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Notation(s)

Les vecteurs et tenseurs sont notés en gras, par exemple µ. La
réutilisation d’un symbole associé à un vecteur en caractères non
gras correspond à la norme de ce vecteur, ainsi

µ = ||µ||.

Sans précision supplémentaire, log désigne le logarithme en
base 10, tandis que le logarithme népérien est noté ln. Si un loga-
rithme dans une autre base b est nécessaire, il sera noté logb.
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Introduction

Le but de ce travail était de réaliser des calculs de paramètres RMN de fluorures in-
organiques cristallisés avec la méthode Gipaw telle qu’elle est implémentée dans le logi-
ciel Quantum-Espresso. En particulier, l’idée était de tenter de reproduire (ou pas) cer-
tains des résultats publiés dans [17, 16] qui ont, eux, été réalisés avec un autre logiciel
(Castep).

Nous commençons par un chapitre théorique où nous rappelons l’origine des paramètres
qui sont observés en RMN et que l’on cherche à calculer (section 1.1) puis abordons les
approximations nécessaires et les modèles qui permettent d’effectuer ces calculs (section 1.2).

Ce chapitre est consciemment superficiel. En effet, non seulement nous ne disposons
pas ici de la place qui serait nécessaire pour entrer dans les détails, mais de plus nous ne
prétendons pas les comprendre finement. Il existe de plus déjà divers documents dans la
littérature qui détaillent ceux-ci.

Pour ces raisons, et étant par ailleurs nous-même informaticien à la base, il nous a semblé
plus intéressant d’essayer d’introduire ces concepts de manière globale, pour justement quel-
qu’un d’étranger à ce domaine qui souhaiterait le découvrir, et de renvoyer à la littérature
pour approfondir 1.

Le chapitre 2 correspond à la partie pratique : il décrit les calculs que nous avons effec-
tués, donne les résultats obtenus et les compare aux résultats connus, et les discute.

Diverses annexes constituent en quelque sorte la face opposée du chapitre 1. On pourrait
en effet les voir comme une sorte de guide de démarrage de Quantum-Espresso pour
celui qui, comprenant les tenants et aboutissants théoriques, voudrait lancer des calculs
rapidement, en se passant autant que possible de l’aide du service de support informatique.

1. Celui qui voudrait une étape intermédiaire pourra profiter des chapitres 2 et 3 de [12].
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Chapitre 1

Théorie : la matière et ses modèles

1.1 Structure cristalline et RMN

1.1.1 L’atome

On peut décrire la matière comme un assemblage d’éléments, la plus petite unité d’un
élément étant l’atome. À son tour, un atome peut être séparé en un noyau, chargé positive-
ment, et des électrons (chacun ayant une charge négative unitaire) qui se trouvent dans le
volume qui entoure l’atome.

Ce noyau est composé de Z protons (positifs, de charge unitaire), dont le nombre est
caractéristique de l’élément, et de N neutrons (sans charge). Le nombre de ces derniers
dans le noyau est généralement voisin du nombre de protons pour les éléments légers, mais
croît un peu plus vite cependant lorsque l’on va vers les éléments lourds. Pour un élément
donné, le nombre de neutrons dans les atomes peut varier de quelques unités, chaque cas
correspondant à un isotope différent.

On note, pour un atome d’un élément E :

N+Z
NE, (1.1)

où N +Z = A est le nombre de masse de E. Z étant caractéristique de l’élément E, il n’est
pas représenté explicitement. De plus, comme N = A− Z, le N en indice est généralement
également omis.

L’exemple du carbone. On appelle carbone l’élément qui a six protons (Z = 6).
L’isotope le plus courant du carbone possède six neutrons (N = 6) ; on le note 12

6 C
ou plus simplement 12C et si on désire parler de celui-ci spécifiquement, on peut
parler de « carbone-12 ».
Le carbone « naturel » comporte également des isotopes à sept et huit neutrons,
respectivement le 13C et le 14C, le premier étant important en RMN, et le second,
instable, étant utile en particulier pour des applications de datation en archéologie.
Plus généralement, le carbone compte une quinzaine d’isotopes (8C à 22C, [11])
qui sont de moins en moins stables comme le nombre de neutrons s’éloigne du
nombre de protons.

Des subdivisions suplémentaires (quarks, etc.) sont possibles mais ne sont pas utiles à notre
présent propos.

La masse du proton et la masse du neutron sont voisines. La masse de l’électron est plus
de 1800 fois inférieure. Dans un atome neutre électriquement, le nombre d’électrons est égal
au nombre de protons. On voit donc que l’essentiel de la masse de l’atome est située dans le
noyau.

En revanche, en terme de contribution au volume atomique, le noyau est très petit devant
le volume que peuvent parcourir les électrons. Le rapport entre ces volumes varie d’un atome
à l’autre (voir d’un contexte à l’autre), mais un rapport de 1014 n’aurait rien d’aberrant. Le
volume de l’atome est donc avant tout défini par les électrons.
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Outre la masse et la charge, les particules ont également un spin, que l’on peut voir
comme une sorte de rotation sur elles-mêmes à une vitesse fixée. C’est une caractéristique
importante car une particule chargée en rotation, si sa charge n’est pas uniformément ré-
partie, se comporte comme un dipôle magnétique.

1.1.2 Spin nucléaire et RMN

Considérons tout d’abord ce qui se passerait sans quantification si on applique un champ
magnétique constant, H0, à un dipôle magnétique muni d’un moment, µ. Ce dernier est un
vecteur que l’on peut voir comme un axe de rotation du dipôle, et cet axe va lui-même se
mettre à tourner autour de la direction de H0 (figure 1.1) avec une pulsation

ω0 = γH0, (1.2)

où γ est le rapport gyromagnétique : c’est la précession de Larmor.

H0

µ

H1

θ

Figure 1.1 – Précession de Larmor
d’un dipôle avec un moment magné-
tique µ dans un champ magnétique
constant H0. Figure d’après [1].

Certains noyaux d’atomes peuvent justement se comporter un peu de cette manière,
mais le moment magnétique est quantifié. On appelle spin nucléaire et on note I le moment
angulaire total d’un noyau. Il prend son origine dans la somme vectorielle des spins des
neutrons et protons qui composent le noyau ; des facteurs énergétiques font que ceux-ci
tendent à s’annuler et, dans la pratique, le spin nucléaire dépend de A,N et Z :

– si A est pair, alors I ∈ N, et plus précisément :
– si N (et donc Z) est pair, alors I = 0 ;
– si N (et Z) est impair, alors I ∈ N

∗ ;
– si A est impair, I = n+ 1

2
, avec n ∈ N.

Si on place un noyau avec un spin nucléaire non nul dans un champ magnétique constant
H0, on a µ =

√

I(I + 1)~, mais on ne peut en mesurer qu’une composante m~, où m, que
l’on appelle le nombre quantique magnétique, appartient à −I,−I + 1,−I + 2, . . . , I − 1, I.
Il y a donc 2I + 1 valeurs possibles de m, chacune associée à un niveau d’énergie

E = −m
µH0

I
. (1.3)

Si on applique un champ H1 perpendiculaire à H0, on voit (cf. figure 1.1) que celui-ci
n’aura un effet notable que s’il y a résonance avec la fréquence de Larmor : il va alors avoir
pour effet d’augmenter la précession, c’est-à-dire, dans le cas d’un noyau, il va le faire passer
d’un niveau d’énergie à l’autre.

Ces transitions entre niveaux d’énergie sont détectables et il est ainsi possible de déter-
miner expérimentalement, pour un champ H0 fixé, la fréquence de Larmor d’un noyau. Elle
est, via γ, caractéristique de celui-ci.

Si ce qui précède permet d’identifier un noyau, dans la pratique, il y a d’autres phéno-
mènes qui se superposent et sont susceptibles de livrer des informations complémentaires.
En effet, un noyau existe rarement seul et isolé : il est entouré d’un nuage électronique, et
l’atome est lui-même dans un environnement qui comporte d’autres atomes, avec noyaux
et électrons ; dans un tel environnement, certains électrons peuvent de plus n’être rattachés
que nominalement à un atome. Les liaisons entre atomes ajoutent également des contraintes
au système.

