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PARTIAL ORDERS INDUCED BY QUASILINEAR CLONES

ERKKO LEHTONEN AND ÁGNES SZENDREI

Abstract. We find sufficient conditions for a subclone C of Burle’s clone and

for a subclone of the polynomial clone of a finite semimodule to have the

property that the associated C-minor partial order has finite principal ideals.
We also prove that for these clones the C-minor partial order is universal for

the class of countable partial orders whose principal ideals are finite.

1. Introduction

Every clone C on a nonempty set A induces a quasi-order, called the C-minor
relation, on the set OA of all operations on A as follows: an operation f is a C-
minor of another operation g if and only if f can be obtained from g by substituting
operations from C for the variables of g. The associated equivalence relation on
OA, called C-equivalence, is a natural extension of Green’s R relation [6, 13] from
transformation monoids to operations of higher arity. Early applications of the idea
of C-equivalence for some very particular choices of C can be found in the papers by
Harrison [4] and Henno [5]. More recently, the C-minor relation for operations on
a 2-element set A has received some attention in the theory of Boolean functions
for various essentially unary clones C, see, e.g., [2, 3, 14, 17, 18, 19].

This paper focuses on the partially ordered set PC induced by the C-minor re-
lation on the set of C-equivalence classes of OA. We will assume that A is finite,
so the poset PC is countable for every clone C. In the papers [11, 12] we started
a systematic investigation of the clones for which the poset PC is finite. The re-
sults suggest that PC is infinite for most clones C. Moreover, it is known that the
structure of PC can be complicated; for example, it is proved in [10] that for all but
finitely many clones C on a 2-element set, PC has the property that every countable
poset embeds into PC . On the other hand, it was observed by Zverovich [19] and
the first author [8] that for some clones C, although the poset PC is infinite, it
satisfies some finiteness properties like the descending chain condition.

For the clone C of projections, Couceiro and Pouzet [2] found the exact finiteness
strength of PC by showing that PC is universal for the class of countable posets
with finite principal (order) ideals; that is, PC has finite principal ideals, and every
countable poset with finite principal ideals embeds into PC . Our aim in this paper
is to extend this result to a broad class of clones C, which includes essentially
unary clones, large subclones of Burle’s clone, and large subclones of the clone
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of polynomial operations of a semimodule over a commutative inverse semigroup.
The natural context for these results is to look at the C-minor relation on the set
of all finitary functions from A to another set U , rather than just on the set of
all operations on A. Therefore, our results will be stated and proved in this more
general context.

A consequence of our results is that for a finite set A, the family of all clones
C on A for which PC has finite principal ideals is closed under taking subclones if
and only if |A| ≤ 2.

2. Preliminaries

2.1. General notation. Throughout this paper, we denote the set of natural num-
bers by ω := {0, 1, 2, . . . } and the set of positive integers by ω+ := ω \ {0} =
{1, 2, 3, . . . }. For n ∈ ω+ we set [n] := {0, . . . , n − 1} and bne := {1, . . . , n}.
Furthermore, if S is a set, we denote by Pf(S) the set of finite subsets of S.

2.2. Partially ordered sets. A quasi-ordered set is a pair (P ;≤) where ≤ is a
quasi-order, i.e., a reflexive and transitive binary relation on P . If, in addition, the
relation ≤ is antisymmetric, then ≤ is called a partial order and (P ;≤) is called a
partially ordered set (or a poset for short). A quasi-order ≤ induces an equivalence
relation ∼ on P by the rule x ∼ y if and only if x ≤ y and y ≤ x. Furthermore, a
quasi-order ≤ induces a partial order � on the set P/∼ of the equivalence classes of
∼, which is defined by the rule x/∼ � y/∼ if and only if x ≤ y, where x/∼ denotes
the ∼-block of x.

If (P ;≤) is a quasi-ordered set and x ∈ P , then the principal ideal generated by
x is the set ↓x := {x′ ∈ P : x′ ≤ x}. For two posets (P ;≤) and (Q;≤) a mapping
h : P → Q is called an embedding of (P ;≤) into (Q;≤), if

x ≤ x′ in P if and only if h(x) ≤ h(x′) in Q.

Clearly, such a map h is necessarily injective. If h is also surjective, it is called an
isomorphism of (P ;≤) onto (Q;≤). We say that (P ;≤) embeds into [is isomorphic
to] (Q;≤) if there exists an embedding [isomorphism] h : (P ;≤)→ (Q;≤).

Let K be a class of posets. We say that a poset (P ;≤) is universal for K, if
(P ;≤) is a member of K and every member of K embeds into (P ;≤). We will use
the notation FPI for the class of countable posets whose principal ideals are finite.

Lemma 2.1. A poset (P ;≤) is universal for FPI if and only if (P ;≤) ∈ FPI and
(Pf(ω);⊆) embeds into (P ;≤).

Proof. The necessity of the given condition for (P ;≤) to be universal for FPI is
clear, since (Pf(ω);⊆) ∈ FPI. To show the sufficiency, assume that (P ;≤) ∈ FPI
and (Pf(ω);⊆) embeds into (P ;≤). It is a well-known fact in the theory of ordered
sets that (Pf(ω);⊆) is universal for FPI (see, e.g., [2] for a proof). Therefore, every
member of FPI embeds into (Pf(ω);⊆) and hence into (P ;≤), proving that (P ;≤)
is universal for FPI. �

2.3. Operations and clones. For arbitrary sets A, U , and for any positive integer
n let F (n)(A,U) denote the set of all n-ary functions An → U , and let F(A,U) :=⋃
n≥1 F (n)(A,U). In particular, O(n)

A := F (n)(A,A) is the set of all n-ary operations

on A, andOA := F(A,A) is the set of all finitary operations on A. For every positive
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integer t and for every set U the i-th t-ary projection on U is the t-ary operation

(u1, . . . , ut) 7→ ui, which will be denoted by π
(t)
i (U will be clear from the context).

A function f ∈ F (n)(A,U) depends on its i-th variable (1 ≤ i ≤ n) if there exist
n-tuples a = (a1, . . . , an), b = (b1, . . . , bn) ∈ An with aj = bj for all j 6= i such that
f(a) 6= f(b). A variable on which f does not depend is called a fictitious variable.
We say that f is essentially unary if it depends on at most one of its variables. We
will use the notation Im(f) for the range of f .

We will consider F(A,U) (hence, in particular, OA) as a multisorted set with
sorts F (n)(A,U). Accordingly, for a subset S of F(A,U) we will use the notation
S(n) for S ∩F (n)(A,U). Furthermore, for each positive integer t we define the t-th
power of S to be St =

⋃
n≥1(S(n))t, that is, the n-th sort of the t-th power St of S

is defined to be the t-th power of the n-th sort S(n) of S.
For arbitrary sets A, U and positive integer t there is a natural one-to-one

correspondence between F(A,U t) and (F(A,U))t via the assignment

f 7→ (π
(t)
1 ◦ f, . . . , π

(t)
t ◦ f).

We will identify F(A,U t) and (F(A,U))t via this correspondence. In particular, for

every set A and for arbitrary positive integers n and t, the set (O(n)
A )t is identified

with the set F (n)(A,At) of all functions An → At, and hence the set (OA)t is
identified with F(A,At). Thus, for arbitrary k,m, n ≥ 1 and for arbitrary f ∈
(O(k)

A )m and g ∈ (O(m)
A )n, the composition g ◦ f (as functions f : Ak → Am and

g : Am → An) belongs to (O(k)
A )n. For each n, the identity function in the n-th sort

is π(n) := (π
(n)
1 , . . . , π

(n)
n ).

A subset C of OA is called a clone on A if C contains all projections and is closed
under composition; that is, π(n) ∈ (C(n))n for all n ≥ 1, and whenever f ∈ (C(k))m

and g ∈ (C(m))n, then g ◦ f ∈ (C(k))n. The intersection of any family of clones on A
is a clone; therefore the set of all clones on A is a complete lattice under inclusion.
Hence, for any set F of operations on A, there exists a smallest clone that contains
F , which will be denoted by 〈F 〉 and will be referred to as the clone generated by F .
If F is the set of basic operations of an algebra A = (A;F ), then the members of the
clone 〈F 〉 are referred to as the term operations A. The polynomial operations of A
are the operations in the clone generated by F and all (unary) constant operations
on A. For further background information on clones, see, e.g., [7, 16].

2.4. C-minors. For arbitrary sets A and U , and for arbitrary clone C on A, we
define the C-minor relation ≤C and the C-equivalence relation ≡C on F(A,U) as
follows: for f ∈ F (m)(A,U) and g ∈ F (n)(A,U) we define f ≤C g to mean that
f = g ◦ h for some h ∈ (C(m))n, and f ≡C g to mean that f ≤C g and g ≤C f .
In particular, via the identification of (OA)t with F(A,At), this definition yields
C-minor and C-equivalence relations ≤C and ≡C on (OA)t for every integer t ≥ 1.

Proposition 2.2. For arbitrary sets A and U , and for every clone C on A,

(1) ≤C is a quasi-order on F(A,U); and
(2) ≡C is an equivalence relation on F(A,U).

Moreover, for all g,g′ ∈ (OA)m and f ∈ F (m)(A,U) (m ≥ 1),

(3) g ≤C g′ implies f ◦ g ≤C f ◦ g′, and
(4) g ≡C g′ implies f ◦ g ≡C f ◦ g′.
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Proof. (2) and (4) follow immediately from (1) and (3), respectively, since ≡C is
the intersection of ≤C with its converse.

For (1) we need to show that ≤C is reflexive and transitive. Let f ∈ F (m)(A,U),

f ′ ∈ F (m′)(A,U), and f ′′ ∈ F (m′′)(A,U) be arbitrary elements of F(A,U). Since

π(m) = (π
(m)
1 , . . . , π

(m)
m ) ∈ (C(m))m is the identity function Am → Am, the equality

f = f ◦ π(m) shows that ≤C is reflexive. If f ≤C f ′ ≤C f ′′, then by the definition
of ≤C , there exist h′ ∈ (C(m))m

′
, and h′′ ∈ (C(m′))m

′′
such that f = f ′ ◦ h′ and

f ′ = f ′′◦h′′. Hence f = f ′◦h′ = (f ′′◦h′′)◦h′ = f ′′◦(h′′◦h′) with h′′◦h′ ∈ (C(m))m
′′
,

showing that f ≤C f ′′. Thus ≤C is transitive.

To prove (3), let f ∈ F (m)(A,U), let g,g′ ∈ (OA)m, that is, g ∈ (O(k)
A )m and

g′ ∈ (O(l)
A )m for some k, l ≥ 1, and let us assume that g ≤C g′. Thus there exists

h ∈ (C(k))l such that g = g′ ◦ h. Hence f ◦ g = f ◦ (g′ ◦ h) = (f ◦ g′) ◦ h, which
shows that f ◦ g ≤C f ◦ g′, and completes the proof. �

The following statement is a straightforward consequence of the definitions.

Proposition 2.3. For arbitrary sets A and U , and for arbitrary clones C ⊆ K on
A, the relations ≤C, ≤K and ≡C, ≡K on F(A,U) satisfy ≤C ⊆ ≤K and ≡C ⊆ ≡K.

As we discussed in Subsection 2.2 above, for every clone C on A, the quasi-order
≤C on F(A,U) induces a partial order on the quotient set F(A,U)/≡C , which we
will call the C-minor partial order, and will denote by �C . In the next proposition
we prove a necessary and sufficient condition for the principal ideals of the partially
ordered sets

(
F(A,U)/≡C ;�C

)
to be finite for all U .

Proposition 2.4. The following are equivalent for an arbitrary clone C on a set
A:

(a) the sets Ct/≡C are finite for all t ≥ 1;
(b) the principal ideals of

(
F(A,U)/≡C ;�C

)
are finite for all sets U ;

(c) the principal ideals of
(
(OA)t/≡C ;�C

)
are finite for all t ≥ 1.

