Provably Secure Single Sign-on Scheme 1n
Distributed Systems and Networks

Jiangshan Yu, Guilin Wang, and Yi Mu
Center for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Australia
Email: {jy898,guilin,ymu} @uow.edu.au

Abstract—Distributed systems and networks have been
adopted by telecommunications, remote educations, businesses,
armies and governments. A widely applied technique for dis-
tributed systems and networks is the single sign-on (SSO) which
enables a user to use a unitary secure credential (or token) to
access multiple computers and systems where he/she has access
permissions. However, most existing SSO schemes have not been
formally proved to satisfy credential privacy and soundness of
credential based authentication. To overcome this drawback,
we formalise the security model of single sign-on scheme with
authenticated key exchange. Specially, we point out the difference
between soundness and credential privacy, and define them
together in one definition. Also, we propose a provably secure
single sign-on authentication scheme, which satisfies soundness,
preserves credential privacy, meets user anonymity, and supports
session key exchange. The proposed scheme is very efficient
so that it suits for mobile devices in distributed systems and
networks.

Index Terms—Single sign-on, Distributed systems and net-
works, Soundness, Authentication, Information security.

I. INTRODUCTION

With the wide spreading of distributed computer networks,
various network services have gained importance and popu-
larity in recent few years [1][2]. Consequently, user authen-
tication [3] has been widely used in distributed computer
networks to identify a legal user who requires accessing net-
work services. To prevent bogus servers, mutual authentication
should be considered, and also, a session key establishment is
normally required. In addition, user privacy may be desired in
distributed computing environments since the information ex-
changed might be abused by some organizations for marketing
purposes [4]. However, designing efficient and secure mutual
authentication protocols is challenging in computer networks.

Moreover, with the increasing usage of network services, a
user may need to maintain more and more ID/password pairs
for accessing different distributed service providers, which
impose a burden on users and service providers as well as
the communication overhead of computer networks. Single
sign-on (SSO) mechanism [5] provides a good remedy to this
problem, as it allows a user with a single credential to access
multiple service providers. Intuitively, there are three basic
security requirements for SSO schemes, namely completeness,
soundness and credential privacy [16], [6]. However, to the
best of our knowledge soundness has not been formally studied

yet and how to preserve both soundness and credential privacy
is still a challenge [6].

In 2000, Lee and Chang [7] first proposed an SSO scheme
with user anonymity. Later, Wu and Hsu [8] pointed out
that Lee-Chang scheme suffers from masquerading attack and
identity disclosure attack. Meanwhile, Yang et al. [9] showed
that Wu-Hsu scheme can not preserve credential privacy
either since a malicious service provider can recover users’
credentials, and then proposed an improvement to overcome
this limitation. In 2006, however, Mangipudi and Katti [10]
pointed out that Yang et al.’s scheme is insecure against DoS
(Deniable of Service) attack and presented a new scheme.
In 2009, Hsu and Chuang [11] demonstrated that both Yang
et al. and Mangipudi-Katti schemes have not provided user
anonymity since their schemes are vulnerable to identity
disclosure attacks. To prevent such attacks, Hsu and Chuang
proposed an RSA-based user identification scheme.

Recently, Chang and Lee [12] pointed out that Hsu-Chuang
scheme is vulnerable to impersonation attacks and the scheme
requires additional time-synchronized mechanisms which has
unstable latency in distributed networks. Then, they proposed a
user anonymity preserving improvement with high efficiency.
The scheme uses random nonce to replace additional time-
synchronized mechanism, does not need PKI (Public key
infrastructure) for users, and suits for mobile device users.
However, the security analysis [6] shows that Chang-Lee
scheme fails to provide proper user authentication and to
preserve credential privacy since the knowledge proof of
user authentication guarantees neither soundness nor credential
privacy.

As promoted in [6], it is worthy to overcome the flaws
in Chang-Lee scheme to obtain an efficient and provably
secure scheme for mobile device users in distributed systems
and networks. Moreover, the soundness of credential based
authentication should be formalised and the credential privacy
should be preserved. Motivated to solve these issues, in this
paper we first specify a formal model for SSO with a unified
definition to formally specify soundness and credential privacy
(Section II). Then, after reviewing Chang-Lee SSO scheme
in Section IIT and Schnorr signature [13] in Section IV, we
improve Chang-Lee scheme by exploiting Schnorr signature
in Section V due to its simplicity and unforgeability [14],
[15], while keep Chang-Lee’s session key establishment part

unchanged. The security of the proposed protocol is discussed
in Section VI. Finally, section VII concludes this paper.

II. FORMAL MODEL

In this section we present a formal model to define authen-
ticated key exchange single sign-on (AK ESSO) scheme and
its security requirements. Specially, we list the components
(e.g. syntax) of AK ESSO, define correctness, describe an ad-
versary model, and formally specify three security properties,
including secure credential based user authentication, secure
credential based service provider authentication, and session
key security.

Definition 1. An authenticated key exchange single sign-
on (AKESSO) scheme comprises a trusted credential provider
TCP, a group of service providers P and a group of users U.
It consists of eight algorithms and one protocol: initialization
algorithm Init(-), identity generation algorithm IdGen(-),
credential generation algorithm CGen(-), credential verifi-
cation algorithm CVer(-), user proof generation algorithm
UPGen(-), user proof verification algorithm UPVer(-), ser-
vice provider proof generation algorithm SPPGen(-), and
service provider proof verification algorithm SPPVer(-), and
key exchange protocol T].

