
Provably Secure Single Sign-on Scheme in
Distributed Systems and Networks

Jiangshan Yu, Guilin Wang, and Yi Mu
Center for Computer and Information Security Research

School of Computer Science and Software Engineering

University of Wollongong, Australia

Email: {jy898,guilin,ymu}@uow.edu.au

Abstract—Distributed systems and networks have been
adopted by telecommunications, remote educations, businesses,
armies and governments. A widely applied technique for dis-
tributed systems and networks is the single sign-on (SSO) which
enables a user to use a unitary secure credential (or token) to
access multiple computers and systems where he/she has access
permissions. However, most existing SSO schemes have not been
formally proved to satisfy credential privacy and soundness of
credential based authentication. To overcome this drawback,
we formalise the security model of single sign-on scheme with
authenticated key exchange. Specially, we point out the difference
between soundness and credential privacy, and define them
together in one definition. Also, we propose a provably secure
single sign-on authentication scheme, which satisfies soundness,
preserves credential privacy, meets user anonymity, and supports
session key exchange. The proposed scheme is very efficient
so that it suits for mobile devices in distributed systems and
networks.

Index Terms—Single sign-on, Distributed systems and net-
works, Soundness, Authentication, Information security.

I. INTRODUCTION

With the wide spreading of distributed computer networks,

various network services have gained importance and popu-

larity in recent few years [1][2]. Consequently, user authen-

tication [3] has been widely used in distributed computer

networks to identify a legal user who requires accessing net-

work services. To prevent bogus servers, mutual authentication

should be considered, and also, a session key establishment is

normally required. In addition, user privacy may be desired in

distributed computing environments since the information ex-

changed might be abused by some organizations for marketing

purposes [4]. However, designing efficient and secure mutual

authentication protocols is challenging in computer networks.

Moreover, with the increasing usage of network services, a

user may need to maintain more and more ID/password pairs

for accessing different distributed service providers, which

impose a burden on users and service providers as well as

the communication overhead of computer networks. Single

sign-on (SSO) mechanism [5] provides a good remedy to this

problem, as it allows a user with a single credential to access

multiple service providers. Intuitively, there are three basic

security requirements for SSO schemes, namely completeness,

soundness and credential privacy [16], [6]. However, to the

best of our knowledge soundness has not been formally studied

yet and how to preserve both soundness and credential privacy

is still a challenge [6].

In 2000, Lee and Chang [7] first proposed an SSO scheme

with user anonymity. Later, Wu and Hsu [8] pointed out

that Lee-Chang scheme suffers from masquerading attack and

identity disclosure attack. Meanwhile, Yang et al. [9] showed

that Wu-Hsu scheme can not preserve credential privacy

either since a malicious service provider can recover users’

credentials, and then proposed an improvement to overcome

this limitation. In 2006, however, Mangipudi and Katti [10]

pointed out that Yang et al.’s scheme is insecure against DoS

(Deniable of Service) attack and presented a new scheme.

In 2009, Hsu and Chuang [11] demonstrated that both Yang

et al. and Mangipudi-Katti schemes have not provided user

anonymity since their schemes are vulnerable to identity

disclosure attacks. To prevent such attacks, Hsu and Chuang

proposed an RSA-based user identification scheme.

Recently, Chang and Lee [12] pointed out that Hsu-Chuang

scheme is vulnerable to impersonation attacks and the scheme

requires additional time-synchronized mechanisms which has

unstable latency in distributed networks. Then, they proposed a

user anonymity preserving improvement with high efficiency.

The scheme uses random nonce to replace additional time-

synchronized mechanism, does not need PKI (Public key

infrastructure) for users, and suits for mobile device users.

However, the security analysis [6] shows that Chang-Lee

scheme fails to provide proper user authentication and to

preserve credential privacy since the knowledge proof of

user authentication guarantees neither soundness nor credential

privacy.

As promoted in [6], it is worthy to overcome the flaws

in Chang-Lee scheme to obtain an efficient and provably

secure scheme for mobile device users in distributed systems

and networks. Moreover, the soundness of credential based

authentication should be formalised and the credential privacy

should be preserved. Motivated to solve these issues, in this

paper we first specify a formal model for SSO with a unified

definition to formally specify soundness and credential privacy

(Section II). Then, after reviewing Chang-Lee SSO scheme

in Section III and Schnorr signature [13] in Section IV, we

improve Chang-Lee scheme by exploiting Schnorr signature

in Section V due to its simplicity and unforgeability [14],

[15], while keep Chang-Lee’s session key establishment part

unchanged. The security of the proposed protocol is discussed

in Section VI. Finally, section VII concludes this paper.

II. FORMAL MODEL

In this section we present a formal model to define authen-

ticated key exchange single sign-on (AKESSO) scheme and

its security requirements. Specially, we list the components

(e.g. syntax) of AKESSO, define correctness, describe an ad-

versary model, and formally specify three security properties,

including secure credential based user authentication, secure

credential based service provider authentication, and session

key security.

Definition 1. An authenticated key exchange single sign-
on (AKESSO) scheme comprises a trusted credential provider
TCP , a group of service providers P and a group of users U .
It consists of eight algorithms and one protocol: initialization
algorithm Init(·), identity generation algorithm IdGen(·),
credential generation algorithm CGen(·), credential verifi-
cation algorithm CV er(·), user proof generation algorithm
UPGen(·), user proof verification algorithm UPV er(·), ser-
vice provider proof generation algorithm SPPGen(·), and
service provider proof verification algorithm SPPV er(·), and
key exchange protocol

∏
.

