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Abstract—In millimeter wave (mmWave) systems, antenna ar-
chitecture limitations make it difficult to apply conventional fully
digital precoding techniques but call for low cost analog radio-
frequency (RF) and digital baseband hybrid precoding methods.
This paper investigates joint RF-baseband hybrid precoding for
the downlink of multiuser multi-antenna mmWave systems with
a limited number of RF chains. Two performance measures,
maximizing the spectral efficiency and the energy efficiency
of the system, are considered. We propose a codebook based
RF precoding design and obtain the channel state information
via a beam sweep procedure. Via the codebook based design,
the original system is transformed into a virtual multiuser
downlink system with the RF chain constraint. Consequently,
we are able to simplify the complicated hybrid precoding op-
timization problems to joint codeword selection and precoder
design (JWSPD) problems. Then, we propose efficient methods
to address the JWSPD problems and jointly optimize the RF
and baseband precoders under the two performance measures.
Finally, extensive numerical results are provided to validate the
effectiveness of the proposed hybrid precoders.

Index Terms—Hybrid precoding design, millimeter wave com-
munication, energy efficient communication, successive convex
approximation, power allocation.

I. INTRODUCTION

The proliferation of multimedia infotainment applications
and high-end devices (e.g., smartphones, tablets, wearable
devices, laptops, machine-to-machine communication devices)
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causes an explosive demand for high-rate data services. Future
wireless communication systems face significant challenges in
improving system capacity and guaranteeing users’ quality of
service (QoS) experiences [1]. In the last few years, various
physical layer enhancements, such as massive multiple-input
multiple-output (MIMO) [2], cooperation communication [3],
and network densification [4] have been proposed. Along
with these technologies, there is a common agreement that
exploiting higher frequency bands, such as the millimeter
wave (mmWave) frequency bands, is a promising solution to
increase network capacity for future wireless networks [S]-[7].

MmWave communication spans a wide frequency range
from 30 GHz to 300 GHz and thus enjoys much wider band-
width than today’s cellular systems [8]. However, mmWave
signals experience more severe path loss, penetration loss, and
rain fading compared with signals in sub-6 GHz frequency
bands. For example, the free space path loss (FSPL) at 60 GHz
frequency bands is 35.6 dB higher than that at 1 GHz [9], [10].
Such a large FSPL must be compensated by the transceiver in
mmWave communication systems. Fortunately, the very small
wavelength of mmWave signals enables a large number of
miniaturized antennas to be packed in small dimension, thus
forming a large multi-antenna system potentially providing
very large array gain. In conventional multi-antenna systems,
each active transmit antenna is connected to a separate trans-
mit radio frequency (RF) chain. Although physical antenna
elements are cheap, transmit RF chains are not cheap. A large
number of transmit RF chains not only increase the cost of
RF circuits in terms of size and hardware but also consume
additional energy in wireless communication systems [11].
Therefore, in practice, the number of RF chains is limited and
much less than the number of antennas in mmWave systems.

For ease of implementation, fully analog beamforming was
proposed in [12]-[14], where the phase of the signal sent
by each antenna is manipulated via analog phase shifters.
However, pure analog precoding (with only one RF chain)
cannot provide multiplexing gains for transmitting parallel data
streams. Hence, joint RF-baseband hybrid precoding, aiming
to achieve both diversity and multiplexing gains, has attracted
a great deal of interest in both academia and industry for
mmWave communications [15]-[20]. El Ayach et al in [15]
exploited the inherent sparsity of mmWave channels to design
low-complexity hybrid precoders with perfect channel state
information (CSI) at the receiver and partial CSI at the trans-
mitter (CSIT). Alkhateeb et al further investigated channel es-
timation for multi-path mmWave channels and tried to improve
the performance of hybrid precoding using full CSIT [16].



An energy-efficient hybrid precoding design was investigated
by using successive interference cancelation (SIC) method for
subconnected architecture [17]. Note that the hybrid precoding
designs in [15]-[17] assume that either perfect or partial CSIT
is available. In practice, while using partial CSIT may degrade
system performance, perfect CSIT is often difficult to obtain in
mmWave communication systems, especially when there are a
large number of antennas. The RF-baseband hybrid precoders
in [15]-[17] were designed to obtain the spatial diversity or
multiplexing gain for point-to-point mmWave communication
systems. It is well known that multiuser communications
can further provide multiuser diversity [18]-[20]. In [19],
the authors proposed a RF precoder for multiuser mmWave
systems by matching the phase of the channel of each user also
under the assumption of perfect CSIT. Later, a low-complexity
codebook based RF-baseband hybrid precoder was proposed
for a downlink multiuser mmWave system [20]. Note that
both [19] and [20] assume that the number of users equals
the number of RF chains. In mmWave multiuser systems, it is
very likely that the number of the served users per subcarrier
will be less than that of RF chains. Therefore, it is necessary
to study more flexible hybrid precoding designs for multiuser
mmWave communication systems.

The existing RF-baseband hybrid precoding designs focus
on improving the spectral efficiency of mmWave communi-
cation systems [15]-[20]. On the other hand, accompanied
by the growing energy demand and increasing energy price,
the system energy efficiency (EE) becomes another critical
performance measure for future wireless systems [21]-[23].
In mmWave communication systems, although reducing the
number of RF chains can save power consumption, the RF-
baseband hybrid architecture requires additional power to
operate the phase shifting network, the splitter, and the mixer
at the transceiver [24]. Therefore, it is also necessary to
investigate the RF-baseband hybrid precoding for improving
the system EE. Recently, following the idea in [15], an
energy efficient hybrid precoding method was developed for
5G wireless communication systems with a large number of
antennas and RF chains [25]. Differently, in this paper, we
propose a codebook based hybrid precoding method that uses
the effective CSIT to design the RF-baseband precoders.

In this paper, we study the RF-baseband hybrid precoding
for the downlink of a multiuser multi-antenna mmWave com-
munication system. The hybrid precoding design takes into
account two hardware limitations: (i) the analog phase shifters
have constant modulus and a finite number of phase choices,
and (ii) the number of transmit RF chains is limited and less
than the number of antennas. The design goal is to maximize
the sum rate (SR) and the EE of the system. We introduce a
codebook based RF precoding design along with a beam sweep
procedure to reduce the complexity of the hybrid precoder and
relieve the difficulty of obtaining CSIT. The contribution of
this paper are summarized as follows.

« We investigate joint optimization of the RF-baseband pre-
coders in multiuser mmWave systems under two common
performance measures, i.e., maximizing the SR and the
EE of the system.

o Considering the practical limitation of phase shifters, we

propose a codebook based RF precoder, whose columns
(i.e., RF beamforming vectors) are specified by RF code-
words, and then transform the original mmWave system
into a virtual multiuser downlink multiple input single
output (MISO) system.

+ We propose a beam sweep procedure to obtain effective
CSIT with less signaling feedback by utilizing the beam-
domain sparse property of mmWave channels.

o Based on the codebook based design, we are able to
simplify the original RF-baseband hybrid precoding op-
timization problems into joint codeword selection and
precoding design (JWSPD) problems.

e We propose an efficient method to address the JWSPD
problem for maximizing the system SR.

o We also develop an efficient method to address the more
difficult JWSPD problem for maximizing the system EE.

« Finally, extensive numerical results are provided to verify
the effects of the proposed codebook based hybrid pre-
coding design. It is shown that the proposed method out-
performs the existing methods and achieves a satisfactory
performance close to that of the fully digital precoder.

The remainder of this paper is organized as follows. The
system model and optimization problem formulation are de-
scribed in section II. Section III introduces a codebook based
mmWave RF precoding design with beam sweep. An effective
joint codewords selection and precoder design method is
proposed for SRmax problem in section IV. In section V,
an effective joint codewords selection and precoder design
method is developed for EEmax problem. In section VI,
numerical evaluations of these algorithms are carried out.
Conclusions are finally drawn in section VII.

