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ABSTRACT. Let K be a number field, and let G be a finitely generated subgroup of K×.
Fix some positive integer m, and consider the set of primes p of K satisfying the following
condition: the reduction of G modulo p is well–defined and has size coprime to m. We show
that the natural density of this set is a computable rational number by reducing to the case where
m is prime, case which has been treated in the previous work Reductions of algebraic integers
(joint with Christophe Debry, J. Number Theory, 2016).

1. INTRODUCTION

This paper is the continuation of [1] by Christophe Debry and the author, therefore we refer to
this other work for the history of the problem and for further references. Let K be a number
field, and let G be a finitely generated subgroup of K×. Up to excluding finitely many primes
p of K, we always assume that the reduction of G modulo p is well-defined. Fix some prime
number `, and consider the set of primes p of K satisfying the following condition: the re-
duction of G modulo p has size coprime to `. In [1] it is proven that this set admits a natural
density, which is a computable rational number.

We now deal with the generalization that consists of replacing ` by some positive integer m,
which we may as well suppose to be square-free. So our aim is to show that the following
natural density is a well-defined rational number, and how one can compute it:

DK,G,m := dens {p : ord(G mod p) is coprime to m} .
The condition on p means that for every prime factor ` of m the group (G mod p) has order
coprime to `. We are thus requiring simultaneous conditions related to different prime numbers.
The main question is whether those conditions are independent, which would heuristically give

(1) DK,G,m =
∏
`

DK,G,` .

Note that we may suppose that G is torsion–free because roots of unity of order coprime to m
do not matter for the density while if G contains a root of unity of order not coprime to m then
the order of (G mod p) is also not coprime to m for almost all p.

Write Kx for the cyclotomic extension of K obtained by adding the x-th roots of unity. The
method of [1] relies on the fact that the Kummer extension K`n( `n

√
G) over K`n has maximal

degree `rn (where r is the rank of G), unless the elements of G have some divisibility property
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in K×. There is one small exception for the case ` = 2, which is related to the fact that
the cyclotomic extension K8/K need not to be cyclic. In short [1] relied on the fact that the
Kummer extensions related to ` have nothing to do with the cyclotomic extensions related to `.

However, Kummer extensions may in general be contained in cyclotomic extensions because
if `, `′ are distinct prime numbers then the field K`′ could contain a cyclic extension of K
of degree a power of ` (see Section 3). It is exactly this interplay between cyclotomic and
Kummer extensions that we must treat delicately in the present paper.

We prove in Theorem 9 that the density DK,G,m can be expressed as an infinite sum involving
splitting conditions in cyclotomic-Kummer extensions of K. Then we show that the density
is always a computable rational number. In fact by Theorem 15 we know that DK,G,m can be
written in terms of densities related to one single prime number, and those are known from [4]
(for G of rank 1) and from [1] (for G of arbitrary rank).

In Theorem 11 we show that the product formula (1) is true if the following condition holds
for every n > 1 and for every prime divisor ` of m: the extensions K`n·m

`
and K`n( `n

√
G) are

linearly disjoint over K`n .

The product formula (1) is then true under the assumption Km = K (see Corollary 12) or
under the assumption that m is odd and that K` 6= K holds for every prime divisor ` of m
(see Proposition 13). The last condition holds in particular (if m is odd) for Q and for every
quadratic field, unlessK = Q(ζ3) and 3 dividesm. We also answer in the negative the question
whether (1) holds for m odd, see Example 18.

We have tested our results in several explicit examples, for which an approximated density (by
considering the primes of small norm) has been computed with Sage [6].

2. PRELIMINARIES ON THE CHEBOTAREV DENSITY THEOREM

Let K be a number field, and call PK the set of primes of K. For p ∈ PK we denote by N(p)
the cardinality of the residue field at p. If Γ ⊆ PK and the following limit exists, we call it the
Dirichlet density of Γ:

densDir(Γ) = lim
s→1+

∑
p∈ΓN(p)−s∑
p∈PK

N(p)−s
.

