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Abstract— This paper addresses synchronization of Euclidean
transformations over graphs. Synchronization in this context,
unlike rendezvous or consensus, means that composite transfor-
mations over loops in the graph are equal to the identity. Given
a set of non-synchronized transformations, the problem at hand
is to find a set of synchronized transformations approximating
well the non-synchronized transformations. This is formulated
as a nonlinear least-squares optimization problem. We present
a distributed synchronization algorithm that converges to the
optimal solution to an approximation of the optimization prob-
lem. This approximation stems from a spectral relaxation of the
rotational part on the one hand and from a separation between
the rotations and the translations on the other. The method can
be used to distributively improve the measurements obtained in
sensor networks such as networks of cameras where pairwise
relative transformations are measured. The convergence of the
method is verified in numerical simulations.

I. INTRODUCTION

We consider the following setting. There is a set of Euclidean
coordinate systems corresponding to nodes in a connected
graph. The coordinate systems are related by (pairwise) Eu-
clidean transformations. Only a subset of those transforma-
tions are available and they label the edges of the connected
graph. The transformations between the coordinate systems
must be so-called synchronized, meaning that compositions
of transformations over loops in the graph equal identity. This
paper addresses the case where the relative transformations in
the graph are not necessarily synchronized, i.e., compositions
of transformations over loops are not necessarily equal to
the identity. A distributed algorithm is developed for finding
synchronized transformations approximating well the non-
synchronized ones. In the algorithm, the orthogonal matri-
ces and the translations—together comprising the Euclidean
transformations—are computed concurrently.

Finding synchronized approximations of non-
synchronized transformations is relevant to a wide range of
applications. Examples of such include the 3D localization
problem, where rigid transformations are calculated from
camera measurements [1]–[3]; the problem of registering
multiple images [4]; the Generalized Procrustes Problem,
where rotations, translations and scales are calculated from
multiple point-clouds [5]–[9]. Several more applications are
enlisted in [10].
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Lately, the synchronization problem has been extensively
studied; especially the case where the transformations are
restricted to be orthogonal or rotations. For that case,
Govindu et al. used Lie-group averaging, where a first-order
approximation in the tangent space is employed [11]–[13].
In the works by of Singer et al., several optimization-based
approaches were considered [14]–[16]. The same group of
authors have presented several more application-oriented
results [17]–[20]. Their work was later adapted by Pachauri
et al. to the case where the transformations are permutation
matrices [21].

In [22], [23] the related graph realization problem was
solved. In that problem one shall find points in Rd corre-
sponding to nodes in a sparsely connected graph, such that
distances (scalar and positive) between the points correspond
to given positive weights for the edges in the graph in the
“best” way. A two-step procedure was proposed to solve the
problem. In the first step, the eigenvector synchronization
problem was solved [15] to find an orthogonal transfor-
mation. In the second step, a least-squares problem was
solved to find translations. This procedure for solving the
graph realization problem bears a resemblance to the method
presented in this paper for the synchronization of Euclidean
transformations. However, in our distributed method we con-
currently solve for the rotations and the translations, where
the rotations are solved by an extended spectral relaxation
method and the translations are solved by a linear least-
squares method.

Our method was developed with two objectives in mind.
On the one hand it can be used to reduce computational
speed; in each iteration it can be run in parallel. On the other
hand it can be used in multi-agent systems, where agents (e.g.
robots) equipped with cameras exchange local information—
it can be used in applications where communication and
sensor constraints comprise hurdles for a centralized solution
to work satisfactorily. The proposed method is an extension
of Algorithm 1 in [24]. That algorithm was designed for the
special case of orthogonal transformations, whereas here we
also consider translations.

In simulations, the algorithm convergences, up to a small
gap, to a solution calculated with a Gauss-Newton method
under an affine relaxation of the problem.

II. PROBLEM FORMULATION

A. Preliminaries

This work addresses synchronization of Euclidean transfor-
mations. When homogeneous coordinates are used, these
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transformations are linear and represented by matrices. For-
mally, an element in E (d)—a Euclidean transformation—is
a matrix

G =

[
R t
0 1

]
,

where R ∈ O(d), t ∈ Rd, and 1 ∈ R. The matrix group
O(d) is defined by

O(d) = {Q ∈ Rd : QTQ = I}.