Tout cela est susceptible de modifier le signal de notre noyau. Parmi les effets les plus
notables, il y a celui des électrons : en effet, les électrons de l’environnement du noyau,
sous l’influence du champ H0, vont réagir comme des inducteurs et donc créer un champ
induit qui se superpose, et principalement s’oppose (cf. infra : équation 1.4), au champ H0.
Le noyau ne subit donc pas l’effet de H0 mais de cette superposition de champs : il y a
donc un effet d’écran : la fréquence de Larmor va donc varier légèrement en fonction de
l’environnement électronique : c’est le déplacement chimique δ.

L’écran produit peut être anisotrope et, en tant que tel, il peut être représenté par un
tenseur σ d’ordre 2 ; si on appelle B0 l’induction magnétique correspondant à H0, alors
l’induction créée dans les électrons Bind est telle que, en un point r :

Bind(r) = −σB0(r). (1.4)



1.1. STRUCTURE CRISTALLINE ET RMN 9

En phase fluide, l’orientation des molécules est généralement aléatoire et l’on observe un
écrantage isotrope σiso qui correspond à la moyenne des coefficients de la diagonale principale
du tenseur, autrement dit 1 :

σiso =
1

3
Trσ. (1.5)

Si on exprime σiso en ppm, le déplacement chimique d’un noyau i est simplement

δi = σiso,ref − σiso,i, (1.6)

où σiso,ref est l’écrantage d’une référence. Par exemple, pour l’étude de fluorures, le σiso,ref

peut être celui du fluor dans CFCl3.

Une complication peut survenir du fait que les noyaux dont le spin est strictement su-
périeur à 1

2
se comportent comme des quadrupôles électriques 2 [1, 5]. Ils sont donc associés

à un moment quadrupolaire susceptible d’interagir avec le gradient du champ électrique qui
entoure le noyau.

Appelons E le champ électrique. C’est un champ vectoriel, autrement dit, sa valeur à
une position r est un vecteur E(r). Le gradient du champ électrique est, par définition,
∇E. Comme chacune des dérivées partielles de E contenues dans le gradient est elle-même
un vecteur, ∇E est un tenseur d’ordre 2, dit tenseur EFG (pour Electric Field Gradient).

Comme on s’intéresse à l’effet du champ électrique externe au noyau sur celui-ci, on
suppose le champ généré uniquement en dehors de celui-ci. Dans ce cas, l’équation de Laplace
impose que la trace soit nulle, ce qui nous conduit à définir un nouveau tenseur V :

V = ∇E −
1

3
Tr (∇E) I3, (1.7)

où I3 est la matrice identité en dimension 3.
On a ainsi TrV = 0. On s’intéresse aux valeurs-propres Vii de ce tenseur, que l’on

appelle, en coordonnées cartésiennes, Vxx, Vyy et Vzz. Par convention, on oriente le système
de manière à ce que |Vzz| ≥ |Vyy| ≥ |Vxx|, et si Q est le moment quadrupolaire du noyau, on
définit alors constante de couplage quadrupolaire Cq :

Cq =
eQVzz

h
(1.8)

où h est la constante de Planck et e la charge élémentaire. On définit aussi un paramètre
d’asymétrie du gradient du champ électrique η :

η =
Vxx − Vyy

Vzz

. (1.9)

Il existe d’autres interactions. L’interaction de couplage scalaire, par exemple, est un
couplage entre noyaux par l’intermédiaire des électrons de liaison. Elle est souvent très
importante en RMN, mais n’est pas essentielle en RMN des cristaux.

1.1.3 RMN des cristaux

Dans un solide désordonné, tous les atomes sont potentiellement dans des environne-
ments électroniques différents, et sont donc susceptibles d’apparaître avec des déplacements
différents, rendant l’interprétation au mieux très complexe.

Un cristal, en revanche, possède une structure périodique et peut être vu comme une
maille (un motif) qui se répète. Dans un cristal, supposé parfait et infini, un atome à une
certaine position dans la maille aura le même environnement que ce même atome dans une
autre maille, et le spectre RMN obtenu est intimement lié à la structure de la maille, donc
du cristal. Même primitive (c’est-à-dire aussi petite que possible), une maille peut cependant
contenir plusieurs atomes d’un même élément, et ceux-ci peuvent avoir des environnements

1. Rappelons que la trace d’une matrice correspond à la somme des éléments de la diagonale principale.
2. Une manière plus visuelle est de considérer que les noyaux se comportent comme des quadrupôles

quand leur forme n’est pas une sphère (ellipsoïde) [18].
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électroniques différents, sans que ce soit nécessaire : des symétries peuvent les rendre équi-
valents.

Une molécule donnée est généralement dans un environnement anisotrope, mais la dispo-
sition stochastique que l’on a par exemple dans un liquide fait que cette anisotropie disparaît
statistiquement. Ce n’est pas le cas dans un cristal, puisque toutes les mailles présentent la
même orientation les unes par rapport aux autres. Dans la pratique, toutefois, des méthodes
expérimentales telles que la technique de rotation à l’angle magique, dans laquelle l’échan-

tillon est mis en rotation à un angle θm = cos−1

(

1√
3

)

par rapport à H0, permettent de

diminuer les effets de l’anisotropie.

1.2 Modèles et approximations

Si ce qui est décrit dans la section précédente suffit à expliquer qualitativement les ob-
servations expérimentales, des problèmes surviennent lorsque l’on veut passer au quantitatif
et faire des prédictions à partir de la théorie.

En effet, comme nous l’avons vu, le champ magnétique perçu par le noyau dépend de
son environnement électronique, et la mécanique quantique décrit normalement le système
ainsi constitué via l’équation de Schrödinger, du moins dans un contexte où l’on néglige les
effets relativistes 3.

Le problème qui se pose pour calculer l’influence des différents constituants est que,
si on les considère individuellement et les insérons ainsi dans l’équation de Schrödinger, la
complexité du calcul augmente très rapidement avec leur nombre (et donc en particulier pour
les atomes lourds), même pour une « simple » résolution numérique (la résolution analytique
étant habituellement hors de portée pour l’instant, même pour des systèmes simples). La
simplicité apparente de certaines notations de l’équation de Schrödinger, telle

HΨ = EΨ, (1.10)

est bien trompeuse.
Devant cette explosion de la complexité, il devient nécessaire de faire des approximations.

1.2.1 Approximations et DFT

Une première approximation est celle dite de Born-Oppenheimer : l’idée est que, puisque
les noyaux sont bien plus massifs que les électrons, ils ont une inertie beaucoup plus grande
et ne se déplacent que très peu par rapport aux électrons. Cette approximation suppose donc
que l’on peut considérer les noyaux comme fixes pour calculer les mouvements électroniques.

Même si on ne se préoccupe alors plus que des électrons, le nombre de particules reste
[trop] grand. Il existe des méthodes qui se basent sur un tel système multi-électronique (en
particulier celle de Hartree-Fock et ses dérivées 4), mais il est possible de faire une hypo-
thèse supplémentaire, à savoir que pour modéliser ce qui nous intéresse, on n’a pas besoin
de modéliser tous les électrons mais simplement la densité électronique : à partir de celle-ci,
on peut déterminer le potentiel externe, et de là le champ électrique aux endroits qui nous
intéressent. C’est cette hypothèse, basée sur un théorème dû à Hohenberg et Kohn, que fait
la théorie de la fonctionnelle de la densité (DFT 5 – Density Functional Theory).

3. L’équation de Dirac est la version qui prend en compte les effets relativistes — il peut falloir les
considérer dans le cas de gros atomes.

4. Certains considèrent en fait que la DFT est elle-même dérivée du modèle de Hartree-Fock, via le modèle
de Hartree-Fock-Slater ; elle est cependant en général classée à part.