1) Init(λ): Taking security parameter λ0 (or λ1) as input,
outputs the public/private key pair (PK,SK) for TCP
(or (PKj , SKj) for Pj ∈ P).

2) IdGen(RIi): Taking registration information RIi as
input, outputs an unique identity IDi for a user Ui ∈ U .

3) CGen(IDi, SK): Taking an identity IDi and TCP ’s
private key SK as input, outputs a credential Ci for
user Ui.

4) CV er(Ci, IDi, PK): Taking credential Ci, an identity
IDi, and TCP ’s public key PK as input, outputs
“1” or “0” for accepting or rejecting credential Ci

respectively.
5) UPGen(Ci, IDi, PK,M): Taking a credential Ci, an

identity IDi, TCP ’s public key PK and a temporal
message M generated in a session as input, outputs a
user proof upi showing user Ui’s knowledge of creden-
tial Ci.

6) UPV er(upi, IDi, PK,M): Taking a user proof upi, an
identity IDi, TCP ’s public key PK, and a temporal
message M generated in a session as input, outputs
“1” or “0” for accepting or rejecting upi as a valid
credential proof w.r.t. identity IDi respectively.

7) SPPGen(SKj ,M
′): Taking service provider Pj’s pri-

vate key SKj and a temporal message M ′ generated in
a session as input, outputs a service provider proof sppj
showing Pj’s knowledge of SKj .

8) SPPV er(sppj , PKj ,M
′): Taking a service provider

proof sppj , Pj’s public key PKj , and a temporal
message M ′ generated in a session as input, outputs
“1” or “0” for accepting or rejecting sppj as a valid
service provider proof w.r.t. public key PKj respectively.

9)
∏

: This is a key exchange protocol run by a user
Ui with private input Ci and a service provider Pj

with private input SKj . After the completion of each
protocol instance, Ui will output a session key Kij if
he/she accepts Pj . Similarly, after the completion of
each protocol instance Pj will output a session key Kji

if it accepts Ui. (Ideally, Kij and Kji are expected to
be the same value.)

Remark 1. The above definition focuses on public key based
AKESSO with non-interactive proofs. It could be extended to
support interactive proofs, where spi and sspj are generated
by interactive protocols run by user Ui and service provider
Pj . However, defining symmetric key based AKESSO will be
another story, which is out the scope of this paper.

Remark 2. Compared to Han et al.’s formal model given in
[16], we require key exchange in AKESSO, and each user does
not need to hold a public/private key pair. However, in Han et
al.’s definition TCP (called IdP in their paper) is less trusted
as it will not be able to impersonate any user: Each user
will run a zero knowledge protocol to show that he/she knows
the private key corresponding to the public key embedded in
his/her credential.

Before formally defining security properties, we naturally

require an AKESSO should be correct. Namely, a credential

Ci generated by the trusted credential provider TCP will be

valid, a user proof upi issued properly by user ui who holds a

valid credential Ci will be accepted by a service provider Pj

according to UPV er algorithm, a service provider proof sppj
issued properly by Pj will be accepted by user Ui according

to SPPV er algorithm, and Ui and Pj will accept each other

and output the same session key if they honestly run the

key exchange protocol
∏

. Formally, we define correctness as

below.

Definition 2. (Correctness) An AKESSO scheme is called
correct if it satisfies all the following conditions:

1) For any RIi and any key pair (PK,SK), if IDi ←
IdGen(RIi) and Ci ← CGen(IDi, SK), then
CV er(Ci, IDi, PK) = 1.

2) For any IDi, any key pair (PK,SK) and any
M , if Ci ← CGen(IDi, SK) and upi ←
UPGen(Ci, IDi, PK,M), then UPV er(upi, IDi,
PK,M) = 1.

3) For any key pair (PKj , SKj) and any
M ′, if sppj ← SPPGen(SKj ,M

′), then
SPPV er(sppj , PKj ,M

′) = 1.
4) For any user Ui with valid credential Ci and service

provider Pj with private key SKj , if both of them run
the key exchange protocol

∏
honestly, then they will

accept each other and output the same session key, i.e.,
Kij = Kji.

Informally, an AKESSO scheme is secure if all the desired

functionalities given in the above definition can be carried

out only by the proper entities, i.e., not by attackers who

are allowed to access all possible resources in a rigorously

specified adversary model. In fact, we shall define security of
SSO authentication which corresponds to items 1) to 3), and

session key privacy which corresponds to item 4).

To further define these security properties, we specify

the adversary model as follows: Let
∏

TCP be the trusted

authority oracle with its key pair (SK,PK),
∏i

U,P be the

user oracle simulating a set of all registered users, interacting

with the service provider oracle in session i, and
∏j

P,U be the

service provider oracle simulating a set of all registered service

providers, interacting with the user oracle in the session j. A

probabilistic polynomial time (PPT) adversary A can ask the

following oracle queries.

1) O1: Register(
∏
, U)— Upon receiving this query, the∏

TCP will run IdGen(RIAi
) and CGen(IDAi

, SK)
algorithms, and output a new user identity IDAi

with

corresponding credential CAi to A who can verify the

credential by running CV er(·).
2) O2: Register(

∏
, P)— Upon receiving this query, the

system will run Init(λ1) and output PAj
’s private/public

key pair (SKAj
, PKAj

) together with identity SIDAj

to A.

3) O3: Execute(Ui, Pj)— Upon receiving this query,
∏i

U,P and
∏j

P,U will execute protocol as Ui and Pj in∏
, respectively. The exchanged messages between them

will be recorded and sent to A. Here, we require that

both Ui’s credential and Pj’s private key are not been

corrupted by A via O1 and O2 oracles.