Proof. (a)⇒ (b). Assume that condition (a) holds for C, and let U and f ∈ F(A,U)
be arbitrary. Thus f ∈ F (k)(A,U) for some k ≥ 1, and the principal ideal of(
F(A,U)/≡C ;�C

)
generated by f/≡C is the set

I := {(f ◦ g)/≡C : g ∈ Ck}.

Proposition 2.2 (4) implies that the assignment g/≡C 7→ (f ◦ g)/≡C as g runs over
all elements of Ck yields a well-defined map of Ck/≡C onto I. The set Ck/≡C is
finite by condition (a) (for t = k); therefore the ideal I is also finite.

(b) ⇒ (c). This implication is clear from the identification of (OA)t with
F(A,At).

(c) ⇒ (a). Now assume that condition (c) holds for C, and let t ≥ 1 be an

arbitrary integer. Since π(t) = (π
(t)
1 , . . . , π

(t)
t ) is the identity function At → At, the

principal ideal of
(
(OA)t/≡C ;�C

)
generated by π(t)/≡C is the set

{(π(t) ◦ g)/≡C : g ∈ Ct} = {g/≡C : g ∈ Ct} = Ct/≡C .

Hence condition (c) implies that Ct/≡C is finite for all t ≥ 1, which proves (a). �

For further background and results on the C-minor relations, see [8, 10, 11, 12].
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2.5. Polynomial clones of semimodules. Let A = (A; +) be a semigroup, that
is, + is an associative (not necessarily commutative) operation on A. If A has a
neutral element, that is, an element 0 ∈ A such that a + 0 = a = 0 + a for all
a ∈ A, then A is called a monoid. For every element a ∈ A and positive integer n,
the sum a + · · · + a with n summands is denoted na. An element a ∈ A is called
idempotent if 2a = a, and A is said to be idempotent if every element a ∈ A is
idempotent. An idempotent, commutative semigroup is called a semilattice. An
inverse semigroup is a semigroup A such that for every a ∈ A there exists a unique
element −a ∈ A with the properties a+(−a)+a = a and (−a)+a+(−a) = −a; −a
is called the inverse of a. It is easy to see that every group and every semilattice
is an inverse semigroup. The next proposition summarizes some basic facts about
inverse semigroups that we will need later on (see, e.g., [6, 13]).

Proposition 2.5. Let A = (A; +) be an inverse semigroup.

(1) The set of idempotent elements of A is a (nonempty) subsemilattice of A.
(2) A is a group if and only if A has a unique idempotent element.
(3) If A is finite, then there is a positive integer m such that (m+ 1)a = a for

all a ∈ A.

For a finite inverse semigroup A, the least positive integer m such that (m+1)a =
a for all a ∈ A is called the exponent of A.

A semiring is an algebra R = (R; +, ·) such that (R; +) is a commutative semi-
group, (R; ·) is a semigroup, and · distributes over +. It is easy to check that the
set End(A) of all endomorphisms of a commutative semigroup A forms a semiring
with respect to pointwise addition and composition. A (left) semimodule over a
semiring R is an algebra RA = (A; +, R) where A = (A; +) is a commutative
semigroup on which R acts by endomorphisms; that is, there is a homomorphism
R → End(A), r 7→ r̂ of semirings such that the (unary) operation associated to
each element r ∈ R is the endomorphism r̂ of A. We will follow the convention of
writing r instead of r̂.

The definition of a semimodule shows that every semimodule with underlying
commutative semigroup A is a reduct of the semimodule EA where E = End(A)
is the endomorphism semiring of A. Therefore, when considering clones of (poly-
nomial) operations of semimodules we may restrict to semimodules of the form

EA with E = End(A). Since E contains the identity endomorphism, it follows
easily that every term operation of EA that depends on the variables x1, . . . , xn
is of the form f1(x1) + · · · + fn(xn) for some f1, . . . , fn ∈ E. Therefore, every
polynomial operation of EA that depends on the variables x1, . . . , xn is of the form
f1(x1)+ · · ·+fn(xn) or f1(x1)+ · · ·+fn(xn)+a for some f1, . . . , fn ∈ E and a ∈ A.
The clone of all polynomial operations of EA will be denoted by PClo(EA).

2.6. Burle’s clone. Let A be a set, |A| ≥ 2. Burle’s clone on A, denoted BA,
consists of all operations f ∈ OA such that either f is essentially unary, or f has
the form

(2.1) f(x1, . . . , xn) = Ψ
(
ψ1(x1) + · · ·+ ψn(xn)

)
where + denotes addition modulo 2, ψ1, . . . , ψn are functions A → [2], and Ψ is a
function [2]→ A (see [1]).
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If |A| = 2, then BA is easily seen to be equal to the clone PClo(A) of polynomial
operations of an(y) abelian group A = (A; +) on A. Therefore, when considering
Burle’s clone BA we will always assume that |A| ≥ 3.

Proposition 2.6. Let 0 be a fixed element of A. Every operation f ∈ B(n)
A with

| Im(f)| ≤ 2 can be written in the form (2.1) such that Ψ is one-to-one and ψi(0) = 0
for all 1 ≤ i ≤ n.

Proof. If f ∈ B(n)
A is not essentially unary, then by the definition of Burle’s clone,

f(x1, . . . , xn) = Ψ′
(
ψ′1(x1) + · · · + ψ′n(xn)

)
for some ψ′1, . . . , ψ

′
n : A → [2] and

Ψ′ : [2] → A. Since | Im(f)| ≤ 2, the same conclusion is true even if f is es-
sentially unary. Now, letting ψi(xi) = ψ′i(xi) + ψ′i(0) for all 1 ≤ i ≤ n and
Ψ(y) = Ψ′

(
y+
∑n
i=1 ψ

′
i(0)

)
we get that (2.1) holds with ψi(0) = 0 for all 1 ≤ i ≤ n.

Hence, if the function Ψ: [2] → A is one-to-one, we are done. Otherwise, Ψ is a
constant function, and hence so is f . In that case we can choose ψ1, . . . , ψn be
constant with value 0, and Ψ any one-to-one function that maps 0 to f(0). �

Finally, we define some operations in BA which will play a role later on in the
paper. For this, we choose and fix an element 0 of A. For arbitrary a ∈ A \ {0},
let ⊕a denote the binary operation x ⊕a y = Λa

(
λa(x) + λa(y)

)
in BA where the

functions Λa : [2]→ A and λa : A→ [2] are defined as follows: Λa(0) = 0, Λa(1) = a,
λa(a) = 1, and λa(b) = 0 for all b ∈ A \ {a}. Since λa ◦ Λa is the identity function
[2]→ [2], we have that

(x⊕a y)⊕a z = Λa

(
λa
(
Λa(λa(x) + λa(y))

)
+ λa(z)

)
= Λa

(
λa(x) + λa(y) + λa(z)

)
.

Similarly, x ⊕a (y ⊕a z) = Λa
(
λa(x) + λa(y) + λa(z)

)
; therefore the operation ⊕a

is associative. For every integer n ≥ 2, we will write the composite operation
(. . . ((x1 ⊕ x2)⊕a x3) . . .)⊕a xn without parentheses as x1 ⊕a x2 ⊕a · · · ⊕a xn. An
easy calculation, similar to the one above, shows that

(2.2) x1 ⊕a x2 ⊕a · · · ⊕a xn = Λa
(
λa(x1) + λa(x2) + · · ·+ λa(xn)

)
for all n ≥ 2.

3. The main result

The main result of this paper is the following theorem.

Theorem 3.1. Let C be a clone on a finite set A, |A| ≥ 2, and let U be a finite
set such that |U | ≥ min(3, |A|). If C satisfies one of the conditions (A)–(C) below,
then the C-minor partial order (F(A,U)/≡C ;�C) is universal for the class FPI of
countable posets whose principal ideals are finite.

(A) There exists a positive integer m such that every operation in C depends on
at most m variables.

(B) C is a subclone of Burle’s clone BA (|A| ≥ 3) such that C contains all binary
operations ⊕a (a ∈ A \ {0}) for some fixed element 0 ∈ A.

(C) For a commutative inverse semigroup A = (A; +) of exponent m and E =
End(A), C is a subclone of the clone PClo(EA) such that C contains the
operation x0 + x1 + · · ·+ xm.

Proof. Let C satisfy one of conditions (A)–(C). We will prove in Theorem 4.1 that
the sets Ct/≡C are finite for all t ≥ 1. Thus by Proposition 2.4, the principal
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ideals of the C-minor partial order (F(A,U)/≡C ;�C) are finite. Also, F(A,U)
is countable, because A and U are finite; hence (F(A,U)/≡C ;�C) ∈ FPI. In
Theorem 5.1 we will prove that under slightly weaker hypotheses on C than (A)–
(C), the poset (Pf(ω);⊆) embeds into (F(A,U)/≡C ;�C). Thus, by Lemma 2.1,
(F(A,U)/≡C ;�C) is universal for FPI, as claimed. �

The special case of part (A) of Theorem 3.1 when C is the clone of projections
(and U = A = [2]) was proved in [2] by Couceiro and Pouzet. Two special cases
of part (C) of Theorem 3.1 are also worth stating separately, namely when A is an
abelian group or a semilattice. Note that in the case when A is a semilattice, the
exponent of A is m = 1, while in the case when A is an abelian group of exponent
m, then a clone C contains the operation x0 +x1 + · · ·+xm if and only if it contains
the ternary operation x− y + z.

Corollary 3.2. If a clone C satisfies one of the conditions (C)gr or (C)sl below,
then the C-minor partial order (F(A,U)/≡C ;�C) is universal for FPI for any finite
set U with |U | ≥ min(3, |A|).

(C)gr For a finite abelian group A = (A; +) (|A| ≥ 2) and E = End(A), C is a
subclone of the clone PClo(EA) such that C contains the operation x−y+z.

(C)sl For a finite semilattice A = (A; +) (|A| ≥ 2) and E = End(A), C is a
subclone of the clone PClo(EA) such that C contains the operation +.

We close this section by discussing examples which show that in condition (B)
of Theorem 3.1 the assumption “C contains all binary operations ⊕a (a ∈ A\{0})”
cannot be omitted, and similarly, in condition (C) of Theorem 3.1 the assumption
“C contains the operation x0 +x1 +· · ·+xm” cannot be omitted. To this end we will
exhibit subclones C of Burle’s clone BA and subclones C of PClo(EA) for certain
inverse semigroups A such that the set C/≡C is infinite. Since C/≡C is a principal
ideal of the C-minor partial order (OA/≡C ;�C) (see the proof of Proposition 2.4,
case t = 1 in (c) ⇒ (a)), the fact that C/≡C is infinite implies that (OA/≡C ;�C) =
(F(A,A)/≡C ;�C) is not even a member of FPI, let alone universal for FPI.

These examples, along with Theorem 3.1, also show that on a finite set A with
more than two elements the family of all clones C for which the C-minor partial
order (OA/≡C ;�C) is universal for FPI is not closed under taking subclones.

