
WEAKLY INSCRIBED POLYHEDRA

HAO CHEN AND JEAN-MARC SCHLENKER

Abstract. Motivated by an old question of Steiner, we study convex polyhedra in RP3 with all
their vertices on a sphere, but the polyhedra themselves do not lie on one side the sphere. We

give an explicit combinatorial description of the possible combinatorics of such polyhedra.

The proof uses a natural extension of the 3-dimensional hyperbolic space by the de Sitter
space. Polyhedra with their vertices on the sphere are interpreted as ideal polyhedra in this

extended space. We characterize the possible dihedral angles of those ideal polyhedra, as well as

the geometric structures induced on their boundaries, which is composed of hyperbolic and de
Sitter regions glued along their ideal boundaries.
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1. Introduction

In 1832, Steiner [Ste32, Problem 77] asked the following questions1: Does every polyhedron
have a combinatorially equivalent realization that is inscribed to a sphere, or to another quadratic
surface? If not, which polyhedra have such realizations? In this paper, a polyhedron in R3 refers to
the bounded intersection of finitely many half-spaces or, equivalently, the convex hull of a finitely
many points. Given a surface S, a polyhedron P is inscribed to S if all the vertices of P lie on S.
We say that a polyhedron is inscribable to S if it has a combinatorially equivalent realization with
all its vertices on S.

We use the preposition “to” rather than “in” to make it clear that we do not require that the
polyhedron is on one side of S. This is not required in Steiner’s definition, either. In fact, since
Steiner’s problem is obviously projectively invariant, it is quite natural to consider it in projective
space. It is then possible that a polyhedron with vertices on the sphere does not lie inside the
sphere.

Definition 1.1. In the projective space RP3, a polyhedron P inscribed to a quadric S is strongly
inscribed to S if the interior of P is disjoint from S, or weakly inscribed to S otherwise.

Remark 1.2. Note in the definition above that weakly inscribed polyhedra exclude those that are
strongly inscribed.

Steiner also defined that a polyhedron is circumscribed to a surface if all its facets are tangent
to the surface. We will see that circumscription and inscription are closely related through polarity,
hence we only need to focus on one of them.

Steiner’s problem remained entirely open for nearly a century. There were even beliefs [Brü00]
that every simplicial polyhedron is strongly inscribable in a sphere. The first polyhedra without
any strongly inscribed realization were discovered in 1928 by Steinitz [Ste28]. It was realized much
later that the cube with one vertex truncated cannot be inscribed to any quadric. This follows from
the well-known fact that if seven vertices of a cube lie on a quadric, so does the eighth one [BS08,
Section 3.2]; see [CP17, Example 4.1] for a complete argument.

There are three quadrics in RP3 up to projective transformation: the sphere, the one-sheeted
hyperboloid, and the cylinder. Strong inscriptions to them are essentially characterized in previous
works of Hodgson–Rivin–Smith [HRS92] and Danciger–Maloni–Schlenker [DMS20]. The current
paper answers Steiner’s question for polyhedra weakly inscribed to a sphere.

The projective space RP3 can be seen as a completion of the Euclidean space R3 with a
hyperplane at infinity. If the hyperplane at infinity is disjoint from both the sphere and the
inscribed polyhedron, then the inscription must be strong (see [CP17]). Hence we focus on
the situation where the hyperplane at infinity intersects the sphere, but does not intersect the
polyhedron. The sphere then appears in the Euclidean space as a two-sheeted hyperboloid, and the
weakly inscribed polyhedron has some vertices on one sheet, and other vertices on the other sheet.

Our main result is the following combinatorial characterization of polyhedra weakly inscribed to
a sphere.

Theorem 1.3 (Combinatorial characterization). A 3-connected planar graph Γ = (V,E) is the
1-skeleton of a polyhedron P ⊂ RP3 weakly inscribed to a sphere if and only if

(C1) Γ admits a vertex-disjoint cycle cover consisting of two cycles

and, if we color the edges connecting vertices on the same cycle by red (r), and those connecting
vertices from different cycles by blue (b), then

1The original text in German is

77) Wenn irgend ein convexes Polyëder gegeben ist, lässt sich dann immer (oder in welchen Fällen

nur) irgend ein anderes, welches mit ihm in Hinsicht der Art und der Zusammensetzung der
Grenzflächen übereinstimmt (oder von gleicher Gattung ist), in oder um eine Kugelfläche, oder in
oder um irgend eine andere Fläche zweiten Grades beschreiben (d. h. dass seine Ecken alle in
dieser Fläche liegen oder seine Grenzflächen alle diese Fläche berühren)?
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(C2) there is a cycle visiting all the edges (repetition allowed) along which the edge color has the
pattern
• . . . bbrbbr. . . if the cycle cover contains a 1-cycle, or
• . . . brbr. . . otherwise.

Let us stress again that our definition of weakly inscribed polyhedra excludes those that are
strongly inscribed.

Here, we abuse the terminology, and call a single vertex 1-cycle, and a single edge 2-cycle. We
will see that the two cycles in (C1) correspond to vertices on the two sheets of the hyperboloid,
and the edges are colored blue if they are between the sheets, or red otherwise. If the cycle
cover contains a 1-cycle with a single vertex v, Condition (C2) has a much simpler formulation,
namely that v is connected to every other vertex. We decide to adopt the current formulation for
comparison with the other case.

Theorem 1.3 is remarkable because, unlike the characterization of strongly inscribed polyhe-
dra [HRS92], it does not involve any feasibility problem. Despite some efforts [DS96, Che03], no
characterization as explicit as Theorem 1.3 has been obtained for strong inscription.

In fact, Theorem 1.3 is a consequence of the following linear programming characterization.

Theorem 1.4 (Linear programming characterization). A 3-connected planar graph Γ = (V,E) is
the 1-skeleton of a polyhedron P ⊂ RP3 weakly inscribed to a sphere if and only if

(C1) Γ admits a vertex-disjoint cycle cover consisting of two cycles

and, if we color the edges connecting vertices on the same cycle by red, and those connecting
vertices from different cycles by blue, there is a weight function w : E → R such that

(W1) w > 0 on red edges, and w < 0 on blue edges;
(W2) w sums up to 0 over the edges adjacent to a vertex v, except when v is the only vertex in a

1-cycle, in which case w sums up to −2π over the edges adjacent to v.

Recall that we consider a single vertex as a 1-cycle, and a single edge as a 2-cycle. The feasibility
problem involved here is visibly much simpler than that in [HRS92]. In particular, there is no
inequality on the non-trivial cuts. Recall again that strongly inscribed polyhedra are not weakly
inscribed according to our definition.

In [HRS92], the sphere was seen as the ideal boundary of the projective model of the hyperbolic
space, so that strongly inscribed polyhedra were interpreted as hyperbolic ideal polyhedra. The
characterization is then formulated in terms of hyperbolic exterior dihedral angles. More specifically,
a polyhedron is strongly inscribable in a sphere if and only if one can assign weights (angles) to the
edges subject to a family of equalities and inequalities. Hence strong inscribability in the sphere
can be determined by solving a feasibility problem.

In [DMS20], polyhedra strongly inscribed in a one-sheeted hyperboloid (resp. a cylinder) were
seen as ideal polyhedra in the anti-de Sitter space (resp. the half-pipe space [Dan14, Dan13]).
Dihedral angles of the ideal polyhedra then lead to a linear programming characterization in the
same style of [HRS92].

Remark 1.5. The definition of strong inscription in [DMS20] is slightly stronger than ours. They
require that P ∩ S consists of exactly the vertices of P . The two definitions are equivalent only
when S is the sphere. Otherwise, it is possible that some edges of P are contained in S.

Our proof to Theorem 1.4 follows a similar approach. Given a sphere S ⊂ RP3, its interior (resp.
exterior) is seen as the projective model for the 3-dimensional hyperbolic space H3 (resp. de Sitter
space dS3). In [Sch98, Sch01], H3 and dS3 together make up the hyperbolic-de Sitter space (HS
space for short) which is denoted by HS3. Then a polyhedron P inscribed to S can be considered
as an ideal polyhedron in HS3. We say that P is strongly ideal if the interior of P is contained in
H3, or weakly ideal otherwise.

We will see in Section 8 that Theorem 1.4 follows from Theorem 3.2 below, which describes the
possible dihedral angles of convex polyhedra in HS3. More specifically, the dihedral angles at the
edges of P form a weight function θ satisfying all the conditions of Theorem 1.4 and, additionally,
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that |θ| < π and the sum of θ over the blue edges is bigger than −2π. These additional conditions
are, however, redundant in the linear programming characterization, as we will prove in Section 8.

Rivin [Riv94] also gave another characterization in terms of the metric induced on the boundaries
of ideal hyperbolic polyhedra. More specifically, every complete hyperbolic metric of finite area
on an n-times punctured sphere can be isometrically embedded as the boundary of a n-vertices
polyhedron strongly inscribed to a sphere, viewed as an ideal hyperbolic polyhedron (possibly
degenerate and contained in a plane). Similarly, [DMS20] also characterized polyhedra strongly
inscribed in the one-sheeted hyperboloid in termes the possible induced metrics on the boundary
of ideal polyhedra in the Anti-de Sitter space.

Extending these previous works, we also provide a characterization for the geometric structure
induced on the boundary of a weakly ideal polyhedron in HS3. This geometric structure, as
distinguished from that induced on a strongly ideal polyhedron, contains a de Sitter part; that is,
a part locally modeled on the de Sitter plane. We call this induced data an “HS-structure”, since
it is locally modeled on HS2, a natural extension of the hyperbolic plane by the de Sitter plane.
Relevant definitions in the following statement will be recalled in the next section.

Theorem 1.6 (Metric characterization). Let P be a weakly ideal polyhedron in HS3 with n vertices.
Then the induced HS-structure on ∂P is a complete, maximal HS structure on the punctured sphere,
obtained by gluing copies of H2 to a de Sitter surface along their ideal boundaries by C1 piecewise
projective maps such that, at the “break points” where the maps fail to be projective, the second
derivative has a positive jump. Conversely, each HS structure of this type is induced on a unique
weakly ideal polyhedron in HS3.

Note that both the hyperbolic and de Sitter parts of the metric have a well-defined real
projective structure at infinity, so it is meaningful to ask for a piecewise projective gluing map.
More explanations on the statement of Theorem 1.6 can be found in Section 3.3.

Remark 1.7. For the interest of physics audience, weakly ideal polyhedra can be interpreted as a
description of interactions of “photons” in a 3-dimensional spacetime; see [BBS11]. More specifically,
HS2 models the link of an event in a 3-dimensional space-time. The vertices on different boundary
components of the de Sitter surface in Theorem 1.6, or, combinatorially, on different cycles in
Condition (C1), correspond to incoming and outgoing photons (depending on the direction of
time) involved in an interaction. A special case is the single vertex in a degenerate boundary
component, or, combinatorially, in a 1-cycle, which corresponds to an extreme BTZ-like singularity.

Remark 1.8. The weak inscription, although covered by Steiner’s definition, seemed forgotten and
only revived recently. Schulte [Sch87] considered higher dimensional generalizations of Steiner’s
problem and defined a weaker notion following an idea from [GS87]. However, since he worked
in Euclidean space, his definition coincides with the strong inscription. Padrol and the first
author [CP17] extended Schulte’s definitions into the projective space, and noticed polyhedra
inscribed to the sphere but not strongly inscribable.

