

Isogeometric analysis of thin Reissner-Mindlin plates and shells: Locking phenomena and generalized local \bar{B} method

Qingyuan Hu^{a,b}, Yang Xia^c, Sundararajan Natarajan^d, Andreas Zilian^b, Ping Hu^c, Stéphane P.A. Bordas^{e,b,*}

^a*Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, P.R. China*

^b*Department of Computational Engineering Sciences, Faculty of Sciences, Technology and Communication, University of Luxembourg, Luxembourg*

^c*School of Automotive Engineering, Dalian University of Technology, Dalian 116024, P.R. China*

^d*Integrated Modelling and Simulation Lab, Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai-600036, India*

^e*Visiting Professor, Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang, Vietnam*

Abstract

We propose a generalized local \bar{B} framework, addressing locking in degenerated Reissner-Mindlin plate and shell formulations in the context of isogeometric analysis. Parasitic strain components are projected onto the physical space locally, i.e. at the element level, using a least-squares approach. The formulation is general and allows the flexible utilization of basis functions of different order as the projection bases. The present formulation is much cheaper computationally than the global \bar{B} method. Through numerical examples, we show the consistency of the scheme, although the method is not Hu-Washizu variationally consistent. The numerical examples show that the proposed formulation alleviates locking and yields good accuracy for various thicknesses, even for slenderness ratios of 1×10^5 , and has the ability to capture deformations of thin shells using relatively coarse meshes. From the detailed numerical study, it can be opined that the proposed method is less sensitive to locking and mesh distortion.

Keywords: Isogeometric, Reissner-Mindlin shell theory, shear locking, B-bar method, least squares

^{*}Corresponding author

Email addresses: qingyuanhucn@gmail.com (Qingyuan Hu), stephane.bordas@gmail.com (Stéphane P.A. Bordas)

¹ **1. Introduction**

² The conventional (Lagrange-based) finite element method (FEM) employs polynomial basis
³ functions to represent the geometry and the unknown fields. The commonly employed approxima-
⁴ tion functions are Lagrangian polynomials. However, these Lagrange polynomials are usually built
⁵ upon a mesh structure which needs to be generated, from the CAD or Image file provided for the
⁶ domain of interest. This mesh generation leads to the loss of certain geometrical features: e.g. a
⁷ circle becomes a polyhedral domain. Moreover, Lagrange polynomials lead to low order continuity
⁸ at the interface between elements, which is disadvantageous in applications requiring high order
⁹ partial differential equations.

¹⁰ The introduction of isogeometric analysis (IGA) [1] provides a general theoretical framework for
¹¹ the concept of “design-through-analysis” which has attracted considerable attention. The key idea
¹² of IGA is to provide a direct link between the computer aided design (CAD) and the simulation, by
¹³ utilizing the same functions to approximate the unknown field variables as those used to describe
¹⁴ the geometry of the domain under consideration, similar to the idea proposed in [2]. Moreover, it
¹⁵ also provides a systematic construction of high-order basis functions [3]. Note that, more recently,
¹⁶ a generalisation of the isogeometric concept was proposed, whereby the geometry continues to be
¹⁷ described by NURBS functions, as in the CAD, but the unknown field variables are allowed to
¹⁸ live in different (spline) spaces. This lead to the concept of sub and super-geometric analysis,
¹⁹ also known as Geometry Independent Field approximaTion (GIFT), described within a boundary
²⁰ element framework in [4] and proposed in [5, 6] and later refined in [7]. Related ideas, aiming at
²¹ the construction of tailored spline spaces for local refinement were proposed recently in [8].

²² In the literature, the IGA has been applied to study the response of plate and shell structures, in-
²³ volving two main theories, viz., the Kirchhoff-Love theory and the Reissner-Mindlin theory. Thanks
²⁴ to the \mathcal{C}^1 -continuity of the NURBS basis functions adopted in IGA, Kiendl *et al.* [9] developed an
²⁵ isogeometric shell element based on Kirchhoff-Love shell theory. The isogeometric Kirchhoff-Love
²⁶ shell element for large deformations was presented in [10]. The isogeometric Reissner-Mindlin shell
²⁷ element was implemented in [11], including linear elastic and nonlinear elasto-plastic constitutive
²⁸ behavior. The blended shell formulation was proposed to glue the Kirchhoff-Love structures with

29 Reissner-Mindlin structures in [12]. In addition, the isogeometric Reissner-Mindlin shell formula-
30 tion that is derived from the continuum theory was presented in [13], in which the exact director
31 vectors were used to improve accuracy. The solid shell was developed in [14], in this formulation
32 the NURBS basis functions were used to construct the mid-surface and a linear Lagrange basis
33 function was used to interpolate the thickness field.

