On quasitrivial and associative operations University of Zielona Góra

Jimmy Devillet
in collaboration with Miguel Couceiro and Jean-Luc Marichal

University of Luxembourg

Connectedness and Contour Plots

Let X be a nonempty set and let $F: X^{2} \rightarrow X$

Definition

- The points $(x, y),(u, v) \in X^{2}$ are F-connected if

$$
F(x, y)=F(u, v)
$$

- The point $(x, y) \in X^{2}$ is F-isolated if it is not F-connected to another point in X^{2}

Connectedness and Contour Plots

For any integer $n \geq 1$, let $X_{n}=\{1, \ldots, n\}$ endowed with \leq
Example. $F(x, y)=\max \{x, y\}$ on $\left(X_{4}, \leq\right)$

Quasitriviality and Idempotency

Definition

$F: X^{2} \rightarrow X$ is said to be

- quasitrivial if

$$
F(x, y) \in\{x, y\}
$$

- idempotent if

$$
F(x, x)=x
$$

Graphical interpretation of quasitriviality

Let $\Delta_{X}=\{(x, x) \mid x \in X\}$

Proposition

$F: X^{2} \rightarrow X$ is quasitrivial iff

- it is idempotent
- every point $(x, y) \notin \Delta_{X}$ is F-connected to either (x, x) or (y, y)

Graphical interpretation of the neutral element

Definition. An element $e \in X$ is said to be a neutral element of $F: X^{2} \rightarrow X$ if

$$
F(x, e)=F(e, x)=x
$$

Proposition

Assume $F: X^{2} \rightarrow X$ is quasitrivial and let $e \in X$. Then e is a neutral element of F iff (e, e) is F-isolated

Degree sequence

Recall that $X_{n}=\{1, \ldots, n\}$
Definition. Assume $F: X_{n}^{2} \rightarrow X_{n}$ and let $z \in X_{n}$. The F-degree of z, denoted $\operatorname{deg}_{F}(z)$, is the number of points $(x, y) \neq(z, z)$ such that $F(x, y)=F(z, z)$

Definition. Assume $F: X_{n}^{2} \rightarrow X_{n}$. The degree sequence of F, denoted deg_{F}, is the nondecreasing n-element sequence of the F-degrees $\operatorname{deg}_{F}(x), x \in X_{n}$

Degree sequence

Graphical interpretation of the annihilator

Definition. An element $a \in X$ is said to be an annihilator of $F: X^{2} \rightarrow X$ if

$$
F(x, a)=F(a, x)=a
$$

Proposition

Assume $F: X_{n}^{2} \rightarrow X_{n}$ is quasitrivial and let $a \in X_{n}$.
Then a is an annihilator iff $\operatorname{deg}_{F}(a)=2 n-2$

A class of associative operations

We are interested in the class of operations $F: X^{2} \rightarrow X$ that are

- associative
- quasitrivial
- symmetric

Note: We will assume later that F is nondecreasing w.r.t. some total ordering on X

A first characterization

Theorem (Länger, 1980)

$F: X^{2} \rightarrow X$ is associative, quasitrivial and symmetric iff there exists a total ordering \leq on X such that $F=$ max \leq.

$1<2<3<4$

$2 \prec 4 \prec 3 \prec 1$

A second characterization

Theorem

Let $F: X^{2} \rightarrow X$. If $X=X_{n}$ then TFAE
(i) F is associative, quasitrivial and symmetric
(ii) $F=\max _{\leq}$for some total ordering \leqon X_{n}
(iii) F is quasitrivial and $\operatorname{deg}_{F}=(0,2,4, \ldots, 2 n-2)$

There are exactly n ! operations $F: X_{n}^{2} \rightarrow X_{n}$ satifying any of the conditions (i)-(iii). Moreover, the total ordering \leq considered in (ii) is determined by the condition: $x \preceq y$ iff $\operatorname{deg}_{F}(x) \leq \operatorname{deg}_{F}(y)$.

Operations on X_{3}

The nondecreasing case

$1<2<3<4$

$2 \prec 4 \prec 3 \prec 1$

Single-peaked total orderings

Definition.(Black, 1948) Let \leq, \preceq be total orderings on X. The total ordering \preceq is said to be single-peaked w.r.t. \leq if for all $a, b, c \in X$ such that $a<b<c$ we have $b \prec a$ or $b \prec c$

Example. The total ordering \preceq on

$$
X_{4}=\{1<2<3<4\}
$$

defined by

$$
3 \prec 2 \prec 4 \prec 1
$$

is single-peaked w.r.t. \leq
Note : There are exactly 2^{n-1} single-peaked total orderings on $\left(X_{n}, \leq\right)$.

