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MECHANIZING PRINCIPIA LOGICO-METAPHYSICA

IN FUNCTIONAL TYPE THEORY

DANIEL KIRCHNER, CHRISTOPH BENZMÜLLER, AND EDWARD N. ZALTA

Abstract. Principia Logico-Metaphysica proposes a foundational logical theory for

metaphysics, mathematics, and the sciences. It contains a canonical development of Ab-

stract Object Theory [AOT], a metaphysical theory (inspired by ideas of Ernst Mally,

formalized by Zalta) that differentiates between ordinary and abstract objects.

This article reports on recent work in which AOT has been successfully represented and

partly automated in the proof assistant system Isabelle/HOL. Initial experiments within

this framework reveal a crucial but overlooked fact: a deeply-rooted and known paradox

is reintroduced in AOT when the logic of complex terms is simply adjoined to AOT’s

specially-formulated comprehension principle for relations. This result constitutes a new

and important paradox, given how much expressive and analytic power is contributed

by having the two kinds of complex terms in the system. Its discovery is the highlight

of our joint project and provides strong evidence for a new kind of scientific practice in

philosophy, namely, computational metaphysics.

Our results were made technically possible by a suitable adaptation of Benzmüller’s

metalogical approach to universal reasoning by semantically embedding theories in classical

higher-order logic. This approach enables the fruitful reuse of state-of-the-art higher-

order proof assistants, such as Isabelle/HOL, for mechanizing and experimentally exploring

challenging logics and theories such as AOT. Our results also provide a fresh perspective

on the question of whether relational type theory or functional type theory better serves

as a foundation for logic and metaphysics.

§1. Abstract Summary. Principia Logico-Metaphysica (PLM) [13] aims at
a foundational logical theory for metaphysics, mathematics and the sciences. It
contains a canonical presentation of Abstract Object Theory (AOT) [14, 15],
which distinguishes between abstract and ordinary objects, in the tradition of
the work of Mally [6]. The theory, outlined in §2, systematizes two fundamental
kinds of predication: classical exemplification for ordinary and abstract objects,
and encoding for abstract objects. The latter is a new kind of predication that
provides AOT with expressive power beyond that of quantified second-order
modal logic, and this enables elegant formalizations of various metaphysical ob-
jects, including the objects presupposed by mathematics and the sciences. More
generally, the system offers a universal logical theory that is capable of accurately
representing the contents of human thought.
Independently, the use of shallow semantical embeddings (SSEs) of complex

logical systems in classical higher-order logic (HOL) has shown great potential
as a metalogical approach towards universal logical reasoning [1]. The SSE
approach aims to unify logical reasoning by using HOL as a universal metalogic.
Only the distinctive primitives of a target logic are represented in the metalogic

1

http://arxiv.org/abs/1711.06542v1


2 DANIEL KIRCHNER, CHRISTOPH BENZMÜLLER, AND EDWARD N. ZALTA

using their semantical definitions (hence the shallow embedding), while the rest
of the target system is captured by the existing infrastructure of HOL. For
example, quantified modal logic can be encoded by representing propositions
as sets of possible worlds and by representing the connectives, quantifiers, and
modal operators as operations on those sets. This way the world-dependency
of Kripke-style semantics can be elegantly represented in HOL. Utilizing the
powerful options to handle and hide such definitions that are offered in modern
proof assistants such as Isabelle/HOL [9], a human-friendly mechanization of
even most challenging target logics, including the AOT, can thus be obtained.
AOT and the SSE approach are rather orthogonal. They have very different

motivations and come with fundamentally different foundational assumptions.
AOT uses a hyperintensional second-order modal logic, grounded on a relational

