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Abstract

We discuss a feature of the natural language of mathematics — the implicit
dynamic introduction of functions — that has, to our knowledge, not been
captured in any formal system so far. If this feature is used without limitations,
it yields a paradox analogous to Russell’s paradox. Hence any formalism
capturing it has to impose some limitations on it. We sketch two formalisms,
both extensions of Dynamic Predicate Logic, that innovatively do capture
this feature, and that differ only in the limitations they impose onto it.
One of these systems is based on Ackermann-like Function Theory, a novel
foundational theory of functions that is inspired by Ackermann Set Theory
and that interprets ZFC.

Keywords: Dynamic Predicate Logic, Function Introduction, Ackermann
Set Theory, Function Theory.

1 Dynamic Predicate Logic

Dynamic Predicate Logic (DPL) [7] is a formalism whose syntax is identical to that
of standard first-order predicate logic (PL), but whose semantics is defined in such
a way that the dynamic nature of natural language quantification is captured in the
formalism:

1. If a farmer owns a donkey, he beats it.
2. PL: Vz Yy (farmer(z) A donkey(y) A owns(z,y) — beats(z,y))
3. DPL: 3z (farmer(z) A 3y (donkey(y) A owns(z,y))) — beats(x,y)

In PL, [3]is not a sentence, since the rightmost occurrences of x and y are free. In
DPL, a variable may be bound by a quantifier even if it is outside its scope. The
semantics is defined in such a way that [3]is equivalent to[2 So in DPL, [3] captures
the meaning of [I] while being more faithful to its syntax than
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1.1 DPL semantics

We present DPL semantics in a way slightly different but logically equivalent to
its definition by Groenendijk and Stokhof in [7]. Structures and assignments are
defined as for PL: A structure S specifies a domain |S| and an interpretation a® for
every constant, function or relation symbol a in the language. An S-assignment is a
function from variables to |S|. Let Gg denote the set of S-assignments. Given two
assignments g, h, we define g[z|h to mean that g differs from h at most in what it
assigns to the variable z. Given a DPL term ¢, we recursively define

g(t) if ¢ is a variable,
[t)% =< t° if ¢ is a constant symbol,
(%, [ta))  if tis of the form f(t1,...,ty).

Groenendijk and Stokhof [7] define an interpretation function [-]g from DPL for-
mulae to subsets of Gg X Gg. We instead recursively define for every ¢ € Gg an
interpretation function [-J% from DPL formulae to subsets of Gs{]

L [TIS = {9}

2. [t1 = t2]% := {h|h = g and [t1]% = [t2]$)f]

3. [R(t1,...,t2)]L == {h|h = g and ([t1]%, ..., [t2]%) € RS}

4. [~¢]% := {h|h = g and there is no k € [¢]%}

5. [ A¢]% = {h|there is a k s.t. k € [¢]% and h € []%}

6. [ — ¥]% := {h|h = g and for all k s.t. k € [p]%, there is a j s.t. j € [¢]%}
7. [3z ¢]% := {h|there is a k s.t. k[z]g and h € [p]&}

¢ V1 and Vz ¢ are defined to be a shorthand for —(—p A —¢)) and Jz T — ¢
respectively.

2 Implicit dynamic introduction of function symbols

Functions are often dynamically introduced in an implicit way in mathematical texts.
For example, [10] introduces the additive inverse function on the reals as follows:

1This can be viewed as a different currying of the uncurried version of Groenendijk and Stokhof’s
interpretation function.
2The condition h = ¢ in cases 2, 3, 4 and 6 implies that the defined set is either ¢ or {g}.
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(a) For each a there is a real number —a such that a + (—a) = 0. [10, p. 1]

Here the natural language quantification “there is a real number —a” locally (i.e.
inside the scope of “For each a”) introduces a new real number to the discourse. But
since the choice of this real number depends on ¢ and we are universally quantifying
over a, it globally (i.e. outside the scope of “For each a”) introduces a function “—"
to the discourse.