The paper is organized as follows. The essential definitions are made in Section 2 in a general
setting. Then we can view polyhedra weakly inscribed to the sphere as ideal polyhedra in HS3. In
Section 3, we announce characterizations for the dihedral angles and induced metrics of weakly
ideal polyhedra in HS3, which are actually reformulations of Theorems 1.4 and 1.6. We also outline
the proof strategy, which is carried out in the following sections. In particular, there are some
technical challenges which were not encountered in the previous works on strong inscription. For
instance, the space of weakly inscribed polyhedra is not simply connected. Finally, in Section 8,
we deduce Theorem 1.3 from the linear programming characterization of dihedral angles.

Acknowledgement
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2. Definitions

We are mainly interested in three dimensional polyhedra. However, the definitions in this section
are more general than strictly necessary, and cover the anti-de Sitter and half-pipe spaces that we
hope to study in a further work. Lower dimensional cases are used as examples.

2.1. The hyperbolic, anti-de Sitter and half-pipe spaces. The projective space RPd is the
set of linear 1-subspaces of Rd+1. An affine chart of RPd is an affine hyperplane H ⊂ Rd+1 which
is identified to the set of linear 1-dimensional subspaces intersecting H. The linear hyperplane
parallel to H is projectivized as the hyperplane at infinity ; linear 1-dimensional subspaces contained
in this hyperplane have no representation in the affine chart H.

Let Rd+1
p,q denotes Rd+1 equipped with an inner product 〈·, ·〉 of signature (p, q), p+ q ≤ d+ 1.

We say that Rd+1
p,q is non-degenerate if p+ q = d+ 1. For convenience, we will assume that

〈x,y〉 :=

p−1∑
i=0

xiyi −
q−1∑
i=0

xd−iyd−i.

For p+ q ≤ d+1, we define Hdp,q = {x ∈ Rd+1
p,q | 〈x,x〉 = −1} and Sdp,q = {x ∈ Rd+1

p,q | 〈x,x〉 = 1}.
Both Hdp,q and Sdp,q are equipped with the metric induced by the inner product. The metrics of

Hdp,q and Sdq,p differ only by a sign.

Here and through out this paper, if a space in Rd+1
p,q is denoted by a blackboard boldface letter,

we use the corresponding simple boldface letter to denote its projectivization in RPdp,q. For example,

Hd
p,q and Sdp,q are the quotient of Hdp,q and Sdp,q by the antipodal map.

Example 2.1.

• Hd := Hd
d,1 is the projective model of the hyperbolic space;

• HPd := Hdd−1,1 is the half-pipe space, see [Dan13];

• AdSd := Hdd−1,2 is the Anti-de Sitter space;

• Sd := Sdd+1,0 is the spherical space;

• dSd := Sdd,1 is the de Sitter space.

We define HSdp,q = {x ∈ Rd+1
p,q | |〈x,x〉| = 1}. It is equipped with a complex-valued “distance”,

which restricts to each connected component as the natural constant curvature metric, and can be
defined in terms of the Hilbert metric of the boundary quadric, see [Sch98]. If p and q are both

non-zero, HSdp,q consists of a copy of Hdp,q and a copy of Sdp,q identified along their ideal boundaries.

Example 2.2.

• HSdd,1 consists of two copies of the hyperbolic space Hd and a copy of the de Sitter space

dSd; we call it the “hyperbolic-de Sitter space”, and simplify the notation to HSd.
• Another situation that concerns us in the future is HSdp,p, 2p ≤ d + 1, consisting of two

copies of Hdp,p differing by the sign of the metric. We denote it by 2Hdp,p. In particular,

HS32,2 = 2AdS3.

• Up to a sign of metric, there are five possible HS2p,q metrics, namely HS23,0(= S2), HS22,1(=

HS2), HS22,0, HS21,1(= 2HP2) and HS21,0.

• Up to a sign of metric, there are three possible HS1p,q metrics. We call a 1-subspace space-,

light- or time-like if it is isometric to HS11,1, HS11,0 or HS12,0 respectively.

In an affine chart of RPdp,q, the boundary ∂HSdp,q := ∂Hd
p,q = ∂Sdp,q appears as a quadric in Rd.

Example 2.3.

• In the affine chart x3 = 1: H3 appears as a unit open ball; HP3 appears as the interior of a
circular cylinder; AdS3 appears as the simply connected side of a one-sheeted hyperboloid.

• In the affine chart x2 = 1: H3 appears as the two components of the complement of a
two-sheeted hyperboloid that do not share a boundary; HP3 appears as two circular cones;
AdS3 appears as the non-simply connected side of a one-sheeted hyperboloid.
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A totally geodesic subspace in HSdp,q is given by a projective subspace L ⊂ RPd. If L is of

codimension k, then the induced metric on L is isometric to HSdp′,q′ for some p′+q′ ≤ d−k and, by

Cauchy’s interlacing theorem, we have 0 ≤ p−p′ ≤ k and 0 ≤ q−q′ ≤ k. If HSdp,q is non-degenerate,
then there are three possible metrics on a totally geodesic hyperplane H (codimension 1). We say

that H is space-, time- or light-like if it is isometric to HSd−1p,q−1, HSd−1p−1,q or HSd−1p−1,q−1, respectively.

Example 2.4. In HSd, a hyperplane H is space-like if it is disjoint from the closure of Hd,
time-like if it intersects Hd, or light-like if it is tangent to the boundary of Hd.

The polar of a set X ∈ Rd+1
p,q is defined by

X∗ = {x : 〈x, y〉 ≤ 0 for all y ∈ X}.

The polar of a subspace L ⊂ Rd+1
p,q is its orthogonal complement, i.e.

L∗ = L⊥ = {x : 〈x, y〉 = 0 for all y ∈ L}.

If HSdp,q is non-degenerate, L ⊂ RPd is isometric to HSkr,s and L⊥ to HSk
′

r′,s′ , then we have
k + k′ = d− 1 and k − r − s = k′ − r′ − s′ = p− r − r′ = q − s− s′. In particular, the polar of a
hyperplane H is a point in Hd

p,q if H is space-like, in Sdq,p if H is time-like, or on ∂HSdp,q if H is
light-like.

2.2. Ideal polyhedra. A set X ⊂ RPd is convex if it is convex in some affine chart H that
contains it. If this is the case, X can be identified to a convex cone K in Rd+1 that is pointed at
the origin and intersects H in a convex set. Then the projectivization of the polar cone K∗ is the
polar of X, denoted again by X∗. Equivalently [dGdV58], X ⊂ RPd is convex if for any two points
p, q ∈ X, exactly one of the two segments joining p and q is contained in X.

Example 2.5.

• Hd is convex;
• AdSd is not convex;
• HPd is convex, but its closure is not.

Two convex sets are consistent if some affine chart contains both of them, or inconsistent
otherwise.

A convex hull of a set X is a minimal convex set containing X. Note that there is usually more
than one convex hull. A convex polyhedron P is a convex hull of finitely many points. A (closed)
face of P is the intersection of P with a supporting hyperplane, i.e. a hyperplane that intersects the
boundary of P but disjoint from the interior of P . The faces of P decompose the boundary ∂P
into a cell complex, giving a face lattice. Two polyhedra are combinatorially equivalent if they
have the same face lattice. The polar P ∗ is combinatorially dual to P , i.e. the face lattice of P ∗ is
obtained from P by reversing the inclusion relations. We recommend the books [Grü03, Zie95] as
general references for polyhedra (or polytopes) theory.

Definition 2.6. A convex polyhedron P ⊂ RPd is ideal to HSdp,q if all its vertices are on the

boundary of HSdp,q. An ideal polyhedron P is strongly ideal if the interior of P is disjoint from

∂HSdp,q, or weakly ideal otherwise.

In the case that P is (strongly) ideal to HSdp,q, we also say that P is (strongly) ideal to Hd
p,q or

to Sdp,q.
A (polyhedral) HS structure of a k-dimensional manifold is a triangulation of the manifold

together with an embedding of each k-simplex into RPkp,q, p+ q ≤ k + 1, such that the simplices,

inheriting the HSkp,q metric, are isometrically identified on their common faces. A convex polyhedron

P ⊂ RPd with n vertices naturally induces an HS structure on the n-times punctured Sd−1 . If P
is ideal to HSdp,q, then this metric is geodesically complete.

In any affine chart, ∂HSdp,q appears as a quadratic surface, and an ideal polyhedron appears
inscribed to this surface.



WEAKLY INSCRIBED POLYHEDRA 7

For Hd, an ideal polyhedron P is strongly ideal if and only if it is consistent with Hd [CP17].
Polyhedra strongly ideal to H3 are then inscribed to a sphere. Their combinatorics was characterized
by Hodgson, Rivin and Smith [HRS92]. Polyhedra strongly ideal to HP3 are inscribed to a
circular cylinder. Polyhedra strongly ideal to AdS3 are inscribed to and contained in a one-
sheeted hyperboloid. Danciger, Maloni and the second author [DMS20] have essentially provided
characterizations of the combinatoric types of these polyhedra.

We will focus on weakly ideal polyhedra, i.e. ideal polyhedra that are not strongly ideal. We
prefer affine charts that contains the polyhedron P ; such an affine charts cannot contain H3, HP3

or AdS3 by the discussion above. Polyhedra weakly ideal to H3 are then inscribed to a two-sheeted
hyperboloid. Polyhedra weakly ideal to HP3 are inscribed to a circular cone. And finally, polyhedra
weakly ideal to AdS3 are inscribed to, but not contained in, a one-sheeted hyperboloid. This covers
all the quadratic surfaces, and characterizing the weakly ideal polyhedra in H3,HP3 and AdS3

would provides a complete answer to Steiner’s problem.

3. Overview

From now on, we will focus on projective polyhedra weakly inscribed to the sphere, which is
equivalent to projective polyhedra weakly ideal to H3, or Euclidean polyhedra inscribed to the
two-sheeted hyperboloid.

Recall that a polyhedron P weakly ideal to H3 is not consistent with H3. Since we prefer affine
charts containing P , H3 would appear, up to a projective transformation, as the set x20+x21−x22 < −1
in such charts. This is projectively equivalent to the Klein model. We use H3

+ and H3
− to denote

the parts of H3 with x2 > 0 and x2 < 0, respectively. Moreover, the boundary ∂H3 appears as a
two-sheeted hyperboloid.

3.1. Ideal polyhedra. For a polyhedron P weakly ideal to H3, let V denotes the set of its vertices;
then V ⊂ ∂H3 by definition. We write V + = V ∩ ∂H3

+ and V − = V ∩ ∂H3
−, and say that P is

(p, q)-ideal if |V +| = p and |V −| = q. P is strongly ideal if p = 0 or q = 0; we only consider weakly
ideal polyhedra, hence p > 0 and q > 0. If p, q > 1, we orient the curves P ∩ ∂H3

± so that they
are homologous on ∂P . We then label the vertices of V + by 1+, . . . , p+, and vertices of V − by
1−, . . . , q−, in the order compatible with the orientation.

Let Pn denote the space of labeled polyhedra with n ≥ 4 vertices that are weakly ideal to H3,
considered up to hyperbolic isometries, and Pp,q denote the space of labeled (p, q)-ideal polyhedra,
p+ q ≥ 4. Then Pn is the disjoint union of Pp,q with p+ q = n. We only need to study connected
components Pp,q, and may assume p ≤ q without loss of generality. We usually distinguish two
cases, namely p < 2 < q and 2 ≤ p ≤ q. Note that we always assume that p ≥ 1 since we only
consider only weakly ideal polyhedra, so p < 2 below always means p = 1.

