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Abstract—Safety-critical real-time systems, including real-time
cyber-physical and industrial control systems, need not be solely
correct but also timely. Untimely (stale) results may have severe
consequences that could render the control system’s behaviour
hazardous to the physical world. To ensure predictability and
timeliness, developers follow a rigorous process, which essentially
ensures real-time properties a priori, in all but the most unlikely
combinations of circumstances. However, we have seen the
complexity of both real-time applications, and the environments
they run on, increase. If this is matched with the also increasing
sophistication of attacks mounted to RTES systems, the case for
ensuring both safety and security through aprioristic predictabil-
ity loses traction, and presents an opportunity, which we take
in this paper, for discussing current practices of critical real-
time system design. To this end, with a slant on low-level task
scheduling, we first investigate the challenges and opportunities
for anticipating successful attacks on real-time systems. Then,
we propose ways for adapting traditional fault- and intrusion-
tolerant mechanisms to tolerate such hazards. We found that
tasks which typically execute as analyzed under accidental faults,
may exhibit fundamentally different behavior when compromised
by malicious attacks, even with interference enforcement in place.

I. INTRODUCTION

In the past, real-time systems were closed and, de-
spite telemetry, largely disconnected. They executed simple,
controller-like tasks that read sensor inputs, feed them into a
model of the controlled plant, and produce appropriate actuator
signals for maintaining safe and energy-efficient operation.
Simplicity brought predictability and hence safety in all but
the most rare circumstances. Safety violations, including late
control decisions, are only tolerated if it can be shown that
either their likelihood of occurrence is sufficiently low to
practically never occur over the lifetime of the fleet or if
their consequences are marginal. In particular, safety assurance
criteria demand replication only if the above properties could
not be achieved with singular systems, but not as precaution
against attacks.

Unfortunately, the coverage of the assumed level of safety
behind the above classical, accidental fault-prevention driven
development process, degrades when one assumes malicious
(and thus intentional) faults. Firstly, because these faults are no
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longer stochastic, and in consequence, a hazard is much less a
residual probability (of some defect being activated), and much
more a likelihood, once a defect known, and accessible to an
attacker. Secondly, because both these two latter conditions
have “improved” over the later years: vulnerability diagnostic
tools have improved, and highly-skilled adversaries target
these systems, as parts of critical information infrastructures.

It can reasonably be argued that such attacks were in-
feasible in the past, e.g., due to a simplicity-enforced lack
of exploitable vulnerabilities, and/or to limited connectivity
of real-time systems. However, the same cannot be said
about current critical application scenarios, autonomous or
cooperative driving, for instance, being a blatant example. In
fact, we have recently elaborated on the threat surface of the
cooperative-driving ecosystem [1], revealing what we call the
safety-security gap:

Vulnerabilities rarely triggered through combinations of
natural events may well cause serious harm when exploited
by adversarial teams.

Having said this, two important factors single out critical
real-time applications from general IT ones. First, both the at-
tack and the necessary defense are dictated by the environment
dynamics, making the slow and imprecise human-in-the-loop
approach to current IT security, infeasible, or ineffective at
best. Second, Cyber-physical Systems (CPS) may cause severe
impact upon failure, both to humans or to resources. Rather
than discharging threats with “unlikelihood” arguments, we
believe it is time to meet them with paradigms that can come
to exhibit a power and an effectiveness commensurate to the
adversarial power we begin to witness.

It seems intuitive that the decreased coverage of the level
of safety, which we have discussed earlier, could be regained,
if systems, albeit in the presence of defects and other faults
that may now be explored by attacks — with considerable
reachability and likelihood of activation — could still achieve
a similar level of failure avoidance as in the past, through
automatic means. Fault tolerance as a general predicate seems
to have been performing up to the task, in the scope of
accidental faults. Now, we would need both fault and intrusion
tolerance.

