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Abstract—In this paper, we propose a novel iterative algorithm
based on convex approximation for a large class of possibly
nonconvex optimization problems. The stationary points of the
original problem are found by solving a sequence of successive-
ly refined approximate problems. To achieve convergence, the
approximate problem only needs to be pseudo-convex while the
stepsizes are determined by the exact or successive line search.
The proposed method not only includes as special cases a variety
of existing methods, for example, the gradient projection method
and the Jacobi algorithm, but also leads to new algorithms which
enjoy easier implementation and faster convergence speed, as
illustrated (both theoretically and numerically) by the example
application of the sum capacity computation problem of the
MIMO broadcast channel.

I. INTRODUCTION
In this paper, we consider the following problem:
minimize f(x), @)
where f(x): C™ — R is a proper and differentiable function
with a continuous gradient, and X C C" is a closed and convex
set. We assume that problem (1) has a solution.

Since we do not assume that f(x) is convex, problem (1) is
in general nonconvex. We thus focus on iterative algorithms
that can solve (1) efficiently in the sense of stationary points
[1]. As example applications consider the MIMO broadcast
channel (BC) [2], where f(x) is the sum-rate function of
multiple users (to be maximized) while the set X’ characterizes
the users’ power constraints.

Commonly used iterative algorithms belong, e.g., to the
class of descent direction methods such as the conditional
gradient and gradient projection method [1] which often
suffer from slow convergence. To speed up the convergence,
algorithms based on nonlinear best-response have been widely
studied. These methods are applicable if X in (1) has a
Cartesian product structure, i.e.,

X=X x...x Xk. 2)
The resulting problem can be solved in a distributed manner
as the change of one variable does not affect the feasibility
of other variables [3]. The block coordinate descent (BCD)
method [1, Sec. 2.7] is an example of distributed optimization
algorithms: in each iteration, only one variable is updated
by the solution that minimizes f(x) with respect to (w.r.t.)
that variable while the remaining variables are fixed, and the
variables are updated sequentially. This method and its variants
have been successfully adopted to many problems [4].

When the number of variables is large, the BCD method
may suffer from slow convergence due to the sequential
update. Existing parallel update seems more desirable, but
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their convergence conditions are rather restrictive, cf. the
diagonal dominance condition on the objective function f(x)
[3] or the sufficiently small stepsize condition [1], [2]. A recent
progress in parallel algorithms has been made in [5], [6], and
it was shown that, for a large class of nonconvex optimization
problems, a stationary point can be found by solving a
sequence of successively refined approximate problems. This
algorithm is essentially an iterative descent direction method
and convergence is established if, among other conditions, the
approximate function and stepsizes are properly selected.

Despite its novelty, the parallel algorithm proposed in [5]—
[7] suffers from a limitation, namely, the approximate function
must be strongly convex. This is usually guaranteed by adding
an additional regularization term to the original function f(x),
which however may destroy the desirable structure that could
otherwise be exploited, e.g., to obtain computationally efficient
closed-form solution of the approximate problems [4].

Based on the idea first presented in [S]-[7], we develop
a novel iterative convex approximation method in which the
approximate function only needs a weak form of convexity,
namely, pseudo-convexity. This iterative method not only
includes as special cases many existing methods, for example,
[4], [5], [7]-[9], but also opens new possibilities to construct
approximate problems that are easier to solve. For example, in
the MIMO IC, MAC and BC sum-rate maximization problems,
the new approximate problems can be solved in closed-form.
Besides, we show by a counterexample that the assumption on
pseudo-convexity is tight in the sense that if it is not satisfied,
the algorithm may not converge.

To guarantee the convergence of the proposed algorithm, the
exact/successive line search procedure is used to determine the
stepsize, and its implementation may depend on the existence
of a centralized controller. The existence of such a centralized
controller can be justified in many scenarios, e.g., the base
station in MIMO BC.

