

Enumerating quasitrivial semigroups

MALOTEC

Jimmy Devillet

in collaboration with Miguel Couceiro and Jean-Luc Marichal

University of Luxembourg

Connectedness and Contour Plots

Let X be a nonempty set and let $F: X^2 \rightarrow X$

Definition

- The points $(x, y), (u, v) \in X^2$ are *connected for F* if

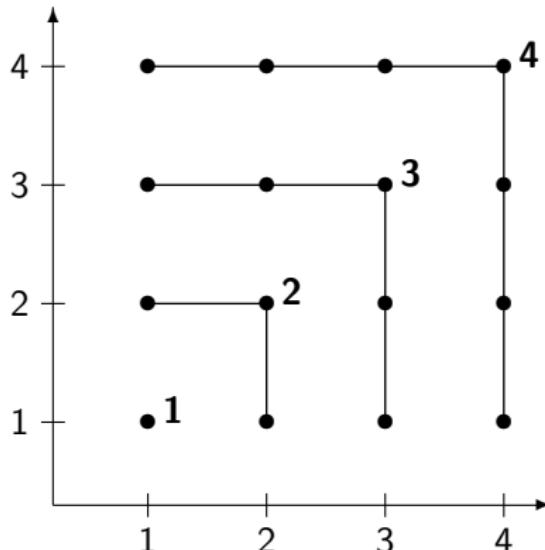
$$F(x, y) = F(u, v)$$

- The point $(x, y) \in X^2$ is *isolated for F* if it is not connected to another point in X^2

Connectedness and Contour Plots

For any integer $n \geq 1$, let $X_n = \{1, \dots, n\}$ endowed with \leq

Example. $F(x, y) = \max\{x, y\}$ on (X_4, \leq)



Quasitriviality and Idempotency

Definition

$F: X^2 \rightarrow X$ is said to be

- *quasitrivial* if

$$F(x, y) \in \{x, y\}$$

- *idempotent* if

$$F(x, x) = x$$

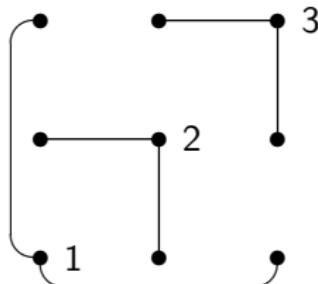
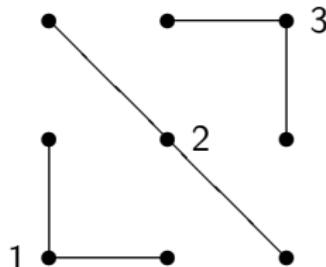
Graphical interpretation of quasitriviality

Let $\Delta_X = \{(x, x) \mid x \in X\}$

Proposition

$F: X^2 \rightarrow X$ is quasitrivial iff

- it is idempotent
- every point $(x, y) \notin \Delta_X$ is connected to either (x, x) or (y, y)



Graphical interpretation of the neutral element

Definition. An element $e \in X$ is said to be a *neutral element* of $F: X^2 \rightarrow X$ if

$$F(x, e) = F(e, x) = x$$

Proposition

Assume $F: X^2 \rightarrow X$ is idempotent.

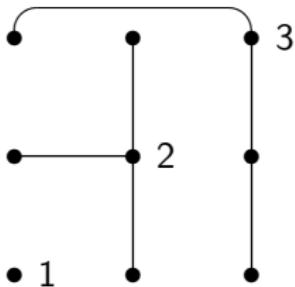
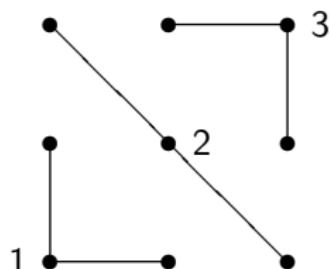
If $(x, y) \in X^2$ is isolated, then it lies on Δ_X , that is, $x = y$

Graphical interpretation of the neutral element

Proposition

Assume $F: X^2 \rightarrow X$ is quasitrivial and let $e \in X$.

