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AN INFINITE DESCENDING CHAIN OF BOOLEAN

SUBFUNCTIONS CONSISTING OF THRESHOLD FUNCTIONS

ERKKO LEHTONEN

Abstract. For a class C of Boolean functions, a Boolean function f is a C-
subfunction of a Boolean function g, if f = g(h1, . . . , hn), where all the inner

functions hi are members of C. Two functions are C-equivalent, if they are

C-subfunctions of each other. The C-subfunction relation is a preorder on the
set of all functions if and only if C is a clone. An infinite descending chain of

U∞-subfunctions is constructed from certain threshold functions (U∞ denotes

the clone of clique functions).

1. Introduction

Various notions of subfunctions (or minors) of Boolean functions have been pre-
sented in the literature (see, e.g., [8, 13, 14]). We generalize these notions as
follows. For a class C of Boolean functions, we say that a Boolean function f is
a C-subfunction of a Boolean function g, if f = g(h1, . . . , hn), where all the in-
ner functions hi are members of C. Two functions are C-equivalent, if they are
C-subfunctions of each other. The C-subfunction relation is a preorder on the set
Ω of all Boolean functions if and only if C is a clone, and it induces a partial order
on the quotient set Ω/≡C of Ω by the C-equivalence relation ≡C . We ask whether
this partial order satisfies the descending chain condition.

In this paper, we concentrate on the clone U∞ of all 1-separating (or clique)
functions, and we show that there exists an infinite descending chain of U∞-
subfunctions. Based on an explicit construction of certain threshold functions,
the current proof is substantially different from the more general proof presented
in [5], and we believe it might be of interest in itself.

2. Notation and definitions

Let B = {0, 1}. The set Bn is a Boolean (distributive and complemented) lattice
of 2n elements under the component-wise order of vectors. We write simply a ≤ b
to denote comparison in this lattice. We denote by 0 and 1 the all-0 and all-1
vectors, respectively. The Hamming weight of a vector a ∈ Bn, denoted w(a), is
the number of 1’s in a.

A Boolean function is a map f : Bn → B, for some positive integer n called the
arity of f . Because we only discuss Boolean functions, we refer to them simply as
functions. A class of functions is a subset C ⊆

⋃
n≥1 BBn

.
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For a fixed arity n, the n different projection maps (a1, . . . , an) 7→ ai, 1 ≤ i ≤ n,
are denoted by x1, . . . , xn, where the arity is clear from the context.

If f is an n-ary function and g1, . . . , gn are all m-ary functions, then the composi-
tion of f with g1, . . . , gn, denoted f(g1, . . . , gn), is an m-ary function, and its value
on (a1, . . . , am) ∈ Bm is f(g1(a1, . . . , am), . . . , gn(a1, . . . , am)). The composition of
a class I with a class J , denoted I ◦ J , is defined as

I ◦ J = {f(g1, . . . , gn) : n,m ≥ 1, f n-ary in I, g1, . . . , gn m-ary in J }.

A clone is a class C that contains all projections and satisfies C ◦ C ⊆ C (or equiva-
lently, C ◦ C = C).

It follows from the definition of class composition that (I ◦ J ) ◦K ⊆ I ◦ (J ◦K)
for any classes I, J , K. The following is a corollary to the Associativity Lemma of
[1]: if J is a clone, then (I ◦ J ) ◦ K = I ◦ (J ◦ K).

The clones of Boolean functions, originally described by E. Post [9] (see also
[10, 12, 14] for recent shorter proofs), form an algebraic lattice, where the lattice
operations are the following: meet is the intersection, join is the smallest clone
that contains the union. The greatest element is the clone Ω of all Boolean func-
tions; the least element is the clone Ic of projections. These clones and the lattice
are often called the Post classes and the Post lattice, respectively. We adopt the
nomenclature used in [3, 4] for the Post classes. For an exposition on compositions
of Post classes, see [2].

We denote by Tc the clone of all constant-preserving functions, i.e., f ∈ Tc if and
only if f(0) = 0 and f(1) = 1. We denote by M the clone of monotone functions,
i.e., f ∈M if and only if f(a) ≤ f(b) whenever a ≤ b. We denote by Mc the clone
of monotone constant-preserving functions, i.e., Mc = M ∩ Tc.

Let a ∈ B. A set A ⊆ Bn is said to be a-separating if there is i, 1 ≤ i ≤ n,
such that for every (a1, . . . , an) ∈ A we have ai = a. A function f is said to be
a-separating if f−1(a) is a-separating. The function f is said to be a-separating of
rank k ≥ 2 if every subset A ⊆ f−1(a) of size at most k is a-separating. 1-separating
functions are sometimes also called clique functions.