4) O4: Send(Ui,m, f)—This query sends the message m
as message flow f ∈ {0, 1, · · · , n} to the user oracle∏i

U,P which simulates a user Ui, and then, the oracle

computes message honestly in
∏

, and sends responses

back to A, where n is the total number of messages

transmitted in protocol
∏

. If a user is the protocol

initiator by default, A can also start a new session by

asking Send(Ui, ∅, 0), where ∅ denotes an empty set.

5) O5: Send(Pj ,m, f)—This query sends the message m
as message flow f ∈ {0, 1, · · · , n} to the user oracle∏i

P,U which simulates a service provider Pj , and then,

the oracle computes message honestly in
∏

, and sends

responses back to A. If a service provider is the protocol

initiator by default, A can also start a new session by

asking Send(Pj , ∅, 0).
6) O6: Reveal(

∏
, i)—This query models the leakage of

session key in session i. This query only can be asked

when a session key has been shared between a service

provider and a user in session i.

Remark 3. O3 simulates the real environment for a passive
attacker A who can eavesdrop all messages exchanged be-
tween Ui and Pj when executing protocol

∏
. If A knows

Ui’s credential Ci and Pj’s private key SKj , oracle O3 is
not necessary as A can run protocol

∏
by itself on behalf of

them. If A knows one of these two secrets but not both, A can
run protocol

∏
with Ui (Pj) whose secret is not released via

executing oracle O4 (O5).

Remark 4. O4 simulates the real environment for an active
attacker A who may obtain a service provider Pj’s private key
SKj , send message m as message flow f ∈ {0, 1, · · · , n} to
a target user Ui and then get the corresponding response.
To answer this oracle, Ui will generate his/her response
according to the specification of protocol

∏
and sends it to

A. Notes that if Ui did not receive all necessary previous
messages that match this message with message flow f , this
oracle request will be rejected, since it is meaningless in
the view point of Ui. Actually, O4 also provides adversary
A oracle access on algorithm UPGen(·) since

∏i
U,P will

run UPGen(·) somehow in executing
∏

. In our construction,
UPGen(·) is Schnorr signature generation algorithm. In this
case, on the one hand, oracle O4 may be not stronger than the
signing oracle in Game-UFCMA reviewed in section IV, since
the temporal message M , one input of algorithm UPGen(·),
may be jointly decided by Ui and A (playing the role of one
Pj), rather than just by A. So, it may be hard for A to get Ui’s
user proof for any arbitrary message M . On the other hand,
adversary A may be not weaker than the forger in Game-
UFCMA since besides O4 we also offer other oracle queries,
which may increase A’s ability. We omit a similar remark
which applies to O5.

To formally define the soundness and credential privacy,

we first discuss the difference between soundness and cre-

dential privacy since the majority of existing schemes only

consider the credential privacy. The credential privacy requires

unforgeability and irrecoverableness. The former guarantees

that any PPT adversary A has only a negligible probability

for successfully forging a valid credential Ct of a target user

Ut in the credential generation phase, while the latter requires

that in user authentication phase, any A can only recover Ct

with a negligible probability. Soundness is also critical in the

user authentication phase as it ensures that any A without a

valid credential can only generate a user proof up that passes

through user authentication with a negligible probability. The

existing studies [16], [12] only focus on if a valid credential

can be forged or recovered by attackers, but do not consider if

a valid credential is definitely necessary for generating a valid

user proof. We shall define these three properties as a single

definition (but one for users and one for service providers).

Let AO denotes an adversary A who has access to all oracle

queries in O = {Oi|i = 1, 2, · · · , 6} in adversary model;

let the credential holder Ui with identity IDi and credential

Ci, and the service provider Pj with identity SIDj and key

pair (SKj , PKj) are two polynomial-time Turing machines.

Let Ui and Pj interact with each other, and place A between

Ui and Pj . ε denotes a negligible function. We define secure

credential based user authentication as follows:

Definition 3. (Secure credential based user authentication
(SCUA)) An AKESSO scheme achieves secure credential
based user authentication, if any PPT adversary A has a
negligible advantage AdvSCUA(AO) for creating a valid user
proof without holding the corresponding credential. Formally,

for any PPT A, AdvSCUA(AO) �
= Pr[(IDt, upt,M) ←

AO|UPV er(upt, IDt, PK,M) = 1] ≤ ε with the following
restrictions:

• A has not obtained the credential Ct corresponding to
IDt via O1 - Register(

∏
, U) oracle; and

• A has not obtained any valid user proof up′t for message
M by asking any oracle in O, in particular O3 and O4.

Similarly, the definition of secure service provider authen-

tication is given as below:

Definition 4. (Secure service provider authentication
(SSPA)) An AKESSO scheme achieves secure ser-
vice provider authentication, if any PPT adversary A
has a negligible advantage AdvSSPA(AO) for forging a
valid service provider proof without holding the corre-
sponding service provider’s private key . Formally, for
any PPT A, AdvSSPA(AO)

�
= Pr[(PKt,M

′, sppt) ←
AO|SPPV er(PKt,M

′, sppt) = 1] ≤ ε with the following
restrictions:

• A has not obtained the private key SKt corresponding
to SIDt via O2 - Register(

∏
, P) oracle;

• A has not obtained any valid service provider proof sppt
for message M ′ by asking any oracle in O, in particular
O3 and O5.

