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A Parallel Decomposition Method for Nonconvex
Stochastic Multi-Agent Optimization Problems

Yang Yang, Gesualdo Scutari, Daniel P. Palomar, and Marius Pesavento

Abstract—This paper considers the problem of minimizing the
expected value of a (possibly nonconvex) cost function parameter-
ized by a random (vector) variable, when the expectation cannot
be computed accurately (e.g., because the statistics of the random
variables are unknown and/or the computational complexity is
prohibitive). Classical stochastic gradient methods for solving this
problem may suffer from slow convergence. In this paper, we pro-
pose a stochastic parallel Successive Convex Approximation-based
(best-response) algorithm for general nonconvex stochastic sum-
utility optimization problems, which arise naturally in the design
of multi-agent networks. The proposed novel decomposition
approach enables all users to update their optimization variables
in parallel by solving a sequence of strongly convex subproblems,
one for each user. Almost sure convergence to stationary points
is proved. We then customize the algorithmic framework to solve
the stochastic sum rate maximization problem over Single-Input-
Single-Output (SISO) frequency-selective interference channels,
multiple-input-multiple-output (MIMO) interference channels,
and MIMO multiple-access channels. Numerical results corrobo-
rate that the proposed algorithms can converge faster than state-
of-the-art stochastic gradient schemes while achieving the same
(or better) sum-rates.

Index Terms—Distributed algorithms, Multi-agent systems,
stochastic optimization, successive convex approximation.

I. INTRODUCTION

Wireless networks are composed of multiple users that may
have different objectives and generate interference when no
orthogonal multiplexing scheme is imposed to regulate the
transmissions; examples are peer-to-peer networks, cognitive
radio systems, and ad-hoc networks. A common design of
such multi-user systems is to optimize the (weighted) sum of
users’ objective functions. This formulation however requires
the knowledge of the system parameters, such as the users’
channel states. In practice this information is either difficult
to acquire (e.g., when the parameters are rapidly changing)
or imperfect due to estimation and signaling errors. In such
scenarios, it is convenient to focus on the optimization of the
long-term performance of the network, measured in terms of
the expected value of the sum-utility function, parametrized
by the random system parameters. In this paper, we consider
the frequently encountered difficult case that (the expected
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value of) the social function is nonconvex and the expectation
cannot be computed (either numerically or in closed-form).
Such a system design naturally falls into the class of stochastic
optimization problems [2, 3].

Gradient methods for unconstrained stochastic nonconvex
optimization problems have been studied in [4, 5, 6], where
almost sure convergence to stationary points has been es-
tablished, under some technical conditions; see, e.g., [5].
The extension of these methods to constrained optimization
problems is not straightforward; in fact, the descent-based
convergence analysis developed for unconstrained gradient
methods no longer applies to their projected counterpart (due
to the presence of the projection operator). Convergence of
stochastic gradient projection methods has been proved only
for convex objective functions [4, 7, 8].

To cope with nonconvexity, gradient averaging seems to be
an essential step to resemble convergence; indeed, stochastic
conditional gradient methods for nonconvex constrained prob-
lems hinge on this idea [9, 10, 11, 12]: at each iteration the new
update of the variables is based on the average of the current
and past gradient samples. Under some technical conditions,
the average sample gradient eventually resembles the nominal
(but unavailable) gradient of the (stochastic) objective function
[9, 13]; convergence analysis can then be built on results from
deterministic nonlinear programming.

Numerical experiments for large classes of problems show
that plain gradient-like methods usually converge slowly. Some
acceleration techniques have been proposed in the literature
[8, 14], but only for strongly convex objective functions. Here
we are interested in nonconvex (constrained) stochastic prob-
lems. Moreover, (proximal, accelerated) stochastic gradient-
based schemes use only the first order information of the
objective function (or its realizations); recently it was shown
[15, 16, 17] that for deterministic nonconvex optimization
problems exploiting the structure of the function by replacing
its linearization with a “better” approximant can enhance
empirical convergence speed. In this paper we aim at bringing
this idea into the context of stochastic optimization problems.

Our main contribution is to develop a new broad algorithmic
framework for the computation of stationary solutions of a
wide class of nonconvex stochastic optimization problems,
encompassing many multi-agent system designs of practical
interest. The essential idea underlying the proposed approach
is to decompose the original nonconvex stochastic problem
into a sequence of (simpler) deterministic subproblems. In
this case, the objective function is replaced by suitable cho-
sen sample convex approximations; the subproblems can be
then solved in a parallel and distributed fashion across the
users. Other key features of the proposed framework are:
i) it is very flexible in the choice of the approximant of
the nonconvex objective function, which need not necessarily
be its first order approximation, as in classical (proximal)
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gradient schemes; ii) it encompasses a gamut of algorithms
that differ in cost per iteration, communication overhead,
and convergence speed, while all converging under the same
conditions; and iii) it can be successfully used to robustify
the algorithms proposed in [15] for deterministic optimiza-
tion problems, when only inexact estimates of the system
parameters are available, which makes them applicable to
more realistic scenarios. As illustrative examples, we cus-
tomize the proposed algorithms to some resource allocation
problems in wireless communications, namely: the sum-rate
maximization problems over MIMO Interference Channels
(ICs) and Multiple Access Channels (MACs). The resulting
algorithms outperform existing (gradient-based) methods both
theoretically and numerically.

The proposed decomposition technique hinges on successive
convex approximation (SCA) methods, and it is a nontrivial
generalization to stochastic (nonconvex) optimization prob-
lems of the solution method proposed in [15] for deterministic
optimization problems. We remark that [15] is not applicable
to stochastic problems wherein the expected value of the
objective function cannot be computed analytically, which is
the case for the classes of problems studied in this paper. In
fact, as it shown also numerically (cf. Sec. IV-D), when applied
to sample functions of stochastic optimization problems, the
scheme in [15] may either not converge or converge to limit
points that are not even stationary solutions of the stochastic
optimization problem. Finally, since the scheme proposed
in this paper is substantially different from that in [15], a
further contribution of this work is establishing a new type
of convergence analysis (see Appendix A) that conciliates
random and SCA strategies, which is also of interest per se
and could bring to further developments.

An SCA framework for stochastic optimization problems
has also been proposed in a recent, independent submission
[18]; however the proposed method differs from [18] in many
features. Firstly, the iterative algorithm proposed in [18] is
based on a majorization minimization approach, requiring thus
that the convex approximation be a tight global upper bound
of the (sample) objective function. This requirement, which
is fundamental for the convergence of the schemes in [18], is
no longer needed in the proposed algorithm. This represents a
turning point in the design of distributed stochastic SCA-based
methods, enlarging substantially the class of (large scale)
stochastic nonconvex problems solvable using the proposed
framework. Secondly, even when the aforementioned upper
bound constraint can be met, it is not always guaranteed that
the resulting convex (sample) subproblems are decomposable
across the users, implying that a centralized implementation
might be required in [18]; the proposed schemes instead
naturally lead to a parallel and distributed implementation.
Thirdly, the proposed methods converge under weaker condi-
tions than those in [18]. Fourthly, numerical results on several
test problems show that the proposed scheme outperforms
[18], see Sec. IV.

Finally, within the classes of approximation methods for
stochastic optimization problems, it is worth mentioning the
Sample Average Approach (SAA) [18, 19, 20, 21]: the “true”
(stochastic) objective function is approximated by an ensemble

average. Then the resulting deterministic optimization problem
is solved by an appropriate numerical procedure. When the
original objective function is nonconvex, the resulting SSA
problem is nonconvex too, which makes the computation of
its global optimal solution at each step a difficult, if not
impossible, task. Therefore SSA-based methods are generally
used to solve stochastic convex optimization problems.

The rest of the paper is organized as follows. Sec. II
formulates the problem along with some motivating appli-
cations. The novel stochastic decomposition framework is
introduced in Sec. III; customizations of the framework to
some representative applications are discussed in Sec. IV.
Finally, Sec. VI draws some conclusions.

II. PROBLEM FORMULATION

We consider the design of a multi-agent system composed
of I users; each user i has his own strategy vector xi to
optimize, which belongs to the convex feasible set Xi ⊆
Cni . The variables of the remaining users are denoted by
x−i � (xj)

I
j=1,j �=i, and the joint strategy set of all users is

the Cartesian product set X = X1 × . . .×XI .
The stochastic social optimization problem is formulated as:

minimize
x�(xi)Ii=1

U(x) � E

[∑
j∈If

fj(x, ξ)
]

subject to xi ∈ Xi, i = 1, . . . , I,

(1)

where If � {1, . . . , If}, with If being the number of
functions; each cost function fj(x, ξ) : X × D → R depends
on the joint strategy vector x and a random vector ξ, defined
on the probability space (Ω,F , P), with Ω ⊆ Cm being the
sample space, F being the σ-algebra generated by subsets
of Ω, and P being a probability measure defined on F , which
need not be known. Note that the optimization variables can be
complex-valued; in such a case, all the gradients of real-valued
functions are intended to be conjugate gradients [22, 23].
Assumptions: We make the following assumptions:
(a) Each Xi is compact and convex;
(b) Each fj(x, ξ) is continuously differentiable on X , for any

given ξ, and the gradient is Lipschitz continuous with
constant L∇fj(ξ). Furthermore, the gradient of U(x) is
Lipschitz continuous with constant L∇U < +∞.

