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Résumé :

Dans cet article, nous donnons deux axiomatisations
de la classe des uninormes discretes idempotentes en tant
qu’opérations binaires conservatives, ol une opération
est conservative si elle renvoie toujours la valeur prise
par 1'une de ses variables. Plus précisément, nous mon-
trons d’abord que les uninormes discretes idempotentes
sont exactement les opérations qui sont conservatives,
symétriques and non décroissantes. Ensuite, nous mon-
trons que dans cette caractérisation la symétrie peut étre
remplacée par la bisymétrie et I’existence d’un élément
neutre.

Mots-clés :

Agrégation et fusion de données, connecteur flou, uni-
norme discrete, axiomatisation.

Abstract:

In this paper we provide two axiomatizations of the
class of idempotent discrete uninorms as conservative bi-
nary operations, where an operation is conservative if it
always outputs one of its input values. More precisely
we first show that the idempotent discrete uninorms are
exactly those operations that are conservative, symmetric,
and nondecreasing. Then we show that, in this characteri-
zation, symmetry can be replaced with both bisymmetry
and existence of a neutral element.
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1 Introduction

Les fonctions d’agrégation définies sur des
échelles linguistiques (chaines finies) ont
été largement étudiées depuis plus de deux
décenies ; voir par exemple [3-5,7,9—-14,16,17].
Parmi ces fonctions, les connecteurs flous dis-
crets (tels que les uninormes discretes) sont des
opérations binaires qui jouent un réle important
en logique floue.

Ce court article se concentre sur quelques

caractérisations de la classe des uninormes
discretes idempotentes. Rappelons qu’une uni-
norme discrete est une opération binaire sur une
chaine finie qui est associative, symétrique, non
décroissante en chaque variable et qui possede
un élément neutre.

Une premicre caractérisation de la classe
des uninormes discretes idempotentes a €té
donnée par De Baets et col. [3, Theorem 3].
Cette caractérisation révele que toute uninorme
discrete idempotente est une combinaison des
opérations minimum et maximum. En particu-
lier, une telle opération est conservative dans le
sens qu’elle retourne toujours la valeur prise par
I’une de ses variables.

Cet article est organisé comme suit. Apres
une présentation dans la section 2 de quelques
résultats préliminaires sur les opérations
conservatives, nous montrons dans la section
3 que les uninormes discretes idempotentes
sont exactement les opérations qui sont conser-
vatives, symétriques et non décroissantes en
chaque variable. Cette nouvelle caractérisation
est tres simple et ne requiert ni 1’associativité
ni ’existence d’un élément neutre. Dans la
section 4 nous fournissons une caractérisation
alternative de cette classe en termes de la
propriété de bisymétrie. Plus spécifiquement,
nous montrons que les uninormes discretes
idempotentes sont exactement les opérations
qui sont conservatives, bisymétriques, non
décroissantes et qui ont un élément neutre.



Une version étendue de cet article est disponible
dans [2].

2 Préliminaires

Soit X un ensemble arbitraire non vide et soit
Ax ={(x,x) | z € X} la diagonale de X2.

Définition 1. Une opération F: X? - X est dite
— idempotente si F'(x,z) = x pour tout €
X.
— conservative si F(x,y) € {z,y} pour
tous r,y € X.
— associative  si  F(F(z,y),z) =
F(z,F(y,z)) pour tous x,y,z € X.
Un élément e € X est appelé un élément neutre
de F' (ou simplement un élément neutre) si
F(x,e) = F(e,x) = x pour tout z € X. Dans ce
cas, nous pouvons facilement montrer par 1’ab-
surde qu’un tel élément neutre est unique. Les
points (z,y) et (u,v) de X? sont dits connectés
pour F' (ou simplement connectés) si F(x,y) =
F(u,v). Nous observons que “étre connecté”
est une relation d’équivalence. Le point (z,y)
de X2 est dit isolé pour F' (ou simplement isolé)
s’il n’est connecté a aucun autre point de X 2.

Remarque 1. La conservativité (en anglais :
conservativeness) a €té introduite dans Pouzet
et col. [15]. Cette condition est aussi appelée
“local internality” dans Martin et col. [8].

