[t Computational Sciences Luxembourg
~ = Department of Computational Engineering

Computed in Luxembourg SCienceS
0 0 ATIONC < 0 8 B ITACE
X adical AP aAt1C
"
3] {‘ I/'.‘ ; 3
444444 = 4 ] {‘I 5 A"l/ .,\JV'-“; .
w U TIT hainadld S s
- E == B8 18 (07 e St
= g g 7 A -1___5'4’. | & .(1. | . - TS e =i - .:« T -
s A B M »- N : ek . S—— LT I .
- . AC,J y - &S 1 o 4 .i L v N ‘f; > ! LI" M AT o ( F — **—70‘-:;,'_
<. - P . s 1 « & ‘S, - - ‘f"v‘-_ : rm ARFAf ¢ - & A
4 e N e e A R 2= e =
: D I
stephane.bordas@alum.northwestern.edu . 1
'Unn{erSI of Luggembourq - Cardiff Uniugl¥ity—= = e
University of Strasbourg Institute of Advanced Study< W =% =5
o University of Western Australia T
. .'—‘ _i _ : W R A 4-.»?'?’?"-""“?* R A
. < SRk s Ihill | P o A = RSITE D
0 = BOoro U U 0 DOra Q 0 0
O a pe do paded 0 0 0 : U



G il

@
dUasje) N U BEESEREEBRMANA . UNIVERSITE DU
CAERDY@ UUUUUUUUUU

Part I. Computational approaches for
industrial-scale fracture mechanics simulations
and surgical simulation

- Adaptive partition of unity enrichment
- (Multi-scale fracture)

- Adaptivity in IGA through Geometry-
Independent Field approximaTion

Part Il. Model Selection and Uncertainties in
surgical simulation (quick introduction)

Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam

Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu -
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Computational Mechanics of Interfaces iy

with Engineering and Medical Applications

Stéphane P.A. Bordas
stephane.bordas@alum.northwestern.edu

Our goal is to simulate a brain tumor removal similar to this video

Source : http://www.youtube.com/watch?v=yhORvX-4Bx4 #
Y ’ ¥ Y E ‘ 2 ‘ 4

Immersed collocation Real-time cutting, MEDIA2014, IEEE2017

| fC Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu - oo
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Interface problems are frequent in

nature and engineering

_.':f:'ég'erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
: Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu Wi
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Discontinuities
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Discontinuities

Small scale
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Classification of discontinuities

Strong discontinuities

 The primal field of the solution is discontinuous, e.g. cracks
lead to strong discontinuities in the displacement field.

)

* The first derivative of the solution is discontinuous, e.g.
discontinuities in the strain field through a material interface.

'//\

Weak discontinuities




Interfaces in practical engineering simulations

Interfaces between phases

0.125 mm

Courtesy, EADS

CMECH 2007, EFM2008 CAS 2009, with Timon Rabczuk and Goangseup Zi



Equilibrium of nano-inhomogeneities

(a) (b) (c)

t

>

(d)

JMPS2015 http://orbilu.uni.lu/bi : ; o
CMECH2013 http //orbllu uni. Iu/bltstream/1 0993/11022/1 /Manuscrlpt XZHAO CMECH revision. Ddf
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Interfaces between different models

Example: interfaces between different kinematics

(wr, B1r, Bar)




Interfaces between different PDEs

Example: Microbial biofilms

$ FEM solution: velocity potential
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Interfaces between different PDEs

Example: Microbial biofilms

$ FEM solution: velocity potential
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Interfaces between different scales

Example: Micro-continuum interfaces
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PhilMag15, Akbari
CMAME13,CMECH16, Goury
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Interfaces between different scales

Example: Micro-continuum interfaces

Time Step: 2




Interfaces between different scales / material models

Example: Continuum molecular dynamics coupling

CMECH14, |IUMSE13 Talebi
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Interfaces between different discretisations
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CMECH2014, CAD2014, CMECH2016, MatCompSim2016, CMAME2017, Nguyen-Vinh Phu
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Cracks and cuts are also interfaces

LUXEMBOURG
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i f'C Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
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Shuttle crash, 2003

Taiwan earthquake, 2003

Landslide, Colorado
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Fragmentation of concrete
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Fracture of homogeneous materials
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l'C Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu -
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Energy-minimal multi-crack growth o
300 cracks growing in Si due to H+ bombardment
(SmartCut TM)