These assumptions are quite standard and are satisfied for a
large class of problems. Note that the existence of a solution
to (1) is guaranteed by Assumption (a). Since U(x) is not
assumed to be jointly convex in x, (1) is generally nonconvex.
Some instances of (1) satisfying the above assumptions are
briefly listed next.
Example #1: Consider the maximization of the ergodic sum-
rate over frequency-selective ICs:

maximize
p1,...,pI

E

[
N∑

n=1

I∑
i=1

log
(
1 +

|hii,n|2pi,n

σ2
i,n+

∑
j �=i |hij,n|2pj,n

)]
subject to pi ∈ Pi � {pi : pi ≥ 0,1Tpi ≤ Pi}, ∀i,

(2)
where pi � {pi,n}Nn=1 with pi,n being the transmit power
of user i on subchannel (subcarrier) n, N is the number of
parallel subchannels, Pi is the total power budget, hij,n is
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the channel coefficient from transmitter j to receiver i on
subchannel n, and σ2

i,n is the variance of the thermal noise
over subchannel n at the receiver i. The expectation is taken
over channel coefficients (hij,n)i,j,n.
Example #2: The maximization of the ergodic sum-rate over
MIMO ICs also falls into the class of problems (1):

maximize
Q1,...,QI

E

[
I∑

i=1

log det
(
I+HiiQiH

H
iiRi(Q−i,H)−1

)]
subject to Qi ∈ Qi � {Qi : Qi 	 0,Tr(Qi) ≤ Pi}, ∀i,

(3)
where Ri (Q−i,H) � RNi

+
∑

j �=i HijQjH
H
ij is the covari-

ance matrix of the thermal noise RNi (assumed to be full
rank) plus the multi-user interference, Pi is the total power
budget, and the expectation in (3) is taken over the channels
H � (Hij)

I
i,j=1.

Example #3: Another application of interest is the maximiza-
tion of the ergodic sum-rate over MIMO MACs:

maximize
Q1,...,QI

E

[
log det

(
RN +

∑I
i=1 HiQiH

H
i

)]
subject to Qi ∈ Qi, ∀i.

(4)

This is a special case of (1) where the utility function is
concave in Q � (Qi)

I
i=1, If = 1, If = {1}, and the

expectation in (4) is taken over the channels H � (Hi)
I
i=1.

Example #4: The algorithmic framework that will be intro-
duced shortly can be successfully used also to robustify dis-
tributed iterative algorithms solving deterministic (nonconvex)
social problems, but in the presence of inexact estimates of the
system parameters. More specifically, consider for example the
following sum-cost minimization multi-agent problem:

minimize
x

∑I
i=1 fi(x1, . . . ,xI)

subject to xi ∈ Xi, i = 1, . . . , I,
(5)

where fi(xi,x−i) is uniformly convex in xi ∈ Xi. An efficient
distributed algorithm converging to stationary solutions of (5)
has been recently proposed in [15]: at each iteration t, given
the current iterate xt, every agent i minimizes (w.r.t. xi ∈ Xi)
the following convexified version of the social function:

fi(xi,x
t
−i) +

〈
xi − xt

i,
∑

j �=i∇ifj(x
t)
〉
+ τi

∥∥xi − xt
i

∥∥2 ,
where ∇ifj(x) stands for ∇x∗

i
fj(x), and 〈a,b〉 � 

(
aHb

)
(‖a‖ =

√
〈a, a〉). The evaluation of the above function

requires the exact knowledge of ∇ifj(x
t) for all j �= i. In

practice, however, only a noisy estimate of ∇ifj(x
t) is avail-

able [24, 25, 26]. In such cases, convergence of pricing-based
algorithms [15, 27, 28, 29] is no longer guaranteed. We will
show in Sec. IV-C that the proposed framework can be readily
applied, for example, to robustify (and make convergent), e.g.,
pricing-based schemes, such as [15, 27, 28, 29].

Since the class of problems (1) is in general nonconvex
(possibly NP hard [30]), the focus of this paper is to design dis-
tributed solution methods for computing stationary solutions
(possibly local minima) of (1). The major goal is to devise
parallel (nonlinear) best-response schemes that converge even
when the expected value in (1) cannot be computed accurately
and only sample values of ξ are available.

III. A NOVEL PARALLEL STOCHASTIC DECOMPOSITION

The social problem (1) faces two main issues: i) the non-
convexity of the objective functions; and ii) the impossibility
to estimate accurately the expected value. To deal with these
difficulties, we propose a decomposition scheme that consists
in solving a sequence of parallel strongly convex subproblems
(one for each user), where the objective function of user
i is obtained from U(x) by replacing the expected value
with a suitably chosen incremental sample estimate of it and
linearizing the nonconvex part. More formally, at iteration t, a
random vector ξt is realized,1 and user i solves the following
problem: given xt ∈ X and ξt ∈ Ω, let

x̂i(x
t, ξt) � argmin

xi∈Xi

f̂i(xi;x
t, ξt), (6a)

with the surrogate function f̂i(xi;x
t, ξt) defined as

f̂i(xi;x
t, ξt) �

ρt
∑

j∈Ct
i
fj(xi,x

t
−i, ξ

t) + ρt
〈
xi − xt

i,πi(x
t, ξt)

〉
+(1− ρt)

〈
xi − xt

i, f
t−1
i

〉
+ τi

∥∥xi − xt
i

∥∥2; (6b)

where the pricing vector πi(x, ξ) is given by

πi

(
xt, ξt

)
�
∑

j∈Ct
i
∇ifj

(
xt, ξt

)
; (6c)

and f ti is an accumulation vector updated recursively according
to
f ti = (1−ρt)f t−1

i +ρt(πi(x
t, ξt)+

∑
j∈Ct

i
∇ifj(x

t, ξt)), (6d)

with ρt ∈ (0, 1] being a sequence to be properly chosen (ρ0 =
1). Here ξ0, ξ1, . . . are realizations of random vectors defined
on (Ω,F , P), at iterations t = 0, 1, . . . , respectively. The other
symbols in (6) are defined as follows:

• In (6b): Cti is any subset of Sti � {i ∈ If :
fi(xi,x

t
−i, ξ

t) is convex on Xi, given xt
−i and ξt}; Sti

is the set of indices of functions that are convex in xi;
• In (6c): Cti denotes the complement of Cti , i.e., Cti ∪Cti =
Sti ; thus, it contains (at least) the indices of functions
fi(xi,x

t
−i, ξ

t) that are nonconvex in xi, given xt
−i and

ξt;
• In (6c)-(6d):∇ifj(x, ξ) is the gradient of fj(x, ξ) w.r.t.

x∗
i (the complex conjugate of xi). Note that, since

fj(x, ξ) is real-valued, ∇x∗
i
f(x, ξ) = ∇x∗

i
f(x, ξ)∗ =

(∇xif(x, ξ))
∗.

Given x̂i(x
t, ξt), x � (xi)

I
i=1 is updated according to

xt+1
i = xt

i + γt+1(x̂i(x
t, ξt)− xt

i), i = 1, . . . ,K, (7)

where γt ∈ (0, 1]. Note that the iterate xt is a function of the
past history F t of the algorithm up to iteration t (we omit this
dependence for notational simplicity):

F t �
{
x0, . . . ,xt−1, ξ0, . . . , ξt−1

}
.

Since ξ0, . . . , ξt−1 are random vectors, x̂i(x
t, ξ) and xt are

random vectors as well.
The subproblems (6a) have an interesting interpretation:

each user minimizes a sample convex approximation of the

1With slight abuse of notation, throughout the paper, we use the same
symbol ξt to denote both the random vector ξt and its realizations.
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Algorithm 1: Stochastic parallel decomposition algorithm

Data: τ � (τi)
I
i=1 ≥ 0, {γt}, {ρt}, x0 ∈ X ; set t = 0.

(S.1): If xt satisfies a suitable termination criterion: STOP.
(S.2): For all i = 1, . . . , I , compute x̂i(x

t, ξt) [cf. (6)].
(S.3): The random vector ξt is realized; update xt+1 =
(xt

i)
I
i=1 according to

xt+1
i = (1− γt+1)xt

i + γt+1 x̂i(x
t, ξt), ∀i = 1, . . . , I.

(S.4): For all i = 1, . . . , I , update f ti according to (6d).
(S.5): t← t+ 1, and go to (S.1).

original nonconvex stochastic function. The first term in (6b)
preserves the convex component (or part of it, if Ct

i ⊂ St
i )

of the sample social function. The second term in (6b)−the
vector πi(x, ξ)−comes from the linearization of (at least) the
nonconvex part. The vector f ti in the third term represents the
incremental estimate of ∇x∗U(xt) (which is not available), as
one can readily check by substituting (6c) into (6d):

f ti = (1− ρt)f t−1
i + ρt

∑
j∈If

∇ifj(x
t, ξt). (8)

Roughly speaking, the goal of this third term is to estimate on-
the-fly the unknown ∇x∗U(xt) by its samples collected over
the iterations; based on (8), such an estimate is expected to
become more and more accurate as t increases, provided that
the sequence ρt is properly chosen (this statement is made
rigorous shortly in Theorem 1). The last quadratic term in
(6b) is the proximal regularization whose numerical benefits
are well-understood [31].

Given (6), we define the “best-response” mapping as: given
ξ ∈ ⊗,

X � y �→ x̂(y, ξ) � (x̂i(y, ξ))
I
i=1 . (9)

Note that x̂(•, ξ) is well-defined for any given ξ because the
objective function in (6) is strongly convex with constant τmin:

τmin � min
i=1,...,I

{τi} . (10)

The proposed decomposition scheme is formally described
in Algorithm 1, and its convergence properties are stated
in Theorem 1, under the following standard boundedness
assumptions on the instantaneous gradient errors [24, 32].

Assumption (c): The instantaneous gradient is unbiased
with bounded variance, that is, the following holds almost
surely:

E
[
∇U(xt)−

∑
j∈If
∇fj(xt, ξt)

∣∣F t
]
= 0, ∀t = 0, 1, . . . ,

and

E
[∥∥∇U(xt)−

∑
j∈If
∇fj(xt, ξt)

∥∥2∣∣F t
]
<∞, ∀t = 0, 1, . . . .

This assumption is readily satisfied if the random variables
ξ0, ξ1, . . . are bounded and identically distributed.