3.2. Admissible graphs. We define a weighted graph (or simply graph) on a set of vertices V as

a real valued function w defined on the unordered pairs
(|V |

2

)
. The weight wv at a vertex v ∈ V is

defined as the sum
∑
u w(u, v) over all u 6= v.

Unless stated otherwise, the support of w is understood as the set E of edges. We can treat
w as a usual graph with edge weights, and talk about notions such as subgraph, planarity and
connectedness. But we will also take the liberty to include edges of zero weight, as long as it does
not destroy the property in the center of our interest. For example, graphs in this paper are used
to describe the 1-skeleta of polyhedra, i.e. 3-connected planar graphs. Hence whenever convenient,
we will consider maximal planar triangulations. If this is not the case with the support of w, we
just triangulate the non-triangle faces by including edges of zero weight.

The advantage of this unconventional definition is that graphs can be treated as vectors in

R(|V |2 ). Weighted graphs of a fixed combinatorics, together with their subgraphs, then form a linear
subspace. Graphs with a common subgraph correspond to subspaces with nontrivial intersection.
This makes it convenient to talk about neighborhood, convergence, etc. For a fixed polyhedral
combinatorics, our main result implies that the set of weighted graphs form a (|E|−|V |)-dimensional
cell. Weighted graphs of a fixed number of vertices then form a cell complex of dimension 2|V | − 6
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in R(|V |2 ): The maximal cells correspond to triangulated (maximal) planar graphs, and they are
glued along their faces corresponding to common subgraphs.

Consider an edge e of an ideal polyhedron P . Then e is either a geodesic in H3, or a time-like
geodesic in dS3. In both cases, the faces bounded by e expand to half-planes forming a hyperbolic
exterior dihedral angle, denoted by ϑ. We assign to e the HS exterior dihedral angle θ, which
equals ϑ if e ⊂ H3, or −ϑ if e ⊂ dS3. We will refer to θ as exterior angles, dihedral angles, or
simply angles, and should not cause any confusion.

This angle assignment induces a graph on V , also denoted by θ, supported by the edges of P .
We have thus obtained a function Θ that maps an ideal polyhedron P to the graph θ of its angles.
Obviously, Θ(P ) is polyhedral, i.e. 3-connected planar. We will see that, if P is (p, q)-ideal, then

(C1) θ = Θ(P ) admits a vertex-disjoint cycle cover consisting of a p-cycle and a q-cycle

and, if we color the edges connecting vertices on the same cycle by red, and those connecting
vertices from different cycles by blue, then

(A1) 0 < θ < π on red edges, and −π < θ < 0 on blue edges;
(A2) θv =

∑
u θ(u, v) = 0, with the exception when p < 2 < q, in which case θv = −2π at the

only vertex v in a 1-cycle;
(A3) The sum of θ over blue edges is ≤ −2π, and the equality only happens when p < 2 < q.

Definition 3.1. A (p, q)-admissible graph is a weighted polyhedral graph satisfying Condi-
tions (C1) and (A1)–(A3).

Given a (p, q)-admissible graph drawn on the plane, we may orient the p-cycle and the q-cycle
so that they are homologous in the 1-point compactified plane. Then we label the vertices on the
p-cycle by 1+, . . . , p+, and vertices on the q-cycle by 1−, . . . , q−, according to this orientation. Let
Ap,q denote the space of labeled (p, q)-admissible graphs with p + q ≥ 4. We use An, n ≥ 4, to
denote the disjoint union of Ap,q with p+ q = n. Our main Theorem 1.4 is the consequence of the
following theorem:

Theorem 3.2. Θ is a homeomorphism from Pp,q to Ap,q.

Note that Condition (A3) and some inequalities in Condition (A1) are not present in Theo-
rem 1.4. We will see that they are indeed redundant when formulating a feasibility problem.

3.3. Admissible HS structures. Let ∆ denote the function that maps an ideal polyhedron to
its induced HS structure. If P is (p, q)-ideal, it follows from the definition that ∆(P ) is geodesically
complete, and it is maximal in the sense that it does not embed isometrically as a proper subset of
another HS structure.

The part of ∂P in H3 has no interior vertex, hence is isometric to a disjoint union of copies of
H2. In the case 2 ≤ p ≤ q, we use H2

± to denote the copies induced by ∂P ∩H3
±. If p < 2 < q, we

have only H2
− = ∂P ∩H3

−. The part of ∂P in dS3 has no interior vertex, neither, hence ∂P ∩ dS3

is isometric to a complete de Sitter surface.
The intersection of ∂P with a space-like plane in dS3 is a simple polygonal closed space-like

curve in ∂P ∩ dS3. If 2 ≤ p ≤ q, this polygonal curve can be deformed to one of maximal length,
say γ0, which is therefore geodesic in ∂P ∩ dS3. Considered as a polygonal curve in dS3, γ0 is then
E-convex in the sense of [Sch98, Def 7.13], and it follows that its length ` is less than 2π, see [Sch98,
Prop 7.14]. As a consequence, γ0 is the unique simple closed space-like geodesic in ∂P ∩ dS3,
because any other simple closed space-like geodesic would need to cross γ0 at least twice (there is
no de Sitter annulus with space-like, geodesic boundary by the Gauss-Bonnet formula), and two
successive intersection points would be separated by a distance π, leading to a contradiction. We
denote the metric space ∂P ∩ dS3 by dS2` . dS2` has two boundary components, both homeomorphic
to a circle.

If p < 2 < q, then one boundary component of S degenerates to a point. In this case, the metric
space ∂P ∩ dS3 does not contain any closed space-like geodesic, and we denote it by dS20.

Hence ∆(P ) is obtained by gluing one or two copies of H2 to the non-degenerate boundary
components of a de Sitter surface. Let γ± be the map that glues ∂H2

± to ∂dS2` . We will see that
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γ± are C1 piecewise projective maps (CPP maps for short). More specifically, they are projective
except at the vertices of P . The points where the map is not projective are called break points. A
break point is said to be positive (resp. negative) if the jump in the second derivative at this point
is positive (resp. negative). We will see that the break points of γ± are all positive.

Definition 3.3. A (p, q)-admissible HS structure, p+ q ≥ 4, is obtained

In the case p < 2 < q: by gluing a copy of H2 to dS20 along the non-degenerate ideal boundary
by a CPP map with q positive break points.

In the case 2 ≤ p ≤ q: by gluing two copies of H2 to dS2` , 0 < ` < 2π, along the ideal boundaries
through CPP maps with, respectively, p and q positive break points.

In Figure 1 we sketch the situation of p = 2 and q = 3 is sketched in Figure 1.

Figure 1. A sketch of a (2, 3)-admissible HS structure. The dashed segments
indicates the gluing maps, including one that produces dS2` , and two CPP maps
with two and three break points, respectively.

Given a (p, q)-admissible HS structure, we may label the break points in the two boundary
components of S by 1+, . . . , p+ and 1−, . . . , q−, respectively. Let Mp,q denote the space of (p, q)-
ideal HS structures up to isometries. Our main Theorem 1.6 is the consequence of the following
theorem.

Theorem 3.4. ∆ is a homeomorphism from Pp,q to Mp,q.

3.4. Outline of proofs. We will prove that Θ and ∆ are local immersions (Section 6) with images
in Ap,q (Section 4.2) and Mp,q (Section 4.3), respectively. They are then local homeomorphisms
because Pp,q, Ap,q and Mp,q have the same dimension 2(p+ q − 3) (Section 7). Moreover, they
are proper maps (Section 5), hence are covering maps. A difference from the previous works lies in
the fact that Pp,q, Ap,q and Mp,q are not simply connected if 2 ≤ p ≤ q. We will use open covers
and universal covers to conclude that the covering numbers of Θ and ∆ are one (Section 7).

4. Necessity

4.1. Combinatorial conditions. We first verify combinatorial Condition (C1). For this we will
need some lemmata about convex sets in RPd.

Lemma 4.1. Let A and B be two convex sets in RPd. If A and B are consistent, then A ∩ B
consists of at most one connected component. If A and B are inconsistent, then A ∩B consists of
exactly two connected components.

Proof. Consider an affine chart containing A. In this chart, B is either connected, or composed of
two connected components which are both convex. Each of those connected components has an
intersection with A which is either empty or convex. Therefore, the intersection A∩B has at most
two connected components.

If A and B are consistent, we can regard them as convex sets in Euclidean space. Hence they
are either disjoint, or their intersection is convex, hence connected.
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Suppose now that A is disjoint from B. They can then be lifted to disjoint convex subsets A′

and B′ in Sd. By the spherical hyperplane separation theorem, there exists a spherical hyperplane
H ′ ⊂ Sd disjoint from A′ and B′. The projection H from H ′ to RPd is then disjoint from A and
B, and its complement is then an affine chart containing A and B. This shows that A and B are
consistent.

Finally suppose that A and B have a connected intersection, which we call C. Since A and B
are convex, C is then convex. We can then lift A,B and C to subsets A′, B′ and C ′ of Sd, in such a
way that A′ ∩B′ = C ′. We claim that A′ ∩ (−B′) = ∅. Indeed, let x′ ∈ C ′ = A′ ∩B′, and suppose
that there is another point y′ ∈ A′ ∩ (−B′). Let x and y be the projections of x′ and y′ on RPd,
so that x, y ∈ C. Since C is convex, there is a segment, which we denote by [x, y], which connects
x to y in C. We can lift this segment to C ′, so that y lifts to an inverse image y′′ ∈ {y′,−y′} in
C ′. Since y′ ∈ A′, −y′ 6∈ A′, and therefore −y′ 6∈ C ′, and thus y′′ = y′. It follows that y′ ∈ B′, a
contradiction. So A′ ∩ (−B′) = ∅, as claimed.

We can now apply the spherical hyperplane separation theorem: there is a hyperplane H ′ ⊂ Sd
which separates A′ from −B′. The projection H of H ′ to RPd is then disjoint from A and from B,
and the corresponding affine chart contains both A and B.

It follows that if A ∩ B is connected, then A and B are consistent. Therefore, A and B are
consistent if and only if A ∩B is empty or connected. �

If A and B are two inconsistent convex regions in RP2, then ∂A ∩ ∂B consists of at most four
connected components, at most two on the boundary of each connected component of A ∩ B.
Otherwise, either the interior or the closure of A ∩B would consist of more than two connected
components, contradicting the lemma above.

A particular case is when A = H2 and B is a polygon, and their boundaries intersect at the
vertices of B, i.e. B is weakly ideal to HS2. In this case, Lemma 4.1 implies

Corollary 4.2.

• Any convex polygon strongly ideal to HS2 with at least three vertices is disjoint from dS2.
• Any convex polygon ideal to HS2 with at least five vertices is strongly ideal in HS2.
• A weakly ideal convex polygon P has three or four vertices, at most two in each connected

component of ∂P ∩H2.

A dual version of this corollary was proved in [CP17]. Notice that there is only one possibility
for a weakly ideal triangle; see Figure 2.

Figure 2.

Moreover, it is known that every connected component of A ∩B is convex [Tod10].

Lemma 4.3. Let A and B be two inconsistent convex sets in RPd, and C1, C2 be the connected
components of A ∩B. Then ∂Ci ∩ ∂A and ∂Ci ∩ ∂B, i = 1, 2, are all contractible.