Example 3.3. Let 0, a, b be distinct elements of A (|A| ≥ 3), and let C be the
subclone of BA generated by the operations fn (n ∈ ω) where fn(x1, . . . , xn) =
Λb
(
λa(x1) + · · ·+λa(xn)

)
for n ≥ 1 and f0 = 0, the unary constant operation with

value 0. Since Λb ◦ λa : A → A is not constant, we get that for n ≥ 1, fn depends
on all of its variables. However, since λa ◦Λb : [2]→ [2] is constant 0, it follows that
the identities

(3.1) fn
(
x1, . . . , xi, fm(x1+i, . . . , xm+i), xm+i+1, . . . , xm+n−1

)
= fn−1(x1, . . . , xi, xm+i+1, . . . , xm+n−1)

hold for all m,n ≥ 1 and 0 ≤ i ≤ n − 1. This implies that every operation in C
is either a projection or is of the form fn(xi1 , . . . , xin) for some n ≥ 1 and some
variables xi1 , . . . , xin . Furthermore, we have that whenever g ≤C fn holds for some
g ∈ C, then g depends on at most n variables if n ≥ 1, and g is constant 0 if n = 0.
Thus fm 6≡C fn if m 6= n (m,n ∈ ω), so C/≡C is infinite.
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Example 3.4. Let A be a finite inverse semigroup with neutral element 0 such
that A has a nonzero nilpotent endomorphism that fixes 0.1 Then there exists r ∈
End(A) = E such that r 6= 0 = r2 and r(0) = 0. Let C be the subclone of PClo(EA)
generated by the operations fn (n ∈ ω) where fn(x1, . . . , xn) = r(x1) + · · ·+ r(xn)
for n ≥ 1, and f0 = 0, the unary constant operation with value 0. The assumptions
r 6= 0 and r(0) = 0 imply that for n ≥ 1, fn depends on all of its variables, while
the assumption r2 = 0 forces that the identities (3.1) hold for all m,n ≥ 1 and
0 ≤ i ≤ n− 1. As in Example 3.3, we get that C/≡C is infinite.

4. Finite principal ideals

Our goal in this section is to establish that for the clones C in Theorem 3.1,
the principal ideals of (F(A,U)/≡C ;�C) are finite for arbitrary set U . By Propo-
sition 2.4, this will follow if we prove that the sets Ct/≡C are finite for all t ≥ 1.
Thus, our task is reduced to proving the following theorem.

Theorem 4.1. If a clone C on a finite set A satisfies one of conditions (A)–(C)
from Theorem 3.1, then the sets Ct/≡C are finite for all t ≥ 1.

The next lemma proves the theorem for the case when C satisfies condition (A).

Lemma 4.2. If a clone C on a finite set A satisfies condition (A) from Theorem 3.1,
then the sets Ct/≡C are finite for all t ≥ 1.

Proof. Let t ≥ 1. Since every operation in C depends on at most m variables, it
follows that every function in Ct

(
⊆ F(A,At)

)
depends on at most mt variables.

Therefore, for every f ∈ Ct there exists f ′ ∈ (C(mt))t
(
⊆ F (mt)(A,At)

)
such that f

and f ′ can be obtained from one another by adding or removing fictitious variables.
Hence f ≡C f ′. This implies that |Ct/≡C | ≤ |(C(mt))t/≡C | ≤ |F (mt)(A,At)/≡C |.
Since A is finite, the set F (mt)(A,At) of all functions Amt → At is finite. This
proves that Ct/≡C is finite. �

To get the same conclusion for the remaining clones in Theorem 3.1, we will start
by setting up a framework in which clones of polynomial operations of semimodules
and subclones of Burle’s clone can be handled simultaneously.

Definition 4.3. Let A and U be arbitrary sets, and let f = f(x1, . . . , xn) be
a function in F (n)(A,U) with essential variables xj (j ∈ J). Furthermore, let
B = (B; +) be a commutative monoid such that B ⊆ U . We will say that f is
quasilinear with respect to B, or briefly, B-quasilinear, if there exist b ∈ B and
functions uj ∈ F (1)(A,B) (j ∈ J) such that

(4.1) f(x1, . . . , xn) =
∑
j∈J

uj(xj) for all x1, . . . , xn ∈ A

or

(4.2) f(x1, . . . , xn) = b+
∑
j∈J

uj(xj) for all x1, . . . , xn ∈ A,

with addition on the right-hand sides of (4.1) and (4.2) performed in B.
We will say that a function in F(A,U) is quasilinear if it is quasilinear with

respect to some B, and a subset S of F(A,U) is quasilinear if every member of

1It is not hard to see that such an endomorphism exists if A is a finite semilattice with neutral
element such that |A| ≥ 3, or if A is a finite abelian group such that |A| is not square free.
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S is. In particular, a clone on A is quasilinear if all operations in the clone are
quasilinear.

Let A, U , f , J , and B be as in Definition 4.3, and assume that f is B-quasilinear.
If B has a neutral element 0B, then (4.1) is the special case b = 0B of (4.2).
Moreover, for such a B, the constant map with domain A and range {0B}, which
will also be denoted by 0B, is a member of F (1)(A,B). Therefore, choosing ui to
be 0B whenever xi is a fictitious variable of f , we see that there exist b ∈ B and
u1, . . . , un ∈ F (1)(A,B) such that

(4.3) f(x1, . . . , xn) = b+ u1(x1) + · · ·+ un(xn) for all x1, . . . , xn ∈ A,

where, as before, addition is performed in B.
Next we will introduce notation that will allow us to write B-quasilinear functions

f in the form (4.3) even if B has no neutral element. Let ~ be an element not
in U and let U0 := U ∪ {~}. As is usual in semigroup theory, if B has a neutral
element, 0B, let B0 denote B itself. Otherwise, let B0 = (B ∪ {0B}; +) be the
extension of B by the element 0B := ~ which acts as a neutral element; that is,
B is a subsemigroup of B0 and x + 0B = x = 0B + x for all x ∈ B ∪ {0B}. As
before, let 0B denote the constant map with domain A and range {0B}, and let
F (1)(A,B)0 = F (1)(A,B) ∪ {0B} (a set of functions A → B ∪ {0B}). Now, the
same argument as before shows that every B-quasilinear function f ∈ F(A,U)
can be written in the form (4.3) for some element b ∈ B0 and some functions
u1, . . . , un ∈ F (1)(A,B)0 so that addition on the right-hand side is performed in
B0. The expression on the right-hand side of the equality in (4.3) will be referred
to as a B-representation of f .

We will use the following conventions and notation for sets of quasilinear func-
tions.

Conventions and Notation 4.4. Let A and U be arbitrary sets. Associated to
any quasilinear set S ⊆ F(A,U) of functions, we will fix a set of data witnessing
the quasilinearity of S; namely

• a family B(S) of commutative monoids,
• for each B ∈ B(S),

– a set SB of B-quasilinear functions in S,
– a subset EB of F (1)(A,B), and

• along with each f ∈ SB a set reprB(f) 6= ∅ of B-representations of f

such that

• S =
⋃
{SB : B ∈ B(S)}, and

• for each f ∈ SB, every B-representation of f in reprB(f) has the form
b + u1(x1) + · · · + un(xn) as in (4.3) with b ∈ B0 and u1, . . . , un ∈ E0

B :=
EB ∪ {0B}.

The set E0
B \ {0B} = EB \ {0B} will be denoted by E−B .

Example 4.5. Any set S of essentially unary operations on A is A-quasilinear with
respect to any fixed commutative monoid A = (A;�). To witness the quasilinearity

of S we will choose B(S) = {A}, SA = S, and EA = O(1)
A ; moreover, for every

operation f ∈ S we let reprA(f) consist of all A-representations of f as in (4.3)
with b = 0A and all, but at most one, ui = 0A.
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Example 4.6. It follows from our discussion in subsection 2.5 that if A = (A; +)
is a commutative semigroup and E = End(A), then any set S ⊆ PClo(EA) of
polynomial operations of the semimodule EA is A-quasilinear. To witness the
quasilinearity of S we will choose B(S) = {A}, SA = S, and EA = E; moreover,
for every operation f ∈ S we let reprA(f) consist of all A-representations of f as
in (4.3) with ui ∈ E0

A for all i. Note that every element of E0
A is a homomorphism

A→ A0.

Example 4.7. Let A be a set with |A| ≥ 3, and let 0 be a fixed element of A.
Any subset S of Burle’s clone BA is quasilinear. In fact, if the range of f ∈ S has
size | Im(f)| > 2, then f is essentially unary, so by Example 4.5, f is A-quasilinear
for any (fixed) commutative semigroup A = (A;�). (A can be chosen so that 0
is the neutral element of A.) If the range of f ∈ S has size | Im(f)| ≤ 2, then by
Proposition 2.6 f can be written in the form (2.1) such that Ψ is one-to-one and
ψi(0) = 0 for all 1 ≤ i ≤ n. Hence there is a unique group operation +Ψ on the
2-element set Ψ([2]) ⊆ A such that Ψ is an isomorphism ([2]; +) →

(
Ψ([2]); +Ψ

)
.

Thus Ψ(x) +Ψ Ψ(y) = Ψ(x+ y) holds for all x, y ∈ [2]. Consequently,

f(x1, . . . , xn) = Ψ
(
ψ1(x1) + · · ·+ ψn(xn)

)
(4.4)

= Ψ
(
ψ1(xn)

)
+Ψ · · ·+Ψ Ψ

(
ψn(xn)

)
,

showing that f is
(
Ψ([2]); +Ψ

)
-quasilinear.

Thus, to witness the quasilinearity of S ⊆ BA, we will fix a commutative semi-
group A = (A;�) with neutral element 0, and choose

B(S) = {A} ∪ {
(
Ψ([2]); +Ψ

)
: Ψ is a one-to-one function [2]→ A}.

Moreover, for any B ∈ B(S) we let EB = E0
B = F (1)(A,B). If B = A, then we

choose SA to be the set of all operations f ∈ S with range of size | Im(f)| > 2, and
for each such f we choose reprA(f) as in Example 4.5. If B =

(
Ψ([2]); +Ψ

)
for a

one-to-one Ψ: [2] → A, then we let SB be the set of all operations f of the form
(4.4) with ψi(0) = 0 for all 1 ≤ i ≤ n, and for each such f , the possible right-hand
sides in (4.4) will form the set reprB(f). (It is not hard to see that reprB(f) has
only one element unless f is a constant operation.)

Lemma 4.8. Let A be an arbitrary set. If f1, . . . , ft are n-ary operations on A such
that fj is Bj-quasilinear for each 1 ≤ j ≤ t, then the function f = (f1, . . . , ft) ∈
F (n)

(
A, (A0)t

)
is
∏t
j=1 B0

j -quasilinear.

Proof. Indeed, if bj + u1j(x1) + · · · + unj(xn) ∈ reprBj
(fj) with bj ∈ B0

j and

u1j , . . . , unj ∈ E0
Bj

for every j (1 ≤ j ≤ t), then for the tuples b = (b1, . . . , bt) ∈∏t
j=1 B0

j and ui = (ui1, . . . , uit) ∈
∏t
j=1E

0
Bj

we have that the expression b +

u1(x1)+· · ·+un(xn) is a
∏t
j=1 B0

j -representation of f = (f1, . . . , ft) ∈ F (n)
(
A, (A0)t

)
.

�

Conventions 4.9. Let S ⊆ OA be a set of quasilinear operations. For any integer
t ≥ 1, the quasilinearity of the set St ⊆ F

(
A, (A0)t

)
will be witnessed by the data

suggested by the proof of Lemma 4.8; namely:

B(St) =
{ t∏
j=1

B0
j : Bj ∈ B(S)

}
,
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and for each B =
∏t
j=1 B0

j ∈ B(St), we choose (St)B =
∏t
j=1 SBj (⊆ St), EB =

E0
B =

∏t
j=1E

0
Bj

, and for every f = (f1, . . . , ft) ∈ (St)B, we let reprB(f) consist

of all B-representations of f whose projections onto each coordinate j (1 ≤ j ≤ t)
belong to reprBj

(fj).

The next lemma provides a sufficient condition for S/≡C to be finite for a set of
quasilinear functions S ⊆ F(A,U). The statement will primarily be used for the
special case when C is a clone of quasilinear operations and S = Ct for some integer
t ≥ 1. However, the statement and the proof are more transparent in the general
setting.