Fortunately, the fault and intrusion tolerance body of knowl-
edge (commonly called BFT, for ‘Byzantine Fault Tolerance’)
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has had a dramatic development, and already gives us a few
preliminary solutions and insights to mitigate these threats in
an automatic way, at least if the system at hand is not real-
time. Replication and voting mask the actions of a minority of
compromised replicas behind a majority of healthy replicas,
reaching consensus [2]. Reactive rejuvenation of known or
suspected compromised replicas and occasional proactive re-
juvenation counteract exhausting the set of healthy replicas and
defy stealthy adversaries and detection flaws [3]. Rejuvenation
is of particular importance if adversaries persist in their attack
with the goal to eventually exceed the tolerance threshold of up
to f compromised replicas. Last but not least, diversification
ensures that adversaries cannot benefit from knowledge gained
during previous attack runs [4].

However, most of this research is concerned with asyn-
chronous or partially synchronous systems, and further re-
search is required on the extension of the paradigm to encom-
pass real-time behavior. Namely, because the impact of the
behavior of compromised components on system timeliness,
is not well understood. We give a contribution in this position
paper, at the specific level of task and component scheduling.
We argue that intrusion tolerance mechanisms, despite their
proven guarantees for facing attacks, lose their effectiveness
if applied without a good understanding of the interaction
between system tasks and components. To this end, we first
revisit the traditional real-time system development process to
highlight additional complications that arise when a subset of
tasks may have been compromised.

In Section IV , this paper sketches our vision of a real-time
BFT architecture featuring replication of “critical” components
or sub-systems as the key to face faults and compromises
through intrusions. More importantly, it shows in Section III,
that traditional simple replication mechanisms may fall short
of achieving their mission, in real-time systems. The reason
lies in unanticipated interference: due to lower level system
operations, tasks have access to different parts of common
resources, which in case of malicious behaviour allows at-
tackers to sabotage the whole resource. As such, replication,
under contemporary interference analysis, may not yield the
desired fault-/intrusion-tolerance. This paper concretely inves-
tigates such interferences, focusing on memory and cache
interferences in multi-core systems, and highlights pitfalls
of intrusion-agnostic analysis of task behavior deviation. We
identify the challenges when facing the timeliness threats of
compromised tasks, and sketch intrusion tolerance solutions
for partially interfering-controllable resources. To our surprise,
anticipating replication not only for fault but also for intrusion
tolerance, though it complicates system analysis, it also bears
opportunities to actually simplify the resulting scheduling
problem, possibly even leading to more optimistic response
times.

II. THE SAFETY-SECURITY GAP OF THE
COOPERATIVE-VEHICLE ECOSYSTEMS

Lima et al. [1] identified threats to the cooperative-vehicle
ecosystem, concluding that autonomous driving without coop-

eration is doomed to fail in the interim phase where both fully
autonomous and human-controlled vehicles share the road.

For one, while driving, humans base their decisions on a
variety of implicit protocols, interpreting driving styles, eye
contacts, subtle movements and similar indicators as signs
to evade an opposing car or to break aggressively (e.g.,
because the driver observed a scared look in a mother’s face
when chasing her child to prevent him from running onto the
street). Cooperation can partially close this communication gap
through explicit communication, until research incorporates
these implicit protocols.

The second aspect, despite the need for cooperation, lies in
the increased threat surface of autonomous and to a larger ex-
tent also cooperative vehicle ecosystems. Vehicles must defend
against attacks on global V2I, I2] communication infrastruc-
tures [5], [6], against V2V attacks, but also against the classical
in-vehicle communication networks such as CAN [7], [8]
and Flexray [9]. Already today, diagnostics and infotainment
access expose these safety-critical networks, with an often
non-redundant gateway being the last line of defense against
remote attacks.

Vulnerabilities in the software of this gateway, but also in
other components such as the complex scenery detection tasks
required for autonomous driving, put safe operation at risk.
Similarly vulnerable, but more exposed are road-side units and
cloud-based authentication mechanisms which are required in
cooperative scenarios to distinguish authentic from fake events.

In addition to the above cyber attacks, autonomous cars (but
likewise CPS and IoT systems) are also exposed to attacks
against their plant and environment sensing capabilities [10],
[11], a matter which although accidental already took their
first life toll [12]. Sensor fusion and cross-validation amongst
vehicles may be one solution to mitigate this threat. However,
mitigation strategies of this kind heavily rely on reliable V2V
and V2I communication, which is easily blocked through
jamming in current substrates if cyber attacks are accompanied
by physical attacks. In fact, Serageldin et al. [13] show
that jamming becomes over-proportionally effective at higher
DSRC bandwidths, leaving only low bandwidth solutions
tolerant to such attacks.