5. Pour les informaticiens : ne pas confondre avec la Discrete Fourier Transform, d’autant plus que la
transformation de Fourier intervient dans les calculs.
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Dans cette théorie 6, l’énergie est exprimée sous forme d’une fonctionnelle de la densité. Le
théorème de Hohenberg et Kohn qui montre l’existence de cette fonctionnelle n’est cependant
pas constructif, mais il indique que la densité exacte est celle qui minimise la fonctionnelle
(l’énergie).

L’énergie (l’opérateur hamiltonien) peut alors s’exprimer comme étant composée d’un
terme énergie cinétique (électrons pris séparément), d’un terme correspondant aux inter-
actions coulombiennes entre les électrons (potentiel de Hartree) et d’un terme lié aux ef-
fets d’échange et corrélation (ce dernier étant habituellement noté avec l’indice xc, pour
eXchange-Correlation). La difficulté ici est de déterminer ce dernier terme, mais le gros
avantage est que cela transforme effectivement le système multiélectronique de départ en un
système composé d’électrons indépendants.

On aboutit à un système d’équations indépendantes correspondant chacune à un élec-
tron, dites équations de Kohn-Sham, dont la résolution est possible. Cette résolution donne
accès à des orbitales mono-électroniques φi(r) indépendantes, à partir desquelles la densité
électronique du système de départ est simplement

n(r) :=
∑

i∈occ

|φi(r)|
2, (1.11)

où occ est l’ensemble des orbitales occupées.

La détermination de la densité peut alors se faire de manière itérative en cherchant un
champ auto-consistant (SCF – Self-Consistent Field) : à partir d’une estimation initiale
de la densité électronique, on calcule le potentiel effectif, de là on résoud les équations de
Kohn-Sham avec ce potentiel, et on détermine une nouvelle valeur de la densité à partir de
cette résolution. On itère avec cette densité obtenue jusqu’à ce qu’elle ne varie plus que de
manière négligeable.

Les orbitales des équations de Kohn-Sham sont définies pour une certaine base. Dans le
cas qui nous intéresse avec des conditions limites périodiques, selon le théorème de Bloch,
on peut écrire

φj(r) =
∑

k

exp(−ik · r)uj,k(r), (1.12)

les uj,k étant des fonctions avec la périodicité du cristal, tandis que les vecteurs k cor-
respondent à un réseau de points (k-points) dans la [première] zone de Brillouin (celle-ci
correspond à la maille de Wigner-Seitz dans l’espace réciproque) [20].

Les fonctions uj,k sont généralement choisies, pour des raisons calculatoires, de manière
à correspondre à une base d’ondes planes :

uj,k(r) =

|k+G|2<2Ecut
∑

G

cj,k(G) exp(−i[k +G] · r). (1.13)

où les G sont les vecteurs du réseau réciproque.
On note le paramètre Ecut qui limite la sommation. Il correspond à une énergie cinétique

de coupure ; plus ce paramètre est grand, plus la précision sera bonne.

Avec le nombre d’électrons présents dans un système usuel, de tels calculs seraient encore
souvent très longs, d’autant plus qu’il faudrait utiliser une valeur Ecut élevée ([9] évoque
une valeur de 600 Ry). Une approximation supplémentaire est de supposer que les électrons
internes n’interviennent pas réellement. C’est l’approche des pseudopotentiels, où l’on consi-
dère la partie électronique interne comme figée, de manière à ne faire les calculs qu’avec les
électrons les plus externes.

1.2.2 Paw et Gipaw

Ce qui précède permet de simuler le système de manière satisfaisante, avec une complexité
acceptable. Cependant, pour la détermination des paramètres de RMN, on s’intéresse à ce

6. Nous suivons ici principalement la description faite dans [15].
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qui se passe autour du noyau de l’atome, or la densité électronique finalement obtenue est
basée sur des simplifications à ce niveau. Il faut donc encore reconstruire la “vraie” densité,
celle que l’on aurait en prenant en compte tous les électrons, pour pouvoir déterminer ces
paramètres. C’est le but des méthodes Paw (Projector Augmented Wave) et Gipaw (Gauge
Invariant Projector Augmented Wave [9, 8, 4]).

Sans entrer dans les détails qui deviennent vite complexes (nous renvoyons le lecteur
intéressé par ceux-ci aux références sus-citées), la méthode Paw introduit une transformation
linéaire qui fait correspondre les fonctions d’ondes du système avec tous les électrons avec
celles du système basé sur les pseudo-potentiels. Cette transformation est basée sur des
projecteurs (d’où le nom de la méthode).

Gipaw modifie la transformation de Paw de manière à préserver l’invariance translatio-
nelle. Cela permet de l’appliquer à l’hamiltonien, qui comporte des quantités qui dépendent
de la position et que l’on peut considérer comme la somme d’un hamiltonien correspondant
au système isolé et de termes semblables à des perturbations introduites par le champ ma-
gnétique que l’on applique. Cela permet également de calculer un opérateur courant, à partir
duquel il est possible de remonter, via Bind, à σ.



Chapitre 2

Pratique : Calculs avec

Quantum-ESPRESSO

Nous voulions donc ici calculer les déplacements chimiques et les paramètres quadrupo-
laires de divers fluorures à l’aide de la suite logicielle Quantum-ESPRESSO [10]. Elle est
spécialisée pour les calculs basés sur la DFT, et comporte un programme implémentant la
méthode Gipaw ; notons que celui-ci est indiqué comme étant en version “bêta”, c’est-à-dire
pas forcément très fiable.

L’installation et l’utilisation de Quantum-ESPRESSO sont décrites à l’annexe A. Nous
y indiquons aussi comment contourner quelques problèmes que nous avons rencontrés lors
de la réalisation de nos calculs.

Les données cristallographiques des fluorures sur lesquels nous avons fait nos calculs nous
ont été fournies par nos encadrants sous forme de fichiers .cif. L’annexe B donne quelques
pistes pour convertir ces fichiers en un format acceptable par Quantum-ESPRESSO. Nous
ne citons pas dans la bibliographie les articles où ces données ont été initialement publiées
— nous ne les avons pas consultés — et indiquons à la place cette origine dans le tableau 2.1.

Le but ici n’était pas de créer des pseudo-potentiels et nous avons utilisé ceux listés dans
la table 2.2, qui proviennent de [6]. De ce fait, nous n’avons pas été en mesure de refaire tous
les calculs de [17, 16], faute de disponibilité de pseudo-potentiels pour certains éléments. Il
s’agit de pseudo-potentiels à norme conservée avec des fonctionnelles d’échange-corrélation
hybrides pbe générés selon la méthode de Troullier et Martins. On note que dans certains
cas, des orbitales de semi-cœur sont utilisées.

Contrairement aux pseudo-potentiels utilisés dans [17, 16], ils ne sont pas ultra-doux, et
l’on peut a priori s’attendre à des résultats un peu moins bons.

2.1 Paramétrage et déterminations préliminaires

Quantum-ESPRESSO comporte de nombreux paramètres, que nous avons générale-
ment laissés à leurs valeurs par défaut. Parmi ceux qu’il est nécessaire de préciser, se trouve
ecutwfc, qui correspond à Ecut dans l’équation 1.13, ainsi que la grille de k-points (cf.
l’équation 1.12) que l’on veut utiliser.

Le graphe de la figure 2.1 teste la convergence du σiso calculé pour LiF avec différentes
valeurs de Ecut, tandis que les graphes 2.2 et 2.3 font des tests similaires avec KF. On
constate sur ces derniers qu’il y a des anomalies lorsque la méthode de Davidson est utilisée
pour résoudre les équations dans Gipaw ; nous n’avons pas eu le temps de chercher l’origine
de ces anomalies et avons simplement utilisé la méthode du gradient conjugué pour nos
calculs.