Lemma 4.10. Let C be a clone on a finite set A, and let U be another finite set.
If S ⊆ F(A,U) is a set of quasilinear functions, then S/≡C is finite, provided
condition (∗)p,r below holds for some positive integers p and r:

(∗)p,r whenever f is an (n+r)-ary function in SB, for some B ∈ B(S) and n ≥ 0,
such that f has a B-representation

(4.5) f(x1, . . . , xn, y1, . . . , yr) = b +

n∑
i=1

ui(xi) +

r∑
j=1

v(yj),

with the right-hand side in reprB(f) such that v ∈ E−B , then the (n+ r + p)-ary
function

(4.6) g(x1, . . . , xn, y1, . . . , yr+p) = b +

n∑
i=1

ui(xi) +

r+p∑
j=1

v(yj)

is in SB, the right-hand side of (4.6) is a B-representation of g in reprB(g),
and g ≡C f .

Proof. Assume that there exist integers p, r ≥ 1 such that condition (∗)p,r holds.
Our goal is to show that S/≡C is finite. Since U is finite, there are only finitely many
commutative monoids B = (B; +) with B ⊆ U . Hence B(S) is finite. Therefore,
since S =

⋃
{SB : B ∈ B(S)}, it will follow that S/≡C is finite if we show that

SB/≡C is finite for each B ∈ B(S). So, let B ∈ B(S) be arbitrary, and let p, r ≥ 1
be integers such that (∗)p,r holds. To argue that SB/≡C is finite we will need some
notation.

Let [ be an element not in E−B . If h ∈ SB and h∗ ∈ reprB(h), say h∗ is the

expression b +
∑n
i=1 wi(xi), then we define a function mh∗ : {[} ∪ E−B → B0 ∪ ω

called the multiplicity function of h∗ as follows: mh∗([) = b, and for every w ∈ E−B ,
mh∗(w) is the number of summands wi(xi) in h∗ such that wi = w.

Let M denote the set of all functions m : {[}∪E−B → B0∪ω satisfying m([) ∈ B0

and m(w) ∈ ω for all w ∈ E−B . We define the distance of two functions m, n ∈ M
by

d(m, n) =
∑

w∈E−B

|m(w)− n(w)|.
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Next we define equivalence relations ρ[ and ρw (w ∈ E−B) on M as follows: for
m, n ∈ M,

m ρ[ n ⇐⇒ m([) = n([), and

m ρw n ⇐⇒ either m(w) = n(w) < r,

or m(w) ≡ n(w) (mod p) and m(w), n(w) ≥ r.

Let l denote the intersection of ρ[ and all ρw (w ∈ E−B). Clearly, each ρw has at
most r+p equivalence classes, and ρ[ has at most |B|+1 equivalence classes. Since
A, U are finite, B ⊆ U , and hence E−B ⊆ F(A,B) is also finite, it follows that l
has only finitely many equivalence classes.

Therefore, to prove that SB/≡C is finite, it will be sufficient to show that if
f ,h ∈ SB have B-representations f∗ ∈ reprB(f) and h∗ ∈ reprB(h) such that
mf∗ l mh∗ , then f ≡C h. Suppose this implication is false, that is, there exist
f ,h ∈ SB such that for some B-representations f∗ ∈ reprB(f) and h∗ ∈ reprB(h)
we have mf∗ l mh∗ , but f 6≡C h. Choose and fix f , h and f∗, h∗ with these
properties in such a way that the distance d(mf∗ ,mh∗) is as small as possible.
First we want to argue that d(mf∗ ,mh∗) > 0. Assume, for a contradiction, that
d(mf∗ ,mh∗) = 0. Then mf∗ = mh∗ , hence f∗ and h∗ may differ only by renaming
variables and adding or removing constant summands 0B. It follows that f and h
may differ only by renaming variables and adding or removing fictitious variables.
But then f ≡C h, which contradicts the choice of f and h. Thus d(mf∗ ,mh∗) > 0,
and hence mf∗ 6= mh∗ .

Let v ∈ E−B be such that mf∗(v) 6= mh∗(v). The assumption mf∗ l mh∗ implies
that mf∗ ρv mh∗ , and the choice of v excludes the possibility mf∗(v) = mh∗(v) < r.
Therefore, mf∗(v) ≡ mh∗(v) (mod p) and mf∗(v), mh∗(v) ≥ r.

By switching the roles of f and h if necessary we may assume without loss of
generality that mf∗(v) < mh∗(v), say mh∗(v) = mf∗(v) + kp for some positive
integer k. Since mf∗(v) ≥ r, we get that f∗ has the same form as the expression
on the right-hand side of (4.5). Now let g∗ be the expression on the right-hand
side of (4.6), and let g be the function with B-representation g∗. Condition (∗)p,r
tells us then that g ∈ SB, g∗ ∈ reprB(g), and f ≡C g. By the choice of g∗ we
have that mg∗([) = mf∗([), mg∗(v) = mf∗(v) + p, and mg∗(w) = mf∗(w) for all
w ∈ E−B \ {v}.

Thus mg∗ l mf∗ . Hence the functions g,h ∈ SB with B-representations g∗ ∈
reprB(g) and h∗ ∈ reprB(h) satisfy mg∗ l mh∗ . Moreover,

d(mg∗ ,mh∗) = d(mf∗ ,mh∗)− |mf∗(v)−mh∗(v)|+ |mg∗(v)−mh∗(v)|
= d(mf∗ ,mh∗)− kp+ (k − 1)p = d(mf∗ ,mh∗)− p < d(mf∗ ,mh∗).

Since f , h and f∗, h∗ were chosen with minimum distance d(mf∗ ,mh∗) such that
mf∗ l mh∗ and f 6≡C h, we get that g ≡C h. In view of f ≡C g this forces that
f ≡C h, which contradicts our assumption on f and h. This completes the proof of
the lemma. �

Now we apply Lemma 4.10 to clones C that satisfy condition (B) or (C) from
Theorem 3.1.

Lemma 4.11. If a clone C on a finite set A satisfies condition (C) from Theo-
rem 3.1, then the sets Ct/≡C are finite for all t ≥ 1.
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Proof. As in assumption (C), let C be a subclone of PClo(EA) containing the
operation x0 + x1 + · · · + xm, where A = (A; +) is a finite commutative inverse
semigroup of exponent m and E = End(A). Let t ≥ 1 and let S = Ct. For B(C),
CA, EA, and reprA(f) (f ∈ C) we will use the choices agreed upon in Example 4.6.
Therefore, Convention 4.9 determines the corresponding data for S = Ct (in fact, for

any subset S of
(
PClo(EA)

)t
). In particular, B(S) = {(A0)t}, and for B = (A0)t

we have EB = E0
B = (E0)t. Furthermore, for every f ∈ S, the set reprB(f) consists

of all B-representations b +
∑
i wi(xi) of f with wi ∈ (E0)t for all i. Note that

since the elements of E0 are homomorphisms A → A0, the elements of (E0)t are
homomorphisms A→ (A0)t.

To show that the set S/≡C is finite we will apply Lemma 4.10. Our goal is to
prove that (∗)p,r holds for S with p = m and r = 1. So let B = (A0)t and let
f ∈ S be a function as in (4.5) such that v ∈ E−B and the B-representation on the

right-hand side is in reprB(f). Then b ∈ B and u1, . . . ,un,v ∈ (E0)
t
. Now let g

be the function in (4.6). Clearly, g ∈
(
PClo(EA)

)t
and the right-hand side of (4.6)

is a B-representation of g in reprB(g). It remains to show that g ∈ S = Ct and
f ≡C g.

Since A is an inverse semigroup of exponent m, so is B = (A0)t. Therefore,

g(x1, . . . , xn, y1, . . . , y1︸ ︷︷ ︸
m+1

) = b +

n∑
i=1

ui(xi) + (m+ 1)v(y1)

= b +

n∑
i=1

ui(xi) + v(y1) = f(x1, . . . , xn, y1),

which shows that f ≤C g. Using the fact that v ∈ (E0)t is a homomorphism
A→ (A0)t = B, we get that

f(x1, . . . , xn, y1 + y2 + · · ·+ ym+1) = b +

n∑
i=1

ui(xi) + v
(m+1∑
j=1

yj

)

= b +

n∑
i=1

ui(xi) +

m+1∑
j=1

v(yj) = g(x1, . . . , xn, y1, . . . , ym+1).

This shows that g ≤C f , since the operation y1 + y2 + · · · + ym+1 belongs to C by
assumption. Thus g ≡C f . Moreover, since C is a clone and f ∈ S = Ct, the relation
g ≤C f also implies that g ∈ Ct = S. This completes the proof of (∗)m,1, and hence
shows that Ct/≡C is finite. �

Lemma 4.12. If a clone C on a finite set A satisfies condition (B) from Theo-
rem 3.1, then the sets Ct/≡C are finite for all t ≥ 1.

Proof. For convenience, we will assume that A = [k]. As in condition (B), let k ≥ 3,
and let C be a subclone of Burle’s clone BA such that x ⊕a y belongs to C for all
1 ≤ a ≤ k − 1. Thus the operation x1 ⊕a x2 ⊕a · · · ⊕a xn obtained from x⊕a y by
composition also belongs to C for all n ≥ 1 and 1 ≤ a ≤ k − 1. We start the proof
with an auxiliary claim.
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Claim 4.12.1. Let n ≥ 1 and 1 ≤ a ≤ k − 1. For every function ψ : A → [2] such
that ψ(0) = 0,

(4.7)
∑

1≤a≤k−1

ψ(x1 ⊕a x2 ⊕a · · · ⊕a xn) =

n∑
`=1

ψ(x`) for all x1, . . . , xn ∈ A.

Proof of Claim 4.12.1. Since ψ ◦ Λa is the function [2] → [2] given by 0 7→ 0,
1 7→ ψ(a), we see that ψ ◦ Λa is constant 0 if ψ(a) = 0 and ψ ◦ Λa is the identity
function if ψ(a) = 1. Consequently,

∑
1≤a≤k−1

ψ(x1 ⊕a x2 ⊕a · · · ⊕a xn) =
∑

1≤a≤k−1

ψ

(
Λa

( n∑
`=1

λa(x`)
))

=
∑

1≤a≤k−1
ψ(a)=1

( n∑
`=1

λa(x`)
)

=

n∑
`=1

( ∑
1≤a≤k−1
ψ(a)=1

λa(x`)
)
.

The proof of (4.7) will be complete if we show that

(4.8)
∑

1≤a≤k−1
ψ(a)=1

λa(x) = ψ(x) for all x ∈ A.

Since λa (1 ≤ a ≤ k − 1) is the characteristic function of {a}, the left-hand side
of (4.8) is the characteristic function of the set {a : 1 ≤ a ≤ k − 1, ψ(a) = 1}. In
view of the fact that ψ(0) = 0, ψ is also a characteristic function of this set, which
proves the claim. �

Now let t be a positive integer and let S = Ct. For B(C), CB, EB, and reprB(f)
(B ∈ B(C), f ∈ C) we will use the choices agreed upon in Example 4.7 (for any
subset C of BA), which can be summarized as follows:

• B(C) consists of a fixed commutative semigroup A = (A;�) with neutral
element 0 ∈ A, and all 2-element groups

(
Ψ([2]); +Ψ

)
where Ψ: [2]→ A is

a one-to-one function; hence, each member of B(C) has a neutral element.
• For each B ∈ B(C), EB = E0

B = F (1)(A,B).
• If B = A, then CB consists of all essentially unary operations in C, and for

each f ∈ CB, the set reprB(f) of B-representations of f consists of all sums
with all but at most one summand equal to 0A.

• If B =
(
Ψ([2]); +Ψ

)
for some one-to-one function Ψ: [2] → A, then CB

consists of all operations f which can be written in the form (4.4) with
ψi(0) = 0 for all i; the set all such expressions for f is the set reprB(f) of
B-representations of f .

The last two items show that if B ∈ B(C) and f ∈ CB, then every B-reperesentation
in reprB(f) has the form (4.1), i.e., the constant term is b = 0B.