1) Init(\): Taking security parameter Ao (or A1) as input,
outputs the public/private key pair (PK, SK) for TC'P
(or (PK;,SK;) for P; € P).

2) IdGen(RI;): Taking registration information RI; as
input, outputs an unique identity 1D; for a user U; € U.

3) CGen(ID;,SK): Taking an identity I1D; and TCP’s
private key SK as input, outputs a credential C; for
user U,.

4) CVer(C;,ID;, PK): Taking credential C;, an identity
ID;, and TCP’s public key PK as input, outputs
“1” or “0” for accepting or rejecting credential C;
respectively.

5) UPGen(C;,1D;, PK,M): Taking a credential C;, an
identity ID;, TCP’s public key PK and a temporal
message M generated in a session as input, outputs a
user proof up; showing user U;’s knowledge of creden-
tial C;.

6) UPVer(up;,ID;, PK, M): Taking a user proof up;, an
identity 1D;, TCP’s public key PK, and a temporal
message M generated in a session as input, outputs
“1” or “0” for accepting or rejecting up; as a valid
credential proof w.r.t. identity 1D; respectively.

7) SPPGen(SK;, M'): Taking service provider P;’s pri-
vate key SK; and a temporal message M’ generated in
a session as input, outputs a service provider proof spp;
showing P;’s knowledge of SK;.

8) SPPVer(spp;, PK;,M'): Taking a service provider
proof spp;, Pj;’s public key PK;, and a temporal
message M' generated in a session as input, outputs
“1” or “0” for accepting or rejecting spp; as a valid
service provider proof w.r.t. public key P K ; respectively.

9) [I: This is a key exchange protocol run by a user
U; with private input C; and a service provider P;
with private input SK;j. After the completion of each
protocol instance, U; will output a session key K;; if
he/she accepts P;. Similarly, after the completion of
each protocol instance P; will output a session key K ;
if it accepts U;. (Ideally, K;; and K; are expected to
be the same value.)

Remark 1. The above definition focuses on public key based
AKESSO with non-interactive proofs. It could be extended to
support interactive proofs, where sp; and ssp; are generated
by interactive protocols run by user U; and service provider
P;. However, defining symmetric key based AKESSO will be
another story, which is out the scope of this paper.

Remark 2. Compared to Han et al’s formal model given in
[16], we require key exchange in AKESSO, and each user does
not need to hold a public/private key pair. However, in Han et
al’s definition TCP (called IdP in their paper) is less trusted
as it will not be able to impersonate any user: Each user
will run a zero knowledge protocol to show that he/she knows
the private key corresponding to the public key embedded in
his/her credential.

Before formally defining security properties, we naturally
require an AKESSO should be correct. Namely, a credential
C; generated by the trusted credential provider 7C'P will be
valid, a user proof up; issued properly by user u; who holds a
valid credential C; will be accepted by a service provider P;
according to U PV er algorithm, a service provider proof spp;
issued properly by P; will be accepted by user U; according
to SPPVer algorithm, and U; and P; will accept each other
and output the same session key if they honestly run the
key exchange protocol []. Formally, we define correctness as
below.

Definition 2. (Correctness) An AKESSO scheme is called
correct if it satisfies all the following conditions:

1) For any RI; and any key pair (PK,SK), if ID; <«
IdGen(RI;) and C; <+ CGen(ID;,SK), then
CV@T(C“IDZ,PK) =1

2) For any ID;, any key pair (PK,SK) and any

M, if C; + CGen(ID;,SK) and up; +
UPGen(C;,ID;,PK,M), then UPVer(up;, ID;,
PK,M) = 1.

3) For any key pair (PK; SK;) and any
M', if spp; — SPPGen(SKj,M’'), then

SPPVer(sppj, PK;,M') = 1.

4) For any user U; with valid credential C; and service
provider P; with private key SK;, if both of them run
the key exchange protocol] honestly, then they will
accept each other and output the same session key, i.e.,
Kij = Kﬂ

Informally, an AKESSO scheme is secure if all the desired
functionalities given in the above definition can be carried
out only by the proper entities, i.e., not by attackers who

are allowed to access all possible resources in a rigorously
specified adversary model. In fact, we shall define security of
SSO authentication which corresponds to items 1) to 3), and
session key privacy which corresponds to item 4).

To further define these security properties, we specify
the adversary model as follows: Let [[,.p be the trusted
authority oracle with its key pair (SK, PK), H;J p be the
user oracle simulating a set of all registered users, interacting
with the service provider oracle in session ¢, and HEU be the
service provider oracle simulating a set of all registered service
providers, interacting with the user oracle in the session j. A
probabilistic polynomial time (PPT) adversary A can ask the
following oracle queries.

1) Oq: Register(]],U)— Upon receiving this query, the
[I7cp will run IdGen(RI4,) and CGen(ID4,,SK)
algorithms, and output a new user identity /D4, with
corresponding credential C'4, to A who can verify the
credential by running C'Ver(-).

2) Os: Register(]], P)— Upon receiving this query, the
system will run Init(A1) and output Py, ’s private/public
key pair (SKa;, PK ;) together with identity S1D 4,
to A.