The most common form of implicitly introduced functions are functions whose
argument is written as a subscript, as in the following example:

(b) Since f is continuous at ¢, there is an open interval I; containing ¢ such that
|f(x) — f(t)| < 1ifx € I; N]a,b]. [10, p. 62]

If one wants to later explicitly call the implicitly introduced function a function, the
standard notation with a bracketed argument is preferred:

(c) Suppose that, for each vertex v of K, there is a vertex g(v) of L such that
f(stg(v)) Cstr(g(v)). Then g is a simplicial map V(K) — V (L), and |g| = f.
[8, p. 19]

When no uniqueness claims are made about the object locally introduced to
the discourse, implicit function introduction presupposes the existence of a choice
function, i.e. presupposes the Axiom of Choice. We hypothesise that the naturalness
of such implicit function introduction in mathematical texts contributes to the wide-
spread feeling that the Axiom of Choice must be true.

Implicitly introduced functions generally have a restricted domain and are not
defined on the whole universe of the discourse. In the example (c), g is only defined
on vertices of K and not on vertices of L. Implicit function introduction can also
be used to introduce multi-argument functions, but for the sake of simplicity and
brevity, we restrict ourselves to unary functions in this paper.

If the implicit introduction of functions is allowed without limitations, one can
derive a contradiction:

(d) For every function f, there is a natural number g(f) such that

(f):{o if f € dom(f)and f(f)#0,
1 if f € dom(f) or f(f)=0.

Then g is defined on every function, i.e. g(g) is defined. But from the definition
of g, g(g) = 0 iff g(g) # 0.
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This contradiction is due to the unrestricted function comprehension that is implic-
itly assumed when allowing implicit introductions of functions without limitations.
Unrestricted function comprehension could be formalised as an axiom schema as
follows:

Axiom Schema 1 (Unrestricted function comprehension). For every formula
o(z,y), the following is an axiom: Vz Jy p(z,y) — 3f Va o(x, f(z))

The inconsistency of unrestricted function comprehension is analogous to the
inconsistency of unrestricted set comprehension, i.e. Russell’s paradox.

Russell’s paradox led to the abandonment of unrestricted comprehension in set
theory. Two radically different approaches have been undertaken for restricting set
comprehension: Russell himself restricted it through his Ramified Theory of Types,
which was later simplified to Simple Type Theory (STT), mainly known via Church’s
formalisation in his simply typed lambda calculus [2]. On the other hand, the risk
of paradoxes like Russell’s paradox also contributed to the development of ZFC
(Zermelo-Fraenkel set theory with the Axiom of Choice), which allows for a much
richer set theoretic universe than the universe of simply typed sets. Since all the
axioms of ZFC apart from the Axiom of Extensionality, the Axiom of Foundation
and the Axiom of Choice are special cases of comprehension, one can view ZFC as
an alternative way to restrict set comprehension.

Similarly, the above paradox must lead to the abandonment of unrestricted func-
tion comprehension. The type-theoretic approach is easily adapted to functions, so
we will first sketch the system that formalises this approach, Typed Higher-Order
Dynamic Predicate Logic. For an untyped approach, there is no clear way to trans-
fer the limitations that ZFC puts onto set comprehension to the case of function
comprehension. However, there is an axiomatization of set theory (with classes)
called Ackermann set theory that is a conservative extension of ZFC. It turns out
that the limitations that Ackermann set theory poses on set comprehension can be
transferred to the case of function comprehension, and hence to the case of implicit
dynamic function introduction.

The need to deal with implicit function introduction arose for us in the context
of the Naproche project, a project aiming at automatic formalisation of natural
language mathematics [3|, [5, [6]. It has been implemented in the Naproche system
using type restrictions as in Typed Higher-Order Dynamic Predicate Logic, and we
plan to implement it using the less strict restrictions of the untyped Higher-Order
Dynamic Predicate Logic in a future version of the system.
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3 Typed Higher-Order Dynamic Predicate Logic

In this section, we extend DPL to a system called Typed Higher-Order Dynamic
Predicate Logic (THODPL), which formalises implicit dynamic function introduc-
tion, and also allows for explicit quantification over functions. THODPL has vari-
ables typed by the types of STT. In the below examples we use x and y as variables
of the basic type i, and f as a variable of the function type i — 7. A complex term is
built by well-typed application of a function-type variable to an already built term,
e.g. [(z) or f(f()).