The inverse of G is

G−1 =

[
RT −RT t
0 1

]
.

We consider the following multi-agent system setting.
There are n Euclidean coordinate systems, corresponding to
n agents. We define the set V = {1, 2, . . . , n}. Henceforth
we assume that the dimension d is larger than or equal to 2.

There is a directed, connected, and symmetric graph G =
(V, E) describing the interaction between the agents. The
neighbors to agent i are those j’s contained in the set Ni =
{j : (i, j) ∈ E}. Those are the agents that agent i interacts
with.

Now, for each edge (i, j) ∈ E , there is a corresponding
Gij ∈ E(d). Formally we have at hand the tuple (G, g),
where g : E → E(d) is defined by (i, j) 7→ Gij for all (i, j).
Synchronization means that compositions of transformations
over loops in the graph equals the identity, i.e.,

Gi1i2Gi2i3 · · ·Ginii = I if (1)
{(i1, i2), (i2, i3), . . . , (in, i1)} ⊂ E .

Connectivity of the graph G is key here. If the Gij’s are
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Fig. 1: Graphical illustration of a certain (G, g).

synchronized there is a unique (up to a global change of
coordinates) set of Gi-transformations such that

Gij = G−1i Gj for all (i, j) ∈ E . (2)

if and only if G is connected [24]. Fig. 1 is a graphical
illustration of (G, g) for a graph with six nodes.

B. A first problem

When the Gij’s are not synchronized, the goal is to
find—in a distributed way—Gi’s such that the (G−1i Gj)-
transformations are close to the Gij’s for all (i, j) ∈ E . By
“close”, we mean that the function f is minimized or is close
to being minimized, where f(G) is equal to

bij
2

+ f1(R) + f2(R, T ) =
∑

(i,j)∈E

‖(Gij −G−1i Gj)Pij‖2F

where Pij = 1√
2

diag([
√
aij ,
√
aij ,
√
aij ,

√
bij ]

T ) and

f1(R) =
∑

(i,j)∈E

aij
2
‖RijR

T
j −RT

i ‖2F , (3)

f2(R, T ) =
∑

(i,j)∈E

bij
2
‖tij −RT

i (tj − ti)‖22, (4)

G = [G1, G2, . . . , Gn]T , R = [R1, R2, . . . , Rn]T ,

T = [tT1 , t
T
2 , . . . , t

T
n ],

Gi =

[
Ri ti
0 1

]
and Ri ∈ O(d), ti ∈ Rd for all i.

Beware of the difference between the variable T and the
transpose operator (·)T . The parameters aij and bij are
positive scalars for all (i, j) ∈ E , which can be chosen
to adjust for outliers or differences in the variance when
the matrices are drawn from different distributions. The
functions f , f1 and f2 are implicitly parameterized by (G, g),
the aij’s, and the bij’s.

The problem we would like to solve in a distributed
manner is

(P1)


minimize

G
f(G),

G = [G1, G2, . . . , Gn]T ,

s.t. Gi ∈ E (d) for all i.

The solution to problem (P1) is the (weighted) least-squares
projection of the Gij’s onto the set of synchronized trans-
formations. For the translations, the choice of the Euclidean
metric (see f2) seems natural. Regarding f1, there is a
connection between the Frobenius norm and geodesics on
on the rotational group in the special case of SO(3). For
Q ∈ SO(3) it holds that ‖I − Q‖2F = 8 sin(θ), where θ
is the Riemannian distance (or angular distance), see [25].
Thus, for small errors, the minimizer of f1 is close to
the minimizer of a weighted least-squares problem for the
Riemannian metric. It should aslo be mentioned here that
the two metrics, i.e., the Frobenius norm and the Riemannian
metric, are equivalent on SO(3) in that they induce the same
intrinsic metric [25].

C. A separation and a relaxation of the first problem (P1)

Problem (P1) is a non-convex (nonlinear) least squares
problem over (E(d))n. As such it is hard to find a global
optimal solution. This motivates us to simplify the problem
(P1) into a form that is easier to solve. We will perform
this simplification in two steps. The first is to separate the



minimization over the rotations and the translations, see
problem (P2) below.