Then e is a neutral element iff (e, e) is isolated

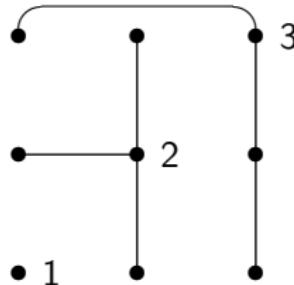
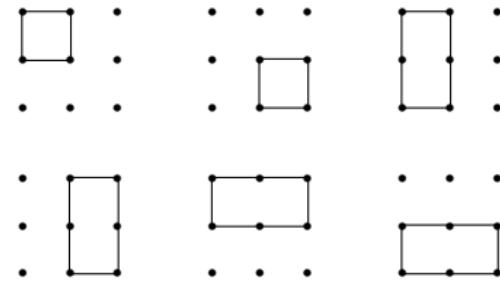


Graphical test for associativity under quasitriviality

Proposition

Assume $F: X^2 \rightarrow X$ is quasitrivial. The following assertions are equivalent.

- (i) F is associative
- (ii) For every rectangle in X^2 that has only one vertex on Δ_X , at least two of the remaining vertices are connected

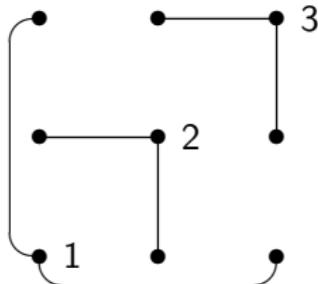


Graphical test for non associativity under quasitriviality

Proposition

Assume $F: X^2 \rightarrow X$ is quasitrivial. The following assertions are equivalent.

- (i) F is not associative
- (ii) There exists a rectangle in X^2 with only one vertex on Δ_X and whose three remaining vertices are pairwise disconnected

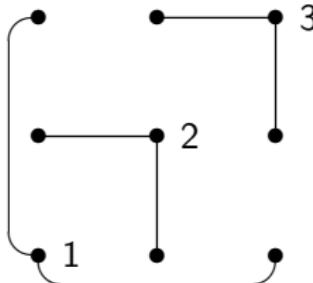
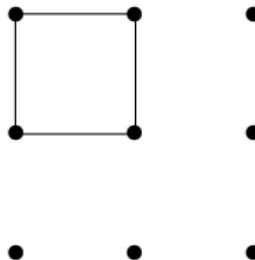


Graphical test for non associativity under quasitriviality

Proposition

Assume $F: X^2 \rightarrow X$ is quasitrivial. The following assertions are equivalent.

- (i) F is not associative
- (ii) There exists a rectangle in X^2 with only one vertex on Δ_X and whose three remaining vertices are pairwise disconnected



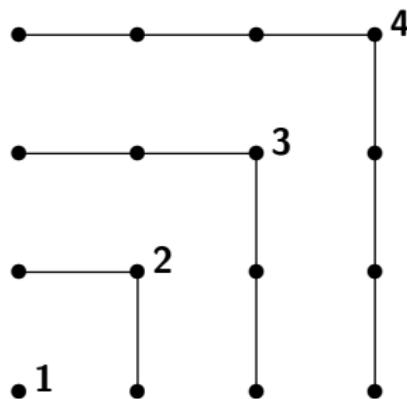
Degree sequence

Recall that $X_n = \{1, \dots, n\}$

Definition. Assume $F: X_n^2 \rightarrow X_n$ and let $z \in X_n$. The *F-degree of z*, denoted $\deg_F(z)$, is the number of points $(x, y) \in X_n^2 \setminus \{(z, z)\}$ such that $F(x, y) = F(z, z)$

Definition. Assume $F: X_n^2 \rightarrow X_n$. The *degree sequence of F*, denoted \deg_F , is the nondecreasing n -element sequence of the degrees $\deg_F(x)$, $x \in X_n$

Degree sequence



1 < 2 < 3 < 4

$$\deg_F = (0, 2, 4, 6)$$

Graphical interpretation of the annihilator

Definition. An element $a \in X$ is said to be an *annihilator* of $F: X^2 \rightarrow X$ if

$$F(x, a) = F(a, x) = a$$

Proposition

Assume $F: X_n^2 \rightarrow X_n$ is quasitrivial and let $a \in X$.

