# On quasitrivial and associative operations University of Zielona Góra

Jimmy Devillet

in collaboration with Miguel Couceiro and Jean-Luc Marichal

University of Luxembourg

## Connectedness and Contour Plots

Let X be a nonempty set and let  $F: X^2 \to X$ 

#### Definition

• The points  $(x, y), (u, v) \in X^2$  are *F*-connected if

$$F(x,y) = F(u,v)$$

The point (x, y) ∈ X<sup>2</sup> is *F-isolated* if it is not *F*-connected to another point in X<sup>2</sup>

### Connectedness and Contour Plots

For any integer  $n\geq 1$ , let  $X_n=\{1,...,n\}$  endowed with  $\leq$ 

**Example.**  $F(x, y) = \max\{x, y\}$  on  $(X_4, \leq)$ 



# Quasitriviality and Idempotency

#### Definition

- $F: X^2 \to X$  is said to be
  - quasitrivial if

$$F(x,y) \in \{x,y\}$$

• idempotent if

F(x,x) = x

# Graphical interpretation of quasitriviality

Let 
$$\Delta_X = \{(x, x) \mid x \in X\}$$

#### Proposition

- $F\colon X^2 o X$  is quasitrivial iff
  - it is idempotent
  - every point  $(x, y) \notin \Delta_X$  is *F*-connected to either (x, x) or (y, y)



## Graphical interpretation of the neutral element

**Definition.** An element  $e \in X$  is said to be a *neutral element* of  $F: X^2 \to X$  if

$$F(x,e) = F(e,x) = x$$

#### Proposition

Assume  $F: X^2 \to X$  is quasitrivial and let  $e \in X$ . Then e is a neutral element of F iff (e, e) is F-isolated



### Degree sequence

Recall that  $X_n = \{1, ..., n\}$ 

**Definition.** Assume  $F: X_n^2 \to X_n$  and let  $z \in X_n$ . The *F*-degree of z, denoted deg<sub>F</sub>(z), is the number of points  $(x, y) \neq (z, z)$  such that F(x, y) = F(z, z)

**Definition.** Assume  $F: X_n^2 \to X_n$ . The *degree sequence of* F, denoted deg<sub>*F*</sub>, is the nondecreasing *n*-element sequence of the *F*-degrees deg<sub>*F*</sub>(x),  $x \in X_n$ 

## Degree sequence



$$\deg_F = (0, 2, 4, 6)$$

# Graphical interpretation of the annihilator

**Definition.** An element  $a \in X$  is said to be an *annihilator* of  $F: X^2 \to X$  if

$$F(x,a) = F(a,x) = a$$

#### Proposition

Assume  $F: X_n^2 \to X_n$  is quasitrivial and let  $a \in X_n$ . Then *a* is an annihilator iff deg<sub>*F*</sub>(*a*) = 2n - 2

# A class of associative operations

We are interested in the class of operations  $F \colon X^2 \to X$  that are

- associative
- quasitrivial
- symmetric

**Note :** We will assume later that F is nondecreasing w.r.t. some total ordering on X

# A first characterization

#### Theorem (Länger, 1980)

 $F: X^2 \to X$  is associative, quasitrivial and symmetric iff there exists a total ordering  $\leq$  on X such that  $F = \max_{\leq}$ .



# A second characterization

#### Theorem

Let 
$$F: X^2 \to X$$
. If  $X = X_n$  then TFAE

(i) F is associative, quasitrivial and symmetric

(ii) 
$$F = \max_{\leq}$$
 for some total ordering  $\leq$  on  $X_n$ 

(iii) F is quasitrivial and deg<sub>F</sub> = 
$$(0, 2, 4, \dots, 2n - 2)$$

There are exactly n! operations  $F: X_n^2 \to X_n$  satifying any of the conditions (i)–(iii). Moreover, the total ordering  $\leq$  considered in (ii) is determined by the condition:  $x \leq y$  iff deg<sub>F</sub>(x)  $\leq$  deg<sub>F</sub>(y).