.
N g
il
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il
180} EFM2017 3 part paper - Sutula, Kerfriden, van Dam,
PRI funded by Soitec SA
s l , l , l , l , l ,

0 100 200 300 400 500 600 700 800 900 1000

,‘fi{ferc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu - o
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Polycrystalline failure (SnAgCuvs. SnPb) [0

Temp.: 232 [K]

Time: 590 [s Time: 1400 [s]

IJNME2011 CMS2012, Menk & SPAB funded by Bosch GmbH

::’f;; erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu o
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Cuttlng In SOft tlssue tJLr;l)l(vEErlstlcT)EUgg

Real-time simulation of éutting during brain surgery
Med. Im. Anal. 2014 Courtecuisse, Cotin, SPAB et al.

i f'C Stéphane P. A. Bordas, ACOME PIenary Lecture 2017, Vietham
Slides can be downloaded here: http://hdl.handle.net/10993/31487- |egato-team.eu - o4

AUSTRALIA




G il

CERDYD O U tl ine e
Part I. Computational approaches for

industrial-scale fracture mechanics simulations
and surgical simulation

- Adaptive partition of unity enrichment

erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
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Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu -



Fracture of ‘homogeneous’ materials .l
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Question: when should a structure be inspected for flaws?

Outer surface:
application of the

Super-eleméﬁf~' =
mesh | [~

(a) Top view

\ Element size
ad hoc mesh " = 0.1mm
refinement = - 7
LTSS
' N ,“(,rf‘ fﬂ, Assembled
£ 1 mesh for the
l ” { ,:",/.,"(/ . whole problem
KON\ o Element size
N Zg 2.0mm
PR R~
RSN N\
DI\ SPAB and B. Moran, Engineering Fracture Mechanics, 2006
KM ",’ j;f;;‘,‘f/f’ V.P. Nguyen et al. XFEM C++ Library IUINME, 2007
V7Tt ,,1’\;‘}},""’ Industrial applications of extended finite element methods
v/ 4 E See also E. Wyart et al, EFM, IUNME, 2008

o ag a8
l'C Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam @
: Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu - oo
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Two Issues In Computatlonal Fracture et oy
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e Choice of the Model

e Choice of the Discretisation Scheme

er Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam

Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu -
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* Small scale yielding? Linear elastic
fracture?

 Elastic-Plastic fracture mechanics?

 Damage models (local? non-local?
gradient?)

* Multi-scale? (concurrent? semi-
concurrent? adaptive?)

erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
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Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu -
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Discretisation Choice B
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oFinite element method (remeshing?)
eBoundary element method (non-linearities?)

eScaled boundary finite elements (SBFEM) - see
Plenary by Chongmin Song :)

oExtended finite element methods (multi-
crack?)

eMeshfree methods (cost? stability?
robustness?)

eCracking particle methods (Rabczuk and
Belytschko)

erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
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Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu -



FENICS
NMNOJECT

Steering council: Alnaes, Bletcha, Hale, Logg, Richardson, Ring, Rognes and Wells.
Contributors: Too many to name!

« Key idea: implement high-level description of finite element
models in the Unified Form Language.

* Let algorithms take over the tedious/difficult work of linearisation
and transforming maths into lower-level languages.

e Not a toy; scales to huge problems with billions of unknowns on
Top100 supercomputers.
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Problem.

Mathematical
model.

Linearised model.

Numerical method.

Software.

Expertise.

Algorithmic and suitable for
automation.
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a 1D line in 2D space

a 2D surface in 3D space

Iy n

a8 aa

erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam W
Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu - oo
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men What is a crack? [[1A]]

CAERD ;5 [ttt VA=

a 1D line in 2D space

a 2D surface in 3D space

erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu - o
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discontinuities & singularities
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B0 Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu -
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Singular elements (Barsoum, 1974)

For simulating the crack tip singular field in LEFM

* Asimple way how to introduce a singularity of 1/+/7 in
isoperimetric finite elements is by displacing the mid-side
nodes of two adjacent edges to one quarter of the element
edge length from the node where the singularity is desired.

crack surfaces

guarter nodes regular nodes




Finite elements are intrinsically limited for il
ey 0000 LUXEMBOWRG

problems involving discontinuities &
singularities such as cracks

e Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
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Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu -



il Computational fracture (LEFM) requires highly accurate .|
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Il

solutions...

erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietham
B Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu W
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2l The idea of Partition of Unity Enrichment il
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(PUFEM, GFEM, XFEM, hp clouds, enriched
IGA, enriched meshfree methods, enriched
BEM...)

add what vou know about the solution to the
(finite element) basis

Singularities?
Discontinuities?

