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Abstract—In this paper, we propose a convergent parallel best-response

algorithm with the exact line search for the nondifferentiable nonconvex
sparsity-regularized rank minimization problem. On the one hand, it

exhibits a faster convergence than subgradient algorithms and block

coordinate descent algorithms. On the other hand, its convergence to a
stationary point is guaranteed, while ADMM algorithms only converge

for convex problems. Furthermore, the exact line search procedure in the

proposed algorithm is performed efficiently in closed-form to avoid the

meticulous choice of stepsizes, which is however a common bottleneck in
subgradient algorithms and successive convex approximation algorithms.

Finally, the proposed algorithm is numerically tested.

Index Terms—Big Data Analytics, Line Search, Rank Minimization,

Successive Convex Approximation

I. INTRODUCTION

In this paper, we consider the estimation of a low rank matrix X ∈
R

N×K and a sparse matrix S ∈ R
I×K from noisy measurements

Y ∈ R
N×K such that

Y = X+DS+V,

where D ∈ R
N×I is a known matrix. The rank of X is much smaller

than N and K, i.e, rank(X)≪ min(N,K), and the support size of

S is much smaller than IK, i.e., ‖S‖0 ≪ IK.

A natural measure for the data mismatch is the least square error

augmented by regularization functions to promote the rank sparsity

of X and support sparsity of S:

(SRRM) : minimize
X,S

1

2
‖X+DS−Y‖2

F
+ λ ‖X‖∗ + µ ‖S‖1 ,

where ‖X‖∗ is the nuclear norm of X. This sparsity-regularized

rank minimization (SRRM) problem plays a fundamental role in the

analysis of traffic anomalies in large-scale backbone networks [1]. In

this application, X = RZ where Z is the unknown traffic flows over

the time horizon of interest, R is a given fat routing matrix, S is

the traffic volume anomalies. The matrix X inherits the rank sparsity

from Z because common temporal patterns among the traffic flows

in addition to their periodic behavior render most rows/columns of Z

linearly dependent and thus low rank, and S is assumed to be sparse

because traffic anomalies are expected to happen sporadically and last

shortly relative to the measurement interval, which is represented by

the number of columns K.

Although problem (SRRM) is convex, it cannot be easily solved

by standard solvers when the problem dimension is large, for the

reason that the nuclear norm ‖X‖∗ is neither differentiable nor

decomposable among the blocks of X. It follows from the fact [2, 3]

‖X‖∗ = min
(P,Q)

1

2

(

‖P‖2
F
+ ‖Q‖2

F

)

, s.t. PQ = X
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that it may be useful to consider the following optimization problem

where the nuclear norm ‖X‖∗ is replaced by ‖P‖2F + ‖Q‖2F :

minimize
P,Q,S

1

2
‖PQ+DS−Y‖2F +

λ

2

(

‖P‖2F + ‖Q‖2F
)

+ µ ‖S‖1 ,

(1)

where P ∈ R
N×ρ and Q ∈ R

ρ×K for a ρ that is usually much

smaller than N and K: ρ ≪ min(N,K). Although problem (1) is

nonconvex, it is shown in [4, Prop. 1] that every stationary point of (1)

is a global optimal solution of (SRRM) under some mild conditions.

A block coordinate descent (BCD) algorithm is adopted in [5]

to find a stationary point of the nonconvex problem (1), where the

variables are updated sequentially according to their best-response.

For example, when P (or Q) is updated, the variables (Q,S) (or

(P,S)) are fixed. When (P,Q) is fixed, the optimization problem

w.r.t. S decouples among its columns:

1

2
‖PQ+DS−Y‖2

F
+ µ ‖S‖1

=

K
∑

k=1

(

1

2
‖Pqk −Dsk − yk‖

2
2 + µ ‖sk‖1

)

,

where qk, sk and yk is the k-th column of Q, S and Y, respectively.

However, the optimization problem w.r.t. sk does not have a closed-

form solution and is not easy to solve. To reduce the complexity,

the elements of S are updated row-wise, as the optimization problem

w.r.t. si,k, the (i, k)-th element of S, has a closed-form solution:

minimize
(si,k)

K
k=1

K
∑

k=1

(

1

2
‖Pqk −Dsk − yk‖

2
2 + µ ‖sk‖1

)

.