Le graphe de la figure 2.4 montre la variation du σiso obtenu avec des grilles de k-points
uniformes (ce qui correspond à un schéma de Monkhorst et Pack) de différentes tailles

13
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α-AlF3

P. Daniel, A. Bulou, M. Rousseau, J. Nouet, J. Fourquet, M. Leblanc

et R. Burriel : A study of the structural phase transitions in AlF3 : X-ray
powder diffraction, DSC and Raman scattering investigations of the lattice
dynamics and phonon spectrum. Journal of Physics : Condensed Matter 2,
pages 5663–5677, 1990.

β-AlF3

Armel Le Bail, C. Jacoboni, M. Leblanc, R. De Pape, H. Duroy et J.-L.
Fourquet : Crystal structure of the metastable form of aluminum trifluo-
ride β-AlF3 and the gallium and indium homologs. Journal of Solid State
Chemistry, pages 96–101, 1988.

η-AlF3

Norman Herron, David L. Thorn, Richard L. Harlow, Glover A. Jones,
John B. Parise, Jaime A. Fernandez-Baca et Thomas Vogt : Preparation
and structural characterization of two new phases of aluminum trifluoride.
Chemistry of Materials, 7(1):75–83, janvier 1995.

BaF2

Arthur S. Radtke et Gordon E. Brown : Frankdicksonite, BaF2, a new
mineral from Nevada. American Mineralogist, 59(9-10):885–888, 1974.

CaF2

B. T. M. Willis : The anomalous behaviour of the neutron reflexion of
fluorite. Acta Crystallographica, 18:75–76, 1965.

GaF3
♠

M. Roos et G. Meyer : Refinement of the crystal structure of gallium
trifluoride, GaF3. Zeitschrift für Kristallographie - New Crystal Structures,
216(1):18, 2001.

GaF3
♣

F.M. Brewer, G. Garton et D.M.L. Goodgame : The preparation and
crystal structure of gallium trifluoride. Journal of Inorganic and Nuclear
Chemistry, pages 56–64, 1959.

KF
G. I. Finch et S. Fordham : The effect of crystal-size on lattice-dimensions.
Proceedings of the Physical Society, 48(1):85–94, janvier 1936.

LiF
J. Thewlis : Unit-cell dimensions of lithium fluoride made from Li6 and Li7.
Acta Crystallographica, 8:36–38, 1955.

MgF2

W. H. Baur et A. A. Kahn : Rutile-type compounds. VI. SiO2, GeO2 and
a comparison with other rutile-type structures. Acta Crystallographica B,
27:2133–2139, 1971.

NaF
V. T. Deshpande : Thermal expansion of sodium fluoride and sodium bro-
mide. Acta Crystallographica, 14:794, 1961.

ZnF2

Nicholas J. O’Toole et Victor A. Streltsov : Synchrotron X-ray analysis
of the electron density in CoF2 and ZnF2. Acta Crystallographica, section B :
Structural Science, 57(2):128–135, 2001.

Table 2.1 – Origine des données cristallographiques (références principales).
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Figure 2.1 – Évolution du σiso calculé en fonction de la coupure de l’énergie cinétique Ecut

des fonctions d’onde (paramètre ecutwfc) utilisée dans le cas de LiF. En bleu, la méthode
de diagonalisation de Davidson est utilisée ; en vert la méthode du gradient conjugué (les
deux courbes se recouvrent en grande partie).
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Figure 2.2 – Évolution du σiso calculé en fonction de la coupure de l’énergie cinétique Ecut

des fonctions d’onde (paramètre ecutwfc) utilisée dans le cas de KF. En bleu, les valeurs
obtenues lorsque la méthode de diagonalisation de Davidson est utilisée dans les calculs
Gipaw (du moins celles de taille « raisonnable », voir la figure 2.3 pour les autres), en vert
les valeurs obtenues avec la méthode du gradient conjugué (échantillonnage pour les valeurs
entières de ecutwfc, interpolées pour avoir une courbe).
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Élément Pseudo-potentiel (nom de fichier) Notes
Lithium Li.pbe-tm-gipaw-dc.UPF

Fluor F.pbe-tm-new-gipaw-dc.UPF

Sodium Na.pbe-tm-gipaw-dc.UPF

Magnésium Mg.pbe-tm-gipaw-dc.UPF

Aluminium Al.pbe-tm-gipaw-dc.UPF

Potassium K.pbe-tm-semi-gipaw-xy.UPF

Calcium Ca.pbe-tm-new-dc.UPF Avec données Gipaw en dépit du
nom du fichier

Zinc Zn.pbe-tm-semi-gipaw-dc.UPF Noté comme “untested” dans [6]
Gallium Ga.pbe-tm-semi-gipaw-dc.UPF Noté comme “untested” dans [6]
Barium Ba.pbe-tm-gipaw-dc.UPF

Table 2.2 – Les pseudo-potentiels utilisés.

pour LiF et α-AlF3. Au vu de ce graphe, nous avons habituellement utilisé une grille de
8 × 8 × 8, suivant ainsi [17] ; une grille plus petite (du moins selon certaines orientations)
aurait cependant probablement été suffisante dans certains cas : l’important est d’avoir une
densité de k-points suffisante, et cette densité dépend à la fois de la grille et de la taille de la
[première] zone de Brillouin. Il faut noter que puisque la zone de Brillouin est définie dans
l’espace réciproque, la densité des k-points varie en sens inverse du paramètre de maille.

2.2 Calculs, résultats et discussion

Nous avons donc réalisé les calculs sur les fluorures. Bien que nous ayons un temps
envisagé l’utilisation des grappes de calcul (ou, plus communément, clusters) de l’Université
du Luxembourg, les calculs se sont avérés réalisables sur un simple ordinateur de bureau et
ont tous été faits sur l’une des deux machines du tableau 2.3.

Ordinateur 1 Ordinateur 2

Processeur(s) Intel Core i5-2405S Intel Xeon E3-1240 V2
Fréquence processeur(s) (GHz) 2,5 3,4
Nombre de processeurs 1 1
Nombre de cœurs physiques 4 4
Nombre de cœurs logiques 4 8
Quantité de RAM (Gio) 16 16
Système d’exploitation Linux (Debian 8.0)
Version de Quantum-ESPRESSO 5.1.2

Table 2.3 – Caractéristiques des ordinateurs utilisés pour les calculs.

2.2.1 Écrantage

Les résultats des calculs de σiso sont présentés dans le tableau 2.4, tandis que les fi-
gures 2.5 et 2.6 font une comparaison graphique avec les valeurs de [17, 16]. Dans les cas
qui le permettent, nous avons réalisé les calculs à la fois avec une structure « initiale »
(IS), celle définie dans le fichier .cif qui nous a été fourni, et avec une structure où les
positions des atomes dans la maille ont été « optimisées » de manière algorithmique (APO).
Les résultats sont arrondis à deux décimales ; il ne faut cependant pas prendre ces décimales
comme des données “sûres”.