Here, we review the freshness and test query Test(
∏
, i)

for defining session key security [17]. An adversary can get

session keys by asking O6. We say the session key is fresh if

and only if the O6 query has not been asked w.r.t. this session.

In other words, the fresh session key must be unknown to the

adversary. For simplicity, we call the test query as O7, which

is a game defined as follows:

• O7 — Test(
∏
, i): In protocol

∏
, if

∏i
U,P and

∏i
P,U

accept and share the same fresh session key in session

i, upon receiving this query, by tossing a coin b the

correct session key is returned if b = 0, otherwise, a

random session key is returend. A only can ask this

query one time and A needs to output one bit b′ as

the result of guessing b. A’s advantage in attacking the

session key security (SKS) of protocol
∏

is defined as

AdvSKS∏ (AO′
)=|2Pr[b′ = b]−1|, where O′ = O∪{O7}.

Session key security [17] models adversary A’s inability

to distinguish the real session key and a random string, as

formally defined below.

Definition 5. (Session Key Security) We say an AKESSO
satisfies session key security if for any PPT adversary A,
AdvSKS∏ (AO′

) ≤ ε, where O′ = O ∪ {O7}.
Finally, we can give the definition of secure authenticated

key exchange single sign-on scheme.

Definition 6. (Secure Authenticated Key Exchange Single
Sign-On Scheme): An AKESSO scheme is called secure if
it is correct and satisfies SCUA, SSPA, and session key
security.

III. REVIEW OF CHANG-LEE’S SCHEME

In 2012, Chang and Lee [12] proposed an improved efficient

remote user identification scheme for mobile device users, the

scheme employs single sign-on technique, supports session

key establishment, and preserves user anonymity. However,

the scheme neither provides credential privacy nor soundness

due to [6]. In this section, We briefly reviews the Chang-Lee

scheme and its drawbacks.

A. Review of the Scheme

Chang-Lee’s SSO scheme consists of three phases: system

initialization, registration, and user identification. The details

are as follows.

1) System Initialization Phase: The trusted authority TCP
determines the RSA key pair (e, d) and a generator g, and

publishes public parameters.

2) Registration Phase: In this phase, the trusted authority

signs an RSA signature Si = (IDi||h(IDi))
d mod N to user

Ui as the credential. For each service provider Pj , he needs to

maintain his own RSA public parameters (IDj , ej , Nj) and

private parameter dj similar as TCP .

3) User Identification Phase: In this phase, the session

key is Kij = h(IDi||kij), where kij is the plain Diffie-

Hellman session key. For identifying service providers, an

RSA signature scheme has been used; for user authentica-

tion, the user need to provide a proof z = S
h(Kij ||k2||n2)
i

mod N of credential Si, where k2 is user’s session key

material and n2 is a random nonce selected by the user. For

the purpose of anonymity, the random nonce n3 and user

identity which used for proof checking has been encrypted

via symmetric key encryption scheme with session key Kij

(treated as encryption key). The user can pass authentication

if ze mod N = SID
h(Kij ||k2||n2)
i mod N dose hold, and

the user believes that they are share the same session key if

the hashed n3 has been received.

B. Review of Attacks

Two high risky attacks are identified in [6] on Chang-

Lee scheme. The former allows a malicious Pj to recover

user credential; the latter enables an adversary passing user

authentication without a valid credential. They are briefly

reviewed below.

1) Credential Recovering Attack: A user Ui can pass

authentication if he provides the valid proof z of knowl-

edge Ci. To simplify the discussion, we use h2 to denote

h(Kij ||k2||n2). So proof z = Sh2
i . It is easy to see that for

different proofs in different session, the same credential Si

has been encrypted multiple times with different h2 but the

same modulo N . Thus, if a malicious Pj has been accessed

twice with the same user Ui, then Pj is able to recover Ui’s

credential Si by using extended Euclidean algorithm. Let us

suppose that (z′, z′′) and (h′
2, h

′′
2), the proofs and hash values

in two different sessions, satisfy gcd(h′
2, h

′′
2) = 1. Then we

can find two integers a and b such that a · h′
2 + b · h′′

2 = 1
(in Z) due to the extended Euclidean algorithm. Finally,

the Pj can recover user credential by computing z′a · z′′b

mod N = S
h′
2·a+h′′

2 ·b
i mod N = Si. The success rate of

this attack is about 60% [6].

2) Impersonation Attack without Credentials: A small RSA

public key e has been assumed in this attack, where the “small”

requires the binary length of e is much less than the output

length of hash function h. The rationality of this assumption

is given in [6]. In the conversation, if the h2 is divisible by

e, then the adversary computes an integer b such that h2 =
e · b, and calculates proof z by z = SIDb

i , where SIDi =
IDi||h(IDi). The verification holds as SIDh2

i mod N =
SIDb·e

i mod N = ze mod N . Thus, the adversary can pass

user authentication without a valid credential. The success rate

of the attack is about 1/e [6].

IV. REVIEW OF SCHNORR SIGNATURE

As one of the simplest, shortest, and frequently used signa-

ture schemes, Schnorr signature scheme [18], [13] is provably

secure in a random oracle model under the assumption that

discrete logarithm problem is intractable [19], [20], [21], [15].

We now review Schnorr signature scheme as follows.

Initialisation: The scheme is defined in a cyclic group G
of order q with a generator g ∈ Z

∗
p, were p and q are primes

such that q|p − 1, q ≥ 2160, and p ≥ 21024. A secure hash

function h(·) is also selected.

