
A Novel Iterative Convex Approximation Method

Yang Yang and Marius Pesavento

Communication Systems Group, Darmstadt University of Technology, Darmstadt, Germany.

Emails: {yang, pesavento}@nt.tu-darmstadt.de

Abstract—In this paper, we propose a novel iterative algorithm
based on convex approximation for a large class of possibly
nonconvex optimization problems. The stationary points of the
original problem are found by solving a sequence of successive-
ly refined approximate problems. To achieve convergence, the
approximate problem only needs to be pseudo-convex while the
stepsizes are determined by the exact or successive line search.
The proposed method not only includes as special cases a variety
of existing methods, for example, the gradient projection method
and the Jacobi algorithm, but also leads to new algorithms which
enjoy easier implementation and faster convergence speed, as
illustrated (both theoretically and numerically) by the example
application of the sum capacity computation problem of the
MIMO broadcast channel.

I. INTRODUCTION

In this paper, we consider the following problem:

minimize
x∈X

f(x), (1)

where f(x) : Cn → R is a proper and differentiable function

with a continuous gradient, and X ⊆ Cn is a closed and convex

set. We assume that problem (1) has a solution.

Since we do not assume that f(x) is convex, problem (1) is

in general nonconvex. We thus focus on iterative algorithms

that can solve (1) efficiently in the sense of stationary points

[1]. As example applications consider the MIMO broadcast

channel (BC) [2], where f(x) is the sum-rate function of

multiple users (to be maximized) while the set X characterizes

the users’ power constraints.

Commonly used iterative algorithms belong, e.g., to the

class of descent direction methods such as the conditional

gradient and gradient projection method [1] which often

suffer from slow convergence. To speed up the convergence,

algorithms based on nonlinear best-response have been widely

studied. These methods are applicable if X in (1) has a

Cartesian product structure, i.e.,

X = X1 × . . .×XK . (2)

The resulting problem can be solved in a distributed manner

as the change of one variable does not affect the feasibility

of other variables [3]. The block coordinate descent (BCD)

method [1, Sec. 2.7] is an example of distributed optimization

algorithms: in each iteration, only one variable is updated

by the solution that minimizes f(x) with respect to (w.r.t.)

that variable while the remaining variables are fixed, and the

variables are updated sequentially. This method and its variants

have been successfully adopted to many problems [4].

When the number of variables is large, the BCD method

may suffer from slow convergence due to the sequential

update. Existing parallel update seems more desirable, but

their convergence conditions are rather restrictive, cf. the

diagonal dominance condition on the objective function f(x)
[3] or the sufficiently small stepsize condition [1], [2]. A recent

progress in parallel algorithms has been made in [5], [6], and

it was shown that, for a large class of nonconvex optimization

problems, a stationary point can be found by solving a

sequence of successively refined approximate problems. This

algorithm is essentially an iterative descent direction method

and convergence is established if, among other conditions, the

approximate function and stepsizes are properly selected.

Despite its novelty, the parallel algorithm proposed in [5]–

[7] suffers from a limitation, namely, the approximate function

must be strongly convex. This is usually guaranteed by adding

an additional regularization term to the original function f(x),
which however may destroy the desirable structure that could

otherwise be exploited, e.g., to obtain computationally efficient

closed-form solution of the approximate problems [4].

Based on the idea first presented in [5]–[7], we develop

a novel iterative convex approximation method in which the

approximate function only needs a weak form of convexity,

namely, pseudo-convexity. This iterative method not only

includes as special cases many existing methods, for example,

[4], [5], [7]–[9], but also opens new possibilities to construct

approximate problems that are easier to solve. For example, in

the MIMO IC, MAC and BC sum-rate maximization problems,

the new approximate problems can be solved in closed-form.

Besides, we show by a counterexample that the assumption on

pseudo-convexity is tight in the sense that if it is not satisfied,

the algorithm may not converge.