type theory, as its foundation. It is in the tradition of Russell and Whitehead’s
Principia Mathematica [10, 7], which takes the notion of relation as primitive
and defines the notion of function in terms of relations. The metalogic HOL
in the SSE approach, by contrast, is fully extensional, and defined on top of
a functional type theory in the tradition of the work of Frege [5] and Church
[4]. It takes the notion of (fully extensional) function as primitive and defines
the notion of relation in terms of functions. These fundamentally different and,
to some extent, antagonistic roots in turn impose different requirements on the
corresponding frameworks, in particular, with regard to the comprehension prin-
ciples that assert the existence of relations and functions. Devising a mapping
between the two formalisms has, unsurprisingly, been identified as a non-trivial,
practical challenge by Oppenheimer and Zalta [11].
The work reported here tackles this challenge. Further details can be found

in Kirchner’s thesis [8], where the SSE approach is utilized to mechanize and
analyze AOT in HOL. Kirchner constructed a shallow semantical embedding
of the second-order modal fragment of AOT in HOL, and this embedding was
subsequently represented in the proof assistant system Isabelle/HOL (see §4).
The proof assistant system enabled us to conduct experiments in the spirit of a
computational metaphysics, with fruitful results that have helped to advance the
ideas of AOT.
The inspiration for Kirchner’s embedding comes from the model for AOT

proposed by Peter Aczel1. Kirchner also benefited from Benzmüller’s initial
attempts to embed AOT in Isabelle/HOL. An important goal of the research
was to avoid artifactual theorems, i.e., theorems that (a) are derivable on the
basis of special facts about the Aczel model that was used to embed AOT in
Isabelle/HOL, but (b) aren’t theorems of AOT. In previous applications of the
SSE approach, this issue didn’t arise. For example, in the context of the analysis
of Gödel’s modal ontological argument for the existence of God (cf. [2]), extensive
results about the Kripke models were available a priori. But AOT is, in part, a
body of theorems, and so care has been taken not to derive artifactual theorems
about the Aczel model that are not theorems of AOT itself.

1An earlier model for the theory was proposed by Dana Scott. His model is equivalent to a
special case of an Aczel model with only one special urelement.
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This explains why the embedding of AOT in Isabelle/HOL involves several
layers of abstraction. In the Aczel model of AOT that serves as a starting
point, abstract objects are modeled as sets of properties, where properties are
themselves modeled as sets of urelements. Once the axioms of AOT are derived
from the shallow semantic embedding of AOT in HOL, a controlled and suitably
constricted logic layer is defined: by reconstructing the inference principles of
AOT in the system that derives the axioms of AOT, only the theorems of AOT
become derivable. By utilizing Isabelle/HOL’s sophisticated support tools for
interactive and automated proof development (see §6) at this highest level of the
embedding, it became straightforward to map the pen and paper proofs of PLM
into corresponding, intuitive, and user-friendly proofs in Isabelle/HOL. In nearly
all cases this mapping is roughly one-to-one, and in several cases the computer
proofs are even shorter. In other words, the de Bruijn factor [12] of this work is
close to 1. In addition, the layered construction of the embedding has enabled a
detailed, experimental analysis in Isabelle/HOL of the underlying Aczel model
and the semantical properties of AOT.
As an unexpected, but key result of this experimental study, it was discov-

ered that if a classical logic for complex terms such as λ-expressions and definite
descriptions is adjoined to AOT’s specially-formulated comprehension principle
for relations without taking any special precautions, a known paradox that had
been successfully put to rest becomes reintroduced (see §5). Since the complex
terms add significant expressive and analytic power to AOT, and play a role in
many of its more interesting theorems, the re-emergence of the known paradox
has become a new paradox that has to be addressed. In the ongoing attempts
to find an elegant formulation of AOT that avoids the new paradox, the com-
putational representation in Isabelle/HOL now provides a testing infrastructure
and serves as an invaluable aid for analyzing various conjectures and hypothet-
ical solutions to the problem. This illustrates the very idea of computational

metaphysics : humans and machines team up and split the tedious work in pro-
portion to their cognitive and computational strengths and competencies. And
as intended, the results we achieved reconfirm the practical relevance of the SSE
approach to universal logical reasoning.
Though the details of the embedding of AOT in Isabelle/HOL are developed

in Kirchner [8], we discuss the core aspects of this work in the remainder of this
article.