Proof. We only need to argue for ∂C2 ∩ ∂B. The other cases follow similarly.
We work in an affine chart containing A; thus it does not contain B. Let p ∈ ∂C1 ∩ ∂B. Then

for any q ∈ ∂C2 ∩ ∂B, the bounded closed segment [pq] is disjoint from the interior of B, hence
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also from the interior of C2. On the other hand, any q′ ∈ ∂C2 \ ∂B (if not empty) is in the interior
of B, hence [pq′] must intersect the interior of C2. In other words, ∂C2 ∩ ∂B is the part of ∂C2

“visible” from p, which must be contractible as C2 is.
The proof for d = 2 is illustrated in Figure 3. �

Figure 3.

We call an (open) face (that is vertex, edge or facet) F of P interior if F ⊂ H3, or exterior if
F ⊂ dS3. For example, every vertex of an ideal polyhedron is interior, and every face of a strongly
ideal polyhedron is interior. An edge of an ideal polyhedron is either interior or exterior. Let I(P )
be the union of interior faces, and E(P ) be the union of exterior faces.

Proposition 4.4 (Condition (C1) and more). Let P be a polyhedron weakly ideal to H3. Then
I(P ) consists of two connected components, both contractible. A component is homeomorphic to a
closed disk if it contains at least three vertices. Vertices in each component induce an outerplanar
graph. Moreover, E(P ) consists of disjoint open segments; there is no exterior facet.

Proof. A triangular facet F that is not interior would be a weakly ideal in span(F ). Hence P has
no exterior facet. The only exterior faces are edges. Then we observe from Figure 2 that, whenever
F is not interior, F ∩ ∂H3 is an arc which is isotopic to the unique interior edge of F . This isotopy
induces a homotopy from ∂P ∩H3 to I(P ). The former is contractible by Lemma 4.3, hence so is
I(P ).

The vertices of P are all on the boundaries of ∂P ∩H3 (and of I(P )). Otherwise, through a

vertex in the interior of ∂P ∩H3, we can find an hyperplane H such that the intersection of H ∩∂P
and H ∩ ∂H3 consists of more than two connected components, contracting Lemma 4.1. Hence
the vertices of each component induce an outerplanar graph. If there are at least three vertices
in this component, the boundary edges form a Hamiltonian cycle (of the induced graph), so the
outerplanar graph is 2-connected. We then conclude that the component of I(P ) is homeomorphic
to a disk. �

This proves the necessity of Condition (C1) since the boundary edges of the 2-connected
outerplanar graphs form a cycle cover consisting of two cycles.

Induction in higher dimensions yields that the union of interior faces consists of two contractible
components, and vertices and edges in each component form a 2-connected graph. However, it
is possible that a component is not homeomorphic to the (d− 1)-ball, as shown in the following
example.

Example 4.5. Consider the eight points [±
√

2,±1, 0, 0], [2(1− ε+ ε2), 0,±(1− ε),±ε], taking all
possible combinations of ±. Their convex hull is a 4-dimensional polyhedron weakly inscribed to
the two-sheeted hyperboloid defined by the equation −x20 + x21 + x22 + x23 = −1. If ε is sufficiently
small, the polyhedron has two interior facets in H4

+, whose intersection is a single edge connecting

[
√

2,±1, 0, 0]. Hence the union of interior faces is not homeomorphic to a 3-ball.

4.2. Angle conditions. We now prove that the conditions in Definition 3.1 are necessarily satisfied
by the graph induced by the angles of a (p, q)-ideal polyhedron..
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Proposition 4.6.
Θ(Pp,q) ⊆ Ap,q.

For that, we need to verify all the conditions defining an admissible graph.
We color interior edges by red, and exterior edges by blue, and prove the angle conditions with

respect to this coloring. In the previous part we have seen that this coloring coincides with the
combinatorial description in Theorem 3.2.

Among the conditions that involve angles, Condition (A1) comes from the definition of angle.
To see Condition (A2) we need the vertex figures.

Recall that a horosphere in Hd based at an ideal point x ∈ ∂Hd is a hypersurface that intersects
orthogonally all the geodesics emerging from x. In the projective model of H3, horospheres appear
as flattened spheres tangent to the hyperbolic boundary. Similarly, a horosphere in dSd based
at x ∈ ∂dSd is a hypersurface that intersects orthogonally all the geodesics emerging from x.
Horospheres in Hd and dSd are paired through polarity: the set in dSd polar to a horosphere in
Hd is a horosphere with the same base point, and vice versa. See Figure 4. In the following, by a
horosphere in HSd, we mean a horosphere in Hd or in dSd.

Figure 4. Horocycles in H2 (red) and in dS2 (blue). The black circles are the
boundaries of HS2.

Now consider an ideal polyhedron P . The vertex figure of P at a vertex v, denoted by P/v, is
the projection of P with respect to v. P/v is therefore a polygon in RP2. A chart is provided by a
horosphere in HS3 based at v. This chart sends v⊥ to the line at infinity, hence does not contain
P/v unless the neighborhood of v in ∂P is contained in H3 or in dS3.

Figure 5. A typical vertex figure.

Figure 5 shows a typical situation of P/v not contained in the horosphere. The vertices of the
polygon P/v correspond to the edges of P adjacent to v. If one walks along the polygon, it can be
arranged (as in Figure 5) that he turns anti-clockwise at the vertices corresponding to red edges,
and clockwise at the vertices corresponding to blue edges. Indeed, the turning direction switches
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when the walker passes through infinity. The turning angles are then the dihedral angles θ at
the corresponding edges, taking anti-clockwise turns as positive, and clockwise turns as negative.
Condition (A2) then follows immediately.

We now verify the last angle condition.

Proposition 4.7 (Condition (A3)). If P is weakly ideal, then Θ(P ) sum up to at least −2π over
the blue edges, and −2π is achieved only when p < 2 < q.

Proof. It is clear from the vertex figure that the sum over blue edges is −2π when p = 1. Hence
we focus on the case 2 ≤ p ≤ q and prove that the sum over blue edges is strictly larger than −2π.

If 2 ≤ p ≤ q, the polar P ∗ of P is a compact polyhedron in dS3. All its faces are light-like
(isotropic). The edges of P ∗ polar to the blue edges of P form a closed space-like polygonal curve
γ, whose vertices are polar to the non-interior facets of P .

The polygonal curve γ is a T -geodesic for the induced HS-structure on P ∗; see [Sch01, Definition
3.4]. It then follows from point C. in [Sch01, Theorem 1.5] that γ has length strictly less than 2π.
The proposition follows by polarity. �

4.3. Metric conditions. We show in this part that the conditions of Theorem 1.6 are necessary.

Theorem 4.8.

∆(Pp,q) ⊆Mp,q.

If P is (p, q)-ideal, we have argued that ∆(P ) consists of one or two copies of H2 and a de Sitter
surface. It remains to verify that the pieces are glued along their ideal boundaries by CPP (C1

piecewise projective) maps with positive break points at the vertices of P . We may focus on the
boundary component of dS2` , ` ≥ 0, consisting of q > 1 vertices of P . Let γ be the map that sends
∂H2 to this boundary.

We can identify ∂H2 to the real projective line RP1. Let v0 < v1 < · · · < vp = v0, in this order,
be the p vertices of P . They divide RP1 into p segments [vi, vi+1]. Each segment corresponds to a
segment of ∂HS2 in the interior of a face triangle weakly ideal to HS2. Hence for each i, 0 ≤ i < p,
the restriction γi = γ|[vi,vi+1] is projective. This proves that γ is piecewise projective.

To study differentiabilities, we will follow the work of Martin [Mar05] on CPP homeomorphisms
of RP1. Note that ∂dS2` is not projectively equivalent to RP1. But our CPP maps are local
homeomorphisms. Hence the definitions and many results from [Mar05] remain valid for our case.

Definition 4.9 ([Mar05]). For x ∈ RP1, let γ←x ∈ PSL(2,R) (resp. γ→x ∈ PSL(2,R)) be the
left (resp. right) germ of a piece-wise projective map γ. The projective transformation Dxγ =
(γ→x )−1 ◦ γ←x is called the shift of γ at x.

Note that in this definition, γ←x and γ→x depend on a local identification of the target with RP1,
but Dxγ = (γ→x )−1 ◦ γ←x does not.

The projective transformations γ←x , γ→x and Dxγ extend uniquely to isometries of HS2. We
abuse the same notations for these extensions. The shift Dxγ measures how much γ fails to be
projective at x. It can be understood as the holonomy of the HS structure along a curve going
around x. The following lemma reveals the relation between the shift and the differentiability of γ.

Lemma 4.10. γ is C1 at x if and only if Dxγ preserves the horocycles based at x.

Proof. The proof of [Mar05, Proposition 2.3] can be used here, word by word, to prove the “only
if”. For the “if” part, assume x = 0. Note that u := D0γ : RP1 → RP1 fixes 0. If (the extension
of) u preserves the horocycles based at 0, it must be of the form u(t) = t/(ct+ 1). Hence u′(0) = 1,
therefore γ is C1. �

Then γ being C1 follows from the following proposition.

Proposition 4.11. For any x ∈ ∂H2, Dxγ preserves the horocycles based at x.

Proof. As a measure of how much γ fails to be projective at x, Dxγ must be trivial except at
vertices of of P . Let v ∈ V + be a vertex of P .
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We first note that in a neighborhood of v, exactly two faces of ∂P , say F← and F→, have
non-empty intersections with ∂H3. This can be seen from the vertex figure P/v. Recall that
vertices (resp. edges) of P/v correspond to edges (resp. faces) of P adjacent to v. In the affine
chart of RP2 provided by a horosphere at v, the tangent plane of ∂H3 at v is sent to infinity, and
intersects P/v in exactly two edges, corresponding to F← and F→. In particular, no vertex of P/v
is at infinity; otherwise such a vertex would correspond to an edge e of P tangent to the quartic
∂H3, and the other end of e can not lie on the same quartic.

Our gluing map γ coincides with γ←v on ∂HS3 ∩ F←, and with γ→v on ∂HS3 ∩ F→.
F← and F→ extend to half-planes bounding a dihedral angle Φ containing P . The boundary of

Φ is isometric to HS2. Let h̃ be a horocycle in HS3 based at v. Then the intersection h = ∂Φ ∩ h̃
give a horocycle in HS2. On the other hand, h′ = ∂P ∩ h̃ give a horocycle in ∂P based at v. In a
neighborhood of v, h′ lies within F← and F→.

We then conclude that, for any horocycle h in HS2, we have h′ = γ←x (h) = γ→x (h), i.e.
Dxγ(h) = h. �

Proposition 4.11 can be interpreted as horocycles “closing up” after going around a vertex. In
Rivin’s characterization of polyhedra strongly inscribed in the sphere, the same phenomenon is
reflected by the shearing coordinates summing up to 0 around each vertex. We can do the same
with a proper definition of shearing coordinates.

Note that three vertices on ∂HS2 determine a unique strongly ideal (hyperbolic) triangle – in
other words, any three distinct points on the boundary circle of HS2 determine a unique triangle
contained in the disk, corresponding here to the hyperbolic plane. Hence for a given ideal HS
structure δ ∈Mp,q, we can replace every triangle in δ, if not already strongly ideal, by the unique
hyperbolic triangle with the same vertices. The result is a hyperbolic structure η (a triangulation
with hyperbolic simplices) of the n-times punctured S2 (not embedded). We define the HS shearing
(or simply shearing) along an edge of δ as the hyperbolic shearing (see [Pen87, Pen12]) along the
corresponding edge of η.