The following notations are used throughout this paper.
Bold lowercase and uppercase letters represent column vectors
and matrices, respectively. The superscripts ()7, and (-)"
represent the transpose operator, and the conjugate transpose
operator, respectively. tr (-), || - ||2. | - ||z R(-) and
& (+) denote the trace, the Euclidean norm, the absolute value
(element-wise absolute if used with a matrix), Frobenius norm,
the real and imaginary operators, respectively. X > Y and
X <Y denote an element-wise inequality. A > 0 denotes
matrix A is a semidefinite positive matrix. 1,y and 1y
denote respectively N x N matrix with all one entries and
N x 1 all-one vector. A (m,n) represents the (mth,nth)
element of matrix A and diag (A) stands for a column vector
whose elements are the diagonal element of the matrix A. R
and C are the real number field and the complex number field,
respectively. log (+) is the logarithm with base e. The function
floor (z) rounds the elements of x to the nearest integers less
than z. mod (,) is the modulo operation. ol (A) is the set
of right singular vectors corresponding to the d largest singular
values of matrix A.

[}

II. PROBLEM STATEMENT
A. System Model

Consider the downlink of a mmWave multiuser multiple-
input single-output (MISO) cellular system as shown in Fig. 1,
where the BS is equipped with M transmit antennas and .S



RF chains and serves K < S single-antenna users. Differ-
ent from conventional multi-antenna communication systems,
e.g., [21]-[23], where the numbers of antennas and RF chains
are equal, in mmWave systems the number of antennas could
be very large and it is expensive and impractical to install
an RF chain for each antenna, so in practice we often have
S <M.
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Fig. 1: Downlink mmWave system with hybrid RF-baseband
precoding.
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To exploit the full potential of mmWave system with a
limited number of RF chains, we consider an RF-baseband
hybrid precoding design, in which the transmitted signal
is precoded in both the (digital) baseband domain and the
(analog) RF domain. Specifically, the system model can be
expressed as

y=HFGs +n, ey

where sT = [sq, -+, sx] with s ~ CN (0, 1) being the trans-
mitted signal intended for the kth user, y = [y1,--- ,yK]T
with y, being the received signal of the kth user, HY =
[hi,--- ,hk] and h;, € CM contains the channel coefficients
between the BS and the kth user, and n ~ CN (0,021 K)
is an additive white gaussian noise (AWGN) vector with
independent identically distributed (i.i.d.) entries of zero mean
and variance 2. In (1), G € C5*K is a baseband precoder
that maps s to the S RF chains, and F € CMxS s a RF
precoder using analog circuitry, e.g., the analog phase shifting
network. Due to the implementing limitation, the elements
of F' are often required to have a constant modulus and
only change their phases [12]. Then, given the RF precoder
F, the baseband precoder G, and the instantaneous CSI
hi,Vk € K = {1,2,--- , K}, the signal-to-interference-plus-
noise ratio (SINR) of the kth user is

2
hiEg,

SINR, = )

K 2 ’
> | Fgi|” + o2

1=1,1£k

where g N denotes the kth column of G.

B. Channel Model

In this paper, the channel between the BS and each user
is modeled as a narrowband clustered channel based on the
extended Saleh-Valenzuela model that has been widely used in
mmWave communications [26], [27]. The channel coefficient
vector hy, is assumed to be a sum of the contributions of N

scattering clusters, each of which includes N,,, propagation
paths. Specifically, h; can be written as [15]

N N“ly

b, = N Z Z Cmyp,n, @ ¢mpvnp’ Mp, nz))’

Cl ray mp=1n,=1
3)

where vy, .n, 1S a complex Gaussian random variable with
zero mean and variance Ji’mp for the npth ray in the myth
scattering cluster, and ¢, n, (Hmpm is its azimuth (ele-
vation) angle of departure (AoD). a( M, np Hmp,np) is the
normalized array response vector at an azimuth (elevation)
angle of ¢p,, n, (Qmpynp) and depends on the structure of the
transmit antenna array only. The N4, azimuth and elevation
angles of departure ¢, », and Hmp,np within the cluster m,,
follow the Laplacian distributions with a uniformly-random
mean cluster angle of ¢,,, and 6,,,, respectively, and a
constant angular spread (standard deviation) of o4 and oy,
respectively [28].

In particular, for an M-element uniform linear array (ULA),
the array response vector is given by [15], [16]

avia () = /1 {1 i3 27rdsm(¢)7.” ’ej(M—l)%dsin(d))}T’
M
“4)
where A is the signal wavelength, and d is the inter-element
spacing. For uniform planar array (UPA) in the yz-plane with
M; and M, elements on the y and z axes respectively, the
array response vector is given by [15], [16]

1
M, M,

1 i dEdmysin@)sin@-+nycos0) 1T ©)
[ SE ) ] )

aypa (¢,0) =

27 (M1 —1) sin(¢) sin(0)+(M2—1) cos

where the antenna array size is MMy and 0 < m, <
M; (0 < ny, < My) is the y (2) indices of an antenna element.

C. Problem Formulation

The goal of this paper is to design proper RF-baseband
hybrid precoders for the mmWave communication system. For
this purpose, we consider two common performance measures:
the system sum rate (SR) and the system energy efficiency
(EE). The problem of maximizing the system SR (SRmax) is
formulated as:

=1 (6)
s.t.R, =log (1 + SINR,) > 4, Vk € K,

F € Frr, |FG|% < P.

The problem of maximizing the system EE (EEmax) is for-
mulated as:

M=

Ry,
k=1
max —x 5 ) (7a)
€ Z HEQ]CH +Qdyn
k=1 2
s.t.Ry, =log (1 + SINR;) > v, Vk € K, (7b)



F € Frp, |FG|% < P. (7¢)

In the above two problems, Frr is the set of feasible RF
precoders, i.e., the set of M x S matrices with constant-
modulus entries, vy is the target rate of the kth user, P is the
maximum allowable transmit power, ¢ > 1 is a constant which
accounts for the inefficiency of the power amplifier (PA) [29].
Qayn is the dynamic power consumption, including the power
radiation of all circuit blocks in each active RF chain and
transmit antenna, given by

Qayn = lgllo (Prrc + M Pps + Ppac) + Psta, (8)

s

T
?)’SH } with g denoting the
<, 2 =m

o - [
mth row of G, and the {y-(quasi)norm | gl||op is the number
gt 2 7 0} ‘
Prrc, Pps, and Pp ¢ denote the the power consumption
of the RF chain, the phase shifter (PS), and the digital-
to-analog converter (DAC) at the transmitter, respectively.
Psta = M(PPA +Pmia:e7‘) + PBB + Pcool: where PPA’
Priizer» PeB, and P, denote the power consumption of the
PA, the mixer, the baseband signal processor, and the cooling
system, respectivelyl.

The formulated problems (6) and (7) are challenging due
to several difficulties, including the constant-modulus require-
ment of ' € Fgrp, the coupling between G and F', the
nonconvex nature of the user rates and the QoS constraints, and
the fractional form of the objective (in problem (7)). Another
practical difficulty is the CSIT, which requires in general each
user to estimate a large number of channels and feed them
back to the BS. Throughout this paper, we assume that the set
of user target rates is feasible. In the following, we will address
these difficulties and propose efficient precoding designs.

of nonzero entries of g, ie., [|gllo = Ht:’

III. CODEBOOK BASED MMWAVE PRECODING DESIGN
WITH BEAM SWEEPING

In the mmWave system, the RF precoder is optimized in
the analog domain and required to have a constant modu-
lus. Unlike the digital baseband signal that can be precisely
controlled, the RF signal is hard to manipulate and a precise
shift for an arbitrary phase is prohibitively expensive in the
analog domain. Therefore, in practice, each element of the RF
precoder F' usually takes only several possible phase shifts,
e.g., 8 to 16 choices (3 to 4 bits), while the amplitude change is
usually not possible [12], [13]. To facilitate the low complexity
implementation of the phase shifter, the RF precoder is often
selected from a predefined codebook, which contains a limited
number of phase shifts with a constant amplitude.