3) O3: Execute(U;, Pj)— Upon receiving this query,
[[y,p and [}, will execute protocol as U; and P; in
[T, respectively. The exchanged messages between them
will be recorded and sent to A. Here, we require that
both U;’s credential and P;’s private key are not been
corrupted by A via Oy and O oracles.

4) Oy4: Send(U;,m, f)—This query sends the message m
as message flow f € {0,1,--- ,n} to the user oracle
HE p Which simulates a user U;, and then, the oracle
computes message honestly in [], and sends responses
back to A, where n is the total number of messages
transmitted in protocol []. If a user is the protocol
initiator by default, A can also start a new session by
asking Send(U;, (), 0), where () denotes an empty set.

5) Os: Send(P;,m, f)—This query sends the message m
as message flow f € {0,1,--- ,n} to the user oracle
H} v Which simulates a service provider P;, and then,
the oracle computes message honestly in [], and sends
responses back to A. If a service provider is the protocol
initiator by default, A can also start a new session by
asking Send(P;,0,0).

6) Og: Reveal([],7)—This query models the leakage of
session key in session ¢. This query only can be asked
when a session key has been shared between a service
provider and a user in session ¢.

Remark 3. Os simulates the real environment for a passive
attacker A who can eavesdrop all messages exchanged be-
tween U; and P; when executing protocol [[. If A knows
U;’s credential C; and Pj’s private key SK;, oracle Os is
not necessary as A can run protocol [| by itself on behalf of
them. If A knows one of these two secrets but not both, A can
run protocol || with U; (P;) whose secret is not released via
executing oracle Oy (Os).

Remark 4. O, simulates the real environment for an active
attacker A who may obtain a service provider P;’s private key
SK;, send message m as message flow f € {0,1,--- ,n} to
a target user U; and then get the corresponding response.
To answer this oracle, U; will generate his/her response
according to the specification of protocol || and sends it to
A. Notes that if U; did not receive all necessary previous
messages that match this message with message flow f, this
oracle request will be rejected, since it is meaningless in
the view point of U;. Actually, O, also provides adversary
A oracle access on algorithm UPGen(-) since []y; p will
run UPGen(-) somehow in executing | [. In our construction,
UPGen(-) is Schnorr signature generation algorithm. In this
case, on the one hand, oracle O4 may be not stronger than the
signing oracle in Game-UFCMA reviewed in section 1V, since
the temporal message M, one input of algorithm U PGen(-),
may be jointly decided by U; and A (playing the role of one
P;), rather than just by A. So, it may be hard for A to get U;’s
user proof for any arbitrary message M. On the other hand,
adversary A may be not weaker than the forger in Game-
UFCMA since besides O4 we also offer other oracle queries,
which may increase A’s ability. We omit a similar remark
which applies to Os.

To formally define the soundness and credential privacy,
we first discuss the difference between soundness and cre-
dential privacy since the majority of existing schemes only
consider the credential privacy. The credential privacy requires
unforgeability and irrecoverableness. The former guarantees
that any PPT adversary A has only a negligible probability
for successfully forging a valid credential C} of a target user
U, in the credential generation phase, while the latter requires
that in user authentication phase, any A can only recover C;
with a negligible probability. Soundness is also critical in the
user authentication phase as it ensures that any A without a
valid credential can only generate a user proof up that passes
through user authentication with a negligible probability. The
existing studies [16], [12] only focus on if a valid credential
can be forged or recovered by attackers, but do not consider if
a valid credential is definitely necessary for generating a valid
user proof. We shall define these three properties as a single
definition (but one for users and one for service providers).

Let A denotes an adversary A who has access to all oracle
queries in O = {O;]i = 1,2,---,6} in adversary model;
let the credential holder U; with identity I D; and credential
C;, and the service provider P; with identity SID; and key
pair (SKj, PKj;) are two polynomial-time Turing machines.
Let U; and P; interact with each other, and place A between
U; and P;. € denotes a negligible function. We define secure
credential based user authentication as follows:

Definition 3. (Secure credential based user authentication
(SCUA)) An AKESSO scheme achieves secure credential
based user authentication, if any PPT adversary A has a
negligible advantage AdeCUA(AO) for creating a valid user
proof without holding the corresponding credential. Formally,

for any PPT A, AdvSCU4(A©) 2 Pr[(IDy,ups, M) <+

AC\UPVer(ups, IDy, PK,M) = 1] < € with the following
restrictions:

o A has not obtained the credential C; corresponding to
ID; via Oy - Register(][,U) oracle; and

o A has not obtained any valid user proof up, for message
M by asking any oracle in O, in particular O3 and Oy.

Similarly, the definition of secure service provider authen-
tication is given as below:

Definition 4. (Secure service provider authentication
(SSPA)) An AKESSO scheme achieves secure ser-
vice provider authentication, if any PPT adversary A
has a negligible advantage AdvSST4(AC) for forging a
valid service provider proof without holding the corre-
sponding service provider’s private key . Formally, for
any PPT A, AdvSSPA(A) 2 Pr[(PKy, M, spp;) <+
AC|SPPVer(PKy, M', spp;) = 1] < € with the following
restrictions:

o A has not obtained the private key SK; corresponding
to SID; via Oy - Register(]], P) oracle;

o A has not obtained any valid service provider proof spp;
for message M' by asking any oracle in O, in particular

03 and 05.