(P2)


minimize

T
f2(R∗, T ),

R∗ ∈ arg min
R∈(O(d))n

f1(R),

T = [tT1 , t
T
2 , . . . , t

T
n ]T ∈ Rnd.

In problem (P2), f2(R∗, T ) is a quadratic convex function in
T . However, the minimization of f1 with respect to R is still
a non-convex problem. We will simplify this latter problem
for the rotations by means of a relaxation to obtain a final
problem (P3), which is the problem for which we propose a
distributed solution in the next section. The problem consists
of two parts—the first is for the rotations and the second is
for the translations.

(P3R)



R̄ ∈ argmin
R

f1(R),

R = [R1, R2, . . . , Rn]T ∈ Rnd×d,

RTR = Id,

R∗ = [PrO(d)(R̄1),PrO(d)(R̄2), . . . ,

PrO(d)(R̄n)]T ,

(P3T )


minimize

T
f2(R∗, T ),

T ∈ Rnd,

R∗ is obtained from P3R.

The problem (P3R) can actually be seen as a procedure
where we minimize f1 over R, the columns of which are
mutually orthogonal, in order to get a matrix R̄, whose
matrix-blocks are projected onto O(d) to create R∗. The
R̄ = [R̄1, R̄2, . . . , R̄n]T and the R∗ obtained in (P3R) are
unique up to a common orthogonal transformation from the
right. The optimal value of (P3T ) is invariant to such a choice
of a common orthogonal transformation.

(P3R) is a spectral relaxation of the subproblem for R in
the second line in (P2). There are other relaxations such
as semi-definite relaxations and least unsquared deviation
combined with semi-definite relaxation [16]. An extensive
treatment of the semi-definite relaxation approach can be
found in [10]. On the positive side the semi-definite relax-
ation becomes linear for the our problem, on the negative
side there does not seem to be available distributed methods.

III. THE DISTRIBUTED ALGORITHM

The distributed method we propose in this section solves
the problem (P3) under the assumption that G is sym-
metric (undirected) and connected. We recently proposed
a distributed algorithm that solves subproblem (P3R), see
Algorithm 1 in [24]. The proposed method here is an
extension of that method where problem (P3T ) is also
solved distributively and concurrently with (P3R). All the
initializations and the updates for the orthogonal matrices
and the associated auxiliary variables are the same as in our
previous journal paper. Furthermore, we refer the reader to
Section 4.1 in that paper for a detailed description of this part
of the algorithm. Here we only provide a brief description.

The updates-section for the orthogonal matrices contains
one basic part and one advanced part. The basic part com-
prises the updates for the R̃i(k)’s and the Ri(k)’s and the
advanced part contains the rest. The updates in the basic part
are essentially gradient descent steps of the function f1 and
projections onto O(d). The problem here is that the R̃i(k)-
matrices converge to zero on the one hand, and become
more and more ill-conditioned on the other. The idea with
the advanced part of the algorithm is to create weighted
Q̃i(k)-matrices (and their corresponding projected Qi(k)-
matrices) where the ill-conditioning has been compensated
for by weighting-matrices. Those, in turn, are concurrently
calculated via a distributed algorithm.

The (extended) proposed algorithm is:

Algorithm 1 Distributed method for synchronization of
Euclidean transformations over symmetric graphs

Inputs: a symmetric directed graph G = (E ,V), a weight
matrix A = [aij ], a weight matrix B = [bij ], and a collection
{Gij}(i,j)∈E of matrices in E(d). Each Gij contains an
orthogonal matrix Rij and a translation vector tij ;

Gij =

[
Rij tij
0 1

]
for all (i, j) ∈ E .

Outputs: R̃i(k), Ri(k), Q̃i(k), Qi(k), and ti(k) for i ∈ V
and k ≥ 1.

Initialization: let R̃i(0) = Id, dis(0) = 1, d̃is(0) = 1,
and d̃is(−1) = 1 for all i, s. Let Vij = (aij + aji)I and
Qij = aijRij + ajiR

T
ji for all (i, j) ∈ E . Let ε1, ε2 > 0. Let

ti(0) = 0 for all i.

