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Abstract

An n-ary associative function is called reducible if it can be writ-
ten as a composition of a binary associative function. We summarize
known results when the function is defined on a chain and is non-
decreasing. Our main result shows that associative idempotent and
nondecreasing functions are uniquely reducible.

1 Introduction

In this paper we investigate the class of functions F ∶Xn →X (n ≥ 2) defined
on a chain (i.e., totally ordered set) X that are nondecreasing, idempotent
and associative. For arbitrary set X, the study of associativity stemmed

∗The research was supported by the internal research project R-AGR-0500 of the Uni-
versity of Luxembourg. The first author was partially supported by the Hungarian Sci-
entific Research Fund (OTKA) K104178. The second author was partially supported by
the Hungarian Scientific Research Fund (OTKA) K115799.

1



back to the pioneering work of Dörnte [5] and Post [9]. Dudek and Mukhin
[6,7] gave a characterization of reducibility using the terminology of a neutral
element (see Theorem 3.5). While their result is essential from a theoretic
point of view, it is not easy to apply it for a given situation unless the
function originally has a neutral element (for further details see also [8]).
Ackerman [1] made a complete characterization of quasitrivial associative
functions. In his paper it was shown that every quasitrivial associative
function is derived from a binary or a ternary function.

Couceiro and Marichal showed in [2] that continuous symmetric cancella-
tive and associative n-ary functions defined on a nonempty real interval are
reducible (see Remark 4 of [2]). Although they established reducibility under
some hypotheses that are not related to those of the present paper, it also
shows that reducibility is an important property in the study of associative
n-ary functions. Reducibility and extremality1 of quasitrivial associative
symmetric nondecreasing functions were studied in [4].

The paper is organized as follows. Section 2 contains the basic defi-
nitions and notation. In Section 3.1 we collect the preliminary results in
the case when F ∶Xn → X is idempotent, monotone, associative and has a
neutral element. This part is based on [7] and [8]. In Section 3.2 we com-
plete the study of reducibility of quasitrivial nondecreasing associative n-ary
functions (without the assumption of symmetry). In Section 4 we present
the main results about the reducibility of idempotent, nondecreasing, asso-
ciative functions. Because of its simplicity we present the symmetric case
with useful lemmas (see Lemma 4.1 and 4.2) in Section 4.1. In Section 4.2
we prove the general result. The main technicality is that we have to di-
vide the proof into two subcases. Theorem 4.4 can be used only for n = 3,
and another inductive proof (Theorem 4.8) works for n > 3. In Section 5
we discuss extremality which holds in many special cases but not for every
associative idempotent nondecreasing function. We also and monotonicity
as a relaxation of the property of the nondecreasingness.

2 Definitions and notation

Let X be an arbitrary set and F ∶Xn →X an n-ary function. We denote by
Sn the symmetric group on the set {1, . . . , n}. Now we give a sequence of
definitions:

Definition 2.1. The function F ∶Xn →X is called

1The definition of extremality stems from [10].
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(i) idempotent if F (x, . . . , x) = x for every x ∈X,

(ii) symmetric if F (x1, . . . , xn) = F (xσ(1), . . . , xσ(n)) for all x1, . . . , xn ∈ X
and every permutation σ ∈ Sn,

(iii) quasitrivial (or conservative) if for all x1, . . . , xn ∈X

F (x1, . . . , xn) ∈ {x1, . . . , xn},

(iv) n-associative if for all x1, . . . , x2n−1 ∈X and 1 ≤ i ≤ n − 1 we have

F (F (x1, . . . , xn), xn+1, . . . , x2n−1) =
F (x1, . . . , xi, F (xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1).

(1)

We usually say that F ∶Xn → X is associative and we only write that F
is n-associative if we want to emphasize the number of variables in F .

We say that e ∈X is a neutral element for F ∶Xn →X if for every x ∈X
and 1 ≤ i ≤ n we have F (e, . . . , e, x, e, . . . , e) = x, where x is in the i-th
coordinate of F .