If the following limit exists, we call it the natural density of Γ:

dens(Γ) = lim
n→+∞

#{p ∈ Γ : N(p) 6 n}
#{p ∈ PK : N(p) 6 n}

.

By the upper and lower density we respectively mean the limit inferior and superior: these
exist and if they coincide then the density exists. Note that if the natural density exists then
the Dirichlet density also exists and they coincide (however there are sets having a Dirichlet
density and for which the natural density does not exist).

The following general result will allow us (in certain cases) to extend the base field:

Proposition 1. Let K be a number field and let L be a finite Galois extension of K. Let Γ be
a set of primes of K that split completely in L. Call ΓL the set of primes of L which lie over
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the primes in Γ. If ΓL has a Dirichlet density then the same holds for Γ and we have

densDir(Γ) = [L : K]−1 · densDir(ΓL) .

Proof. Call S the set of primes of K which split completely in L and call SL the set of primes
of L which lie over the primes of S. If p ∈ S and q is one of the [L : K] primes of SL lying
over it then p and q have the same norm. On one hand the Chebotarev’s Density Theorem gives

[L : K]−1 = densDir(S) = lim
s→1+

∑
p∈S N(p)−s∑
p∈PK

N(p)−s

and on the other hand we know

1 = densDir(SL) = lim
s→1+

∑
q∈SL

N(q)−s∑
q∈PL

N(q)−s
= [L : K] · lim

s→1+

∑
p∈S N(p)−s∑
q∈PL

N(q)−s

so we deduce
lim
s→1+

∑
p∈PK

N(p)−s = lim
s→1+

∑
q∈PL

N(q)−s .

We conclude because we have∑
p∈ΓN(p)−s∑
p∈PK

N(p)−s
= [L : K]−1 ·

∑
q∈ΓL

N(q)−s∑
p∈PK

N(p)−s

s→1+

−−−−−−−→ [L : K]−1 · densDir(ΓL) .

�

The following result and its corollary are variants of the Chebotarev Density Theorem, where
several field extensions are considered:

Theorem 2. Let K be a number field. If F1, . . . , Fn are linearly disjoint finite Galois exten-
sions ofK then the set consisting of the primes ofK that do not split completely in any of those
extensions has a natural density, and this equals

n∏
i=1

(
1− 1

[Fi : K]

)
.

Proof. Call Γ the set of the primes of K that do not split completely in any of the extensions
F1, . . . , Fn. By working with the compositum F := F1 · · ·Fn (and excluding the finitely many
primes that ramify in F ) we can interpret Γ as the primes of K whose F/K-Frobenius conju-
gacy class is contained in a certain conjugacy-invariant subset of Gal(F/K). The existence of
the natural density for Γ then follows from the Chebotarev Density Theorem.

We prove the formula in the statement by induction on n, the case n = 1 being clear by
the Chebotarev Density Theorem. For the induction step consider linearly disjoint extensions
F1, . . . , Fn+1 of K and write for convenience L = Fn+1.

By the inductive hypothesis we know dens(Γ) =
∏n
i=1(1− [Fi : K]−1). Write Γ′ ⊆ Γ for the

subset of the primes that split completely in L and let Γ′L be the set of primes of L lying over
the primes in Γ′. One can argue as above and show that Γ′ has a natural density.

Any set consisting of primes of L that lie over primes of K which do not split completely in L
has Dirichlet density 0. The fields LF1, . . . , LFn are linearly disjoint over L and Γ′L consists
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of the primes of L that do not split completely in any of those fields (up to a set of primes of L
of Dirichlet density 0). So by the inductive hypothesis we get

densDir(Γ
′
L) =

n∏
i=1

(
1− 1

[LFi : L]

)
=

n∏
i=1

(
1− 1

[Fi : K]

)
.