Then a is an annihilator iff $\deg_F(a) = 2n - 2$

A class of associative operations

We are interested in the class of operations $F: X^2 \rightarrow X$ that are

- associative
- quasitrivial
- nondecreasing w.r.t. some total ordering on X

Note : If we assume further that F is commutative and has a neutral element then it is an idempotent uninorm.

Total orderings and weak orderings

Recall that a binary relation R on X is said to be

- *total* if $\forall x, y: xRy$ or yRx
- *transitive* if $\forall x, y, z: xRy$ and yRz implies xRz

A *weak ordering on X* is a binary relation \lesssim on X that is total and transitive. We denote the symmetric and asymmetric parts of \lesssim by \sim and $<$, respectively.

Recall that \sim is an equivalence relation on X and that $<$ induces a total ordering on the quotient set X / \sim

A result of Maclean and Kimura

Theorem (Mclean, 1954, Kimura, 1958)

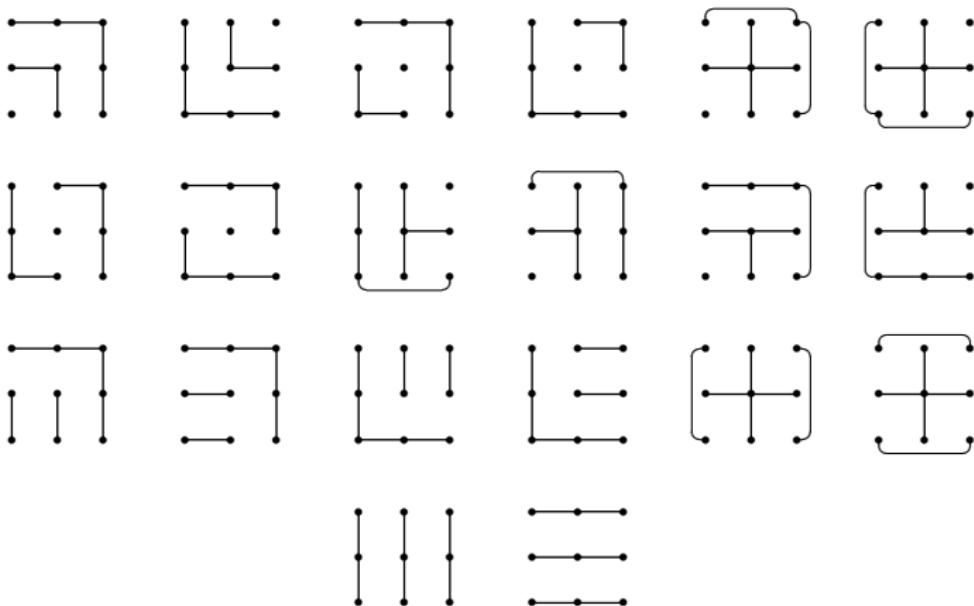
$F: X^2 \rightarrow X$ is associative and quasitrivial iff there exists a weak ordering \precsim on X such that

$$F|_{A \times B} = \begin{cases} \max_{\precsim}|_{A \times B}, & \text{if } A \neq B, \\ \pi_1|_{A \times B} \text{ or } \pi_2|_{A \times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X / \sim$$

Corollary

$F: X^2 \rightarrow X$ is associative, quasitrivial and commutative iff there exists a total ordering \preceq on X such that $F = \max_{\preceq}$.

Associative and quasitrivial operations on X_3



Construction of the weak order

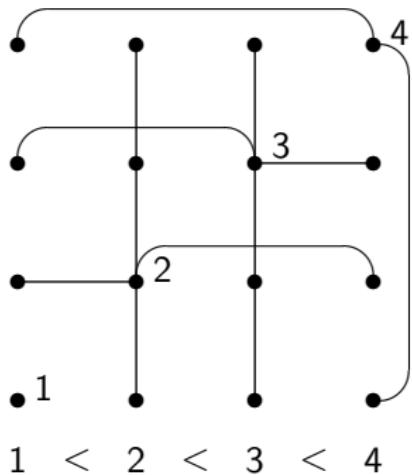
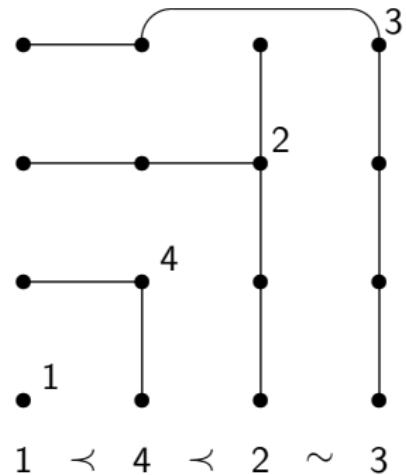
$$F|_{A \times B} = \begin{cases} \max_{\precsim} |_{A \times B}, & \text{if } A \neq B, \\ \pi_1|_{A \times B} \text{ or } \pi_2|_{A \times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X/\sim \quad (*)$$