The distinctive feature of THODPL syntax is that it allows not only variables
but any well-formed terms to come after quantifiers. So is a well-formed formula:

Vo 3f(z) R(z, f(z)) (1)
Vr Jy R(z,y) (2)
3f (Vz R(z, f(z))) (3)

The semantics of THODPL is to be defined in such a way that has the same
truth conditions as . But unlike , dynamically introduces the function
symbol f to the context, and hence turns out to be equivalent to (3).

We now sketch how these desired properties of the semantics can be achieved.
In THODPL semantics, an assignment assigns elements of |S| to variables of type
i, functions from |S| to |S| to variables of type i — i etc. Additionally, an assign-
ment can also assign an object (or function) to a complex term. For example, any
assignment in the interpretation of 3f(z) R(x, f(z)) has to assign some object to
f(x). The definition of g[x]h can now naturally be extended to a definition of g[t|h
for terms t. The definition of [{]2 has to be adapted in the natural way to account
for function variables.

Just as in the case of DPL semantics, we recursively define an interpretation [-]%
from DPL formulae to subsets of Gg (the cases 1-5 of the recursive definition are as

in Section :

6. [ — Y] := {h|h differs from g in at most some function variables fi,..., fn
(where this choice of function variables is maximal), and there is a variable
x such that for all k € [¢]%, there is an assignment j € [¢]% such that
J(fi(z)) = h(f;)(k(x)) for 1 <1i < n, and if n > 0 then k[z]g }

7. [3t @)% := {h|there is a k s.t. k[t]g and h € [p]%}

In order to make case [6] of the definition more comprehensible, let us consider
its role in determining the semantics of (1)), i.e. of 3z T — 3f(z) R(z, f(z)): First
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note that [3f(z) R(x, f(:z))]]]g is the set of assignments j satisfying R(x, f(x)) (i.e.
for which [R(z, f(z))]% is non-empty) such that j[f(z)]k. Furthermore note that
[3z T]% is the set of assignments k such that k[z]g. So by case |§| with n =1,

[3z T — 3f(z) R(z, f(z))]% = {h|h[f]g and there is a variable z such that for all
k such that k[z|g, there is an assignment j satis-
fying R(zx, f(x)) such that j[f(z)]k and j(f(z)) =
h(f)(k(x)), and k[z]g}

= {h|h[f]g and for all k such that k[z]g, there is an
assignment j satisfying R(z, f(x)) such that j[f(z)]k
and j(f(x)) = h(f)(k(z))}
= {h|h[f]g and for all k such that k[x]h, k satisfies
R(z, f(2))}
= [3f (V= R(z, f(2)))]$
The type restrictions THODPL imposes may be too strict for some applications:

Mathematicians sometimes do make use of functions that do not fit into the corset

of strict typing, e.g. a function defined on both real numbers and real functions. To

overcome this restriction, we will introduce an untyped variant HODPL in Section
[6l But for this, we require some foundational preliminaries.

4 Ackermann set theory

Ackermann set theory [1] postulates not only sets, but also proper classes which are
not setsE| The sets are distinguished from the proper classes by a unary predicate
M (from the German word “Menge” for “set”).

Ackermann presented a pure version of his theory without urelements, and a
separate version with urelements, which we will present here. The language of
Ackermann set theory contains three predicates: A binary predicate €, a unary
predicate M and a unary predicate U for urelements. We introduce L(z) (“x is
limited”) as an abbreviation for M(z) V U(x). The idea is that sets and urelements
are objects of limited size, and are distinguished from the more problematic classes
of unlimited size.

