-III],

and the stepsize of the BSCA algorithm is the decreasing stepsize

γt = 1/t. We set the number of block variables K = 5, and the

dimension of each block variable xk is 50000/5 × 1 = 10000 × 1.

In one iteration of the hybrid STELA and the BSCA algorithm, all

block variables are updated once in a sequential order.

As expected, it is shown in Figure 2 (b) that the hybrid STELA

needs a longer CPU time to converge than the parallel STELA,

because the block variables are updated sequentially. However, we

see from Figure 2 (a) that the hybrid STELA needs much less

number of iterations to converge. For example, the solution obtained

by the parallel STELA after 100 iterations is already obtained

by the hybrid STELA after 40 iterations. This is because when

a particular block variable is updated, the latest information that

becomes available from the updates of previous block variables is

exploited. In applications where the sheer data volume is too big

for a single memory/processing unit, employing the hybrid STELA

yields a faster convergence than naively dividing the parallel STELA

into blocks and executing them sequentially.

Comparing the proposed hybrid STELA and the BSCA algorithm,

the notable acceleration in convergence speed brought by the line

search is consolidated, as their only difference is the choice of the

stepsize. We remark that the performance of the BSCA algorithm

may be improved by a fine tuning of the stepsize’s decreasing rate.

However, this is a difficult task on its own and there is no universal

choice that works well for all problem setups.

V. CONCLUDING REMARKS

In this paper, we have proposed a parallel algorithm for nondif-

ferentiable nonconvex nonlinear regression problems. The proposed

parallel algorithm consists in optimizing a sequence of successively

refined approximate functions, and it has two attractive features which

lead to a notable reduction in the algorithm’s complexity: the pro-

posed approximate function does not have to be a global upper bound

of the original function, and the stepsize can be efficiently computed

by the line search scheme which is carried out over a properly

constructed differentiable function. Furthermore, when the parallel

algorithm cannot be fully parallelized due to memory/processor

constraints, we have proposed a hybrid updating scheme that divides

the whole set of variables into blocks which are updated sequentially.

Since the stepsize is obtained by performing the line search along

the coordinate of each block variable, the proposed hybrid algorithm

converges faster than state-of-the-art hybrid algorithms based on

constant stepsizes and/or decreasing stepsizes. The advantages of the

proposed algorithms are finally illustrated by numerical simulations.

REFERENCES

[1] Z. Yang, Z. Wang, H. Liu, Y. C. Eldar, and T. Zhang, “Sparse Nonlinear
Regression: Parameter Estimation and Asymptotic Inference,” 2016, in
Proc. International Conference on Machine Learning (ICML). [Online].
Available: http://proceedings.mlr.press/v48/yangc16.pdf

[2] Y. Yang and M. Pesavento, “A Unified Successive Pseudoconvex
Approximation Framework,” IEEE Transactions on Signal Processing,
vol. 65, no. 13, pp. 3313–3328, Jul. 2017.

[3] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A Unified Convergence
Analysis of Block Successive Minimization Methods for Nonsmooth
Optimization,” SIAM Journal on Optimization, vol. 23, no. 2, pp.
1126–1153, Jan. 2013.

[4] M. Razaviyayn, M. Hong, Z.-Q. Luo, and J.-S. Pang, “Parallel
Successive Convex Approximation for Nonsmooth Nonconvex
Optimization,” in Proceedings of the 27th International Conference on

Neural Information Processing Systems, 2014, pp. 1440–1448.
[5] F. Facchinei, G. Scutari, and S. Sagratella, “Parallel Selective

Algorithms for Nonconvex Big Data Optimization,” IEEE Transactions

on Signal Processing, vol. 63, no. 7, pp. 1874–1889, Nov. 2015.
[6] K. Slavakis, G. B. Giannakis, and G. Mateos, “Modeling and

Optimization for Big Data Analytics: (Statistical) learning tools for our
era of data deluge,” IEEE Signal Processing Magazine, vol. 31, no. 5,
pp. 18–31, Sep. 2014.

[7] Y. Yang and M. Pesavento, “A parallel best-response algorithm
with exact line search for nonconvex sparsity-regularized rank
minimization,” Apr. 2018, to appear in Proc. ICASSP. [Online].
Available: http://orbilu.uni.lu/handle/10993/33772

[8] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.
[9] P. Tseng, “Convergence of a Block Coordinate Descent Method for

Nondifferentiable Minimization,” Journal of Optimization Theory and

Applications, vol. 109, no. 3, pp. 475–494, Jun. 2001.
[10] C. Berge, Topological Spaces: Including a Treatment of Multi-Valued

Functions, Vector Spaces and Convexity. Dover Publications, 1997.