Clearly, analyses fall short of correctly valuing safety threats
if they anticipate only accidental faults and their likelihood,
but not coordinated attacks to cause these faults. In particular,
natural occurrences of combinations of independent faults are
extremely rare and as such often overlooked or misinterpreted
in terms of risk. However, adversaries in control of the system
may easily trigger such combinations and thereby exploit the
safety-security gap in security-agnostic analyses, a conclusion
which is also shared by Hamad et al. [14] in their attack-tree
based security analysis of automated obstacle avoidance.

III. TIMELINESS THREATS

Clearly, the fundamental prerequisites for meeting the above
challenges include (1) limiting the interference that compro-
mised tasks can have on other tasks, and (2) developing
mechanisms for enforcing these limits in a trustworthy manner.



Otherwise, any compromised task would be able to exceed the
bounds to jeopardize the timeliness of its critical counterparts.

A. Memory Isolation and Cooperative-Scheduling

An intuitive consequence of the need to limit interference
suggests isolation as a key factor for reducing the attack
surfaces inside real-time systems. This implies reducing the
ability of an adversary to compromise further components
once it has successfully compromised one.

Clearly, in systems without sufficient memory protection,
adversarial control may spread from one task to others until
critical system components become compromised.

Common practice of embedded real-time systems today is
to execute code directly from flash images, so one might
argue against code-level compromises. However, examples like
return-oriented programming [15] and similar techniques have
demonstrated how programs can be compromised without al-
tering their code. Also, over-the-air update capabilities demand
for mechanisms to replace pre-installed code. Not to mention
that higher-level tasks of autonomous driving, such as scenery
detection and trajectory planning, exceed today’s on-die flash
capacity and require instruction caches or scratch-pad memory
(i.e., modifiable storage) to keep up with their performance
requirements.

Notice that it is purposeful to enforce strong isolation
between tasks, even if one task produces a result, which
is an essential input to the other. Strongly isolating these
dependent tasks slows down adversaries, who are forced in
that case to attack by either breaking the isolation or through
the communication interfaces between tasks. Moreover, when
we later introduce replication, dependent tasks in a chain may
be replicated separately rather than the whole chain. This way,
each dependent segment benefits from a majority of healthy
replicas in the previous segment.

Now, for the same reasons that we have to disqualify real-
time systems with lack of strong isolation, we must also
disqualify cooperative scheduling and schedulers without time-
slice enforcement. In these systems, tasks are expected to vol-
untarily relinquish control over allocated resources. However,
compromised tasks, deviating from their analyzed behavior,
may never relinquish such resources, thereby falsifying ana-
lyzed resource bounds.

Fortunately, memory isolation and enforced schedules are
already state-of-the-art in many (though evidently, until re-
cently, not all [16]) automotive systems. In particular the lower
control levels run on physically isolated microcontrollers or
on well isolating RTOSs. However, the same care must be
exercised for the complex autonomous driving counterparts,
in particular due to the imminent threat of legacy OS compro-
mises.

B. Resource Bound Analysis

So far, car manufacturers refrained from using modern, su-
perscalar, multicore processors with their innumerous latency
hiding mechanisms. However, the performance demands of
higher autonomy levels [18] and the expected data rates that
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need to be processed for cooperative driving may change
the picture. Let us therefore investigate more closely what
impact a deviation of a compromised task from its analyzed
behavior can have in modern multicore architectures that are
not specifically equipped with QoS mechanisms to ensure
minimal guarantees for critical tasks (e.g., by employing
AMBA 5’s bandwidth-control mechanisms [19]).

Traditionally, resource bound analysis is concerned with
finding the worst-case combination of task execution paths
that lead to the worst-case overall execution time and hence
the maximal interference tasks may have on each other. It is
therefore tempting to subject task groups to such an analysis
and run them with the obtained interference bounds.

When interference bounds can be controlled completely,
following this approach preserves safety even under attack.
However, not all resources, through which tasks may interfere
with others, can be controlled to the required degree. For these
resources, WCET analysis must not only compute the worst-
case combination of execution paths of analyzed tasks, but
also combinations where a subset of tasks execute in the worst
possible pattern.

