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Résumé

Nous allons donner différentes caractérisations de la classe des
uninormes idempotentes discrétes (axiomatique, algébrique et

graphique).

Ces opérations sont importantes car elles généralisent les t-normes
et t-conormes qui sont des connecteurs flous.

Mais nous allons aussi caractériser des classes d'opérations plus
générales.



Connexion et courbes de niveau

Soit X un ensemble non vide et soit F: X2 — X
Définition
e Les points (x, y), (u,v) € X? sont F-connectés si
Fx,y) = F(u,v)

e Le point (x,y) € X? est F-isolé s'il n’est F-connecté 3 aucun
autre point de X?



Connexion et courbes de niveau

Pour tout entier n > 1, soit X, = {1, ..., n} doté de <

Exemple. F(x,y) = max{x, y} sur (Xa, <)




Conservativité et idempotence

Définition
F: X% = X est dit

@ conservatif si
F(x,y) € {x,y}

@ idempotent si
F(x,x)

I
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Interprétation graphique de la conservativité

Soit Ax = {(x,x) | x € X}

Proposition

F: X2 — X est conservatif ssi
@ F est idempotent

@ tout point (x,y) ¢ Ax est F-connecté a (x,x) ou (y,y)




Interprétation graphique de |'élément neutre

Définition. Un élément e € X est appelé un élément neutre pour
F: X? = Xsi
F(x,e) = F(e,x) = x

Proposition

Supposons que F: X? — X soit conservatif et soit e € X.
Alors e est un élément neutre ssi (e, e) est F-isolé
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Suite des degrés

Rappelons que X, = {1, ..., n}

Définition. Soit F: X3 — X, et soit z € X,. Le F-degré de z,
noté degr(z), est le nombre de points (x,y) # (z, z) tels que
F(x,y) = F(z,2)

Définition. Soit F: X,? — Xp. La suite des degrés de F, notée
degp, est la suite non décroissante a n éléments des degrés
degp(x), x € X,



Suite des degrés

degr = (0,2,4,6)



Une classe d'opérations associatives

Nous nous intéressons a la classe des F: X% — X qui sont

@ associatifs
@ conservatifs

@ symétriques

Remarque : Si nous ajoutons I'existence d'un élément neutre ainsi
que la non décroissance par rapport a un ordre total < sur X alors
nous retrouvons la classe des uninormes idempotentes.



Une premiere caractérisation

Théoreme (Langer, 1980)

F: X? — X est associatif, conservatif et symétrique ssi il existe un
ordre total < sur X tel que F = max<.

o2

2 < 4 < 3 <1



Une deuxieme caractérisation

Théoreme

Soit F: X2 — X. Si X = X,, alors les conditions suivantes sont
équivalentes

(i) F est associatif, conservatif et symétrique
(i) F = max< pour un ordre total < sur X,
(iii) F est conservatif et degr = (0,2,4,...,2n —2)

Il y a exactement n! opérations F: X3 — X, satisfaisant une des
conditions (i)—(iii). De plus, I'ordre total < considéré dans (ii) est
déterminé par la condition : x < y ssi degg(x) < degg(y).
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Le cas non décroissant




Ordres totaux unimodaux

Définition.(Black, 1948) Soient <, < des ordres totaux sur X.
L'ordre total < est dit unimodal par rapport a < si pour tout
a,b,c € X telsque a< b< cnousavons b<aoub<rc

Exemple. L'ordre total < sur
Xa={1<2<3<4}

défini par
3<2<4<1

est unimodal par rapport a <

Remarque : Il y a exactement 2”1 ordres totaux unimodaux sur
(Xn, <).



Ordres totaux unimodaux




Une troisieme caractérisation

Théoreme

Soit < un ordre total sur X et soit F: X2 — X. Les conditions
suivantes sont équivalentes

(i) F est associatif, conservatif, symétrique et non décroissant

(i) F = max< pour un ordre total < sur X qui est unimodal par
rapport a <




Une quatrieme caractérisation

Soit < un ordre total sur X et soit F: X? — X. Si (X, <) = (X, <),
alors les conditions suivantes sont équivalentes

(i) F est associatif, conservatif, symétrique et non décroissant

(i) F = max< pour un ordre total < sur X, qui est unimodal par
rapport a <

(i) F est conservatif, non décroissant et
degr = (0,2,4,...,2n—2)

(iv) F est associatif, idempotent, symétrique, non décroissant et a
un élément neutre.

Il'y a exactement on-1 opérations F: X,? — X, satisfaisant une des
conditions (i)—(iv).



SRS
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