Theorem 1. Given problem (1) under Assumptions (a)-(c),
suppose that τmin > 0 in (6b) and the step-sizes {γt} and
{ρt} are chosen so that

i) γt → 0,
∑

t γ
t =∞,

∑
(γt)2 <∞, (11a)

ii) ρt → 0,
∑

t ρ
t =∞,

∑
(ρt)2 <∞, (11b)

iii) lim
t→∞

γt/ρt = 0, (11c)

iv) lim sup
t→∞

ρt
(∑

j∈If
L∇fj(ξt)

)
= 0, almost surely. (11d)

Then, every limit point of the sequence {xt} generated by
Algorithm 1 (at least one of such point exists) is a stationary
point of (1) almost surely.

Proof: See Appendix A.
On Assumption (c): The boundedness condition is in terms
of the conditional expectation of the (random) gradient error.
Compared with [18], Assumption (c) is weaker because in [18]
it is required that every realization of the (random) gradient
error must be bounded.
On Condition (11d): The condition has the following inter-
pretation: all increasing subsequences of

∑
j∈If

L∇fj(ξt) must
grow slower than 1/ρt. We will discuss later in Sec. IV how
this assumption is satisfied for specific applications. Note that
if
∑

j∈If
L∇fj(ξ) is uniformly bounded for any ξ (which is

indeed the case if ξ is a bounded random vector), then (11d)
is trivially satisfied.
On Algorithm 1: To the best of our knowledge, Algorithm 1 is
the first parallel best-response (e.g., nongradient-like) scheme
for nonconvex stochastic sum-utility problems in the form (1):
all the users update in parallel their strategies (possibly with
a memory) solving a sequence of decoupled (strongly) convex
subproblems [cf. (6)]. It performs empirically better than
classical stochastic gradient-based schemes at no extra cost
of signaling, because the convexity of the objective function,
if any, is better exploited. Numerical experiments on specific
applications confirm this intuition; see Sec. IV. Moreover,
by choosing different instances of the set Cti in (6b), one
obtains convex subproblems that may exhibit a different trade-
off between cost per iteration and convergence speed. Finally,
it is guaranteed to converge under very weak assumptions (e.g.,
weaker than those in [18]) while offering some flexibility in
the choice of the free parameters [cf. Theorem 1].
Diminishing stepsize rules: Convergence is guaranteed if a
diminishing stepsize rule satisfying (11) is chosen. An instance
of (11) is, e.g., the following:

γt =
1

tα
, ρt =

1

tβ
, 0.5 < β < α ≤ 1. (12)

Roughly speaking, (11) says that the stepsizes γt and ρt, while
diminishing (with γt decreasing faster than ρt), need not go to
zero too fast. This kind of stepsize rules are of the same spirit
of those used to guarantee convergence of gradient methods
with error; see [33] for more details.
Implementation issues: In order to compute the best-
response, each user needs to know

∑
j∈Ct

i
fj(xi,x

t
−i, ξ

t) and
the pricing vector πi(x

t, ξt). The signaling required to acquire
this information is generally problem-dependent. If the prob-
lem under consideration does not have any specific structure,
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the most natural message-passing strategy is to communicate
directly xt

−i and πi(x
t, ξt). However, in many specific appli-

cations significantly reduced signaling may be required; see
Sec. IV for some examples. Note that the signaling is of the
same spirit as that of pricing-based algorithms proposed in
the literature for the maximization of deterministic sum-utility
functions [15, 29]; no extra communication is required to
update f ti : once the new pricing vector πi(x

t, ξt) is available,
the recursive update (6d) for the “incremental” gradient is
based on a local accumulation register keeping track of the
last iterate f t−1

i . Note also that, thanks to the simultaneous
nature of the proposed scheme, the overall communication
overhead is expected to be less than that required to implement
sequential schemes, such the deterministic schemes in [29].

A. Some special cases

We customize next the proposed general algorithmic frame-
work to specific instances of problem (1) arising naturally in
many applications.

1) Stochastic proximal conditional gradient methods: Quite
interestingly, the proposed decomposition technique resembles
classical stochastic conditional gradient schemes [4] when one
chooses in (6b) Cti = ∅, for all i and t, resulting in the
following surrogate function:

f̂i(xi;x
t, ξt) = ρt

〈
xi − xt

i,
∑

j∈If
∇ifj

(
xt, ξt

)〉
+(1− ρt)

〈
xi − xt

i, f
t−1
i

〉
+ τi

∥∥xi − xt
i

∥∥2 , (13)

with f ti updated according to (8). Note that traditional stochas-
tic conditional gradient methods [9] do not have the proximal
regularization term in (13). However, it is worth mentioning
that, for some of the applications introduced in Sec. II, it is just
the presence of the proximal term that allows one to compute
the best-response x̂i(x

t, ξt) resulting from the minimization
of (13) in closed-form; see Sec. IV-B.

2) Stochastic best-response algorithm for single (convex)
functions: Suppose that the social function in (1) is a single
function U(x) = E [f(x1, . . . ,xI , ξ)], with f(x1, . . . ,xI , ξ)
convex in each xi ∈ Xi (but not necessarily jointly), for any
given ξ. This optimization problem is a special case of the
general formulation (1), with If = 1, If = {1} and St

i = {1}.
Since f(x1, . . . ,xI , ξ) is componentwise convex, a natural
choice for the surrogate functions f̂i is setting Cti = St

i = {1}
for all t, resulting in the following

f̂i(xi;x
t, ξt) = ρtf

(
xi,x

t
−i, ξ

t
)

+(1− ρt)
〈
xi − xt

i, f
t−1
i

〉
+ τi

∥∥xi − xt
i

∥∥2 , (14)

where f ti is updated according to f ti = (1− ρt) f t−1
i +

ρt∇if
(
xt, ξt

)
. Convergence conditions are still given by

Theorem 1. It is worth mentioning that the same choice
comes out naturally when f(x1, . . . ,xI , ξ) is uniformly jointly
convex; in such a case the proposed algorithm converges (in
the sense of Theorem 1) to the global optimum of U(x). An
interesting application of this algorithm is the maximization
of the ergodic sum-rate over MIMO MACs in (4), resulting
in the first convergent simultaneous stochastic MIMO Iterative
Waterfilling algorithm in the literature; see Sec. IV-C.

3) Stochastic pricing algorithms: Suppose that I = If
and each St

i = {i} (implying that fi(xi,x−i, ξ) is uniformly
convex on Xi). By taking each Cti = {i} for all t, the surrogate
function in (6b) reduces to

f̂i(xi;x
t, ξt) � ρtfi(xi,x

t
−i, ξ

t) + ρt
〈
xi − xt

i,πi(x
t, ξt)

〉
+(1− ρt)

〈
xi − xt

i, f
t−1
i

〉
+ τi ‖xi − xt

i‖
2
,

(15)
where πi(x, ξ) =

∑
j �=i∇ifj(x, ξ) and f ti = (1− ρt) f t−1

i +

ρt(πi(x
t, ξt) +∇ifi(xi,x

t
−i, ξ

t)). This is the generalization
of the deterministic pricing algorithms [15, 29] to stochastic
optimization problems. Examples of this class of problems are
the ergodic sum-rate maximization problem over SISO and
MIMO IC formulated in (2)-(3); see Sec. IV-A and Sec. IV-B.

4) Stochastic DC programming: A stochastic DC program-
ming problem is formulated as

minimize
x

Eξ

[∑
j∈If

(fj(x, ξ)− gj(x, ξ))
]

subject to xi ∈ Xi, i = 1, . . . , I,
(16)

where both fj(x, ξ) and gj(x, ξ) are uniformly convex func-
tions on X for any given ξ. A natural choice of the surrogate
functions f̂i for (16) is linearizing the concave part of the
sample sum-utility function, resulting in the following

f̂i(xi;x
t, ξt) = ρt

∑
j∈If

fj(xi,x
t
−i, ξ

t)

+ ρt
〈
xi − xt

i,πi(x
t, ξt)

〉
+ (1 − ρt)

〈
xi − xt

i, f
t−1
i

〉
+ τi

∥∥xi − xt
i

∥∥2,
where πi(x, ξ) � −

∑
j∈If

∇igj(x, ξ) and

f ti =
(
1− ρt

)
f t−1
i +ρt(πi(x

t, ξt)+
∑

j∈If
∇ifj(xi,x

t
−i, ξ

t)).

Comparing the surrogate functions (14)-(16) with (13),
one can appreciate the potential advantage of the proposed
algorithm over classical gradient-based methods: the proposed
schemes preserves the (partial) convexity of the original sam-
ple function while gradient-based methods use only first order
approximations. The proposed algorithmic framework is thus
of the best-response type and empirically it yields faster con-
vergence than gradient-based methods. The improvement in
the practical convergence speed will be illustrated numerically
in the next section.

IV. APPLICATIONS

In this section, we customize the proposed algorithmic
framework to some of the applications introduced in Sec.
II, and compare the resulting algorithms with both classical
stochastic gradient algorithms and state-of-the-art schemes
proposed for the specific problems under considerations..
Numerical results clearly show that the proposed algorithms
compare favorably on state-of-the-art schemes.

A. Sum-rate maximization over frequency-selective ICs

Consider the sum-rate maximization problem over
frequency-selective ICs, as introduced in (2). Since the
instantaneous rate of each user i,

ri(pi,p−i,h) =

N∑
n=1

log

(
1 +

|hii,n|2 pi,n
σ2
i,n +

∑
j �=i |hij,n|2 pj,n

)
,
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is uniformly strongly concave in pi ∈ Pi, a natural choice
for the surrogate function f̂i is the one in (15) wherein
ri(pi,p−i,h

t) is kept unchanged while
∑

j �=i rj(pj ,p−j ,h
t)

is linearized. This leads to the following best-response func-
tions

p̂i(p
t,ht) = argmax

pi∈Pi

{
ρt · ri(pi,p

t
−i,h

t) + ρt
〈
pi,π

t
i

〉
+(1− ρt)

〈
pi, f

t−1
i

〉
− τi

2

∥∥pi − pt
i

∥∥2
2

}
, (17a)

where πt
i=πi(p

t,ht) � (πi,n(p
t,ht))Nn=1 with

πi,n(p
t,ht) =

∑
j �=i∇pi,nrj(p

t,ht)

= −
∑

j �=i|ht
ji,n|2

SINRt
j,n

(1+SINRt
j,n)·MUIt

j,n
,

MUIt
j,n � σ2

j,n +
∑

i�=j |ht
ji,n|2pti,n,

SINRt
j,n = |ht

jj,n|2ptj,n/MUIt
j,n.