An RF codebook can be represented by a matrix, where each
column specifies a transmit pattern or an RF beamforming
vector. In particular, let F' € F¢p be an M x N predesigned
codebook matrix, where N is the number of codewords in
the codebook F', and F¢p denotes the space of all M x N
constant-modulus RF precoding codewords. There are differ-
ent RF codebooks, such as the general quantized beamforming
codebooks and the beamsteering codebooks.

IThe proposed framework in the paper can be readily extended to include
the power consumption at the receivers.

A g-bit resolution beam codebook for an M-element ULA
is defined by a codebook matrix F', where each column
corresponds to a phase rotation of the antenna elements and
generates a specific beam. A g-bit resolution codebook that
achieves the uniform maximum gain in all directions with the
optimal beamforming weight vectors is expressed as [14]

1 am-1n)(n-—1-—2n
—j 54
vM
where j denotes the square root of —1, i.e., j = V=1, M=
{1, M}, N ={1,--- N}

The codebooks in IEEE 802.15.3c [26] and wireless per-
sonal area networks (WPAN) operating in 60 GHz frequency
band [27] are designed to simplify hardware implementa-
tion. The codebooks are generated with a 90-degree phase
resolution and without amplitude adjustment to reduce the
power consumption. In this case, the (m,n)th element of the
codebook F is given by (10), Vm € M,Vn € N.

L floor <4(m,—1)(mod(]\(]n—1)+%,N)) )
F (m,n) 7

Note that when M or N is larger than 4, the codebooks
obtained from (10) result in the beam gain loss in some
beam directions, due to the quantized phase shifts per antenna
element with a limited 2-bit codebook resolution.

In practice, discrete Fourier transform (DFT) codebooks are
also widely used as they can achieve higher antenna gains at
the beam directions than the codebooks in IEEE 802.15.3c.
The entries of a DFT codebook are defined as

jﬂe*%,vﬂz eMVneN. (1)
The DFT codebooks generated in (11) do not suffer any beam
gain loss in the given beam directions for any M and N. For
mmWave systems, an efficient DFT codebook based MIMO
beamforming training scheme was proposed in [30] to estimate
the antenna weight vectors (AW Vs).

In Fig. 2, we show the polar plots of array factor for two
3-bit resolution codebooks using (6) and (11), and a 2-bit res-
olution codebook using (10). It can be observed that compared
to the 2-bit resolution codebook in IEEE 802.15.3c generated
according to (10), the 3-bit resolution beam codebook gener-
ated according to (6) and the DFT codebook provide a better
resolution and a symmetrical uniform maximum gain pattern
with reduced side lobes.

F (m,n) = YmeM,VneN, (9)

(10)

F(m,n) &

n-bit Resolution Codebook

IEEE 802.15.3c Codebook
90 1

DFT Codebook
90 1

Fig. 2: Polar plots for array factor of 2-bit and 3-bit
resolution codebooks with 8 patterns, M = 4, N = 8.

Adopting an RF codebook dramatically redeuces the com-
plexity of computing the RF precoder. Indeed, given an RF



codebook F', the optimization of the RF precoder F' in (6)
and (7) is then equivalent to selecting .S codewords (columns)
from the RF codebook (matrix) F'. Moreover, instead of
obtaining directly the exact CSIT, we can obtain the equivalent
CSIT via a beam-sweep procedure [26], [27]. Specifically,
during the beam-sweep procedure, the BS sends training
packets from each direction defined in the RF codebook F,
and the users measure the received signal strength and estimate
the effective channel across all directions. Then, each user
provides the beam-sweep feedback to the BS, indicating the
received signal strength and the effective channel of each
direction, i.e., th fn, where f,, is the nth codeword (column)
of the RF codebook (matrix) F'. Such a beam-sweep procedure
is shown in Fig. 3.

Sending training packets
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Fig. 3: Beam-sweep Procedure.

Remark 1. Through the beam sweeping, the original system
can be viewed as a virtual multiuser MISO downlink system,
as illustrated in Fig. 4, where the BS is equipped with NV
virtual antennas (i.e., codewords) and the channel coefficient
between the BS and the kth user is hi// = FHhy Vi € K.
It is well known that a mmWave channel equipped with a
directional array usually admits a sparse property in the beam
domain [15], [16]. That is, the effective channel may be near
zero for most codewords f,, in the RF codebook F'. As a
result, the effective channel coefficient vector hzf fisa sparse
vector, implying that we only need to feedback a few nonzero
effective channel coefficients to the BS. Therefore, by using
a RF codebook along with the beam sweeping, the burden of
obtaining CSIT in the mmWave system can be relieved.
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Fig. 4: Virtual Multiuser MISO Communication System.

Now, the hybrid precoding design becomes the joint op-
timization of the RF codeword selection and the baseband
precoder. We show that this twofold task can be incorporated
into the baseband precoder optimization. Specifically, instead
of using the original S x K baseband precoder G, we introduce
an expanded baseband precoder G € CN*K with size of

N x K. Let g,, denote the mth row of G. Then, by multiplying
the RF codebook F' with G, i.e., FG, the mth codeword
in the RF codebook F is selected if and only if g,, is
nonzero or equivalently ||g,, ||, # 0. Consequently, the original
RF-baseband hybrid precoding design problem (6) can be
reformulated into the following joint codeword selection and
precoder design (JWSPD) SRmax problem:

K
12
max kz_:lR;€7 (12a)
s.t. R, =log (1 + SINRg) > v, Vk € K, (12b)
K
ST IFgils < P lgllo < S, (12¢)
k=1
where gp denotes the kth column of G, g =
Nailly, - ||§N||2]T, the SINR of the kth user is given by
h Fg,|’
SINR}, — [’ Fa| (13)

> |h£{ Fgqg ’2 + o2
1=1,l#k
In (12), the constraint ||g|lo < S guarantees that the number
of the selected codewords is no larger than the number of
the available RF chains. Problem (12) represents a sparse
formulation of the baseband precoder design as g has up to
S < N nonzero elements. It also implies that the baseband
precoder G is a sparse matrix.
Similarly, problem (7) can be reformulated into the follow-
ing JWSPD EEmax problem:

K
> Ry
max ———= (14a)
=1
s.t.Ry = log (1 + SINRy,) > 4, Vk € K, (14b)
K
> NIFgell; < P, [gllo < S, (14c)
k=1

where Puy, = ||Gllo (Prrc + M Pps + Ppac) + Pstq. Let
m; be the row index of the Ith nonzero row vector of G
for i = 1,---,[|gllo with my < --- < myg,. Without loss
of generality, we can let the [th row vector of the baseband
precoder be the g,,, and the /th phase shifter network steer
vector be the m;th codeword in the RF codebook F' for the
Ith RF chain. Then, the remained S — ||g|lo RF chains with
the corresponding phase shifter networks can be turned off to
save power.

So far, we have simplified the original RF-baseband hy-
brid precoding design into the JWSPD optimization problem.
However, problems (12) and (14), although there is only one
(matrix) variable G, are still difficult, due to the nonconvex ob-
jective, the nonconvex QoS constraint, and the ¢y-(quasi)norm
constraint ||gllo < S.