Signature Generation: To sign a message m with private

key x ∈ Z
∗
q , a signer picks a randomness r ∈ Z

∗
q , and

outputs the signature (a, e, s) by computing a = gr mod p,

e = h(a,m), and s = r + x · e mod q.

Signature Verification: Given a signature (a, e, s) for mes-

sage m w.r.t. public key y = gx mod p, the verifier accepts

this signature iff e ≡ h(a,m) and gs ≡ aye mod p.

Let us denote Init(λ), SGen(·) and SV er(·) the initialisa-

tion algorithm, signing algorithm and verification algorithm,

respectively. Formally, a signature scheme is called existen-
tially unforgeable if for any PPT forgery algorithm A, it can

only win the following game, called Game-UFCMA, with a

negligible probability [22][23].

• Setup: (pk, sk) ← Init(λ). Given a security parameter

λ, a public/private key pair is generated by the initialisa-

tion algorithm and adversary A is given the public key

pk.

• Query: σi ← SGen(sk,mi). A runs up to q times to

ask the signature signing oracle in an adaptive manner.

Each time, the signing oracle will reply a signature σi

for each message mi chosen by A, where 1 ≤ i ≤ q.

• Forge: A outputs a new message and signature pair

(mj , σj). A wins if

1) SV er(pk,mj , σj) = 1, i.e., σj is a valid signature

for message mj under the public key pk.

2) mj 	= mi, for any i ∈ {1, · · · , q}.
V. PROPOSED SCHEME

This section presents a secure single sign-on scheme with

user anonymity for remote user authentication in distributed

systems and networks. We use Schnorr signature [18][13] to

overcome the drawbacks in Chang-Lee scheme as their user

TABLE I
NOTATIONS USED IN THE SCHEME

TCP The trusted credential provider
Pj A service provider
Ui A user

SIDj The unique identity of Pj

IDi The unique identity of Ui

Ci The credential of Ui

x The long term private key of TCP
y The public key of TCP

Ek(M) Symmetric encryption of message M using key k
Dk(C) Symmetric decryption of ciphertext C using key k

h(·) A secure hash function

proof cannot provide soundness and credential privacy while

Schnorr signature can. As a proveably unforgeable signature

scheme [21], Schnorr signature allows a signer to authenticate

him/herself by signing a message without releasing any other

useful information about his/her private signing key. In the

proposed scheme, the TCP first issues the credential for each

user by signing the user’s identity IDi according to Schnorr

signature. Then, by treating his/her credential as another

public/private key pair the user can authenticate him/herself by

signing a Schnorr signature on a temporal message generated

in the protocol. In contrast, each service provider maintains

its own public/private key pair in any secure signature scheme

so that it can authenticate itself to users by simply issuing a

normal signature. Finally, as does in Chang-Lee scheme [12],

the session key is established by running a variant of Diffie-

Hellman key exchange protocol, and the user anonymity is

guaranteed by symmetric key encryption. The notations used

in the scheme are summarised in Table I.

System Setup Phase: In this phase, TCP initializes his/her

public and private parameters as Schnorr signature scheme.

Firstly, TCP picks large primes p and q such that q|p − 1,

chooses a generator g of large safe prime order q in cyclic

group G. Then, TCP sets its private key SK = x, where

x ∈ Z
∗
q is a random number, and publishes its public key

PK = y, where y = gx mod p.

Registration Phase: In this phase, user asks TCP for

registration, then TCP issues a unique identity IDi via

IdGen(RIi) and signs a Schnorr signature (a, e, C) for user’s

identity as credential generation algorithm CGen(IDi, SK).
C is kept secret by user, while (a, e) will be made public. The

details are given below.

• User Registration: When a user Ui asks for registration,

TCP selects a unique identity IDi and generates a cre-

dential Ci = (a, e, C) for Ui by selecting a randomness

r ∈ Z
∗
q and computing a = gr mod p, e = h(a, IDi),

and C = r+xe mod q. Then, TCP sends identity IDi

and credential Ci which is Schnorr signature for IDi to

user Ui, where C should be kept as a secret.

• Service Provider Registration: Each Pj maintains a pub-

lic/private key pair (PKj , SKj) of any secure signature

scheme. Here, algorithms SPPGen(·) and SPPV er(·)
are identical to the signature generation and verification

algorithms respectively.

),(Re 11 nqM

),(

)||||(

mod

11

1
1

uSKSPPGenv
nSIDkhu

pgk

j

j

r

),,(23 kzM

),,(212 nvkM

)||||||||(

),(

)||(

mod

mod

1),,(

)||||(

23

2

2

2

1

?

11

2

2

aennIDE
eCrz
Kkhe

kSIDhK
pgk

pkk

vuPKSPPVer

nSIDkhu

iK

i

iji

ijjij

r

r
ij

j

j

ij

)(
)(

),(
)||(

)()||||||||(

)||(

mod

3

2

?

2

?

23

2
1

nhV
yakg

Kkhe
IDahe

DaennID
kSIDhK
pkk

ii

ij

eeez

iji

i

Ki

ijjij

r
ij

)(4 VM

VV

nhV
?

3

'

)('

iU jP

Fig. 1. Participant Identification Phase

Authentication Phase: In this phase, to authenticate

him/herself user Ui signs a Schnorr signature the newly

established session key Kij using credential C the signing key,

while Ui’s session key material k2 is used as the commitment.

Note that the corresponding verification key of C is gC , which

can be recovered by computing gC = a · ye mod p. For

service provider authentication, any provably secure signature

scheme can be used to authenticate a service provider in

proposed scheme. The session key is established by using

modified Diffie-Hellman key exchange scheme which has

been formally proved in [12], and the user anonymity and

unlinkability are preserved by using symmetric key encryption

to encrypt a, e, and user’s identity IDi. The details of this

phase are illustrated in Figure 1 and further explained below.