Iteration k ≥ 1:

Updates for the orthogonal matrices

for all i, let

R̃i(k) = R̃i(k − 1)

+ ε1
∑
j∈Ni

(QijR̃j(k − 1)− VijR̃i(k − 1)),

RT
i (k) = PrO(d)(R̃i(k)),

d̃is(k) = { calculated in Subroutine 1 in [24] },
dis(k) = dis(k − 1) + (d̃is(k − 1)− d̃is(k − 2))

+ ε2
∑
l∈Ni

(dls(k − 1)− dis(k − 1))

for s = 1, 2, . . . , d,

Di(k) = diag(di1(k), di2(k), . . . , did(k)),

Q̃i(k) = { calculated in Subroutine 1 in [24] },
QT

i (k) = PrO(d)(Q̃i(k)(Di(k))−
1
2 ),

Updates for the translations



ti(k + 1) = ti(k) + ε1
∑
j∈Ni

(bij + bji)(tj(k)− ti(k))

−ε1
∑
j∈Ni

(bijQi(k)tij − bjiQj(k)tji).

The projection PrO(d)(R̃i) onto O(d) of the matrix R̃i(k)

(there is also a projection of Q̃i(k)), is defined in the least-
squares sense [26] by PrO(d)(R̃i) = UV T , where U and
V are the left and right orthogonal matrices, respectively,
given by the singular value decomposition (SVD) of R̃i.
If we consider the case of rigid transformations in 3D,
the orthogonal transformations are restricted to the special
orthogonal group, SO(3). Then the projection onto SO(3)
is given by PrSO(3)(R̃i) = U diag(1, 1,det(V TU))V T .

Remark 1. In the updates for the translations in Algorithm
1, one can replace Qi(k) and Qj(k) by Ri(k) and Rj(k).
By doing so, computational time is saved since we only
need the first two lines in the update-part for the rotations—
those that are needed for the calculation of the Ri(k)’s. In
numerical simulations performance is comparable to, and
the convergence speed is even faster compared to when
the Qi(k)’s and the Qj(k)’s are used. However, by doing
this “replacement”, we loose the theoretical convergence
guarantees that are provided in the next section.

IV. CONVERGENCE OF ALGORITHM 1

The updates for the translations and those for the orthogonal
matrices corresponding to the R̃i(k)’s can be understood as
gradient descent steps. The basic gradient descent approach
for the orthogonal matrices have then been augmented by
the introduction of a collection of auxiliary variables. With
those, under some technical conditions (generally fulfilled
and) provided in Table 1 below, we achieve convergence to
the orthogonal projections of the matrices in the solution to
the spectral relaxation (P3R).

(1) G = (V, E) is connected and symmetric.
(2) Rij ∈ O(d) for all (i, j) ∈ E .
(3) ε1 <

2
‖P‖2 , where

P = diag((A+AT )1n) +A+AT .
(4) R̄i ∈ GL(d,R) for all the R̄i-matrices in X̄ .
(5)

∑
i∈V R̄i ∈ GL(d,R), where the R̄i are the

matrices in R̄ in (P3R).
(6) It holds that λ(n−1)d > λ(n−1)d+1,

where λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues
of Lundir, i.e., Lundir = V diag([λ1, λ2, . . . , λnd])V

T

where Lundir is the Hessian matrix of f1
with respect to R.

(7) It holds that λnd−(i+1) > λnd−i, for
i = 0, 1, . . . d− 2 where the λi are
defined in (8) above.

(8) ε2 <
2
‖L‖2 , where L is the graph Laplacian

matrix of the graph G when assuming all
edge-weights are equal to 1.

TABLE I: Conditions for convergence.

We begin by recalling the following result from [24],
where it is presented by the two propositions 13 and 14.

Proposition 1 ( [24]). Suppose that the convergence con-
ditions (1-8) in Table 1 are satisfied. Then, for Algorithm 1
there is a positive integer K such that R̃−1i (k) is well defined
for all i and k ≥ K, and (for k ≥ K) it holds that

(R̃i(k)R̃−1j (k)→ R̄iR̄
−1
j as k →∞) for all (i, j) ∈ E ,

(5)

Q̃(k)→ R̄ as k →∞, (6)
Q(k)→ R∗ as k →∞, (7)

where R̄ and R∗ are obtained from problem (P3R)
(up to a common orthogonal transformation from the
right) and the matrices Q̃(k) and Q(k) are defined
as Q̃(k) = [Q̃1(k), Q̃2(k), . . . , Q̃n(k)]T and Q(k) =
[Q1(k), Q2(k), . . . , Qn(k)]T , respectively.