IV. JOINT CODEWORD SELECTION AND PRECODER
OPTIMIZATION FOR SRMAX PROBLEM

In this section, we consider first the JWSPD SRmax prob-
lem (12), which, unfortunately, is NP-hard as a result of



the nonconvex (sum rate) objective and the fy-(quasi)norm
constraint. Hence, finding its globally optimal solution requires
prohibitive complexity, so in practice an efficient (probably
suboptimal) solution is more preferred. In what follows, we
will provide such an efficient solution.

A. Joint Codeword Selection and Precoder Design for SRmax
problem

To address the joint codeword selection and precoder design
(JWSPD) in (12), we first introduce some auxiliary variables
ak, Br, Vk € K, 7, k, and x. Let log(1+ ay) > B and
SINRy > ag, Vk € K. After some basic operations, (12) can
be rewritten into the following equivalent form:

— 15a
{gx ;OékmBk} ]; Br (152)
sit. 1+ > e Vk e K, (15b)
SINR; > ag, SINRy > Wk,Vk e K, (15¢)
K
ST IFgl; < P lldllo < S, (15d)
k=1
where %7, = €7 — 1. It can be easily proven that the

constraints (15b) and SINR, > ay, Vk shall be activated at the
optimal solution [31]. The difficulty lies in (15c) and (15d), as
(15¢) and ||g||o < S are nonconvex constraints. To overcome
these difficulties, we first move the constraint ||g|lo < S into
the objective as follows:

K
min — + Mg 16a
{gr,ak,Bk} kz:lﬁk HQHO ( )
K
st.l+op > e’ Vhe K, [|Fgl; <P (16b)
k=1
SINR;, > ay, SINR;, > 7,,Vk € K, (16¢)

where A is a group-sparsity inducing regularization [32] to
control the sparsity of the solution, i.e., the larger \ is, the
more sparse solution of (16) is. Therefore, one can always
choose a A large enough such that the constraint ||g|lo < .S is
satisfied.

Then, we use the convex £ -norm squared to approximate
the nonconvex éo-(quasi)normz. In this way, problem (16) is
approximated as:

K
min  — + A|G|1? 17a
o k;m IGI o (172)
K
st.l+op > e Vhke K, ||[Fgill; <P (17b)
k=1
SINRj, > oy, SINR, > 7., Vk € K, (17¢)

2It is worth pointing out that the RF chain constraint ||g||o < S cannot
be simply replaced by ||g||, < S with p > 1, since it is unknown whether
£o-norm > £,-norm or £p-norm < £p-norm, which may result in a violation
of the RF chain constraint.

where ||G|l1,00 = Z max|gk( )| is as the ¢ o-norm of

the matrix G. Note that ||G |7 o in (17a) can be rewritten as
follows:

IGIE... = (fj max|g, <n>|>2
i_ > ((maxlan <n1>) (1l 1) )
vy X, ; (n,m),

n=1m=1

max
i,j€{1,-

(18)

where X;; = gigf', Vi,j. Note that X;; = gigf', Vi, j
if and only if X, ; > O and rank (X; ;) = 1, Vi,j. Thus,
problem (17) can be relaxed to

min - + MG o 19a

xmin Zﬁk IG|? (19a)

st 1+4a,> e’ Vi ek, Ztr (ﬁxm) <P, (19b)
k=1

SINRj, > ay, SINRy, > 7,, X = 0,Vk € K, (19¢)

rank (X; ;) = 1,4, 7, (194d)

where F = FHF, and
tr (Hkak)
z tr (Hle,l) + o2
1=11%k

where H;, = FHhkthF, Vk € K. The relaxed problem (19)
is still difficult as it is still nonconvex. Nevertheless, note that
X j, Vi # j only appear in the objective (19a), it is easy to
have the following results which can help us simplify (19).
Theorem 1. Let {X”, ak,ﬁk} be the
of (19), then the inequalities Xm' ’XZ i

SINRy, =

optimal solution
,Vi # j hold.

For brevity, let X, = X}, 1, Vk € K and define Z (n,m) =
max | Xk (n,m)|,¥m,n. Considering that the rank one con-
straint is nonconvex [32], we obtain a tractable formulation
form of problem (19) by dropping the nonconvex constraints
rank (X) = 1, Vk € K. According to Theorem 1, problem
(19) can be relaxed to:

K

min — + Ar (1 Z 20a
i ;ﬂk (IvxnZ)  (209)

K ~
stoltap > Vhke Y o (FXk> <P, (20b)

k=1

SINR;, > ax, SINR}, > 7., Vk € K, (20¢)
in'O,ZZ |Xk|,Vk€K. (20d)

To address the nonconvex constraints (20c), we transform it
into the following problem (21), at the top of this page, by
introducing auxiliary variables ¥y, ¢r, Vk € K, 7, k, and X,
The difficulty of solving (21) lies in (21d), as the constraints



K
mi - +AMr(1nxnZ), o1a
{Xkﬂlksﬁkly%ky(bk},z kX::lﬂk ( NxN ) ( )
s.t. d)ﬁgtr(Hka),in(),lJrakZeﬁk,VkeK (1)
K K
Z tr (Hp X)) 4+ 0° < ¢, Vk € IC,Ztr (ﬁ‘Xk) <P 210)
1=1,1#k =
K 52
Z Hle) +7 fYkU (Hka) - Oék,VkJ S IC (21d)
I=1,1£k or
Z (n,m) — R (X (n,m)) (X (n,m))
>_ .
[ S (X (n,m)) Z (n,m) + R (X (n,m))| = 0,Vk € K,m,n 2le)

2
w—k > oy, Vk are nonconvex. To overcome this difficulty, we

ex2ploit the SCA method [34] to approximate the inequality

% > ay, Yk by its convex low boundary as

Vi o oD P Oy

% Z(I)k (¢k5¢k) (ZS(I) wk_ @ ¢k7Vk€Ka
(22)

where the superscrlpt I denotes the Ith iteration of the SCA

method. Note that <I> (¢k7 @) is in fact the first order of wk

around the point ( ,(CI) (I)). Thus, the approximate convex
problem solved at iteration I + 1 of (21) is given by:

K
min — + Atr (1 Z), 23a
{ Xk, Bk Yk P11, Z ];5]6 ( NxN ) (232)
s.t. (21b), (21¢), (21e), (23b)
o (i, dr) = an, Yk € K, (23c)
K
> At (H X)) +7,0° < r(HpXy) ,Vk € K, (23d)
1=1,l#k

which can be solved efficiently via a modern convex solver
such as MOSEK [22]. For conciseness, let =) denote the
set of all variables in problem (23) at the [th iteration.
Algorithm 1 outlines an iterative procedure for finding a
solution to problem (20) (or equivalently (21)) with a fixed
A, where 7 denotes the objective of problem (20).

Algorithm 1 Joint Codeword Selection and Precoder Opti-
mization with fixed A

1: Let I = 0, generate initial points (/) and compute 7).

2. Solve (23) with 2(), then obtain =*).

3 0If |70 — (D] < ¢, then output Z(*), e ), and stop iter-
ation. Otherwise, I < I + 1, 7(0) T( ), '"(I) — =20,
and go to step 2.

Problem (23) consists of a linear objective function,
K (M? + 1) positive-semidefinite constraints, 5K linear in-
equality constraints, and one convex constraint. It can be
solved via convex optimization methods, such the interi-
or point method [31]. The interior point method will take

@] (\/ KM log ()
resents the solution accuracy at the algorithm’s termina-
tion. In each iteration, the complexity of solving (23) is
((M6 + 64) K3+ 6K2M2) [33]. The optimal solution re-
turned at the [Ith iteration is also feasible for the problem
at the ([ + 1)th iteration, as a result of the approximation
in (23c). Hence, Algorithm 1 yields a nondecreasing sequence.
Since the objective of problem (20) is bounded under the
limited transmit power, the convergence of Algorithm 1 is
guaranteed [35]. In addition, following the similar arguments
n [34], it can be proved that Algorithm 1 converges to a
Karush-Kunhn-Tuker (KKT) solution of problem (21) [36].
To obtain a good initial point Z(©) for Algorithm 1, one can
solve the problem (24) which was extensively studied in [32].