§2. The Theory of Abstract Objects. AOT draws two fundamental dis-
tinctions, between abstract and ordinary objects and between two modes of
predication, namely, classical exemplification (Fx) and encoding (xF ). Whereas
ordinary objects are characterized only by the properties they exemplify, ab-
stract objects may be characterized by both the properties they exemplify and
the properties they encode. But only the latter play a role in their identity
conditions: abstract objects x and y are identical if and only if they necessarily
encode the same properties (formally, ✷∀F (xF ≡ yF ) → x=y, for abstract ob-
jects x and y). The identity for ordinary objects on the other hand is classical:
two ordinary objects x and y are identical if they necessarily exemplify the same
properties (formally, ✷∀F (Fx ≡ Fy) → x=y, for ordinary objects x and y). It
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is axiomatic that ordinary objects don’t encode properties, and so only abstract
objects can be the subject of true encoding predications.
The key axiom of AOT is the comprehension principle for abstract objects.

It asserts, for every expressible condition on properties (intuitively, for every
expressible set of properties), that there exists an abstract object that encodes
exactly the properties that satisfy the condition; formally, ∃x(A!x ∧ ∀F (xF ≡

φ)), where φ is any condition on F in which x doesn’t occur free. Therefore,
abstract objects can be modeled as elements of the power set of properties: every
abstract object uniquely corresponds to a specific set of properties.
Given this basic theory of abstract objects, AOT can elegantly define a wide

variety of objects that have been postulated in philosophy or presupposed in the
sciences, including Leibnizian concepts, Platonic forms, possible worlds, natural
numbers, logically-defined sets, etc.
Another interesting aspect of the theory is its hyperintensionality. Relation

identity is defined in terms of encoding rather than in terms of exemplification.
Two properties F and G, for instance, are considered to be identical if they are
necessarily encoded by the same abstract objects (formally, ✷∀x(xF ≡ xG) →

F =G). However, the theory does not impose any restrictions on the properties
encoded by a particular abstract object. For example, the fact that an abstract
object encodes the property [λxFx & Gx] does not necessarily imply that it also
encodes the property [λxGx & Fx] (which, although extensionally equivalent,
is a distinct intensional entity).
Therefore, without additional axioms, pairs of materially equivalent properties

(in the exemplification sense), and even necessarily equivalent properties, are not
forced to be identical. This is a key aspect of the theory that makes it possible
to represent the contents of human thought much more accurately than classical
logic would allow. For instance, the properties being a creature with a heart and
being a creature with a kidney may be regarded as distinct properties, although
they are extensionally equivalent. And being a barber who shaves all and only

those persons who don’t shave themselves and being a set of all those sets that

aren’t members of themselves may be regarded as distinct properties, although
they are necessarily equivalent (both necessarily fail to be exemplified).
A full description of the theory goes beyond the scope of this paper, but formal

descriptions are available in two books [14, 15] and various papers by Zalta. A
regularly updated, online monograph titled Principia Logico-Metaphysica ([13])
contains the latest formulation of the theory and serves to compile, in one loca-
tion, both new theorems and theorems from many of the published books and
papers.
The complexity and versatility of AOT, as well as its philosophical ambition,

make it an ideal candidate to test the universality of the SSE approach. However,
recent work [11] has posed a challenge for any embedding of AOT in functional
type theory. In the next section, we briefly discuss this challenge.