Single-peaked total orderings

$1<2<3<4$

$3 \prec 2 \prec 4 \prec 1$

A third characterization

Theorem

Let \leq be a total ordering on X and let $F: X^{2} \rightarrow X$. TFAE
(i) F est associative, quasitrivial, symmetric and nondecreasing
(ii) $F=\max _{\preceq}$ for some total ordering \preceq on X that is single-peaked w.r.t. \leq

A fourth characterization

Theorem

Let \leq be a total ordering on X and let $F: X^{2} \rightarrow X$. If $(X, \leq)=$ $\left(X_{n}, \leq\right)$ then TFAE
(i) F is associative, quasitrivial, symmetric and nondecreasing
(ii) $F=\max _{\preceq}$ for some total ordering \preceq on X_{n} that is single-peaked w.r.t. \leq
(iii) F is quasitrivial, nondecreasing and $\operatorname{deg}_{F}=(0,2,4, \ldots, 2 n-2)$

There are exactly 2^{n-1} operations $F: X_{n}^{2} \rightarrow X_{n}$ satisfying any of the conditions (i)-(iii).

Operations on X_{3}

A more general class of associative operations

We are interested in the class of operations $F: X^{2} \rightarrow X$ that are

- associative
- quasitrivial

Note: We will assume later that F is nondecreasing w.r.t. some total ordering on X

Weak orderings

Recall that a binary relation R on X is said to be

- total if $\forall x, y: x R y$ or $y R x$
- transitive if $\forall x, y, z: x R y$ and $y R z$ implies $x R z$

A weak ordering on X is a binary relation \lesssim on X that is total and transitive. We denote the symmetric and asymmetric parts of \lesssim by \sim and $<$, respectively.
Recall that \sim is an equivalence relation on X and that $<$ induces a total ordering on the quotient set X / \sim

A fifth characterization

Theorem (Mclean, 1954, Kimura, 1958)

$F: X^{2} \rightarrow X$ is associative and quasitrivial iff there exists a weak ordering \lesssim on X such that

$$
\left.F\right|_{A \times B}=\left\{\begin{array}{ll}
\left.\max _{<}\right|_{A \times B}, & \text { if } A \neq B, \\
\left.\pi_{1}\right|_{A \times B} \text { or }\left.\pi_{2}\right|_{A \times B}, & \text { if } A=B,
\end{array} \quad \forall A, B \in X / \sim\right.
$$

A fifth characterization

Theorem (Mclean, 1954, Kimura, 1958)

$F: X^{2} \rightarrow X$ is associative and quasitrivial iff there exists a weak ordering \lesssim on X such that

$$
\left.F\right|_{A \times B}=\left\{\begin{array}{ll}
\left.\max _{<}\right|_{A \times B}, & \text { if } A \neq B, \\
\left.\pi_{1}\right|_{A \times B} \text { or }\left.\pi_{2}\right|_{A \times B}, & \text { if } A=B,
\end{array} \quad \forall A, B \in X / \sim\right.
$$

Moreover, if $X=X_{n}$ the weak ordering \lesssim is determined by the condition: $x \lesssim y$ iff $\operatorname{deg}_{F}(x) \leq \operatorname{deg}_{F}(y)$.

Operations on X_{3}

$$
\begin{array}{llllll}
\sim
\end{array}
$$

The nondecreasing case

$1<2<3$
$2 \prec 1 \sim 3$

Weakly single-peaked weak orderings

Definition. Let \leq be a total ordering on X and let \precsim be a weak ordering on X. The weak ordering \precsim is said to be weakly single-peaked w.r.t. \leq if for any $a, b, c \in X$ such that $a<b<c$ we have $b \prec a$ or $b \prec c$ or $a \sim b \sim c$

Example. The weak ordering \precsim on

$$
X_{4}=\{1<2<3<4\}
$$

defined by

$$
2 \prec 1 \sim 3 \prec 4
$$

is weakly single-peaked w.r.t. \leq

Weakly single-peaked weak orderings

A sixth characterization

$$
\left.F\right|_{A \times B}=\left\{\begin{array}{ll}
\left.\max _{\precsim}\right|_{A \times B}, & \text { if } A \neq B, \tag{*}\\
\left.\pi_{1}\right|_{A \times B} \text { or }\left.\pi_{2}\right|_{A \times B}, & \text { if } A=B,
\end{array} \quad \forall A, B \in X / \sim\right.
$$

Theorem

Let \leq be a total ordering on $X . F: X^{2} \rightarrow X$ is associative, quasitrivial, and nondecreasing w.r.t. \leq iff F is of the form $(*)$ for some weak ordering \precsim on X that is weakly single-peaked w.r.t. \leq

