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Résumé :
Dans cet article, nous donnons deux axiomatisations

de la classe des uninormes discrètes idempotentes en tant
qu’opérations binaires conservatives, où une opération
est conservative si elle renvoie toujours la valeur prise
par l’une de ses variables. Plus précisément, nous mon-
trons d’abord que les uninormes discrètes idempotentes
sont exactement les opérations qui sont conservatives,
symétriques and non décroissantes. Ensuite, nous mon-
trons que dans cette caractérisation la symétrie peut être
remplacée par la bisymétrie et l’existence d’un élément
neutre.

Mots-clés :
Agrégation et fusion de données, connecteur flou, uni-

norme discrète, axiomatisation.

Abstract:
In this paper we provide two axiomatizations of the

class of idempotent discrete uninorms as conservative bi-
nary operations, where an operation is conservative if it
always outputs one of its input values. More precisely
we first show that the idempotent discrete uninorms are
exactly those operations that are conservative, symmetric,
and nondecreasing. Then we show that, in this characteri-
zation, symmetry can be replaced with both bisymmetry
and existence of a neutral element.

Keywords:
Aggregation and data fusion, fuzzy connective, dis-

crete uninorm, axiomatization.

1 Introduction

Les fonctions d’agrégation définies sur des
échelles linguistiques (chaı̂nes finies) ont
été largement étudiées depuis plus de deux
décenies ; voir par exemple [3–5,7,9–14,16,17].
Parmi ces fonctions, les connecteurs flous dis-
crets (tels que les uninormes discrètes) sont des
opérations binaires qui jouent un rôle important
en logique floue.

Ce court article se concentre sur quelques

caractérisations de la classe des uninormes
discrètes idempotentes. Rappelons qu’une uni-
norme discrète est une opération binaire sur une
chaı̂ne finie qui est associative, symétrique, non
décroissante en chaque variable et qui possède
un élément neutre.

Une première caractérisation de la classe
des uninormes discrètes idempotentes a été
donnée par De Baets et col. [3, Theorem 3].
Cette caractérisation révèle que toute uninorme
discrète idempotente est une combinaison des
opérations minimum et maximum. En particu-
lier, une telle opération est conservative dans le
sens qu’elle retourne toujours la valeur prise par
l’une de ses variables.

Cet article est organisé comme suit. Après
une présentation dans la section 2 de quelques
résultats préliminaires sur les opérations
conservatives, nous montrons dans la section
3 que les uninormes discrètes idempotentes
sont exactement les opérations qui sont conser-
vatives, symétriques et non décroissantes en
chaque variable. Cette nouvelle caractérisation
est très simple et ne requiert ni l’associativité
ni l’existence d’un élément neutre. Dans la
section 4 nous fournissons une caractérisation
alternative de cette classe en termes de la
propriété de bisymétrie. Plus spécifiquement,
nous montrons que les uninormes discrètes
idempotentes sont exactement les opérations
qui sont conservatives, bisymétriques, non
décroissantes et qui ont un élément neutre.



Une version étendue de cet article est disponible
dans [2].

2 Préliminaires

Soit X un ensemble arbitraire non vide et soit
∆X = {(x,x) ∣ x ∈X} la diagonale de X2.

Définition 1. Une opération F ∶X2 →X est dite
— idempotente si F (x,x) = x pour tout x ∈

X .
— conservative si F (x, y) ∈ {x, y} pour

tous x, y ∈X .
— associative si F (F (x, y), z) =

F (x,F (y, z)) pour tous x, y, z ∈X .
Un élément e ∈ X est appelé un élément neutre
de F (ou simplement un élément neutre) si
F (x, e) = F (e, x) = x pour tout x ∈ X . Dans ce
cas, nous pouvons facilement montrer par l’ab-
surde qu’un tel élément neutre est unique. Les
points (x, y) et (u, v) de X2 sont dits connectés
pour F (ou simplement connectés) si F (x, y) =
F (u, v). Nous observons que “être connecté”
est une relation d’équivalence. Le point (x, y)
de X2 est dit isolé pour F (ou simplement isolé)
s’il n’est connecté à aucun autre point de X2.

Remarque 1. La conservativité (en anglais :
conservativeness) a été introduite dans Pouzet
et col. [15]. Cette condition est aussi appelée
“local internality” dans Martı́n et col. [8].

Lemme 2. Soit F ∶X2 → X une opération
idempotente. Si le point (x, y) ∈ X2 est isolé,
alors il est sur ∆X , c’est-à-dire, x = y.