§3. AOT in Functional Logic. Russell discovered the well-known paradox
in naive set theory by considering the set of all sets that do not contain themselves
and by asking whether this set contains itself. A similar construction (‘the Clark-
Boolos paradox’) is possible in a naive AOT (cf. [3] for details about the paradox
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first described by Clark and reconstructed independently by Boolos): assume
that the term [λx ∃F (xF &¬Fx)] (i.e., being an x that encodes a property x
does not exemplify) denotes a valid property K. The comprehension axiom of
abstract objects then ensures that there is an abstract object which encodes K
and no other properties. The question, does this abstract object exemplify K,
leads to paradox.
AOT undermines the paradox by restricting the matrix of λ-expressions to so-

called propositional formulas, that is, to formulas without encoding subformulas.
This way the term [λx ∃F (xF &¬Fx)] is no longer well-formed and the construc-
tion of the paradox fails. Thus, AOT contains formulas, e.g., ∃F (xF &¬Fx),
that may not be converted to terms by placing them within a λ-expression.
However, in functional type theory, it is assumed that every formula can be

converted to a term. That is crucial to the analysis of the universal quantifier.
The binding operator ∀x in a formula of the form ∀xφ is represented as a function
that maps the property [λx φ] to a truth value, namely, the function that maps
[λxφ] to The True just in case every object y in the domain is such that [λxφ](y)
holds. So in order to represent quantified AOT formulas that contain encoding
subformulas, such as ∀x∃F (xF &¬Fx), their matrices have to be convertible to
terms. This would force [λx ∃F (xF & ¬Fx)] to be well-formed and would lead
to paradox.2

Thus, it is not trivial to devise a semantical embedding that supports AOT’s
distinction between formulas and propositional formulas, but at the same time
preserves a general theory of quantification. Another challenge has been to
accurately encode the hyperintensionality of AOT: while relations in AOT are
maximally intensional, functions (and relations) in HOL are fully extensional,
and can therefore not be used to represent the relations of AOT directly.

§4. Embedding AOT in Isabelle/HOL. The embedding of AOT in Is-
abelle/HOL overcomes these issues by constructing a modal, hyperintensional
variant of the Aczel-model of the theory. Modality is represented by introducing
a dependency on primitive possible worlds in the manner of Kripke semantics of
modal logic. Hyperintensionality is achieved by an additional dependency on a
separate domain of primitive states. Consequently, propositions are represented
as Boolean-valued functions acting on possible worlds and states. The model
also includes a domain partitioned into ordinary and special urelements. Prop-
erties are represented as functions mapping urelements to propositions. Whereas
the ordinary objects of AOT can be represented by the ordinary urelements, the
abstract objects of AOT are represented as sets of properties and these sets are
non-injectively assigned a proxy among the special urelements. Now if x is an

2A reader who is familiar with Isabelle/HOL might find this notation confusing. In AOT,
the symbol φ is a metavariable that ranges over formulas that may contain free occurrences of
x that can be bound by a binding operator. In Isabelle/HOL, however, φ would be represented
as a function from individuals to truth-values, and the quantified formula would be written as
∀x. φ x. Such a formula is true, if φ x, i.e. the function application of φ to x, holds for all x in
the domain. In this scenario it holds that φ = (λx.φx). Consequently the primitive, functional
λ-expressions of Isabelle/HOL cannot be used to represent the λ-expressions of AOT, since the
λ-expressions of Isabelle/HOL cannot simultaneously exclude non-propositional formulas and
allow quantified formulas with encoding subformulas.
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ordinary object, then the truth conditions of an exemplification formula Px are
captured by the proposition that is the result of applying the function represent-
ing the property P to the ordinary urelement representing x. If x is an abstract
object, then the truth conditions of an exemplification formula Px are captured
by the proposition that is the result of applying the function representing the
property P to the special urelement that serves as the proxy of x. An encoding
formula xP , by contrast, is true just in case x is an abstract object and the
property P is an element of the set of properties representing x. This latter
feature of the model validates the comprehension axiom of abstract objects: for
every set of properties there exists a unique abstract object, that encodes exactly
those properties.
Since well-formed λ-expressions in AOT are required to have a propositional

matrix, they correspond to functions acting on urelements. Given that encoding
subformulas are excluded from these expressions in AOT, the only formulas that
can occur in the matrix of a λ-expression are those built up from exemplification
formulas. The truth conditions of these formulas are determined solely by the
properties and relations of the urelements in the model.3