The variable f ti is updated according to f ti = (1 −
ρt) f t−1

i +ρt(πt
i + ∇piri(p

t,ht)). Note that p̂i(p
t,ht) �

(p̂i,n(p
t,ht))Nn=1 in (17a) can be computed in closed-form

[15]:

p̂i,n(p
t,ht) = WF

(
ρt,SINRt

i,n/p
t
i,n, τi,

ρtπt
i,n + (1− ρt)f t−1

i,n + τ ti p
t
i,n − μ�

)
, (18)

where

WF(a, b, c, d) =
1

2

⎡⎣d
c
− 1

b
+

√(
d

c
+

1

b

)2

+
4a

c

⎤⎦+

,

and μ� is the Lagrange multiplier such that 0 ≤ μ� ⊥∑N
n=1 p̂i,n(p

t,ht) − Pi ≤ 0, and it can be found efficiently
using a standard bisection method.

The overall stochastic pricing-based algorithm is then given
by Algorithm 1 with best-response mapping defined in (18);
convergence is guaranteed under conditions i)-iv) in The-
orem 1. Note that the theorem is trivially satisfied using
stepsizes rules as required in i)-iii) [e.g., (12)]; the only
condition that needs further consideration is condition iv). If
lim sup
t→∞

ρt
(∑

j∈If
L∇fj(ξt)

)
> 0, we can assume without

loss of generality (w.l.o.g.) that the sequence of the Lipschitz
constant

{∑
j∈If

L∇fj(ξt)

}
is increasing monotonically at a

rate no slower than 1/ρt (we can always limit the discussion
to such a subsequence). For any h̄ > 0, define p(h̄) �
Prob(|hij,n| ≥ h̄) and assume w.l.o.g. that 0 ≤ p(h̄) < 1.
Note that the Lipschitz constant L∇fj(ξ) is upper bounded
by the maximum eigenvalue of the augmented Hessian of
fj(x, ξ) [34], and the maximum eigenvalue increasing mono-
tonically means that the channel coefficient is becoming larger
and larger (this can be verified by explicitly calculating the
augmented Hessian of fj(x, ξ); details are omitted due to
page limit). Since Prob(|ht+1

ij,n| ≥ |ht
ij,n| for all t ≥ t0) ≤

Prob(|ht+1
ij,n| ≥ h̄ for all t ≥ t0) = p(h̄)t−t0+1 −→

t→∞
0, we can

infer that the magnitude of the channel coefficient increasing
monotonically is an event of probability 0. Therefore, condi-
tion (11d) is satisfied.
Numerical results. We simulated a SISO frequency selective
IC under the following setting: the number of users is either

five or twenty; equal power budget Pi = P and white Gaussian
noise variance σ2

i = σ2 are assumed for all users; the SNR
of each user snr = P/σ2 is set to 10dB; the instantaneous
parallel subchannels ht � (ht

ij,n)i,j,n are generated according
to ht = h+�ht, where h (generated by MATLAB command
randn) is fixed while �ht is generated at each t using δ ·
randn, with δ = 0.2 being the noise level.

We considered in Fig. 1 the following algorithms: i) the
proposed stochastic best-response pricing algorithm (with τi =
10−8 for all i, γ1 = ρ0 = ρ1 = 1, ρt = 2/(t + 2)0.6, and
γt = 2/(t + 2)0.61 for t ≥ 2). At each iteration, the users’
best-responses have a closed-form solution, see (18); ii) the
stochastic conditional gradient method [9] (with γ1 = ρ0 =
ρ1 = 1, ρt = 1/(t+ 2)0.9, and γt = 1/(t+ 2)0.91 for t ≥ 2).
In each iteration, a linear problem must be solved; iii) and the
stochastic gradient projection method, proposed in [26] (with
γ1 = 1 and γt = γt−1(1 − 10−3γt−1) for t ≥ 2). At each
iteration, the users’ updates have a closed-form solution.
Note that the stepsizes are tuned such that all algorithms can
achieve their best empirical convergence speed.

In Fig. 1, for all the algorithms, we plot two merit func-
tions versus the iteration index, namely: i) the ergodic sum-
rate, defined as Eh[

∑N
n=1

∑I
i=1 ri(p

t,h)] (with the expected
value estimated by the sample mean of 1000 independent
realizations); and ii) the “achievable” sum-rate, defined as
1
t

∑t
m=1

∑N
n=1

∑I
i=1 ri(p

m,hm), which represents the sum-
rate that is actually achieved in practice (it is the time aver-
age of the instantaneous (random) sum-rate). The experiment
shows that for “small” systems (e.g., five active users), all algo-
rithms perform quite well; the proposed scheme is just slightly
faster. However, when the number of users increases (e.g.,
from 5 to 20), all other (gradient-like) algorithms suffer from
slow convergence. Quite interestingly, the proposed scheme
demonstrates also good scalability: the convergence speed is
not notably affected by the number of users, which makes it
applicable to more realistic scenarios. The faster convergence
of proposed stochastic best-response pricing algorithm comes
from a better exploitation of partial convexity in the problem
than what more classical gradient algorithms do, which vali-
dates the main idea of this paper.

B. Sum-rate maximization over MIMO ICs

In this example we customize Algorithm 1 to solve the sum-
rate maximization problem over MIMO ICs (3). Defining

ri(Qi,Q−i,H) � log det
(
I+HiiQiH

H
iiRi(Q−i,H)−1

)
and following a similar approach as in the SISO case, the
best-response of each user i becomes [cf. (15)]:

Q̂i(Q
t,Ht)=argmax

Qi∈Qi

{
ρtri(Qi,Q

t
−i,H

t)+ρt
〈
Qi −Qt

i,Π
t
i

〉
+(1− ρt)

〈
Qi −Qt

i,F
t−1
i

〉
− τi

∥∥Qi −Qt
i

∥∥2}, (19a)

where
〈
A,B

〉
� (tr(AHB)); Πi (Q,H) is given by

Πi (Q,H) =
∑

j �=i∇Q∗
i
rj(Q,H)

=
∑

j �=iH
H
ji R̃j (Q−j,H)Hji, (19b)



7

0 100 200 300 400 500
5

10

15

20

25

30

35

40

iteration

er
go

di
c 

su
m

 r
at

e 
(b

its
/s

)

 

 

best response update (proposed)
gradient projection update
conditional gradient update

# of users: 20

# of users: 5

(a) ergodic sum-rate versus iterations

0 100 200 300 400 500

10

15

20

25

30

35

iteration

ac
hi

ev
ab

le
 s

um
 r

at
e 

(b
its

/s
)

 

 

best response update (proposed)
gradient projection update
conditional gradient update

# of users: 20

# of users: 5

(b) achievable sum-rate versus iterations

Figure 1. Sum-rate versus iteration in frequency-selective ICs.

with rj(Q,H) = log det(I + HjjQjH
H
jjRj(Q−i,H)−1)

and R̃j (Q−j,H) �
(
Rj (Q−j ,H) +HjjQjH

H
jj

)−1 −
Rj (Q−j,H)−1. Then Ft

i is updated by (6d), which becomes

Ft
i = (1− ρt)Ft−1

i + ρt
∑I

j=1∇Q∗
i
rj(Q

t,Ht)

= (1− ρt)Ft−1
i + ρtΠi(Q

t,Ht)

+ ρt(Ht
ii)

H
(
Rt

i +Ht
iiQ

t
i(H

t
ii)

H
)−1

Ht
ii. (19c)

We can then apply Algorithm 1 based on the best-response
Q̂(Qt,Ht) = (Q̂i(Q

t,Ht))Ii=1 whose convergence is guar-
anteed if the stepsizes are chosen according to Theorem 1.

In contrast to the SISO case, the best-response in (19a)
does not have a closed-form solution. A standard option
to compute Q̂(Qt,Ht) is using general-purpose solvers for
strongly convex optimization problems. By exploiting the
structure of problem (19), we propose next an efficient iterative
algorithm converging to Q̂(Qt,Ht), wherein the subproblems
solved at each step have a closed-form solution.
Second-order dual method for problem (19a). To begin
with, for notational simplicity, we rewrite (19a) in the fol-
lowing general form:

maximize
X

ρ log det(R+HXHH) + 〈A,X〉 − τ
∥∥X− X̄

∥∥2
subject to X ∈ Q, (20)

where R � 0, A = AH , X̄ = X̄H and Q is defined in
(3). Let HHR−1H � UDUH be the eigenvalue/eigenvector
decomposition of HHR−1H, where U is unitary and D
is diagonal with the diagonal entries arranged in decreasing
order. It can be shown that (20) is equivalent to the following
problem:

maximize
X̃∈Q

ρ log det(I+X̃D)+
〈
Ã, X̃

〉
−τ

∥∥X̃−X̌
∥∥2, (21)

where X̃ � UHXU, Ã � UHAU, and X̌ = UHX̄U. We
now partition D 	 0 in two blocks, its positive definite and
zero parts (X̃ is partitioned accordingly):

D =

[
D1 0
0 0

]
and X̃ =

[
X̃11 X̃12

X̃21 X̃22

]

where D1 � 0, and X̃11 and D1 have the same dimensions.
Problem (21) can be then rewritten as:

maximize
X̃∈Q

ρ log det(I+ X̃11D1) +
〈
Ã, X̃

〉
− τ

∥∥X̃− X̌
∥∥2,
(22)

Note that, since X̃ ∈ Q, by definition X̃11 must belong to
Q as well. Using this observation and introducing the slack
variable Y = X̃11, (22) is equivalent to

maximize
X̃,Y

ρ log det(I+YD1) +
〈
Ã, X̃

〉
− τ

∥∥X̃− X̌
∥∥2

subject to X̃ ∈ Q, Y = X̃11, Y ∈ Q. (23)

In the following we solve (23) via dual decomposition (note
that the duality gap is zero). Denoting by Z the matrix of
multipliers associated to the linear constraints Y = X̃11, the
(partial) Lagrangian function of (23) is:

L(X̃,Y,Z) = ρ log det(I+YD1) +
〈
Ã, X̃

〉
− τ

∥∥X̃− X̌
∥∥2 + 〈

Z,Y − X̃11

〉
.