To guarantee the convergence of the proposed algorithm, the

exact/successive line search procedure is used to determine the

stepsize, and its implementation may depend on the existence

of a centralized controller. The existence of such a centralized

controller can be justified in many scenarios, e.g., the base

station in MIMO BC.

II. THE PROPOSED ITERATIVE CONVEX APPROXIMATION

METHOD

We start with the definition of a pseudo-convex function: A

function g(x) is said to be pseudo-convex if

g(y) < g(x) =⇒ (y − x)T∇g(x) < 0. (3)

In other words, g(y) < g(x) implies y − x is a descent

direction of g(x). We remark that the (strong) convexity of

a function implies that the function is pseudo-convex, which

2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

978-1-4799-1963-5/15/$31.00 ©2015 IEEE 297



in turn implies that the function is quasi-convex. That is:

g(x) is strongly convex→ g(x) is convex

↓
g(x) is quasi-convex← g(x) is pesudo-convex

(4)

We solve (1) as a sequence of successively refined approx-

imate problems, each of which is presumably much easier to

solve than the original problem (1). In iteration t, let f̃(x;xt)
be the approximate function of f(x) around the point xt. Then

the approximate problem is

minimize
x∈X

f̃(x;xt).

We assume that the approximate function f̃(x;y) satisfies

several technical conditions:

(A1) f̃(x;y) is pseudo-convex in x ∈ X for any y ∈ X ;

(A2) f̃(x;y) is continuously differentiable in both x ∈ X and

y ∈ X , and ∇xf̃(x;x) = ∇xf(x);
Let us define the operator Bxt as the minimizer of the

approximate function f̃(x;xt) over x ∈ X :

Bxt ∈ S(xt) ,
{

x⋆ ∈ X : f̃(x⋆;xt) = min
x∈X

f̃(x;xt)
}

. (5)

We shall exploit the following property of Bx [10].

Proposition 1. A vector x is a stationary point of (1) if and

only if x ∈ S(x). If x is not a stationary point of (1), then

Bx− x is a descent direction of f(x):

(Bx − x)T∇f(x) < 0. (6)

With the descent direction Bxt−xt, the vector update xt+1

in the (t+ 1)-th iteration is defined as follows:

xt+1 = xt + γt(Bxt − xt), (7)

where γt ∈ (0, 1] is an appropriate stepsize that is determined

by the following standard rules.

Exact line search: The stepsize is selected such that the

function f(x) is decreased to the largest extent along the

descent direction Bxt − xt:

γt ∈ argmin
0≤γ≤1

f(xt + γ(Bxt − xt)). (8)

If f(x) is convex and γ⋆ nulls the gradient of f(xt +
γ(Bxt − xt)), i.e., ∇γf(x

t + γ⋆(Bxt − xt)) = 0, then γt

in (8) is simply the projection of γ⋆ onto the interval [0, 1]:

γt =











1, if ∇γf(x
t + γ(Bxt − xt))|

γ=1 ≥ 0,

0, if ∇γf(x
t + γ(Bxt − xt))|

γ=0 ≤ 0,

γ⋆, otherwise.

In some applications it is possible to compute γ⋆ analytically,

e.g., if f(x) is convex quadratic. Otherwise, for general convex

functions, γ⋆ can be found efficiently by the bisection method:

since f(xt + γ(Bxt − xt)) is convex in γ, it follows that

∇γf(x
t+γ(Bxt−xt)) < 0 if γ < γ⋆ and ∇γf(x

t+γ(Bxt−
xt)) > 0 if γ > γ⋆; we thus can find γ⋆ simply by bisection:

given an interval [γlow, γup] containing γ⋆ (the initial value of

γlow and γup is 0 and 1, respectively), set γmid = (γlow+γup)/2
and refine γlow and γup as follows: γlow = γmid if ∇γf(x

t +

Algorithm 1 The iterative convex approximation algorithm

Data: t = 0 and x0 ∈ X ; stop criterion δ.

S1: Compute Bxt according to (5).

S2: Determine the stepsize γt by exact/successive line search.