By Proposition 1 we then have

densDir(Γ
′) = [L : K]−1 · densDir(Γ

′
L) =

1

[Fn+1 : K]
·
n∏
i=1

(
1− 1

[Fi : K]

)
.

Since Γ′ ⊆ Γ and these two sets have a natural density then the same holds for their difference
and we conclude the induction step because we have:

dens(Γ \ Γ′) = dens(Γ)− dens(Γ′) =

n+1∏
i=1

(
1− 1

[Fi : K]

)
.

�

Corollary 3. LetK be a number field, and letL be a finite Galois extension ofK. If F1, . . . , Fn
are linearly disjoint finite Galois extensions of L then the set of primes of K that split com-
pletely in L and do not split completely in any of the extensions F1, . . . , Fn has a natural
density, and this equals

[L : K]−1 ·
n∏
i=1

(
1− 1

[Fi : L]

)
.

Proof. For the existence of the natural density we may apply the Chebotarev Density Theorem.
To prove the formula, it suffices to combine Proposition 1 and Theorem 2 (applied to L). �

3. CYCLOTOMIC AND KUMMER EXTENSIONS

Let K be a number field, and fix some algebraic closure K̄. We write Kx for the cyclotomic
extension of K obtained by adding the x-th roots of unity. If ` is a prime number, we use the
notation K`∞ to denote the union of the fields K`n for n > 1.

If G is a finitely generated subgroup of K×, we also write Kx( y
√
G) for the extension of Kx

obtained by adding all elements of K̄ whose y-th power belongs to G.

We make use of the following result of Schinzel:

Theorem 4 (Schinzel [5, Thm. 2], with an alternative proof in [3, 7]). LetK be a number field,
and let a ∈ K×. For n > 1 the extension Kn( n

√
a)/K is abelian if and only if at = bn holds

for some b ∈ K× and for some divisor t of n satisfying K = Kt.

We now recall the definition of strongly `-indivisible element. In the remaining of the section
we use such elements to investigate the Kummer extensions.

Definition 5. Let K be a number field, and ` a prime number. We say that a ∈ K× is strongly
`-indivisible if, for every root of unity ξ ∈ K, aξ has no `-th roots in K.
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Theorem 6. Consider integers n, d > 1 such that `d divides n. If the condition

Kn( `d
√
a) = Kn

holds for some strongly `-indivisible a ∈ K× then we have K`d = K and there is some odd
prime factor q of n such that `d divides [Kq : K], unless ` = 2 and K 6= K4 and d = 1 and
K(
√
a) ⊆ K2∞ .

Proof. We know that the field K`d( `d
√
a), which is contained in Kn by assumption, is an

abelian extension of K. Thus by Theorem 4 we have a`
e

= b`
d

for some b ∈ K× and for
some e > 0 satisfying K`e = K. Since a is strongly `-indivisible, we must have d 6 e and
hence K`d = K holds.

Again since a is strongly `-indivisible we know by [4, Theorems 11 and 13] that unless ` = 2
and K 6= K4 and d = 1 and K(

√
a) ⊆ K2∞ we must have

[K`∞( `d
√
a) : K`∞ ] = `d .

Let this be the case, and denote by n′ the product of all odd prime factors q of n distinct from
`. We deduce that the extension Kn′/K contains a cyclic subextension of degree `d. Since
Gal(Kn′/K) is the product of the groups Gal(Kq/K), at least one of these has exponent
divisible by `d and hence `d divides [Kq : K]. �

Theorem 7. Consider integers n, d > 1 such that `d divides n. If K`d = K holds, and if `d

divides [Kq : K] for some odd prime factor q of n, then there is some strongly `-indivisible
a ∈ K× satisfying (for all choices of the `d+1-th root)

Kn( `d
√
a) = Kn and `d+1√

a /∈ Kn .