The dual problem is then

minimize
Z

d(Z) = L(X̃(Z),Y(Z),Z),

with

X̃(Z) = argmax
X̃∈Q

− τ
∥∥X̃− X̌

∥∥2 − 〈Z, X̃11

〉
, (24)

Y(Z) = argmax
Y∈Q

ρ log det(I+YD1) + 〈Z,Y〉 . (25)

Problem (24) is quadratic and has a closed-form solution
(see Lemma 2 below). Similarly, if Z ≺ 0, (25) can be
solved in closed-form, up to a Lagrange multiplier which can
be found efficiently by bisection; see, e.g., [29, Table I]. In
our setting, however, Z in (25) is not necessarily negative
definite. Nevertheless, the next lemma provides a closed-form
expression of Y(Z) [and X̃(Z)].

Lemma 2. Given (24) and (25) in the setting above, the
following hold:

i) X̃(Z) in (24) is given by

X̃(Z) =

[
X̌− 1

2τ

(
μ�I+

[
Z 0
0 0

])]+
, (26)
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where [X]+ denotes the projection of X onto the
cone of positive semidefinite matrices, and μ� is the
multiplier such that 0 ≤ μ� ⊥ tr(X̃(Z)) − P ≤ 0,
which can be found by bisection;

ii) Y(Z) in (25) is unique and is given by

Y(Z) = V [ρ I−Σ−1]+ VH , (27)

where (V,Σ) is the generalized eigenvalue decom-
position of (D1,−Z+μ�I), and μ� is the multiplier
such that 0 ≤ μ� ⊥ tr(Y(Z)) − P ≤ 0; μ� can be
found by bisection over [μ, μ], with μ � [λmax(Z)]

+

and μ � [λmax(D1) + λmax(Z)/ρ]
+.

Proof. See Appendix B. �

Since (X̃(Z),Y(Z)) is unique, d(Z) is differentiable , with
conjugate gradient [22]

∇Z∗d(Z) = Y(Z) − X̃11(Z).

One can then solve the dual problem using standard (proximal)
gradient-based methods; see, e.g., [34]. As a matter of fact,
d(Z) is twice continuously differentiable, whose augmented
Hessian matrix [22] is given by [34, Sec. 4.2.4]:

∇2
ZZ∗d(Z) = − [I − I]

H ·[
bdiag(∇2

YY∗L(X̃,Y,Z),∇2
X̃11X̃∗

11

L(X̃,Y,Z))
]−1

·

[I − I]
∣∣
X̃=X̃(Z),Y=Y(Z)

,

with

∇2
YY∗L(X̃,Y,Z) = −ρ2 · (D1/2

1 (I+D
1/2
1 YD

1/2
1 )−1D

1/2
1 )T

⊗ (D
1/2
1 (I+D

1/2
1 YD

1/2
1 )−1D

1/2
1 ),

and ∇2
X̃11X̃∗

11

L(X̃Y,Z) = −τI. Since D1 � 0, it follows
that ∇2

ZZ∗d(Z) � 0 and the following second-order Newton’s
method can be used to update the dual variable Z:

vec(Zt+1) = vec(Zt)− (∇2
ZZ∗d(Zt))−1vec(∇d(Zt)).

The convergence speed of the Newton’s methods is typically
fast, and, in particular, superlinear convergence rate can be
achieved when Zt is close to Z� [34, Prop. 1.4.1]. �

As a final remark on efficient solution methods computing
Q̂i(Q

t,Ht), note that one can also apply the proximal condi-
tional gradient method as introduced in (13), which is based
on a fully linearization of the social function plus a proximal
regularization term:

Q̂i(Q
t,Ht) = argmax

Qi∈Q

{〈
Qi −Qt

i,F
t
i

〉
− τi

∥∥Qi −Qt
i

∥∥2}
=

[
Qt

i +
1

2τi
(Ft

i − μ�I)

]+
, (28)

where μ� is the Lagrange multiplier that can be found effi-
ciently by the bisection method. Note that (28) differs from
more traditional conditional stochastic gradient methods [9] by
the presence of the proximal regularization, thanks to which
one can solve (28) in closed-form [cf. Lemma 2].

The above examples, (19) and (28), clearly show the flexi-
bility of the proposed scheme: choosing different instances of
the set Cti leads to convex subproblems exhibiting a different
trade-off between cost per iteration and practical convergence
speed. Roughly speaking, when the number of iterations
matters, one can opt for the approximation problem (19). On
the other hand, when the cost per iteration is the priority, one
can instead choose the approximation problem (28).
Practical implementations. The proposed algorithm is fairly
distributed: once the pricing matrix Πi is given, to compute
the best-response, each user only needs to locally estimate
the covariance matrix of the interference plus noise. Note
that both the computation of Q̂i(Q,H) and the update of
Fi can be implemented locally by each user. The estimation
of the pricing matrix Πi requires however some signaling
among nearby receivers. Interestingly, the pricing expression
and thus the resulting signaling overhead necessary to compute
it coincide with [29] (where a sequential algorithm is proposed
for the deterministic maximization of the sum-rate over MIMO
ICs) and the stochastic gradient projection method in [26]. We
remark that the signaling to compute (19b) is lower than in
[18], wherein signaling exchange is required twice (one in the
computation of Ui and another in that of Ai; see [18] for
more details) in a single iteration to transmit among users the
auxiliary variables which are of same dimensions as Πi.
Numerical Results. We considered the same scenario as in
the SISO case [cf. Sec. IV-A] with the following differences:
i) there are 50 users; ii) the channels are matrices generated
according to Ht = H+�Ht, where H is given while �Ht is
realization dependent and generated by δ · randn, with noise
level δ = 0.2; and iii) the number of transmit and receive
antennas is four. We simulate the following algorithms:
• The proposed stochastic best-response pricing algorithm (19)
(with τi = 10−8 for all i) under two stepsizes rules, namely:
Stepsize 1 (empirically optimal): ρt = 2/(t + 2)0.6 and
γt = 2/(t+2)0.61 for t ≥ 2; and Stepsize 2: ρt = 2/(t+2)0.7

and γt = 2/(t+ 2)0.71 for t ≥ 2. For both stepsize rules we
set γ1 = ρ0 = ρ1 = 1. The best-response is computed using
the second-order dual method, whose convergence has been
observed in a few iterations;
• The proposed stochastic proximal gradient method (28) with
τ = 0.01 and same stepsize as the stochastic best-response
pricing algorithm. The users’ best-responses have a a closed-
form expression;
• The stochastic conditional gradient method [9] (with γ1 =
ρ0 = ρ1 = 1 and ρt = 1/(t+2)0.9 and γt = 1/(t+2)0.91 for
t ≥ 2). In each iteration, a linear problem must be solved;
• The stochastic weighted minimum mean-square-error
(SWMMSE) method [18]. The convex subproblems to be
solved at each iteration have a closed-form solution.

Similarly to the SISO ICs case, we consider both ergodic
sum-rate and achievable sum-rate. In Fig. 2 we plot both
objective functions versus the iteration index. It is clear
from the figures that the proposed best-response pricing and
proximal gradient algorithms outperform current schemes in
terms of both convergence speed and achievable (ergodic
or instantaneous) sum-rate. Note also that the best-response
pricing algorithm is very scalable compared with the other
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Figure 2. Sum-rate versus iteration in a 50-user MIMO IC

algorithms. Finally, it is interesting to note that the proposed
stochastic proximal gradient algorithm outperforms the condi-
tional stochastic gradient method in terms of both convergence
speed and cost per iteration. This is mainly due to the presence
of the proximal regularization term in (19a).

Note that in order to achieve a satisfactory convergence
speed, some tuning of the free parameters in the stepsize
rules is typically required for all algorithms. Comparing the
convergence behavior under two different sets of stepsize rules,
we see from Fig. 2 (a) that, as expected, the proposed best-
response pricing and proximal gradient algorithms under the
faster decreasing Stepsize 2 converge slower than they do
under Stepsize 1, but the difference is relatively small and
the proposed algorithms still converge to a larger sum-rate in
a smaller number of iterations than current schemes do. Hence
this offers some extra tolerance in the stepsizes and makes the
proposed algorithms quite applicable in practice.

C. Sum-rate maximization over MIMO MACs

In this example we consider the sum-rate maximization
problem over MIMO MACs, as introduced in (4). This prob-
lem has been studied in [36] using standard convex optimiza-
tion techniques, under the assumption that the statistics of CSI
are available and the expected value of the sum-rate function
in (4) can be computed analytically. When this assumption
does not hold, we can turn to the proposed algorithm with
proper customization: Define

r(H,Q) � log det
(
RN +

∑I
i=1HiQiH

H
i

)
.

A natural choice for the best-response of each user i in each
iteration of Algorithm 1 is [cf. (14)]:

Q̂i(Q
t,Ht) = argmax

Qi∈Qi

{
ρt r(Ht,Qi,Q

t
−i)

+(1− ρt)
〈
Qi −Qt

i,F
t−1
i

〉
− τi

∥∥Qi −Qt
i

∥∥2}, (29)

and Ft
i is updated as Ft

i = (1− ρt)Ft−1
i + ρt∇Q∗

i
r(Ht,Qt)

while ∇Q∗
i
r(H,Q) = HH

i (RN +
∑I

i=1 HiQiH
H
i )−1Hi.