For any integer k ≥ 0 and any x ∈X, we set k ⋅x = x, . . . , x
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
k times

. For instance,

the idempotency of F can be written in the form F (n ⋅ x) = x.
From now on, X will be a totally ordered set. For any n ∈ N the function

F ∶Xn →X is called nondecreasing (resp. nonincreasing) if

F (a1, . . . , an) ≥ F (b1, . . . , bn) (resp. F (a1, . . . , an) ≤ F (b1, . . . , bn)), (2)

for every pair of n-tuples (a1, . . . , an), (b1, . . . , bn) ∈ Xn with ai ≥ bi for
1 ≤ i ≤ n.

The function F is called monotone in the i-th variable if for all fixed
elements a1, . . . , ai−1, ai+1, . . . , an of X, the 1-ary function defined as

fi(x) ∶= F (a1, . . . , ai−1, x, ai+1, . . . , an)

is nondecreasing or nonincreasing. The function F is called monotone if it
is monotone in each of its variables.

We use the lattice notation for the minimum (∧) and for maximum (∨)
of a set. Hence we introduce the notation

∧ni=1xi = min{x1, . . . , xn}, ∨ni=1xi = max{x1, . . . , xn}.
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3 Preliminary results

Definition 3.1. We say that F ∶Xn → X is derived from G∶X2 → X if F
can be written in the form

F (x1, . . . , xn) = x1 ○ ⋅ ⋅ ⋅ ○ xn,

where x ○ y = G(x, y). We note that this expression is well-defined for n ≥ 3
if and only if G is associative. If such a G exists, then we say that F is
reducible.

We note that if n = 2 then the function F is derived from itself.
The previous definition only deals with the existence of a binary function

from which a given n-associative function can be derived. The uniqueness
of the binary function follows from certain conditions. The following result
was proved first in [4, Proposition 3.5].

Proposition 3.2. Assume that the function F ∶Xn → X is associative and
derived from an associative idempotent binary function. Then the binary
function is unique.

In our case, when X is a totally ordered set and F is monotone, we
can strengthen the previous statement. The result presented here follows
from [8, Lemma 3.4] when F is chosen to be monotone.

Proposition 3.3. Let X be a totally ordered set and F ∶Xn → X an asso-
ciative idempotent monotone function, which is derived from an associative
binary function G. Then G is idempotent as well.

Combining the previous statements we get:

Corollary 3.4. Let X be a totally ordered set. If an associative idempotent
monotone function F is derived from a binary function G∶X2 →X, then G
is uniquely determined by F .

3.1 Neutral element

Suppose that F ∶Xn →X is an associative function having a neutral element
e ∈X. Then one can define G∶X2 →X by

G(a, b) = F (a, (n − 2) ⋅ e, b) (3)

for every a, b ∈X. The following theorem of Dudek and Mukhin [7] shows a
general result for an arbitrary set X.
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Theorem 3.5. Let X be a nonempty set. Let F ∶Xn →X be an associative
function. Then F is derived from a binary function G if and only if F has
a neutral element or one can adjoin2 a neutral element to X for F . In this
case such a G can be defined by (3).

We note that the previous statement also holds for n = 2. Indeed, every
associative binary function is reducible and if an associative function F has
no neutral element, then we can adjoin one. Let e ∉X and let F̄ be defined as
F̄ (x, y) = F (x, y) for x, y ∈X and F̄ (z, e) = F̄ (e, z) = z for every z ∈X ∪{e}.
It is easy to check that F̄ is associative on X ∪ {e}.

The following statement was proved in [8, Proposition 3.13] as an appli-
cation of the previous structural theorem.

Proposition 3.6. Let X be a totally ordered set and F ∶Xn → X an asso-
ciative monotone idempotent function with a neutral element e. Let G be
defined by (3). Then F is derived from the binary function G, which is also
associative, idempotent, monotone and has the same neutral element e.