Conventions 4.9 determine the corresponding data for S = Ct (for any subset

C of BA). Namely, B(S) is the set of all
∏t
j=1 B0

j with Bj ∈ B(C), and for each

B =
∏t
j=1 B0

j ∈ B(S), we have SB =
∏t
j=1 CBj , EB = E0

B =
∏t
j=1EBj , and for

every f = (f1, . . . , ft) ∈ SB, reprB(f) consist of all B-representations of f whose
projections onto each coordinate j (1 ≤ j ≤ t) belong to reprBj

(fj).

As in the proof of Lemma 4.11, we will show the finiteness of S/≡C by applying
Lemma 4.10. Our goal is to prove that (∗)p,r holds for S with p = 2 and r = k−1. So
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let B =
∏t
m=1 Bm ∈ B(S), and let f ∈ SB be a function as in (4.5) such that v ∈ E−B

and the B-representation on the right-hand side is in reprB(f). Furthermore, let g
be the function in (4.6). We need to show that (i) g ∈ SB, (ii) the right-hand side
of (4.6) is a B-representation of g in reprB(g), and (iii) g ≡C f .

We saw in the proof of Lemma 4.11, that (i)′ g ∈ S and (iii) follow if we show
that f ≤C g and g ≤C f . For this, it will be enough to argue that

(4.9) f(x1, . . . , xn, y1, . . . , yk−1)

= g(x1, . . . , xn, y1, . . . , yk−2, yk−1, yk−1, yk−1)

and

(4.10) g(x1, . . . , xn, y1, . . . , yk+1)

= f(x1, . . . , xn, y1 ⊕1 · · · ⊕1 yk+1, . . . , y1 ⊕k−1 · · · ⊕k−1 yk+1),

since the operations x1⊕a · · ·⊕axk+1 belong to C for all 1 ≤ a ≤ k−1. To establish
(ii) and to strengthen (i)′ to (i), we need to prove, in addition, that

(4.11) g ∈
(
(BA)t

)
B

and

the right-hand side of (4.6) is a B-representation of g in reprB(g).

We will prove (4.9), (4.10), and (4.11) coordinatewise; that is, we will show that
for each m (1 ≤ m ≤ t), the analogous equalities

(4.12) f(x1, . . . , xn, y1, . . . , yk−1)

= g(x1, . . . , xn, y1, . . . , yk−2, yk−1, yk−1, yk−1)

and

(4.13) g(x1, . . . , xn, y1, . . . , yk+1)

= f(x1, . . . , xn, y1 ⊕1 · · · ⊕1 yk+1, . . . , y1 ⊕k−1 · · · ⊕k−1 yk+1)

hold for the m-th coordinate functions f and g; moreover,

(4.14) g ∈ (BA)B and the m-th coordinate of

the right-hand side of (4.6) is a Bm-representation of g in reprBm
(g).

If Bm = A, then f(x1, . . . , xn, y1, . . . , yk−1) =
n

�
i=1

ui(xi) �
k−1

�
j=1

v(yj) where ui,

v are the m-th coordinate functions of ui and v, respectively. Since the expression
on the right-hand side is an A-representation of f in reprA(f), we get that at most
one of u1, . . . , un and the k − 1 (≥ 2) v’s differs from 0A. Thus v = 0A holds in
this case. The operation g satisfies an equality similar to f , except that k − 1 is
replaced by k + 1. Therefore, it is clear that the expression on the right-hand side
of this equality belongs to reprA(g), proving (4.14). Since v = 0A, neither f nor
g depends on any of its variables yj . Therefore, the equalities (4.12) and (4.13)
clearly hold.

Now let us assume that Bm = (Ψ([2]); +Ψ) for some one-to-one function Ψ: [2]→
A. Then using (4.4) and the injectivity of Ψ we see that

(4.15) f(x1, . . . , xn, y1, . . . , yk−1) = Ψ
( n∑
i=1

φi(xi) +

k−1∑
j=1

ψ(yj)
)
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and

(4.16) g(x1, . . . , xn, y1, . . . , yk+1) = Ψ
( n∑
i=1

φi(xi) +

k+1∑
j=1

ψ(yj)
)

where φi, ψ are functions A → [2] with φi(0) = ψ(0) = 0 for all i. (4.16) shows
that (4.14) holds. The equality (4.12) is also clear from (4.16), since ψ(yk−1) +
ψ(yk−1) + ψ(yk−1) = ψ(yk−1) holds for addition + modulo 2. To prove (4.13) we
use (4.15) and (4.16) above together with the equality proved in Claim 4.12.1:

f(x1, . . . , xn, y1 ⊕1 · · · ⊕1 yk+1, . . . , y1 ⊕k−1 · · · ⊕k−1 yk+1)

(4.15)
= Ψ

( n∑
i=1

φi(xi) +
∑

1≤a≤k−1

ψ(y1 ⊕a · · · ⊕a yk+1)
)

(4.7)
= Ψ

( n∑
i=1

φi(xi) +

k+1∑
`=1

ψ(y`)
)

(4.16)
= g(x1, . . . , xn, y1, . . . , yk+1).

This completes the proof of (∗)2,k−1, and hence shows that Ct/≡C is finite. �

Proof of Theorem 4.1. Combine Lemmas 4.2, 4.11, and 4.12. �

5. Embedding (Pf(ω);⊆) into (F(A,U)/≡C ;�C)

In this section we will prove that for every clone C that satisfies one of conditions
(A)–(C) from Theorem 3.1, the poset (Pf(ω);⊆) embeds into the C-minor partial
order (F(A,U)/≡C ;�C) provided |U | ≥ min(3, |A|). In fact, as the theorem below
shows, this conclusion is true under somewhat weaker assumptions on C.

Theorem 5.1. Let C be a clone on a finite set A, and let U be a set such that
|U | ≥ min(3, |A|). If C satisfies one of the conditions (A), (B)′, or (C)′ below, then
the poset (Pf(ω);⊆) embeds into the C-minor partial order (F(A,U)/≡C ;�C).

(A) There exists a positive integer m such that every operation in C depends on
at most m variables.

(B)′ C is a subclone of Burle’s clone BA (|A| ≥ 3).
(C)′ For a commutative inverse semigroup A = (A; +) and E = End(A), C is a

subclone of the clone PClo(EA).

An embedding (Pf(ω);⊆) → (F(A,U)/≡C ;�C) is a mapping S 7→ fS/≡C (S ∈
Pf(ω)) such that S ⊆ T if and only if fS/≡C �C fT /≡C for all S, T ∈ Pf(ω);
equivalently,

(5.1) S ⊆ T ⇐⇒ fS ≤C fT for all S, T ∈ Pf(N)

where N = ω.

Definition 5.2. Let N be an arbitrary set, and let S 7→ fS be a function Pf(N)→
F(A,U). For a clone C on A, the family fS (S ∈ Pf(N)) of functions will be called
C-independent if (5.1) holds, and strongly C-independent if the following conditions
hold: for arbitrary S, T ∈ Pf(N) and n ∈ N ,

(a) S ⊆ T implies that fS is obtained from fT by identifying variables, and
(b) f{n} ≤C fT implies that n ∈ T .
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Lemma 5.3. Let A and U be sets, and let C be a clone on A. Every strongly
C-independent family of functions in F(A,U) is C-independent.

Proof. Let fS (S ∈ Pf(N)) be a strongly C-independent family of functions in
F(A,U). Then conditions (a)–(b) from Definition 5.2 hold. We want to prove
(5.1). The implication ⇒ follows from (a), because the requirement that fS is
obtained from fT by identifying variables implies that fS = fT ◦ h for a tuple h of
projections, so fS ≤C fT . To prove the converse implication ⇐ let fS ≤C fT . We
want to show that S ⊆ T . Let n ∈ S. Then {n} ⊆ S, so by condition (a) we have
f{n} ≤C fS . Hence, by the transitivity of ≤C , we get that f{n} ≤C fT , which yields
by condition (b) that n ∈ T . Thus S ⊆ T , as claimed. �

If C is a clone on A and B ⊆ A, let

CB = {f |B : f ∈ C and f(B, . . . , B) ⊆ B}.
It is easy to see that CB is a clone on the set B. Next we show that we can construct
strongly C-independent families of functions in F(A,U), by extension, from strongly
CB-independent families of operations on a common proper subset B of A and U .

Lemma 5.4. Let A, U , and B be sets such that B is a common proper subset of
A and U , and let C be a clone on A. For every strongly CB-independent family fS
(S ∈ Pf(N)) of operations on B there exists a strongly C-independent family f̄S
(S ∈ Pf(N)) of functions in F(A,U) such that f̄S extends fS for each S ∈ Pf(N).

Proof. Let 0 ∈ U \B, and let fS (S ∈ Pf(N)) be a strongly CB-independent family
of operations on B. For each S ∈ Pf(N) define f̄S as follows: f̄S(x) = fS(x) if x
is in the domain of fS , and f̄(x) = 0 otherwise. Clearly, f̄S extends fS . We want
to argue that f̄S (S ∈ Pf(N)) is a strongly C-independent family of functions in
F(A,U).

Suppose that S ⊆ T (S, T ∈ Pf(N)). Since the family fS (S ∈ Pf(N)) is
strongly CB-independent, fS is obtained from fT by identifying variables; say
fS(x1, . . . , xk) = fT (xi1 , . . . , xim) where {xi1 , . . . , xim} = {x1, . . . , xk}. Clearly,
this identity extends to f̄S and f̄T , which proves condition (a) from Definition 5.2
for the family f̄S (S ∈ Pf(N)).

Now assume that f̄{n} ≤C f̄T (n ∈ N , T ∈ Pf(N)), say f̄{n} is k-ary and

f̄T is m-ary. Then there exists h ∈ (C(k))m such that f̄{n} = f̄T ◦ h; that is,

f̄{n}(x) = f̄T
(
h(x)

)
for all x ∈ Ak. If x ∈ Bk, then f̄{n}(x) = f{n}(x) ∈ B, so

f̄T
(
h(x)

)
∈ B, which implies that h(x) ∈ Bm. Thus each coordinate function hi of

h satisfies hi(B, . . . , B) ⊆ B, and hence can be restricted to B, so h|B ∈ (C(k)
B )m.

By definition, all functions f̄S can also be restricted to B. Therefore, the equality
f̄{n} = f̄T ◦ h yields that (f̄{n})|B = (f̄T )|B ◦ h|B , that is, f{n} = fT ◦ h|B . Hence
f{n} ≤CB fT . Since the family fS (S ∈ Pf(N)) is strongly CB-independent, we

get that n ∈ T . This proves condition (b) from Definition 5.2 for the family f̄S
(S ∈ Pf(N)), establishing its strong C-independence. �

Our main tool in proving Theorem 5.1 will be the following corollary of Lem-
mas 5.3 and 5.4.

Corollary 5.5. Let C be a clone on a set A, let B ⊆ A, and let U be a set such that
|U | ≥ min(|B|+1, |A|). If, for some countably infinite set N , there exists a strongly
CB-independent family fS (S ∈ Pf(N)) of operations on B, then (Pf(ω);⊆) embeds
into (F(A,U)/≡C ;�C).
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Proof. The assumption |U | ≥ min(|B|+ 1, |A|) implies that U has a subset C with
|C| = |B| such that C 6= U if B 6= A. Since every bijection ϕ : U → V induces an
isomorphism (F(A,U)/≡C ;�C)→ (F(A, V )/≡C ;�C) via the map g/≡ 7→ (ϕ◦g)/≡,
we get that by applying an appropriate bijection that maps C to B, we may assume
for the proof of Corollary 5.5 that C = B, that is, B ⊆ A∩U , and B 6= U if B 6= A.