Proof. By assumption there is a cyclic extension C of K of degree `d contained in Kq. Since
K`d = K holds, there is some c ∈ K× satisfying C = K( `d

√
c). The element c is strongly

`-indivisible because the field K(
√̀
c) is contained in Kq but not in K and hence it is not

contained in K`∞ . The field C is contained in Kn, so we are done if `d+1√
c /∈ Kn holds

for all choices of the `d+1-th root. If not, take b ∈ K× such that K(
√̀
b) is not contained in

Kn`: such an element exists because Kn` contains only finitely many subextensions of degree

` while K×/K×` is infinite. Then cb`
d

is strongly `-indivisible, and we have
`d
√
cb`d ∈ Kn.

By construction
`d+1√

cb`d is not contained in Kn for any choice of the `d+1-th root. �

4. PRESCRIBED TORSION IN THE REDUCTIONS

The aim of this section is computing the density of reductions that have some prescribed valu-
ations for the size of the multiplicative group of the residue field.

Letm > 2 be a square-free integer, and writem = `1 · · · `f as a product of prime numbers. We
define the m-adic valuation as the f -tuple of the `i-adic valuations. We then consider f -tuples
of non-negative integers

A = (a1, . . . , af ) .



6 ANTONELLA PERUCCA

We write A + 1 if we increase all entries by 1 and SiA if we increase only the i-th entry by 1
i.e. (SiA)j = aj for j 6= i and (SiA)i = ai + 1. In particular we have A + 1 = S1 · · ·SfA.
We also define

mA :=

f∏
i=1

`aii

Let K be a number field, and let p be a prime of K. If we have for the m-adic valuation
vm(#k×p ) = A, then this means that v`i(#k

×
p ) = ai holds for every i = 1, . . . , f . In other

words, we can write #k×p = mA ·m′ with m′ coprime to m.

We first write down a formula for the natural density of the set of primes p of K such that the
m-adic valuation of #k×p equals A. We may neglect the finitely many primes of K that ramify
in KmA+1 so we are looking for the primes that split completely in KmA and that for every i
do not split completely in KmSiA .

Proposition 8. The set of primes p of K such that the m-adic valuation of k×p equals A has a
natural density, which we call δK,mA . Define δK,`aii similarly by requiring the `i-adic valuation

of k×p to be ai. We then have

δK,mA =

f∏
i=1

(
[K`ai : K]−1 − [K`ai+1 : K]−1

)
=

f∏
i=1

δK,`aii
.

Proof. The existence of the natural density follows from Corollary 3. The second equality is
clear by the Chebotarev Density Theorem because for δK,`aii we count the primes of K that
split completely in K`

ai
i

and that do not split completely in K
`
ai+1
i

.

For δK,mA we count the primes of K that split completely in L := KmA and that for every
i = 1, . . . , f do not split completely in KmSiA . By Corollary 3 we get

δK,mA = [L : K]−1 ·
f∏
i=1

(
1− [KmSiA : L]−1

)
= [L : K]−1 ·

f∏
i=1

(
1− [K`ai+1 : K`ai ]

−1
)
.

We conclude because we have [L : K] =
∏f
i=1[K`ai : K]. �

5. GENERAL FORMULAS FOR THE DENSITY

We first investigate the existence of the density under consideration and write it as an infinite
sum (according to the size of the multiplicative group of the residue field).

Let K be a number field, let G be a finitely–generated and torsion–free subgroup of K×, and
let m > 2 be a square–free integer. We make use of the notation introduced in the beginning
of Section 4. We always tacitly exclude the finitely many primes that ramify in the cyclotomic-
Kummer extensions that we consider. Indeed there are only finitely many primes of K that
ramify in Kmn( mn√

G) for some n > 1, see [2, Lemma C.1.7].