Since every monotone, idempotent associative binary function is non-
decreasing by [8, Lemma 3.10], the previous statement immediately has a
simple consequence.

Corollary 3.7. Let X and F be as in Proposition 3.6. Then F is nonde-
creasing.

Observation 3.8. Let X and F be as in Proposition 3.6. If F is symmetric,
then G defined by (3) is also symmetric.

Lemma 3.9 shows a connection between the existence of a neutral element
and quasitriviality. The base of the idea appears in Czoga la–Drewniak’s
theorem [3] where X = [0,1]. For the sake of completeness we present a
short proof here.

Lemma 3.9. Let X be a totally ordered set and F ∶Xn → X an associa-
tive, idempotent, monotone function having a neutral element e. Then F is
quasitrivial.

Proof. By Corollary 3.7, we can automatically assume that F is nondecreas-
ing. For n = 2 and x, y ∈X, we distinguish two different cases:

2Adjoining a neutral element to X for an n-associative function F means to define an
n-associative function F̄ on the set X ∪{e} such that e ∉X is a neutral element for F̄ and
F̄ (x1, . . . , xn) = F (x1, . . . , xn) for all x1, . . . , xn ∈X.

5



1. (x ≤ e, y ≤ e) or (e ≤ x, e ≤ y),

2. (x ≤ e ≤ y) or (y ≤ e ≤ x).

We show that in each case F (x, y) is either the maximum or the minimum,
thus it is quasitrivial. In Case 1 if x ≤ e, y ≤ e, then by the nondecreasingness
of F we get

x = F (x, e) ≥ F (x, y)
y = F (e, y) ≥ F (x, y).

Thus x ∧ y ≥ F (x, y).
On the other hand if x ≤ y (the case x ≥ y can be handled similarly),

then
x = F (x,x) ≤ F (x, y) ≤ F (y, y) = y,

by monotonicity and idempotency. This implies that F (x, y) = x ∧ y.
Similarly if e ≤ x, e ≤ y, it can be obtained that F (x, y) = x ∨ y.
In Case 2 the two subcases can be handled similarly. Now we deal with

x ≤ e ≤ y. we denote F (x, y) = θ. Assume that x ≤ θ ≤ e ≤ y, then using
associativity, we get

F (x, θ) = F (x,F (x, y)) = F (F (x,x), y) = F (x, y) = θ (4)

On the other hand, since x ≤ e, θ ≤ e, we have already proved that

F (x, θ) = x ∧ θ = x.

This shows that θ = x. For x ≤ e ≤ θ ≤ y similarly we have

θ = F (θ, y) = y.

Thus we get that the binary function F is quasitrivial.
If n > 2 and F is an n-associative idempotent non-decreasing and have

a neutral element, then we can use Proposition 3.6. Thus there exists a
binary function G which is associative, idempotent, non-decreasing and have
a neutral element. By the case n = 2 we know that G is quasitrivial and,
since F is derived from G, F is also quasitrivial.

3.2 Quasitriviality

In [4, Theorem 3.3 and Corollary 3.4], Devillet, Kiss, and Marichal proved
the following characterization for quasitrivial symmetric nondecreasing and
associative functions.
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Theorem 3.10. Let X be a totally ordered set and let F ∶Xn →X be a qua-
sitrivial symmetric nondecreasing associative function. Then F is reducible.
More precisely, F is derived from G∶X2 →X defined by

G(x, y) = F ((n − 1) ⋅ x, y) = F (x, (n − 1) ⋅ y). (5)

It is easy to see that function G defined by (5) is quasitrivial, symmetric
and nondecreasing. In [4, Theorem 3.3] it was also proved that in this case

F (x1, . . . , xn) = G(∧ni=1xi,∨ni=1xi). (6)

This means that F is extremal (see Definition 5.1).
One can prove that F remains reducible if we eliminate the symmetry

condition of F . The result is weaker in the sense that it only shows the
existence of such a decomposition (see Theorem 3.12). We note that the
analogue of (6) does not hold (for further details see Section 5.1).