S3: Update x according to (7).

S4: If
∣

∣(Bxt − xt)T∇f(xt)
∣

∣ ≤ δ, STOP; otherwise go to S1.

γmid(Bx
t − xt)) > 0 or γup = γmid otherwise. This procedure

is repeated for a finite number of times until the gap γup−γlow

is smaller than a prescribed precision.

Successive line search: If no structure in f(x) can be exploited

to efficiently compute γt according to the exact line search

(8), one can instead employ the successive line search: given

scalars 0 < α < 1 and 0 < β < 1, we set γt = βmt , where

mt is the first nonnegative integer m for which the following

inequality is satisfied:

f(xt + βm(Bxt − xt)) ≤ f(xt) + αβm(Bxt − xt)T∇f(xt).
(9)

The existence of a finite mt is always guaranteed if (Bxt −
xt)T∇f(xt) < 0 [1].

The algorithm is summarized in Algorithm 1 and its con-

vergence properties are given in the following theorem [10].

Theorem 2. Consider the sequence {xt} generated by Al-

gorithm 1. Assume Assumptions (A1)-(A2) as well as the

following assumptions are satisfied:

(A3) The solution set S(xt) is nonempty for t = 1, 2, . . .;
(A4) Given any convergent subsequence {xt}t∈T where T ⊆

{1, 2, . . .}, the sequence {Bxt}t∈T is bounded.

Then any limit point of {xt} is a stationary point of (1).

Other structures in f̃(x;xt), if any, can be further exploited

to assist in the selection of the stepsize. For example, if

f̃(x;xt) is an upper bound of f(x) that is exact at x = xt:

(A5) f̃(x;xt) ≥ f(x) and f̃(xt;xt) = f(xt),
then we can set γt = 1 and (7) reduces to [10]

xt+1 = Bxt = argmin
x∈X

f̃(x;xt).

In the following we discuss some properties of the proposed

Algorithm 1.

On the pseudo-convexity of f(x;xt). Assumption (A1) is

tight in the sense that if (A1) is not satisfied, Proposition 1 does

not hold any more. Consider the following simple example:

f(x) = x3, −1 ≤ x ≤ 1. It is easy to see that x = 0
is a stationary point. If xt = 0 and we set f̃(x;xt) = x3,

which is quasi-convex but not pseudo-convex, all assumptions

except Assumption (A1) are satisfied and Bxt = S(xt) = −1.

However, 0 = xt /∈ S(xt) = −1, and thus the conclusions of

Proposition 1 no longer hold.

On the convergence conditions. A sufficient condition for

Assumptions (A3)-(A4) is that the feasible set X is bounded

or the approximate function f̃(x;xt) is strongly convex [11].

On the approximate problem (5). The only requirement on

the approximate function f̃(x;xt) is that it is pseudo-convex
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(cf. Assumption (A1)), and to the best of our knowledge, this

is the weakest condition that can be found in the literature. As

a result, it enables us to construct new approximate functions

that can often be optimized more easily or even in closed-form.

This results in a significant reduction of the computational cost

if the approximate problem must otherwise only be optimized

by iterative algorithms as in standard solvers.

III. SPECIAL CASES OF THE PROPOSED METHOD

In this section, we interpret some existing methods in the

context of our algorithm and show that how they represent

special cases of Algorithm 1.

Conditional gradient method. In this method, the approx-

imate function is just the first-order approximation of f(x) at

x = xt, i.e.,

f̃(x;xt) = f(xt) + (x − xt)T∇f(xt). (10)

The stepsize is selected by exact or successive line search.

Gradient projection method. In this method, Bxt is given

by [1, Sec. 2.3]

Bxt =
[

xt − st∇f(xt)
]

X
,

where st > 0 and [x]X denotes the projection of x onto X .

This is equivalent to defining f̃(x;xt) in (5) as follows:

f̃(x;xt) = (x − xt)T∇f(xt) + 1
2sk

∥

∥x− xt
∥

∥

2

2
,

which is the first-order approximation of f(x) plus a quadratic

regularization term introduced for numerical stability [3]. Then

the stepsize is selected by the exact/successive line search.