Theorem 9. Let ΓK,G,m be the set of primes of K for which the reduction of G has order
coprime to m. Let ΓK,G,mA be the set of primes of K that split completely in KmA( mA√

G)
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and that for every i do not split completely in KmSiA . Then ΓK,G,m and ΓK,G,mA have a
natural density, which we call DK,G,m and ∆K,G,mA respectively, and we have

(2) DK,G,m =
∑
A

∆K,G,mA .

Proof. To ease notation we remove the subindex (K,G,m) and we write A for the subindex
(K,G,mA). We first prove that ∆A is well-defined. Write L := KmA( mA√

G). For ΓA we
may equivalently consider the primes that split completely in L and that for every i do not split
completely in Fi = KmSiA( mA√

G). We conclude by applying Corollary 3.

Consider a prime p of K such that the m-adic valuation of k×p equals A. Then p ∈ ΓK,G,m if
and only if p ∈ ΓA because an element of (G mod p) has order coprime to m if and only if it
has mA-th roots in k×p .

We have proven that Γ = ∪AΓA holds. Write A 6 n if ai 6 n holds for all i = 1, . . . , f .
Since the sets ΓA are pairwise disjoint and each of them has natural density ∆A we get that
∪A6nΓA has a natural density, given by

dens
( ⋃
A6n

ΓA

)
=
∑
A6n

∆A .

Since this holds for every n then the lower natural density satisfies

dens−(Γ) >
∑
A

∆A .

To conclude we show that for the upper natural density we have

dens+(Γ) 6 ε(n) +
∑
A6n

∆A

for some function ε(n) that goes to zero for n going to infinity. It then suffices to prove that
the difference

Γ′ := Γ \
⋃
A6n

ΓA

is contained in a set whose upper density goes to zero with n. This is true because the primes
in Γ′ split completely in K`ni

for some i = 1, . . . , f and hence Γ′ is contained in a finite union
of sets that have a natural density that goes to zero with n. �

In the remaining of the section we investigate cases in which the densityDK,G,m is the product
of the densities related to the prime divisors of m.

Lemma 10. Let ` vary over the prime divisor of m. We have

DK,G,m =
∏
`

DK,G,`

if for every n > 1 the following two conditions hold, where w = m
` :

(i): the extensions K`n·w and K`n( `n
√
G) are linearly disjoint over K`n;

(ii): the extensions K`·wn and Kwn( wn√
G) are linearly disjoint over Kwn .
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Proof. Recall the notation m = `1 · · · `f . We claim that we have ∆K,G,mA =
∏f
i=1 ∆K,G,`

ai
i

.
Then we can write by Theorem 9:

DK,G,m =
∑
A

∆K,G,mA =
∑
A

f∏
i=1

∆K,G,`
ai
i

=

f∏
i=1

∑
ai>0

∆K,G,`
ai
i

=

f∏
i=1

DK,G,`i .

So we are left to prove the claim. By Corollary 3 we can write

∆K,G,`
ai
i

= [K`
ai
i

(
`
ai
i
√
G) : K]−1 ·

(
1− 1

[K
`
ai+1
i

( `
ai
i
√
G) : K`

ai
i

( `
ai
i
√
G)]

)
and also

∆K,G,mA = [KmA(
mA√

G) : K]−1 ·
f∏
i=1

(
1− 1

[KmSiA( mA√
G) : KmA( mA√

G)]

)
.

We are then just left to prove

(3) [KmA(
mA√

G) : K] =

f∏
i=1

[K`
ai
i

(
`
ai
i
√
G) : K]

and

(4) [KmSiA(
mA√

G) : KmA(
mA√

G)] = [K
`
ai+1
i

(
`
ai
i
√
G) : K`

ai
i

(
`
ai
i
√
G)] .

We always have

[KmA(
mA√

G) : KmA ] =

f∏
i=1

[KmA(
`
ai
i
√
G) : KmA ]

and [KmA : K] =
∏f
i=1[K`

ai
i

: K] so (3) reduces to the equality

[KmA(
`ai
√
G) : KmA ] = [K`

ai
i

(
`
ai
i
√
G) : K`

ai
i

] .