A more detailed description of the convergence conditions
in Table 1 can be found in [24]. Conditions (1), (2) are
self explanatory. Conditions (3), (8) are bounds for the step
sizes ε1 and ε2. Conditions (5) is an assumption about the
invertability of the matrices in R̄ in (P3R); these matrices
will always be invertible when the Rij’s are sufficiently close
to being synchronized. Conditions (6)–(7) are assumptions
about the Hessian matrix of f1 computed with respect to R.
The important thing here is that these assumptions are in
general satisfied. In Proposition 1 there are three different
convergence results provided by (5),(7).

The first, (5), states that the relative transformations,
obtained by using the R̃i(k)’s, asymptotically converge to
those obtained by using the R̄i’s, which is the optimal “non-
projected” solution of (P3R). Now, interesting in its own
right, this result is not very helpful as neither the R̄i’s nor
the (R̄T

i R̄j)’s are necessarily orthogonal, which we require.
The second and the third results, (6),(7), are more impor-

tant. They state that the Q̃(k)’s and the Q(k)’s converge to
optimal solutions and “projected optimal solutions” to (P3R),
respectively. It should be noted that there are infinitely many
optimal solutions equivalent up to orthogonal transformation.
Furthermore, the results are somewhat stronger than those
presented in [24] in that we guarantee convergence to points
and exclude the possibility of limit cycles in the set of opti-
mal solutions. The formulations in [24] were unnecessarily
conservative in this regard. The result (7) implies that

(QT
i (k)Qj(k)→ (PrO(d)(R̄i))(PrO(d)(R̄j))

T as k →∞)

for all (i, j) ∈ E . (8)

Now we turn to the translations and provide the following
result.

Proposition 2. Suppose that the convergence conditions (1-
8) in Table 1 are satisfied. Then, for Algorithm 1 there is R∗

obtained from problem (P3R) (up to a common orthogonal
transformation from the right), a positive integer K such that
R̃−1i (k) is well defined for all i and k ≥ K, and (for k ≥ K)
it holds that T (k) converges to the set of optimal solutions
to (P3T ) for the given R∗.



Proof. When R∗ is fixed, the Hessian matrix of f2 computed
with respect to T is the same as a the Hessian matrix
of f1 computed with respect to R under the assumption
that the Rij’s are equal to I . If we were to replace Q(k)
by R∗ in the updates for the translations in Algorithm
1, convergence condition (3) in Table 1 would guarantee
that the updates amounted to gradient descent steps for
f2(R∗, T ). Convergence to the set of minimizers of f2 would
be guaranteed.

Now, it is not the case that Q(k) = R∗, rather Q(k)
converges to R∗ as k goes to infinity (up to orthogonal
transformation), see Proposition 1. The rest of the proof
addresses the possibility that problems might arise due to
the transient-behavior when Q(k) converges to R∗.

We can write f2 as f2(R(k), T ) = 1
2T

THTT +
c(Q(k))TT, where HT is the Hessian matrix and, and
c(Q(k)) is a vector, which is a linear function of Q(k) (once
again, beware of the difference between the transpose symbol
T and the variable T ). Due to convergence condition (3),
in each iteration the updates for the translations comprise a
gradient descent step for f2 when Q(k) is regarded as fixed
(see discussion in the first paragraph of the proof above),
i.e.,

f2(Q(k), T (k + 1)) < f2(Q(k), T (k)) for all k (9)

if T (k) is not a minimizer of f2 with the chosen Q(k). Let
the set of optimal solutions for f2 with respect to T and
with the chosen Q(k) be T (Q(k)) = T ∗k + ker(HT ), where
T ∗k is the unique vector contained in im(HT ) that satisfies
HTT

∗
k = −c(Q(k)). Let us split T (k) into two orthogonal

parts corresponding to im(HT ) and ker(HT ), respectively;
T (k) = Tim(k) + Tker(k) for all k. Let Tim(k) = Bv(k),
where the columns of B comprise an orthonormal base
for im(HT ). For T ∗k , there is a corresponding v∗k given
explicitly by v∗k = −(BTHTB)−1BT c(Q(k)). Thus T ∗k =
−B(BTHTB)−1BT c(Q(k)).