Here, we review the freshness and test query Test([],7)
for defining session key security [17]. An adversary can get
session keys by asking Og. We say the session key is fresh if
and only if the Oy query has not been asked w.r.t. this session.
In other words, the fresh session key must be unknown to the
adversary. For simplicity, we call the test query as O7, which
is a game defined as follows:

o O7 — Test([],4): In protocol [, if [[;; p and []p
accept and share the same fresh session key in session
1, upon receiving this query, by tossing a coin b the
correct session key is returned if b = 0, otherwise, a
random session key is returend. A only can ask this
query one time and A needs to output one bit b’ as
the result of guessing b. A’s advantage in attacking the
session key security (SKS) of protocol [] is defined as
AdvﬁKS(AO’)=|2 Pr[b’ = b]—1|, where O’ = OU{O;}.
Session key security [17] models adversary A’s inability
to distinguish the real session key and a random string, as
formally defined below.

Definition 5. (Session Key Security) We say an AKESSO
satisfies session key security if for any PPT adversary A,
Advl%KS(AO) <€ where O' = O U{O7}.

Finally, we can give the definition of secure authenticated
key exchange single sign-on scheme.

Definition 6. (Secure Authenticated Key Exchange Single
Sign-On Scheme): An AKESSO scheme is called secure if
it is correct and satisfies SCUA, SSPA, and session key
security.

III. REVIEW OF CHANG-LEE’S SCHEME

In 2012, Chang and Lee [12] proposed an improved efficient
remote user identification scheme for mobile device users, the
scheme employs single sign-on technique, supports session
key establishment, and preserves user anonymity. However,
the scheme neither provides credential privacy nor soundness
due to [6]. In this section, We briefly reviews the Chang-Lee
scheme and its drawbacks.

A. Review of the Scheme

Chang-Lee’s SSO scheme consists of three phases: system
initialization, registration, and user identification. The details
are as follows.

1) System Initialization Phase: The trusted authority 7TC'P
determines the RSA key pair (e,d) and a generator g, and
publishes public parameters.

2) Registration Phase: In this phase, the trusted authority
signs an RSA signature S; = (ID;||h(ID;))? mod N to user
U; as the credential. For each service provider P;, he needs to
maintain his own RSA public parameters (ID;,e;, N;) and
private parameter d; similar as TCP.

3) User Identification Phase: In this phase, the session
key is K;; = h(ID;||k;;), where k;; is the plain Diffie-
Hellman session key. For identifying service providers, an
RSA signature scheme has been used; for user authentica-
tion, the user need to provide a proof z = S,ih (Kijllk2|In2)
mod N of credential S;, where ko is user’s session key
material and ny is a random nonce selected by the user. For
the purpose of anonymity, the random nonce n3 and user
identity which used for proof checking has been encrypted
via symmetric key encryption scheme with session key Kj;
(treated as encryption key). The user can pass authentication
if z¢ mod N = 1D "1™ 1,04 N dose hold, and
the user believes that they are share the same session key if
the hashed n3 has been received.

B. Review of Attacks

Two high risky attacks are identified in [6] on Chang-
Lee scheme. The former allows a malicious P; to recover
user credential; the latter enables an adversary passing user
authentication without a valid credential. They are briefly
reviewed below.

1) Credential Recovering Attack: A user U,; can pass
authentication if he provides the valid proof z of knowl-
edge C;. To simplify the discussion, we use ho to denote
h(Kj||k2||n2). So proof z = S, It is easy to see that for
different proofs in different session, the same credential S;
has been encrypted multiple times with different hy but the
same modulo N. Thus, if a malicious P; has been accessed
twice with the same user U;, then P; is able to recover U;’s
credential S; by using extended Euclidean algorithm. Let us
suppose that (2/,2”) and (h}, hY), the proofs and hash values
in two different sessions, satisfy ged(hb,hy) = 1. Then we
can find two integers a and b such that a - hly +b-hY =1
(in Z) due to the extended Euclidean algorithm. Finally,
the P; can recover user credential by computing 2/® - 2"’

hy-athy-b
mod N = S, 2% mod N = ;. The success rate of

this attack is about 60% [6].

2) Impersonation Attack without Credentials: A small RSA
public key e has been assumed in this attack, where the “small”
requires the binary length of e is much less than the output
length of hash function h. The rationality of this assumption
is given in [6]. In the conversation, if the hs is divisible by
e, then the adversary computes an integer b such that hy =
e - b, and calculates proof z by z = SID?, where SID; =
ID;||h(ID;). The verification holds as SID!? mod N =
SIDY¢ mod N = 2 mod N. Thus, the adversary can pass
user authentication without a valid credential. The success rate
of the attack is about 1/e [6].

IV. REVIEW OF SCHNORR SIGNATURE

As one of the simplest, shortest, and frequently used signa-
ture schemes, Schnorr signature scheme [18], [13] is provably
secure in a random oracle model under the assumption that
discrete logarithm problem is intractable [19], [20], [21], [15].
We now review Schnorr signature scheme as follows.

Initialisation: The scheme is defined in a cyclic group G
of order ¢ with a generator g € Z,, were p and g are primes
such that ¢lp — 1, ¢ > 2190, and p > 21024, A secure hash
function h(-) is also selected.

Signature Generation: To sign a message m with private
key ©z € Z}, a signer picks a randomness r € Z}, and
outputs the signature (a, e, s) by computing a = ¢" mod p,
e=h(a,m),and s=r+x-e mod gq.