## Operations on $X_3$



## The nondecreasing case



## Single-peaked total orderings

**Definition**.(Black, 1948) Let  $\leq, \leq$  be total orderings on X. The total ordering  $\leq$  is said to be *single-peaked w.r.t.*  $\leq$  if for all  $a, b, c \in X$  such that a < b < c we have  $b \prec a$  or  $b \prec c$ 

**Example**. The total ordering  $\leq$  on

$$X_4 = \{1 < 2 < 3 < 4\}$$

defined by

$$3 \prec 2 \prec 4 \prec 1$$

is single-peaked w.r.t.  $\leq$ 

**Note :** There are exactly  $2^{n-1}$  single-peaked total orderings on  $(X_n, \leq)$ .

## Single-peaked total orderings



# A third characterization

#### Theorem

Let  $\leq$  be a total ordering on X and let  $F: X^2 \rightarrow X$ . TFAE

(i) F est associative, quasitrivial, symmetric and nondecreasing

(ii) 
$$F = \max_{\leq}$$
 for some total ordering  $\leq$  on X that is single-peaked w.r.t.  $\leq$ 

# A fourth characterization

#### Theorem

- Let  $\leq$  be a total ordering on X and let  $F: X^2 \rightarrow X$ . If  $(X, \leq) = (X_n, \leq)$  then TFAE
  - (i) F is associative, quasitrivial, symmetric and nondecreasing
  - (ii)  $F = \max_{\leq}$  for some total ordering  $\leq$  on  $X_n$  that is single-peaked w.r.t.  $\leq$

(iii) F is quasitrivial, nondecreasing and 
$$\deg_F = (0, 2, 4, \dots, 2n - 2)$$

There are exactly  $2^{n-1}$  operations  $F: X_n^2 \to X_n$  satisfying any of the conditions (i)–(iii).

## Operations on $X_3$



# A more general class of associative operations

We are interested in the class of operations  $F \colon X^2 \to X$  that are

- associative
- quasitrivial

**Note :** We will assume later that F is nondecreasing w.r.t. some total ordering on X

# Weak orderings

Recall that a binary relation R on X is said to be

- *total* if  $\forall x, y$ : *xRy* or *yRx*
- *transitive* if  $\forall x, y, z$ : *xRy* and *yRz* implies *xRz*

A *weak ordering on X* is a binary relation  $\leq$  on X that is total and transitive. We denote the symmetric and asymmetric parts of  $\leq$  by  $\sim$  and <, respectively.

Recall that  $\sim$  is an equivalence relation on X and that < induces a total ordering on the quotient set  $X/\sim$ 

# A fifth characterization

#### Theorem (Mclean, 1954, Kimura, 1958)

 $F\colon X^2\to X$  is associative and quasitrivial iff there exists a weak ordering  $\lesssim$  on X such that

$$F|_{A \times B} = \begin{cases} \max_{\leq} |_{A \times B}, & \text{if } A \neq B, \\ \pi_1|_{A \times B} \text{ or } \pi_2|_{A \times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X/\sim$$



# A fifth characterization

#### Theorem (Mclean, 1954, Kimura, 1958)

 $F\colon X^2\to X$  is associative and quasitrivial iff there exists a weak ordering  $\lesssim$  on X such that

$$F|_{A \times B} = \begin{cases} \max_{\lesssim} |_{A \times B}, & \text{if } A \neq B, \\ \pi_1|_{A \times B} \text{ or } \pi_2|_{A \times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X / \sim$$

Moreover, if  $X = X_n$  the weak ordering  $\leq$  is determined by the condition:  $x \leq y$  iff deg<sub>F</sub>(x)  $\leq$  deg<sub>F</sub>(y).

# Operations on $X_3$



## The nondecreasing case



## Weakly single-peaked weak orderings

**Definition**. Let  $\leq$  be a total ordering on X and let  $\preceq$  be a weak ordering on X. The weak ordering  $\preceq$  is said to be *weakly* single-peaked w.r.t.  $\leq$  if for any  $a, b, c \in X$  such that a < b < c we have  $b \prec a$  or  $b \prec c$  or  $a \sim b \sim c$ 

**Example**. The weak ordering  $\precsim$  on

$$X_4 = \{1 < 2 < 3 < 4\}$$

defined by

$$2 \prec 1 \sim 3 \prec 4$$

is weakly single-peaked w.r.t.  $\leq$ 

## Weakly single-peaked weak orderings



## A sixth characterization

$$F|_{A \times B} = \begin{cases} \max_{\preceq} |_{A \times B}, & \text{if } A \neq B, \\ \pi_1|_{A \times B} \text{ or } \pi_2|_{A \times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X/\sim \quad (*)$$

#### Theorem

Let  $\leq$  be a total ordering on X.  $F: X^2 \to X$  is associative, quasitrivial, and nondecreasing w.r.t.  $\leq$  iff F is of the form (\*) for some weak ordering  $\preceq$  on X that is weakly single-peaked w.r.t.  $\leq$ 

## Enumeration of associative and quasitrivial operations

Recall that if the generating function (GF) or the exponential generating function (EGF) of a given sequence  $(s_n)_{n\geq 0}$  exist, then they are respectively defined as the power series

$$S(z) = \sum_{n\geq 0} s_n z^n$$
 and  $\hat{S}(z) = \sum_{n\geq 0} s_n \frac{z^n}{n!}$ .