Shearing can be easily read from the vertex figures. First note that the vertex figure of η at a
vertex v can be obtained from that of δ by replacing the segments through infinity by the unique
other segments with the same vertices. For example, Figure 6 is obtained from Figure 5. Let e
be an edge of P adjacent to a vertex v. The shearing along e then equals to the logarithm of the
length ratio of the segments adjacent to e in the vertex figure of η at v.

Figure 6. The vertex figure of the hyperbolic structure corresponding to the
vertex figure of the HS structure shown in Figure 5.

Horocycles in η close up if and only if the hyperbolic shearings sum up to 0 over the edges
adjacent to v. Then we see from the vertex figure that the horocycles in δ also “close up”. And by
definition, the HS shearings of η must also sum up to 0. Different triangulation of δ would yield a
different hyperbolic metric η. But for a fixed triangulation, it is well-known (see [Pen87, Pen12])
that the hyperbolic shearing on the edges of η provide a coordinate system for the hyperbolic
structure. Hence the HS shearing on the edges of δ provide a coordinate system for the ideal HS
metrics.

Now back to the proof of necessity. Proposition 4.11 asserts that the Dxγ are parabolic
transformations for every x ∈ RP1. Consider the projective transformation ux : t 7→ 1/(t − x)
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sending x to infinity. Then the conjugate uxDx(γ)u−1x is a translation of the form t 7→ t+ dx(γ).
We have dx(γ) = 0 at projective points. At break points:

Lemma 4.12. dx(γ) < 0 (resp. > 0) if x is a positive (resp. negative) break points.

Proof. We may assume x = 0, then u0 = 1/t. We already figured that D0(γ) is of the form
D0(γ) : t 7→ t/(ct+ 1). So the conjugate u0D0(γ)u−10 has the form t 7→ t+ c, i.e. d0(γ) = c. On the

other hand, an elementary computation shows that the second derivative d2

dt2 |t=0D0(γ) = −2c. �

In the half-space model of H2, let h be a horocycle based at x. Then dx(γ) < 0 (resp. > 0) if
and only if Dxγ moves points on h in the clockwise (resp. anti-clockwise) direction. We are now
ready to prove that every break point of γ is positive.

Proposition 4.13. dv(γ) < 0 at every vertex v of P .

Proof. We keep the definitions and notations in the proof of Proposition 4.11. We can recover P
by truncating the dihedral angle Φ with planes through v. From the vertex figure, we observe
the effect of a truncation on a horocycle h based at v: it replaces a segment of h with a shorter
one. See Figure 7. Hence Dvγ = (γ→v )−1 ◦ γ←v moves points on h in the clockwise direction, i.e.
dv(γ) < 0. �

Figure 7. Each truncation replaces a horocyclic segment with a shorter one.

Remark 4.14. Lemma 6.5 of [Mar05] asserts that dx(γ) equals the change of length of a well chosen
segment of horocycle based at x. Up to a scaling, this also suffices for us to conclude that dv(γ) < 0.

5. Properness

The following theorem states that the maps Θ and ∆ are proper.

Theorem 5.1. Consider a sequence of polyhedra (Pk)k∈N that exits every compact in Pp,q, then
θk = Θ(Pk) exits every compact in Ap,q and δk = ∆(Pk) exits every compact in Mp,q.

Up to hyperbolic isometries, we may fix three vertices for every polyhedron in (Pk). As ∂H3

is compact, we may assume that vertices of Pk have well defined limits by taking a subsequence.
But the limit of Pk, denoted by P∞, is not a (p, q)-ideal polyhedron, since the sequence exits every
compact.

Hence in the limit, P∞ must fail to be strictly convex at some vertex v. Let P ′∞ be the convex
hull of all the other vertices. There are three possibilities, namely that v is in the relative interior
of a vertex, an edge or a facet of P ′∞. But every straight line intersect a quadratic surface in at
most two points, hence an ideal vertex can not be in the relative interior of an edge. Thus we only
need to consider the remaining two possibilities.

Remark 5.2. For strongly ideal polyhedra, an ideal vertex can not lie in the interior of a facet.
Hence there is only one possibility to consider. See [DMS20].

Proposition 5.3. If some vertices of (Pk)k∈N converge to the same vertex of P∞, then the limit
graph θ∞ violates Condition (A2) or (A3), and some break points in δk merge into a single break
point in the limit metric δ∞.
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Proof. The divergence of the induced metrics follows immediately from the correspondence between
vertices of P and break points in ∆(P ). Hence we will focus on the divergence of the admissible
graphs.

Note that the ideal boundary of H3 can be seen as two copies of H2 identified along their ideal
boundaries. With our choice of affine chart for the projective model, the two copies of H2 appear
as the two sheets of the hyperboloid x20 + x21 − x22 = −1.

The vertex set of each Pk ∈ Pp,q then corresponds to two point sets V +
k and V −k in H2 of

cardinality p and q respectively. They converge to two point sets V +
∞ and V −∞ of cardinality p′ and

q′ respectively, corresponding to the vertices of P∞. If some vertices of (Pk) converges to the same
vertex of P∞, we must have p′ + q′ < p+ q. Up to hyperbolic isometries, we may assume three
fixed vertices shared by all Pk, hence 3 ≤ p′ + q′.

Consequently, the graph Θ(P∞) has at least three vertices, but stricly less vertices than θ∞. In
fact, it is obtained by contracting vertices of θ∞. Recall that θk = Θ(Pk) and their limit θ∞ are

vectors of dimension
(|V |

2

)
=
(
p+q
2

)
.

Assume that a set of vertices S ⊂ V is merged into a vertex of P∞. If S 6= V + or V −, we have
on the one hand ∑

u/∈S,v∈S

θ∞(u, v) = 0.

On the other hand, as the limit of θk, Condition (A2) asserts that∑
u∈V

θ∞(u, v) = 0

for any v ∈ S. Comparing the two sums, we conclude that∑
u,v∈S

θ∞(u, v) = 0.

Now assume that θ∞ is (p, q)-admissible. Since S are vertices on the same polar circle, θ∞(u, v) is
non-negative, hence must be 0, if u, v ∈ S. In other words, S induce an empty graph, contradicting
the fact that vertices in S are consecutive in a cycle.

If S = V + or V −, we must have p > 1. But it is easy to conclude that the sum over negative
weights in θ∞ is −2π, contradicting Condition (A3). �

Proposition 5.4. If a vertex v of Pk converges to a vertex of P∞ that is contained in a unique
supporting plane, then v is an isolated vertex in the limit graph θ∞, and v is not a break point in
the HS structure induced by δ∞.

Proof. Under the assumption of the proposition, every face of P∞ adjacent to v must lie in this
unique supporting plane. Otherwise, the supporting plane of the face would be another supporting
plane containing v. Then the dihedral angles vanish on all the edges incident to v. Since v is in
the interior of a weakly ideal HS triangle, the gluing map is projective at v. �

A special case is of particular importance for us: If ∂Pk converges to a double cover of a plane,
then the limit polyhedron P∞ is equal to RP3. In this case, every vertex is “flat”: θ∞ is identically
0 (empty graph), and δ∞ is the double cover of HS2. We call this polyhedron a flat polyhedron.

Proposition 5.5. If two faces of P∞ intersect in their relative interiors and span a plane, then
P∞ is flat.

Proof. Under the assumption of the proposition, the only plane that avoids the interior of P∞
is the plane spanned by the two intersecting faces. Hence every face admits this plane as the
supporting plane. In other words, every face lies in this plane. �

6. Rigidity

6.1. The infinitesimal Pogorelov map. We recall here the definition of the infinitesimal
Pogorelov map, as well as its key properties. We refer to [Sch98] for the proofs, see in par-
ticular Définition 5.6 and Proposition 5.7 in [Sch98]. Other relevant references are [Fil07, Izm09,
LS00, Sch05].
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With affine charts containing weakly ideal polyhedra, the hyperplane at infinity H∞ is space-like.
Apart from the HS metric and the usual Euclidean metric, the affine charts can also carry the
Minkowski metric. Then the point x0 = H⊥∞ is the “center” of the Minkowski space R2,1. The set
of light-like geodesics passing through x0 is called the light cone at x0, denoted by C(x0).

Let U = RP3 \ H∞ be an affine chart, and ι : U → R2,1 be the projective embedding into
the Minkowski space. The infinitesimal Pogorelov map Υ is then defined as the bundle map
Υ : TU → TR2,1 over the inclusion ι : U ↪→ R2,1 as follows: Υ agrees with dι on Tx0U . For any
x ∈ U \ C(x0), and any vector v ∈ TxU , write v = vr + v⊥, where vr is tangent to the radial
geodesic passing through x0 and x, and v⊥ is orthogonal to this radial geodesic, and define

Υ(v) =

√
‖x̂‖2HS

‖dι(x̂)‖22,1
dι(vr) + dι(v⊥),

where the norm ‖ · ‖HS in the numerator of the first term is the HS metric, the norm ‖ · ‖2,1 in the
denominator is the Minkowski metric and x̂ is the normalized radial vector (so ‖x̂‖22,1 = ±1).

The key property of the infinitesimal Pogorelov map is the following (the proof is an easy
computation in coordinates, that can be adapted from [Fil11, Lemma 3.4]).

Lemma 6.1. Let Z be a vector field on U \ C(x0) ⊂ HS3. Then Z is a Killing vector field if and
only if Υ(Z) (wherever defined) is a Killing vector field for the Minkowski metric on R2,1.

In fact, the lemma implies that the bundle map Υ, which so far has only been defined over
U \ C(x0), has a continuous extension to all of U . The bundle map Υ is called an infinitesimal
Pogorelov map.

Next, the bundle map Ξ : TR2,1 → TR3 over the identity, which simply changes the sign of the
n-th coordinate of a given tangent vector, has the same property: it sends Killing vector fields in
R2,1 to Killing vector fields for the Euclidean metric on R3. Hence the map Π = Ξ ◦Υ is a bundle
map over the inclusion U ↪→ R3 with the following property:

Lemma 6.2. Let Z be a vector field on U ⊂ HS3. Then Z is a Killing vector field if and only if
Π(Z) is a Killing vector field for the Euclidean metric on R3.

The bundle map Π is also called an infinitesimal Pogorelov map, since it is an infinitesimal
version of a remarkable map introduced by Pogorelov [Pog73] to handle rigidity questions in spaces
of constant curvature.

6.2. Rigidity with respect to HS structures. Here, an infinitesimal deformation of P asso-
ciates a vector tangent to ∂H3 to each vertex of P ; the infinitesimal deformation is trivial if it is
the restriction of a global Killing field of HS3.

Proposition 6.3. Let P ∈Pp,q and Ṗ be an infinitesimal deformation of P within Pp,q. If Ṗ

does not change the HS structure ∆(P ) at first order, then Ṗ is trivial.

Proof. As always, we work in an affine chart containing P . Suppose that Ṗ is a non-trivial
infinitesimal deformation of P that does not change, at first order, the HS metric induced on P .
Then the induced HS metric on each facet is constant at first order. Hence for each facet F , there
is a Killing field κF such that the restriction of κF to the vertices of F is equal to the restriction of
Ṗ , and for two facets F and G, κF and κG agree on the common edge of F and G.

Lemma 6.2 shows that κ̄F = Π(κF ) is the restriction of a Killing field of R3, while it is clear
that if F and G share an edge, then κ̄F and κ̄G agree on this edge. Therefore the restriction of κ̄F
to the vertices of P define an isometric first-order Euclidean deformation of P .