) iterations, where the parameter e rep-

tr (IyxnZ) s.t.(21e), (23d), X), = 0,Vk € K. (24)

min

{X:},Z
Remark 2. Let E* denote the optimal solution to prob-
lem (19) with fixed A. By definition, the nonzero diagonal
entries of Z* correspond to the selected virtual antennas
(codewords). If an entry of Z* is zero, then the corresponding
entry in all X}, Vk must be zero. Let L* be the number of
nonzero diagonal entries of Z*. Then, the effegtive channel
of the kth user is an L* x 1 vector hy, = F"h;, where
the columns of F' are the L* selected codewords from the
RF codebook F'. Thus, the analog precoder F' is obtained as
F=FH,

B. Sparse Parameter for SRmax problem

In the previous subsection, we have introduced a turnable
sparse parameter A to control the sparsity of the solution of
the JWSPD optimization. In this subsection, we investigate
how to choose a proper A to satisfy the RF chain constraint
lgllo < S. Note that in (20), a larger A makes the entries of Z
(as well as Xy, Vk € K) more sparse, implying that less RF
chains are used. On the other side, to maximize the system
SR and guarantee the target rate requirement of each user,
one cannot force all entries of X, Vk € K to be zero. Thus,
the sparse parameter A\ has to be properly chosen to balance
maximizing the system SR and minimizing the number of the
selected virtual antennas (codewords).



It is not difficult to find that the system SR increases with the
number of the RF chains. Therefore, the task of find the mini-
mum A such that the RF chain constraint ||g|lo < S is satisfied
can be accomplished by the classical one-dimension search
methods, such as the bisection method [31]. For completeness,
the algorithm used to find the proper sparse parameter A such
that ||glo < S is summarized in Algorithm 2, where A* and
7A denote respectively the set of the solution of (20) and the
value of Zf:l Br with A, AT and 77 denote respectively the
set of the temporary solution of (20) and the temporary value
of S5 | B, with \. Note that the initialization of Algorithm 2
can also be finished by solving (24).

Algorithm 2 SRmax Optimization for Hybrid JWSPD

1: Generate initial points A° via solving (24), and computer
7T, Let flag = 1.
2: while flag do
% Let A= Atdu,
Solve (20) with X and Algorithm 1, then obtain A* and
~A
=

5. If L* > S, let A\ = ), otherwise, let Ay = \, T «
K
> B

k=1
output A*. Otherwise, AT + A*, 77 « 72,
7: end while

C. Refined Solution for SRmax Problem

Recall that in the previous subsections, the fy(quasi)-norm
has been approximated by the mixed ¢; .-norm squared to
obtain a tractable solution. In addition, due to dropping the
nonconvex rank constraint in (19), the solution X, Vk € K
obtained by solving (20) may not be rank one. Thus, the
solution provided by (20) has to be refined to fit the original
problem (15). For this purpose, after obtaining an approximate
solution to (19), we propose to solve a size-reduced SRmax
problem as the last step, omitting the antennas corresponding
to the zero diagonal entries of the approximated sparse solution
Z. The size-reduced SRmax problem is given by:

K
max Ry, (25a)
(@) ; *
s.t. SINR), > 7,,,Vk € K, (25b)
K o 2
> | Fauf, <P (250)
k=1 2
where Ry, = log (14 SINRy), and SINR; is given by
—H__ 2
_ oA
SINR,, & 2 (26)

K —g 2 ’
> |wig[,+ o
1=1,l#k 2

Similarly, the size-reduced SRmax problem (25) can be equiv-
alently reformulated as:

K —
Zﬂlw

max (27a)
{granBrdr} 121
_ K 2
stlda, > P vkek,y HF@“HQ <P (27b)
k=1
—H_ |2 —H_ |2
|79 |79
2>y, V2 >a,,Vke K, (27c)
P k
K —g 2 _
3 Hhk g,H +02 < &, Vk € K. (27d)
1=1,1%k 2

Similar to the problem (21), (27) is also a nonconvex problem
due to the constraints in (27c). For (27c), we have the
following the convex low boundary:

e
kaH _ _
-2 > ‘I)I(cl) (95 1) =
o
_(ON\" + H_
2R (gk ) hih; g,

—(I)
o

ZEAAY

h

_ H I ) 5 ke k
—(I) k> )
o

(28)

where I denotes the Ith iteration. Thus, the constraints in (27¢)
can be approximated as:
(1

3 (G, B) = T B (Ggr By) > G, VE € K.

Consequently we can obtain a stationary solution to (27), by
solving the following series of convex problems:

(29)

max

K
B Z B, s.t. (27b),(27d), (29). 30)
{gnar.Br 1 }

k=1
Such an iterative procedure is outlined in Algorithm 3, where
E(I) and 7(I) denote the set of the solution and the objective
value of problem (30) at the Ith iteration, respectively. The
convergence property of Algorithm 3 is similar with that of
Algorithm 1. The computational complexity of Algorithm 3 is
about O (M*K*) [22].

Algorithm 3 Transmit Beamforming Optimization

C . =
1: Let I = 0, generate initial points .:.( )

2 Solve (30) with =, then obtain = *

3. If |?(*) 7?(I)| < (, then output E(*)
Otherwise, I < I +1, 7 ?(*), E(I) — E(*), and go
to step 2.

and compute 70,

and stop iteration.

In the next, we investigate how to obtain a good initial point
for Algorithm 3. Let g, = \/qxgr. Vk € K3. We propose to

31t is easy to find that (33) is a weighted sum power minimization problem
which can be regarded as an extension of the conventional power minimization
problem.



use the solution of the following problem as the initial point:

min

qugk FFg,, 5.t.SINR, > 7, |Gk ]2 = 1,Vk € K.
{ar.gk} ¢

(€29)
We can show that problem (31) is dual to the following virtual
uplink problem [37], [38]:

K
min oY " py s.t. SINR), > 7y, G112 = 1,Vk € K, (32)
T

where g can be regarded as the combiner of the dual uplink
channel, p; has the interpretation of being the dual uplink
power kth user in the virtual uplink, and § NRjy, is given by

—H __ 2
Dk Hhk ng

§INR;€ £

(33)

K —H__ '
> m th ng + gl FliFg,
=T,k

Furthermore, when the optlmal solutions of problems (31) and
(32) are obtained, we have Z gt HEHFG, = o2 Z pr. It
was shown in [38] that the solutlon {gr} of (32) is glven by

-1

K
gy oc max. eigenvector Z nH,+ F'F H,
I=1,14k
(34)

Thus, the algorithm used to solve (32) is summarized in
Algorithm 4 with provable convergence [39].

Algorithm 4 Transmit Beamforming Initialization

1: Initialize beamforming vector {gy}.
2: Optimize {p;} by first finding the fixed-point p; of the
following equation by iterative function evaluation:

K —H_ .-
> szhz ng +gl'FFg,
. 1=11#k

Pr = Vi

[,

3: Find the optimal uplink beamformers based on the optimal
uplink power allocation p; with (35).
4: Repeat steps 2 and 3 until convergence.