34 The Kirchhoff-Love type elements are rotation-free and are only valid for thin structures. Due
35 to the absence of rotational degrees of freedom (DoFs), special techniques are required to deal
36 with the rotational boundary conditions [9, 15] and multi-patch connection [16]. Theoretically, the
37 Reissner-Mindlin theory is valid for both thick and thin structures, however it is observed from the
38 literature [11, 17] that both the FEM and the IGA approaches suffer from locking for thin structures
39 when the kinematics is represented by Reissner-Mindlin theory, especially for lower order elements
40 and coarse meshes. This has attracted engineers and mathematicians to develop robust elements
41 that alleviates this pathology. Adam et.al. proposed a family of concise and effective selective and
42 reduced integration (SRI) [18] rules for beams [19], plates and shells [20], and non-linear shells using
43 T-splines [21] within the IGA framework. Elguedj et. al. [22] presented \bar{B} method and \bar{F} method to
44 handle nearly incompressible linear and non-linear problems. The \bar{B} method has been successfully
45 applied to alleviate shear locking in curved beams [23], two dimensional solid shells [24], three-
46 dimensional solid shells [25] and in nonlinear solid shell formulation [26]. Reviewing the literature
47 of the \bar{B} method since its appearance [27], one valuable contribution is the introduction of local
48 \bar{B} concept [25, 28], thanks to which lots of computational effort has been saved without too much
49 accuracy loss. In addition, the equivalence between the \bar{B} method and the mixed formulation
50 were proved [23, 25]. Echter and Bischoff [17, 29] employed the DSG method [30] within the
51 IGA framework to alleviate shear locking syndrome effectively. Other approaches include twist
52 Kirchhoff theory [31], virtual element method [32], collocation method [33, 34], simple first order
53 shear deformation theory [35], and single variable method [36, 37]. The above approaches have
54 been employed with Lagrangian elements and IGA framework with varying order of success.

55 This paper builds on [28] for beam and rod structures using Timoshenko theory, aiming to
56 develop a locking-free formulation for plates and shells governed by Reissner-Mindlin theory within

57 IGA framework. In order to alleviate the locking phenomena, the locking strains are projected onto
 58 lower order physical space by the least square method. The novel idea behind the formulation is to
 59 use multiple sets of basis functions to project the locking strains locally i.e. element-wise, instead of
 60 projecting globally i.e. all over the patch. The local projecting algorithm is inspired by the local \bar{B}
 61 method [25] and also by the work of local least square method [38, 39]. These kind of formulations
 62 allow one to perform least-square projections locally, thereby reducing the computational effort
 63 significantly.

64 The outline of this paper is as follows: Section 2 gives an overview of Reissner-Mindlin theory
 65 for plates and shells. In Section 3, we present the novel approach, the generalized local \bar{B} method
 66 to alleviate the locking (both shear and membrane) problems encountered in thin structures whilst
 67 employing Reissner-Mindlin formulation. The robustness, accuracy and the convergence properties
 68 are demonstrated with some benchmark examples in Section 4, followed by concluding remarks in
 69 the last section.

70 **2. Theoretical formulation for Reissner-Mindlin plates and shells**

71 *2.1. Reissner-Mindlin shell model*

72 In IGA, the parametric space is typically Cartesian, while the physical domain of the unde-
 73 formed shell can be of complex shape, not necessarily rectangular. For simplicity, we consider a
 74 rectangular shell of length L , width ℓ and constant thickness h . The linear elastic material, as-
 75 sumed to be homogeneous and isotropic, is described by Young's modulus, E and Poisson's ratio
 76 ν . Figure (1) represents the mid-surface of the shell in the parametric and physical spaces.

77 The main difference between the Reissner-Mindlin and the Kirchhoff-Love shell theory is in
 78 the assumptions on the deformation behavior of the section and in the resulting independent
 79 kinematic quantities attached to the mid-surface in order to describe the deformation. According
 80 to the Reissner-Mindlin theory, a first order kinematic description is used in the thickness direction
 81 to account for the transverse shear deformations. Assuming a Cartesian coordinate system, any
 82 arbitrary point P in the shell structure is described by:

$$x_P = x + z \mathbf{n} \quad (1)$$

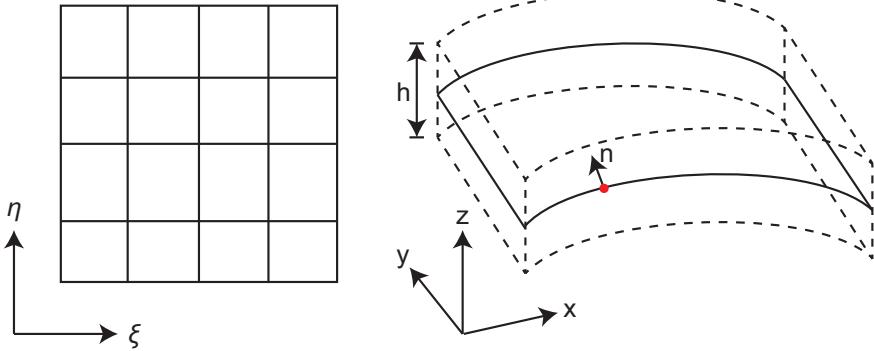


Figure 1: Mid-surface in the parameter space (left) and physical space (right) for a degenerated shell mid-surface. The real model is recovered by Eq.(1).