If B = A, then CB = C, and the given strongly CB-independent family fS (S ∈
Pf(N)) of operations on B becomes, by increasing the codomain to U , a strongly C-
independent family f̄S (S ∈ Pf(N)) of functions in F(A,U). If B 6= A, then B 6= U ,
and Lemma 5.4 yields a strongly C-independent family f̄S (S ∈ Pf(N)) of functions
in F(A,U). In either case, we get from Lemma 5.3 that S ⊆ T ⇔ f̄S ≤C f̄T
holds for all S, T ∈ Pf(N). Thus the mapping S 7→ f̄S/≡C is an embedding of
(Pf(N);⊆) into (F(A,U)/≡C ;�C). Since N is countably infinite, there exists a
bijection ω → N , which induces an isomorphism (Pf(ω);⊆) → (Pf(N);⊆). Thus
(Pf(ω);⊆) embeds into (F(A,U)/≡C ;�C). �

For the proof of Theorem 5.1 we will use the special case |B| = 2 of Corollary 5.5.
The main step is to exhibit a strongly D-independent family of operations on B for
every subclone D of PClo(End(B)B) = PClo(B) where B is a 2-element group or
semilattice.

We will assume without loss of generality that B = [2], and will use the following
notation. For a finite set S ∈ Pf(ω), ΣS :=

∑
i∈S i is the sum of the elements of S.

For n ∈ ω, denote S<n := {i ∈ S : i < n}. For S ⊆ ω+, set

DS :=
⋃
n∈S

({n} × bne) = {(n, i) : n ∈ S, 1 ≤ i ≤ n}.

(Recall the notation bne := {1, . . . , n}.) For every nonempty S ∈ Pf(ω+), let us fix
a bijection βS : DS → bΣSe. Our arguments do not depend on the choice of βS ,
but for convenience we will choose βS to be the mapping (n, i) 7→ ΣS<n + i; that
is, βS is the unique bijection DS → bΣSe that is an order isomorphism between
the ordered sets (DS ;v) and (bΣe;≤) where ≤ is the natural order on any subset
of ω+, and v is the lexicographic order on DS (⊆ ω+ × ω+) with respect to ≤.

Let S ∈ Pf(ω+) be nonempty. For an (ΣS + 1)-tuple u := (u1, . . . , uΣS+1) (of
variables or elements of [2]) and for an element n ∈ S, we will refer to the n-tuple
u(S,n) := (uβS(n,1), uβS(n,2), . . . , uβS(n,n)) as the (S, n)-block of u. An S-block of u
is an (S, n)-block of u for some n ∈ S. Note that the last entry uΣS+1 does not
contribute to any S-block of u. Denote BS,n := {βS(n, i) : 1 ≤ i ≤ n}.

Define the (ΣS + 1)-tuples ηSn,i,µ
S
n,i, ι

S
n ∈ [2]ΣS+1 by

ηSn,i(j) :=

{
0, if j ∈ BS,n \ {βS(n, i)},
1, otherwise,

µSn,i(j) :=

{
0, if j = βS(n, i),

1, otherwise,

ιSn(j) :=

{
1, if j ∈ BS,n,

0, otherwise,
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for all j ∈ bΣS + 1e. For βS chosen above, we can write the tuples ηSn,i, µ
S
n,i, and

ιSn as follows, indicating the various S-blocks and also positions βS(n, i) and ΣS+1:

ηSn,i = (1 · · · 1 · · · 1 · · · 1 0 · · · 0

βS(n, i)
↓
10 · · · 0 1 · · · 1 · · · 1 · · · 1

ΣS + 1
↓
1),

µSn,i = (1 · · · 1 · · · 1 · · · 1 1 · · · 101 · · · 1 1 · · · 1 · · · 1 · · · 1 1),

ιSn = (0 · · · 0︸ ︷︷ ︸ · · · 0 · · · 0︸ ︷︷ ︸ 1 · · · 111 · · · 1︸ ︷︷ ︸
(S, n)-block

0 · · · 0︸ ︷︷ ︸ · · · 0 · · · 0︸ ︷︷ ︸
︸ ︷︷ ︸

S-blocks

0).

We will denote the all-0 and all-1 (ΣS + 1)-tuples by 0S := (0, . . . , 0) and 1S :=
(1, . . . , 1). Furthermore, we will use the following notation:

ES,n := {ηSn,i,µSn,i : i ∈ bne} (n ∈ S),

ES :=
⋃
n∈S

ES,n.

Now we define operations fS ∈ O[2] for each finite subset S of ω+. For S 6= ∅,
let fS : [2]ΣS+1 → [2] be the characteristic function of the set ES , that is,

fS(a) =

{
1, if a ∈ ES ,

0, if a ∈ [2]ΣS+1 \ ES .

(In other words, fS(a) = 1 if and only if there exists an S-block of a such that
exactly one or all but one entries of that S-block are 0, and all remaining entries
of a are 1.) For S = ∅, let f∅ : [2] → [2] be the unary constant operation 0.
The operations fS (S ∈ Pf(ω+)) are essentially the Boolean functions constructed
by Couceiro and Pouzet in [2], which in turn were based on functions defined by
Pippenger [14].

Lemma 5.6. Let S, T ∈ Pf(ω+) and n ∈ ω+. If S ⊆ T , then fS is obtained from
fT by identifying variables.

Proof. Let S, T ∈ Pf(ω+). If S = ∅ and T is arbitrary, then it is easy to verify that
the identity f∅(x) = fT (x, . . . , x) holds. Assume now that S 6= ∅. For any (ΣS+1)-
tuple u = (u1, . . . , uΣS+1) (of variables or elements of [2]) let ũ = (ũ1, . . . , ũΣT+1)
be the (ΣT + 1)-tuple defined as follows:

ũj :=

{
uβS(n,i), if j = βT (n, i) for some n ∈ S, i ∈ bne,
uΣS+1, otherwise.

Denoting the list of variables of fS by x = (x1, . . . , xΣS+1) we claim that the identity
fS(x) = fT (x̃) holds whenever S ⊆ T . This follows by observing that for every
a ∈ AΣS+1, ã is the unique (ΣT +1)-tuple b for which we have that b(T,n) = a(S,n)

for all n ∈ S, and the remaining entries of b, i.e., those outside of the (T, n)-blocks
for n ∈ S, are equal to aΣS+1. This completes the proof. �

Next we want to prove that, for some infinite set N ⊆ ω+, fS (S ∈ Pf(N)) is
a strongly D-independent family of operations on [2], provided D is a subclone of
PClo(B) for a semilattice or group B = ([2]; +) with neutral element 0.
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Lemma 5.7. Let B = ([2]; +) be the unique semilattice with neutral element 0,
and let D be a subclone of PClo(B). For N := {n ∈ ω : n ≥ 4}, fS (S ∈ Pf(N)) is
a strongly D-independent family of operations on [2].

Proof. In view of Lemma 5.6 and Proposition 2.3, we only need to verify that
condition (b) in Definition 5.2 holds for the clone C := PClo(B) and the family fS
(S ∈ Pf(N)).

Let T ∈ Pf(N), n ∈ N , and assume that f{n} ≤C fT . Thus n ≥ 4. We want
to show that n ∈ T . The assumption f{n} ≤C fT implies that there exists a map

g ∈ (C(n+1))ΣT+1 such that f{n} = fT ◦ g.

Claim 5.7.1. g has the following properties:

(1) g is a homomorphism from Bn+1 to BΣT+1, i.e.,

(5.2) g(u + v) = g(u) + g(v) for all u,v ∈ [2]n+1.

(2) If i ∈ bne, then

(5.3) g(µ
{n}
n,i ) =

∑
j∈bne\{i}

g(η
{n}
n,j ).

(3) g maps the set E{n} into ET , and its complement [2]n+1 \ E{n} into the

complement [2]ΣT+1 \ ET of ET .

Proof of Claim 5.7.1. PClo(B) is generated by + and the unary constant operations
0, 1. Therefore (1) follows from the fact that + is a homomorphism B2 → B, and
0, 1 are homomorphisms B→ B.

(2) follows from (1) and the fact that µ
{n}
n,i =

∑
j∈bne\{i} η

{n}
n,j for all i ∈ bne.

Finally, to prove (3), let a ∈ [2]n+1, and use the equality f{n} = fT ◦ g. If

a ∈ E{n}, then 1 = f{n}(a) = fT
(
g(a)

)
, so g(a) ∈ ET . Similarly, if a /∈ E{n}, then

0 = f{n}(a) = fT
(
g(a)

)
, so g(a) /∈ ET . �

Claim 5.7.2. For all i, j ∈ bne with i 6= j, we have that g(η
{n}
n,i ) 6= g(η

{n}
n,j ) and

g(µ
{n}
n,i ) 6= g(µ

{n}
n,j ).

Proof of Claim 5.7.2. Suppose, on the contrary, that g(η
{n}
n,i ) = g(η

{n}
n,j ) for some

i 6= j. Then, by (5.2) and by the idempotence of +, we get that

g(η
{n}
n,i + η

{n}
n,j ) = g(η

{n}
n,i ) + g(η

{n}
n,j ) = g(η

{n}
n,i ).

This contradicts Claim 5.7.1 (3), because η
{n}
n,i + η

{n}
n,j ∈ [2]n+1 \ E{n} and η

{n}
n,i ∈

E{n}. A contradiction can be derived in a similar way, if we suppose that g(µ
{n}
n,i ) =

g(µ
{n}
n,j ) for some i 6= j. �

Claim 5.7.3. There exists an element t ∈ T and a map σ : bne → bte such that

g(η
{n}
n,i ) = ηTt,σ(i) for all i ∈ bne.

Proof of Claim 5.7.3. First we will argue that if i ∈ bne, then g(η
{n}
n,i ) 6= µTp,q

for all p ∈ T , q ∈ bpe. Suppose, on the contrary, that there is i ∈ bne such that
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g(η
{n}
n,i ) = µTp,q for some p ∈ T , q ∈ bpe. Then, by (5.3), we get for all ` ∈ bne \ {i}

that

g(µ
{n}
n,` ) =

∑
j∈bne\{`}

g(η
{n}
n,j ) = g(η

{n}
n,i ) +

∑
j∈bne\{`,i}

g(η
{n}
n,j )

= µTp,q +
∑

j∈bne\{`,i}

g(η
{n}
n,j ) ≥ µTp,q,

where ≤ denotes the natural ordering of the semilattice BΣT+1 induced by the
ordering 0 < 1 of B; that is, ≤ is the coordinatewise ordering of the set [2]ΣT+1

induced by the ordering 0 < 1 of [2]. Since the only tuples in [2]ΣT+1 that are
greater than or equal to µTp,q by ≤ are µTp,q ∈ ET and 1T ∈ [2]ΣT+1 \ET , it follows

from Claim 5.7.1 (3) that g(µ
{n}
n,` ) = µTp,q for all ` ∈ bne \ {i}. This contradicts

Claim 5.7.2, because n ∈ N implies that n ≥ 4.

Thus, we have that for each i ∈ bne, g(η
{n}
n,i ) 6= µTp,q for all p ∈ T , q ∈ bpe. On

the other hand, since η
{n}
n,i ∈ E{n}, we know from Claim 5.7.1 (3) that g(η

{n}
n,i ) ∈

ET = {ηTp,q, µTp,q : p ∈ T, q ∈ bpe}. Hence, each g(η
{n}
n,i ) (i ∈ bne) is an η-tuple

from ET . To complete the proof, it remains to show that all these η-tuples have
the same first subscripts.

Suppose then, on the contrary, that there exist i, i′ ∈ bne, p, p′ ∈ T , q ∈ bpe,
q′ ∈ bp′e such that p 6= p′, g(η

{n}
n,i ) = ηTp,q, g(η

{n}
n,i′ ) = ηTp′,q′ ; then necessarily

i 6= i′, and g(η
{n}
n,i ) + g(η

{n}
n,i′ ) = ηTp,q + ηTp′,q′ = 1T . By (5.3), we have that for all

` ∈ bne \ {i, i′},

g(µ
{n}
n,` ) =

∑
j∈bne\{`}

g(η
{n}
n,j ) = g(η

{n}
n,i ) + g(η

{n}
n,i′ ) +

∑
j∈bne\{i,i′,`}

g(η
{n}
n,j )

= 1T +
∑

j∈bne\{i,i′,`}

g(η
{n}
n,j ) = 1T .