Since the extension KmA/K`
ai
i ·

m
`i

has degree coprime to `i, we are done by condition (i).

For better readability we write L := K`
ai
i

( `
ai
i
√
G) and we call B the tuple obtained from A by

removing ai.

If ai = 0 then L = K and (4) is equivalent to knowing for every B:

[K`iwB
i

(
wB
i
√
G) : KwB

i
(

wB
i
√
G)] = [K`i : K] .

This exactly means that the extensions K`i and KwB
i

( wB
i
√
G) are linearly disjoint over K. We

may suppose that all entries of B are equal and write wBi = wbi for some integer b. Since `i
and wbi are coprime, it suffices that the extensions K`iwb

i
and Kwb

i
( wb

i
√
G) are linearly disjoint

over Kwb
i
. This is ensured by condition (ii).

Now suppose ai > 0. The right-hand side of (4) is a power of ` and hence we are left to show

[L
`
ai+1
i wB : LwB ] = [L

`
ai+1
i

: L] ,
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which is true because wB is coprime to `i. �

Theorem 11. Let ` vary over the prime divisor of m. We have

DK,G,m =
∏
`

DK,G,`

if for every n > 1 the extensions K`n·m
`

and K`n( `n
√
G) are linearly disjoint over K`n .

Proof. It suffices to prove that in Lemma 10 Condition (ii) is implied by Condition (i). If
Condition (ii) does not hold then there is some prime divisor ` of m such that the extensions
K`·wn and Kwn( wn√

G) are not linearly disjoint over Kwn . Then there must be a prime divisor
q ofw such that the same holds forK`·wn andKwn( qn

√
G). Consequently, the extensionsK`·qn

andKqn( qn
√
G) are not linearly disjoint overKqn . In particularKm

q
·qn andKqn( qn

√
G) are not

linearly disjoint over Kqn , which contradicts Condition (i) for q. �

Corollary 12. If Km = K then the product formula of Theorem 11 holds.

Proof. The assumption of Theorem 11 holds because we have Km
`

= K. �

Proposition 13. Suppose that m is odd and that K` 6= K holds for all prime factors ` of m.
Then the product formula of Theorem 11 holds.

Proof. We prove that the condition of Theorem 11 holds. Write F := K`n and w := m
` .

Suppose that there is some prime divisor ` of m such that the extensions Fw and F ( `n
√
G) are

not linearly disjoint over F . Clearly we have n > 0. The first extension is cyclic so there is
some g ∈ G such that Fw and F ( `n

√
g) are not linearly disjoint over F . There is some maximal

d < n such that there is some a ∈ K× satisfying a`
d

= g. For any choice of
√̀
a the field

K(
√̀
a) is different from K but it is contained in Fw. Then a is strongly `-indivisible because

K` 6= K. By Theorem 4 the identity K`nw(
√̀
a) = K`nw implies K` = K, contradicting the

assumption in the statement. �

6. FORMULAS TO REDUCE TO KNOWN CASES

We develop a strategy to reduce the computation of a general density DK,G,m to the computa-
tion of finitely many densities that concern only one prime divisor of m.

Let K be a number field, let G be a finitely–generated and torsion–free subgroup of K× and
let m > 2 be a square–free integer. We also use the notation introduced in the beginning of
Section 4. We want to reduce the calculation of

DK,G,m := dens {p : ord(G mod p) is coprime to m}
to the case where m is a prime number. We can accomplish this in finitely many steps up to
increasing the base field, as the following results show. Since all densities are related to G, we
have removed G from the notation for better readability.

Theorem 14. If m is composite and ` is a prime factor of m we have

(5) DK,m = DK,m
`

+ [K` : K]−1 · (DK`,m −DK`,
m
`

) .
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Proof. We use the notation of Theorem 9. We suppose w.l.o.g. ` = `f and we write for
convenience L := K` and n := m

` . By Theorem 9 we have

DK,m =
∑
A

∆K,mA =
∑

A:af=0

∆K,mA +
∑

A:af>0

∆K,mA .