Enumeration of associative and quasitrivial operations

Recall that if the generating function (GF) or the exponential generating function (EGF) of a given sequence $\left(s_{n}\right)_{n \geq 0}$ exist, then they are respectively defined as the power series

$$
S(z)=\sum_{n \geq 0} s_{n} z^{n} \quad \text { and } \quad \hat{S}(z)=\sum_{n \geq 0} s_{n} \frac{z^{n}}{n!}
$$

Recall also that for any integers $0 \leq k \leq n$ the Stirling number of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is defined as

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\frac{1}{k!} \sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} i^{n} .
$$

Enumeration of associative and quasitrivial operations

For any integer $n \geq 1$, let $q(n)$ denote the number of associative and quasitrivial operations $F: X_{n}^{2} \rightarrow X_{n}$ (OEIS: A292932)

Theorem

For any integer $n \geq 0$, we have the closed-form expression

$$
q(n)=\sum_{i=0}^{n} 2^{i} \sum_{k=0}^{n-i}(-1)^{k}\binom{n}{k}\left\{\begin{array}{c}
n-k \\
i
\end{array}\right\}(i+k)!, \quad n \geq 0
$$

Moreover, its EGF is given by $\hat{Q}(z)=1 /\left(z+3-2 e^{z}\right)$.

Enumeration of associative and quasitrivial operations

In arXiv:1709.09162 we found also explicit formulas for

- $q_{e}(n)$: number of associative and quasitrivial operations $F: X_{n}^{2} \rightarrow X_{n}$ that have a neutral element (OEIS: A292933)
- $q_{a}(n)$: number of associative and quasitrivial operations $F: X_{n}^{2} \rightarrow X_{n}$ that have an annihilator (OEIS: A292933)
- $q_{e a}(n)$: number of associative and quasitrivial operations $F: X_{n}^{2} \rightarrow X_{n}$ that have a neutral element and an annihilator (OEIS : A292934)

Enumeration of associative quasitrivial and nondecreasing operations

For any integer $n \geq 0$ we denote by $v(n)$ the number of associative, quasitrivial, and nondecreasing operations
$F: X_{n}^{2} \rightarrow X_{n}$ (OEIS:A293005)

Theorem

For any integer $n \geq 0$, we have the closed-form expression

$$
3 v(n)+2=\sum_{k \geq 0} 3^{k}\left(2\binom{n}{2 k}+3\binom{n}{2 k+1}\right), \quad n \geq 0 .
$$

Moreover, its GF is given by $V(z)=z(z+1) /\left(2 z^{3}-3 z+1\right)$.

Enumeration of associative quasitrivial and nondecreasing operations

In arXiv:1709.09162 we found also explicit formulas for

- $v_{e}(n)$: number of associative, quasitrivial and nondecreasing operations $F: X_{n}^{2} \rightarrow X_{n}$ that have a neutral element (OEIS: A002605)
- $v_{a}(n)$: number of associative, quasitrivial and nondecreasing operations $F: X_{n}^{2} \rightarrow X_{n}$ that have an annihilator (OEIS : A293006)
- $v_{\text {ea }}(n)$: number of associative, quasitrivial and nondecreasing operations $F: X_{n}^{2} \rightarrow X_{n}$ that have a neutral element and an annihilator (OEIS: A293007)

Selected references

易
D. Black. On the rationale of group decision-making. J Polit Economy, 56(1):23-34, 1948
M. Couceiro, J. Devillet, and J.-L. Marichal. Characterizations of idempotent discrete uninorms. Fuzzy Sets and Systems. In press.
https://doi.org/10.1016/j.fss.2017.06.013

M. Couceiro, J. Devillet, and J.-L. Marichal. Quasitrivial semigroups: characterizations and enumerations. Submitted for publication. arXiv:1709.09162.
B. De Baets, J. Fodor, D. Ruiz-Aguilera, and J. Torrens. Idempotent uninorms on finite ordinal scales. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems, 17(1):1-14, 2009.

J. Devillet, G. Kiss, and J.-L. Marichal. Characterizations of quasitrivial symmetric nondecreasing associative operations. Submitted for publication. arXiv:1705.00719.
N. Kimura. The structure of idempotent semigroups. I. Pacific J. Math., 8:257-275, 1958.

H. Länger. The free algebra in the variety generated by quasi-trivial semigroups. Semigroup forum, 20:151-156, 1980.

D. McLean. Idempotent semigroups. Amer. Math. Monthly, 61:110-113, 1954.