The following result is an easy consequence of [1, Theorem 1.4] using the
statement therein for A2 = ∅.

Theorem 3.11. Let X be an arbitrary set and F ∶Xn → X a quasitrivial
n-associative function. If F is not derived from a binary function, then n is
odd and there exist b1, b2 (b1 ≠ b2) such that for all a1, . . . , an ∈ {b1, b2},

F (a1, . . . , an) = bi (i = 1,2), (7)

where bi occurs amongst a1, . . . , an an odd number of times.

As a consequence of this theorem we prove the following:

Theorem 3.12. Let X be a totally ordered set and let F ∶Xn → X be an
associative quasitrivial nondecreasing function. Then F is reducible.

Proof. By contradiction we assume that F is not derived from a binary
function. Now we apply the previous theorem since we intend to show
that in this case the conditions for b1, b2 cannot be satisfied. Thus every
associative, quasitrivial, nondecreasing function defined on a totally ordered
set X is reducible.

According to Theorem 3.11, if F is not reducible, then n is odd. Hence
n ≥ 3 and there exist b1, b2 satisfying equation (7). Since b1 ≠ b2, we may
assume that b1 < b2 (the case b2 < b1 can be handled similarly). By our
assumption on b1 and b2 we have

F (n ⋅ b1) = b1, F (b2, (n − 1) ⋅ b1) = b2, F (2 ⋅ b2, (n − 2) ⋅ b1) = b1. (8)
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Since F is nondecreasing we have

F (n ⋅ b1) ≤ F (b2, (n − 1) ⋅ b1) ≤ F (2 ⋅ b2, (n − 2) ⋅ b1).

This implies b1 = b2, a contradiction.

4 Main results

In this section we prove that every associative idempotent nondecreasing
function defined on a totally ordered set X is derived from a binary func-
tion G. As it was shown in Corollary 3.4, G is also unique. This result
generalizes some of the previous results on reducibility. As a consequence
of Theorem 3.5, this means that if an associative idempotent nondecreasing
function F is defined on a totally ordered set X, then either there is a neu-
tral element for F or we can adjoin an element to X which acts as a neutral
element for F . We note that all of our statements also hold for n = 2 but
bring no information in this case. Practically, we just deal with the cases
when n ≥ 3.

4.1 Symmetric case

The symmetric case (as usual) is much simpler than the general one but we
present a separate argument here. Our result is based on the following two
lemmas.

Lemma 4.1. Let X be a totally ordered set and F ∶Xn → X an associative
nondecreasing idempotent function. Then for every a, c ∈X,

F (a, (n − 1) ⋅ c) = F ((n − 1) ⋅ a, c).

Proof. If a = c, then the statement trivially follows from the idempotency of
F . We assume that a < c. (The case a > c can be handled similarly.) We
denote F ((n − 1) ⋅ a, c) by θ. Since F is nondecreasing and idempotent, we
have a ≤ θ ≤ c. Now we have

θ = F ((n − 1) ⋅ a, c) ≤ F (a, (n − 1) ⋅ c) ≤ F (θ, (n − 1) ⋅ c) =
F (F ((n − 1) ⋅ a, c), (n − 1) ⋅ c) = F ((n − 1) ⋅ a,F (n ⋅ c)) =

F ((n − 1) ⋅ a, c) = θ.

Thus, we get F (a, (n − 1)c) = F ((n − 1)a, c).
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Remark 1. As a consequence of the previous lemma we obtain that if F is
an associative idempotent nondecreasing function, then F (k ⋅ a, (n − k) ⋅ c)
is the same for every 1 ≤ k ≤ n − 1. Indeed, if a ≤ c, then F ((n − 1) ⋅ a, c) ≤
F (k ⋅ a, (n − k) ⋅ c) ≤ F (a, (n − 1) ⋅ c). If a ≥ c, then F ((n − 1) ⋅ a, c) ≥
F (k ⋅ a, (n − k) ⋅ c) ≥ F (a, (n − 1) ⋅ c).