Nevertheless, a drawback of the sequential row-wise update is that

it may incur a large delay because the (i + 1)−th row of S cannot

be updated until the i-th row is updated and the delay may be very

large when I is large, which is a norm rather than an exception in

big data analytics [6].

The alternating direction method of multipliers (ADMM) algorithm

enables the simultaneous update of all elements of S, but it does

not have a guarantee convergence to a stationary point because the

optimization problem (1) is nonconvex [4]. Note that there is some

recent development in ADMM for nonconvex problems, see [7, 8] for

example and the references therein. The ADMM algorithm proposed

in [7] is designed for nonconvex sharing/consensus problems, and

cannot be applied to solve problem (1). The ADMM algorithm

proposed in [8] converges if the matrix D in (1) has full row rank,

which is however not necessarily the case.

The nondifferentiable nonconvex problem (1) can also be solved

by standard subgradient and/or successive convex approximation

(SCA) algorithms [9]. However, convergence of subgradient and SCA

algorithms is mostly established under diminishing stepsizes, which

is sometimes difficult to deploy in practice because the convergence

behavior is sensitive to the decay rate. As a matter of fact, their



applicability in nonsmooth optimization and big data analytics is

severely limited by the meticulous choice of stepsizes [6].

In this paper, we propose a convergent parallel best-response algo-

rithm, where all elements of P, Q and S are updated simultaneously.

This is a well known concept in optimization and sometimes listed

under different names, for example, the parallel block coordinate

descent algorithm (cf. [10]) and the Jacobi algorithm (cf. [11]). To

accelerate the convergence, we compute the stepsize by the exact

line search procedure proposed in [12]: the exact line search is

performed over a properly designed differentiable function and the

resulting stepsize can be expressed in a closed-form expression, so

that the computational complexity is much lower than the traditional

line search which is over the original nondifferentiable objective

function. The proposed algorithm has several attractive features: i)

the variables are updated simultaneously based on the best-response;

ii) the stepsize is computed in closed-form based on the exact line

search; iv) it converges to a stationary point, and its advantages over

existing algorithms are summarized as follows:

• Feature i) is an advantage over the BCD algorithm;

• Features i) and ii) are advantages over subgradient algorithms;

• Feature ii) is an advantage over SCA algorithms;

• Feature iii) is an advantage over ADMM algorithms.

The above advantages will further be illustrated by numerical results.

II. THE PROPOSED PARALLEL BEST-RESPONSE ALGORITHM

WITH EXACT LINE SEARCH

In this section, we propose an iterative algorithm to find a sta-

tionary point of problem (1). It consists of solving a sequence of

successively refined approximate problems, which are presumably

much easier to solve than the original problem. To this end, we define

f(P,Q,S) ,
1

2
‖PQ+DS−Y‖2F +

λ

2

(

‖P‖2F + ‖Q‖2F
)

,

g(S) , µ ‖S‖1 .

Although f(P,Q,S) in (1) is not jointly convex w.r.t. (P,Q,S),
it is individual convex in P, Q and S. In other words, f(P,Q,S)
is convex w.r.t. one variable while the other two variables are

fixed. Preserving and exploiting this partial convexity considerably

accelerates the convergence and it has become the central idea in the

successive convex approximation and the successive pseudoconvex

approximation [11, 12].

To simplify the notation, we use Z as a compact notation for

(P,Q,S): Z , (P,Q,S); in the rest of the paper, Z and (P,Q,S)
are used interchangeably. Given Zt = (Pt,Qt,St) in iteration t,
we approximate the original nonconvex function f(Z) by a convex

function f̃(Z;Zt) that is of the following form:

f̃(Z;Zt) = f̃P (P;Zt) + f̃Q(Q;Zt) + f̃S(S;Z
t), (2)

where

f̃P (P;Zt) , f(P,Qt,St) =
1

2

∥

∥PQ
t +DS

t −Y
∥

∥

2

F
+

λ

2
‖P‖2

F
,

(3a)

f̃Q(Q;Zt) , f(Pt,Q,St) =
1

2

∥

∥P
t
Q+DS

t −Y
∥

∥

2

F
+

λ

2
‖Q‖2

F
,

(3b)

f̃S(S;Z
t) ,

∑

i,k

f(Pt,Qt, si,k, (s
t
j,k)j 6=i, (s

t
j)j 6=i)

=
∑

i,k

1

2

∥

∥

∥
P

t
q
t
k + disi,k +

∑

j 6=i
djs

t
j,k − yk

∥

∥

∥

2

2

= tr(ST
d(DT

D)S)

− tr(ST (d(DT
D)St −D

T (DS
t −Y +P

t
Q

t))),
(3c)

with qk (or yk) and di denoting the k-th and i-th column of Q (or Y)

and D, respectively, while d(DTD) denotes a diagonal matrix with

elements on the main diagonal identical to those of the matrix DTD.