Compromised tasks may exhibit arbitrary execution patterns
over the resources they can get hold of. That is, given a
statically allocated set of resources R;, a compromised task
T; may access the resources in R; in a pattern that maximizes
interference on other tasks. In systems with dynamic resource
allocation, as they will be required for more demanding
applications, compromised tasks 7; may request further re-
sources, expanding R; to the set of acquirable resources R;"%*,
and then construct a worst-case interference pattern. In this
situation, resource bound analysis has to anticipate arbitrary
execution over the extended set [2{"%*.

1) Caches: Let us exemplify the consequences of this
observation with the example of resource bound analyses for
processor data caches [17].

Caches are near core memories split into multiple pairs of
tag and data RAM (called ways) and equipped with a logic
to transparently resolve cache hitting and missing memory



cacheline accessed when executing as analyzed
4

address space of tasku/ _. accessible when deviating from

| B —“T7>7 | analyzed behavior
virtual address” cache
<: virtual pageno. | ofs. | tag data
Mmu( —
>3 frameno. | | ofs. | [ —
tag ] idx -
QSl'Ienforceable co,ldf/ bits- ~ regions mapped to

- same line

5 I i B R I D R

Fig. 2. OS controllable cache colors. Although only cachline-size regions of
the same color collide in the cache, OS interference control is limited to those
index bits that range into the frame number. Interference by compromized
applications can therefore be much higher than when behaving as analyzed.

accesses. Extracting from the accessed address the lower most
bits after the cacheline offset (i.e., the index), the cache
logic determines the row in all ways and compares the tag
RAM against the remaining higher order bits (the tag) to
determine hits (exactly one match) or misses (no match). Since
replacement is only among cachelines of the same row, it is
possible to color memory locations by the rows in which they
will be inserted in the cache. The bottom part of Figure 2
illustrates this coloring and the split of the physical address
into tag, index and offset. Given cl large cachelines and an
associativity (no. of ways) a, a cache of size s =n-a - cl has
n colors.

Processors come with multiple levels of caches, some sep-
arately caching code and data, others both at the same time.
Lower levels (e.g. L1) are typically private (i.e., exclusively
used by a single core) while later levels (e.g. L2) act as victim
caches to keep evicted cachelines from L1 or as possibly
inclusive shared caches for all cores on the same die (e.g.,
L3). Inclusive means data cached in lower level caches is also
cached in L3 and if evicted in the latter, must also leave the
lower levels. Write-through caches update lower cache levels
and RAM immediately, write-back defers these updates and,
in case of L2 victim caches also the cacheline allocation, to
the time of eviction.

Figure 1 shows the building blocks of a worst-case exe-
cution time (WCET) pipeline. Starting from the executable
binary, the control flow graph and loop bounds are extracted,
which are then fed into a further value analysis for determining
address ranges for all accessed variables and other memory
objects. With these ranges, a micro-architectural analysis is
invoked, which includes a cache analysis. The cache analysis
itself proceeds by abstractly tracking the locations that may
and must hit in the cache along the replacement policy (e.g.,
sorted by age in case of least-recently-used (LRU) replace-
ment) and by merging the abstract states at control-flow join
points.

Figure 3 shows this merging for a 4-way set associative LRU
cache after executing the following code from empty caches:

d = 0;

it (a>0) {b=1;¢c=2;}

else { d =1; e = 2; }

Assuming all variables are in cachelines of the same color, d
and a must hit in the cache with age 4 and 3, respectively
(maximum age to conservatively bound cache hits), while c, e
may hit with age 1, d, b with age 2 and a with age 3 (minimum
age to conservatively bound cache misses, potential write
backs, and cross core evictions due to L3 cache inclusiveness).

2) Cache analysis under attack: From the above observa-
tion, it is tempting to extract the interference pattern of a
task from the addresses it accesses and to compute from this
cache related preemption delays (see e.g., [20]) and similar
interference bounds. Assume for example two tasks 77 and
7o whereby the scheduler executes both tasks on the same
core while allowing 75 to preempt each job of 7; once. If 7
accesses at most two cachelines of a particular color, the worst
case interference that may happen to 7;’s memory accesses of
this color are two evictions plus the write-back of two possibly
dirty lines (see right part of Fig. 3).