If af > 0 we are considering primes that split completely in L and we can apply Proposition 1.
Moreover we have ∆L,mA = 0 if af = 0. So we get∑

A:af>0

∆K,mA = [L : K]−1 ·
∑

A:af>0

∆L,mA =
DL,m

[L : K]
.

Write A = (B, af ) where B = (a1, . . . , af−1), and call ΓB the set of primes p of K that split
completely in KnB ( nB√

G) and for every i = 1, . . . , f − 1 do not split completely in KnSiB .
The set ΓB has natural density ∆K,nB . The primes in ΓB which split completely in L have
density [L : K]−1 ·∆L,nB by Proposition 1. The primes in ΓB which do not split completely
in L have density ∆K,m(B,0) , because having `0-th roots is an empty condition. So we get

DK,n =
∑
B

∆K,nB =
∑
B

( ∆L,nB

[L : K]
+ ∆K,m(B,0)

)
=

DL,n

[L : K]
+
∑
af=0

∆K,mA

and we may easily recover the formula in the statement. �

Theorem 15. Let m = `1 · · · `f be a product of distinct prime numbers. If f > 2 we have

DK,m =

f∑
i=1

(
εi−1 ·DLi−1,

m
`i
− εi ·DLi,

m
`i

)
+ εf ·

f∏
i=1

DLf ,`i

where the notations are as follows: we write ε0 := 1, L0 := K and for i = 1, . . . , f we set

εi :=
∏

16j6i

[K`j : K]−1 and Li :=
∏

16j6i

K`j .

Proof. By Corollary 12 we have DLf ,m =
∏f
i=1DLf ,`i . We then prove that for 1 6 n 6 f

we have

DK,m =

n∑
i=1

(
εi−1 ·DLi−1,

m
`i
− εi ·DLi,

m
`i

)
+ εn ·DLn,m .

We prove this formula by induction on n. The case n = 1 can be obtained by applying
Theorem 14 to `1:

DK,m = DK,m
`1

+ ε1 ·DL1,m − ε1 ·DL1,
m
`1

=
(
ε0 ·DL0,

m
`1
− ε1 ·DL1,

m
`1

)
+ ε1 ·DL1,m .

Now suppose that we know the inductive assumption

DK,m =
n−1∑
i=1

(
εi−1 ·DLi−1,

m
`i
− εi ·DLi,

m
`i

)
+ εn−1 ·DLn−1,m .

We can achieve the induction step by applying Theorem 14 to `n, which gives:

εn−1 ·DLn−1,m = εn−1 ·DLn−1,
m
`n

+ εn ·DLn,m − εn ·DLn,
m
`n
.
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By the above result we can reduce to computing densities which involve one prime factor less.
With finitely many applications of this result we have reduced to the case of exactly one prime
number, and we can make use of the formulas of [4, 1].

7. EXAMPLES

Example 16. LetK = Q andm = 6. By Corollary 12 we knowDQ(ζ3),6 = DQ(ζ3),2 ·DQ(ζ3),3

and by Theorem 14 applied to ` = 3 we have

DQ,6 = DQ,2 + [Q(ζ3) : Q]−1 · (DQ(ζ3),6 −DQ(ζ3),2) .

We evaluate the right-hand side of this expression (with [4, Theorems 16 and 17] for rank 1 and
[1, Theorems 3 and 4] otherwise) in some explicit examples, which are listed in the following
table. We also compute DQ,3, so that one can easily see that the formula DQ,6 = DQ,2DQ,3
holds for the examples in the upper part of the table (and in general it does not hold). Notice
that the field Q(ζ3) contains

√
−3.