Note that in the approximate function w.r.t. P and Q, the remaining

variables (Q,S) and (P,S) are fixed, respectively. Although it is

tempting to define the approximate function of f(P,Q,S) w.r.t.

S by fixing P and Q, minimizing f(Pt,Qt,S) w.r.t. the matrix

variable S does not have a closed-form solution and must be solved

iteratively. Therefore the proposed approximate function f̃S(S;Z
t)

in (3c) consists of IK component functions, and in the (i, k)-th
component function, si,k is the variable while all other variables are

fixed, namely, P, Q, (sj,k)j 6=i, and (sj)j 6=i. As we will show shortly,

minimizing f̃(S;Zt) w.r.t. S exhibits a closed-form solution.

We remark that the approximate function f̃(Z;Zt) is a (strongly)

convex function and it is differentiable in both Z and Zt. Further-

more, the gradient of the approximate function f̃(P,Q,S;Zt) is

equal to that of f(P,Q,S) at Z = Zt. To see this:

∇Pf̃(Z;Z
t) = ∇Pf̃P (P;Zt) = ∇P f(P,Qt,St)

∣

∣

P=Pt ,

and similarly ∇Qf̃(Z;Zt) = ∇Qf(P,Q,S)|
Z=Zt . Furthermore,

∇Sf̃(Z;Z
t) = (∇si,k f̃(Z;Z

t))i,k while

∇si,k f̃(Z;Z
t) = ∇si,k f̃S(S;Z

t)

= ∇si,kf(P
t,Qt, si,k, s

t
i,−k, s

t
−i)

= ∇si,kf(P,Q,S)
∣

∣

Z=Zt .

In iteration t, the approximate problem consists of minimizing

the approximate function over the same feasible set as the original

problem (1):

minimize
Z=(P,Q,S)

f̃(Z;Zt) + g(S). (4)

Since f̃(Z;Zt) is strongly convex in Z and g(S) is a convex

function w.r.t. S, the approximate problem (4) is convex and it has

a unique (globally) optimal solution, which is denoted as BZt =
(BPZ

t,BQZ
t,BSZ

t).

The approximate problem (4) naturally decomposes into several

smaller problems which can be solved in parallel:

BPZ
t
, argmin

Pk

f̃P (P;Zt)

= (Y −DS
t)(Qt)T (Qt(Qt)T + λI)−1, (5a)

BQZ
t
, argmin

Q

f̃Q(Q;Zt)

= ((Pt)TPt + λI)−1(Pt)T (Y −DS
t), (5b)

BSZ
t
, argmin

S

f̃S(S;Z
t) + g(S)

= d(DT
D)−1·

Sµ
(

d(DT
D)St −D

T (DS
t −Y

t +P
t
Q

t)
)

, (5c)

where Sµ(X) is an element-wise soft-thresholding operator: the

(i, j)-th element of Sµ(X) is [Xij − λ]+ − [−Xij − λ]+. As we

can readily see from (5), the approximate problems can be solved

efficiently because the optimal solutions are provided in an analytical

expression.

Since f̃(Z;Zt) is convex in Z and differentiable in both Z and

Zt, and has the same gradient as f(Z) at Z = Zt, it follows from

[12, Prop. 1] that BZt − Zt is a descent direction of the original



objective function f(Z) + g(S) at Z = Zt. The variable update in

the t-th iteration is thus defined as follows:

P
t+1 = P

t + γ(BPZ
t −P

t), (6a)

Q
t+1 = Q

t + γ(BQZ
t −Q

t), (6b)

S
t+1 = S

t + γ(BSZ
t − S

t), (6c)

where γ ∈ (0, 1] is the stepsize that should be properly selected.