Proposition

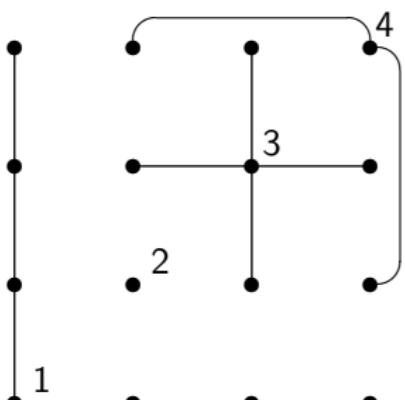
If $F: X_n^2 \rightarrow X_n$ is of the form $(*)$ for some weak ordering \precsim on X_n , then \precsim is determined by the equivalence

$$x \precsim y \Leftrightarrow \deg_F(x) \leq \deg_F(y)$$

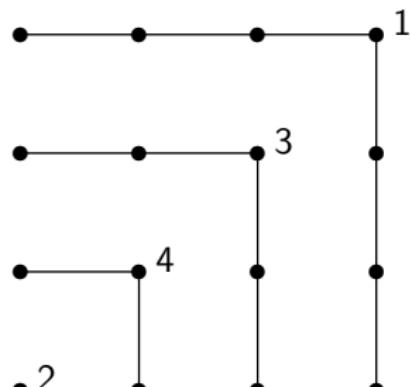
Construction of the weak order



The commutative case



1 < 2 < 3 < 4



2 ⤵ 4 ⤵ 3 ⤵ 1

The commutative case

Proposition

Assume $F: X_n^2 \rightarrow X_n$ is quasitrivial. Then, F is associative and commutative iff $\deg_F = (0, 2, \dots, 2n - 2)$

An alternative characterization

Theorem

Assume $F: X^2 \rightarrow X$. TFAE

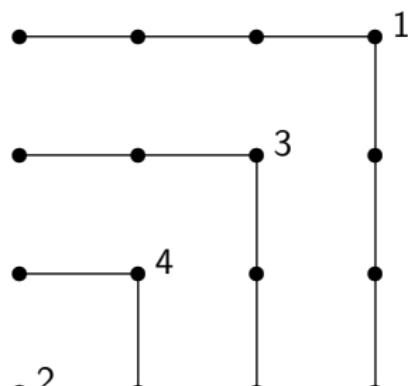
- (i) F is associative, quasitrivial, and commutative
- (ii) $F = \max_{\preceq}$ for some total ordering \preceq on X

If $X = X_n$, then any of the assertions (i)–(ii) above is equivalent to the following one

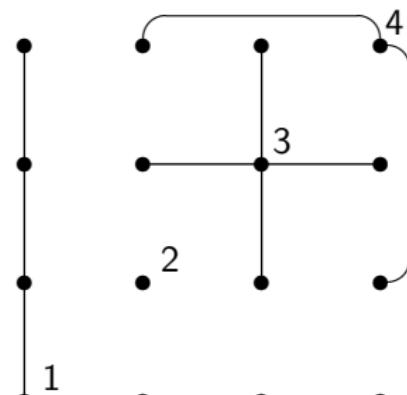
- (iii) F is quasitrivial and $\deg_F = (0, 2, 4, \dots, 2n - 2)$

There are exactly $n!$ operations $F: X_n^2 \rightarrow X_n$ satisfying any of the assertions (i)–(iii). Moreover, the total ordering \preceq considered in assertion (ii) is uniquely determined by the condition: $x \preceq y$ iff $\deg_F(x) \leq \deg_F(y)$. In particular, every of these operations has a unique neutral element $e = \min_{\preceq} X_n$ and a unique annihilator $a = \max_{\preceq} X_n$.