Note that since the instantaneous sum-rate function
log det(RN +

∑I
i=1 HiQiH

H) is jointly concave in Qi for
any H, the ergodic sum-rate function is concave in Qi’s, and
thus Algorithm 1 will converge (in the sense of Theorem
1) to the global optimal solution of (4). To the best of our
knowledge, this is the first example of stochastic approxima-
tion algorithms based on best-response dynamics rather than
gradient responses.
Numerical results. We compare the proposed best-response
method (29) (whose solution is computed using the second-
order dual method in Sec. IV-B) with the stochastic conditional
gradient method [9], and the stochastic gradient projection
method [8]. System parameters (including the stepsize rules)
are set as for the MIMO IC example in Sec. IV-B. In Fig.
3 we plot both the ergodic sum-rate and the achievable sum-
rate versus the iteration index. This figure clearly shows that
Algorithm 1 outperforms the conditional gradient method and
the gradient projection method in terms of convergence speed,
and the performance gap is increasing as the number of users
increases. This is because the proposed algorithm is a best-
response type scheme, which thus explores the concavity of
each user’s rate function better than what gradient methods do.
Note also that the proposed method exhibit good scalability
properties.

D. Distributed deterministic algorithms with errors

The developed framework can also be used to robustify
some algorithms proposed for the deterministic counterpart
of the multi-agent optimization problem (1), when only noisy
estimates of the users’ objective functions are available. As a
specific example, we show next how to robustify the determin-
istic best-response-based pricing algorithm proposed in [15].
Consider the deterministic optimization problem introduced
in (5). The main iterate of the best-response algorithm [15] is
given by (7) but with each x̂i(x

t) defined as [15]

x̂i(x
t) = argmin

xi∈Xi

{∑
j∈Ci

fi(xi,x
t
−i) +

〈
xi − xt

i,πi(x
t)
〉

+τi ‖xi − xt
i‖

2
,

}
,

(30)
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(a) ergodic sum-rate versus iterations (b) achievable sum-rate versus iterations

Figure 3. Sum-rate versus iteration in MIMO MAC

where πi(x) =
∑

j∈Ci
∇ifj(x). In many applications (see,

e.g., [24, 25, 26]), however, only a noisy estimate of πi(x)
is available, denoted by π̃i(x). A heuristic is then to replace
in (30) the exact πi(x) with its noisy estimate π̃i(x). The
limitation of this approach, albeit natural, is that convergence
of the resulting scheme is no longer guaranteed.

If π̃i(x) is unbiased, i.e., E [π̃i(x
t)|F t] = πi(x

t) [24, 25],
capitalizing on the proposed framework, we can readily deal
with estimation errors while guaranteeing convergence. In
particular, it is sufficient to modify (30) as follows:

x̃i(x
t) = argmin

xi∈Xi

{∑
j∈Ci

fj(xi,x
t
−i) + ρt

〈
xi − xt

i, π̃i(x
t)
〉

+(1− ρt)
〈
xi − xt

i, f
t−1
i

〉
+ τi

∥∥xi − xt
i

∥∥2}, (31)

where f ti is updated according to f ti = (1−ρt)f t−1
i +ρtπ̃i(x

t).
Algorithm 1 based on the best-response (31) is then guaranteed
to converge to a stationary solution of (5), in the sense
specified by Theorem 1.

As a case study, we consider next the maximization of the
deterministic sum-rate over MIMO ICs in the presence of
pricing estimation errors:

maximize
Q

∑I
i=1 log det(I+HiiQiH

H
iiRi(Q−i)

−1)

subject to Qi 	 0, tr(Qi) ≤ Pi, i = 1, . . . , I. (32)

Then (31) becomes:

Q̂i(Q
t) = argmax

Qi∈Qi

{
log det

(
Rt

i +Ht
iiQi(H

t
ii)

H
)

+
〈
Qi −Qt

i, ρ
tΠ̃

t

i + (1 − ρt)Ft−1
i

〉
− τi

∥∥Qi −Qt
i

∥∥2},
(33)

where Π̃
t

i is a noisy estimate of Πi(Q
t,H) given by (19b)2

and Ft
i is updated according to Ft

i = ρtΠ̃
t

i + (1 − ρt)Ft−1
i .

Given Q̂i(Q
t), the main iterate of the algorithm becomes

Qt+1
i = Qt

i + γt+1
(
Q̂i(Q

t)−Qt
i

)
. Almost sure conver-

gence to a stationary point of the deterministic optimization
problem (32) is guaranteed by Theorem 1. Note that if the

2Πi(Q,H) is always negative definite by definition [29], but ˜Π
t
i may not

be so. However, it is reasonable to assume ˜Π
t
i to be Hermitian.

channel matrices {Hii} are full column-rank, one can also
set in (33) all τi = 0, and compute (33) in closed-form [cf.
Lemma 2].
Numerical results. We consider the maximization of the
deterministic sum-rate (32) over a 5-user MIMO IC. The
other system parameters (including the stepsize rules) are
set as in the numerical example in Sec. IV-B. The noisy
estimate Π̃i of the nominal price matrix Πi [defined in (19b)]
is Π̃

t

i = Πi + ΔΠt
i, where ΔΠt

i is firstly generated as
ΔHt in Sec. IV-B and then only its Hermitian part is kept;
the noise level δ is set to 0.05. We compare the following
algorithms: i) the proposed robust pricing method−Algorithm
1 based on the best-response defined in (33); and ii) the plain
pricing method as proposed in [15] [cf. (30)]. Note that the
variable update in both algorithms has a closed-form solution.
We also include as a benchmark the sum-rate achieved by
the plain pricing method (30) when there is no estimation
noise (i.e., perfect πi(x) is available). In Fig. 4 we plot the
deterministic sum-rate in (32) versus the iteration index t. As
expected, Fig. 4 shows that the plain pricing method [15] is
not robust to pricing estimation errors, whereas the proposed
robustification preforms well. For instance, the rate achievable
by the proposed method is about 50% larger than that of [15],
and is observed to reach the benchmark value (achieved by
the plain pricing method when there is no estimation noise).
This is due to the fact that the proposed robustification filters
out the estimation noise. Note that the limit point generated
by the proposed scheme (33) is a stationary solution of the
deterministic problem (32).

V. A MORE GENERAL SCA FRAMEWORK

The key idea behind the choice of the surrogate function
f̂i(xi;x

t, ξt) in (6) is to convexify the nonconvex part of
the sample sum-utility function via partial linearization of∑

j∈Ct
i
fj(x

t, ξt). It is not difficult to show that one can

generalize this idea and replace the surrogate f̂i(xi;y
t, ξt)

in (6) with a more general function. For example, one can use
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Figure 4. Maximization of deterministic sum-rate over MIMO IC under noisy
parameter estimation: sum-rate versus iteration.

in Algorithm 1 the following sample best-response function

x̂i(x
t, ξt)�argmin

xi∈Xi

{
ρtf̃i(xi;x

t, ξt)+(1−ρt)
〈
f t−1
i ,xi−xt

i

〉}
.

(34)
where f ti = (1− ρt) f t−1

i + ρt∇if
(
xt, ξt

)
[cf. (6)], and

f̃i(xi;x
t, ξt) is any surrogate function satisfying the following

technical conditions :
(A1) f̃i(xi;x

t, ξt) is uniformly strongly convex and continu-
ously differentiable on Xi for all given xt and ξt;

(A2) ∇xt f̃i(xi;x
t, ξt) is Lipschitz continuous on X ;

(A3) ∇if̃i(x
t
i;x

t, ξt) =
∑

j∈If
∇ifj(x

t, ξt).

All the convergence results presented so far are still valid (cf.
Theorem 1). To the best of our knowledge, this is the first SCA
framework for nonconvex stochastic optimization problems; it
offers a lot of flexibility to tailor the surrogate function to
individual problems, while guaranteeing convergence, which
makes it appealing for a wide range of applications.

VI. CONCLUSIONS

In this paper, we have proposed a novel best-response-based
solution method for general stochastic nonconvex multi-agent
optimization problems and analyzed its convergence proper-
ties. The proposed novel decomposition enables all users to
update their optimization variables in parallel by solving a
sequence of strongly convex subproblems; which makes the
algorithm very appealing for the distributed implementation
in several practical systems. We have then customized the
general framework to solve special classes of problems and
applications, including the stochastic maximization of the sum-
rate over frequency-selective ICs, MIMO ICs and MACs.
Extensive experiments have provided a solid evidence of the
superiority in terms of both achievable sum-rate and practical
convergence of the proposed schemes with respect to to state-
of-the-art stochastic-based algorithms.

APPENDIX

A. Proof of Theorem 1

We first introduce the following two preliminary results.

Lemma 3. Given problem (1) under Assumptions (a)-(c),
suppose that the stepsizes {γt} and {ρt} are chosen according
to (11). Let {xt} be the sequence generated by Algorithm 1.
Then, the following holds

lim
t→∞

∥∥f t −∇U(xt)
∥∥ = 0, w.p.1.

Proof: This lemma is a consequence of [10, Lemma 1]. To
see this, we just need to verify that all the technical conditions
therein are satisfied by the problem at hand. Specifically,
Condition (a) of [10, Lemma 1] is satisfied because Xi’s are
closed and bounded in view of Assumption (a). Condition (b)
of [10, Lemma 1] is exactly Assumption (c). Conditions (c)-
(d) come from the stepsize rules i)-ii) in (11) of Theorem 1.
Condition (e) of [10, Lemma 1] comes from the Lipschitz
property of ∇U from Assumption (b) and stepsize rule iii) in
(11) of Theorem 1.

Lemma 4. Given problem (1) under Assumptions (a)-(c),
suppose that the stepsizes {γt} and {ρt} are chosen according
to (11). Let {xt} be the sequence generated by Algorithm 1.
Then, there exists a constant L̂ such that

∥∥x̂(xt1 , ξt1)− x̂(xt2 , ξt2)
∥∥ ≤ L̂

∥∥xt1 − xt2
∥∥+ e(t1, t2),

and limt1,t2→∞ e(t1, t2) = 0 w.p.1.