The updates for T (k) are given by

T (k + 1) = T (k)− ε1(HTT (k) + c(Q(k))). (10)

By using (10) and the fact that the columns in B are
orthonormal we obtain that

v(k + 1) = v(k)− ε1BTHTBv(k)− ε1BT c(k) or

v(k + 1)− v∗k = (I − ε1BTHTB)(v(k)− v∗k). (11)

The Q(k)’s converge and v∗k is a linear function of Q(k).
This means that there is v∗ such that v∗k → v∗ as k → ∞.
Let us introduce z(k) = v(k)− v∗ and u(k) = v∗ − v∗k. We
rewrite (11) with the new variables:

z(k + 1) = (I − ε1BTHTB)z(k)− ε1BTHTBu(k). (12)

Now, due to convergence condition (3) in Table 1 and the fact
that u(k) is bounded and goes to zero as k goes to infinity,
we can conclude that z(k) goes to zero as k goes to infinity.
This in turn means that v(k) converges to v∗, which in turn
means that T (k) converges to T (R∗).

V. NUMERICAL EXPERIMENTS

To evaluate the performance of Algorithm 1, numerical
simulations were conducted. Results are shown in Fig. 2. For
the two different parameter settings considered—differing by
the choice of graph density—100 simulations were run. All
the simulations were for SE(3). Similar convergence results
were also obtained for E(3) and higher dimensions.

Fig. 2, shows the gap in percent between the objective
value for Algorithm 1 at each iteration and that of a Gauss-
Newton method. The number of iterations in the Gauss-
Newton method was chosen to five, even though the main
convergence was observed in the simulations after at most
three iterations. The Gauss-Newton method can be found,
up to the aij and the bij parameters, in sections 3.7 and 3.8
in [27]. The method is used to calculate a local optimum
(under a relaxation of the constraints, see below) of (P1),
where the solution to (P3) has been used as initialization.
For the Gauss-Newton method, the constraints on the Ri-
matrices are relaxed in the following way. They are only
required to be invertible, implying that the Gi-matrices are
only required to be affine. Thus, the objective function value
of the local optimum obtained via the Gauss-Newton method
is an underestimate of the objective function value of the
closest local optimum (closest to the solution obtained by
Algorithm 1) obtained without the relaxations of the Ri’s.

The solid lines in the plots in Fig. 2 are the mean gap
over the 100 simulations as functions of the iterations in the
algorithm. The dashed lines illustrate mean square deviations
above and below the mean. In all simulations the step sizes
ε1 and ε2 were chosen to 1/(2n). The other parameters were
defined as follows: n is the number of coordinate systems
and d = 3; ρ is the graph density. We always assume that the
graphs are connected. Thus, unlike the classical definition,
ρ = 0 corresponds to a tree graph and ρ = 1 corresponds
to the complete graph, with linear interpolation in between;
σR is the standard deviation in the generation of the non-
synchronized rotations; σT is the standard deviation in the
generation of the inconsistent translations; σa is width of the
support region in the generation of the aij’s; σb is width of
the support region in the generation of the bij’s;

Each simulation for each setting of parameters was con-
ducted in the following way.

1) A set of n rigid transformations are constructed. The
rotations are created by first generating matrices whose
elements are drawn from the uniform distribution with the
interval (−0.5, 0.5) as support. Those matrices are then
projected onto SO(3) to generate the rotation matrices. The
translations are vectors whose elements are drawn from
the uniform distribution with the interval (−0.5, 0.5) as
support. 2) A set of n2 synchronized rigid transformations
were generated from the transformations generated in step
1 according to eq. (2) for all (i, j)-pairs. 3) n2 number
of non-synchronized transformations are generated from the
n2 number of transformations generated in step 2. For each
rotation matrix, a new matrix is first generated by element-
wise addition of Gaussian noise with standard deviation σR.