Lemma 4.2. Let X be a totally ordered set and F ∶Xn → X an associative
idempotent and nondecreasing function. Then the function G defined by

G(a, c) = F (a, (n − 1) ⋅ c) = F ((n − 1) ⋅ a, c). (9)

is associative idempotent and nondecreasing.

We note that by Lemma 4.1 and Remark 1, G is well-defined andG(a, c) =
F (k ⋅ a, (n − k) ⋅ c) for every k = 1, . . . , n − 1.

Proof. It is clear that G is idempotent and nondecreasing. The following
equation shows that G is associative.

G(a,G(b, c)) = F ((n − 1) ⋅ a,F (b, (n − 1) ⋅ c) =
F (F ((n − 1) ⋅ a, b), (n − 1) ⋅ c) = G(G(a, b), c). ◻

Now we investigate the question of reducibility for the symmetric case.

Theorem 4.3. Let X be a totally ordered set and let F ∶Xn → X be an
associative symmetric nondecreasing idempotent function. Then F is derived
from a unique binary function G∶X2 →X which can be obtained as

G(a, c) = F (a, (n − 1) ⋅ c). (10)

Moreover
F (x1, . . . , xn) = G(∧ni=1xi,∨ni=1xi). (11)

Remark 2. Equation (11) means that F is extremal (see Section 5.1).

Proof. Applying Lemma 4.1, we can define G for any a, c ∈X by

G(a, c) = F ((n − 1) ⋅ a, c) = F (a, (n − 1) ⋅ c).

The uniqueness of the binary function follows from Corollary 3.4 so we only
have to verify that G fulfils our requirements.

Since F is nondecreasing, we have that

G(a, c) = F ((n − 1) ⋅ a, c) ≤ F (a, x1, . . . , xn−2, c) ≤ F (a, (n − 1) ⋅ c) = G(a, c)
(12)
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for every a ≤ x1, . . . , xn−2 ≤ c. We get that the inequalities in (12) are
equalities. Thus by the symmetry of F , the value of F (x1, . . . , xn) depends
only on ∧ni=1xi and ∨ni=1xi.

Using the symmetry of F we can reorder the entries of F and we get

F (x1, . . . , xn) = F (∧ni=1xi, . . . ,∨ni=1xi) = G(∧ni=1xi,∨ni=1xi).

This argument shows that F is derived from G (and extremal).

4.2 General case

In this section we do not assume that our functions are symmetric. In
Theorem 4.4 and 4.8 we prove the reducibility of associative idempotent
nondecreasing n-ary functions for n ≥ 3 which is the main result of this
section. It seems from our argument that the cases n = 3 and n ≥ 4 should
be handled in different ways and separately. First we discuss the case n = 3.

Theorem 4.4. Let X be a totally ordered set and let F ∶X3 → X be an
associative idempotent nondecreasing function. Then F is derived from a
unique binary function denoted by G∶X2 → X. The function G can be
defined by

G(a, c) = F (a, c, c) = F (a, a, c). (13)

Proof. By Lemma 4.1, G can be defined by (13). Applying Lemma 4.2 we
get that G is associative nondecreasing and idempotent. We need to show
that

F (a, b, c) = G(a,G(b, c)) = G(G(a, b), c)

for every a, b, c ∈X.
If a ≤ b ≤ c (the case a ≥ b ≥ c can be handled similarly), then we can

directly apply (13) and we obtain

G(a, c) = F (a, a, c) ≤ F (a, b, c) ≤ F (a, c, c) = G(a, c).

On the other hand, since G is nondecreasing and idempotent, we have

G(a,G(b, c)) ≤ G(a,G(c, c)) = G(a, c),
G(G(a, b), c) ≥ G(G(a, a), c)) = G(a, c).