However, Alexandrov [Ale05] proved that convex polyhedra in R3 are infinitesimally rigid: any
first-order Euclidean isometric deformation must be the restriction of a global Killing vector field
of R3. So κ̄F must be the restriction of a global Killing vector field κ̄. Lemma 6.2 therefore implies
that κF are the restriction to the faces of P of a global Killing vector field κ = Π−1(κ̄), which
contradicts our hypothesis. �
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6.3. Shape parameters associated to edges. We can identify ∂H3 with the extended complex
plane CP1, then vertices of an ideal polyhedron P can be described by complex numbers. By
subdividing non-triangular facets if necessary, we may assume that facets of P are all triangles. Let
z1z2z3 and z2z1z4 be two facets of P oriented with outward pointing normal vectors. The shape
parameter on the common (oriented) edge z1z2 is the cross ratio

τ = [z1, z2; z3, z4] =
(z1 − z3)(z2 − z4)

(z2 − z3)(z1 − z4)
.

Recall that each triangular facet of P determines a strongly ideal triangles with the same vertices.
The two (oriented) hyperbolic triangles corresponding to z1z2z3 and z2z1z4 form a hyperbolic
dihedral angle at their common edge z1z2. Let φ denote the hyperbolic exterior angle at z1z2.
Then the shape parameter τ has a geometric interpretation: it can be written in the form of
τ = exp(σ + iφ), where σ is the shearing between the two hyperbolic triangles.

The angle φ can be read from the hyperbolic vertex figure (see Section 4.3). If one walks along
the polygonal curve, in the same direction as we specified for reading θ (see Section 3), then φ is
nothing but the turning angle at every vertex, taking anti-clockwise turns as positive, and clockwise
turns as negative.

Let v be a vertex of P , and let τ1, τ2, · · · , τk be the shape parameters associated to the edges of
P adjacent to v, in this cyclic order. The following relations, which holds for strongly inscribed
polyhedra, also holds for the weakly inscribed P .

k∏
i=1

τi = 1,(1)

k∑
j=1

j∏
i=1

τi = 0.(2)

Both equations can be easily understood by considering the hyperbolic vertex figure at v: (1)
follows from the fact that

∑
σi = 0 while

∑
φi is a multiple of 2π. (2) is just saying that the

vertex figure, considered as a polygonal curve in the Euclidean plane, closes up.
The shape parameters determine the local geometry (angle and shearing) at every edge, hence

completely describe the polyhedron. A small perturbation in the shape parameter subject to (1)
and (2) corresponds to a deformation of P into another weakly ideal polyhedron. Indeed, the
convexity is stable under a small perturbation, then (1) and (2) guarantee that the hyperbolic
vertex figures are closed polygonal curves, hence they are vertex figures of a weakly inscribed
polyhedron.

6.4. Rigidity with respect to dihedral angles. We now have the necessary tools to prove the
infinitesimal rigidity of weakly ideal polyhedra with respect to their dihedral angles.

Proposition 6.4. Let P ∈Pp,q and Ṗ be an infinitesimal deformation of P within Pp,q. If Ṗ

does not change the dihedral angles Θ(P ) at first order, then Ṗ is trivial.

Proof. Let Ṗ ∈ Cp+q be an infinitesimal deformation of P , represented by the velocity of the
vertices in CP1. Let τ̇ = (τ̇e)e∈E ∈ C|E| be the corresponding first-order variation of the shape

parameters associated to the edges. Suppose that Ṗ does not change the dihedral angles of P (at
first order). This means that for all e ∈ E, τ̇e/τe is real, because the argument of τe is equal to the
dihedral angle at the corresponding edge.

Now consider the first-order variation iτ̇ = (iτ̇e)e∈E of the shape parameters. A crucial
observation is that, since the conditions (1) and (2) above are polynomial, iτ̇ again corresponds

to a first-order deformation of P , which we can call iṖ . Now for all e ∈ E , iτ̇e/τe is imaginary.

This means that in the first-order deformation iṖ , the shear along the edges remains fixed (at first

order). So iṖ does not change, at first order, the HS-structure induced on P .

By Proposition 6.3, iṖ is trivial, and it follows that the infinitesimal deformation Ṗ is also
trivial. The result follows. �
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7. Topology

7.1. Ideal polyhedra. In this section we will conclude that Θ and ∆ are homeomorphisms. The
first step is to prove that the domain Pp,q is connected.

We work in a projective chart inconsistent with H3, in which ∂H3 is the quadric of equation
x2 = f(x0, x1) = ±

√
x20 + x21 + 1. The following lemma allows us to place any weakly (p, q)-ideal

polyhedron in a convenient position.

Lemma 7.1. For any P ∈Pp,q, there is an isometry T of H3 such that T (P ) contains the origin
and the points (0, 0,±1).

Proof. The proof uses the Hyperplane Separation Theorem for hyperbolic space. We sketch here a
quite standard proof in the spirit of [BV04], as some ingredient in this proof would be useful for us.

Note that H3 ∩ P consists of two disjoint components, denoted by P+ and P−, both are convex
subsets of H3. Let u ∈ P+ and v ∈ P− such that the hyperbolic distance between u and v
achieves the minimum hyperbolic distance between P+ and P−. This distance is necessarily finite,
hence u and v are necessarily on the boundary ∂P . We claim that the hyperbolic plane H that
perpendicularly bisects the segment uv separates P+ and P−, i.e. P± are on different sides of H.
To see this, assume u′ ∈ P+ is on the same side of H as P−. Then a perturbation of u towards u′

would be closer to v, contradicting our choice of u and v.
Now let T be the isometry of H3 that sends the separating plane H to infinity. Then the polar

point of H, which is contained in P , is sent to the origin in the interior of T (P ). Moreover, the line
through u and v is sent to the x2-axis. In particular, the points (0, 0,±1) are also in the interior of
T (P ). �

Proposition 7.2. Pp,q is connected.

Proof. Let P ∈Pp,q. Thanks to the previous lemma, we may assume that P contains the origin
and the points (0, 0,±1). We now define a deformation of P ∈Pp,q.

If v ∈ V±, define vt, t > 1, as follows: vt = v if the x2-coordinate of v is smaller than t; otherwise,
vt is a point of height x2 = ±t obtained by moving v along the gradient of f (for metric induced
on the quadric by the Euclidean metric dx20 + dx21 + dx22 in a chart) towards (0, 0,±1). We claim
that the point set Vt = {vt | v ∈ V+ ∪ V−} remains in convex position for all t > 1. If vt ∈ Vt
is at height x2 = ±t, vt is on the circle x20 + x21 = t2 − 1; the convexity at vt is then immediate.
Otherwise, vt coincides with a vertex v of P , and we claim that a supporting hyperplane Hv of
P at v is also a supporting hyperplane of Pt. This can be seen by noting that, for any u ∈ ∂H3

±
on the same side of Hv as (0, 0,±1), as long as u is sufficiently close to Hv, the gradient of f at
u points away from Hv. Because (0, 0,±1) ∈ P and Hv is supporting, no vertex vt would move
across Hv as t decreases.

Define Pt as the convex hull of Vt. We see that Pt = P for t sufficiently large. As t approaches
1, the vertices of Pt lie, eventually, on two horizontal planes x2 = ±t.

Now assume another polyhedra P ′ ∈ Pp,q, which also contains the origin and the points
(0, 0,±1). For t sufficiently close to 1, both Pt and P ′t have vertices on the horizontal planes
x2 = ±t. Polyhedra with vertices on these two planes form a connected subset of Pp,q; indeed, any
choice of p and q ideal points on these two planes determines uniquely such a polyhedra. Hence we
find a continuous path from between P and P ′, which proves the connectedness of Pp,q. �

Let Pi
p,q denote the open subset of Pp,q consisting of polyhedra with an edge 1+i−. {Pi

p,q |
1 ≤ i ≤ q} form an open cover of Pp,q. During the deformation Pt in the previous proof, we may
rotate V− around the x2-axis so that 1+i− remains an edge. This shows that

Proposition 7.3. Pi
p,q is connected.

7.2. Admissible graphs. Correspondingly, let A i
p,q denote the open subset of Ap,q consisting

of graphs θ with 1+i− as an edge (recall the vertex labeling from Section 2). That is, either
θ(1+i−) < 0, or θ(1+i−) = 0 but the graph remains polyhedral if we include 1+i− as an edge.
Then {A i

p,q | 1 ≤ i ≤ q} form an open cover of Ap,q.
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Proposition 7.4. For 1 ≤ i ≤ q, A i
p,q is homeomorphic to R2(p+q−3).

We treat two cases separately.

Proof for the case p < 2 < q. We may take i = 1 without loss of generality. To construct a graph
θ ∈ A 1

p,q, we first assign positive weights then negative weights.

For the positive weights, our task is to find an outerplanar graph θ+ on the vertices of the
q-cycle with only positive edge weights. For the final result to be an element of A 1

p,q, we need the

support of θ+ to contain the q-cycle, and the sum of the weights of θ+ to be π. This condition on
the sum can be seen by adding up the weight sum of θ around all the vertices of the q-cycle, and
noticing that the edges of θ+ are double counted. Let A + be the set of all θ+ satisfying those
conditions.

Note that θ+ can be embedded in the plane in such a way that the q-cycle is embedded as a
q-gon, and the other edges are embedded as non-crossing diagonals of the q-gon. Let A +

0 denote
the set of positive graphs that are only supported on the q-cycle, and A +

1 the set of positive graphs
that are only supported on non-crossing diagonals. Then any θ+ ∈ A + can be written in the form
θ+ = (1− t)θ+0 + tθ+1 where θ+0 ∈ A0, θ+1 ∈ A1, for some 0 ≤ t < 1 (note the strict inequality!).

It is easy to see that A +
0 is a (q − 1)-dimensional open simplex. Graphs in A +

1 with the
same combinatorics (that is, supported on the same diagonals) also form an open simplex, whose
dimension is the cardinality of their support minus 1. A +

1 is therefore a simplicial complex:
The maximal simplices are of dimension q − 4, corresponding to the maximal set of non-crossing
diagonals, and they are glued along their faces corresponding to common subsets. This simplicial
complex is well-known as the boundary of a polyhedron, namely the associahedron [Lee89].

Therefore, the closure of A + = (1 − t)A +
0 + tA +

1 , 0 ≤ t < 1, is topologically the join of a
(q − 1)-ball and a (q − 4)-sphere, hence homeomorphic to a (2q − 4)-ball. The openness of A +

follows from the openness of A +
0 and the strict inequality t < 1.

Once positive weights are assigned, the negative weights are uniquely determined since p = 1
and all vertices of the q-cycle are connected to only one negatively weighted edge. Hence A i

p,q is

homeomorphic to R2(p+q−3). �

We need more ingredients for the case 2 ≤ p ≤ q.
First, we claim that if a graph θ is admissible, and the negative weights of θ sum up to

−2ω > −2π, then for any 0 < t < π/ω, the scaled graph tθ is also admissible. The claim follows
from the following lemma, which guarantees that Condition (A1) is not violated after the scaling:

Lemma 7.5. Let −2ω > −2π be the sum of negative weights of θ. Then any negative weight of θ
is at least −ω.