1) User Ui chooses a random nonce n1 and sends M1 =
(Req, n1) to Pj , where Req is a service request.

2) Upon receiving (Req, n1), Pj picks random number

r1 ∈ Z
∗
q , computes its session key material k1 = gr1

mod p, u = h(k1||SIDj ||n1) and signs u to get a

signature v = SPPGen(SKj , u), and sends M2 =
(k1, v, n2) to the user.

3) User Ui first computes u = h(k1||SIDj ||n1)
and verifies the signature v by checking if

SPPV er(PKj , u, v) = 1. If the output is “0”,

Ui terminates the protocol. Otherwise, Ui accepts

the service provider Pj’s authentication, and then

selects a random number r2 ∈ Z
∗
q to compute

k2 = gr2 mod p, kij = kr21 mod p, and the

session key Kij = h(SIDj ||kij). After that, Ui

signs Kij using his/her credential secret C by

calculating ei = h(k2,Kij), z = r2 + Cei mod q
and ω = EK(IDi||n3||n2||e||a), where n3 is a nonce

chosen by Ui. Finally, Ui sends M3 = (ω, z, k2) to

service provider Pj .

4) To verify z, Pj first calculates kij = kr12 mod p,

derives session key Kij = h(SIDj ||kij) and decrypt ω
with Kij to recover IDi||n3||n2||e||a. Then, Pj checks

if e = h(a||IDi). If this does not hold, Pj aborts

the protocol. Otherwise, the service provider computes

ei = h(k2,Kij) and verifies z by checking if gz =
k2 · aei · (ye)ei mod p. If this holds, Pj accepts Ui’s

authentication, believes that they have shared the same

session key Kij , and sends V = h(n3) as M4 to Ui.

5) User Ui computes V ′ = h(n3) and checks if V ′ = V . If

this holds, Ui believes that he/she has shared the same

session key Kij with Pj .

VI. SECURITY ANALYSIS

The proposed scheme employs Schnorr signature scheme

[18][13] to generate credentials for users, uses modified Diffie-

Hellman key exchange scheme to establish the session key,

signs a Schnorr signature on the hashed session key for

user authentication, uses any secure signature scheme for

server authentication, and takes symmetric key encryption to

ensure user anonymity. The secure authenticated key exchange

single sign-on (AKESSO) scheme requires secure credential

based user authentication (SCUA), secure service provider

authentication (SSPA), and secure session key. To prove the

security of proposed AKESSO, we will just prove SCUA and

SSPA because (1) the proposed scheme only improves parts

of key generation, user authentication and service provider

authentication in Chang-Lee scheme [12], while the parts of

user anonymity and session key establishment have not been

modified; and the user anonymity and session key security

have been proved in [12] and discussed in [6] without revealing

any problems. Now, we start to formally analyse the security

of the proposed AKESSO scheme.

Theorem 1. (Correctness) The proposed construction is a
correct AKESSO scheme according to Definition 2.

Proof: This can be straightforwardly verified according

to Definition 2 given in Section II.

Informally, the proposed AKESSO scheme guarantees

SSPA as each service provider employs a secure signature

scheme. To prove SCUA, we need to show that Definition

3 holds for the proposed AKESSO scheme by assuming the

unforgeability of Schnorr signature scheme.

Theorem 2. (Secure Credential based User Authentication) In
proposed AKESSO scheme, if there is an PPT adversary A who
has a non-negligible advantage AdvSCUA(AO) as specified
in Definition 3, then Schnorr signature scheme is existentially
forgeable under UFCMA attacks as defined in Section IV.

Proof: As adversary A, with access to all oracles

in O = {O1, · · · ,O6}, has a non-negligible advantage

AdvSCUA(AO), according to Definition 3 this implies that

at least one of the following two cases is true:

• Case (1): With a non-negligible probability ε1, AO

is able to derive a credential Ct corresponding to an

unregistered target identity IDt.

• Case (2): With a non-negligible probability ε2, AO is

able to forge a valid user proof for a new message M
w.r.t. a registered target identity IDi.

Now, we will prove that if either Case (1) or Case (2) is

true, we can construct an algorithm B that is able to break

the unforgeability of Schnorr signature, where B runs AO as

a sub-program for fulfilling its purpose.

Case (1). Suppose that B is given a target Schnorr signature

scheme with parameter (p, q, h(·)) and public key y = gx

mod p, where the private key x is not known to B. B’s

strategy for wining Game-UFCMA with non-negligible prob-

ability is to set up an AKESSO scheme for A and to simulate

oracles in O such that A cannot distinguish the difference

between this simulated environment and a real AKESSO

scheme. Therefore, A will be able to successfully derive a

credential Ct for an unregistered identity IDt with probability

ε1. After that, B can adapt this credential into a forged Schnorr

signature for a new message and thus break the unforgeability

of Schnorr signature scheme.
Now we describe how B sets up such a simulated AKESSO

scheme for A. First, B sets y as the public key of TCP and

gives y to B. Then, each oracle in Oi (i = 1, · · · , 6) can

be simulated as follows. To simulate O1 query B can ask its

own signing oracle to get a Schnorr signature Ci for each

identity IDi and then reply (IDi, Ci) to A. To simulate O2

query B can simply run Init(λ1) to get a public/private key

pair (SKj , PKj) for an identity SIDj , and then forwards

(SIDj , SKj , PKj) to A. As B knows all users’ credentials

and all service providers’s private keys, it can simulate oracles

O3, O4, O5 and O6 by trivially executing the whole protocol∏
, running one move on behalf of a user, running one move