The same scenario when executing 75 on a different core of
the same die and with an inclusive last-level cache effectively
reduces to two the ways available to 7 for this color. This is
because T, may repeatedly access the two cachelines to evict
the memory cached by 7. Of course, further analysis of 7’s
access pattern allows exploiting more fine grain interleavings,
e.g., allowing 7; a number of subsequent accesses in between
any two of 7»’s accesses.

Unfortunately, the operating system (OS) can enforce cache
colors only at the granularity of the smallest page size [21]
when allocating page frames for an application and only at
the cost of having to support paging, a feature necessarily
required by more resource demanding applications, but, due to
predictability concerns, rarely supported in real-time operating
systems (RTOSs) [22]. This lack of control stems from paging,
which allows the OS to define only those index bits that are
part of the page number (i.e., above the page offset). Assume
ps = k - cl holds for the size of the smallest page ps. Then,
because k cachelines fit this page, the number of enforceable
colors is reduced to n/k (e.g., yellow and green in Fig. 2).

Rephrasing the above statement slightly differently, a task 7;
analyzed to access memory in the sequence of colors S¢ may
exhibit arbitrary sequences S} of colors ¢ when compromised,
where c agrees with a color in S in the index bits above the
page offset. In particular, compromised 7; may access memory
that it did not access when executing as analyzed.

Although not yet quantified in adversarial settings, the
comprehensive benchmarks in [23]-[25] give a first indica-
tion on the impact that compromised tasks can have when
executing outside analyzed behavior, in particular when inter-
fering through shared implicit last-level caches. In addition,
these works suggest hardware and software-level solutions to
partially mitigate cross-core interference though shared caches.
For example, Kim et al. [24] introduces hardware way- and set-
partitioning mechanisms in A/ C? for last-level caches (LLCs),
Kenna et al. [23] discuss page coloring for LLCs and Mancuso
et al. [25] introduce colored lockdown.
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Kriiger et al. [26] work on counteracting these threats
through schedule randomization by probabilistically increasing
the distance between attacking and attacked tasks.

3) Memory, Busses and Pipelines: Coloring not only ap-
plies to caches, but extends also down to memory banks for
limiting DRAM refresh interferrence. However, like caches,
color-based control over DRAM banks only overapproximates
the banks that compromised tasks may access, which lets us
expect a similar discrepancy between analyzed and compro-
mised behavior.

Yun et al. [27] introduce a performance-counter based
framework to enforce memory bus bandwidths. However,
again, counters only have throttling capabilities, hence they
may not change access patterns at finer granularity. In partic-
ular buses like the CPU / GPU interconnects, which allow
bursts, may therefore exhibit large discrepancies between
analyzed and compromised behavior.

Last but not least, most of the above arguments implicitly
assumed a timing-anomaly free pipeline to enable the above
analyses in the first place. Modern out-of-order, speculative
and superscalar pipelines, as required for more demanding
tasks such as scenery analysis, defy to a large extent pre-
dictability and can, through careful exploits, be turned into
time consuming monsters.

IV. TOWARDS AN INTRUSION TOLERANT ARCHITECTURE

Observing the possibly devastating effect compromised
tasks can have on timeliness, leave alone correctness, we
sketch in this section possible architectures to tolerate intru-
sions. Our focus is thereby on correctness matters, leaving
timeliness opportunities from replication for the next section.

Figure 4 shows a birds eye view on our envisaged fault
and intrusion tolerant real-time architecture. Exemplified are
two complex tasks 71 and 7 controlling the plant, which may
be the controlled physical system or another system of the
same structure with lower-level control tasks. For example, for
drones [28], a common architectural pattern is to couple the
rotors and elevators with a flight stabilizing controller which

actuator

sensors

Fig. 4. Intrusion Tolerant Architecture for Complex Safety-Critical Real-Time
Systems

in turn receives signals from a more powerful, decoupled
system running more complex tasks such as flight planning
and autonomous landing.