Proof. We argue by contradiction and suppose that there is an edge e with negative weight strictly
less than −ω. Let v be an endpoint of e. The sum of the positive weights on the red edges
e1, · · · , ek adjacent to v is at least ω. Let v1, · · · , vk be their endpoints different from v; e is not
adjacent to any of them. Then the sum of the negative weights over the blue edges adjacent to
v1, · · · , vk must be strictly less than −ω. We then conclude that the sum of negative weights is
not −2ω as assumed, but strictly less. �

This lemma also proves the redundancy of Condition (A3) and part of Condition (A1).
Any weight function that satisfy Conditions (W1) and (W2) can be normalized to satisfy
Conditions (A1)–(A3). Hence these conditions are not present in the main Theorem 1.4.

Proof for the case 2 ≤ p ≤ q. We may take i = 1 without loss of generality. Fix a number 0 < ω <
π. We will prove that the set of admissible graphs in A 1

p,q with negative weights summing up to

−2ω is homeomorphic to R2(p+q)−7. To construct such a graph θ, we follow the same strategy as
before. That is, first assign positive weights then negative weights.

For the positive weights, we need to find θ+ that is the disjoint union of two outerplanar graphs,
one on the vertices of the p-cycle, and the other on the vertices of the q-cycle, with only positive
edge weights. Moreover, we need the sum of the weights of each disjoint component to be ω.
Hence each component can be obtained by taking the θ+ constructed for the case p < 2 < q,
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and multiplying its weights by a constant ω/π. The space of such θ+ is then homeomorphic to
R2(p+q−4).

We then propose an algorithm that assigns weights to negative edges and outputs an admissible
graph in A 1

p,q. This algorithm depends on one parameter taken in a segment, hence proves the
proposition.

Recall that vertices are labeled by 1+, . . . , p+ and 1−, . . . , q− respectively, following the boundary
of the outerplanar subgraphs in a compatible direction. Also recall that the weight wv of a vertex v
is the sum of weights θ(u, v) over all other vertices u. The vertex weights change as we update the
edge weights. Before we proceed, the weights are positive on every vertex, because only positive
weights are assigned. Our goal is to cancel them with negative weights. We also keep track of
two indices i and j, initially both 1. At each step, we assign a negative weight to the edge i+j−.
Moreover, the graph will be embedded in S2 throughout the algorithm.

We start with an embedding of θ+ in S2, such that the two outerplanar components are embedded
as two disjoint polygons with non-crossing diagonals. Interiors of the two polygons are declared as
forbidden area: during our construction, no new edge is allowed to intersect this area. In other
words, we are only allowed to draw edges within a belt.

For the first step, we draw a curve connecting 1+ and 1−, to which we are free to assign any
non-positive weight ranging from −min(w1+ , w1−) to 0. We also have the freedom to choose a sign
σ = ±, and increment i if σ = +, increment j if σ = −.

In the following steps, we adopt a greedy strategy. We draw a curve connecting i+ and j−, to
which we assign the weight −min(wi+ , wj−). After this assignment, the face bounded by i+j− and
the previously assigned edge is considered as a forbidden area for later construction: no new edge
is allowed to intersect this area. Then we increment i if wi+ = 0, and increment j if wj− = 0. If
both weights vanish, we increment both indices.

Eventually, we will have i = p+ 1 and j = q + 1, and the weights vanish at all vertices. Then
the algorithm stops. The result is by construction the embedding of a (p, q)-admissible graph.

In this algorithm, being greedy is not only good, but also necessary. Note that the weights
between vertices of smaller indices are already fixed. If we choose any bigger negative weight for
the edge i+j−, then both wi+ and wj− remain positive. They both need to be connected to a
vertex with larger index to cancel the weight. This is however not possible, since neighborhoods of
these vertices have been declared as forbidden area.

The algorithm is parametrized only by the two choices at the first step: a non-positive weight
and a sign. The space of parameters is therefore homeomorphic to a segment. �

We have Θ−1(A i
p,q) ⊆Pi

p,q. Let Θi denote the restriction of Θ on Pi
p,q; it is a covering map

with images in A i
p,q. Since Pi

p,q is connected and A i
p,q simply connected, we conclude that Θi

p,q is
a homeomorphism. This proves that the covering number of Θ is 1, i.e. Θ is a homeomorphism.

7.3. Admissible HS structures. Let H2
` denote the complete, simply connected hyperbolic

surface with one cone singularity of angle `. We extend this notation, and use H2
0 for the hyperbolic

surface with one cusp. A non-degenerate boundary component of dS2` can be identified to the
boundary of H2

` .
Let B be a subset of p points on ∂H2, considered up to isometries of H2. Let GB,` be the space

of CPP maps from ∂H2 to ∂H2
` , 0 < ` < 2π, up to isometries of both H2 and H2

` , with positive
break point set B. We denote by GB the union of GB,` for 0 < ` < 2π, i.e. set of all CPP maps on
∂H2 with positive break point set B, up to isometries.

A horocyclic p-gon is the intersection of p horodisks in H2. Figure 8 shows a horocyclic 3-gon
and a horocyclic 4-gon.

The key observation is the following homeomorphism η from GB to the space of horocyclic
p-gons bounded by horocycles based at B.

Label the elements of B as b1, . . . , bp = b0 in the clockwise order in the disk model. They are
the vertices of an ideal p-gon P ⊂ H2. Consider a map γ ∈ GB,`. It maps P to an ideal p-gon
P ′ ⊂ H2

` with a cone singularity of angle ` in its interior. The vertices of P ′ are γ(bi).
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Figure 8. The horocyclic 3-gon on the left, together with the horocycle h4,
represent a point in ∂GB with B = {b1, b2, b3, b4}. Shrinking h4 truncates the
3-gon into the 4-gon on the right. We also sketch a scaling of the 4-gon, which is
the key in the proof of Proposition 7.10.

We then obtain a horocyclic p-gon η(γ) as follows. Cut P ′ into p triangles by the geodesics from
γ(bi) to s, the cone singularity of H2

` . Then fold each triangle γ(bi)sγ(bi+1) inward, isometrically,
into the triangle bisibi+1 in H2. Let hi be the horocycle based at bi passing through si. Then η(γ)
is the intersection of the horodisks bounded by the hi’s.

Since γ preserves horocycles, si−1 must also lie on hi. Hence the horocyclic segments sisi+1

form a piecewise horocyclic closed curve, denoted by h.

Lemma 7.6. h is embedded as the boundary of η(γ).

Proof. Since bi are positive break points of γ, the triangles bisibi+1 and bi−1si−1bi must overlap;
see Proposition 4.13 and Remark 4.14. In other words, the points bi, si−1 and si are placed on hi
in the clockwise order. See Figure 8 for examples.

For x ∈ ∂H2 and y ∈ H2, we use ξ(x, y) to denote the other ideal end of the geodesic that emerges
from x and passes through y. Define a map g : ∂H2 → ∂H2 such that g−1(bi) = {ξ(bi, y) | y ∈ hi∩h}
and, for some x between bi and bi+1, g−1(x) = ξ(x, si). The map g is continuous and monotone,
and has the property that x /∈ g−1(x), hence its degree must be 1. This proves that h is embedded,
hence the boundary of η(γ). �

Conversely, given a horocyclic polygon bounded by horocycles hi based at bi ∈ B, let si ∈ hi∩hi+1

be its vertices. Then we can glue the triangles bisibi+1 into an ideal p-gon with a cone singularity
of angle `. More specifically, ` is the sum of the angles ∠bisibi+1. This proves that η is a
homeomorphism.

Remark 7.7. It is interesting to note from the horocyclic polygons that ` < 2π. Let s be a point in
the interior of the horocyclic polygon. We then have ∠bisibi+1 < ∠bisbi+1 for all i. Yet the sum of
∠bisbi+1 is equal to 2π.

Proposition 7.8. GB is homeomorphic to R|B|.

Proof. The proof is by induction on the cardinality p = |B|. Up to isometries of H2, we may
consider B fixed.

For p = 2, a horocyclic 2-gon P2 is bounded by two horocycles. It is determined by the position
of an intersection point of the two horocycles. This point can be chosen arbitrarily in H2, proving
the statement for p = 2.
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Now consider a horocyclic (p − 1)-gon Pp−1 bounded by horocycles h1, . . . , hp−1 based at
b1, . . . , bp−1 ∈ B, and let si ∈ hi ∩ hi+1 and sp−1 ∈ hp−1 ∩ h1 denote the vertices of Pp−1. We
now construct a horocyclic p-gon P bounded by horocycles with bases in B. For this, it suffices
to choose a horocycle hp that truncates the vertex sp−1 of Pp−1. This can be done by taking the
horocycle hp at bp passing through sp−1, then shrinking it. On the left of Figure 8 we illustrate a
truncation of a 3-gon into a 4-gon. We can continue to shrink hp until it hits another vertex of
Pp−1.

Hence GB is homeomorphic to GB\{bp} × R, which is R|B| by induction. �

In the following we will consider the closures of GB . The boundary ∂GB consists of three parts,
namely GB,0, GB,2π, and ∂GB,`, 0 < ` < 2π. We now define and describe these spaces.

We use the notation GB,0 for the space of CPP maps from ∂H2 to ∂H2
0, up to isometries of

both H2 and H2
0, with positive break point set B. As before, we can interpret a map γ ∈ Gp,0

as gluing the boundary of an ideal p-gon P ⊂ H2 to the boundary of an ideal p-gon P ′ ⊂ H2
0,

where P ′ contains a cusp s. We triangulate P ′ by connecting its vertices to s, and triangulate P
arbitrarily, and glue them through γ to obtain a triangulation T of the 2-sphere. The shearing
coordinates on the p− 3 interior edges of P are determined by the positions of the break points.
The shearing coordinates on the remaining 2p edges of T are governed by the condition that the
shearing around each vertex of T should sum up to 0. Since T has p+ 1 vertices, we conclude that
GB,0 is homeomorphic to Rp−1 = R|B|−1.

The part ∂GB,`, 0 < ` < 2π, consists of CPP maps from ∂H2 to ∂H2
` up to isometries of both H2

and H2
` , with break point set B′ ⊂ B and marked projective point set B \B′. The homeomorphism

η extends continuously to this boundary. More specifically, let p = |B| and p′ = |B′|. Then for
γ ∈ ∂GB,`, η(γ) is a horocyclic p′-gons P ′ bounded by horocycles with bases in B′, together with
p− p′ additional horocycles with bases in B \B′ “supporting” P ′ (that is, they intersect ∂P ′ but
disjoint from the interior of P ′). The left side of Figure 8 is an example with p = 4 and p′ = 3.

We also abuse the notation Gp,2π for the space of projective homeomorphisms from ∂H2 to itself
up to isometries of H2, with a set of marked points B. In fact, the marking here is superficial;
hence Gp,2π consists of a single element.

Let δi denote the distance from si to the geodesic bibi+1. The hyperbolic triangle formula shows
that αi and δi are related by the formula cosh δi sinαi/2 = 1. We now deform the horocyclic p-gon
by moving every si, simultaneously, along the geodesic perpendicular to bibi+1, to a new position
s′i. The following lemma is the crucial observation for the proof that follows later.

Lemma 7.9. If the deformation is performed in such a way that the ratio cosh δi/ cosh δ′i is the
same for every i, then there is a horocycle h′i passing through every adjacent pair s′i−1 and s′i.

Proof. Let k be the common ratio of cosh δi/ cosh δ′i. We use the half-plane model of H2, and
assume that bi = ∞. The situation is illustrated in Figure 9. Let ψi be the (Euclidean) angle
∠sibi+1bi−1 and ψi−1 be the angle ∠si−1bi−1bi+1. Then for j = i or i − 1, we can calculate the
distances (see for instance [And05, §3.5])

δj = ln |cscψj + cotψj | = arccosh cscψj .