For k ≥ 2, we denote by Uk the clone of all 1-separating functions of rank k;
and we denote by U∞ the clone of all 1-separating functions, i.e., U∞ =

⋂
k≥2 Uk.

For any k ≥ 2, U∞ ⊂ Uk+1 ⊂ Uk. For k = 2, . . . ,∞, we denote TcUk = Tc ∩ Uk,
MUk = M ∩ Uk, McUk = Mc ∩ Uk.

Let C be a class of functions. We say that a function f is a C-subfunction of a
function g, denoted f �C g, if f ∈ {g} ◦ C. Functions f and g are C-equivalent,
denoted f ≡C g, if they are C-subfunctions of each other. If f �C g but g 6�C f , we
say that f is a proper C-subfunction of g and denote f ≺C g. If both f 6�C g and
g 6�C f , we say that f and g are C-incomparable and denote f ‖C g.

The C-subfunction relation �C is a preorder on Ω if and only if C is a clone. If C
is a clone, then ≡C is an equivalence relation on Ω, and the C-equivalence class of
f is denoted by [f ]C . As for preorders, the C-subfunction relation induces a partial
order 4C on Ω/≡C : [f ]C 4C [g]C if and only if f �C g.

We have investigated the C-subfunction relations of Boolean functions in [5]; in
particular, we have determined, for each Post class C, whether there exists an infinite
descending chain of C-subfunctions and what is the size of the largest antichain of
C-incomparable functions. In the remainder of this paper, we will show that there
exists an infinite descending chain of U∞-subfunctions. The current proof differs
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substantially from the proof presented in [5], which is based on homomorphisms
between hypergraphs associated with functions.

3. Infinite descending chain of U∞-subfunctions

An n-ary function f is a threshold function (or a linearly separable function), if
there are weights w1, . . . , wn ∈ R and a threshold w0 ∈ R such that f(a) = 1 if and
only if

∑n
i=1 wiai ≥ w0. Threshold functions have been studied extensively in the

1960’s; see, e.g., [6, 7, 11]. We call the special case where w1 = · · · = wn = 1 and
w0 = k for an integer k with 0 ≤ k ≤ n the n-ary k-threshold function and denote
it by θnk . The following are equivalent definitions of θnk :

θnk (a) = 1⇐⇒ w(a) ≥ k, θnk =
∨

S⊆{1,...,n}
|S|=k

∧
i∈S

xi.

An n-ary function f is a near-unanimity function, if f(a1, . . . , an) = a whenever
at least n − 1 of the ai’s equal a. For n ≥ 3, the n-ary (n − 1)-threshold function
θnn−1 is a near-unanimity function. It is straightforward to verify that for any n ≥ 3,
θnn−1 ∈ Un−1 \ Un.

Theorem 1. For C = McU∞, MU∞, TcU∞, U∞, there is an infinite descending
chain of C-subfunctions.

Proof. Let n > m, and define for i = 1, . . . ,m the n-ary function φi = xiθ
n
n−1. We

observe that θmm−1(φ1, . . . , φm) = θnn−1. For, let a ∈ Bn. If w(a) < n − 1, then
θnn−1(a) = 0, so φi(a) = 0 for all i, and θmm−1(φ1(a), . . . , φm(a)) = θmm−1(0, . . . , 0) =
0. If w(a) ≥ n − 1, then θnn−1(a) = 1, and at most one of a1, . . . , an is 0, so
θmm−1(φ1(a), . . . , φm(a)) = θmm−1(a1, . . . , am) = 1. Thus θnn−1 �U∞ θmm−1. Since
U∞ ⊆ Un ⊂ Um, we have that θnn−1 ◦ U∞ ⊆ Un, and consequently θmm−1 cannot be
a U∞-subfunction of θnn−1. We conclude that

θ32 �U∞ θ43 �U∞ θ54 �U∞ · · ·
is an infinite descending chain of U∞-subfunctions.

The same argument holds for McU∞-, MU∞-, TcU∞-subfunctions. �

We emphasize that the above proof relies essentially on the fact that there is an
infinite descending chain of clones U2 ⊃ U3 ⊃ · · · above U∞ in the Post lattice.
Even though the above proof implies that, for any k, θnn−1 �Uk

θmm−1 whenever
n > m, these functions certainly do not constitute an infinite descending chain
of Uk-subfunctions for any finite k, because all functions θmm−1 with m > k are
members of Uk and are thus Uk-equivalent.
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