Remarque 2. Nous observons que l’idempo-
tence est nécessaire dans le lemme 2. En effet,
considérons l’opération F ∶X2 → X , où X =

{a, b}, definie par F (x, y) = a si (x, y) = (a, b)
et F (x, y) = b sinon. Alors (a, b) est isolé et
a ≠ b. Le graphe des lignes de niveau de F est
représenté à la figure 1. Ici (ainsi que dans dans
tout l’article), les points connectés sont reliés
par des arêtes. Pour simplifier les figures nous
omettons parfois les arêtes obtenues par transi-
tivité.
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Figure 1 – Une opération non idempotente

Le lemme suivant fournit un test très simple
pour l’existence d’un élément neutre d’une
opération conservative.

Lemme 3. Soit F ∶X2 → X une opération
conservative et soit e ∈ X . Alors e est un
élément neutre si et seulement si (e, e) est isolé.

Corollaire 4. Tout point isolé (x, y) d’une
opération conservative F ∶X2 → X est unique
et se trouve sur ∆X . De plus x (= y) est un
élément neutre.

Remarque 3. Le lemme 3 n’est plus valable
si la conservativité est remplacée par l’idem-
potence. En effet, en prenant simplement X =

{a, b, c} nous pouvons construire une opération
idempotente ayant un point isolé sur ∆X et au-
cun élément neutre (voir figure 2). De plus, il
est facile de construire une opération idempo-
tente ayant un élément neutre mais aucun point
isolé (voir figure 3 qui représente l’opération
de consensus proposée par Lawry et Dubois
[6, Table 1]). On remarque aussi qu’il y a des
opérations idempotentes ayant plus d’un point
isolé (voir figure 4).

3 Résultats principaux

Nous nous concentrons à présent sur la classe
des uninormes discrètes idempotentes. Ces
opérations sont définies sur des chaı̂nes finies.
Sans perte de généralité, nous considérerons
uniquement les chaı̂nes à n éléments Ln =

{1, . . . , n}, n ≥ 1, munies de la relation d’ordre
usuelle ≤.

Rappelons qu’une opération F ∶L2
n → Ln est

dite non décroissante (en chaque variable) si
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Figure 2 – Une opération n’ayant aucun
élément neutre
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Figure 3 – Une opération n’ayant aucun point
isolé
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Figure 4 – Une opération ayant deux points isolés

F (x, y) ≤ F (x′, y′) chaque fois que x ≤ x′ et
y ≤ y′.

Définition 5 (voir, e.g., [3]). Une uni-
norme discrète sur Ln est une opération
U ∶L2

n → Ln qui est associative, symétrique,
non décroissante et qui a un élément neutre.

Une caractérisation de la classe des uninormes
discrètes idempotentes est donnée dans le
théorème suivant. Bien que cette caractérisation
semble quelque peu complexe, elle montre, en
la combinant avec le lemme 7 ci-dessous, que
toute uninorme discrète idempotente est conser-
vative.
Théorème 6 (voir [3, Theorem 3]). Une
opération F ∶L2

n → Ln avec élément neutre 1 <
e < n est une uninorme discrète idempotente si
et seulement s’il existe une fonction non crois-
sante g∶ [1, e] → [e, n], avec g(e) = e, telle que

F (x, y) = {
min{x, y}, si y ≤ g(x) et x ≤ g(1),
max{x, y}, sinon,

où g∶Ln → Ln est défini par

g(x) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

g(x), si x ≤ e,
max{z ∈ [1, e] ∣ g(z) ≥ x}, si e ≤ x ≤ g(1),
1, si x > g(1).

Nous montrons à présent que les uninormes
discrètes idempotentes sont exactement les
opérations qui sont conservatives, symétriques
et non décroissantes (voir théorème 9).

Considérons d’abord le lemme suivant, qui reste
en fait valable sur qu’importe quelle chaı̂ne (fi-
nie ou non).

Lemme 7. Si F ∶L2
n → Ln est idempotent, non

décroissant et a un élément neutre e ∈ Ln, alors
F ∣[1,e]2 = min et F ∣[e,n]2 = max.

Proposition 8. Si F ∶L2
n → Ln est conservatif,

symétrique et non décroissant, alors il est asso-
ciatif et a un élément neutre.