This is particularly convenient because we have cosh δj sinψj = 1. Hence cosh δj/ cosh δ′j = k
implies that sinψj/ sinψ′j = 1/k for every i. In the half-plane model, si and si−1 are moving
along the circles centered at bi+1 and bi−1, respectively, such that their heights are both scaled by
1/k. Therefore, their new positions s′i−1 and s′i are again at the same height, hence on the same
horocycle h′i based at bi =∞. �

This deformation is sketched on the right side of Figure 8. We see from Figure 9 that, by moving
sj ’s outwards the horocyclic polygon, one can multiply cosh(δi) by an arbitrarily large constant.
However, if we move sj ’s inwards the horocyclic polygon, si and si−1 would eventually merge.

Proposition 7.10. GB,`, 0 ≤ ` ≤ 2π, are contractible, and homeomorphic to R|B|−1 if ` < 2π.
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Figure 9. Proof of Lemma 7.9.

Proof. Through any given point γ ∈ GB, the deformation described above defines a continuous
path with monotonically changing cone angle `. We use ` as the parameter and denote this path
by cγ(`). See Figure 10 for an illustration.

To decrease `, one needs to move the vertices outwards the horocyclic polygon. We have seen
that, in this direction, one can travel along cγ(`) until hitting GB,0.

To increase `, one needs to move the vertices inwards the horocyclic polygon. In this direction,
however, the path cγ(`) would in general hit some γ′ ∈ ∂GB,` for some ` < 2π, as shown in Figure 10.
Further movement of the vertices in the same direction would destroy the p-gon. However, we can
continue deforming γ′ as a gluing map in GB′ for some B′ ⊂ B. Hence cγ(`) is extended into the
closure of GB , along which one can increase ` up to 2π; see Figure 10.

This path is uniquely defined through every γ ∈ GB , and two path do not intersect inside GB ;
intersection is only possible on the boundary. For 0 ≤ ` 6= `′ ≤ 2π, let f`,`′ : GB,` → GB,`′ be the
continuous map that sends γ ∈ GB,` to γ′ = cγ(`′) ∈ GB,`′ . Then f`,`′ and f`′,` define a homotopy

equivalence between GB,` and GB,`′ . Consequently, GB,` are all of the same homotopy type. We
have seen that GB,0 and GB,2π are contractible, and so must be GB,` for 0 < ` < 2π.

In general, f`,`′ and f`′,` are not inverse to each other. However, if the path emerging from
γ ∈ GB,` arrives at γ′ = f`,`′(γ) ∈ GB,`′ without hitting the boundary of GB, then one can travel
backwards along the same path. The reversed path defines f`′,`, hence we have f`′,` ◦ f`,`′(γ) =
f`′,`(γ

′) = γ.
This is the case, in particular, when ` > `′ and γ ∈ GB,`. Then f`,`′ defines a homeomorphism

between GB,` and its image f`,`′(GB,`) ⊂ GB,`′ . We finally conclude that GB,`, 0 < ` < 2π, by its

continuity in `, are all homeomorphic to GB,0, thus to R|B|−1. �

It is now clear that GB is foliated by GB,`, 0 < ` < 2π, as illustrated in Figure 10.

Figure 10. The structure of GB showing a path cγ .

An admissible HS structure is obtained by gluing copies of H2 to the ideal boundary components
of dS2` . We now conclude on the topology of Mp,q, and prove Theorem 3.4.
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If p < 2 < q, an element of M1,q can be constructed by first choosing a set of q points B ⊂ ∂H2

up to isometries, and then a gluing map γ ∈ GB,0. For the first step, we may fix three points up to
hyperbolic isometry, hence the space of B is homeomorphic Rq−3. In the second step, we have
seen that GB,0 is homeomorphic to Rq−1. Hence M1,q is homeomorphic to R2q−4 = R2(p+q−3).
Theorem 3.4 follows since both Gp,0 and Pp,0 are contractible.

If 2 ≤ p ≤ q, we first count the dimension. For the gluing map on one boundary of dS`, we
need to choose a set B of p break points, then pick a gluing map from GB . Up to isometries, the
space of this gluing map is of dimension 2p− 3. Similarly, the gluing map on the other boundary
contributes 2q − 3 dimensions. The two gluing maps have the same cone angle, removing one
degree of freedom. But we can also rotate the break points on ∂H2, corresponding to translations
in RP1. This contributes another dimension, hence the dimension of Mp,q is 2(p+ q − 3).

The rotation of ∂H2 generates the non-trivial fundamental group of Mp,q. To prove that the map

∆ is a homeomorphism, we lift it to a map ∆̃ between the universal covers P̃p,q and M̃p,q. A point

in P̃p,q corresponds to a (p, q)-ideal polyhedron equipped with a path (defined up to homotopy)

connecting vertex 1+ and 1−. A point in M̃p,q corresponds to a (p, q)-admissible HS structure with

a path (up to homotopy) connecting 1+ and 1− in dS2` . Hence ∆̃ is a homeomorphism between
marked (p, q)-ideal polyhedra and marked (p, q)-admissible HS structures. This proves that the
covering number of ∆ is 1.

8. Combinatorics

It remains to prove Theorem 1.3 from Theorem 1.4. In other terms, assume that a graph
Γ = (V,E) satisfies Condition (C1) and the edges are colored as specified in Theorem 1.4.
We need to prove that Condition (C2) implies the existence of a weight function w : E → R
satisfying Conditions (W1) and (W2) and, conversely, existence of such a weight function implies
Condition (C2).

We consider two cases.
Case p < 2 < q. In this case, the cycle cover contains a 1-cycle, say with vertex set V + = {v0}.
The other vertices V − induce a 2-connected outerplanar subgraph. We color the edges adjacent to
v0 by blue, and other edges by red.

Theorem 1.3 requires a cycle visiting all the edges along which the edge color has the pattern . . . -
blue-blue-red-. . . . This is actually equivalent to a much simpler condition:

Lemma 8.1. In the case of p < 2 < q, Condition (C2) is equivalent to

(C’2) v0 is connected to every vertex in V −.

Proof.

(C’2) =⇒ (C2): Immediate.
(C2) =⇒ (C’2): If some v ∈ V − is not connected to v0, then the edges adjacent to v can not

belong to a cycle as required in Condition (C2).

�

Proof of Theorem 1.3 when p < 2 < q.

(C2) =⇒ (W1) ∧ (W2): Suppose a cycle c specified by Condition (C2). Let n be its length;
n is necessarily a multiple of 3. Let ne be the number of times that c visits e. Assign to e
the weight ne if e is red, or the weight −ne if e is blue. After normalization by a factor
3π/n, we obtain a graph that satisfies Conditions (W1) and (W2).

(W1) ∧ (W2) =⇒ (C’2): Assume a graph function satisfying Condition (W1). If some vertex
v ∈ V − is not connected to v0, then the edges adjacent to v are all of positive weight. This
violates Condition (W2).

�
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Case 2 ≤ p ≤ q. Condition (C2) requires a cycle with alternating colors; we call such a cycle an
alternating cycle. As in the previous case, the existence of an alternating cycle that visits every
edge implies that every vertex is adjacent to a blue edge, but the converse is not true. However,
we have the following equivalence, which does not depend on Condition (C1).

Proposition 8.2. If the edges of a graph are colored in blue and red, then Condition (C2) is
equivalent to

(C”2) Every edge belongs to an alternating cycle (which does not necessarily visits every edge).

The proof is immediate from the composition and decomposition of cycles.

Proof of Theorem 1.3 when 2 ≤ p ≤ q.
(C2) =⇒ (W1) ∧ (W2): Suppose a cycle c specified by Condition (C2). Let ne be the number

of times that c visits e. Assign to e the weight ne if e is red, or the weight −ne if e is blue.
We obtain a graph that satisfies Conditions (W1) and (W2).

(W1) ∧ (W2) =⇒ (C”2): Let w be a graph satisfying Conditions (W1) and (W2).
If w has an alternating cycle c, the number of visits defines a graph supported on

the edges of c, which we denote by wc. We can choose a positive number α such that
w′ = w − αwc is supported on a proper subgraph of w, but still satisfy Condition (W1)
on other edges. Most importantly, w′ satisfy Condition (W2) because both w and wc do.
The cycle c no longer exist in w′. We repeat this operation if there are other alternating
cycles. Since the graph is finite, we will obtain a graph w̃ with no alternating cycle in
finitely many steps.

If an edge e0 of w does not belong to any alternating cycle, it must also be an edge of
w̃. But we prove in the following that this is not possible.

Assume that e0 is red and let v+0 and v−0 be its vertices. Condition (W2) guarantees
that v+0 is adjacent to a blue edge, e1, whose other vertex is denoted by v+1 . The same
argument continues and we obtain an alternating path e0, e1, e2, . . . .

Since the graph is finite, this path will eventually intersect itself. That is, v+i = v+i′ for

some 0 ≤ i′ < i (note that we don’t consider v−0 as visited by e0). If ei and ei′ are of the
same color, ei′+1, . . . , ei form an alternating cycle, contradicting our assumption. Hence ei
and ei′ must have different colors.

The same argument applies on the other vertex v−0 of e0. We obtain an alternating path
e0, e−1, e−2, . . . . Let v−j denote the common vertex of e−j and e−j−1. This path eventually

intersect itself, i.e. v−j = v−j′ for some 0 ≤ j′ < j (this time we don’t consider v+0 as visited

by e0). Again, e−j and e−j′ must have different colors.
But then, e0, . . . , ei, ei′ , . . . , e0, . . . , e−j , e−j′ , . . . , e0 form an alternating cycle; see Fig-

ure 11. This contradicts our assumption.

�

Figure 11. The alternating cycle in the last step in the proof of Theorem 1.3.

Remark 8.3. The feasibility region specified in Theorem 1.4 is a polyhedral cone. The proof above
shows that the extreme rays of this cone correspond to the minimal alternating cycles in the graph.
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Figure 12. This graph is not the 1-skeleton of any weakly ideal polyhedron.

Example 8.4. The example in Figure 12 shows that Condition (C2) is essential. This graph
is not the 1-skeleton of any weakly ideal polyhedron with the inner square in H3

+ and the outer
square in H3

−. A fairly elementary argument, left to the reader, shows that there is no alternating
cycle containing edge e. This can also be shown using Theorem 1.4, since if a graph w satisfies
Conditions (W1) and (W2), we would have

w(a) + w(b) < w(a′) + w(b′) ,

w(c) + w(d) < w(c′) + w(d′) ,

w(b) + w(c) > w(b′) + w(c′) ,

w(d) + w(a) > w(d′) + w(a′) ,

from which a contradiction immediately follows.

Remark 8.5. Given a graph G with edges colored in blue and red, we define a directed graph G̃ as
follows:

• Each vertex v of G lifts to two vertices v+ and v− in G̃.

• Each red edge uv of G lifts to two oriented edges u−v+ and v−u+ in G̃.

• Each blue edge uv of G lifts to two oriented edges u+v− and v+u− in G̃.

It is quite clear from the definition that an alternating cycle in G lifts to two oriented cycle in G̃,
and any oriented cycle in G̃ projects to an alternating cycle in G. Hence finding an alternating
cycle in G is equivalent to finding an oriented cycle in G̃. The latter can be solved by a simple
depth- or breath-first search.
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