A. Isolation

In Section III-A, we have already seen the essential need
for memory isolation to slow down adversaries. Candidates
for this isolation layer are real-time microkernels [29]-[31]
but but also hardware solutions are imaginable where replicas
run on dedicated soft cores or on hard cores in ASICs. The
remaining ingredients, which we discuss in the following, are
voting, sensor fusion, fall-back to simplex actuator control and
rejuvenation and diversification of replicas.

B. Replication and Voting

Tolerating complexity-induced vulnerabilities demands
replicating 71 and 72 such that up to f of their replicas can be
compromised. The remaining replicas should continue to reach
consensus on the values that replicas read from the replicated
sensors, on the inputs they receive from 7; and on the outputs
7o forwards to the plant actuators. Unfortunately, classical BFT
consensus protocols, such as PBFT [2] or derived hybrid proto-
cols [32], [33], operate on an asynchronous (i.e., time agnostic)
system model. Applying them in a synchronous system setting
is not trivial, despite bounded message transmission times and
bounded execution times, as simply summing up the bounds
through all protocol steps easily leads to intolerable worst case
execution times.

For example, PBFT, MinBFT and CheapBFT achieve con-
sensus by a leader proposing the next client request to vote
on. However, in the presence of a faulty leader, this causes
downtimes until the remaining replicas agree on a new leader.
Leaderless protocols avoid this complication, however, they
generally require more replicas. For example, PBFT requires
n = 3f + 1 replicas to tolerate up to f faults. Hybrid
protocols reduce this number to 2 f+1 respectively f+1 active
plus f passive replicas. Leaderless protocols require 5f + 1
replicas (or introduce further complexities [34] to maintain
n = 3f +1). An exception to this rule is BFT-TO by Correia
et al. [35]. building on top of a trusted ordering wormhole,
leaderless BFT-TO requires only 2f + 1 replicas. If leader-
based protocols are used in real-time systems, leader change
must be bounded and anticipated in the schedule.



Fortunately, most real-time tasks are triggered by the
physical system triggering events such as alarms or timers.
Reliable invocation of replicas may therefore avoid voting
in different orders. However still, faulty replicas (including
sensors) may lie about their values and in particular they
can lie differently to different client replicas. These incon-
sistent faults (also called ‘equivocation’) are prototypical of
the Byzantine fault phenomenon, and are avoided by either
extended number of players and rounds of communication,
or through cryptographic means such as signing messages for
authenticity and unforgeability. Hybrid protocols make use of
trustworthy sequencers (e.g., monotonic counters) which apply
cryptographic means to ensure that only a single vote can be
given for a single instance. However, naturally, cryptograpy
means come at non-negligible costs, which are not tolerable
in low latency real-time systems.

To avoid these costs, we instead propose to exploit the tight
coupling between components and to introduce hybrid com-
ponents that capture sensor and task values in a manner that
prevents overwriting during the same instance. For sensors,
capture/compare units suggest themselves as they also capture
the timing of the sampled event, thereby preventing mixing of
too time distant reads, provided of course the timing source
is trustworthy. OS controlled FIFO buffers and synchronous
IPC [30] achieve the same for intra task communication.

C. Sensor Fusion

Marzullo [36] shows that 3 f + 1 interval-type sensor values
are required to agree on an interval that contains the true
value, Schmid and Schossmaier [37] refine this result to
Lipschitz continuous intervals (i.e., small changes in the pro-
posed intervals lead only to small changes in the agreed upon
result), and Rushby proved correct both results in the theorem
prover PVS [38]. The continuous nature of the controlled plant
allows intra-task communication of largely diverse replicas to
operate in a similar manner, provided tasks can project the
intermediate results onto the control points of the other. The
consequences of course are that voting is no longer on identical
values but on semantically equivalent, yet possibly different
control commands.

D. Simplex and Actuators

Even though replication and voting reduce dependability
from a single instance to a majority of assumed healthy repli-
cas operating in consensus, a residual risk of common mode
failures remains, in particular if replicas exceed a certain size
and complexity. Common mode failures are caused by sys-
tematic vulnerabilities in all replicas. They allow adversaries
to exceed the tolerance threshold f, which BFT protocols
require to maintain safe operation. It is therefore also crucial
to explore simplistic fail-safes that reinstantiate safety in the
rare situations when consensus-reaching values are wrong.