This equality contradicts Claim 5.7.1 (3), because µ
{n}
n,` ∈ E{n}, but 1T /∈ ET .

�

By Claim 5.7.2, the mapping σ : bne → bte given by Claim 5.7.3 is injective;

hence t ≥ n. Let d := g(µ
{n}
n,i ). Since µ

{n}
n,i ∈ E{n}, Claim 5.7.1 (3) implies that

d ∈ ET . By (5.3), we have that

d = g(µ
{n}
n,i ) =

∑
j∈bne\{i}

g(η
{n}
n,j ) =

∑
j∈bne\{i}

ηTt,σ(j),

and since σ is injective, exactly n − 1 entries in the (T, t)-block of d are equal to
1, and the entries outside the (T, t)-block are 1. In order for d to be in ET , it is
necessary that either 1 or t− 1 entries in the (T, t)-block of d are equal to 1. Thus,
either n = 2 or n = t. The former case is not possible, because the assumption that
n ∈ N forces n ≥ 4. Hence we conclude that n = t ∈ T . �

Lemma 5.8. Let B = ([2]; +) be the unique group on [2] with neutral element 0, and
let D be a subclone of PClo(B). For N := {n ∈ ω : n ≥ 6, n even}, fS (S ∈ Pf(N))
is a strongly D-independent family of operations on [2].
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Proof. In view of Lemma 5.6 and Proposition 2.3, we only need to verify that
condition (b) in Definition 5.2 holds for the clone C := PClo(B) and the family fS
(S ∈ Pf(N)).

Let T ∈ Pf(N), n ∈ N , and assume that f{n} ≤C fT . Thus n is even and n ≥ 6.
We want to show that n ∈ T . The assumption f{n} ≤C fT implies that there exists

a map g ∈ (C(n+1))ΣT+1 such that f{n} = fT ◦ g.

Claim 5.8.1. g has the following properties:

(1) For the ternary group T = ([2];x+y+z), g is a homomorphism from Tn+1

to TΣT+1, and hence for every odd natural number 2k + 1,

(5.4) g
(2k+1∑
i=1

ui

)
=

2k+1∑
i=1

g(ui) for all u1, . . . ,u2k+1 ∈ [2]n+1.

(2) If i ∈ bne, then

(5.5) g(µ
{n}
n,i ) =

∑
j∈bne\{i}

g(η
{n}
n,j ) and g(η

{n}
n,i ) =

∑
j∈bne\{i}

g(µ
{n}
n,j ).

(3) g maps the set E{n} into ET , and its complement [2]n+1 \ E{n} into the

complement [2]ΣT+1 \ ET of ET .

Proof of Claim 5.8.1. PClo(B) is generated by + and the unary constant operation
1. Since + is a homomorphism T2 → T, and 1 is a homomorphisms T → T, it
follows that g is a homomorphism Tn+1 → TΣT+1. This means that g(u+v+w) =
g(u) + g(v) + g(w) holds for all u,v,w ∈ [2]n+1. Repeated application of this
equality yields (5.4).

(2) is true, because the fact that n ∈ N is even implies that we have µ
{n}
n,i =∑

j∈bne\{i} η
{n}
n,j and η

{n}
n,i =

∑
j∈bne\{i} µ

{n}
n,j for all i ∈ bne; moreover, since the

number of summands, n− 1, is odd, (5.4) applies.
(3) can be proved the same way as the analogous statement was proved in

Claim 5.7.1. �

Claim 5.8.2. For all i, j ∈ bne with i 6= j, we have that g(η
{n}
n,i ) 6= g(η

{n}
n,j ) and

g(µ
{n}
n,i ) 6= g(µ

{n}
n,j ).

Proof of Claim 5.8.2. Suppose, on the contrary, that g(η
{n}
n,i ) = g(η

{n}
n,j ) for some

i 6= j, and let k ∈ bne \ {i, j}. By (5.4) and by the fact that B is a Boolean group,
we get that

g(η
{n}
n,i + η

{n}
n,j + η

{n}
n,k ) = g(η

{n}
n,i ) + g(η

{n}
n,j ) + g(η

{n}
n,k ) = g(η

{n}
n,k ).

This contradicts Claim 5.8.1 (3), because η
{n}
n,i + η

{n}
n,j + η

{n}
n,k ∈ [2]n+1 \ E{n} and

η
{n}
n,i ∈ E{n}. Replacing η’s by µ’s throughout, we can get a contradiction in a

similar way, if we suppose that g(µ
{n}
n,i ) = g(µ

{n}
n,j ) for some i 6= j. �

Claim 5.8.3. There do not exist any i, j ∈ bne, p ∈ T , q ∈ bpe such that g(η
{n}
n,i ) =

ηTp,q and g(η
{n}
n,j ) = µTp,q, or g(µ

{n}
n,i ) = ηTp,q and g(µ

{n}
n,j ) = µTp,q.
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Proof of Claim 5.8.3. Suppose, on the contrary, that there exist i, j, p, q such that

g(η
{n}
n,i ) = ηTp,q and g(η

{n}
n,j ) = µTp,q. Hence i 6= j and

(5.6) g(η
{n}
n,i ) + g(η

{n}
n,j ) = ηTp,q + µTp,q = ιTp .

Let ` ∈ bne \ {i, j}. Combining (5.4) and (5.6) we get that

g(η
{n}
n,i + η

{n}
n,j + η

{n}
n,` ) = g(η

{n}
n,i ) + g(η

{n}
n,j ) + g(η

{n}
n,` ) = ιTp + g(η

{n}
n,` ).

Here η
{n}
n,i + η

{n}
n,j + η

{n}
n,` ∈ [2]n+1 \ E{n}, therefore Claim 5.8.1 (3) shows that

g(η
{n}
n,i + η

{n}
n,j + η

{n}
n,` ) ∈ [2]ΣT+1 \ ET , and hence ιTp + g(η

{n}
n,` ) ∈ [2]ΣT+1 \ ET .

For the same reason, g(η
{n}
n,` ) ∈ ET = {ηTr,s, µTr,s : r ∈ T, s ∈ bre}, because

η
{n}
n,` ∈ E{n}. Since ιTp + ηTp,s = µTp,s ∈ ET and ιTp + µTp,s = ηTp,s ∈ ET hold for all

s ∈ bpe, we conclude that g(η
{n}
n,` ) equals ηTr,s or µTr,s for some r 6= p. Thus, the

(T, p)-block of g(η
{n}
n,` ) is (1, . . . , 1).

Now fix k ∈ bne \ {i, j}, and consider

w :=
∑

`∈bne\{k}

g(η
{n}
n,` ).

By Claim 5.8.1, w = g(µ
{n}
n,k ) ∈ ET . However, in the sum on the right hand side,

g(η
{n}
n,i ) + g(η

{n}
n,j ) = ιTp , and, as we established in the preceding paragraph, the

(T, p)-block of the remaining summands is (1, . . . , 1). The number of summands is
odd, therefore the (T, p)-block of w equals (0, . . . , 0), which contradicts w ∈ ET .

The claim about g(µ
{n}
n,i ) and g(µ

{n}
n,j ) is proved similarly, by switching the roles

of the η’s and the µ’s. �

Let us define the map ρ : bne → DT by the rule ρ(i) = (p, q) if and only if

g(η
{n}
n,i ) ∈ {ηTp,q,µTp,q}. By Claims 5.8.2 and 5.8.3, ρ is injective.

Denote d :=
∑n
i=1 g(η

{n}
n,i ). It follows from (5.5) that

(5.7) d = g(η
{n}
n,i ) + g(µ

{n}
n,i ) for all i ∈ bne.

By Claim 5.8.1 (3), the summands g(η
{n}
n,i ) and g(µ

{n}
n,i ) belong to ET , because

η
{n}
n,i ,µ

{n}
n,i ∈ E{n}. Thus, for each i, (5.7) is a decomposition d = u + v of d with

summands u,v ∈ ET . The condition u,v ∈ ET yields that there exist κ, λ ∈ T ,
α ∈ bκe, β ∈ bλe such that u ∈ {ηTκ,α,µTκ,α}, v ∈ {ηTλ,β ,µTλ,β}.

Claim 5.8.4. If u + v = d holds for u ∈ {ηTκ,α,µTκ,α} and v ∈ {ηTλ,β ,µTλ,β}, then
κ = λ and α = β.

Proof of Claim 5.8.4. Let u, v satisfy the assumptions, and suppose first that
κ 6= λ. Assuming, without loss of generality, that κ < λ, and denoting the entries
in the (T, κ)-block of u by x, y, and the entries in the (T, λ)-block of v by χ, ψ, we
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can write u, v and d as follows:

u = (1 · · · 1 x · · ·x

βT (κ, α)
↓
yx · · ·x 1 · · · 1 1 · · · 1

βT (λ, β)
↓
1 1 · · · 1 1 · · · 1 1),

v = (1 · · · 1 1 · · · 111 · · · 1 1 · · · 1 χ · · · χψχ · · · χ 1 · · · 1 1),

d = (0 · · · 0 y · · · yxy · · · y︸ ︷︷ ︸
(T, κ)-block

0 · · · 0 ψ · · ·ψχψ · · ·ψ︸ ︷︷ ︸
(T, λ)-block

0 · · · 0 0).

The equality d = u + v holds, because {x, y} = {χ, ψ} = [2] and + is performed
modulo 2. This shows that

• the (T, κ)-block of d contains either a single occurrence of 0 and κ − 1
occurrences of 1, or a single occurrence of 1 and κ− 1 occurrences of 0,
• the (T, λ)-block of d contains either a single occurrence of 0 and λ − 1

occurrences of 1, or a single occurrence of 1 and λ−1 occurrences of 0, and
• the remaining entries of d, i.e., those belonging neither to the (T, κ)-block

nor to the (T, λ)-block, are all 0.

It is easy to verify that the only possible way of decomposing d into a sum of two

elements of ET is u + v. Thus, {g(η
{n}
n,i ),g(µ

{n}
n,i )} = {u,v} for all i ∈ bne. Since

n ≥ 6, there exist distinct i, j ∈ bne such that g(η
{n}
n,i ) = g(η

{n}
n,j ), which contradicts

Claim 5.8.2.
This proves that κ = λ. Now suppose that α 6= β. Assuming, without loss of

generality, that α < β, and denoting the entries in the (T, κ)-blocks of u and v by
x, y and χ, ψ, respectively, we can write u, v and d as follows:

u = (1 · · · 1 x · · · x

βT (κ, α)
↓
y x · · · x

βT (κ, β)
↓
x x · · · x 1 · · · 1 1),

v = (1 · · · 1 χ · · · χ χ χ · · · χ ψ χ · · · χ 1 · · · 1 1),

d = (0 · · · 0 X · · ·XY X · · ·XY X · · ·X︸ ︷︷ ︸
(T, κ)-block

0 · · · 0 0).

To check that d has the given form, notice that {x, y} = {χ, ψ} = [2], therefore
x 6= y and χ 6= ψ, so with addition + modulo 2 we get that x+χ 6= y+χ = x+ψ.
Hence, with the choice X := x + χ, Y := y + χ = x + ψ, the equality d = u + v
holds. This shows that

• the (T, κ)-block of d contains either two occurrences of 0 and κ− 2 occur-
rences of 1, or two occurrences of 1 and κ− 2 occurrences of 0, and
• the entries outside the (T, κ)-block are all 0.