The commutative and nondecreasing case



2 \prec 4 \prec 3 \prec 1



1 < 2 < 3 < 4

Single-peaked total orderings

Definition. Let \leq, \preceq be total orderings on X . The total ordering \preceq is said to be *single-peaked w.r.t. \leq* if for any $a, b, c \in X$ such that $a < b < c$ we have $b \prec a$ or $b \prec c$

Example. The total ordering \preceq on

$$X_4 = \{1 < 2 < 3 < 4\}$$

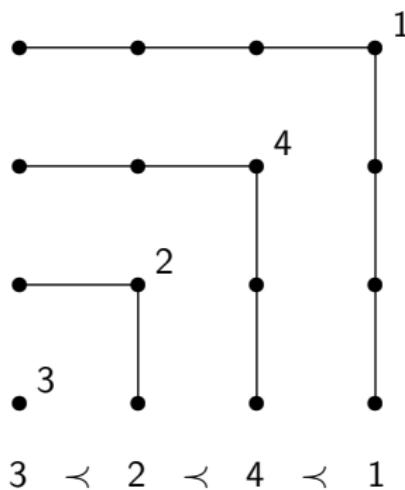
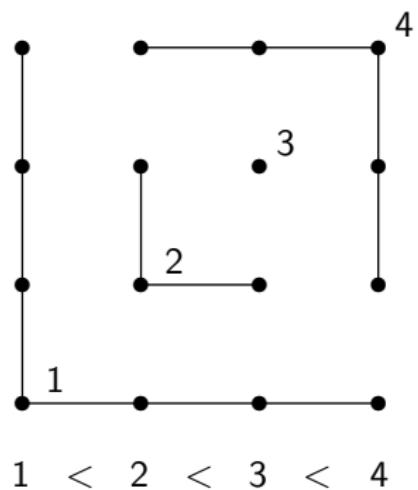
defined by

$$3 \prec 2 \prec 4 \prec 1$$

is single-peaked w.r.t. \leq

Note : There are exactly 2^{n-1} single-peaked total orderings on X_n .

Single-peaked total orderings



Single-peaked total orderings

Proposition

Assume \leq, \preceq are total orderings on X and let $F: X^2 \rightarrow X$ such that $F = \max_{\preceq}$. Then F is nondecreasing w.r.t. \leq iff \preceq is single-peaked w.r.t. \leq

A characterization

Theorem

Let \leq be a total order on X and assume $F: X^2 \rightarrow X$. TFAE

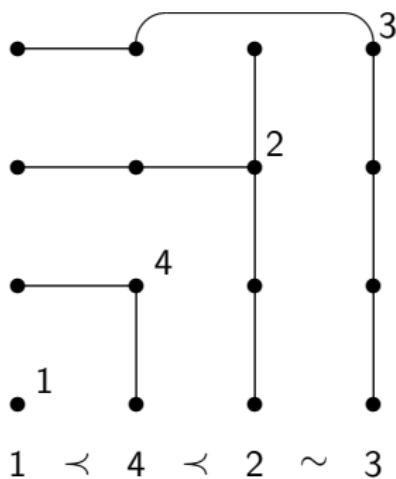
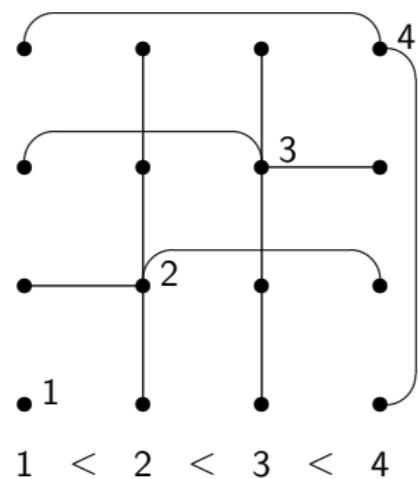
- (i) F is associative, quasitrivial, commutative, and nondecreasing (associativity can be ignored)
- (ii) $F = \max_{\preceq}$ for some total ordering \preceq on X that is single-peaked w.r.t. \leq

If $(X, \leq) = (X_n, \leq)$, then any of the assertions (i)–(ii) above is equivalent to the following one

- (iii) F is quasitrivial, nondecreasing, and $\deg_F = (0, 2, 4, \dots, 2n - 2)$
- (iv) F is associative, idempotent, commutative, nondecreasing, and has a neutral element.