Jacobi algorithm. If f(x) is componentwise convex, the

approximate function can be

f̃(x;xt) =
∑K

k=1

(

f(xk,x
t
−k) +

τk
2

∥

∥xk − xt
k

∥

∥

2

2

)

, (11)

where τk ≥ 0 for all k. The k-th component function in (11) is

obtained from the original function f(x) by fixing all variables

except xk, i.e., x−k = xt
−k, and further adding an (optional)

regularization term. The resulting approximate problem is

minimize
x=(xk)Kk=1

∑K

k=1

(

f(xk,x
t
−k) +

τk
2

∥

∥xk − xt
k

∥

∥

2

2

)

subject to x ∈ X .
(12)

If the constraint set has a Cartesian product structure as in

(2), problem (12) can be decomposed into a set of smaller

subproblems, one for each variable, which are then solved in

parallel (i.e., Jacobi update): Bxt = (Bkx
t)Kk=1 where

Bkx
t ∈ argmin

xk∈Xk

{

f(xk,x
t
−k) +

τk
2

∥

∥xk − xt
k

∥

∥

2

2

}

, ∀k.

To guarantee the convergence, the condition proposed in [9]

is that τk > 0 for all k in (11). However, this may destroy

the convenient structure that could otherwise be exploited.

In the proposed method, the convergence is guaranteed even

when τk = 0 in (11). To our knowledge, this is the weakest

convergence condition available in literature. We will show

by an example application in the MIMO BC in Sec. IV that

the proposed relaxation in approximate function yields new

approximate problems that are much easier to solve.

IV. COMPUTATION OF MIMO BC SUM CAPACITY

In the MIMO BC, assume Hk is the channel from the base

station to user k, and Qk is the transmit covariance matrix

of the signal from the base station to user k. Then the sum

capacity of MIMO BC is [2]

maximize
(Qk�0)K

k=1

log det
∣

∣

∣
I+

∑K

k=1HkQkH
H
k

∣

∣

∣

subject to
∑K

k=1tr(Qk) ≤ P,

(13)

where P is the power budget at the base station.

To apply Algorithm 1, we invoke (11)-(12) and the approx-

imate problem at iteration t is

maximize
(Qk�0)K

k=1

∑K

k=1 log
∣

∣Rk(Q
t
−k) +HkQkH

H
k

∣

∣

subject to
∑K

k=1tr(Qk) ≤ P,

(14)

where Rk(Q−k) , Rn +
∑

j 6=kHjQjH
H
j is the convariance

matrix of noise plus interference for user k. Problem (14) is

convex and can be solved from the dual domain by relaxing

the sum-power constraint into the Lagrangian [1]:

BQt , argmax
(Qk�0)K

k=1

{

∑K

k=1 log
∣

∣Rk(Q
t
−k) +HkQkH

H
k

∣

∣

−λ⋆(
∑K

k=1tr(Qk)− P )

}

.

(15)

where BQt = (BkQ
t)Kk=1 and λ⋆ is the optimal Lagrange

multiplier which satisfies the following conditions: λ⋆ ≥ 0,
∑K

k=1 tr(BkQ
t)− P ≤ 0, λ⋆(

∑K

k=1 tr(BkQ
t)− P ) = 0, and

can be found efficiently by bisection.

Since the optimization problem in (15) is uncoupled among

different variables Qk in both the objective function and the

constraint set, it can be solved in parallel:

BkQ
t = argmax

Qk�0

{

log
∣

∣Rk(Q
t
−k) +HkQkH

H
k

∣

∣−λ⋆tr(Qk)
}

,

(16)

and BkQ
t has a closed-form expression based on waterfilling

solution [2], so problem (14) has a closed-form solution up to a

Lagrange multiplier that can be found efficiently by bisection.