II. THE PROPOSED ITERATIVE CONVEX APPROXIMATION
METHOD

We start with the definition of a pseudo-convex function: A
function g(x) is said to be pseudo-convex if

9(y) < 9(x) = (y —x)" Vg(x) <0. 3)
In other words, g(y) < g(x) implies y — x is a descent
direction of g(x). We remark that the (strong) convexity of
a function implies that the function is pseudo-convex, which
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in turn implies that the function is quasi-convex. That is:

g(x) is strongly convex — g(x) is convex

{ “)

g(x) is quasi-convex < g(x) is pesudo-convex

We solve (1) as a sequence of successively refined approx-
imate problems, each of which is presumably much easier to
solve than the original problem (1). In iteration ¢, let f (x;x?)
be the approximate function of f(x) around the point x*. Then
the approximate problem is

.. . r Lot
minimize f(x;x%).
We assume that the approximate function f (x;y) satisfies
several technical conditions:
(A1) f(x;y) is pseudo-convex in x € X for any y € X;
(A2) f (x;y) is continuously differentiable in both x € X" and
y € X, and Vi f(x;X%) = Vi f(X);

Let us define the operator Bx! as the minimizer of the

approximate function f(x;x") over x € X’:

Bx' € S(x') & {X* eXx: f(x*;x') = miE f(x;xt)}. (5)
xE
We shall exploit the following property of Bx [10].

Proposition 1. A vector x is a stationary point of (1) if and
only if x € 8(x). If x is not a stationary point of (1), then
Bx — x is a descent direction of f(x):

Bx —x)TVf(x) < 0. (6)

With the descent direction Bx’ —x’, the vector update x**+!

in the (¢ + 1)-th iteration is defined as follows:

xH=x' 44 (Bx' —x'), )
where v* € (0,1] is an appropriate stepsize that is determined
by the following standard rules.
Exact line search: The stepsize is selected such that the
function f(x) is decreased to the largest extent along the
descent direction Bx! — x':

7" € argmin f(x' + y(Bx' — x*)). 8)

0<y<1

If f(x) is convex and v* nulls the gradient of f(x* +
v(Bx' — x')), ie., V,f(x' +*(Bx" — x')) = 0, then ~*
in (8) is simply the projection of v* onto the interval [0, 1]:

L0 Vo e (Bt —xt)],_, 20,
7'=40, if Vo f(x+(Bx' —x"))| _, <0,
v*,  otherwise.

In some applications it is possible to compute +v* analytically,
e.g., if f(x) is convex quadratic. Otherwise, for general convex
functions, v* can be found efficiently by the bisection method:
since f(x! + v(Bx! — x%)) is convex in 7, it follows that
V, f(x'+y(Bx"—x")) < 0if vy < v* and V., f(x* +~(Bx' —
x%)) > 0 if v > ~*; we thus can find 4* simply by bisection:
given an interval [Yiow, Yup] containing v* (the initial value of
Vow and ~yyp is 0 and 1, respectively), set Ymia = (Viow + Yup)/2
and refine viow and ~yp as follows: Yiow = Ymia if V, f (xt +
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Algorithm 1 The iterative convex approximation algorithm

Data: t = 0 and x° € X; stop criterion 9.

S1: Compute Bx? according to (5).

S2: Determine the stepsize ¢ by exact/successive line search.
S3: Update x according to (7).

S4: If | (Bx! — x')TV f(x!)| < 6, STOP; otherwise go to SI.

Ymid(Bx" —x")) > 0 Or Yyp = Ymia otherwise. This procedure
is repeated for a finite number of times until the gap ~yup — Vow
is smaller than a prescribed precision.

Successive line search: If no structure in f(x) can be exploited
to efficiently compute ' according to the exact line search
(8), one can instead employ the successive line search: given
scalars 0 < o < 1 and 0 < 3 < 1, we set v* = 3™, where
my is the first nonnegative integer m for which the following
inequality is satisfied:

F(x'+ 87 (Bx' —x)) < f(x') + ap™ (Bx' —x")TVF(x").

©)

The existence of a finite m; is always guaranteed if (Bx’ —
xHTV f(xt) <0 [1].

The algorithm is summarized in Algorithm 1 and its con-

vergence properties are given in the following theorem [10].

Theorem 2. Consider the sequence {x'} generated by Al-
gorithm 1. Assume Assumptions (Al)-(A2) as well as the
following assumptions are satisfied:

(A3) The solution set S(x') is nonempty for t =1,2,...;
(A4) Given any convergent subsequence {x"} re where T C
{1,2,...}, the sequence {Bx'},_ is bounded.

Then any limit point of {x'} is a stationary point of ().

Other structures in f(x;x?), if any, can be further exploited
to assist in the selection of the stepsize. For example, if
f(x;x") is an upper bound of f(x) that is exact at x = x':
(A3) f(x;x") > f(x) and f(x';x") = f(x),

then we can set v* = 1 and (7) reduces to [10]

t+

xtl = Bx! = argmin f(x;x).

xeX

In the following we discuss some properties of the proposed
Algorithm 1.