Bak et al. [39] and Verissimo et al. [40] propose hybrid
architectures wherein a simple controller monitors and returns
the system to a stable state if more complex controllers fail to
provide correct and timely results.

Fig. 5. Stochastic independent scheduling of dependent replicated tasks.
Shown are two tasks (blue - left) and (orange - right) with clearly dependent
execution times: an input of b leads to longer execution times in all replicas.
However, they complete for input a in one of the patterns shown on the right
with probability 1/6. In case all replicas respond correctly, the vertical bars
indicate majority completion time.

E. Rejuvenation and Diversification

Diversification and rejuvenation are essential ingredients for
maintaining a majority of healthy replicas and for reducing
the threat of common mode failures. Diversification prevents
adversaries from accumulating knowledge how to attack the
system, as long as all replicas are rejuvenated periodically
and faster than adversaries can compromise more than f
replicas [3]. Rejuvenated replicas are down and must be
compensated by additional replicas. The combination of the
above requirements means diversification must be automatic
(e.g., through obfuscating compilation [41]) and the real-time
system needs access to a continuous stream of such diverse
replicas. That is, they must either receive a continuous flow
of updates from infrastructure components or must perform
the compliation online in the same system. The flow/compi-
lation task is thereby weakly real-time with an attacker speed
determined periodicy, which means n new updates must be
produced within this period or the fail safe must kick in (and
possibly disrupt system continuity).

F. Actuators

Las but not least, when it comes to the actuation of the
physical plant, agreement must be reached which control
signal is applied to the plant. In the absence of consensus, this
means actuators must fall back to the fail-safe while discarding
the diverging replica decisions. Replication agnostic actuators
must be driven by a trusted-trustworthy component condensing
the multitude of proposed values.

V. TIMELINESS CHALLENGES AND OPPORTUNITIES

The correctness challenges of the previous section also
imply timeliness challenges. For example, all local downtimes
and recovery mechanisms must be bounded and scheduled to
guarantee (weak) timeliness of all tasks. In particular, WCET
bound preserving or at least WCET bound providing compila-
tion of diverse replicas is a challenging task that has yet to be
solved. Many other questions remain open, as pointed by our
reviewers: How to prove classical replication techniques to not
cause interference themselves? How can sensor fusion assist in
detecting interference in modern multicore architectures? How
can that interference be incorporated in the system so that it
can be tolerated? And how can rejuvenation and stochastic



scheduling be deployed safely without becoming a major
source of interference? However, replication also brings some
opportunities to simplify the WCET analysis and scheduling
problem.

For example, in a multicore system, the same non-replicated
schedule can be reused when critical components are repli-
cated. Rather than allocating replicas to fixed cores (e.g.,
replica r; to core 7) it may be more beneficial to randomize this
allocation in order to exploit the stochastic independence of
replicas of the same task, even if tasks are dependent. Consider
the example in Figure 5 with two replicated tasks 7; and 7o,
which are I/O dependent as illustrated in Figure 4. Even though
the output of 77 influences the execution performed in 7o,
different replicas have different execution times for producing
this output (in the replicas 74 of 71) and for consuming this
output (in the replicas 73 of 7). Randomizing the allocation of
3 relative to ¢ leads to a distribution of combined execution
times for this input/output pair of which, as it is common
for replicated settings, only a correct majority of 2f + 1
(respectively f 4+ 1) replicas must reach agreement before the
task’s deadline D;. The other replicas need only to complete
by T; (i.e., T; — D, time units later for deadline constrained
tasks) or not at all if the task itself is stateless.
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VII. CONCLUSIONS

Revisiting the threat surface of safety-critical real-time
systems, we have identified several challenges but also oppor-
tunities, for applying fault and intrusion tolerance techniques,
which not only mitigate accidental faults but also protect the
system against targeted attacks, and do both in an automatic,
unattended way. We analyzed the situation at the specific
level of task and component scheduling, and studied problems
arising when malicious fault and intrusion tolerance must
take a timeliness and scheduling perspective into account.
Major challenges and hence directions for future work include
limited interference controls when tasks deviate from analyzed
behavior, definition of safe fail stops to compensate common
mode failures in complex replicated tasks, and analysis aware
obfuscating compilation.
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