Signature Verification: Given a signature (a, e, s) for mes-
sage m w.r.t. public key y = ¢® mod p, the verifier accepts
this signature iff e = h(a,m) and ¢g° = ay® mod p.

Let us denote Init(\), SGen(-) and SVer(-) the initialisa-
tion algorithm, signing algorithm and verification algorithm,
respectively. Formally, a signature scheme is called existen-
tially unforgeable if for any PPT forgery algorithm A, it can
only win the following game, called Game-UFCMA, with a
negligible probability [22][23].

o Setup: (pk,sk) < Init(\). Given a security parameter
A, a public/private key pair is generated by the initialisa-
tion algorithm and adversary A is given the public key
pk.

e Query: o, < SGen(sk,m;). A runs up to ¢ times to
ask the signature signing oracle in an adaptive manner.
Each time, the signing oracle will reply a signature o;
for each message m; chosen by A, where 1 <1i <gq.

o Forge: A outputs a new message and signature pair
(mj,0j). A wins if

1) SVer(pk,m;,0;) =1, i.e., o; is a valid signature
for message m,; under the public key pk.
2) mj # my, forany i € {1,--- , ¢}

V. PROPOSED SCHEME

This section presents a secure single sign-on scheme with
user anonymity for remote user authentication in distributed
systems and networks. We use Schnorr signature [18][13] to
overcome the drawbacks in Chang-Lee scheme as their user

TABLE I
NOTATIONS USED IN THE SCHEME

The trusted credential provider
P; A service provider
U; A user
The unique identity of P;
The unique identity of U;
C; The credential of U;
z The long term private key of TC' P
The public key of TCP
Symmetric encryption of message M using key k
Symmetric decryption of ciphertext C' using key k
A secure hash function

Yy

By (M)
Dy (C)
h(:)

proof cannot provide soundness and credential privacy while
Schnorr signature can. As a proveably unforgeable signature
scheme [21], Schnorr signature allows a signer to authenticate
him/herself by signing a message without releasing any other
useful information about his/her private signing key. In the
proposed scheme, the T'C'P first issues the credential for each
user by signing the user’s identity I D; according to Schnorr
signature. Then, by treating his/her credential as another
public/private key pair the user can authenticate him/herself by
signing a Schnorr signature on a temporal message generated
in the protocol. In contrast, each service provider maintains
its own public/private key pair in any secure signature scheme
so that it can authenticate itself to users by simply issuing a
normal signature. Finally, as does in Chang-Lee scheme [12],
the session key is established by running a variant of Diffie-
Hellman key exchange protocol, and the user anonymity is
guaranteed by symmetric key encryption. The notations used
in the scheme are summarised in Table I.

System Setup Phase: In this phase, T'C'P initializes his/her
public and private parameters as Schnorr signature scheme.
Firstly, TC'P picks large primes p and ¢ such that g|p — 1,
chooses a generator g of large safe prime order ¢ in cyclic
group G. Then, TCP sets its private key SK = =z, where
x € Z; is a random number, and publishes its public key
PK =y, where y = g* mod p.

Registration Phase: In this phase, user asks T'C'P for
registration, then T'C'P issues a unique identity ID; via
IdGen(RI;) and signs a Schnorr signature (a, e, C) for user’s
identity as credential generation algorithm CGen(ID;, SK).
C' is kept secret by user, while (a,) will be made public. The
details are given below.

o User Registration: When a user U; asks for registration,
TCP selects a unique identity /D, and generates a cre-
dential C; = (a,e,C) for U; by selecting a randomness
7 € Zy and computing a = ¢g" mod p, e = h(a,ID;),
and C = r+xe mod ¢q. Then, TCP sends identity ID;
and credential C; which is Schnorr signature for ID; to
user U;, where C' should be kept as a secret.

o Service Provider Registration: Each P; maintains a pub-
lic/private key pair (PK;, SK;) of any secure signature
scheme. Here, algorithms SPPGen(-) and SPPVer(-)
are identical to the signature generation and verification
algorithms respectively.

M, =(Reg,m)
k,=g"mod p
u=hk || SID, | n)

v = SPPGen (SK ,,u)
Mz :(kl,v,nz)
u=h(k || SID, | n)

SPPVer (PK ;,u,v)=1

ky =k mod p

k,=g" mod p

K, = h(SID, || k,)

e = h(k,,K;)

z=r+C-¢

o= g, 0D nllm el @) pf —(azk)
k; =k,"mod p

K, =h(SID, || k;)

UD; || ny || n, |l el @) = Dy ()

e=h(a| ID,)
e = h(k,,K;)

g =k ()"

M,=(V) V = hin,)
V= h(ny)
vo_v

Fig. 1. Participant Identification Phase

Authentication Phase: In this phase, to authenticate
him/herself user U; signs a Schnorr signature the newly
established session key K;; using credential C' the signing key,
while U;’s session key material k5 is used as the commitment.
Note that the corresponding verification key of C'is g©, which
can be recovered by computing ¢¢ = a - y° mod p. For
service provider authentication, any provably secure signature
scheme can be used to authenticate a service provider in
proposed scheme. The session key is established by using
modified Diffie-Hellman key exchange scheme which has
been formally proved in [12], and the user anonymity and
unlinkability are preserved by using symmetric key encryption
to encrypt a, e, and user’s identity ID;. The details of this
phase are illustrated in Figure 1 and further explained below.