The axioms of Ackermann set theory with urelements are as follows:

o Extensionality axiom: Ve Vy Vz (z €x <> 2z €y) > x =y)

3Note, however, that unlike the more well-known class theory NBG, Ackermann set theory also
allows for proper classes that contain proper classes.
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e Class comprehension axiom schema: Given a formula F(y) (possibly with
parametersﬁ) that does not have x among its free variables, the following is an
axiom:

Yy (F(y) = L(y)) = 3z Vy (y € z < F(y))

e Set comprehension axiom schema: Given a formula F(y) (possibly with pa-
rameters that are limitedEI) that does not have x among its free variables and
does not contain the symbol M, the following is an axiom:

Yy (F(y) = L(y)) = Fz (M(2) AVy (y € z < F(y)))

e FElements and subsets of sets are limited:
VeVy M(y) ANz eyVVz (z€x—2z€y)) — L(y))

So unlimited set comprehension is replaced by two separate comprehension sche-
mata, one for class comprehension and one for set comprehension. In both cases,
the comprehension is restricted by the constraint that only limited objects satisfy
the property that we are applying comprehension to. But for set comprehension,
we have the additional constraint that the property may not be defined using the
setness predicate or using a proper class as parameter. Ackermann justified this
approach by appeal to a definition of “set” from Cantor’s work [I].

If an Axiom of Foundation for sets is added, Ackermann set theory turns out to
be — in what it says about sets — precisely equivalent to ZF [9]. But this equivalence
is not a triviality: It is especially hard to establish Replacement for the sets of
Ackermann set theory.

5 Ackermann-like function theory

Now we transfer the ideas of a comprehension limited in this way from set compre-
hension to function comprehension. For this a dichotomy similar to that between
sets and classes has to be imposed on functions. We propose the terms function and
map respectively for this dichotomy, and call the theory resulting from these limi-
tations on function comprehension Ackermann-like Function Theory (AFT). AFT
can be shown to be equiconsistent with Ackermann set theory and hence with ZFC
(see Theorem 4| below).

4This means that F may actually be of the form F (2,y), and that these parameters are univer-
sally quantified in the axiom:
vz (Yy (F(2,y) = M(y)) = Jz Vy (y € z < F(2,y)))

SFormally, with the parameters made explicit, the set comprehension axiom schema reads as
follows:
Vzi,...,2n (L(z1) Ao AL(zn) = (Vy (F(21,...,2n,y) = L(y)) — =z M(z) AVy (y € = <
Flzte o2, 1))
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The language of Ackermann-like function theory (Lapr) contains
e a unary predicate F for functions,

e a unary predicate U for urelements,

e a constant symbol u for undefinedness, and

e a binary function symbol a for function application.

Instead of a(f,t) we usually simply write f(¢). We write L(x) instead of U(x)VF(z).
The undefinedness constant u is needed for formalising the idea that a function
is only defined for certain values and undefined for others. In this language, the
unrestricted function comprehension schema would be as follows:

Axiom Schema 2 (Unrestricted function comprehension in Lapr). Given a vari-
able z and formulae P(z) and R(z,z) (possibly with parameters), the following is an
axiom: Vz (P(z) — 3z R(z,x)) — 3f (-U(f)AVz ((P(z) = R(z, f(2)))A(=P(z) —
f(z) = u)))

Analogously to the case of Ackermann set theory, AFT has separate compre-
hension schemata for maps and functions. The restriction that is imposed on both
schemata now is Vz Va (R(z,2) — L(z) A L(z)). In the function comprehension
schema, in which F(f) appears among the conclusions we may draw about f, the
additional restriction is that the formula R(z,z) may not contain the symbol F and
may not have unlimited objects as parameters.

Additionally to these comprehension schemata, AFT has

e a function extensionality axiom,

e an axiom stating that any value a function takes and any value a function is
defined at is limited, and

e an axiom stating that submaps of functions are functions.