Boundary layers?

erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam

Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu -



GFEM/XFEM

( )
Formulation for crack growth:

u(x) = Z Ni(x)u! +
IeNT

G J \
Y

standard part

B\ 4




GFEM/XFEM

(- ~N

Formulation for crack growth:
"(x) = N I N (x)H (x)a’
u'(x) = r(x)u’ + 7(x)H(x)a
IENT JEN;
I\ J U J
Y Y
standard part discontinuous
enrichment
H(x) = +1 %f x above crack
—1 if x below crack
( N\ —~
: »
R|
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GFEM/XFEM

( )
Formulation for crack growth:

u'(x) = ) Nyx)u'+ Y Nyx)H(x)a' + Y Ng(x) )  fa(x)bX°

IeNT JEN 5 KeNk
_ J J L J
Y Y _ Y _
standard part discontinuous singular tip
enrichment enrichment
+1 if x above crack 0 0 0 0
H(x) = , {fa(r,0),a=1,4} = { \/rsin =, \/rcos =, v/rsin — sinf, \/r cos = sin §
—1 if x below crack 2 2 2 2
4 N\ 4 A
A T b SRR
: 0B I o
- [;/[3/ | . 3
% N /(7 m_ M mh / -_.'f‘ .
V\J\\ 0 0 [ l__l/ i ’ : .' X
N ) M M1 ’ ~ 5 ’
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\_ * y, O- dISCOI’]tIFk i S ] )
_J

\ [ ]- singular




~

Nodes whose support contain the tip (front)
are enriched by near-tip branch functions
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The enriched area is composed here of 9 elements




Assume we refine the mesh
The enriched area is still made up of 9 elements
But those elements represent a smaller portion of the entire domain



By refining the mesh, the influence of the enrichment
zone on the convergence of the method tends to zero

With topological enrichment, we lose the benefit of enrichment




7

Enriching an area independent of the mesh size
(geometrical enrichment versus topological enrichment)






T

Geometrical enrichment ensures that as the mesh is refined, the
enriched area remains constant
(more nodes become enriched)

This ensures that the optimal convergence rate is preserved



Conditioning issues can be so severe that
the set of equations is unsolvable

......

00000

[ZLarge enrichment zones (see stable GFEM, Banerjee, Babuska and
Agathos 2016, 2017)

[A For arbitrary enrichment schemes
{Z T-stress - 2nd order terms in Westergaard expansion

[Z Multiple enrichments due to multiple cracks

Conclusion: difficult to set up robust and automatic enrichment schemes without
specific tricks (preconditioner, e.g. Béchet or Menk)
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Fracture of homogeneous materials
Question: How to control accuracy and simplify/avoid meshing?
9 3D fracture requires accurate stress intensity factors (SIFs)

O Error at each step ~ (Error on SIF)*4

O Standard enrichment => oscillations along the front

[] Need higher order enrichment or “large” enrichment radii

9 Partition of Unity - eXtended/Generalized Finite Element Methods

M Discretisation error governed by the worst approximant
M Local enrichment of approximations

(Z Requires enrichment volumes independent of the mesh

M Conditioning issues for large enrichment zones or arbitrary
enrichment (see stable GFEM, Banerjee, Babuska + Agathos)

rc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
; Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu - o
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Fracture of homogeneous materials .l
g SNVERSTE DU

LUXEMBOURG

Question: How to control accuracy and simplify/avoid
meshing and avoid conditioning issues?

Cenaero

K. Agathos et al. IUINME 2016, CMAME 2016, IJNME 2017,
CMAME 2017 with Eleni Chatzi and Giulio Ventura

How can we use large enrichment radii?
How can we control conditioning in large-

X. Peng et al. UINME 2016, CMAME 2017

Enriched Isogeometric Boundary Elements scale enriched FEM?