On the pseudo-convexity of f(x;x'). Assumption (A1) is
tight in the sense that if (A1) is not satisfied, Proposition 1 does
not hold any more. Consider the following simple example:
fl@) = 2%, —1 < o < 1. It is easy to see that z = 0
is a stationary point. If 2 = 0 and we set f(x;2') = 3,
which is quasi-convex but not pseudo-convex, all assumptions
except Assumption (A1) are satisfied and Bz' = S(z*) = —1.
However, 0 = z* ¢ S(z') = —1, and thus the conclusions of
Proposition 1 no longer hold.

On the convergence conditions. A sufficient condition for
Assumptions (A3)-(A4) is that the feasible set X' is bounded
or the approximate function f (x;x') is strongly convex [11].

On the approximate problem (5). The only requirement on
the approximate function f (x;x!) is that it is pseudo-convex
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(cf. Assumption (A1)), and to the best of our knowledge, this
is the weakest condition that can be found in the literature. As
a result, it enables us to construct new approximate functions
that can often be optimized more easily or even in closed-form.
This results in a significant reduction of the computational cost
if the approximate problem must otherwise only be optimized
by iterative algorithms as in standard solvers.

III. SPECIAL CASES OF THE PROPOSED METHOD

In this section, we interpret some existing methods in the
context of our algorithm and show that how they represent
special cases of Algorithm 1.

Conditional gradient method. In this method, the approx-
imate function is just the first-order approximation of f(x) at
x =xt, ie.,

Foex") = f(x") + (x = x")TVF(x").
The stepsize is selected by exact or successive line search.

Gradient projection method. In this method, Bx! is given
by [1, Sec. 2.3]

(10)

Bx' = [x' —s'Vf(x")] ,,

where s* > 0 and [x] denotes the projection of x onto X.
This is equivalent to defining f(x;x") in (5) as follows:

Faxt) = (x = x) TV () + o x - x||2,

which is the first-order approximation of f(x) plus a quadratic
regularization term introduced for numerical stability [3]. Then
the stepsize is selected by the exact/successive line search.

Jacobi algorithm. If f(x) is componentwise convex, the
approximate function can be

Foaxt) = S0 (Foaxt ) + B Jxe — x4 [2), (D)

where 7, > 0 for all k. The k-th component function in (11) is
obtained from the original function f(x) by fixing all variables
except Xg, i.e., X_j = x° «» and further adding an (optional)
regularization term. The resulting approximate problem is
o - 2
minimize L, (o x4) + % [ <L)
X=Xk ) =1

subject to x € X.

12)

If the constraint set has a Cartesian product structure as in
(2), problem (12) can be decomposed into a set of smaller
subproblems, one for each variable, which are then solved in
parallel (i.e., Jacobi update): Bx! = (Byx")X_ | where

Bx' € argmin {f(xk,xt_k) + ka — XZH;}, Vk.
X € X

To guarantee the convergence, the condition proposed in [9]
is that 7, > O for all £ in (11). However, this may destroy
the convenient structure that could otherwise be exploited.
In the proposed method, the convergence is guaranteed even
when 7, = 0 in (11). To our knowledge, this is the weakest
convergence condition available in literature. We will show
by an example application in the MIMO BC in Sec. IV that
the proposed relaxation in approximate function yields new
approximate problems that are much easier to solve.
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IV. CoMPUTATION OF MIMO BC SuM CAPACITY

In the MIMO BC, assume Hj, is the channel from the base
station to user k, and Qy is the transmit covariance matrix
of the signal from the base station to user k. Then the sum
capacity of MIMO BC is [2]

maximize logdet |I + ZleHkaHkH
(Qr=0);,

subject to Zletr(Qk) <P,
where P is the power budget at the base station.
To apply Algorithm 1, we invoke (11)-(12) and the approx-
imate problem at iteration ¢ is

maximize Zle log |Rk(Qt_k) + HkaHkH‘
(Qr=0),

subject to Zszltr(Qk) <P,

where R,(Q_1) 2 R, + Z#kHijHfI is the convariance
matrix of noise plus interference for user k. Problem (14) is
convex and can be solved from the dual domain by relaxing
the sum-power constraint into the Lagrangian [1]:

{Zszl log Ry (Q" ) + HxQrHY/|

arg max e )

(Qe=0)k_, | =N (O tr(Qr) — P) X
(15)

where BQ! = (B,Q!)X_, and \* is the optimal Lagrange
multiplier which satisfies the following conditions: \* > 0,
S r(BrQ) — P <0, M(Xp, tr(BrQ") — P) = 0, and
can be found efficiently by bisection.