To find {g;} in terms of {g;} that is obtained from the
virtual uplink channel, i.e., (34), we note that the SINR
constraints in (31) must be all actived at the global optimum
point. So

Vi EH ~ |17 Vi v
e O R e

S Vk € K.
Hhk i,

qr =

I=1,1%k Hﬁfgk H
2

(35)

Thus, we obtain a set of K linear equations with K unknowns

{qx}, which can be solved as

q=PGq+*Plg, (36)

where q = [qla o 7qK]Ta v -
diag =T G(k,k) = 0 and
o T
G (k1) HﬁkH@H for k # . Defining an extended
2
power vector ¢ = [q7, 1]T and an extended coupling matrix
vG Wk
Q - |: 1 CLT‘I’G Pl aT‘I’]lK] . (37)
K
where Poe = 023 pr, @ = [ay, -+ ,ax], ax =

§,f FH I/f;/g\k,Vk. According to the conclusions in [37], we
can easily obtain the optimal power vector g as the first
K components of the dominant eigenvector of @, which
can be scaled such that its last component equals one. The
solution for {g}, combined with that for {gj}, gives an
explicit solution of the beamforming vector {g,} via an
virtual uplink channel. Once the beamforming vector {g;}
is obtained, the baseband beamforming vector g, is obtained,

T
as g, = [{gk}T , 0(T57Lk) 1} . In fact, the remaining S — L*
RF chains with the corresponding phase shifter networks can
be turned off to improve the system EE.

V. JOINT CODEWORD SELECTION AND PRECODER
OPTIMIZATION FOR EEMAX PROBLEM

In this section, we consider the EEmax problem (14), which
is more difficult than the SRmax problem. Indeed the objective
in (14) is given by a more complex fractional form, and the
£y-(quasi)norm appears not only in the constraint but also
in the denominator of the objective. To find the globally

optimal solution to (14) requires an exhaustive search over all
s

2

I=Larrin
is the minimum number of the selected RF chains that can

achieve the target rate requirement of each user under the
power constraint. Unfortunately, for each pattern of g, (14) is
an NP-hard problem. Thus, we seek a practical and efficient
method to address the EEmax problem (14).

(]7 ) possible sparse patterns of g, where Ly, < S

A. Joint Codeword Selection and Precoder Design for EEmax
problem

Similarly, we first use the convex squared {; ..-norm to
approximate the nonconvex £y-(quasi)norm in the power con-
sumption term Fy,,,. Then, we also introduce a turnable sparse
parameter A > 0 as a group-sparsity inducing regularization
to control the sparsity of the solution so that the RF chain
constraint (14c) can be temporarily omitted for fixed . By
doing so, problem (14) can be relaxed as:

K
> Ry

max — , (38a)

{(xi;} X ~

€ Z tr (FXk7k) + Payn (/\)
k=1
K ~
st SINRy = 3, ¥k, Yt (FXpi) <P, (38b)

k=1



Xk,k > O,Vk‘ S IC, (38¢)

where the nonconvex rank (X; ;) = 1, Vi,j constraints are
dropped, and the dynamic power consumption is given by

P?n 1 ) +PS/(J,7

dy z Z JGI{I}aX i (mm)l '
(39

where f ()\) = Prrc + M Pps + Ppac + A. Note that Xi,j,

Vi # j, only appear in the power consumption item Pgy,, ()).
Therefore, similar to Theorem 1, we have the following result.

Theorem 2. Let XL]-,Vi,j € K be the optimal solution
of (38), then X; ;,Vi € K with X; ; =0, Vi # j,i,7 € K is
also the optimal solution of (38).

Proof: First, we prove that the inequalities X’M

<

, Vi # j hold. Suppose that there is one pair of indices
X5 (n,m)| <

(i0,Jo) ;%0 # jo and (ng,mq) such that <
X’m (n,m)’ ,Vi # j,n,m except for ‘Xio)jo (no,mo)’ >
X1 (no,mo)|
obtained by letting X; ; (n,m) = X, j (n,m),¥i,j,n,m
except for X, j, (no,mg) = 0. Note that X;;,Vi # j
only appear in the constraints (38b). Thus, X; ;,Vi,j € K
is a feasible solution to problem (38) and satisfies the fol-
lowing inequality (40), at the bottom of this page. Note
that X; j and X, ;, Vi,j € K achieve the same user rate.
Combining the objective of problem (38) and (40), we can
obtain a better objective by using X; ;,V7,j € K than using
X, 4> Vi,j € K, which is a contradiction. Therefore, we have
[%0] < [ %o Vi s

Note that X ;, Vi # j, only appear in the power con-
sumption item Pgy,, (A). Combining ‘X”‘ < ‘ i z‘ Vi £ g

,Vk. Let X; ;,Vi,j € K be another solution

with (39), one can easily see that the power consumption
item Pgy,, (A) dose not change by setting X; ; = 0, Vi # j.
Consequently, X’i,i,W € K with X; ; = 0, Vi # j are still
optimal. ]

Theorem 2 also indicates that we can simplify problem (38)
by setting X; ; = 0, Vi # j without any loss of optimality.
Hence, similar to the transformation between (19) and (20),
(38) is equivalent to

K
> Ry
k=1
41
{)%a}xz K ~ ’ (41a)
€S tr (FXk + Payn (Z,\)

K

s.t. SINRy, > 9,V € K, Y e (ﬁxk) <P, (41b)
k=1
XkEO,Z2|Xk‘,Vk€IC, (41c)

where Pay, (Z,\) = f (M) tr(1nyxnZ) + Pstq. Introducing
auxiliary variables ay, Bk, Yk, ¢k, Vk € K, T, K, and ¥, (41)
can be equivalently rewritten as

max , 42a
{ Xk, ke, B Vi, bk },Z 7,5, X X ( )
72 w,%
st. —2x,— 2o, Vkek (42b)
K Pk
K
> Br =77, (21b), 2lc), 2le) (420)
k=1
K ~
> (FXk) + Pagn (Z,)) < & (42d)
k=1
K
> Wt (He X)) + 7,0” < r (HpXy) ,Vk € K (42¢)
1=1,l#k

Similarly, the difficulty of solving (42) lies in (42b), as the
two constraints in (42b) are nonconvex. Thus, we exploit
the SCA method [34] to approximate the two inequalities
in (42b) by two convex constraints. By replacing (42b) with
the convex lower bounds at the Ith iteration, problem (42) can
be approximated by the following convex program:

max , 43a

{ Xk, 00,8k, %%, 0k 01 },Z,T,K, X X ( )

s.t. (42¢), (42d), (42e), (43b)
O (7)) > (wk, br) = o, VE €K, (43c)

D @)

where W) (7,5) £ 27007 (%) k. Thus, problem (43)
can be solved via the similar procedure as described in
Algorithm 1.

B. Sparse Parameter for EEmax problem

Similarly, a larger A leads to a more sparse solution to the
(approximated) EEmax problem (38), which corresponds to
less RF chains used. On the other side, A cannot be infinite,
which would lead to a zero solution and contradict the task of
maximizing the system EE. Hence, A has to be properly cho-
sen. However, unlike to the SRmax problem (20) or the total
power minimization problem with RF chain constraints [32],
the system EE is not monotonic with respect to the number of
RF chains or the sparse parameter \. Indeed, the system EE

Xy jo (no, WO)’ +

max X’m (n,m)‘ + Pya

(40)

> ﬁdyn ()\)

(n7m)7é(77’0 7m0)

N N
A) Z Z max |Yi,i (n, m)’ 4+ Py

n=1m=1




2
k
( N

) f (/\1264-11) tr (1NXNZ>‘IZS+y1) + Pt

(44)

Y -

X )‘li:ﬁ K key
ey tr (FX Lt
k=1

2 2
G )
X =73 T K .
€S (Fx,g) F O (IyxnZN) + Paa
k=1
W2
_ )

)
e

)

tr (ﬁ‘X,i‘) +f ()\]z’fl) tr (AN Z) 4 Pags

is a piecewise function with respect to the sparse parameter ),
as illustrated in Fig. 7 and Table I. Consequently, the bisection
method cannot be used to optimize A [31].