Par ailleurs, dans certains cas, nous avons rencontré des problèmes liés à la symétrie,
où Quantum-ESPRESSO donne des valeurs différentes quoique proches pour des atomes
de fluor différents, bien qu’ils soient à des positions normalement équivalentes 1. Souvent,
nos encadrants ont été à même de nous donner des fichiers .cif légèrement modifiés, où

1. Notons que si nous listons plusieurs valeurs pour β − AlF3, c’est parce que cette structure contient
plusieurs positions non-équivalentes ; il ne s’agit pas d’une manifestation de ce problème.
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Figure 2.3 – Évolution du σiso calculé en fonction de la coupure de l’énergie cinétique Ecut

des fonctions d’onde (paramètre ecutwfc) utilisée dans le cas de KF avec la méthode de
diagonalisation de Davidson pour la partie Gipaw des calculs. On a représenté ici log(σiso)
quand la valeur obtenue de σiso est positive, et − log(−σiso) dans le cas contraire. Pour
certaines valeurs (par exemple 36, 57, 69, ...), le programme s’interrompt sans donner de
valeur.
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Figure 2.4 – Évolution du σiso calculé pour des grilles de k-points de taille nk × nk × nk

pour LiF (bleu) et α-AlF3 (vert). Ecut = 60Ry.
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Figure 2.5 – Comparaisons des résultats que nous avons obtenus (abscisses) et de ceux
déjà publiés (ordonnées). Un point sur la ligne pointillée correspondrait à un résultat iden-
tique. Les valeurs à partir des structures publiées sont en bleu, celle à partir des structures
optimisées en rouge. Voir la figure 2.6 pour le détail de la partie centrale.
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Figure 2.6 – Détail de la figure 2.5. Les valeurs à partir des structures publiées sont en bleu,
celle à partir des structures optimisées en rouge. Les α, β et η font référence aux différentes
phases d’AlF3, ♠ et ♣ aux différentes valeurs publiées de la structure de GaF3.
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Structure « initiale » Structure optimisée δiso exp.
Composé σiso calculé σiso litt. σiso calculé σiso litt. de [17, 16]
α-AlF3 335,74 335,2 [16] 334,94 334,6 [16] -171,9

β-AlF3

F1 336,72 335,7 [16] 335,89 335,2 [16]

-172,0
F2 336,69 335,7 [16] 335,97 335,2 [16]
F3 336,61 335,7 [16] 336,20 335,2 [16]
F4 336,63 335,7 [16] 335,97 335,2 [16]

η-AlF3 335,47 334,0 [16] 333,94 333,8 [16] -173,0
BaF2 146,50 151,9 [17] — — -14,3
CaF2 219,05 220,0 [17] — — -108,0
GaF3

♠ 318,79 313,8 [16] 295,88 300,9 [16] -171,3
GaF3

♣ 315,41 310,3 [16] 294,95 300,4 [16] -171,3
KF 273,97 268,1 [17] — — -133,3
LiF 375,91 369,3 [17] — — -204,3

MgF2 356,77 362,7 [17]
362,98

362,7 [17] -197,3
363,04

NaF 425,75 395,8 [17] — — -224,2
ZnF2 357,07 363,0 [17] 360,05 — -200,7

Table 2.4 – Les σiso calculés pour les fluorures ainsi que, pour comparaison, les valeurs
préexistantes. Toutes les valeurs sont exprimées en ppm.

ces problèmes sont atténués, Quantum-ESPRESSO arrivant alors mieux à retrouver les
symétries. Comme nous le verrons, ce problème est plus flagrant pour les paramètres qua-
drupolaires.

On voit sur les figures 2.5 et 2.6 que, si les valeurs obtenues sont différentes de celles
données dans [17, 16], ces résultats sont néanmoins en accord, il y a une bonne linéarité entre
les deux groupes de données. Seul NaF sort sensiblement de l’alignement sur la figure 2.5.

Nous avons essayé pour ce cas d’augmenter la densité des k-points mais, en allant jusqu’à
une grille de 18 × 18 × 18 nous n’avons observé que des variations de ±2 ppm autour (par
opposition à dans une direction donnée) de la valeur présentée dans le tableau 2.4. Des essais
avec des valeurs supérieures de l’énergie de coupure Ecut (100 et 200 Ry) ne montrent pas
non plus de changements significatifs dans la valeur obtenue.

Les références [17, 16] donnent également des valeurs expérimentales pour les déplace-
ments δexp effectivement mesurés, et nous avons tracé un graphe δexp = f(σiso) avec nos
données (figure 2.7), et tracé une première droite de régression linéaire (droite grise).

Pour celle-ci, lorsque nous avions plusieurs valeurs, venant de structures optimisées ou
non, nous avons choisi celle correspondant à la structure dont les paramètres quadrupolaires
(voir 2.2.2) sont les plus proches des valeurs expérimentales. On note en particulier que
ce choix conduit à retenir les valeurs des structures APO pour GaF3, bien que le σiso

correspondant semble plus éloigné de la droite de régression linéaire que celui de la structure
initiale.

Si l’on revient sur l’équation 1.6, on s’attend à pouvoir écrire

δi = b+ aσiso,i, (2.1)

où b correspond au σiso de la référence utilisée pour le calcul des déplacements, et a = −1,
autrement dit, en traçant un graphe δexp = f(σiso), on s’attend à avoir une droite de
coefficient directeur −1.

On voit que dans la pratique, nous obtenons ici en fait a ≈ -0,73 (avec b ≈ 68,43, pour
R2 ≈ 0,95).

Le fait que le coefficient directeur soit différent de −1 et que sa valeur absolue soit
inférieure à 1 n’est en fait guère surprenant ou, du moins, il s’agit d’un fait connu avec
ce type de méthode, en particulier pour les applications avec les fluorures, ce qui conduit
habituellement à calibrer la méthode via la création d’une droite de régression 2.

2. On note que l’on quitte alors les méthodes ab initio au sens strict pour entrer dans le semi-empirique.



20 CHAPITRE 2. PRATIQUE : CALCULS AVEC QUANTUM-ESPRESSO
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δiso≈−0.727892495071σiso+68.4331490879

R2 ≈ 0.945156750266987

δiso≈−0.763005531183σiso+81.5339190912

R2 ≈ 0.951919145117281

δiso≈−0.816941609086σiso+96.3186747078

R2 ≈ 0.964348271499709

Figure 2.7 – Tracé des δexp donnés dans [17, 16] en fonction de nos σiso calculés, et régres-
sion(s) linéaire(s) (voir texte). En bleu, les valeurs IS, en rouge les valeurs des structures
APO.

Il est également connu que la DFT avec des fonctionnelles PBE donne des résultats assez
mauvais pour les éléments qui ont des orbitales 3d ou 4f vides, comme c’est le cas ici avec le
calcium dans CaF2. Il est possible de pallier à cela en faisant des corrections au niveau du
pseudo-potentiel du calcium, ce que nous n’avons pas fait ici. Si, sachant cela, on enlève le
point correspondant à CaF2, on obtient alors a ≈ -0,76, b ≈ 81,53 avec R2 ≈ 0,95 (droite
pointillée bleu clair sur la figure 2.7).

Par ailleurs, on se souvient que notre valeur pour NaF sortait de l’alignement sur le
graphe 2.5. On peut donc envisager d’enlever également le point correspondant à NaF et
on obtient alors la droite en tirets verts clairs, de paramètres a ≈ -0,82, b ≈ 96,32 avec
R2 ≈ 0,96. Il semble donc probable que la valeur que nous avons obtenue pour NaF soit
plus mauvaise que celle de [17].

2.2.2 Paramètres quadrupolaires

Gipaw et son implémentation dans Quantum-ESPRESSO permettent également de
calculer le tenseur EFG, et nous nous intéressons en particulier ici aux valeurs de la diagonale
principale, qui nous permettent de calculer les paramètres Cq et η (voir les équations 1.7 et
suivantes).

On note cependant que pour calculer Cq, il faut les valeurs de Q. Nous reprenons ici
les valeurs utilisées dans [17, 16], qui correspondent par ailleurs à celles que l’on trouve
dans [19]. Elles sont listées dans le tableau 2.5 3.

Isotope 25Mg 27Al 67Zn 71Ga
Q (mbarn) 199,4 146,6 150 107

Table 2.5 – Moments quadrupolaires nucléaires utilisés.

3. 1 barn = 10
−28

m
2.
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Si Quantum-ESPRESSO affiche les paramètres Vii, Cq et η à l’exécution, son fichier de
sortie ne contient que les tenseurs EFG. À partir de ceux-ci, on revient cependant facilement
aux Vii (valeurs-propres), et de là à Cq et η. Les valeurs ainsi obtenues sont données dans
le tableau 2.6.