A natural (and traditional) choice of the stepsize γ is given by the

exact line search:

min
0≤γ≤1

{

f(Zt + γ(BZt − Z
t)) + g(St + γ(BSZ

t − S
t))

}

, (7)

in which the stepsize that yields the largest decrease in objective

function value along the direction BZt−Zt is selected. Nevertheless,

this choice leads to high computational complexity, because g(S)
is nondifferentiable and the exact line search involves minimizing a

nondifferentiable function. Alternatives include constant stepsizes and

diminishing stepsizes. However, they suffer from slow convergence

(cf. [11]) and parameter tuning (cf. [12]). As a matter of fact, the

meticulous choice of stepsizes have become a major bottleneck for

subgradient and successive convex approximation algorithm [6].

It is shown in [12, Sec. III-A] that to achieve convergence, it suf-

fices to perform the exact line search over the following differentiable

function:

f(Zt + γ(BZt − Z
t)) + g(St) + γ(g(BSZ

t)− g(St)), (8)

which is an upper bound of the objective function in (7) after applying

Jensen’s inequality to the convex nondifferentiable function g(S):

g(St + γ(BSZ
t − S

t)) ≤ g(St) + γ(g(BSZ
t)− g(St)).

This exact line search procedure over the differentiable function

(8) achieves a good tradeoff between performance and complexity.

Furthermore, after substituting the expressions of f(Z) and g(S)
into (8), the exact line search boils down to minimizing a four order

polynomial over the interval [0, 1]:

γt = argmin
0≤γ≤1

{

f(Zt + γ(BZt − Z
t)) + γ(g(BSX

t)− g(St))
}

= argmin
0≤γ≤1

{

1

4
aγ4 +

1

3
bγ3 +

1

2
cγ2 + dγ

}

, (9)

where

a , 2
∥

∥△P
t△Q

t
∥

∥

2

F
,

b , 3tr(△P
t△Q

t(Pt△Q
t +△P

t
Q

t +D△S
t)T ),

c , 2tr(△P
t△Q

t(Pt
Q

t +DS
t −Y

t)T )

+
∥

∥P
t△Q

t +△P
t
Q

t +D△S
t
∥

∥

2

F

+ λ(
∥

∥△P
t
∥

∥

2

F
+

∥

∥△Q
t
∥

∥

2

F
),

d , tr((Pt△Q
t +△P

t
Q

t +D△S
t)(Pt

Q
t +DS

t −Y
t))

+ λ(tr(Pt△P
t) + tr(Qt△Q

t)) + µ(
∥

∥BSX
t
∥

∥

1
−

∥

∥S
t
∥

∥

1
),

for △Pt , BPZ
t −Pt, △Qt , BQZ

t −Qt and △St , BSZ
t −

St. Finding the optimal points of (9) is equivalent to finding the

nonnegative real root of a third-order polynomial. Making use of

Cardano’s method, we could express γt defined in (9) in a closed-

form expression:

γt = [γ̄t]10, (10a)

γ̄t =
3

√

Σ1 +
√

Σ2
1 + Σ3

2 +
3

√

Σ1 −
√

Σ2
1 + Σ3

2 −
b

3a
, (10b)

where [x]10 = max(min(x, 1), 0) is the projection of x onto the

interval [0, 1], Σ1 , −(b/3a)3 + bc/6a2 − d/2a and Σ2 , c/3a −

Algorithm 1 The parallel best-response algorithm with exact line

search for problem (1)

Data: t = 0, Z0 (arbitrary but fixed), stop criterion δ.

S1: Compute (BPZ
t,BQZ

t,BSZ
t) according to (5).

S2: Determine the stepsize γt by the exact line search (10).

S3: Update (P,Q,Z) according to (6).

S4: If
∣

∣tr((BZt − Zt)T∇f(Zt)) + g(BSZ
t)− g(St)

∣

∣ ≤ δ, STOP;

otherwise t← t+ 1 and go to S1.

(b/3a)2. Note that in (10b), the right hand side has three values (two

of them could be complex numbers), and the equal sign reads to be

equal to the smallest one among the real nonnegative values.

The proposed algorithm is summarized in Algorithm 1, and we

draw a few comments on its features and advantages.