1) User U; chooses a random nonce ni and sends M; =
(Reg,n1) to Pj, where Req is a service request.

2) Upon receiving (Req,n1), P; picks random number
r1 € Z,, computes its session key material k; = g™
mod p, u = h(k(||SID;||n1) and signs u to get a
signature v = SPPGen(SKj;,u), and sends My =
(k1,v,n2) to the user.

3) User U; first computes u = h(ki||SID,||n1)
and verifies the signature v by checking if
SPPVer(PK;,u,v) = 1. If the output is “07,
U, terminates the protocol. Otherwise, U; accepts
the service provider P;’s authentication, and then
selects a random number ro € Zj to compute
ke = ¢™ modp, kij = ki*> modp, and the
session key K;; = h(SID;||k;;). After that, U;

signs K;; using his/her credential secret C by
calculating e; = h(ks, K;;), 2 = r2 + Ce; mod g
and w = Ex(ID;||ns||nz||e||a), where ng is a nonce
chosen by U;. Finally, U; sends M3 = (w,z,k2) to
service provider P;.

4) To verify z, P; first calculates k;; = k3! mod p,
derives session key K;; = h(STD,||k;;) and decrypt w
with K; to recover ID;||ns||nz||e||a. Then, P; checks
if ¢ = h(a||ID;). If this does not hold, P; aborts
the protocol. Otherwise, the service provider computes
e; = h(ke, K;;) and verifies z by checking if ¢g* =
ko - a® - (y°)* mod p. If this holds, P; accepts U,’s
authentication, believes that they have shared the same
session key K;;, and sends V' = h(ng) as My to U;.

5) User U; computes V' = h(ns) and checks if V' = V. If
this holds, U; believes that he/she has shared the same
session key K;; with P;.

VI. SECURITY ANALYSIS

The proposed scheme employs Schnorr signature scheme
[18][13] to generate credentials for users, uses modified Diffie-
Hellman key exchange scheme to establish the session key,
signs a Schnorr signature on the hashed session key for
user authentication, uses any secure signature scheme for
server authentication, and takes symmetric key encryption to
ensure user anonymity. The secure authenticated key exchange
single sign-on (AKESSO) scheme requires secure credential
based user authentication (SCU A), secure service provider
authentication (SSPA), and secure session key. To prove the
security of proposed AKESSO, we will just prove SCU A and
SSPA because (1) the proposed scheme only improves parts
of key generation, user authentication and service provider
authentication in Chang-Lee scheme [12], while the parts of
user anonymity and session key establishment have not been
modified; and the user anonymity and session key security
have been proved in [12] and discussed in [6] without revealing
any problems. Now, we start to formally analyse the security
of the proposed AKESSO scheme.

Theorem 1. (Correctness) The proposed construction is a
correct AKESSO scheme according to Definition 2.

Proof: This can be straightforwardly verified according
to Definition 2 given in Section II. |

Informally, the proposed AKESSO scheme guarantees
SSPA as each service provider employs a secure signature
scheme. To prove SCUA, we need to show that Definition
3 holds for the proposed AKESSO scheme by assuming the
unforgeability of Schnorr signature scheme.

Theorem 2. (Secure Credential based User Authentication) In
proposed AKESSO scheme, if there is an PPT adversary A who
has a non-negligible advantage Adv°°UA(A®) as specified
in Definition 3, then Schnorr signature scheme is existentially
forgeable under UFCM A attacks as defined in Section 1V.

Proof: As adversary A, with access to all oracles
in O = {0, ---,06}, has a non-negligible advantage

AdvSCUA(A9), according to Definition 3 this implies that
at least one of the following two cases is true:

o Case (1): With a non-negligible probability ¢;, A®
is able to derive a credential C; corresponding to an
unregistered target identity 1Dy.

« Case (2): With a non-negligible probability €5, AC is
able to forge a valid user proof for a new message M
w.I.t. a registered target identity ID;.

Now, we will prove that if either Case (1) or Case (2) is
true, we can construct an algorithm B that is able to break
the unforgeability of Schnorr signature, where B runs A® as
a sub-program for fulfilling its purpose.

Case (1). Suppose that B is given a target Schnorr signature
scheme with parameter (p,q,h(-)) and public key y = ¢*
mod p, where the private key x is not known to B. B’s
strategy for wining Game-UFCMA with non-negligible prob-
ability is to set up an AKESSO scheme for A and to simulate
oracles in O such that A cannot distinguish the difference
between this simulated environment and a real AKESSO
scheme. Therefore, A will be able to successfully derive a
credential C; for an unregistered identity /D, with probability
€1. After that, B can adapt this credential into a forged Schnorr
signature for a new message and thus break the unforgeability
of Schnorr signature scheme.

Now we describe how B sets up such a simulated AKESSO
scheme for A. First, B sets y as the public key of T'C' P and
gives y to B. Then, each oracle in O; (: = 1,---,6) can
be simulated as follows. To simulate O; query B can ask its
own signing oracle to get a Schnorr signature C; for each
identity ID; and then reply (ID;,C;) to A. To simulate Oy
query B can simply run Init(A;) to get a public/private key
pair (SK;, PK;) for an identity SID;, and then forwards
(SID;,SK;, PK;) to A. As B knows all users’ credentials
and all service providers’s private keys, it can simulate oracles
O3, O4, Oy and O by trivially executing the whole protocol
[], running one move on behalf of a user, running one move
on behalf of a service provider, and revealing a session,
respectively. Note that as D, is an unregistered identity in
this case, the corresponding user U; will not be involved in
any oracle O; (i =1,---,6).