In the former case, the only possible decompositions of d into a sum of two elements

of ET are ηTκ,α+µTκ,β and µTκ,α+ηTκ,β ; that is, for all i ∈ bne, {g(η
{n}
n,i ),g(µ

{n}
n,i )} =

{ηTκ,α,µTκ,β} or {g(η
{n}
n,i ),g(µ

{n}
n,i )} = {µTκ,α,ηTκ,β}. In the latter case, the only

possible decompositions of d into a sum of two elements of ET are ηTκ,α + ηTκ,β

and µTκ,α + µTκ,β ; that is, for all i ∈ bne, {g(η
{n}
n,i ),g(µ

{n}
n,i )} = {ηTκ,α,ηTκ,β} or

{g(η
{n}
n,i ),g(µ

{n}
n,i )} = {µTκ,α,µTκ,β}. Since n ≥ 6, the pigeonhole principle yields in

both cases that there exist distinct i, j ∈ bne such that g(η
{n}
n,i ) = g(η

{n}
n,j ), which

contradicts Claim 5.8.2. �
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Claim 5.8.5. For the tuple d defined above, we have that

(5.8) either d = 0T or d = ιTκ for some κ ∈ T .

Proof of Claim 5.8.5. (5.7) and the discussion following it shows that d = u + v
for some u,v ∈ ET . Therefore, by Claim 5.8.4, there exist κ ∈ T and α ∈ bµe such
that u,v ∈ {ηTκ,α,µTκ,α}. Using the fact that ηTκ,α +µTκ,α = ιTκ , we get that d = 0T

if u = v, and d = ιTκ if u 6= v. �

Recall that ρ is the injective map bne → DT that assigns to each i ∈ bne the

pair ρ(i) = (p, q) such that g(η
{n}
n,i ) ∈ {ηTp,q,µTp,q}.

Claim 5.8.6. For each m ∈ T , either D{m} ⊆ Im ρ or D{m} ∩ Im ρ = ∅.

Proof of Claim 5.8.6. Suppose, on the contrary, that there is m ∈ T such that

∅ 6= D{m} ∩ Im ρ ( D{m}. Consider the (T,m)-block of d =
∑n
i=1 g(η

{n}
n,i ). The

(T,m)-block of each summand g(η
{n}
n,i ) ∈ {ηTρ(i),µ

T
ρ(i)} is

(i) the constant tuple (1, . . . , 1), if ρ(i) = (p, q) with p 6= m, and
(ii) an almost constant tuple of the form (0, . . . , 0, 1, 0, . . . , 0) + (c, . . . , c) (c ∈

[2]) with the sole 1 in the q-th position, if ρ(i) = (m, q).

Our assumption ∅ 6= D{m} ∩ Im ρ ( D{m} implies that, as i runs over the elements
of bne, each one of the two cases (i)–(ii) occurs at least once. Furthermore, the
injectivity of ρ implies that for distinct i’s for which case (ii) applies, the 1’s will
occur in different positions. It follows that the (T,m)-block of d contains both 0
and 1 as an entry, which contradicts Claim 5.8.5. �

Claim 5.8.7. There is exactly one m ∈ T such that D{m} ⊆ Im ρ.

Proof of Claim 5.8.7. Since Im ρ 6= ∅, we get from Claim 5.8.6 that there exists at
least one m ∈ T such that D{m} ⊆ Im ρ. Suppose, on the contrary, that there are
at least two such elements of T , and fix m to be one of them. Then we obtain from
m ∈ T ⊆ N and D{m} ( Im ρ that m is even and 6 ≤ m = |D{m}| < | Im ρ| = n.

Let R := ρ−1(D{m}). We know that ρ is injective and that for each i ∈ R,

g(η
{n}
n,i ) ∈ {ηTρ(i),µ

T
ρ(i)} = {ηTm,q,µTm,q} for some q ∈ bme. Hence, |R| = m is

even and {g(η
{n}
n,i ) : i ∈ R} is a transversal for

{
{ηTm,q,µTm,q} : q ∈ bme

}
. We

have µTm,q = ηTm,q + ιTm for each q ∈ bme, and since m is even, we also have that∑
q∈bme η

T
m,q = ιTm. Therefore, if the number of µ’s among the tuples g(η

{n}
n,i )

(i ∈ R) is k, then ∑
i∈R

g(η
{n}
n,i ) = ιTm + kιTm = 0T or ιTm,

depending on the parity of k.
Now let us fix an element r ∈ R. Then ρ(r) ∈ D{m}, say ρ(r) = (m, r′), so

g(η
{n}
n,r ) ∈ {ηTm,r′ ,µTm,r′}. Thus, the last displayed equality, along with the equality

µTm,r′ = ηTm,r′ + ιTm, implies that∑
i∈R\{r}

g(η
{n}
n,i ) = g(η{n}n,r ) +

∑
i∈R

g(η
{n}
n,i )

∈ {ηTm,r′ + 0T ,µTm,r′ + 0T ,ηTm,r′ + ιTm,µ
T
m,r′ + ιTm} = {ηTm,r′ ,µTm,r′}.
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Since |R\{r}| = |R|−1 = m−1 is odd, we can apply Claim 5.8.1 (1) to conclude
that

g
( ∑
i∈R\{r}

η
{n}
n,i

)
=

∑
i∈R\{r}

g(η
{n}
n,i ) ∈ {ηTm,r′ ,µTm,r′} ⊆ ET .

On the other hand, the fact that 5 ≤ |R \ {r}| = m− 1 ≤ n− 2 shows that∑
i∈R\{r}

η
{n}
n,i ∈ [2]n \ E{n}.

This contradicts Claim 5.8.1 (3), and hence finishes the proof. �
Let m be the element of T given by Claim 5.8.7. Then actually Im ρ = D{m},

and we conclude that ρ is a bijection from the n-element set bne onto the m-element
set D{m}. Hence, n = m ∈ T . �

We are now ready to prove the main result of this section.

Proof of Theorem 5.1. The theorem will follow from the special case |B| = 2 of
Corollary 5.5 and from Lemmas 5.7 and 5.8, if we show that for each clone C on A
satisfying one of the conditions (A), (B)′, (C)′, there exists a two-element subset
B ⊆ A such that CB is a subclone of PClo(B), where B = (B; +) is a semilattice
or a group.

If C satisfies condition (A), then for any choice of a two-element subset B of A,
the operations in CB depend on at most m variables. Post’s description [15] of all
clones on a two-element set shows that in this case the members of CB depend, in
fact, on at most one variable. Hence CB is a subclone of PClo(B), where B = (B; +)
is a two-element group.

If C satisfies condition (B)′, then for any choice of a two-element subset B of A,
CB is a subclone of PClo(B), where B = (B; +) is a two-element group.

Assume therefore that C satisfies condition (C)′. Let m denote the exponent
of A, and let S = (S; +) be the semilattice of all idempotent elements of A (see
Proposition 2.5). First we will consider the case when |S| > 1. Let ≤ denote the
natural order on S defined by x ≤ y iff x + y = y, and choose B = (B; +) to be
a two-element subsemilattice of S with B = {o, e} such that o < e and there is no
s ∈ S such that o < s < e.

Our goal is to show that CB is a subclone of PClo(B). We may assume with-
out loss of generality that C = PClo(EA) (E = End(A)). Let f(x1, . . . , xn) =
a +

∑n
i=1 ui(xi) (a ∈ A0, u1, . . . , un ∈ E0) be an n-ary operation in C such that

f(B, . . . , B) ⊆ B, and recall that E0 is a set of endomorphisms of A0. Let
c = ma + o, and for each i, let vi be the function A → A defined by vi(x) =
mui(x) + o. Since E0 is closed under +, each vi ∈ E0. Thus the operation
g(x1, . . . , xn) = c +

∑n
i=1 vi(xi) is a member of C and satisfies g(x) = mf(x) + o

for all x ∈ An. Since mb+ o = b for each b ∈ B, we get that g(B, . . . , B) ⊆ B and
f |B = g|B . Moreover, for all b1, . . . , bn ∈ B, the definitions of c and vi (1 ≤ i ≤ n)
imply that c ∈ S with c ≥ o and vi(bi) ∈ S with vi(bi) ≥ o. On the other
hand, the condition c +

∑n
i=1 vi(bi) = g(b1, . . . , bn) ∈ B implies that c ≤ e and

vi(bi) ≤ e. Thus it follows from our choice of B that c ∈ B and vi(bi) ∈ B for all
i. Thus f |B(x1, . . . , xn) = g|B(x1, . . . , xn) = c +

∑n
i=1 vi|B(xi) where c ∈ B and

v1|B , . . . , vn|B ∈ End(B). Since the only elements of End(B) are the identity en-
domorphism and the two constant endomorphisms, it follows that f |B ∈ PClo(B),
as claimed.
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It remains to consider the case when |S| = 1. Thus A is an abelian group (see
Proposition 2.5). Let 0 denote the neutral element of A, let b ∈ A be an element of
prime order p, and let B = {0, b}. Let f(x1, . . . , xn) = a+

∑n
i=1 ui(xi) (a ∈ A0 = A,

u1, . . . , un ∈ E0 = E) be an n-ary operation in C such that f(B, . . . , B) ⊆ B.
Since ui(0) = 0 for each i, we get that a = f(0, . . . , 0) ∈ B and a + ui(b) =
f(0, . . . , 0, b, 0, . . . , 0) ∈ B. Hence, for each i, there are only two possibilities for the
function ui|B : B → A, one being constant 0, and the other one

(1) ui|B(x) = x for all x ∈ B if a = 0, and
(2) ui|B(x) = −x for all x ∈ B if a = b.

If p = 2, then B = (B; +) is a subgroup of A, and these considerations show that
ui is either the constant 0 or the identity endomorphism of B. Hence it follows
that f |B ∈ PClo(B). If p > 2, then for i 6= j, ui|B and uj |B cannot simultaneously
be nonconstant. Otherwise, if, say, u1|B and u2|B are both nonconstant, then
a + u1(b) + u2(b) = f(b, b, 0, . . . , 0) ∈ B, and conditions (1)–(2) imply that 2b =
0 + b+ b ∈ B if a = 0, and −b = b+ (−b) + (−b) ∈ B if a = b, which is impossible
for p > 2. Therefore f |B depends on at most one of its variables. This implies that
CB is a subclone of PClo(B) for any two-element group B = (B;�) on B. �

6. C-minors of Boolean functions

We conclude this paper by bringing together results pertaining to the C-minor
partial orders on the set O[2] of Boolean functions. The two semilattice operations
on [2] will be denoted by ∧ and ∨, and addition modulo 2 by +. For posets,
lexicographic product and disjoint union will be denoted by×lex and ·∪, respectively.
For the two-element antichain we use the notation 2.

Theorem 6.1. For a clone C on [2], the C-minor partial order (O[2]/≡C ;�C) is

(i) finite, if C contains the discriminator function

t(x, y, z) =

{
x, if x 6= y,

z, otherwise,
(x, y, z ∈ [2]);

(ii) isomorphic to

(ω;≤)×lex 2, (ω;≤) ·∪(ω;≤) or (ω;≤) ·∪(ω;≤) ·∪(ω;≤) ·∪(ω;≤),

if C is one of the clones 〈∧,∨, 0, 1〉, 〈∧,∨, 0〉, 〈∧,∨, 1〉, or 〈∧,∨〉;
(iii) universal for the class FPI of countable posets whose principal ideals are

finite, if C is a subclone of 〈+, 0, 1〉, 〈∧, 0, 1〉 or 〈∨, 0, 1〉; and
(iv) universal for the class of all countable posets, otherwise.

Proof. Statement (i) is established in [11, Corollary 4.2]. Statement (ii) follows
from the results obtained in [8] and [9]; see also the discussion in [10] for further
explanation. Statement (iii) can be derived from Theorem 3.1 of the current paper
as follows. By Post’s description [15] of all clones on [2], every subclone C of
〈+, 0, 1〉, 〈∧, 0, 1〉 or 〈∨, 0, 1〉 either satisfies condition (A) of Theorem 3.1 (with
m = 1) or condition (C) of Theorem 3.1. Finally, statement (iv) is proved in [10,
Theorem 15]. �
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[11] E. Lehtonen, Á. Szendrei: Equivalence of operations with respect to discriminator clones.

Discrete Math., 309 (2009), 673–685.
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