On the parallel best-response update: In each iteration, the

variables P, Q, and S are updated simultaneously based on the best-

response. The improvement in convergence speed w.r.t. the BCD

algorithm in [5] is notable because in the BCD algorithm, the

optimization w.r.t. each element of S, say si,k, is implemented in

a sequential order, and the number of elements, IK, is usually very

large in big data applications. To avoid the meticulous choice of

stepsizes and further accelerate the convergence, the exact line search

is performed over the differentiable function f(Zt+γ(BZt−Zt))+
γ(g(BSZ

t) − gS(Z
t)) and it can be computed by a closed-form

expression. The yields easier implementation and faster convergence

than subgradient and SCA algorithms with diminishing stepsizes.

On the complexity: The complexity of the proposed algorithm

is maintained at a very low level, because both the best-responses

(BPZ
t,BQZ

t,BSZ
t) and the exact line search can be computed

by closed-form expressions, cf. (3) and (10). Note that computing

BPZ
t and BQZ

t according to (5a)-(5b) involves a matrix inverse.

This is usually affordable because the matrices to be inverted are of

a dimension ρ×ρ while the rank ρ is usually small. Furthermore, the

matrix inverse operation could be saved by adopting an element-wise

decomposition for P and Q that is in the same essence as S in (3c).

On the convergence: The proposed Algorithm 1 has a guaranteed

convergence in the sense that every limit point of the sequence {Zt}t
is a stationary point of problem (1). This claim directly follows from

[12, Theorem 1], and it serves as a certificate for the solution quality.

A. Decomposition of the Proposed Algorithm

The proposed Algorithm 1 can be further decomposed to enable

the parallel processing over a number of L nodes in a distributed

network. To see this, we first decompose the matrix variables P, D

and Y into multiple blocks (Pl)
L
l=1, (Dl)

L
l=1 and (Yl)

L
l=1, while

Pl ∈ R
Nl×ρ, Dl ∈ R

Nl×I and Yl ∈ R
Nl×K consists of Nl rows

of P, D and Y, respectively:

P =











P1

P2

..

.

PL











,D =











D1

D2

..

.

DL











,Y =











Y1

Y2

..

.

YL











,

where each node l has access to the variables (Pl,Q,S). The compu-

tation of BPZ
t in (6a) can be decomposed as BPZ

t = (BP,lZ
t)Ll=1:

BP,lZ
t = (Yl −DlS

t)(Qt)T (Qt(Qt)T + λI)−1, l = 1, . . . , L.

Accordingly, the computation of BQZ
t and BSZ

t in (6b) and (6c)

can be rewritten as

BQZ
t =

(

∑L

l=1(P
t
l)

T
P

t
l + λI

)−1 (
∑L

l=1(P
t
l)

T (Yl −DlS
t)
)

,
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BSZ
t = d

(

∑L

l=1D
T
l Dl

)−1

·

Sµ
(

d
(

∑L

l=1D
T
l Dl

)

S
t −

∑L

l=1D
T
l (DlS

t −Y
t
l +P

t
lQ

t)
)

.

Before determining the stepsize, the computation of a in (10) can

also be decomposed among the nodes as a =
∑L

l=1 al, where

al , 2
∥

∥△P
t
l△Q

t
∥

∥

2

F
.

The decomposition of b, c, and d is similar to that of a, where

bl , 3tr(△P
t
l△Q

t(Pt
l△Q

t +△P
t
lQ

t +Dl△S
t)T ),

cl , 2tr(△P
t
l△Q

t(Pt
lQ

t +DlS
t −Y

t
l )

T )

+
∥

∥P
t
l△Q

t +△P
t
lQ

t +Dl△S
t
∥

∥

2

F

+ λ
∥

∥△P
t
l

∥

∥

2

F
+

λ

I

∥

∥△Q
t
l

∥

∥

2

F
,

dl , tr((Pt
l△Q

t +△P
t
lQ

t +Dl△S
t)(Pt

lQ
t +DlS

t −Y
t
l ))

+ λtr(Pt
l△P

t
l ) +

λ

I
tr(Qt△Q

t) +
µ

I
(
∥

∥BSX
t
∥

∥

1
−

∥

∥S
t
∥

∥

1
).

To compute the stepsize as in (10), the nodes mutually exchange

(al, bl, cl, dl). The four dimensional vector (al, bl, cl, dl) provides

each node with all the necessary information to individually calculate

(a, b, c, d) and (Σ1,Σ2,Σ3), and then the stepsize γt according to

(10). The signaling incurred by the exact line search is thus small

and affordable.