It is not difficult to see that the above simulated system
is indistinguishable from a real system in the view point of
A. Hence, A will be able to output a credential C, for target
identity /D, with non-negligible probability €;, where 1Dy is
not asked in O; queries. Therefore, B will simply forward C}
as a forged Schnorr signature for message I.D;. Since ID; is
not asked in O; queries, A does not ask /D, in its signing
oracle, i.e., ID; is a new message for B. So, B’s forged
message-signature pair (I D;, Cy) is valid according to the
definition of Game-UFCMA (refer to Section 1V). Moreover,
B’s success rate is exactly the same as A’s, i.e., €1, which is
non-negligible. Consequently, this means that B successfully
breaks the unforgeablity of Schnorr signature scheme.

Case (2). This can be proved similarly as Case (1) but B
will embed its target Schnorr signature scheme in the user

proof generation algorithm for a registered target user U; with
identity ID;. Details are given as follows.

Suppose that B is given a target Schnorr signature scheme
with parameter (p, ¢, h(-)) and public key y' = ¢ mod p,
where the private key 2’ is not known to B. First, B sets y =
g” mod p as the public key of TC'P by selecting a random
number x as T'C'P’s private key. For any identity /D, except
target identity I Dy, to answer an O query B can directly issue
a credential C; for ID; by generating a Schnorr signature for
ID; as B knows T'C'P’s private key x. In contrast, B will
take (a’,€’,x’) as the credential Cy for target identity ID;,
where ¢’ € {0,1,---,¢ — 1} is a random number, a’ € Zj
is set as @/ =y - y~¢ mod p, and h(a’,I1D,) is set as ¢’.
So, we have g% = a’y"(¢"IPt) mod p. Note that B does not
know the value of 2’ and it will be not required to reveal C; to
A because 1D, is the target identity. In addition, here we can
artificially fix the hash value for such a special input (a’, ID;)
because Schnorr signature is secure in random oracle where
hash function can be viewed as an random function [21]. All
other oracles in O can be simulated as in Case (1), except
A asks O3 and Oy queries in which U; with identity ID;
is involved. In such scenarios, B can simulate U; to output
a valid user proof up; w.r.t. credential C; by executing the
whole protocol [] or running one move with necessary help
from its own signing oracle w.r.t. public key 7.

Again, it is not difficult to see that the above simulated
system is indistinguishable from a real system in the view
point of A. Hence, with probability eo A will be able to output
a valid user proof up, for a message M w.r.t. target identity
ID;, where M is not asked in O3 and O, queries. Therefore,
B can simply forward up, as a forged Schnorr signature for
message M. Since M is not asked in O3 and Oy queries, A
does not ask M in its signing oracle, i.e., M is a new message
for B. So, B’s forged message-signature pair (up:, M) is valid
according to the definition of Game-UFCMA (refer to Section
IV). Moreover, B’s success rate is exactly the same as A’s,
i.e., €2, which is non-negligible. Consequently, this means that
B successfully breaks the unforgeablity of Schnorr signature
scheme. [|

Remark 5. In Case (1), A® could directly forge Ct, recover
C} after executing protocol [| with user U, or eavesdropping
the transcripts between Uy and some service providers, or
derive Cy in any other possible way, though A® is not allowed
to obtain Cy by trivially asking Oy oracle w.rt. I D;. Hence,
this means that if our AKESSO fails to satisfy the unforgeablity
or unrecoverableness of credential, then Schnorr signature
is forgeable. Similarly, in Case (2) A© could directly forge
a user proof up; without credential Cy, observe and adapts
existing user proofs generated by U, into a user proof up; for
a message M, or compute up, in any other way, though A°
is not allowed to obtain any user proof for the same message
M by trivially asking O3 and Oy oracles w.r.t. ID,. Hence,
this implies that if our AKESSO fails to satisfy soundness of
credential based authentication [6], then Schnorr signature is
forgeable.

As Schnorr signature scheme is proved to be secure under
the discrete logarithm assumption [21], Theorem 2 assures
that the proposed AKESSO scheme achieves secure creden-
tial based user authentication under the discrete logarithm
assumption.

Theorem 3. (Secure Service Provider Authentication) In pro-
posed AKESSO, if there is an PPT adversary A who has
a non-negligible advantage Adv°STA(A®) as specified in
Definition 4, then signature signature scheme employed by
service providers is existentially forgeable under UFCM A
attacks as defined in Section IV.

Proof: Since a service provider proof is directly generated
as a normal signature by the corresponding service provider,
Theorem 3 can be formally proved as we did for Case (2) in
Theorem 1. Note that here we do not need to discuss Case (1)
as in Theorem 1, because each service provider is required to
register its public/private key pair. Due to space limit, the full
proof is omitted. []

Theorem 4. According to Definition 6, the proposed AKESSO
scheme is secure under the assumption that all digital sig-
natures employed in the scheme are existentially unforgeable
against UFCM A attacks as specified in Section IV.