Vxx Vyy Vzz Cq η

Composé 1021V.m−2 1021V.m−2 1021V.m−2 (MHz)

α-AlF3 (exp) 0,030 0,030 -0,060 -0,213 0
α-AlF3 (IS) 0,029 0,029 -0,059 -0,210 0

α-AlF3 (APO) -0,017 -0,017 0,034 0,121 0

β-AlF3 (exp) 0,023 0,203 -0,226 -0,801 0,80

β-AlF3 (IS)
Al1 0,063 0,263 -0,326 -1,155 0,62
Al2 0,091 0,253 -0,343 -1,216 0,47

β-AlF3 (APO)
Al1 0,039 0,160 -0,200 -0,707 0,61

Al2 0,111 0,115 -0,226 -0,802 0,02

η-AlF3 (exp) 0,216 0,216 -0,433 -1,535 0
η-AlF3 (IS) (moy.) 0,264 0,264 -0,528 -1,872 0

η-AlF3 (APO) (moy.) 0,156 0,156 -0,313 -1,109 0

GaF3 (exp) 0,191 0,191 -0,383 -0,991 0
GaF3

♠ (IS) 0,072 0,072 -0,144 -0,372 0
GaF3

♠ (APO) -0,177 -0,177 0,353 0,913 0
GaF3

♣ (IS) 0,021 0,021 -0,042 -0,108 0
GaF3

♣ (APO) -0,191 -0,191 0,383 0,991 0

MgF2 (exp) -0,248 -0,480 0,728 3,510 0,32
MgF2 (IS) -0,028 -0,636 0,666 3,209 0,91
MgF2 (APO) (moy.) -0,043 -0,628 0,671 3,237 0,87

ZnF2 (exp) — — 2,17 7,87 0,18
ZnF2 (IS) -0,721 -1,368 2,089 7,578 0,31
ZnF2 (APO) -0,855 -1,273 2,128 7,719 0,20

Table 2.6 – Paramètres quadrupolaires expérimentaux et calculés. Les paramètres expéri-
mentaux viennent de [17, 16] et de [2] (ZnF2). Les lignes en gras correspondent aux valeurs
retenues pour les régressions présentées sur la figure 2.7 (choix entre résultats IS et APO) car
plus proches des données expérimentales pour les régressions linéaires. L’indication « moy. »
indique les cas où l’on a fait une moyenne de différentes valeurs (proches) données par
Quantum-ESPRESSO là où une seule était attendue (problème de symétrie) ; pour la
même raison, dans ces mêmes cas, un η très faible a été, si nécessaire, arrondi à 0.

Il est intéressant de voir que l’on obtient en général des valeurs proches de celles obtenues
dans [17, 16] — non reprises ici — pour le cas IS, mais souvent sensiblement différentes pour
les cas APO. Cela vient a priori de ce que, si les structures initiales sont par la force des
choses les mêmes, celles obtenues après optimisation peuvent changer selon le logiciel et les
paramètres utilisés.

Par ailleurs, on note également qu’il y a souvent une bonne correspondance entre au
moins l’un des cas (IS/APO) et les valeurs expérimentales, parfois même meilleure qu’entre
les paramètres calculés de [17, 16] et ces mêmes données expérimentales. Il nous est cepen-
dant difficile de dire si cela vient d’une différence profonde entre, par exemple, les pseudo-
potentiels NC que nous avons utilisés, et les pseudo-potentiels US de [17, 16], ou de quelque
chose de plus trivial, par exemple du fait que nous ayons utilisé un paramètre Ecut plus
grand.

Les quelques cas où nous n’avons pas de bon accord entre les paramètres calculés et les
valeurs expérimentales correspondent à des cas où surviennent des problèmes de symétrie
déjà évoqués. C’est le cas par exemple pour η-AlF3.
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Conclusion

Bien comprendre la théorie de la fonctionnelle de la densité et Gipaw nécessiterait plus
de temps que nous n’en avions pour ce travail. C’est peut-être un biais d’informaticien,
mais il nous semble que pour réellement comprendre un algorithme, il est nécessaire (mais
pas forcément suffisant !) de l’implémenter (il peut toutefois s’agir d’une « implémentation
jouet », il n’est pas forcément nécessaire d’avoir quelque chose de robuste et performant).
De même, pour réellement maîtriser l’usage d’un logiciel comme Quantum-ESPRESSO,
comprendre ses forces et ses limites, il faudrait probablement « regarder sous le capot »,
c’est-à-dire examiner son code-source, ce que nous n’avons [presque] pas fait.

En dépit de cela, nous nous sommes lancé dans le processus visant à déterminer les
paramètres RMN des différents fluorures, et, comme nous l’avons vu dans le chapitre qui
précède, l’accord entre nos résultats, ceux que nous cherchions à reproduire [17, 16] et les
données expérimentales n’est généralement pas mauvais.

Si c’était là le but principal de ce travail, nous n’avons en revanche pas eu le temps
d’approfondir certaines choses et d’examiner par exemple pourquoi dans certains cas les
valeurs IS sont plus proches des valeurs expérimentales que les valeurs APO, quand dans
d’autres cas c’est l’inverse.

Nous n’avons pas non plus eu le temps d’essayer d’utiliser de telles modélisations pour
des cas plus complexes (présence d’impuretés, etc.) nécessitant de passer par la création de
supermailles.

Maintenant que nous avons une meilleure compréhension de la manière dont fonctionnent
les données d’entrée de Quantum-ESPRESSO, il nous semblerait intéressant d’examiner
s’il y a moyen de convertir automatiquement les fichiers .cif de manière à avoir moins de
problèmes avec les symétries. Une conversion manuelle serait-elle supérieure ? Et, si c’est le
cas, comment l’automatiser ?

Bien que l’on s’éloigne alors nettement du sujet, il nous semble dommage qu’alors que
les fichiers .cif contiennent une description cristallographique du cristal (avec les positions
équivalentes et les symétries) il faille passer par un format « numérique » qui introduit des
approximations et n’indique pas les symétries. Si nous comprenons la plus grande polyva-
lence d’un tel format numérique — Quantum-ESPRESSO n’est pas destiné qu’à l’étude
des cristaux — il nous semble qu’il serait intéressant de voir s’il est possible de modifier rela-
tivement facilement Quantum-ESPRESSO pour qu’il puisse également accepter en entrée
un fichier .cif : cette possibilité permettrait a priori d’éliminer certaines approximations
et les problèmes subséquents liés à la recherche des symétries.

Par ailleurs, pour revenir sur des aspects liés à la modélisation et la simulation, il semble
que Quantum-ESPRESSO soit également à même de s’interfacer avec le programme Ca-

sino 4 de manière à remplacer dans certains calculs les approximations (formelles) de la DFT
par des approximations d’ordre statistique, en échantillonnant directement le système multi-
électronique via une méthode de type Monte-Carlo. Il nous semble qu’il serait intéressant
d’étudier l’impact de ce remplacement sur les résultats finalement obtenus.

4. https://vallico.net/casinoqmc/.
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Annexe A

Quantum-ESPRESSO :

Compilation, installation et

utilisation

Nous donnons ici quelques indications pour installer et utiliser Quantum-ESPRESSO

dans le but de faire des calculs Gipaw. Cela ne remplace bien sûr pas la consultation de son
manuel [14] et de la documentation spécifique à la plateforme où on l’utilise.

Ce que nous indiquons ici est valide avec la distribution Debian de Linux, qui équipe
aussi bien nos machines personnelles que celle des clusters de l’Université du Luxembourg.
Ces indications sont cependant a priori plus largement utilisables, éventuellement avec des
modifications mineures.

A.1 Compilation et Installation

Le paquet quantum-espresso qui existe dans la distribution Linux Debian n’intègre pas
pour l’instant le programme gipaw.x, aussi faut-il recompiler Quantum-ESPRESSO à
partir du code source.

Le coeur de Quantum-ESPRESSO est écrit en Fortran, et sa compilation nécessite
donc la présence d’un compilateur Fortran (95). Nous avons utilisé celui fourni par la suite
gcc ; il faudra donc l’installer s’il ne l’est pas déjà 1. Pour que le parallélisme et diverses op-
timisations puissent être utilisés, il peut falloir installer diverses bibliothèques (MPI, BLAS,
LaPaCK, FFTW, etc.) ou préciser l’endroit où elles sont installées si elles le sont à des
emplacements non standard.