on behalf of a service provider, and revealing a session,

respectively. Note that as IDt is an unregistered identity in

this case, the corresponding user Ut will not be involved in

any oracle Oi (i = 1, · · · , 6).
It is not difficult to see that the above simulated system

is indistinguishable from a real system in the view point of

A. Hence, A will be able to output a credential Ct for target

identity IDt with non-negligible probability ε1, where IDt is

not asked in O1 queries. Therefore, B will simply forward Ct

as a forged Schnorr signature for message IDt. Since IDt is

not asked in O1 queries, A does not ask IDt in its signing

oracle, i.e., IDt is a new message for B. So, B’s forged

message-signature pair (IDt, Ct) is valid according to the

definition of Game-UFCMA (refer to Section IV). Moreover,

B’s success rate is exactly the same as A’s, i.e., ε1, which is

non-negligible. Consequently, this means that B successfully

breaks the unforgeablity of Schnorr signature scheme.

Case (2). This can be proved similarly as Case (1) but B
will embed its target Schnorr signature scheme in the user

proof generation algorithm for a registered target user Ut with

identity IDt. Details are given as follows.

Suppose that B is given a target Schnorr signature scheme

with parameter (p, q, h(·)) and public key y′ = gx
′
mod p,

where the private key x′ is not known to B. First, B sets y =
gx mod p as the public key of TCP by selecting a random

number x as TCP ’s private key. For any identity IDi except

target identity IDt, to answer anO1 query B can directly issue

a credential Ci for IDi by generating a Schnorr signature for

IDi as B knows TCP ’s private key x. In contrast, B will

take (a′, e′, x′) as the credential Ct for target identity IDt,

where e′ ∈ {0, 1, · · · , q − 1} is a random number, a′ ∈ Z
∗
p

is set as a′ = y′ · y−e′ mod p, and h(a′, IDt) is set as e′.
So, we have gx

′
= a′yh(e

′,IDt) mod p. Note that B does not

know the value of x′ and it will be not required to reveal Ct to

A because IDt is the target identity. In addition, here we can

artificially fix the hash value for such a special input (a′, IDt)
because Schnorr signature is secure in random oracle where

hash function can be viewed as an random function [21]. All

other oracles in O can be simulated as in Case (1), except

A asks O3 and O4 queries in which Ut with identity IDt

is involved. In such scenarios, B can simulate Ut to output

a valid user proof upt w.r.t. credential Ct by executing the

whole protocol
∏

or running one move with necessary help

from its own signing oracle w.r.t. public key y′.
Again, it is not difficult to see that the above simulated

system is indistinguishable from a real system in the view

point of A. Hence, with probability ε2 A will be able to output

a valid user proof upt for a message M w.r.t. target identity

IDt, where M is not asked in O3 and O4 queries. Therefore,

B can simply forward upt as a forged Schnorr signature for

message M . Since M is not asked in O3 and O4 queries, A
does not ask M in its signing oracle, i.e., M is a new message

for B. So, B’s forged message-signature pair (upt,M) is valid

according to the definition of Game-UFCMA (refer to Section

IV). Moreover, B’s success rate is exactly the same as A’s,

i.e., ε2, which is non-negligible. Consequently, this means that

B successfully breaks the unforgeablity of Schnorr signature

scheme.

Remark 5. In Case (1), AO could directly forge Ct, recover
Ct after executing protocol

∏
with user Ut or eavesdropping

the transcripts between Ut and some service providers, or
derive Ct in any other possible way, though AO is not allowed
to obtain Ct by trivially asking O1 oracle w.r.t. IDt. Hence,
this means that if our AKESSO fails to satisfy the unforgeablity
or unrecoverableness of credential, then Schnorr signature
is forgeable. Similarly, in Case (2) AO could directly forge
a user proof upt without credential Ct, observe and adapts
existing user proofs generated by Ut into a user proof upt for
a message M , or compute upt in any other way, though AO

is not allowed to obtain any user proof for the same message
M by trivially asking O3 and O4 oracles w.r.t. IDt. Hence,
this implies that if our AKESSO fails to satisfy soundness of
credential based authentication [6], then Schnorr signature is
forgeable.

As Schnorr signature scheme is proved to be secure under
the discrete logarithm assumption [21], Theorem 2 assures
that the proposed AKESSO scheme achieves secure creden-
tial based user authentication under the discrete logarithm
assumption.

Theorem 3. (Secure Service Provider Authentication) In pro-
posed AKESSO, if there is an PPT adversary A who has
a non-negligible advantage AdvSSPA(AO) as specified in
Definition 4, then signature signature scheme employed by
service providers is existentially forgeable under UFCMA
attacks as defined in Section IV.

Proof: Since a service provider proof is directly generated

as a normal signature by the corresponding service provider,

Theorem 3 can be formally proved as we did for Case (2) in

Theorem 1. Note that here we do not need to discuss Case (1)

as in Theorem 1, because each service provider is required to

register its public/private key pair. Due to space limit, the full

proof is omitted.

Theorem 4. According to Definition 6, the proposed AKESSO
scheme is secure under the assumption that all digital sig-
natures employed in the scheme are existentially unforgeable
against UFCMA attacks as specified in Section IV.

Proof: By Theorem 1, Theorem 2, Theorem 3 and session

key security proved in [12], Theorem 4 holds according to

Definition 6.