How to avoid meshing completely How can we use higher order terms in the

for crack propagation simulations? expansion?
" %4 % A~
l'C Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam Sans?
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Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu - WE ER
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3D Orthogonalised Cut-off XFEM (Agathos) yosree
| I [A A novel form of fixed
) T . volume enrichment
%x q > L‘ﬁ? E: Orthogonalisation of
T . ~ [AOrthog

enrichment functions
~ [¥[ Same conditioning as FEM.

- [/ Enables the use of higher
order terms in fracture
mechanics

[A Equivalent accuracy to
: | , N
Conclusion: we can now add arbitrary XFEM with g€0 enrichment

numbers of enrichments and enrich over opti mal conve rgence
‘large’ volumes of the domain.

R

s , . -
erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam A%h
Rz Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu - o
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Flaw identification e
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.:;'C Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam )
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CERDYD Conve rgence T

Initial guess 500 evaluations 1000 evaluations

— Actual crack

1500 evaluations 2000 evaluations —— Detected crack

BE 88

.:;'C Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam )
i Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu - W"'“ESTERN

AUSTRALIA



. . . oy W0QLI0
e The mEthOdOk)gy is described in detail ::::

in these papers

Agathos K, Ventura G, Chatzi E, Bordas S. Stable 3D XFEM/vector-level sets for non-planar
3D crack propagation and comparison of enrichment schemes. International Journal for Numerical
Methods in Engineering, 2017.

Agathos K, Chatzi E, Bordas S, Talaslidis D. A well-conditioned and optimally convergent
XFEM for 3D linear elastic fracture. International Journal for Numerical Methods in

Engineering. 2016 Mar 2;105(9):643-77.

Agathos, K., E. Chatzi, and SPA Bordas. "Stable 3D extended finite elements with higher order
enrichment for accurate non planar fracture." Computer Methods in Applied Mechanics and

Engineering 306 (2016): 19-46.

https://orbilu.uni.lu/bitstream/10993/22331/2/paper.pdf
http://orbilu.uni.lu/bitstream/10993/22420/1/presentation.pdf

rc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu - WESTERN
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What if you can’t add new functions or
you don’t want to increase the
enrichment radius?

‘::A::}:"ari-c Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu e
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Refine along the “expected” crack path... ==

LUXEMBOURG

(Goal oriented) adaptive computational fracture
use h-refinement

\Z x

Before: mesh “finely” in the region where the crack is “expected” to propagate

Y. Jin, O. Pierard, et al. Comput. Methods Appl. Mech. Engrg. 318 (2017) 319-348 M. Ruter CMECH (2013) 1;52(2):361-76.
O.A. Gonzalez-Estrada et al. Computers and Structures 152 (2015) 1-10 J. Panetier IINME 81.6 (2010): 671-700.
O.A. Gonzalez-Estrada et al. Comput Mech (2014) 53:957-976 P. Hild, CMECH (2010): 1-28.

C. Prange et al. IINME 91.13 (2012): 1459-1474.

M. Duflot, SPAB, IUNME 2007, CNME 2007, IJNME 2008.

J-J. Rodenas Garcia, IINME 2007

F B Barros, et allUNME 60.14 (2004): 2373-2398.

()

3 A

l'C Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam O
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Much better... adapt the discretisation locally =

LUXEMBOURG

Fracture of homogeneous materials: error
estimation and adaptivity

After: determine mesh refinement adaptively using a (goal-oriented) error estimate

Y. Jin, O. Pierard, et al. Error-controlled adaptive extended finite element method for 3D
linear elastic crack propagation Comput. Methods Appl. Mech. Engrg. 318 (2017) 319-348
M. Duflot, SPAB, IUNME 2007, CNME 2007, IJNME 2008.

e Bg

i'C Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
: Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu - BB
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Partial Conclusions ome

W[» FEM has intrinsic difficulties with singularities and
discontinuities

’/’%» Enrichment helps to decrease but not eliminate
remeshing

'%’» This remeshing can be driven by error estimates
A Arbitrary enrichment functions can be chosen
Wf» (almost) arbitrary enrichment zones

W/ﬂ Question: what are the limitations of these
enrichment approaches?

erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
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What if we have to deal with more
interfaces?....