Proof: We assume w.l.o.g. that t2 > t1; for notational
simplicity, we define x̂t

i � x̂i(x
t, ξt), for t = t1 and t = t2.

It follows from the first-order optimality condition that [22]

〈
xi − x̂t1

i ,∇if̂i(x̂
t1
i ;xt1 , ξt1)

〉
≥ 0, (35a)〈

xi − x̂t2
i ,∇if̂i(x̂

t2
i ;xt2 , ξt2)

〉
≥ 0. (35b)

Setting xi = x̂i(x
t2 , ξt2) in (35a) and xi = x̂i(x

t1 , ξt1) in
(35b), and adding the two inequalities, we have

0 ≥
〈
x̂t1
i − x̂t2

i ,∇if̂i(x̂
t1
i ;xt1 , ξt1)−∇if̂i(x̂

t2
i ;xt2 , ξt2)

〉
=
〈
x̂t1
i − x̂t2

i ,∇if̂i(x̂
t1
i ;xt1 , ξt1)−∇if̂i(x̂

t1
i ;xt2 , ξt2)

〉
+
〈
x̂t1
i − x̂t2

i ,∇if̂i(x̂
t1
i ;xt2 , ξt2)−∇if̂i(x̂

t2
i ;xt2 , ξt2)

〉
.

(36)

The first term in (36) can be lower bounded as follows:

〈
x̂t1
i − x̂t2

i ,∇if̂i(x̂
t1
i ;xt1 , ξt1)−∇if̂i(x̂

t1
i ;xt2 , ξt2)

〉
= ρt1

∑
j∈Ct1

i

〈
x̂t1
i − x̂t2

i ,

∇ifj(x̂
t1
i ,xt1

−i, ξ
t1)−∇ifj(x

t1
i ,xt1

−i, ξ
t1)
〉

− ρt2
∑

j∈Ct2
i

〈
x̂t1
i − x̂t2

i ,

∇ifj(x̂
t1
i ,xt2

−i, ξ
t2)−∇ifj(x

t2
i ,xt2

−i, ξ
t2)
〉

+
〈
x̂t1
i − x̂t2

i , f t1i − f t2i
〉
− τi

〈
x̂t1
i − x̂t2

i ,xt1
i − xt2

i

〉
(37a)
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where in (37a) we used (8). Invoking the Lipschitz continuity
of ∇fj(xt

i,x
t
−i, ξ

t), we can get a lower bound for (37a):〈
x̂t1
i − x̂t2

i ,∇if̂i(x̂
t1
i ;xt1 , ξt1)−∇if̂i(x̂

t1
i ;xt2 , ξt2)

〉
≥ − ρt1

∑
j∈Ct1

i

∥∥x̂t1
i − x̂t2

i

∥∥·∥∥∇ifj(x̂
t1
i ,xt1

−i, ξ
t1)−∇ifj(x

t1
i ,xt1

−i, ξ
t1)
∥∥

− ρt2
∑

j∈Ct2
i

∥∥x̂t1
i − x̂t2

i

∥∥·∥∥∇ifj(x̂
t1
i ,xt2

−i, ξ
t2)−∇ifj(x

t2
i ,xt2

−i, ξ
t2)
∥∥

+
〈
x̂t1
i − x̂t2

i , f t1i −∇iU(xt1)− f t2i +∇iU(xt2)
〉

+
〈
x̂t1
i − x̂t2

i ,∇iU(xt1)−∇iU(xt2 )
〉

− τi
〈
x̂t1
i − x̂t2

i ,xt1
i − xt2

i

〉
, (37b)

≥ − ρt1
(∑

j∈If
L∇fj(ξt1 )

)∥∥x̂t1
i − x̂t2

i

∥∥ · ∥∥x̂t1
i − xt1

i

∥∥
− ρt2

(∑
j∈If

L∇fj(ξt2 )

)∥∥x̂t1
i − x̂t2

i

∥∥ · ∥∥x̂t1
i − xt2

∥∥
−
∥∥x̂t1

i − x̂t2
i

∥∥(εt1 + εt2)

− (L∇U + τmax)
∥∥x̂t1

i − x̂t2
i

∥∥∥∥xt1 − xt2
∥∥ (37c)

≥ − ρt1
(∑

j∈If
L∇fj(ξt1 )

)
Cx

∥∥x̂t1
i − x̂t2

i

∥∥
− ρt2

(∑
j∈If

L∇fj(ξt2 )

)
Cx

∥∥x̂t1
i − x̂t2

i

∥∥
−
∥∥x̂t1

i − x̂t2
i

∥∥(εt1 + εt2)

− (L∇U + τmax)
∥∥x̂t1

i − x̂t2
i

∥∥∥∥xt1 − xt2
∥∥, (37d)

where (37c) comes from the Lipschitz continuity of
∇fj(xt

i,x
t
−i, ξ

t), with εt � ‖f t −∇U(xt)‖ and τmax =
max1≤i≤I τi < ∞, and we used the boundedness of the
constraint set X (

∥∥x − y
∥∥ ≤ Cx for some Cx < ∞ and

all x,y ∈ X ) and the Lipschitz continuity of ∇U(x) in (37d).
The second term in (36) can be bounded as:〈
x̂t1
i − x̂t2

i ,∇if̂(x̂
t1
i ;xt2 , ξt2)−∇if̂(x̂

t2
i ;xt2 , ξt2)

〉
= ρt2

∑
j∈Ct2

i

〈
x̂t1
i − x̂t2

i ,∇ifj(x̂
t1
i ,xt2

−i, ξ
t2)
〉

− ρt2
∑
j∈Ct2

i

〈
x̂t1
i − x̂t2

i ,∇ifj(x̂
t2
i ,xt2

−i, ξ
t2)
〉

+τi
∥∥x̂t1

i −̂x
t2
i

∥∥2 ≥ τmin

∥∥x̂t1
i − x̂t2

i

∥∥2,
(38)

where the inequality follows from the definition of τmin and
the (uniformly) convexity of the functions fj(•,xt

−i, ξ
t).

Combining the inequalities (36), (37d) and (38), we have∥∥x̂t1
i − x̂t2

i

∥∥ ≤ (L∇U + τmax)τ
−1
min

∥∥xt1 − xt2
∥∥

+ τ−1
minCxρ

t1
(∑

j∈If
L∇fj(ξt1 )

)
+ τ−1

minCxρ
t2
(∑

j∈If
L∇fj(ξt2 )

)
+ τ−1

min(ε
t1 + εt2),

which leads to the desired (asymptotic) Lipschitz property:∥∥x̂t1 − x̂t2
∥∥ ≤ L̂

∥∥xt1 − xt2
∥∥+ e(t1, t2),

with L̂ � I τ−1
min(L∇U + τmax) and

e(t1, t2) � I τ−1
min

(
(εt1 + εt2)+

+Cx

(
ρt1

∑
j∈If

L∇fj(ξt1 ) + ρt2
∑

j∈If
L∇fj(ξt2 )

))
.

In view of Lemma 3 and (11d), it is easy to check that
limt1→∞,t2→∞ e(t1, t2) = 0 w.p.1.

Proof of Theorem 1. Invoking the first-order optimality
conditions of (6), we have

ρt
〈
xt
i − x̂t

i,
∑

j∈Ct
i
∇ifj(x̂

t
i,x

t
−i, ξ

t) + πi(x
t, ξt)

〉
+ (1− ρt)

〈
xt
i − x̂t

i, f
t−1
i

〉
+ τi

〈
xt
i − x̂t

i, x̂
t
i − xt

i

〉
= ρt

∑
j∈Ct

i

〈
xt
i − x̂t

i,∇ifj(x̂
t
i,x

t
−i, ξ

t)−∇ifj(x
t
i,x

t
−i, ξ

t)
〉

+
〈
xt
i − x̂t

i, f
t
i

〉
− τi

∥∥x̂t
i − xt

i

∥∥2 ≥ 0,

which together with the convexity of
∑

j∈Ct
i
fj(•,xt

−i, ξ
t)

leads to 〈
x̂t
i − xt

i, f
t
i

〉
≤ −τmin

∥∥x̂t
i − xt

i

∥∥2. (39)

It follows from the descent lemma on U that

U(xt+1) ≤ U(xt) + γt+1
〈
x̂t − xt,∇U(xt)

〉
+ L∇U (γ

t+1)2
∥∥x̂t − xt

∥∥2
= U(xt) + γt+1

〈
x̂t − xt,∇U(xt)− f t + f t

〉
+ L∇U (γ

t+1)2
∥∥x̂t − xt

∥∥2
≤ U(xt)− γt+1(τmin − L∇Uγ

t+1)
∥∥x̂t − xt

∥∥2
+ γt+1

∥∥x̂t − xt
∥∥∥∥∇U(xt)− f t

∥∥, (40)

where in the last inequality we used (39). Let us show by
contradiction that lim inft→∞

∥∥x̂t − xt
∥∥ = 0 w.p.1. Suppose

lim inft→∞
∥∥x̂t − xt

∥∥ ≥ χ > 0 with a positive probability.
Then we can find a realization such that at the same time∥∥x̂t−xt

∥∥ ≥ χ > 0 for all t and limt→∞
∥∥∇U(xt)− f t

∥∥ = 0;
we focus next on such a realization. Using

∥∥x̂t−xt
∥∥ ≥ χ > 0,

the inequality (40) is equivalent to

U(xt+1)− U(xt) ≤

−γt+1
(
τmin − L∇Uγ

t+1 − 1
χ ‖∇U(xt)− f t‖

) ∥∥x̂t − xt
∥∥2.

(41)
Since limt→∞

∥∥∇U(xt)−f t
∥∥ = 0, there exists a t0 sufficiently

large such that

τmin − L∇Uγ
t+1 − 1

χ

∥∥∇U(xt)− f t
∥∥ ≥ τ̄ > 0, ∀ t ≥ t0.