In AFT one can interpret Ackermann set theory with Foundation, and hence
ZFC (see Theorems || and 3| below). Since the map and function comprehension
schemata presuppose the existence of choice maps and choice functions, the Axiom
of Choice naturally comes out true in these interpretations.

We now state the main theorems about AFT. Their proofs can be found in the
author’s PhD thesis [0, pp. 58-62].

Theorem 1 (Theorem 4.2.7 in [3], p. 58]). AFT interprets Ackerman set theory with
urelements and the Axiom of Choice.
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Theorem 2 (Theorem 4.2.20 in [5l p. 61)). Ackermann set theory with the Axiom
of Foundation and the Axiom of Global Choice interprets AFT.

Theorem 3 (Theorem 4.2.8 in [5, p. 59]). AFT interprets ZFC.

Theorem 4 (Corollary in [5, p. 62]). AFT is equiconsistent with ZF'C.

6 Higher-order dynamic predicate logic

Now we are ready to sketch the untyped Higher-Order Dynamic Predicate Logic
(HODPL). The restriction we impose on implicit function introduction are those
imposed by AFT. AFT gives us untyped maps, which always have a restricted
domain. So instead of using types to syntactically restrict the possible arguments for
a given function term, we implement a semantic restriction on function application
by integrating a formal account of presuppositions into the HODPLE] HODPL syntax
thus allows for any term to be applied to any number of arguments to form a new
term.

Besides the binary “=", HODPL has two unary logical relation symbols, U for
urelements and F for functions. HODPL syntax does not depend on a signature,
as we do not allow for constant, function and relation symbols other than “=”, U
and F. These can be mimicked by variables that respectively denote a non-function,
denote a normal function or denote a function that only takes two predesignated
urelements (“booleans”) as values.

The domain of a structure always has to be a model of AFT. The possibility
of presupposition failure is implemented in HODPL semantics by making the inter-
pretation function partial rather than total. For conveniently talking about partial
functions, we use the notation def(f(z)) to abbreviate that f is defined on z.

We define the partial interpretation function [-]4 C Gg x Gg by specifying its
domain and its values trough a simultaneous recursion (the cases 3-8 of the second
part are as in THODPL):

e Domain of [-]%:

1. def([U)]%) iff [1]% # u®.

2. def([F(t)]%) iff [t]% # u®.

3. def([T]%).

4. def([t1 = ta]%) iff [t1] # v and [ta]% # u”.

6See [4] for an introduction to presuppositions in mathematical texts.
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5. def([-]) iff def([]%).

6. def([p A ¥]%) iff def([¢]%) and for all h € [¢]Z, def([]%).
7. def([p — ¢]%) iff def([¢]2) and for all h € [p]%, def([4]%).
8. def([3t ¢]%) iff for all h s.t. hlt]g, def([¢]%).

e Values of [-]%:

L. [U®]E := {hlg = h and [t} € U}
2. [F@#)]% = {hlg = h and [t]] € F°}

One can define a sound proof system for HODPL that can prove everything
provable in AFT: In the author’s PhD thesis, a proof system for an extension of
HODPL is defined [5, pp. 108-113] and proven to be sound [0, pp. 147-148] and
complete [5, pp. 156-176]. The details of this proof system are beyond the scope of
this paper.

7 Conclusion

We have studied a feature of the natural language of mathematics that has previ-
ously not been studied by other logicians or linguists, the implicit dynamic function
introduction, exemplified by constructs of the form “for every z there is an f(x) such
that ...”. If this feature is used without limitations, it yields a paradox analogous to
Russell’s paradox. Hence any formalism capturing it has to impose some limitations
on it. We have sketched two higher-order extensions of Dynamic Predicate Logic,
Typed Higher-Order Dynamic Predicate Logic (THODPL) and Higher-Order Dy-
namic Predicate Logic (HODPL), which capture this feature, and which differ only
in the limitations they impose onto it. HODPL is based on Ackermann-like Function
Theory, a novel foundational theory of functions that is inspired by Ackermann Set
Theory and that interprets ZFC.
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