There are exactly 2^{n-1} operations $F: X_n^2 \rightarrow X_n$ satisfying any of the assertions (i)–(iv).

The nondecreasing case



Weakly single-peaked weak orderings

Definition. Let \leq be a total ordering on X and let \precsim be a weak ordering on X . The weak ordering \precsim is said to be *weakly single-peaked w.r.t. \leq* if for any $a, b, c \in X$ such that $a < b < c$ we have $b \prec a$ or $b \prec c$ or $a \sim b \sim c$

Example. The weak ordering \precsim on

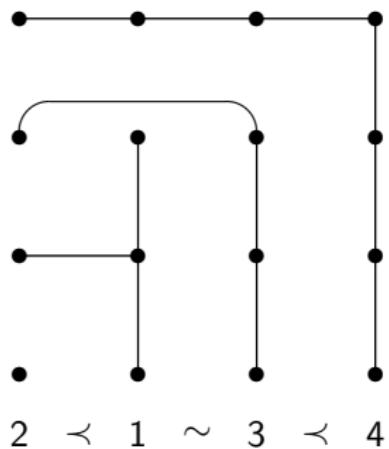
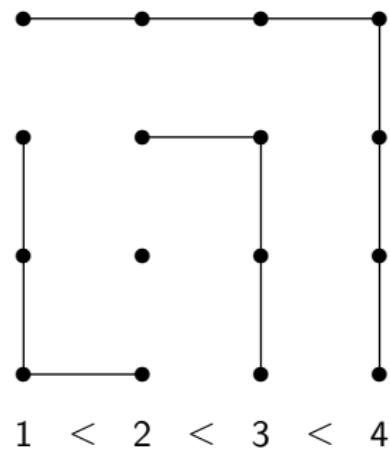
$$X_4 = \{1 < 2 < 3 < 4\}$$

defined by

$$2 \prec 1 \sim 3 \prec 4$$

is weakly single-peaked w.r.t. \leq

Weakly single-peaked weak orderings



Weakly single-peaked weak orderings

$$F|_{A \times B} = \begin{cases} \max_{\precsim}|_{A \times B}, & \text{if } A \neq B, \\ \pi_1|_{A \times B} \text{ or } \pi_2|_{A \times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X / \sim \quad (*)$$

Proposition

Let \leq be a total ordering on X and let \precsim be a weak ordering on X . Assume $F: X^2 \rightarrow X$ is of the form $(*)$. Then F is nondecreasing w.r.t. \leq iff \precsim is weakly single-peaked w.r.t. \leq

A characterization

$$F|_{A \times B} = \begin{cases} \max_{\precsim} |_{A \times B}, & \text{if } A \neq B, \\ \pi_1|_{A \times B} \text{ or } \pi_2|_{A \times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X / \sim \quad (*)$$

Theorem

Let \leq be a total ordering on X . $F: X^2 \rightarrow X$ is associative, quasi-trivial, and nondecreasing w.r.t. \leq iff F is of the form $(*)$ for some weak ordering \precsim on X that is weakly single-peaked w.r.t. \leq

Enumeration of associative and quasitrivial operations

Recall that if the generating function (GF) or the exponential generating function (EGF) of a given sequence $(s_n)_{n \geq 0}$ exist, then they are respectively defined as the power series

$$S(z) = \sum_{n \geq 0} s_n z^n \quad \text{and} \quad \hat{S}(z) = \sum_{n \geq 0} s_n \frac{z^n}{n!}.$$

Recall also that for any integers $0 \leq k \leq n$ the *Stirling number of the second kind* $\left\{ \begin{matrix} n \\ k \end{matrix} \right\}$ is defined as

$$\left\{ \begin{matrix} n \\ k \end{matrix} \right\} = \frac{1}{k!} \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} i^n.$$