Consequently, the λ-expressions of AOT are not represented using the un-
restricted primitive λ-expressions of HOL, but have a more complex semantic
representation. Non-well-formed λ-expressions of AOT, which can’t be syntacti-
cally excluded from the SSE representation, are given a non-standard semantics
and this avoids the paradox that would otherwise occur in a naive representation.
As a result, β-conversion only holds in general for terms that are syntactically
well-formed in AOT.
The model structure we’ve just described can represent all the terms of the

target logic and retains the desired level of intensionality. Moreover, the axiom
system and inference rules of AOT become derivable. Thus, the embedding
can abstract away from the model by introducing a novel, layered approach. A
representation of the formal semantics of PLM is implemented as a first layer
of abstraction and this sits on top of the model structure. On the basis of that
representation, the axiom system and the fundamental inference rules of PLM
are derived. Using this layered approach it is possible to reason directly in the
target logic but independently of the underlying model structure. This avoids
the derivation of artifactual theorems, despite the fact that the model structure
might validate formulas that aren’t theorems of AOT. And, just as importantly,
the model guarantees that the system of AOT is sound.
Furthermore, the layered construction of the embedding and the support from

the automation infrastructure provided by Isabelle/HOL have other advantages.
It is straightforward to convert statements derived within Isabelle/HOL into
traditional pen and paper proofs for AOT. Thus, the approach facilitates experi-
mental studies within the computational implementation and informs discussions
about them. Moreover, the approach is suitable for conducting a deeper analysis

3One exception to this rule will be briefly discussed in the next section, when we describe
how the Clark-Boolos paradox can be reintroduced.
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of AOT and its model structure. This analysis led to the discovery of how a pre-
viously known paradox could easily resurface if care isn’t taken in the formulation
of PLM. This paradox will be sketched in the next section.

§5. Discovery of a Paradox. The idea behind the representation of AOT’s
λ-expressions in the embedding is to allow the formation of λ-expressions with
any matrix whatsoever, but in such a way that requires only those expressions
conforming to PLM’s syntactic restrictions to have a standard semantics. In
particular, β-conversion does not hold in general, but does hold for λ-expressions
with a propositional matrix.
When Kirchner checked the accuracy of this representation, it became appar-

ent that certain λ-expressions involving definite descriptions, which were allowed
in the latest formulation of AOT in PLM, did not exhibit the desired behavior
in the embedding; in particular, β-conversion could not be derived for those ex-
pressions. Using the sophisticated infrastructure provided by Isabelle/HOL, it
became possible to show that β-conversion for these terms does not hold in any
Aczel-model, and this suggested that there might be some problem with these
expressions.
Kirchner then investigated the consequences of assuming β-conversion holds

for such terms in Isabelle/HOL. This assumption turned out to be inconsistent;
the layered structure of the embedding made it possible to construct a proof
of the inconsistency using object level reasoning at the highest level of abstrac-
tion. This way, a human-friendly proof of the paradox was reconstructed and
quickly confirmed by Zalta. The paradox is based on the fact that the logic of
λ-expressions that contain certain definite descriptions would effectively circum-
vent the restriction that their matrices not have encoding subformulas. Indeed,
the paradox turned out to be one that was previously known (the Clark-Boolos
paradox mentioned earlier), but which had re-emerged through the backdoor (see
the discussion below). This new route to a previously known paradox constituted
a new paradox.
More specifically, the new paradox is due in part to the precise definition of