(42)
Therefore, it follows from (41) and (42) that

U(xt)− U(xt0) ≤ −τ̄χ2∑t
n=t0

γn+1, (43)

which, in view of
∑∞

n=t0
γn+1 = ∞, contradicts

the boundedness of {U(xt)}. Therefore it must be
lim inft→∞ ‖x̂t − xt‖ = 0 w.p.1.

We prove now that lim supt→∞ ‖x̂t − xt‖ = 0 w.p.1.
Assume lim supt→∞ ‖x̂t − xt‖ > 0 with some positive
probability. We focus next on a realization along with
lim supt→∞ ‖x̂t − xt‖ > 0, limt→∞

∥∥∇U(xt) − f t
∥∥ = 0,

lim inft→∞
∥∥x̂t − xt

∥∥ = 0, and limti,t2→∞ e(t1, t2) = 0,
where e(t1, t2) is defined in Lemma 4. It follows from
lim supt→∞ ‖x̂t − xt‖ > 0 and lim inft→∞

∥∥x̂t − xt
∥∥ = 0

that there exists a δ > 0 such that ‖�xt‖ ≥ 2δ (with
�xt � x̂t−xt) for infinitely many t and also ‖�xt‖ < δ for
infinitely many t. Therefore, one can always find an infinite
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set of indexes, say T , having the following properties: for any
t ∈ T , there exists an integer it > t such that

‖�xt‖ < δ,
∥∥�xit

∥∥ > 2δ,

δ ≤ ‖�xn‖ ≤ 2δ, t < n < it.
(44)

Given the above bounds, the following holds: for all t ∈ T ,

δ ≤
∥∥�xit

∥∥− ∥∥�xt
∥∥

≤
∥∥�xit −�xt

∥∥ =
∥∥(x̂it − xit)− (x̂t − xt)

∥∥
≤
∥∥x̂it − x̂t

∥∥+ ∥∥xit − xt
∥∥

≤ (1 + L̂)
∥∥xit − xt

∥∥+ e(it, t)

≤ (1 + L̂)
∑it−1

n=t γ
n+1 ‖�xn‖+ e(it, t)

≤ 2δ(1 + L̂)
∑it−1

n=t γ
n+1 + e(it, t), (45)

implying that

lim inf
T 	t→∞

∑it−1
n=t γ

n+1 ≥ δ̄1 � 1

2(1 + L̂)
> 0. (46)

Proceeding as in (45), we also have: for all t ∈ T ,∥∥�xt+1
∥∥− ∥∥�xt

∥∥ ≤ ∥∥�xt+1 −�xt
∥∥

≤ (1 + L̂)γt+1
∥∥�xt

∥∥+ e(t, t+ 1),

which leads to

(1+(1+ L̂)γt+1)
∥∥�xt

∥∥+e(t, t+1) ≥
∥∥�xt+1

∥∥ ≥ δ, (47)

where the second inequality follows from (44). It follows from
(47) that there exists a δ̄2 > 0 such that for sufficiently large
t ∈ T , ∥∥�xt

∥∥ ≥ δ − e(t, t+ 1)

1 + (1 + L̂)γt+1
≥ δ̄2 > 0. (48)

Here after we assume w.l.o.g. that (48) holds for all t ∈ T (in
fact one can always restrict {xt}t∈T to a proper subsequence).

We show now that (46) is in contradiction with the conver-
gence of {U(xt)}. Invoking (40), we have: for all t ∈ T ,

U(xt+1)− U(xt)

≤ −γt+1
(
τmin − L∇Uγ

t+1
) ∥∥x̂t − xt

∥∥2
+ γt+1δ

∥∥∇U(xt)− f t
∥∥

≤ −γt+1

(
τmin − L∇Uγ

t+1 −
∥∥∇U(xt)− f t

∥∥
δ

)
·
∥∥x̂t − xt

∥∥2 + γt+1δ
∥∥∇U(xt)− f t

∥∥2, (49)

and for t < n < it,

U(xn+1)− U(xn)

≤ −γn+1

(
τmin − L∇Uγ

n+1 −
∥∥∇U(xn)− fn

∥∥∥∥x̂n − xn
∥∥

)
·
∥∥x̂n − xn

∥∥2
≤ −γn+1

(
τmin − L∇Uγ

n+1 −
∥∥∇U(xn)− fn

∥∥
δ

)
·
∥∥x̂n − xn

∥∥2, (50)

where the last inequality follows from (44). Adding (49) and
(50) over n = t+1, . . . , it−1 and, for t ∈ T sufficiently large

(so that τmin−L∇Uγ
t+1− δ−1

∥∥∇U(xn)− fn
∥∥ ≥ τ̂ > 0 and∥∥∇U(xt)− f t

∥∥ < τ̂δ̄22/δ), we have

U(xit)− U(xt)

(a)

≤ −τ̂
∑it−1

n=t γ
n+1

∥∥x̂n − xn
∥∥2 + γt+1δ

∥∥∇U(xt)− f t
∥∥

(b)

≤ −τ̂ δ̄22
∑it−1

n=t+1γ
n+1 − γt+1

(
τ̂ δ̄22 − δ

∥∥∇U(xt)− f t
∥∥)

(c)

≤ −τ̂ δ̄22
∑it−1

n=t+1γ
n+1, (51)

where (a) follows from τmin − L∇Uγ
t+1 − δ−1

∥∥∇U(xn) −
fn
∥∥ ≥ τ̂ > 0; (b) is due to (48); and in (c) we used∥∥∇U(xt)−f t

∥∥ < τ̂ δ̄22/δ. Since {U(xt)} converges, it must be
lim inf
T 	t→∞

∑it−1
n=t+1γ

n+1 = 0, which contradicts (46). Therefore,

it must be lim supt→∞
∥∥x̂t − xt

∥∥ = 0 w.p.1.
Finally, let us prove that every limit point of the sequence
{xt} is a stationary solution of (1). Let x∞ be the limit point
of the convergent subsequence {xt}t∈T . Taking the limit of
(35) over the index set T , we have

lim
T 	t→∞

〈
xi − x̂t

i,∇if̂i
(
x̂t
i;x

t, ξt
)〉

= lim
T 	t→∞

〈
xi − x̂t

i,

f ti + τi
(
x̂t
i − xt

i

)
+ρt

∑
j∈Ct

i

(
∇ifj(x̂

t
i,x

t
−i, ξ

t)−∇ifj(x
t
i,x

t
−i, ξ

t)
)〉

=
〈
xi − x∞

i ,∇U(x∞
i )
〉
≥ 0, ∀xi ∈ Xi, (52)

where the last equality follows from: i) limt→∞
∥∥∇U(xt) −

f t
∥∥ = 0 [cf. Lemma 3]; ii) lim t→∞

∥∥x̂t
i − xt

∥∥ = 0; and iii)
the following∥∥ρt∑j∈Ct

i
(∇ifj(x̂

t
i,x

t
−i, ξ

t)−∇ifj(x
t
i,x

t
−i, ξ

t))
∥∥

≤ Cxρ
t∑

j∈If
L∇fj(ξt) −→

t→∞
0, (53)

where (53) follows from the Lipschitz continuity of∇fj(x, ξ),
the fact ‖x̂t

i − xt
i‖ ≤ Cx, and (11d).

Adding (52) over i = 1, . . . , I , we get the desired first-order
optimality condition:

〈
x−x∞,∇U(x∞)

〉
≥ 0, for all x ∈ X .

Therefore x∞ is a stationary point of (1). �

B. Proof of Lemma 2

We prove only (27). Since (25) is a convex optimization
problem and Q has a nonempty interior, strong duality holds
for (25) [37]. The dual function of (25) is

d(μ) = max
Y
0
{ρ log det(I+YD1)+

〈
Y,Z−μI

〉
}+μP, (54)

where μ ∈ {μ : μ 	 0, d(μ) < +∞}. Denote by Y�(μ)
the optimal solution of the maximization problem in (54), for
any given feasible μ. It is easy to see that d(μ) = +∞ if
Z− μI 	 0, so μ is feasible if and only if Z− μI ≺ 0, i.e.,

μ

{
≥ μ = [λmax(Z)]

+ = 0, if Z ≺ 0,

> μ = [λmax(Z)]
+, otherwise,

and Y�(μ) is [29, Prop. 1]

Y�(μ) = V(μ)[ρI −D(μ)−1]+V(μ)H ,
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where (V(μ),Σ(μ)) is the generalized eigenvalue decom-
position of (D1,−Z + μI). Invoking [38, Cor. 28.1.1], the
uniqueness of Y(Z) comes from the uniqueness of Y�(μ)
that was proved in [39].

Now we prove that μ� ≤ μ. First, note that d(μ) ≥ μP .
Based on the eigenvalue decomposition Z = VZΣZV

H
Z , the

following inequalities hold:

tr((Z − μI)HX) = tr(VZ(ΣZ − μI)VH
Z X)

≤ (λmax(ΣZ)− μ)tr(X),

where λmax(ΣZ) = λmax(Z). In other words, d(μ) is upper
bounded by the optimal value of the following problem:

max
Y
0

ρ log det(I+YD1) + (λmax(Z)− μ)tr(Y) + μP.

(55)

When μ ≥ μ, it is not difficult to verify that the optimal
variable of (55) is 0, and thus Y�(μ) = 0. We show μ� ≤ μ̄
by discussing two complementary cases: μ̄ = 0 and μ̄ > 0.

If μ̄ = 0, d(μ̄) = d(0) = μP = 0. Since Y�(0) = 0
and the primal value is also 0, there is no duality gap. From
the definition of saddle point [37, Sec. 5.4], μ̄ = 0 is a dual
optimal variable.

If μ̄ > 0, d(μ) ≥ μP > 0. Assume μ� > μ. Then
Y�(μ�) = 0 is the optimal variable in (25) and the optimal
value of (25) is 0, but this would lead to a non-zero duality gap
and thus contradict the optimality of μ�. Therefore μ� ≤ μ.
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