To address the above issue, we devise a dynamic interval
compression method to search a suitable A. Specifically, let
Anrin be the set of the indices of the L,y;, selected virtual
antennas (codewords). Let L., be the number of the virtual
antennas (codewords) achieving the maximum EE by ignoring
the available RF chain constraint, which correspondes to A =
0, and Ajpsq. be the set of the indices of the L., selected
virtual antennas (codewords) in this case. Considering that the
allowable number of RF chains is a discrete value but the
sparse parameter A is continuous, we introduce the following
definition.

Definition 1. For any small positive number € and VL €
{Lntins s Lataw — 1}, k‘(%\yiey is callekcfya breaking point if
the optimal solutions Z v~ ¢ and Z " of (41) have L + 1
and L nonzero diagonal entries, respectively.

Theorem 3. Let Z* be the solution of (41) with Y\ €

Alzefl,)\key) and L, L+1 € {Lyrin, Lygin + 1, -+, Latax }-

Then, Z* has alsokL + 1 nonzero diagonal entries and the
inequality x* X’\L+J1 holds.

Proof: Following the definition of the breaking point

AFeY it s easy to see that Z* has also L + 1 nonzero

L+1°
diagonal entries. If x > x L+1, recalling )\L 11 < A, then
we have (44), at the top of this page, which contradicts the
fact that E LT is the optimal solution to problem (43) with
fixed )\iefl Thus, the conclusions given in Theorem 3 are
proven. ]

According the definition of the breaking point and the non-
monotonic property of the system EE with respect to A, one
shall find the values of all breaking points. Let Z* be the
solution of problem (41) with fixed \;, i = 1,2. Let Z* be
the solution of problem (41) for VA € [A1, Ag]. Theorem 3
implies that if Z* and Z*? have the same number of the
nonzero diagonal entries, Z**, Z*2, and Z* have the same
number of the nonzero diagonal entries. Based on this result,
we propose a one-dimension dynamic interval compression
method, which is summarized in Algorithm 5, to find a suitable
sparse parameter A and obtain the corresponding codewords.
Note that in Algorithm 5, A* denotes the set of the indices

of the selected virtual antennas (codewords) with fixed A and

0" is calculated as

tT(Hka,)

K
> tr(Hle)—&-a'i
1=1,1%k

K
Slog | 14
k=1

— )
€5 tr(Xg) + L* (Prer + MPps + Ppac) + Psia
K=1

The initialization of Algorithm 5 can also be obtained by
solving (24) and letting other constraints to be activated. In
addition, A\yy should be large enough such that the number of
the active RF chains equals to L j;;,. According to Theorem 3,
if two intervals in the intervals set Z have an intersection in the
intervals set Z, they shall be combined into one interval, for
example [100, 150] and [150, 200] are combined to [100, 200].

Algorithm 5 RF Chain Set Generation: Part I
0, A=0,L.=0,Ly=S, L1 =

1: Initialize £\ = Ltin,

Flag = 1.

2: Solve (43) with Az, = 0, obtain E*-, L -, and (%)

3: Let Ay be a larger positive number, solve (43) with Ay,
obtain 2*v, LA and o).

4 Let Aremp = 0, Lyemp = L, and T = () be a set of
intervals.

5. If LM < S, then £ = LU {(L’\L,)\L)}, L. = L.+
1, Ly = L . Let AM be the set of the indices of the
selected codewords, A = AU {i AN ’\L}}

6: If L' < S, then £ = LU {(L U/\U L.=L.+1,
L, = LM. Let AM be the set of the 1nd1ces of the
selected codewords indices, A = AU {{.AAU, oM } }

7. If Lo ==Ly || L == Lo — L1 + 1, then let Flag = 0.

8: while Flag do

9:  Running RF Chain Set Generation: Part II.

10: end while

C. Refined Solution for EEmax problem

Due to the introduction of the mixed ¢; ..-norm squared
for the selection of the RF chains in the previous subsections,
the energy efficient beamforming vector cannot be directly
extracted from the solution of (43), i.e., {Xj}. Therefore,
we need to construct the reduced-size channel h;, = FH hy



Algorithm 5 RF Chains Set Generation: Part II

1: if L — LU > 1 then

22 forl=1,.---,L* —L*" —1do

3 A=Ap+ %z

4: if A is not in any interval of Z then

5 Solve (15) with Algorithm 1 and )\, obtain E*, L*,
and o’

6 if L > L, then

7: )\Temp =, LTemp = L)‘.

8 else

9: if L* ¢ £ then

10: L=LU{(LMN)}, Le=Lc+ 1.

11: Let A be the set of the selected codewords

indices obtained by E*, A = AU {A;}.
12: else

13: Sort the entries of £ in ascending order with
respect to \.
14: Find the set of the indices 7 such that 7 =
{v:L()(1,1) =L }.

15: if |7| ==1 then

16: T=TU [ (e (a2 } }
L=LU{(L, )\) }

17: else if |7| == 2 then

1o et

19: a=min (L (7 (1)) (1,2),A),
b = max (£ (T ( ) (1,2),0).

20: Z = ZUA{[a,b]}, L(T(1))(1,2) = a,
L£(T(2))(1,2) = b.

21: end if

22: end if

23: end if

24: end if

25:  end for

26: end if

27. if L. == Lo — L1 + 1 then

28:  Flag=20

29: else

30:  Sort £ in ascending order with respect to .
3. if Ly > £(1)(1,1) then

32: /\L = )\Tempv LM = LTemp»

33: Ay =L(1)(1,2), L' = L£(1)(1,1),

34:  else

35: Index =1, flag =1;
36: while Index < |£]| — 1& flag do
37: if £(Index)(1,1) — £L(Index+1)(1,1) > 2
then
38: AL :E(Index)(l,Z),
LAt = L (Index) (1,1).
39: Av =L (Index +1)(1,2).
40: LM = L (Index + 1) (1,1), flag = 0.
41: else
42: Index = Index + 1,
43: end if
44: end while
45:  end if

46: end if

according to the codewords selected by Algorithm 5. Thus,
the reduce-sized EEmax problem is given by

K _
> R
k=1
max , 45a
{gx} LIPTE " (452)
ey |Fai +Pi,
k=1 2
- K ~ 2
s.t. SINR, > 7, Yk € K, 3 HngHQ <P, (45b)

k=1

key

key
where Pyt = LM (Prpc+ MPps + Ppac) + Paa.
Problem (45) can be formulated as:

max X (46a)
{gk 1Ok Brs @l §5TX0R

K =2
st. Y BL>7,— 2% (46b)

k=1 K

K 02

e;HngHerPjyn <K (46c¢)
(27b), (27¢), (27d). (46d)

Similarly, instead of directly solving (46), we resort to solving
the following convex approximated problem

S @7a)
T, XKk

D (7.%)

m?@

—
(Q
Q \

2 X, (460), (46d),  (47b)

FQN

>
Il

)

where I denotes the Ith iteration, and ¥’ (7, %) is given by

2
20 (27
=) =)

Thus, problem (47) can be solved in a similar manner as
described in Algorithm 3.