Sur les machines parallèles (clusters, etc.), les bibliothèques et compilateurs nécessaires
sont généralement déjà installés. Il peut cependant y avoir plusieurs jeux de bibliothèques
et compilateurs utilisables. La méthode pour sélectionner l’un ou l’autre dépend bien sûr de
la machine. À titre d’exemple, sur les clusters de l’Université du Luxembourg, il est possible
de charger les bibliothèques et compilateurs GNU par

module load toolchain/goolf

tandis que l’on peut choisir l’alternative des bibliothèques optimisées d’Intel par

module load toolchain/ictce

Une fois les bibliothèques et compilateurs nécessaires présents, la récupération de Quantum-

ESPRESSO, sa compilation et son installation peuvent se faire par des commandes comme
celles qui suivent :

1. Attention : "gcc" signifie à la fois «GNU C Compiler» et «GNU Compiler Collection» : ici, nous
sommes principalement intéressé par le compilateur Fortran, et c’est donc la seconde acception qui est la
bonne. Selon les distributions, le paquet "gcc" peut installer l’une ou l’autre chose. Sur Debian, le paquet
spécifique au compilateur Fortran est gfortran.
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export TMPDIR="/tmp/"
export QE_VER="espresso−5.1.2"

3 export QE_DIR="/usr/local/stow/${QE_VER}"

cd ${TMPDIR}
6 wget http://qe−forge.org/gf/download/frsrelease/185/753/${QE_VER}.tar.gz

tar −zxf ${QE_VER}.tar.gz
cd ${QE_VER}

9 ./configure −−prefix=${QE_DIR}/bin
make all
make gipaw

12 sudo make install

Il faut noter que la partie Gipaw de Quantum-ESPRESSO, QE-Gipaw, n’est pas
présente dans l’archive téléchargée initialement : l’archive spécifique est récupérée lorsque
l’on ordonne la compilation de cette partie avec make gipaw. Une connexion réseau est donc
nécessaire pour cette étape (ou il faudra faire les choses manuellement en récupérant l’archive
puis la plaçant dans l’arborescence là où elle est normalement téléchargée).

A.2 Utilisation

Si on a le fichier d’entrée fichier.in prêt, l’utilisation est a priori très simple :
– il faut d’abord réaliser les calculs de champ auto-consistant :

pw.x < fichier . in

– ensuite on peut utiliser Gipaw :

gipaw.x < fichier . in

On récupère ensuite un fichier de sortie avec une extension .nmr.magres (le nom dépen-
dant de ce qui est indiqué dans le fichier d’entrée) avec les résultats du calcul.

Les calculs peuvent être lents, aussi on peut vouloir les paralléliser.

A.2.1 Parallélisation

Les choses se compliquent un petit peu quand on veut exécuter ces programmes en paral-
lèle. Nous ne décrivons ici que l’usage de Mpi, plus générique, mais Quantum-ESPRESSO

supporte également Openmp, dont l’usage, seul ou mélangé à celui de mpi peut être intéres-
sant si l’on dispose de grosses machines à mémoire partagée.

De manière générale, Quantum-ESPRESSO dispose de nombreuses options de parallé-
lisation et l’on aura tout intérêt à se reporter au manuel [14] si l’on doit optimiser l’exécution
de gros calculs.

MPI

La Message Passing Interface est un système usuel pour utiliser les machines à mémoire
distribuée mais, bien qu’il existe des systèmes plus efficaces, on peut aussi l’utiliser pour faire
fonctionner un programme en parallèle sur une machine multi-processeurs ou multi-cœurs à
mémoire partagée.

Il existe différentes implémentations de Mpi ; l’exécution d’un programme se fait nor-
malement via le programme mpirun, mais les paramètres de celui-ci peuvent varier d’une
implémentation à l’autre.

Généralement, sur une machine de bureau sur laquelle on veut utiliser plusieurs cœurs,
une transformation simple des commandes données précédemment fonctionne :

mpirun −np X pw.x < fichier.in
mpirun −np X gipaw.x < fichier.in

où X indique le nombre de fils d’exécution que l’on désire avoir en parallèle. Des valeurs natu-
relles pour ce paramètre sont le nombre de cœurs logiques et le nombre de cœurs physiques.
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Lorsque ces nombres diffèrent, il peut être intéressant de comparer la vitesse d’exécution
dans l’un et l’autre cas 2.

Cluster

L’utilisation sur un cluster se fait de la même manière que ci-dessus, toutefois il faut
éventuellement charger les bibliothèques nécessaires (qui doivent correspondre à celles indi-
quées lors de la compilation) et, lorsque l’usage du cluster est partagé, indiquer à mpirun une
liste de noeuds à utiliser, cette liste étant normalement fournie par le système de contrôle
de tâches du cluster.

Si la durée maximale de calcul est limitée, on aura aussi tout intérêt à examiner certains
des paramètres décrits dans la section A.3, destinés à permettre qu’un calcul soit arrêté de
manière correcte de manière à pouvoir être repris ultérieurement.

A.3 Fichiers d’entrée

Les fichiers d’entrée de Quantum-ESPRESSO suivent un certain format, spécifié dans [13]
et [7].

Après conversion des fichiers .cif qui spécifient la structure du cristal (voir annexe B),
on obtient un canevas de fichier d’entrée, qu’il faut compléter 3. En particulier,

– il faut ajouter au début une section de contrôle destinée aux calculs SCF :
&control

title = ’Titre’,

calculation = ’scf’,

pseudo_dir = ’./pseudo’

prefix = ’Prefix’,

verbosity = ’high’,

wf_collect = .true.,

max_seconds = NN

/

Le paramètre title est simplement un titre repris dans le fichier de sortie. calculation
indique le type de calcul que l’on veut faire et on remplacera scf par relax si l’on dé-
sire qu’une optimisation de la position des atomes soit réalisée (sans changer la maille) ;
pseudo_dir précise où se trouvent les pseudo-potentiels par rapport à l’emplacement
courant et prefix donne un préfixe qui sera utilisé pour les fichiers de sortie.
Positionner verbosity à high peut-être utile en cas de problèmes.
Pour des calculs parallèles et/ou sur des clusters, le paramètre wf_collect permet de
reprendre un calcul sur un pool de processeurs différent, mais implique la création d’un
(gros) fichier avec les résultats, donc d’un nombre supérieur d’écritures. max_seconds
permet d’indiquer un temps maximal d’exécution : une fois celui-ci atteint, le cal-
cul est arrêté proprement et pourra être repris ultérieurement en ajoutant une ligne
restart_mode = ’restart’.

– il faut complèter la section &SYSTEM pour ajouter un paramètre ecutwfc

– il faut ajouter une section &electrons. Il se produit une erreur si cette section est
absente, mais nous nous contentons d’y remettre les valeurs qui sont normalement
celles par défaut selon [13] :
&electrons

mixing_beta = 0.7,

diagonalization = ’david’,

/

2. Les cœurs logiques sont deux fois plus nombreux que les cœurs physiques lorsque le processeur dispose
d’hyper-threading, mais deux coeurs logiques se partagent alors un coeur physique : ce dernier est norma-
lement utilisé de manière plus “complète”, ce qui devrait améliorer les performances, mais le partage du
cache et de certaines unités logiques peut également les dégrader. Dans le cas présent, nos essais semblent
montrer une baisse de performances si l’on utilise le nombre de cœurs logiques plutôt que le nombre de
coeurs physiques.