subformula. The matrix of a λ-expression in AOT is allowed to contain en-
coding formulas as long as they are nested within a definite description. En-
coding formulas so nested are not considered subformulas of the matrix and so
such matrices are still considered propositional formulas. Therefore, the term
[λx Gιzψ] is considered well-formed, even if ψ contains encoding subformulas.
Choosing G to be a property that is universally true (e.g. [λy ∀p(p→ p)]) and ψ
as z = x ∧ ∃F (xF ∧ ¬Fx) results in a property that turns out to be (actually)
extensionally equivalent to the property K described above in Section 3. This is
sufficient to reconstruct the Clark-Boolos paradox.
The confirmation of the paradox initiated fruitful discussions about the best

option for closing this backdoor route to paradox. These considerations led Zalta
to discover not only a way to avoid the paradox but also a way to simplify the
system with a defined notion of logical existence for the terms. AOT now uses
that notion instead of identity in the formulation of the axioms of free logic.
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§6. Automation. The complexity of the target system and the use of mul-
tiple abstraction layers presents a challenge for the development and use of
automated reasoning tools. One option for automating proofs is to use Is-
abelle/HOL’s inbuilt reasoning tools (e.g. Sledgehammer and Nitpick) to unfold
the semantical embedding of AOT in HOL and to reason with the resulting state-
ments about the model. A better option is to directly automate the proof theory
of PLM at an abstract layer, i.e., without unfolding the semantical embedding.
We adopted this latter option since it allows for the interactive construction of
complex, but human-friendly, proofs for PLM. To simplify the implementation
of this option, we used the Eisbach package of Isabelle to define powerful proof
methods for the system PLM, including a resolution prover that can automati-
cally derive the classical propositional tautologies directly in AOT.

§7. Relations vs. Functions. One problem that initially motivated our
project was the question of whether relational type theory or functional type
theory provides a better framework for developing a fundamental metaphysical
system. Oppenheimer and Zalta argue in [11] that it is more difficult to repre-
sent AOT’s reasoning system in functional type theory than in relational type
theory. They conclude from this that relations and relational type theory are
more fundamental than functions and functional type theory. But though the
SSE embedding of AOT in Isabelle/HOL doesn’t challenge this conclusion di-
rectly, it does show that the functional setting of HOL can offer a reasonably
accurate representation of the reasoning that can be done in AOT. Whether
this approach undermines Oppenheimer and Zalta’s claim remains to be seen.
However, it provides several new insights and points toward important further
work. Although the representation of AOT in the functional setting is complex,
our works shows that the representation of its second-order fragment is indeed
feasible using a complex semantical structure. Furthermore, the key to the de-
velopment of a sound axiomatization of the complex relation terms of AOT is to
be found in the study of, and solution to, both the challenges we encountered in
constructing the SSE and the paradox we discovered.
With a paradox-free emendation of PLM, future research should include an

extended analysis of the faithfulness of the embedding approach we used; this
would shed further light on the debate about relational and functional type
theory. This study should be complemented by an analysis of the reverse di-
rection, i.e. an embedding of the fundamental logic of HOL in the (relational)
type-theoretic version of AOT. Both studies should then be carefully assessed.

§8. Conclusion. The semantical embedding approach has been fruitfully
employed to encode the logic of Zalta’s Principia Logico-Metaphysica in Is-
abelle/HOL. By devising and utilizing a multi-layered approach (which at the
most abstract level directly mechanizes the proof-theoretic system of Principia
Logico-Metaphysica), the issues arising for an embedding in classical higher-
order logic are not too difficult to overcome. A highly complex target system
based on a fundamentally different tradition of logical reasoning (relational in-
stead of functional logic) has been represented and analyzed using the approach
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of shallow semantical embeddings. The power of this approach has been demon-
strated by the discovery of a previously unnoticed paradox that was latent in
Principia Logico-Metaphysica. The novel ideas of layered abstraction levels and
customized proof methods for these levels have shown great potential and may
serve as a valuable first step for future research. Furthermore, the work con-
tributes to the philosophical debate about the tension between functional type
theory and relational type theory and their inter-representability, and it clearly
demonstrates the merits of shallow semantical embeddings as a means towards
universal logical reasoning.
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