BE 88

erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam W
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Discretization: XFEM m

é )
Extended Finite Element Method (XFEM)

\_ J

P
4 L Fracture of “XFEM” using XFEM ]

X0~




Soitec

Sutula et al. Preprint of three part EFM paper at
http://hdl.handle.net/10993/29414




Example #1 m

4 N
Vertical extension of a plate with 300 cracks

[ Post-split roughness J

I [ I I I

40

30
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10

Profile, y
o

~10

-30
— Y, (Rq = 2.195e+01)
. 5 ymean |
| | | | | | | I [
100 200 300 400 500 600 700 800 900

\ Position, x )
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T More cracks?... 3D? ... U o

CAFRDY( LUXEMBOURG
Phase field/thick level sets

Il

'y 'y

_%\

L'y

¢ =

(a)
With Danas Sutula and Nguyen Vinh Phu (Monash)

9TH Australasian Congress on Applied Mechanics (ACAM9)
27 - 29 November 2017

phu.nguyen@monash.edu

erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietham
i Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu W
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Energy minimal XFEM vs. Phase field L.

CAERDY@ LUXEMBOURG

I!

—=—— Max hoop stress
Global energy min.
e Averaged direction

phi
l 1.000e+00

0.975

8095

50925

9.000e-01

N = {60x60, 120x120, 240x240}, Aa x he

L L L

With Danas Sutula and Nguyen Vinh Phu (Monash)

9TH Australasian Congress on Applied Mechanics (ACAM9)
27 - 29 November 2017

phu.nguyen@monash.edu

(

rc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
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—— Max hoop stress
Global energy min. ||

phi
E 1.000e+00

Il

—0.85

E8.000e-01

n_=300x300,Aa x h |
mesh e
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With Danas Sutula and Nguyen Vinh Phu (Monash)

9TH Australasian Congress on Applied Mechanics (ACAM9)
27 - 29 November 2017

phu.nguyen@monash.edu
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Part I. Computational approaches for

industrial-scale fracture mechanics simulations
and surgical simulation

- Adaptive partition of unity enrichment

- (Multi-scale fracture)

- Adaptivity in IGA through Geometry-
Independent Field approximaTion

Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam

Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu -
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== Handling (complex) interfaces numerically "I
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=
-

Coupling, or decoupling?

stress analysis

Question: When are we better off coupling/decoupling the geometry from the field
approximation?

o BE 88

_.;"-'-"erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietham \_/
' Slides can be downloaded here: http://hdl.handle.net/10993/31487- |egato-team.eu Wi
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Isogeometric analysis A

mesh

stress analysis

erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
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CARDIFF I
Isogeometric analysis ML |

CAERDY® LUXEMBOURG

no mesh

Idea: Hughes et al. 2005. Do not
discard geometric information by
creating a mesh. Use the CAD
information to solve the finite element
problem.

stress analysis

BE 88

erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam ()
Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu - oo
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CARDIFF i
Isogeometric analysis '"""'

(ARDY

Idea: Hughes et al. 2005. Do not
discard geometric information by
creating a mesh. Use the CAD
information to solve the finite element
problem.

BE 88

; erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietham A/
Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu s




CARDIFF I
- Isogeometric analysis ni.lo

CAERDY@ LUXEMBOURG

CAD: described by NURBS

Use NURBS as FE basis
function

Idea: Hughes et al. 2005. Do not
discard geometric information by
creating a mesh. Use the CAD
information to solve the finite element
problem.

rc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
: Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu Togepne

AAAAAAAAA




CARDIFF i
Isogeometric analysis: limitations ML |
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Geometry

[ For shell-like domains

[] For volumes (needs volume parameterisation)

] Coupling between multiple patches (Nitsche, Mortar...)

Adaptivity

[ Global refinement - cannot refine field without refining geo...
[] Local refinement (not with NURBS)... (PH)T-splines...