Then, that matrix is projected back onto SO(3). All such
projections are always done in the least-squares sense by
means of the singular value decomposition. For each transla-
tion vector, a new translation vector is generated by element-
wise addition of Gaussian noise with standard deviation σT .
4) The graph, the aij’s and the bij’s are generated. The
latter parameters are drawn from the uniform distribution
over [1−σa, 1] and [1−σb, 1] respectively. We let aij = aji.
5) The methods are evaluated for the transformations and the
parameters generated in the first four steps.

An important factor when it comes to the convergence rate
is the connectivity of the graph. Another phenomenon that
is not captured by the simulations, is that the performance
and stability of the algorithm is independent of the size of
the norms of the tij vectors. This is a consequence of the
fact that the matrix HT is not a function of the tij .

iteration
100 200 300 400 500

ga
p 

in
 p

er
ce

nt

200

400

600

800

1000

1200

1400
n=50, ρ=0.8, σR=0.01, σT=0.2, σa=0.1, σb=0.1

iteration
100 200 300 400 500

ga
p 

in
 p

er
ce

nt

0

200

400

600

800

1000

1200

1400
n=50, ρ=0.8, σR=0.01, σT=0.2, σa=0.1, σb=0.1

iteration
100 200 300 400

ga
p 

in
 p

er
ce

nt

200

400

600

800

1000

1200

1400
n=50, ρ=0.8, σR=0.01, σT=0.2, σa=0.1, σb=0.1

iteration
100 200 300 400

ga
p 

in
 p

er
ce

nt

0

200

400

600

800

1000

1200

1400
n=50, ρ=0.8, σR=0.01, σT=0.2, σa=0.1, σb=0.1

iteration
480 485 490 495 500

ga
p 

in
 p

er
ce

nt

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
n=50, ρ=0.8, σR=0.01, σT=0.2, σa=0.1, σb=0.1

iteration
480 485 490 495 500

ga
p 

in
 p

er
ce

nt

×10-5

0
1
2
3
4
5
6
7
8
9

n=50, ρ=0.8, σR=0.01, σT=0.2, σa=0.1, σb=0.1

iteration
100 200 300 400 500

ga
p 

in
 p

er
ce

nt

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

n=50, ρ=0.4, σR=0.01, σT=0.2, σa=0.1, σb=0.1

iteration
100 200 300 400 500

ga
p 

in
 p

er
ce

nt

×104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

n=50, ρ=0.4, σR=0.01, σT=0.2, σa=0.1, σb=0.1

iteration
480 485 490 495 500

ga
p 

in
 p

er
ce

nt

-20

0

20

40

60

80

100

120

140
n=50, ρ=0.4, σR=0.01, σT=0.2, σa=0.1, σb=0.1

iteration
480 485 490 495 500

ga
p 

in
 p

er
ce

nt

200

400

600

800

1000

1200

1400

1600

1800

2000
n=50, ρ=0.4, σR=0.01, σT=0.2, σa=0.1, σb=0.1

iteration
100 200 300 400 500

ga
p 

in
 p

er
ce

nt

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

n=50, ρ=0.4, σR=0.01, σT=0.2, σa=0.1, σb=0.1

iteration
100 200 300 400 500

ga
p 

in
 p

er
ce

nt

×104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

n=50, ρ=0.4, σR=0.01, σT=0.2, σa=0.1, σb=0.1

Fig. 2: Convergence of our algorithm for two different
parameter settings. In the top plots ρ = 0.8 and in the bottom
plots ρ = 0.4. The other parameters were chosen to n = 50,
σR = 0.01, σT = 0.2, σa = 0.1, and σb = 0.1.

VI. CONCLUSIONS

In this paper we presented a distributed method for
synchronizing inconsistent Euclidean transformations over
graphs. We prove convergence to an approximation of the
nonlinear synchronization problem. In the proposed algo-
rithm, the orthogonal matrices and the translation vectors
are synchronized concurrently. Numerical simulations show
the convergence of the algorithm. In all simulations, the
transformations converge close to critical points calculated
with a Gauss-Newton method for an affine relaxation of the
synchronization problem.
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