Proof: By Theorem 1, Theorem 2, Theorem 3 and session
key security proved in [12], Theorem 4 holds according to
Definition 6. [|

VII. CONCLUSIONS

Most existing single sign-on schemes suffer from various
security issues and are vulnerable to different attacks. In
this paper, we first formalized authenticated key exchange
single sign-on scheme. Specially, we formally defined secure
authentication for both users and service providers as such a
treatment has not been studied yet [6]. Moreover, a Schnorr
mechanism based SSO scheme has been proposed to overcome
the drawbacks of Chang-Lee scheme [12] but keep the same
advantages. In this new scheme, to preserve credential gener-
ation privacy, the TC'P signs a Schnorr signature [18][13] on
user identity; and to protect credential privacy and soundness,
the user exploits his/her credential as a signing key to sign a
Schnorr signature on the hashed session key. In fact, Schnorr
signature mechanism [18][13] is more efficient than RSA
mechanism which has been employed by Chang-Lee scheme.
Thus, the proposed scheme reduces the computation cost,
enhances the confidentiality, and preserves soundness and
credential privacy.

REFERENCES

[11 A.C. Weaver and M. W. Condtry, “Distributing Internet Services to The
Networks Edge”, IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 404-411,
Jun. 2003.

[2] L. Barolli and F. Xhafa, “JXTA-OVERLAY: A P2P Platform for Dis-
tributed, Collaborative and Ubiquitous Computing”, IEEE Trans. Ind.
Electron., vol. 58, no. 6, pp. 2163-2172, Oct. 2010.

[3] L. Lamport, “Password Authentication with Insecure Communication”,
Commun. ACM, vol. 24, no. 11, pp. 770-772, Nov. 1981.

(4]

[5

—

[6

[}

(7]

(8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]
(21]
[22]

(23]

F. Bao, R. H. Deng, “Privacy Protection for Transactions of Digital
Goods”, Proceedings of the Third International Conference on Infor-
mation and Communications Security (ICICS ’'01), Springer-Verlag,
London, UK, pp. 202-213.

The Open Group, “Security Forum on Single Sign-on”, http://www.
opengroup.org/security/12-sso.htm.

G. Wang, J. Yu, and Q. Xie, “Security Analysis of A Single Sign-
On Mechanism for Distributed Computer Networks”, IACR Cryptology
ePrint Archive, Report 2012/107, http://eprint.iacr.org/2012/107.

W. B. Lee and C. C. Chang, “User Identification and Key Distribution
Maintaining Anonymity for Distributed Computer Networks”, Computer
Systems Science and Engineering, vol. 15, no. 4, pp. 113-116, 2000.
T.-S. Wu and C.-L. Hsu, “Efficient User Identification Scheme with
Key Distribution Preserving Anonymity for Distributed Computer Net-
works”, Computers and Security, vol. 23, no. 2, pp. 120-125, 2004.

Y. Yang, S.Wang, F. Bao, J.Wang, and R. H. Deng, “New Efficient
User Identification and Key Distribution Scheme Providing Enhanced
Security”, Computers and Security, vol. 23, no. 8, pp. 697-704, 2004.
K. V. Mangipudi and R. S. Katti, “A Secure Identification and Key
Agreement Protocol with User Anonymity (sika)”, Computers and
Security, vol. 25, no. 6, pp. 420-425, 2006.

C.-L. Hsu and Y.-H. Chuang, “A Novel User Identification Scheme with
Key Distribution Preserving User Anonymity for Distributed Computer
Networks”, Inf. Sci., vol. 179, no. 4, pp. 422-429, 2009.

C.-C. Chang and C.-Y. Lee, “A Secure Single Sign-on Mechanism
for Distributed Computer Networks”, IEEE Transactions on Industrial
Electronics, vol. 59, no. 1, pp. 629-637, 2012.

C.P. Schnorr, “Efficient Signature Generation by Smart Cards”, J.
Cryptology, vol. 4, no. 3, pp. 161-174, 1991.

S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity
of Interactive Proof-Systems”, SIAM J. Computing, vol. 18, no. 1, pp.
186-208, Feb. 1989.

W. Mao, Modern Cryptography: Theory and Practice, Prentice Hall
PTR, 2004.

J. Han, Y. Mu, W. Susilo, and J. Yan, “A Generic Construction of Dy-
namic Single Sign-on with Strong Security,” in Proc. of SecureComm’10,
pp. 181-198, LNICS 50, Springer, 2010.

M. Bellare and P. Rogaway, “Entity Authentication and Key Distribu-
tion”, CRYPTO, pp. 232-249, 1993.

C.P. Schnorr, “Efficient Identification and Signatures for Smart Cards”,
CRYPTO ,pp. 239-252, 1989.

M. Bellare and A. Palacio, “GQ and Schnorr Identification Schemes:
Proofs of Security against Impersonation under Active and Concurrent
Attacks”, CRYPTO, pp. 162-177, 2002.

D. Pointcheval, J. Stern, “Security Proofs for Signature Schemes”,
EUROCRYPT, pp. 387-398, 1996.

D. Pointcheval, J. Stern, “Security Arguments for Digital Signatures and
Blind Signatures”, J.Cryptology, vol.13, no.3, pp. 361-369, 2000.

S. Goldwasser, S. Micali, and L. Ronald, “A “Paradoxical” Solution to
the Signature Problem (Extended Abstract)”, FOCS, pp. 441-448, 1984.
S. Goldwasser, S. Micali, and R. L. Rivest, “A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks”, SIAM J. Comput.,
vol. 17, no. 2, pp. 281-308, 1988.