T (7,F) =2 (48)

VI. NUMERICAL RESULTS

In this section, we present numerical results to demonstrate
the performance of our developed RF-baseband hybrid precod-
ing design. A uniform linear array with antenna spacing equal
to a half wavelength is adopted, and the RF phase shifters
use quantized phases. The predesigned codebook F' is the
DFT codebook. The propagation environment is modeled as
Ny = 6 with N, = 8 for each cluster with Laplacian
distributed angles of departure. For simplicity, we assume that
all clusters are of equal power, ie., o7 ,, = o2,%m, [15].
The mean cluster angle of gi)mp is uniformly distributed over
[—m,7), and the constant angular spread of AoD o, is 7.5°.
PRFC = 43 mW, PPA = 20 mW, PDAC = 200 mW,
Pps = 30 mVW, P,izer = 19 mW, Pgg = 300 mW, and
P.oor = 200 mW [40]. The noise power spectrum density
is 02 = 1. For fairness, all simulated precoding designs use
the same total power constraint and the signal-to-noise ratio
is defined as SNR = 10logy, (£;). The inefficiency factor
of power amplifier € is set to unit and the stop threshold is



¢ = 1073, In all simulation figures, the simulated EE of the
system is given by

7! Fgi|I3

K
ZIOgZ 1+ K N 2
k=1 > thF§l||2+02
1=1,1#k

K ~ 2
e |Fai| + Pi
k=1 2

(49)

We compare the performance of the proposed strategy to the
optimal fully digital precoder with one RF chain per antenna,
whose EE is calculated as

74515

K _ 2
> [[rg,+o
1=1,1#k

K
> logy [ 1+
k=1

IR .
€ H?k”g + M (Prrc + Ppac + Ppa) + Pep + Peool
=1

(50)

In our simulation scenario, fully digital precoding denotes
using Algorithm 3 to solve the SRmax problem, where each
antenna connects with an independent RF channel at the BS.
Fully analog beamforming is achieved by selecting the best
codeword from the codebook via beam training and setting the
baseband precoder as an identity matrix with uniform power
allocation between users. OMP SRmax Hybrid Precoding uses
the orthogonal matching pursuit method [15] to obtain the RF-
baseband precoders based on the solution of the fully digital
SRmax problem.

Fig. 5 and Fig. 6 show the SR performance of various hybrid
precoding designs as well as the fully digital precoder. The
results are obtained by averaging over 1000 random channel
realizations. The target rate of the kth user is set to be zero.
Numerical results show that the proposed hybrid precoding
design achieves the highest SR among several hybrid RF-
baseband precoders. This is because the proposed hybrid
RF-baseband precoding design provides a more flexible way
to achieve the beam diversity gain. One can see that the
fully analog beamforming method results in the worst SR
performance, indicating that the inter-user interference cannot
be effectively suppressed.

w
=)

Fully Digital Precoding
—6—Proposed SRmax Hybrid Precoding
—&— Hybrid Precoding Scheme(PZF) [19]
—+—Two-stage Hybrid Precoding [20]
—v—Fully Anolog Beamforming

[
n
|

Sum Rate (bits/s/Hz)

6 SNR (dB) 9 12 15

Fig. 5: Sum rate comparison of various hybrid precoders and
fully digital precoder, M = N =16, S =4, K = 4.

Fig. 7 illustrates the change of the objective x of (39)
versus an increasing A for two random channel realizations.
The target rate of the kth user is set to be the rate achieved
by randomly selecting .S analog codeword from codebook F'
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Fig. 6: Sum rate comparison of various hybrid precoders and
fully digital precoder.

and using the baseband precoder as G = %UT(,ILZ)J; (HF).
Simulation results show that there exist indeed breaking points
of ), i.e., the number of selected RF chains keep unchanged
within a range of A but suddenly changes at some points. One
can observe that the number of selected RF chains decreases
with an increasing value of A. Within a certain interval of
A, the number of selected RF chains keep the same but the
objective x of (39) decreases when )\ increases. Table I lists
the set of the indices of the selected RF chains corresponding
to the channel realization used in Fig. 7. One can observe that
the same set of the RF chains (or codewords) are selected for
any \ € [r)\lchl, A% This observation is consistent with the
result in Theorem 3, which has been used in Algorithm 5.
Fig. 8 and Fig. 9 illustrates the SR and EE of various
mmWave precoding designs and the fully digital precoding
design, respectively. The results are obtained by averaging
over 1000 random channel realizations. The target rate of kth
user is set to be the rate achieved by selecting randomly S
analog codeword from codebook F' and defining the base-
band precoder as G = gvﬁnﬂ (HF). It is observed that
using the DFT codebook in the proposed EEmax precoder
is better than using the 802.15.3c codebook in terms of the
EE performance, while the two codebooks lead to the similar
SR performance. Compared to the fully digital precoder, the
proposed SRmax/EEmax hybrid precoders have certain system
SR performance loss as the RF-baseband hybrid architecture
may not fully exploit the multi-path diversity gain. The circuit
power consumption of the hybrid architecture increases with
the number of phase shifter and the number of mixers, which
are determined by the number of transmit antennas and the
number of RF chains. Therefore, the system EE performance
of the hybrid precoding is also determined by the number
of transmit antennas and the number of RF chains. One can



TABLE I: Examples of A, A, and L with M = N =16, S =8, K = 4, SNR = 15dB.

A Ap, L | EE (bits/Hz/Joule) A Ar L | EE (bits/Hz/Joule)
0 3,4,5,6,7,8,16 7 0.8460 2.45 4,5,6,8,16 5 0.9087
0.2 3,4,5,6,7,8,16 7 0.8460 16.35 4,5,6,8,16 5 0.9087
.25 4,5,6,7,8,16 6 0.8803 16.4 4,5,6,16 4 0.8841
2.4 4,5,6,7,8,16 6 0.8803 20 4,5,6,16 4 0.8841
A Ap, L | EE (bits/Hz/Joule) A Ar L | EE (bits/Hz/Joule)
0 1,2,3,9,10,14,15,16 | 8 2.1931 1.56 1,2,3,10,15,16 | 6 2.4861
0.4 1,2,3,9,10,14,15,16 | 8 2.1931 1.58 1,2,3,10,15 5 2.6415
0.78 | 1,2,3,9,10,14,15,16 | 8 2.1931 5.9 1,2,3,10,15 5 2.6415
0.8 1,2,3,10,14,15,16 7 2.3299 7.75 1,2,3,10,15 5 2.6415
0.9 1,2,3,10,14,15,16 7 2.3299 7.8 1,3,10,15 4 2.7720
0.98 1,2,3,10,14,15,16 7 2.3299 8.8 1,3,10,15 4 2.7720
1 1,2,3,10,15,16 6 2.4861 9.8 1,3,10,15 4 2.7720
13 1,2,3,10,15,16 6 2.4861 - - - -
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Fig. 7: x versus value of \, M = N =16, S =8, K =4,
SNR = 15dB.

see that different configuration of the number of antennas, RF
chains, and users leads to different system EE performance.
For example, for the configuration of M = N = 32, § =4,
and K = 2, the EE performance of the hybrid precoders
is better than that of the fully digital precoder. Besides, the
fully digital precoder leads to a much higher hardware cost
(M = 32 RF chains versus S = 8 RF chains), which is critical
for mmWave communication systems using GHz bandwidth
and even higher sampling rates.

VII. CONCLUSIONS

In this paper, we considered the design of the hybrid
RF-baseband precoding for the downlink of multiuser multi-
antenna systems with the aim to maximize the system SR and
the system EE. We developed a codebook based RF precoding
method and obtained the channel state information via a
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Fig. 8: EE/SR comparison of the hybrid precoders and fully
digital precoder, M = N =32, S =4, K = 2.

beam sweep procedure. Exploiting the codebook based design,
we simplified the complicated hybrid precoders optimization
problems to JWSPD problems. Then, efficient methods were
developed to address the JWSPD problems for maximizing
the SR and EE of the system. Finally, extensive numerical
simulation results are provided to validate the effectiveness of
the proposed hybrid precoding design.
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