Given the update direction BQt − Qt, the base station can

implement the exact line search to determine the stepsize.

The proposed algorithm outperforms [6] and [2] from the

perspective of approximate problem and stepsize, respectively.

On the one hand, in the iterative algorithm proposed in [6],

an additional quadratic regularization term is required in (14)

and thus (16) (cf. (12)), which would destroy the existence of

a closed-form solution of (16) and increase the complexity of

the algorithm dramatically. On the other hand, the iterative

algorithm [2] has the same approximate problem (14), but

a fixed stepsize γt = 1/K is used. The exact line search

performs better than the fixed stepsize because, by definition,

the former returns the largest increase in the objective function.

Simulations. We set the parameters as follows: the number

of users is K =20 and 100. The number of transmit antennas

at the base station is 5 and the number of receive antennas of

each user is 4. The power constraint is P = 10.

We compare the proposed algorithm with the iterative

algorithm proposed in [2] in Fig. 1, where the sum-rate versus
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Fig. 1. MIMO BC: sum-rate versus the number of iterations.

the number of iterations is achieved. It is easy to see that

the proposed algorithm converges very fast (in less than 10

iterations) to the sum capacity, while [2] requires many more

iterations when K = 20 and it does not even converge in

a reasonable number of iterations when K = 100. This is

because the exact line search yields the largest increase in the

objective function in each iteration while the fixed stepsize

tends to be overly conservative. Employing the exact line

search adds complexity as compared to the simple choice

of a fixed stepsize, however, since the objective function is

convex, the exact line search can be implemented efficiently

using the bisection method and the additional complexity is

usually affordable. Specifically, it takes 0.0023 seconds to

solve (14) and 0.0018 seconds to perform the exact line search

(the software/hardware environment is specified in [10]), but

the saving in the number of iterations is more than enough to

compensate the loss incurred by the exact line search.

We also compare in Fig. 2 the proposed algorithm with

the iterative algorithm [6], where the approximate problem is

(14) but with an additional quadratic regularization term, cf.

(12), where τk = 10−5 for all k. Besides, the stepsizes used

in [6] are decreasing stepsizes γt+1 = γt(1 − dγt) where

d ∈ (0, 1) controls how fast the stepsize decreases. We see

from Fig. 2 that the convergence behavior of [6] is quite

sensitive to the stepsize decreasing rate d. The convergence

speed is slow when the decreasing rate is either too large

(d = 0.5) or too small (d = 0.001). The choice d = 0.01
works well for this case, but a good decreasing rate is usually

dependent on problem parameters and no general rule is

equally good for all choices of parameters. Besides, it is more

computationally consuming to solve (14) in the presence of an

additional quadratic regularization term. Specifically, it takes

CVX (version 2.0 [12]) 21.1785 seconds (based on the dual

approach (16) while λ⋆ is found by bisection). Therefore, the

overall complexity per iteration of the proposed algorithm is

much lower than that of [6].

V. CONCLUDING REMARKS

In this paper, we have proposed a new iterative algorithm

based on successive convex approximation. The only require-

0 5 10 15 20 25 30 35 40 45 50
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

number of iterations

e
rr

o
r 

e
(Q

t )

 

 

parallel update with exact line search stepsize (proposed)

parallel update with decreasing stepsize (state−of−the−art [9])

decreasing coefficient: 0.01

decreasing coefficient: 0.001

decreasing coefficient: 0.5

Fig. 2. MIMO BC: error e(Qt) ,
〈
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〉

versus the
number of iterations.

ment on the approximate function is that it is pseudo-convex.

On one hand, the relaxation on the assumptions of the ap-

proximate functions can make the approximate problems much

easier to solve. On another hand, the stepsize is selected based

on the exact/successive line search method so that notable

progress is achieved. Additional structures can be exploited

to assist with the selection of the stepsize. The advantages

of the proposed algorithm have been demonstrated using the

example of the sum-rate maximization problem in the MIMO

BC, and they are finally consolidated by numerical results.
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