3. On prêtera attention au fait que l’ordre des sections doit être respecté.
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– une section &ions est nécessaire si l’on a indiqué relax comme valeur pour calculation
dans la section &control, mais l’on peut se contenter de reprendre des valeurs par dé-
faut :
&ions

ion_dynamics = ’bfgs’,

ion_positions = ’default’,

/

– il faut ajouter une section 4 &inputgipaw qui joue le même rôle que la section &control

vue plus haut mais cette fois pour les calculs Gipaw :
&inputgipaw

job = ’nmr’,

prefix = ’Prefix’,

tmp_dir = ’./’,

verbosity = ’high’,

diagonalization = ’cg’

/

Le paramètre job joue le même rôle que calculation dans &control et indique ce
que l’on veut calculer : nmr pour le calcul de σ, efg pour le tenseur du gradient du
champ électrique. prefix doit avoir la même valeur que dans &control, puisqu’il sert
à retrouver les fichiers générés par pw.x.

– dans la section ATOMIC_SPECIES, il faut spécifier les pseudo-potentiels à utiliser ;
– il faut ajouter une section pour définir les k-points, par exemple :
K_POINTS automatic

8 8 8 0 0 0

Dans tous les cas, il existe bien d’autres paramètres non listés ici. Le lecteur se reportera
aux références sus-citées si nécessaire.

Voici par exemple un fichier prêt à être utilisé.

&control
title = ’CaF2: 8x8x8 grid; ecut: 80 Ry’,

3 calculation = ’scf ’,
pseudo_dir = ’./pseudo’
prefix = ’CaF2’,

6 verbosity = ’high’,
wf_collect = .true.,

/
9 &SYSTEM

ibrav = 0
A = 5.46290

12 nat = 3
ntyp = 2
ecutwfc = 80

15 /
&electrons

mixing_beta = 0.7,
18 diagonalization = ’david’,

/
&inputgipaw

21 job = ’nmr’,
prefix = ’CaF2’,
tmp_dir = ’./’,

24 verbosity = ’high’,
diagonalization = ’cg ’,

/
27 CELL_PARAMETERS {alat}

0.500000000000000 0.500000000000000 0.000000000000000
0.500000000000000 0.000000000000000 0.500000000000000

30 0.000000000000000 0.500000000000000 0.500000000000000

4. Cette section peut en fait être seule dans un fichier indépendant, mais il est souvent plus pratique
d’avoir un fichier d’entrée unique. Si elle est présente dans le fichier passé à pw.x, celui-ci va prévenir qu’il
ne la comprend pas avant de poursuivre son exécution.
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ATOMIC_SPECIES
Ca 40.07800 Ca.pbe−tm−new−dc.UPF

33 F 18.99800 F.pbe−tm−new−gipaw−dc.UPF
ATOMIC_POSITIONS {crystal}
Ca 0.000000000000000 0.000000000000000 0.000000000000000

36 F 0.250000000000000 0.250000000000000 0.250000000000000
F 0.750000000000000 0.750000000000000 0.750000000000000

K_POINTS automatic
39 8 8 8 0 0 0

A.4 Notes diverses

La ligne diagonalization = ’cg’ dans la section &inputgipaw ne devrait pas être
nécessaire : elle ordonne de changer la méthode de diagonalisation des matrices (pour la
résolution de systèmes d’équations), et cette méthode (gradient conjugué) est a priori plus
lente que la méthode par défaut (méthode de Davidson). Cependant, nous avons constaté
des problèmes lorsque la méthode de Davidson est utilisée.
En effet, dans certains cas, il arrive que le programme gipaw.x s’interrompe avec une erreur
du type

Error in routine cdiaghg (24):

S matrix not positive definite

et dans d’autres cas, la valeur obtenue semble “étrange”, c’est-à-dire qu’elle ne suit pas une
tendance prévue, voire est aberrante, et diffère de la valeur obtenue avec la méthode du
gradient conjugué, qui elle semble “normale”.

Rappelons finalement l’existence sur la plupart des machines Unix/Linux des utilitaires
script, qui permet d’enregistrer les entrée-sorties d’un terminal, et screen (ou tmux) qui
permet (entre autres) qu’une session distante ne soit pas interrompue en cas de déconnexion
intempestive.
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Annexe B

Conversion des fichiers .cif

Les fichiers .cif correspondent à un format cristallographique standard mais ne sont
cependant pas utilisables directement par Quantum-ESPRESSO.

Il est donc nécessaire de générer des fichiers exploitables par Quantum-ESPRESSO à
partir de ces fichiers .cif.

Notons que cette conversion peut se faire en amont : il n’est ainsi par exemple pas néces-
saire d’installer les programmes la réalisant sur un cluster, même si les calculs sont finalement
faits sur une machine de ce type.

Différentes méthodes pour ce faire sont évoquées sur les forums spécialisés d’Internet.
Nous avons essayé les différentes méthodes décrites ci-dessous et avons finalement utilisé la
dernière.

B.1 GDIS

GDIS 1 est un programme qui permet de visualiser des molécules ou des structures pé-
riodiques et de les manipuler.

Il est à même d’ouvrir un fichier .cif et peut normalement sauvegarder la structure
ainsi chargée dans le format utilisé par Quantum-ESPRESSO.

Il est disponible dans le répertoire Debian, aussi sur une machine utilisant cette distri-
bution Linux peut-il être installé par un simple

sudo aptitude install gdis

Nos quelques essais n’ont cependant pas été très concluants et nous avons exploré d’autres
solutions.

B.2 CIF2QE

cif2qe.sh est un script fourni avec le code source de Quantum-ESPRESSO. Il se
trouve dans le répertoire PW/tools/cif2qe.sh de celui-ci.

Il suffit normalement de l’appeler en lui passant en paramètre le fichier que l’on veut
convertir, mais nos essais sur les fichiers .cif dont nous disposions se sont soldés par des
erreurs et nous n’avons pas investigué plus en avant.

B.3 CIF2CELL

CIF2CELL 2 est un programme écrit en Python qui permet la conversion des fichiers
.cif vers divers formats.

En dehors de nos essais, c’est ce programme que nous avons utilisé pour faire les conver-
sions. Nous décrivons donc ci-dessous plus en détail son installation et son utilisation.

1. http://gdis.sourceforge.net/

2. http://sourceforge.net/projects/cif2cell/
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B.3.1 Installation

Les lignes suivantes résument comment télécharger, et installer le module python PyCifRW

dont dépend cif2cell ainsi que ce dernier :

export TMPDIR="/tmp/"
export C2C_VER="cif2cell−1.2.2"

3 export PCRW_VER="PyCifRW−3.3"

cd ${TMPDIR}
6 wget http://downloads.sourceforge.net/project/pycifrw.berlios/${PCRW_VER}.tar.gz

tar −zxf ${PCRW_VER}.tar.gz
cd ${PCRW_VER}

9 sudo python setup.py install

cd ${TMPDIR}
12 wget http://downloads.sourceforge.net/project/ cif2cell /${C2C_VER}.tar.gz

tar −zxf ${C2C_VER}.tar.gz
cd ${C2C_VER}

15 python setup.py install

Si l’erreur suivante se produit durant la compilation de PyCifRW

error: unrecognized command line option ‘-fstack-protector-strong’

il faut soit
– installer une version plus récente de gcc ;
– éditer le fichier _sysconfigdata_nd.py de l’installation de Python de manière à faire

disparaître cette option 3. Sur un système Linux/Debian avec Python 2.7, ce fichier se
trouve dans /usr/lib/python2.7/plat-x86_64-linux-gnu/.

B.3.2 Utilisation

L’utilisation du programme [3] est simple, par exemple avec KF.cif :

cif2cell KF.cif -p quantum-espresso

va produire un fichier de sortie (extension .in). Le nom de ce fichier dépend du contenu du
fichier .cif.

Ce fichier doit être complété pour être utilisable par Quantum-ESPRESSO comme
expliqué en A.3 : en effet, le fichier généré contient la structure du cristal et uniquement
celle-ci. Il faut donc préciser les pseudopotentiels à utiliser, les k-points, etc.

3. Cette option ajoute des protections liées à la sécurité : elle n’est pas essentielle ici mais pourrait
éventuellement empêcher l’exploitation d’un éventuel bug par un fichier .cif spécialement conçu.
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