Enumeration of associative and quasitrivial operations

For any integer $n \geq 1$, let $q(n)$ denote the number of associative and quasitrivial operations $F: X_n^2 \rightarrow X_n$ (OEIS : A292932)

Theorem

For any integer $n \geq 0$, we have the closed-form expression

$$q(n) = \sum_{i=0}^n 2^i \sum_{k=0}^{n-i} (-1)^k \binom{n}{k} \left\{ \begin{matrix} n-k \\ i \end{matrix} \right\} (i+k)! , \quad n \geq 0.$$

Moreover, the sequence $(q(n))_{n \geq 0}$ satisfies the recurrence equation

$$q(n+1) = (n+1) q(n) + 2 \sum_{k=0}^{n-1} \binom{n+1}{k} q(k) , \quad n \geq 0,$$

with $q(0) = 1$. Finally, its EGF is given by $\hat{Q}(z) = 1/(z+3-2e^z)$.

Enumeration of associative and quasitrivial operations

In arXiv:1709.09162 we found also explicit formulas for

- $q_e(n)$: number of associative and quasitrivial operations $F: X_n^2 \rightarrow X_n$ that have a neutral element (OEIS : A292933)
- $q_a(n)$: number of associative and quasitrivial operations $F: X_n^2 \rightarrow X_n$ that have an annihilator (OEIS : A292933)
- $q_{ea}(n)$: number of associative and quasitrivial operations $F: X_n^2 \rightarrow X_n$ that have a neutral element and an annihilator (OEIS : A292934)

Enumeration of associative quasitrivial and nondecreasing operations

For any integer $n \geq 0$ we denote by $v(n)$ the number of associative, quasitrivial, and nondecreasing operations

$$F: X_n^2 \rightarrow X_n \text{ (OEIS : A293005)}$$

Theorem

The sequence $(v(n))_{n \geq 0}$ satisfies the second order linear recurrence equation

$$v(n+2) - 2v(n+1) - 2v(n) = 2, \quad n \geq 0,$$

with $v(0) = 0$ and $v(1) = 1$, and we have

$$3v(n) + 2 = \sum_{k \geq 0} 3^k (2\binom{n}{2k} + 3\binom{n}{2k+1}), \quad n \geq 0.$$

Moreover, its GF is given by $V(z) = z(z+1)/(2z^3 - 3z + 1)$.

Enumeration of associative and quasitrivial operations

In arXiv:1709.09162 we found also explicit formulas for

- $v_e(n)$: number of associative, quasitrivial and nondecreasing operations $F: X_n^2 \rightarrow X_n$ that have a neutral element (OEIS : A002605)
- $v_a(n)$: number of associative, quasitrivial and nondecreasing operations $F: X_n^2 \rightarrow X_n$ that have an annihilator (OEIS : A293006)
- $v_{ea}(n)$: number of associative, quasitrivial and nondecreasing operations $F: X_n^2 \rightarrow X_n$ that have a neutral element and an annihilator (OEIS : A293007)

Selected references

- N. L. Ackerman. A characterization of quasitrivial n -semigroups. To appear in *Algebra Universalis*.
- D. Black. On the rationale of group decision-making. *J Polit Economy*, 56(1):23–34, 1948
- M. Couceiro, J. Devillet, and J.-L. Marichal. Characterizations of idempotent discrete uninorms. *Fuzzy Sets and Systems*. In press.
<https://doi.org/10.1016/j.fss.2017.06.013>
- M. Couceiro, J. Devillet, and J.-L. Marichal. Quasitrivial semigroups: characterizations and enumerations. Submitted for publication. arXiv:1709.09162.
- B. De Baets, J. Fodor, D. Ruiz-Aguilera, and J. Torrens. Idempotent uninorms on finite ordinal scales. *Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems*, 17(1):1–14, 2009.
- J. Devillet, G. Kiss, and J.-L. Marichal. Characterizations of quasitrivial symmetric nondecreasing associative operations. Submitted for publication. arXiv:1705.00719.
- N. Kimura. The structure of idempotent semigroups. I. *Pacific J. Math.*, 8:257–275, 1958.
- D. McLean. Idempotent semigroups. *Amer. Math. Monthly*, 61:110–113, 1954.