Recall also that for any integers  $0 \le k \le n$  the *Stirling number of* the second kind  $\binom{n}{k}$  is defined as

$$\binom{n}{k} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} i^{n}.$$

# Enumeration of associative and quasitrivial operations

For any integer  $n \ge 1$ , let q(n) denote the number of associative and quasitrivial operations  $F: X_n^2 \to X_n$  (OEIS : A292932)

#### Theorem

For any integer  $n \ge 0$ , we have the closed-form expression

$$q(n) = \sum_{i=0}^{n} 2^{i} \sum_{k=0}^{n-i} (-1)^{k} {n \choose k} {n-k \choose i} (i+k)!, \qquad n \ge 0.$$

Moreover, its EGF is given by  $\hat{Q}(z) = 1/(z+3-2e^z)$ .

## Enumeration of associative and quasitrivial operations

In arXiv:1709.09162 we found also explicit formulas for

- $q_e(n)$ : number of associative and quasitrivial operations  $F: X_n^2 \to X_n$  that have a neutral element (OEIS : A292933)
- $q_a(n)$  : number of associative and quasitrivial operations  $F: X_n^2 \to X_n$  that have an annihilator (OEIS : A292933)
- $q_{ea}(n)$ : number of associative and quasitrivial operations  $F: X_n^2 \to X_n$  that have a neutral element and an annihilator (OEIS : A292934)

# Enumeration of associative quasitrivial and nondecreasing operations

For any integer  $n \ge 0$  we denote by v(n) the number of associative, quasitrivial, and nondecreasing operations  $F: X_n^2 \to X_n$  (OEIS : A293005)

#### Theorem

For any integer  $n \ge 0$ , we have the closed-form expression

$$3v(n) + 2 = \sum_{k\geq 0} 3^k (2\binom{n}{2k} + 3\binom{n}{2k+1}), \quad n \geq 0.$$

Moreover, its GF is given by  $V(z) = z(z+1)/(2z^3 - 3z + 1)$ .

# Enumeration of associative quasitrivial and nondecreasing operations

In arXiv:1709.09162 we found also explicit formulas for

- v<sub>e</sub>(n) : number of associative, quasitrivial and nondecreasing operations F: X<sub>n</sub><sup>2</sup> → X<sub>n</sub> that have a neutral element (OEIS : A002605)
- $v_a(n)$ : number of associative, quasitrivial and nondecreasing operations  $F: X_n^2 \to X_n$  that have an annihilator (OEIS: A293006)
- $v_{ea}(n)$  : number of associative, quasitrivial and nondecreasing operations  $F: X_n^2 \to X_n$  that have a neutral element and an annihilator (OEIS : A293007)

#### Selected references

- D. Black. On the rationale of group decision-making. *J Polit Economy*, 56(1):23–34, 1948

M. Couceiro, J. Devillet, and J.-L. Marichal. Characterizations of idempotent discrete uninorms. *Fuzzy Sets and Systems*. In press. https://doi.org/10.1016/j.fss.2017.06.013



- M. Couceiro, J. Devillet, and J.-L. Marichal. Quasitrivial semigroups: characterizations and enumerations. Submitted for publication. arXiv:1709.09162.
- B. De Baets, J. Fodor, D. Ruiz-Aguilera, and J. Torrens. Idempotent uninorms on finite ordinal scales. *Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems*, 17(1):1–14, 2009.



J. Devillet, G. Kiss, and J.-L. Marichal. Characterizations of quasitrivial symmetric nondecreasing associative operations. Submitted for publication. arXiv:1705.00719.



N. Kimura. The structure of idempotent semigroups. I. *Pacific J. Math.*, 8:257–275, 1958.



H. Länger. The free algebra in the variety generated by quasi-trivial semigroups. *Semigroup forum*, 20:151–156, 1980.

D. McLean. Idempotent semigroups. Amer. Math. Monthly, 61:110-113, 1954.