(14)

By the associativity of G and equation (14) we get G(a, c) ≤ G(G(a, b), c) =
G(a,G(b, c)) ≤ G(a, c). Hence

F (a, b, c) = G(a, c) = G(G(a, b), c) = G(a,G(b, c)),
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as required.
Assume that a ≤ b, c ≤ b or a ≥ b, c ≥ b (i.e., b is the smallest or the

largest among a, b, c). We may assume that all of these relations are strict
inequalities. Otherwise we are in the previous case. On the other hand the
following proof works for non-strict cases, as well.

We introduce the following notation

θ1 = G(a, b) = F (a, a, b) = F (a, b, b),
θ2 = G(b, c) = F (b, b, c) = F (b, c, c).

Then we get

F (a, b, c) = F (F (3 ⋅ a), F (3 ⋅ b), c) =
F (a,F (a, a, b), F (b, b, c)) = F (a, θ1, θ2).

(15)

and

F (a, b, c) = F (a,F (3 ⋅ b), F (3 ⋅ c)) =
F (F (a, b, b), F (b, c, c), c) = F (θ1, θ2, c).

(16)

Suppose that b = max{a, b, c} (b = min{a, b, c} can be handled similarly).
If θ1 ≤ θ2, then a ≤ b implies G(a, a) = a ≤ G(a, b) = θ1 ≤ θ2, so a, θ1, θ2 are in
increasing order. Therefore by the previous case

F (a, θ1, θ2) = G(a, θ2) = G(a,G(b, c)).

Using equation (15) we obtain that F (a, b, c) = G(a,G(b, c)), which equals
to G(G(a, b), c) since G is associative.

If θ1 ≥ θ2, then by c ≤ b we get that c = G(c, c) ≤ G(b, c) = θ2 ≤ θ1. Now
the sequence θ1, θ2, c is in decreasing order, hence

F (θ1, θ2, c) = G(θ1, c) = G(G(a, b), c).

Using equation (16) we get that F (a, b, c) = G(G(a, b), c). Finally, the asso-
ciativity of G gives the result, finishing the proof of Theorem 4.4.

Now we prove the analogous result for n ≥ 4. The main problem is that
in case n = 3 we heavily use the fact that every ordered triple (a, b, c) is
either monotone (i.e., a ≤ b ≤ c or a ≥ b ≥ c) or one of its extrema is in the
middle (i.e., a, c ≤ b or b ≤ a, c). Generally, for n > 3 there are plenty other
cases. Therefore we follow another way to generalize the previous result.
We start with two lemmas.
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Lemma 4.5. Let X be a totally ordered set and F ∶Xn → X an associative
idempotent nondecreasing function. Then

F (x1, . . . , xi−1,2 ⋅ xi, xi+1, . . . , xn−1) = F (x1, . . . , xi,2 ⋅ xi+1, xi+2, . . . , xn−1)
(17)

holds for every i ∈ {1, . . . , n − 2} and all x1, . . . , xn−1 ∈X.

Proof. Lemma 4.1 gives F ((n − 1) ⋅ a, c) = F (a, (n − 1) ⋅ c). Since F is non-
decreasing we obtain

F ((n − 1) ⋅ a, c) = F (k ⋅ a, (n − k) ⋅ c) (18)

for every 1 ≤ k ≤ n − 1 (as in Remark 1). The following direct calculation
proves the statement. We use the idempotency of F in the first and last
equalities, the associativity of F and in the second and fourth equalities and
we use equation (18) for xi and xi+1 in the third equality

F (x1, . . . ,2 ⋅ xi, xi+1, . . . , xn−1)) = F (x1, . . . , xi, F (n ⋅ xi), xi+1, . . . , xn−1)) =
F (x1, . . . ,2 ⋅ xi, F ((n − 1) ⋅ xi, xi+1), . . . , xn−1) =
F (x1, . . . ,2 ⋅ xi, F ((n − 2) ⋅ xi,2 ⋅ xi+1), . . . , xn−1) =