[] Geometry independent refinement for the field variables?

erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam

Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu -
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Mesh refinement in IGA

LUXEMBOURG

Using NURBS,
Refinement in one direction

Global refinement (tensor-product mesh) vs local refinement (T-mesh)

()

3 A

l"C Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam O
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CARDIFF I
Handling (complex) interfaces numerically 1.1

Coupling

stress analysis

Question: How can we fully benefit from the “IGA” concept?
[ Refine the field independently from the geometry
[ Suppress the mesh generation and regeneration completely

erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam

Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu -



CARDIFF 5
Handling (complex) interfaces numerically 1.1

(ARDY

Coupling geometry and field approximation

Question: How can we fully benefit from the “IGA” concept?
[ Refine the field independently from the geometry

Isogeometric Finite Elements Geometry Independent Field

approximaTion
A For shell-like domains (GIFT)
[] For volumes (needs volume
parameterisation) [ Super/Sub-geometric

[REF] Weakening the tight coupling between geometry and simulation in isogeometric
analysis: from sub- and super- geometric analysis to Geometry Independent Field
approximaTion (GIFT), IUINME, 2017, submitted [preprint available on arXiv]

Permalink: http://hdl.handle.net/10993/31469

erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietham

Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu - figsiERs



CARDIFF
Handling (complex) interfaces numerically It

Coupling geometry and field approximation

Question: How can we fully benefit from the “IGA” concept?
[ Refine the field independently from the geometry

[REF] Weakening the tight coupling between geometry and simulation in isogeometric
analysis: from sub- and super- geometric analysis to Geometry Independent Field
approximaTion (GIFT), IINME, 2017, submitted [preprint available on arXiv]

Permalink: http://hdl.handle.net/10993/31469 See Keynote presentation by Elena
Atroshchenko yesterday

Parallel Session 2B.2: Numerical Methods and High Performance Computing (14:45 —
17:40)

Location: Board Room 1, Sai Gon-Phu Quoc Resort

Content (Title) | Speaker | Adfliation ___

Session Chairs: Jaehong Lee & Seiya Hagihar

Geometry Independent Field ap- Elena Atrosh-  University of Chile,
14:45 — 15:15 proximation (GIFT): pairing CAD chenko Santiago, 8370448,
geometry with PHT-splines field (Keynote) Chile

erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu fESTER




il

PRIFYSGOL UNIVERSITE DU
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Together with the given (exact) geometry parametrization at
the coarsest level, the convergence rate is entirely defined by the
solution basis, and does not depend on the further refinement of
the geometry parametrization:

e For a given geometry parameterization, the degree of the
solution basis can be increased or decreased without
changing the degree of the geometry (from iso-geometric to
super-geometric and sub-geometric elements)

e For solution approximation, using same degree B-Splines or
NURBS yields almost identical results

a8 aa

’ rc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam h
Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu - WESTERN

AUSTRALIA
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Geometry Independent Field approximaTion ...
(GIFT)

Conclusions

[ Tight link between CAD and analysis

M The same basis functions, which are used in CAD to represent
the geometry, are used in the IGA as shape functions to
approximation the unknown solution

M Geometry is exact at any stage of the solution refinement
process

[ Better accuracy per DOF in comparison with standard FEM but
higher computational cost (bandwidth...)

erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam

Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu -
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Part Il. Model Selection and Uncertainties in
surgical simulation (quick introduction)

rc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam
Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu o
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g Part ll. Controlling modelling errors e

Il

Forward and Inverse

Uncertainty Quantification

erc Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietham
B Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu W
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Deep-brain stimulation

Courtesy Alexandre Bilger, post-doc in the Legato team, PhD thesis, Inria, 2014 1



. . . . .l
Interfaces in surgical simulation oo

Cutting and Needle Insertion

Our goal is to simulate a brain tumor removal similar to this video
Source : http://www.youtube.com/watch?v=yhORvX-4Bx4

— S

T\ T -
H. Courtecuisse et al. Medical Image Analysis, 2014  P.H. Bui et al. IEEE T. Biomed Eng. 2017 & Frontiers in Surgery, 2017

http://orbilu.uni.lu/handle/10993/30937 http://orbilu.uni.lu/handle/10993/29846

8888
Stéphane P. A. Bordas, ACOME Plenary Lecture 2017, Vietnam &
Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu - figsiERs

erc
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Interfaces in surgical simulation oy

Real-time adaptive methods for cutting
and needle insertion

We developed this simulation which is composed of a single heterogeneous FEM mesh
We modeled the pulsation of the patient by applying external forces on the model

v

011 | R — ) T

H. Courtecuisse et al. Medical Image Analysis, 2014  P.H. Bui et al. IEEE T. Biomed Eng. 2017 & Frontiers in Surgery, 2017