Lemme 2. Soir F:X? — X une opération
idempotente. Si le point (x,y) € X? est isolé,
alors il est sur Ax, c’est-a-dire, x = .

Remarque 2. Nous observons que 1’idempo-
tence est nécessaire dans le lemme 2. En effet,
considérons I’opération F: X? - X, ou X =
{a,b}, definie par F'(x,y) = asi (x,y) = (a,b)
et F'(z,y) = b sinon. Alors (a,b) est isolé et
a # b. Le graphe des lignes de niveau de F' est
représenté a la figure 1. Ici (ainsi que dans dans
tout I’article), les points connectés sont reliés
par des arétes. Pour simplifier les figures nous
omettons parfois les arétes obtenues par transi-
tivité.
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Figure 1 — Une opération non idempotente

Le lemme suivant fournit un test trés simple
pour I’existence d’un élément neutre d’une
opération conservative.

Lemme 3. Soit F:X? — X une opération
conservative et soit e € X. Alors e est un
élément neutre si et seulement si (e, e) est isolé.

Corollaire 4. Tout point isolé (x,y) d’une
opération conservative F: X? — X est unique
et se trouve sur Ax. De plus x (= y) est un
élément neutre.

Remarque 3. Le lemme 3 n’est plus valable
si la conservativité est remplacée par I’idem-
potence. En effet, en prenant simplement X =
{a, b, c} nous pouvons construire une opération
idempotente ayant un point isolé sur A x et au-
cun élément neutre (voir figure 2). De plus, il
est facile de construire une opération idempo-
tente ayant un élément neutre mais aucun point
isolé (voir figure 3 qui représente 1’opération
de consensus proposée par Lawry et Dubois
[6, Table 1]). On remarque aussi qu’il y a des
opérations idempotentes ayant plus d’un point
isolé (voir figure 4).

3 Résultats principaux

Nous nous concentrons a présent sur la classe
des uninormes discretes idempotentes. Ces
opérations sont définies sur des chaines finies.
Sans perte de généralité, nous considérerons
uniquement les chaines a n éléments L, =
{1,...,n}, n > 1, munies de la relation d’ordre
usuelle <.

Rappelons qu’une opération F:L2 — L, est
dite non décroissante (en chaque variable) si
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Figure 2 — Une opération n’ayant aucun
élément neutre
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Figure 3 — Une opération n’ayant aucun point
isolé
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Figure 4 — Une opération ayant deux points isolés

F(x,y) < F(a2',y") chaque fois que = < ' et
y<y'.

Définition 5 (voir, e.g., [3]). Une uni-
norme discréete sur L, est une opération
U:L? - L, qui est associative, symétrique,
non décroissante et qui a un élément neutre.

Une caractérisation de la classe des uninormes
discretes idempotentes est donnée dans le
théoreme suivant. Bien que cette caractérisation
semble quelque peu complexe, elle montre, en
la combinant avec le lemme 7 ci-dessous, que
toute uninorme discrete idempotente est conser-
vative.

Théoreme 6 (voir [3, Theorem 3]). Une
opération F: L2 — L, avec élément neutre 1 <
e < n est une uninorme discrete idempotente si
et seulement s’il existe une fonction non crois-
sante g:[1,¢e] — [e,n], avec g(e) = e, telle que

roe = (G

siy<g(z)erx<g(l),
sinon,

oug: L, — L, est défini par

g(x), siz<e,
g(z) = {max{ze[l,e]|g(z) 2z}, sie<xz<g(l),
1, siz>g(1).

Nous montrons a présent que les uninormes
discreétes idempotentes sont exactement les
opérations qui sont conservatives, symétriques
et non décroissantes (voir théoréme 9).

Considérons d’abord le lemme suivant, qui reste
en fait valable sur qu’importe quelle chaine (fi-
nie ou non).

Lemme 7. Si F: L2 — L,, est idempotent, non
décroissant et a un élément neutre e € L, alors
F|[1,¢)2 = min et Ff. ;)2 = max.

Proposition 8. Si F: L2 — L, est conservatif,
symétrique et non décroissant, alors il est asso-
ciatif et a un élément neutre.