F (x1, . . . , F (n ⋅ xi),2 ⋅ xi+1, . . . , xn−1) = F (x1, . . . , xi,2 ⋅ xi+1, . . . , xn−1). ◻

Corollary 4.6. Let X and F be as above. One can define H ∶Xn−1 →X by
the following formula

H(x1, . . . , xn−1) = F (2 ⋅x1, x2, . . . , xn−1) = . . . = F (x1, . . . , xn−2,2 ⋅xn−1) (19)

Remark 3. We note that H defined by (19) is idempotent and nondecreasing
if so is F .

Lemma 4.7. Let X be a totally ordered set and F ∶Xn → X an associative
idempotent nondecreasing function. Then the function H ∶Xn−1 →X defined
in Corollary 4.6 is associative.

Proof. The following equations hold for every k ∈ {3, . . . , n − 1}

H(x1, . . . , xk−1,H(y1, . . . , yn−1), xk+1, . . . , xn−1) =
F (2 ⋅ x1, . . . , xk−1, F (2 ⋅ y1, . . . , yn−1), xk+1, . . . , xn−1) =

F (2 ⋅ x1, . . . , xk−2, F (xk−1,2 ⋅ y1, . . . , yn−2), yn−1, xk+1, . . . , xn−1) =
H(x1, . . . , xk−2,H(xk−1, y1, . . . , yn−2), yn−1, xk+1 . . . , xn−1).

12



For k = 2 the previous calculation does not hold. In that case we get the
following equation using (19).

H(x1,H(y1, . . . , yn−1), x3, . . . , xn−1) =
F (x1, F (2 ⋅ y1, . . . , yn−1), x3, . . . ,2 ⋅ xn−1) =

F (F (x1,2 ⋅ y1, . . . , yn−2), yn−1, x3, . . . ,2 ⋅ xn−1) =
H(H(x1, y1, . . . , yn−2), yn−1, x3 . . . , xn−1). ◻

Since H ∶Xn−1 →X is associative idempotent and nondecreasing, we can
use induction for n ≥ 3.

Theorem 4.8. Let X be a totally ordered set and let F ∶Xn → X (n ≥ 2)
be an associative idempotent nondecreasing function. Then there exists a
unique associative idempotent nondecreasing binary function G∶X2 → X
from which F is derived. Moreover, G can be defined by

G(a, c) = F (a, (n − 1) ⋅ c) = F ((n − 1) ⋅ a, c). (20)

Proof. For n = 2 the statement is automatically true. The statement is
proved by induction for n ≥ 3. Theorem 4.4 gives the result for n = 3.

Assume that n > 3. By Lemmas 4.1 and 4.2, G∶X2 →X is a well-defined
associative idempotent nondecreasing function. Let H ∶Xn−1 →X be defined
by (19) as in Corollary 4.6. The function H is associative nondecreasing and
idempotent according to Lemma 4.7.

Now we recall the notation G(a, b) = a ○ b which is well-defined since G
is associative by Lemma 4.2.

By induction, H is derived from a binary function. Since

a ○ b = G(a, b) = F ((n − 1) ⋅ a, b) =H((n − 2) ⋅ a, b) (21)

we have that H is derived from G, i.e.:

H(x1, x2, . . . , xn−1) = x1 ○ x2 ○ ⋯ ○ xn−1. (22)

Now we show that F is also derived from the same binary function G.

F (x1, x2 . . . , xn) = F (F (n ⋅ x1), x2, . . . , xn) =
F ((n − 2) ⋅ x1, F (2 ⋅ x1, x2, . . . , xn−1), xn) =
H((n − 3) ⋅ x1,H(x1, x2, . . . , xn−1), xn) =
x1 ○ . . . ○ x1 ○ (x1 ○ x2 ○ . . . ○ xn−1) ○ xn =
x1 ○ x2 ○ . . . ○ xn−1 ○ xn.