Since the optimization problem in (15) is uncoupled among
different variables Qy in both the objective function and the
constraint set, it can be solved in parallel:

B.Q' = aggrilax{log IRk(Q" ) + HpQpHY | = Mtr(Qu) },
-0

(16)
and B; Q! has a closed-form expression based on waterfilling
solution [2], so problem (14) has a closed-form solution up to a
Lagrange multiplier that can be found efficiently by bisection.
Given the update direction BQ! — Q, the base station can
implement the exact line search to determine the stepsize.

The proposed algorithm outperforms [6] and [2] from the
perspective of approximate problem and stepsize, respectively.
On the one hand, in the iterative algorithm proposed in [6],
an additional quadratic regularization term is required in (14)
and thus (16) (cf. (12)), which would destroy the existence of
a closed-form solution of (16) and increase the complexity of
the algorithm dramatically. On the other hand, the iterative
algorithm [2] has the same approximate problem (14), but
a fixed stepsize 7' = 1/K is used. The exact line search
performs better than the fixed stepsize because, by definition,
the former returns the largest increase in the objective function.

Simulations. We set the parameters as follows: the number
of users is K =20 and 100. The number of transmit antennas
at the base station is 5 and the number of receive antennas of
each user is 4. The power constraint is P = 10.

We compare the proposed algorithm with the iterative
algorithm proposed in [2] in Fig. 1, where the sum-rate versus

13)

(14)

BQ' £
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Fig. 1. MIMO BC: sum-rate versus the number of iterations.

the number of iterations is achieved. It is easy to see that
the proposed algorithm converges very fast (in less than 10
iterations) to the sum capacity, while [2] requires many more
iterations when K = 20 and it does not even converge in
a reasonable number of iterations when K = 100. This is
because the exact line search yields the largest increase in the
objective function in each iteration while the fixed stepsize
tends to be overly conservative. Employing the exact line
search adds complexity as compared to the simple choice
of a fixed stepsize, however, since the objective function is
convex, the exact line search can be implemented efficiently
using the bisection method and the additional complexity is
usually affordable. Specifically, it takes 0.0023 seconds to
solve (14) and 0.0018 seconds to perform the exact line search
(the software/hardware environment is specified in [10]), but
the saving in the number of iterations is more than enough to
compensate the loss incurred by the exact line search.

We also compare in Fig. 2 the proposed algorithm with
the iterative algorithm [6], where the approximate problem is
(14) but with an additional quadratic regularization term, cf.
(12), where 7, = 1075 for all k. Besides, the stepsizes used
in [6] are decreasing stepsizes v'™! = ~!(1 — dy') where
d € (0,1) controls how fast the stepsize decreases. We see
from Fig. 2 that the convergence behavior of [6] is quite
sensitive to the stepsize decreasing rate d. The convergence
speed is slow when the decreasing rate is either too large
(d = 0.5) or too small (d = 0.001). The choice d = 0.01
works well for this case, but a good decreasing rate is usually
dependent on problem parameters and no general rule is
equally good for all choices of parameters. Besides, it is more
computationally consuming to solve (14) in the presence of an
additional quadratic regularization term. Specifically, it takes
CVX (version 2.0 [12]) 21.1785 seconds (based on the dual
approach (16) while A* is found by bisection). Therefore, the
overall complexity per iteration of the proposed algorithm is
much lower than that of [6].

V. CONCLUDING REMARKS

In this paper, we have proposed a new iterative algorithm
based on successive convex approximation. The only require-
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Fig. 2. MIMO BC: error e(Q!) £ (BQ! — Qt, Vf(Q!)) versus the
number of iterations.

ment on the approximate function is that it is pseudo-convex.
On one hand, the relaxation on the assumptions of the ap-
proximate functions can make the approximate problems much
easier to solve. On another hand, the stepsize is selected based
on the exact/successive line search method so that notable
progress is achieved. Additional structures can be exploited
to assist with the selection of the stepsize. The advantages
of the proposed algorithm have been demonstrated using the
example of the sum-rate maximization problem in the MIMO
BC, and they are finally consolidated by numerical results.
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