Pour n = 2 et n = 3, les opérations possibles
F: L2 — L, qui sont conservatives, symétriques
et non décroissantes sont représentées au moyen
de leurs lignes de niveau dans les figures 5 et 6.
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Figure 5 — Opérations possibles lorsque n = 2

Remarque 4. (a) Les opérations représen-

(b)

(©)

(d)

tées dans la figure 6 sont le minimum, le
maximum, la conjonction de Sobocinski
et la disjonction de Sobocinski (voir par
exemple [1, Table 1]).

L’existence d’un élément neutre dans
la proposition 8 n’est plus garantie si
la chaine n’est pas finie. Par exemple,
I'opération réelle F:[0,1]> - [0,1]
définie par F(z,y) = min{x,y} si
z,y € [0,3)? et F(z,y) = max{z,y}
sinon, est conservative, symétrique et
non décroissante mais n’a pas d’élément
neutre.

Nous observons que la conservativité ne
peut étre remplacée par 1’idempotence
dans la proposition 8. Par exemple,
I’opération F: L2 — L3 dont les lignes
de niveau sont représentées dans la fi-
gure 2 est idempotente, symétrique et
non décroissante mais on peut montrer
qu’elle n’est pas associative et qu’elle
n’a pas d’élément neutre.

Nous observons aussi que chacune
des conditions de la proposition 8§ est
nécessaire. En effet, nous donnons dans
la figure 7 une opération qui est conser-
vative et symétrique mais qui n’est
pas non décroissante. Nous donnons
également dans la figure 8 une opération
qui est conservative et non décroissante
mais non symétrique. Finalement, nous
donnons a la figure 9 (voir par exemple
[1, Table 1]) une opération qui est
symétrique et non décroissante mais
non conservative. Aucune de ces trois
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Figure 6 — Opérations possibles lorsque n = 3



Figure 7 — Une opération qui n’est pas non
décroissante

opérations n’est associative et aucune
n’a d’élément neutre.

Théoreme 9. Une opération F:L2 — L, est
conservative, symétrique et non décroissante
si et seulement si c’est une uninorme discrete
idempotente. De plus, il y a exactement 2"
uninormes discretes idempotentes sur L,,.

Remarque 5. Le théoréme 9 nous permet de
donner une caractérisation graphique des uni-
normes discrétes idempotentes en termes de
leurs lignes de niveau. En effet, en notant L
une chaine arbitraire a n éléments, nous ob-
servons que la restriction F|;, de toute uni-
norme discréte idempotente F:L? — L a
une sous-chaine ' obtenue en supprimant une
des extrémités de L est encore une uninorme
discrete idempotente. De plus, I’opération F'
(ou de facon équivalente, le graphe de ses lignes
de niveau) peut étre reconstruite a partir de F/|
en connectant tous les points de L2\ L/ 2. 11 s’en-
suit que toutes les uninormes discretes idem-
potentes peuvent étre (facilement) construites
récursivement en termes de leurs lignes de ni-
veau.

4 Opérations bisymétriques

Dans cette section, nous donnons une ca-
ractérisation de la classe des uninormes
discretes idempotentes en termes de la propriété
de bisymétrie (ou médialité).

® 2 ®
o 1 [
Figure 8 — Une opération qui n’est pas
symétrique
° 3
1
@ L @

Figure 9 — Une opération qui n’est pas conserva-
tive

Définition 10. Une opération F: X2 — X est
dite bisymétrique si

F(F(z,y), F(u,0)) = F(F(z,u), F(y,v))
pour tous z,y, u,v € X.

Proposition 11. Soit F': X? — X une opération
conservative qui a un élément neutre. Alors F
est bisymétrique si et seulement si il est asso-
ciatif et symétrique.

En combinant la proposition 11 avec le
théoreme 9, nous pouvons facilement déduire
la caractérisation alternative suivante des uni-
normes discretes idempotentes.

Théoreme 12. Une opération F: L% — L, est
conservative, bisymétrique, non décroissante et
a un élément neutre si et seulement si c’est une
uninorme discrete idempotente.
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