Pour n = 2 et n = 3, les opérations possibles
F ∶L2

n → Ln qui sont conservatives, symétriques
et non décroissantes sont représentées au moyen
de leurs lignes de niveau dans les figures 5 et 6.
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Figure 5 – Opérations possibles lorsque n = 2

Remarque 4. (a) Les opérations représen-
tées dans la figure 6 sont le minimum, le
maximum, la conjonction de Sobociński
et la disjonction de Sobociński (voir par
exemple [1, Table 1]).

(b) L’existence d’un élément neutre dans
la proposition 8 n’est plus garantie si
la chaı̂ne n’est pas finie. Par exemple,
l’opération réelle F ∶ [0,1]2 → [0,1]
définie par F (x, y) = min{x, y} si
x, y ∈ [0, 12)

2 et F (x, y) = max{x, y}
sinon, est conservative, symétrique et
non décroissante mais n’a pas d’élément
neutre.

(c) Nous observons que la conservativité ne
peut être remplacée par l’idempotence
dans la proposition 8. Par exemple,
l’opération F ∶L2

3 → L3 dont les lignes
de niveau sont représentées dans la fi-
gure 2 est idempotente, symétrique et
non décroissante mais on peut montrer
qu’elle n’est pas associative et qu’elle
n’a pas d’élément neutre.

(d) Nous observons aussi que chacune
des conditions de la proposition 8 est
nécessaire. En effet, nous donnons dans
la figure 7 une opération qui est conser-
vative et symétrique mais qui n’est
pas non décroissante. Nous donnons
également dans la figure 8 une opération
qui est conservative et non décroissante
mais non symétrique. Finalement, nous
donnons à la figure 9 (voir par exemple
[1, Table 1]) une opération qui est
symétrique et non décroissante mais
non conservative. Aucune de ces trois

t t t
t t t
t t t

(1,1) (2,1) (3,1)

(1,2) (2,2) (3,2)

(1,3) (2,3) (3,3)

t t t
t t t
t t t

(1,1) (2,1) (3,1)

(1,2) (2,2) (3,2)

(1,3) (2,3) (3,3)

t t t
t t t
t t t

(1,1) (2,1) (3,1)

(1,2) (2,2) (3,2)

(1,3) (2,3) (3,3)

t t t
t t t
t t t

(1,1) (2,1) (3,1)

(1,2) (2,2) (3,2)

(1,3) (2,3) (3,3)

Figure 6 – Opérations possibles lorsque n = 3
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Figure 7 – Une opération qui n’est pas non
décroissante

opérations n’est associative et aucune
n’a d’élément neutre.

Théorème 9. Une opération F ∶L2
n → Ln est

conservative, symétrique et non décroissante
si et seulement si c’est une uninorme discrète
idempotente. De plus, il y a exactement 2n−1

uninormes discrètes idempotentes sur Ln.

Remarque 5. Le théorème 9 nous permet de
donner une caractérisation graphique des uni-
normes discrètes idempotentes en termes de
leurs lignes de niveau. En effet, en notant L
une chaı̂ne arbitraire à n éléments, nous ob-
servons que la restriction F ∣L′ de toute uni-
norme discrète idempotente F ∶L2 → L à
une sous-chaı̂ne L′ obtenue en supprimant une
des extrémités de L est encore une uninorme
discrète idempotente. De plus, l’opération F
(ou de façon équivalente, le graphe de ses lignes
de niveau) peut être reconstruite à partir de F ∣L′

en connectant tous les points de L2∖L′ 2. Il s’en-
suit que toutes les uninormes discrètes idem-
potentes peuvent être (facilement) construites
récursivement en termes de leurs lignes de ni-
veau.

4 Opérations bisymétriques

Dans cette section, nous donnons une ca-
ractérisation de la classe des uninormes
discrètes idempotentes en termes de la propriété
de bisymétrie (ou médialité).
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Figure 8 – Une opération qui n’est pas
symétrique
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Figure 9 – Une opération qui n’est pas conserva-
tive

Définition 10. Une opération F ∶X2 → X est
dite bisymétrique si

F (F (x, y), F (u, v)) = F (F (x,u), F (y, v))

pour tous x, y, u, v ∈X .

Proposition 11. Soit F ∶X2 →X une opération
conservative qui a un élément neutre. Alors F
est bisymétrique si et seulement si il est asso-
ciatif et symétrique.

En combinant la proposition 11 avec le
théorème 9, nous pouvons facilement déduire
la caractérisation alternative suivante des uni-
normes discrètes idempotentes.

Théorème 12. Une opération F ∶L2
n → Ln est

conservative, bisymétrique, non décroissante et
a un élément neutre si et seulement si c’est une
uninorme discrète idempotente.
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