III. NUMERICAL SIMULATIONS

In this section, we perform numerical tests to compare the proposed

Algorithm 1 with the BCD algorithm [5] and the ADMM algorithm

[4]. We start with a brief description of the ADMM algorithm: the

problem (1) can be rewritten as

minimize
P,Q,A,B

1

2
‖PQ+DA−Y‖2

F
+

λ

2

(

‖P‖2
F
+ ‖Q‖2

F

)

+ µ ‖B‖1

subject to A = B. (11)

The augmented Lagrangian of (11) is

Lc(P,Q,A,B,Π) =
1

2
‖PQ+DA−Y‖2

F
+

λ

2

(

‖P‖2
F
+ ‖Q‖2

F

)

+ µ ‖B‖1 + tr(ΠT (A−B)) +
c

2
‖A−B‖2

F
,

The code is available at http://orbilu.uni.lu/handle/10993/33772.

where c is a positive constant. In ADMM, the variables are updated

in the t-th iteration as follows:

(Qt+1,Bt+1) = argmin
Q,A

Lc(P
t,Q,At,B,Πt),

P
t+1 = argmin

P

Lc(P,Qt+1,At+1,Bt,Πt),

A
t+1 = argmin

B

Lc(P
t+1,Qt+1,A,Bt+1,Πt),

Π
t+1 = Π

t + c(At+1 −B
t+1).

Note that the solutions to the above optimization problems have an

analytical expression [4]. We set c = 104.

The simulation parameters are set as follows. N = 1000, K =
4000, I = 4000, ρ = 10. The elements of D are generated randomly

and they are either 0 or 1. The elements of V follow the Gaussian

distribution with mean 0 and variance 0.01. Each element of S

can take three possible values, namely, -1, 0,1, with the probability

P (Si,k = −1) = P (Sik = 1) = 0.05 and P (Sik = 0) = 0.9. We

set Y = PQ +DS+V, where P and Q are generated randomly

following the Gaussian distribution N (0, 100/I) and N (0, 100/K),
respectively. The sparsity regularization parameters are λ = 0.1·‖Y‖
(‖Y‖ is the spectral norm of Y) and µ = 0.1 ·

∥

∥DTY
∥

∥

∞
. The

simulation results are averaged over 10 realizations.

In Figure 1 (a), we show the objective function value versus the

number of iterations achieved by different algorithms. As we can see

from Figure 1, the ADMM does not converge, as the optimization

problem (11) (and (1)) is nonconvex. We also observe that the

behavior of the ADMM is very sensitive to the value of c: in some

instances, the ADMM may converge if c is large enough, but it is

a difficult task on its own to choose an appropriate value of c to

achieve a good performance.

Note that for the BCD algorithm in Figure 1, all elements of S

are updated once, in a sequential order, in one iteration. We can see

from Figure 1 (a) that the BCD algorithm converges in the same

number of iterations as the proposed Algorithm 1. But the incurred

delay of each iteration in the BCD algorithm is typically very large,

because all rows are updated sequentially. On the other hand, in the

proposed algorithm, all variables are updated simultaneously and the

CPU time (in minutes) needed for each iteration is relatively small.

For the visual convenience in Figure 1 (b), the curve of the proposed

algorithm is magnified in a small window, and the curve of the BCD

algorithm is plotted for the first 100 minutes only. We see from Figure

1 (b) that the proposed algorithm converges to a stationary point

in less than 1 minute, while it takes the BCD algorithm about 100

minutes to find a solution that is reasonably good. Furthermore, it

takes the BCD algorithm about 5 hours to converge to a solution

that is as good as the proposed algorithm. This marks a notable

improvement which is important in real time big data applications.

IV. CONCLUDING REMARKS

In this paper, we have proposed a parallel best-response algorithm

for the nonconvex sparsity-regularized rank minimization problem.

The proposed algorithm exhibits fast convergence and low com-

plexity, because 1) the variables are updated simultaneously based

on their best response; 2) the stepsize is based on the exact line

search and it is performed over a differentiable function; and 3)

both the best response and the stepsize are computed by closed-form

expressions. Furthermore, the proposed algorithm has a guaranteed

convergence to a stationary point. Because of these attractive features,

the proposed algorithm are easy to implement and perform well in

different settings. Numerical results consolidate the advantages of the

proposed algorithm, especially the notable improvement in the CPU

time compared with the state-of-the-art BCD algorithm. To promote

reproducible research, the simulation code is made available online.
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