Question: how can we simulate cutting/fracture in Question: how can we adapt the mesh in real
real time using implicit time stepping? time using a posteriori error estimates?

http://orbilu.uni.lu/handle/10993/30937 http://orbilu.uni.lu/handle/10993/29846

BE A

TTTTTTTTTTTTTTT

Slides can be downloaded here: http://hdl.handle.net/10993/31487- legato-team.eu - WEaLERY
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Modelling and simulation

g validation: are we
physical problem et - solving the right

.
ans
PR
P
wen
ans
we
wee
---
.
P
san
an
....
e

M
mathematical B

discretisation error - total error
D e

\

Model reduction
error |l

discretisation

numerical error

verification: are we

numerical solution

solving the problem

Can we solve
the problem fast
enough?
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Questions asked

e \What is the Iinfluence of uncertainties in
material parameters?

* What probabillity distributions are suitable
for material parameters?

* What is the best model given experimental
data”

» Can we update models and parameters in
a patient specific way using (real-time)
experimental data”



Random Fields

» Different methods: Karhunen—Loeve expansion [Adler
2007], Fast Fourier transform [Nowak 2004].

Randoms fields
C 1 (MP&)

4.780e+03
E4338

3896

E3454
3.012e+03

L.

Realisation 1 Realisation 2

Two realisations of RF, with a log-normal distribution,

for the parameter Ci (in MPa).
116



Stochastic FE analysis of brain deformation
Numerical results (8 RV, Holzapfel model)

Sphere deformation

Il Confidence interval 95%
IllRealisation 1

E

Displacement magnitude (m)
0.008 0.016 0.024

W}JHHHH‘HHHHW,W X10_3 Realisation 2
.- 15
¢ Initial >
£ 10
@ Deformed N
5|
0.575 0.055
0.565 0.045
y (m) x (m)
Brain deformation with random parameters Confidence interval 95%

1 MC realisation. MC simulations.
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Numerical results: convergence

0.0170
|

0.0165 |
|

0.0160

0.0155

0.0150 —— MC
—— SD-MC
0.0145
10° 10" 102 10° 10* 10°> 10°

A

Fig. Center of the sphere: expected
value of the displacement in the x direction as

a function of Z.
118



Numerical results (8 RV, Holzapfel model)
ML Monte-Carlo technique: ML-PCE
0.30
0.25
0.20
0.15
0.10
0.05

0.00

Histogram (MC and MC-PCE methods).
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Global sensitivity analysis

» Sobol sensitivity indices [Sobol 2015, Saltelli 2002]

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Sobol sentivity indices

[ total effect
] 1% order

3 ) S~ S~ w w e_& “'ci
S S 0§ S 5 3

parameters

Quantity of interest: displacement magnitude of the target.
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Q: What can we infer about the material parameters inside
the domain, just from displacement observations on the
outside”

Q: Which parameters am | most uncertain about?

121



Bayesian testbed for characterising
hyperelastic materials

Tposterior (X | ¥) O Tiikelihood (¥ | X) Tprior (X)

Experimental results

Uncertain and partial data  Quantification of uncertainty
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0 500 1000 1500 2000 2500
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Bayes [heorem

Wposterior(x ‘ J/) X Tikelihood (y ‘ X)ﬂprior(x)

Goal: Given the observations, find the posterior
distribution of the unknown parameters.

128



FENICS
NMNOJECT

g \
Alnzes, Bletcha, Hake, Johannson, Kehlet, Logg, Oelgaard, Richardson, Ring, Rognes, Wells...

* Key idea: implement high-level description of finite
element models in the Unified Form Language.

« Let algorithms take over the tedious/difficult work of
inearisation and transforming maths into lower-
evel languages.
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Thank you for your attention!

You can download these slides here

http://hdl.handle.net/10993/31487
or

http://orbilu.uni.lu/bitstream/10993/31487/1/XDMS_2017_Bordas.pdf

or

http://orbilu.uni.lu/bitstream/10993/31487/4/
XDMS 2017 Bordas AverageResolution withlinks.pdf

or/and email me stephane.bordas@alum.northwestern.edu

and check out legato-team.eu
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