(23)
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In the second equation we use the associativity of F , in the third we
substitute H using that n − 2 ≥ 2, in the fourth equation we apply (22), in
the last equation we use the idempotency and associativity of G. Equation
(23) shows that F is also derived from G. By (21), G is of the form (20).
The uniqueness of G comes from Corollary 3.4.

Corollary 4.9. Let X be a totally ordered set and n ≥ 2 an integer. An
associative idempotent monotone function F ∶Xn → X is reducible if and
only if F is nondecreasing.

Proof. (⇐Ô): This immediately follows from [8, Corollary 3.12] which states
that if F ∶Xn → X (n ≥ 2) is associative idempotent monotone (at least in
the first and the last variables) and reducible, then F is nondecreasing (in
each of its variables).

(Ô⇒): By Theorem 4.8, every associative idempotent nondecreasing n-
ary function (n ≥ 2) is reducible.

Example 4.10. Let (X,+) be a totally ordered Abelian group and let
G∶X →X be a monotone bijective function on X. Then the function

F (x, y, z) = g−1(g(x) − g(y) + g(z))

is idempotent associative monotone but nondecreasing. Thus F is not re-
ducible.

5 Further remarks

5.1 Extremality

Definition 5.1. We say that F ∶Xn → X is extremal3 if there exists a
G∶X2 → X such that for every x1, . . . , xn ∈ X we have that F (x1, . . . , xn)
equals to either G(∧ni=1xi,∨ni=1xi) or G(∨ni=1xi,∧ni=1xi). In particular, if
F ∶ Xn → X is symmetric and extremal, then there exists a symmetric
G∶X2 →X such that F (x1, . . . , xn) = G(∧ni=1xi,∨ni=1xi).

In [4] it was shown (as we have already stated in equation (6)) that if
F ∶Xn →X is associative, quasitrivial, symmetric and nondecreasing defined
on the chain X then F is extremal. As a possible generalization it was
shown in Theorem 4.3 that instead of quasitriviality it is enough to assume
idempotency (see also Remark 2). Namely:

3In [10] a mean µ∶ (⋃n∈NRn
) → R was called extremal if for all elements a1, a2, . . . , an ∈ R

with a1 ≤ a2 ≤ ⋅ ⋅ ⋅ ≤ an, we have µ(a1, a2, . . . , an) = µ(a1, an).
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Proposition 5.2. Let X be a totally ordered set. Then every associative
symmetric nondecreasing idempotent function F ∶Xn →X is extremal.

In [8, Theorem 2.6.], it was shown that every associative nondecreasing
idempotent function having a neutral element is extremal.

If F ∶Xn →X is associative quasitrivial and nondecreasing, then F is not
necessarily extremal. It can be shown easily that the projection to the i-th
coordinate is not extremal for all i = 1, . . . , n. If i = 1 or i = n − 1, then this
gives an example of associative idempotent nondecreasing function, which
is not extremal.

5.2 Monotonicity

Although in the binary case it cannot happen, Example 4.10 shows that
there exists an associative idempotent monotone function, which is not non-
decreasing (so it is not reducible by Corollary 4.9). The characterization of
these functions are not known yet. We conjecture the following (in the spirit
of Aczélian n-ary semigroups [2]):

Conjecture 5.3. Let (X,+) be a totally ordered Abelian group. An asso-
ciative idempotent strictly4 monotone function F ∶Xn → X is not reducible
if and only if n is odd and there exists a monotone bijection G∶X →X such
that

F (x1, x2, . . . , xn) = g−1(
n

∑
i=1

(−1)ig(xi)). (24)

The ‘if’ part of the statement is clear. We note that if Conjecture 5.3
holds for X = R, then such an F must be automatically continuous, since
every monotone bijection on an interval is continuous.
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