VII. CONCLUSIONS

Most existing single sign-on schemes suffer from various

security issues and are vulnerable to different attacks. In

this paper, we first formalized authenticated key exchange

single sign-on scheme. Specially, we formally defined secure

authentication for both users and service providers as such a

treatment has not been studied yet [6]. Moreover, a Schnorr

mechanism based SSO scheme has been proposed to overcome

the drawbacks of Chang-Lee scheme [12] but keep the same

advantages. In this new scheme, to preserve credential gener-

ation privacy, the TCP signs a Schnorr signature [18][13] on

user identity; and to protect credential privacy and soundness,

the user exploits his/her credential as a signing key to sign a

Schnorr signature on the hashed session key. In fact, Schnorr

signature mechanism [18][13] is more efficient than RSA

mechanism which has been employed by Chang-Lee scheme.

Thus, the proposed scheme reduces the computation cost,

enhances the confidentiality, and preserves soundness and

credential privacy.

REFERENCES

[1] A. C. Weaver and M. W. Condtry, “Distributing Internet Services to The
Networks Edge”, IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 404-411,
Jun. 2003.

[2] L. Barolli and F. Xhafa, “JXTA-OVERLAY: A P2P Platform for Dis-
tributed, Collaborative and Ubiquitous Computing”, IEEE Trans. Ind.
Electron., vol. 58, no. 6, pp. 2163-2172, Oct. 2010.

[3] L. Lamport, “Password Authentication with Insecure Communication”,
Commun. ACM, vol. 24, no. 11, pp. 770-772, Nov. 1981.

[4] F. Bao, R. H. Deng, “Privacy Protection for Transactions of Digital
Goods”, Proceedings of the Third International Conference on Infor-
mation and Communications Security (ICICS ’01), Springer-Verlag,
London, UK, pp. 202-213.

[5] The Open Group, “Security Forum on Single Sign-on”, http://www.
opengroup.org/security/l2-sso.htm.

[6] G. Wang, J. Yu, and Q. Xie, “Security Analysis of A Single Sign-
On Mechanism for Distributed Computer Networks”, IACR Cryptology
ePrint Archive, Report 2012/107, http://eprint.iacr.org/2012/107.

[7] W. B. Lee and C. C. Chang, “User Identification and Key Distribution
Maintaining Anonymity for Distributed Computer Networks”, Computer
Systems Science and Engineering, vol. 15, no. 4, pp. 113-116, 2000.

[8] T.-S. Wu and C.-L. Hsu, “Efficient User Identification Scheme with
Key Distribution Preserving Anonymity for Distributed Computer Net-
works”, Computers and Security, vol. 23, no. 2, pp. 120-125, 2004.

[9] Y. Yang, S.Wang, F. Bao, J.Wang, and R. H. Deng, “New Efficient
User Identification and Key Distribution Scheme Providing Enhanced
Security”, Computers and Security, vol. 23, no. 8, pp. 697-704, 2004.

[10] K. V. Mangipudi and R. S. Katti, “A Secure Identification and Key
Agreement Protocol with User Anonymity (sika)”, Computers and
Security, vol. 25, no. 6, pp. 420-425, 2006.

[11] C.-L. Hsu and Y.-H. Chuang, “A Novel User Identification Scheme with
Key Distribution Preserving User Anonymity for Distributed Computer
Networks”, Inf. Sci., vol. 179, no. 4, pp. 422-429, 2009.

[12] C.-C. Chang and C.-Y. Lee, “A Secure Single Sign-on Mechanism
for Distributed Computer Networks”, IEEE Transactions on Industrial
Electronics, vol. 59, no. 1, pp. 629-637, 2012.

[13] C.P. Schnorr, “Efficient Signature Generation by Smart Cards”, J.
Cryptology, vol. 4, no. 3, pp. 161-174, 1991.

[14] S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity
of Interactive Proof-Systems”, SIAM J. Computing, vol. 18, no. 1, pp.
186-208, Feb. 1989.

[15] W. Mao, Modern Cryptography: Theory and Practice, Prentice Hall
PTR, 2004.

[16] J. Han, Y. Mu, W. Susilo, and J. Yan, “A Generic Construction of Dy-
namic Single Sign-on with Strong Security,” in Proc. of SecureComm’10,
pp. 181-198, LNICS 50, Springer, 2010.

[17] M. Bellare and P. Rogaway, “Entity Authentication and Key Distribu-
tion”, CRYPTO, pp. 232-249, 1993.

[18] C.P. Schnorr, “Efficient Identification and Signatures for Smart Cards”,
CRYPTO ,pp. 239-252, 1989.

[19] M. Bellare and A. Palacio, “GQ and Schnorr Identification Schemes:
Proofs of Security against Impersonation under Active and Concurrent
Attacks”, CRYPTO, pp. 162-177, 2002.

[20] D. Pointcheval, J. Stern, “Security Proofs for Signature Schemes”,
EUROCRYPT, pp. 387-398, 1996.

[21] D. Pointcheval, J. Stern, “Security Arguments for Digital Signatures and
Blind Signatures”, J.Cryptology, vol.13, no.3, pp. 361-369, 2000.

[22] S. Goldwasser, S. Micali, and L. Ronald, “A ”Paradoxical” Solution to
the Signature Problem (Extended Abstract)”, FOCS, pp. 441-448, 1984.

[23] S. Goldwasser, S. Micali, and R. L. Rivest, “A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks”, SIAM J. Comput.,
vol. 17, no. 2, pp. 281-308, 1988.