G DQ,6 DQ,2 DQ,3 DQ(ζ3),2 DQ(ζ3),3

〈2〉 35/192 7/24 5/8 7/24 1/4
〈5〉 5/24 1/3 5/8 1/3 1/4
〈2, 5〉 29/416 29/224 7/13 29/224 1/13
〈−3〉 1/12 1/3 5/8 2/3 1/4
〈3〉 13/48 1/3 5/8 1/6 1/4
〈9〉 17/48 2/3 5/8 5/6 1/4
〈−9〉 13/96 1/6 5/8 1/12 1/4
〈−27〉 1/4 1/3 7/8 2/3 3/4
〈27〉 5/16 1/3 7/8 1/6 3/4
〈2, 3〉 365/2912 29/224 7/13 1/112 1/13
〈2,−3〉 29/2912 29/224 7/13 29/112 1/13

All examples in the table have been tested with Sage [6].

Example 17. Let K = Q and m = 15. If we apply Theorem 14 for ` = 3 we have

DQ,15 = DQ,5 + [Q(ζ3) : Q]−1 · (DQ(ζ3),15 −DQ(ζ3),5)

and by Theorem 14 for ` = 5 we can write

DQ(ζ3),15 = DQ(ζ3),3 + [Q(ζ15) : Q(ζ3)]−1 · (DQ(ζ15),15 −DQ(ζ15),3)

so by recalling DQ(ζ15),15 = DQ(ζ15),3 ·DQ(ζ15),5 we get

DQ,15 = DQ,5 +
1

2
· (DQ(ζ3),3 −DQ(ζ3),5)− 1

8
DQ(ζ15),3 +

1

8
·DQ(ζ15),3 ·DQ(ζ15),5 .

If we apply Theorem 14 for for ` = 5 and then expand DQ(ζ5),15 (by Theorem 14 for ` = 3)
we similarly get

DQ,15 = DQ,3 +
1

4
(DQ(ζ5),5 −DQ(ζ5),3)− 1

8
DQ(ζ15),5 +

1

8
·DQ(ζ15),3 ·DQ(ζ15),5 .
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Both methods give of course the same value for DQ,15 (tested with Sage [6] for the following
examples):

G DQ,15 DQ,3 DQ,5 DQ3,3 DQ3,5 DQ5,3 DQ5,5 DQ15,3 DQ15,5

〈2〉 95/192 5/8 19/24 1/4 19/24 5/8 1/6 1/4 1/6
〈29〉 437/576 23/24 19/24 11/12 19/24 23/24 1/6 11/12 1/6
〈215〉 161/192 7/8 23/24 3/4 23/24 7/8 5/6 3/4 5/6

Example 18. This example is in particular a counterexample to (1) with m odd. Let K =
Q(ζ3) and m = 21. If C denotes the cyclic subextension of Q(ζ7) of degree 3 then C(ζ3) is a
Kummer extension of Q(ζ3) and we can write it as Q(ζ3, 3

√
g) for some g ∈ Q(ζ3)×. We claim

that for the group G = 〈g〉 we have

DQ(ζ3),21 6= DQ(ζ3),3 ·DQ(ζ3),7 .

We may suppose that g is strongly 7-indivisible in Q(ζ3) and hence also in Q(ζ21). We know
that it is strongly 3-indivisible in Q(ζ3). We deduce that 3

√
g is strongly 3-indivisible in Q(ζ21).

We have DQ(ζ3),3 = 1/4 and DQ(ζ3),7 = 41/48. By Theorem 14 applied to ` = 7 we get

DQ(ζ3),21 = DQ(ζ3),3 + [Q(ζ21) : Q(ζ3)]−1 · (DQ(ζ21),21 −DQ(ζ21),3) .

We have DQ(ζ21),3 = 3/4 and DQ(ζ21),7 = 1/8 and hence DQ(ζ21),21 = 3/32. We deduce
DQ(ζ3),21 = 9/64 and the claim follows.
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