83 and its displacement is calculated assuming small deformation as

$$\mathbf{u}_P = \mathbf{u} + z\boldsymbol{\theta} \times \mathbf{n} \quad (2)$$

84 where \mathbf{x} is the geometry of the mid-surface as shown in Fig.1, $z \in [-\frac{h}{2}, \frac{h}{2}]$ denotes the thickness. \mathbf{u} ,
 85 $\boldsymbol{\theta}$ and \mathbf{n} are the displacement vector, the rotation vector and the normal vector on the mid-surface
 86 point projected by point P . The linearized strain tensor valid for small deformations is adopted
 87 here

$$\boldsymbol{\varepsilon} = \frac{1}{2}(\mathbf{u}_{P,\mathbf{x}} + \mathbf{u}_{P,\mathbf{x}}^T). \quad (3)$$

88 *2.2. Isogeometric approach*

89 In the context of shells, bi-variate NURBS basis functions are employed. Let $\Xi = \{\xi_1, \dots, \xi_{n+p+1}\}$
 90 and $H = \{\eta_1, \dots, \eta_{m+q+1}\}$ be open knot vectors, and w_A be given weights, $A = \{1, \dots, nm\}$. Then,
 91 the NURBS basis functions $R_A(\xi, \eta)$ are constructed, where p and q are the orders along the di-
 92 rections ξ and η respectively. For more details about IGA, interested readers are referred to [40]
 93 and references therein.

94 Following the degenerated type formulation, the geometry of the undeformed mid-surface is
 95 described by:

$$\mathbf{x} = \sum_{A=1}^{nm} R_A \mathbf{x}_A \quad (4)$$

⁹⁶ and the mid-surface discrete displacement field is interpolated as:

$$\mathbf{U}^h = \sum_{A=1}^{nm} R_A \mathbf{q}_A \quad (5)$$

⁹⁷ where \mathbf{x}_A defines the location of the control points, $\mathbf{U}^h = (\mathbf{u}, \boldsymbol{\theta})^T$, $\mathbf{q}_A = (\mathbf{u}_A, \boldsymbol{\theta}_A)^T$ is the vector
⁹⁸ of control variables corresponding to each control point, specifically $\mathbf{u}_A = (u, v, w)^T$ and $\boldsymbol{\theta}_A =$
⁹⁹ $(\theta_x, \theta_y, \theta_z)^T$. The approximation space for displacement field is denoted as $Q_{p,q}$ in order to highlight
¹⁰⁰ the orders of the basis functions.

¹⁰¹ Once the mid-surface is described using Eq. (4) and Eq. (5), any arbitrary point P in the shell
¹⁰² body can be traced by the following discrete forms:

$$\mathbf{x}_P = \sum_{A=1}^{nm} R_A (\mathbf{x}_A + z \mathbf{n}_A) \quad (6)$$

¹⁰³

$$\mathbf{u}_P = \sum_{A=1}^{nm} R_A (\mathbf{u}_A + z \boldsymbol{\theta}_A \times \mathbf{n}_A) \quad (7)$$

¹⁰⁴ where,

$$\mathbf{n} = \frac{\mathbf{x}_{,\xi} \times \mathbf{x}_{,\eta}}{\|\mathbf{x}_{,\xi} \times \mathbf{x}_{,\eta}\|_2} \quad (8)$$

¹⁰⁵ is the normal vector. The normal vectors at the Greville abscissae \mathbf{n}_A are adopted here because
¹⁰⁶ it can achieve a good balance between the accuracy and the efficiency [20]. It should be noted
¹⁰⁷ that the above equation includes the plate formulation, which can be considered as a special case.
¹⁰⁸ For plates, one always has $\mathbf{n}(x, y, z) = (0, 0, 1)^T$, which means that there are only two rotational
¹⁰⁹ degrees of freedom, θ_x and θ_y .

¹¹⁰ Using Voigt notation, the relation between the strains and the stresses is expressed as

$$\boldsymbol{\sigma} = \mathbf{D}_g \boldsymbol{\varepsilon} \quad (9)$$

111 where \mathbf{D}_g is the global constitutive matrix, and

$$\mathbf{D}_g = \mathbf{T}^T \mathbf{D}_l \mathbf{T} \quad (10)$$

112 here \mathbf{D}_l is the given local constitutive matrix. To make \mathbf{D}_l suitable for the physical geometry, the
113 transformation matrix \mathbf{T} is employed, which is composed of $\mathbf{x}_{,\xi}$ and $\mathbf{x}_{,\eta}$.

Upon employing the Galerkin framework and using the following discrete spaces for the displacement field,

$$S = \left\{ \mathbf{U} \in [H^1(\Omega)]^d, \mathbf{U}|_{\Gamma_u} = \mathbf{U}^d \right\} \quad (11)$$

$$V = \left\{ \mathbf{V} \in [H^1(\Omega)]^d, \mathbf{V}|_{\Gamma_u} = 0 \right\}, \quad (12)$$

114 the variational function reads: find $\mathbf{U} \in S$ such that

$$b(\mathbf{U}, \mathbf{U}^*) = l(\mathbf{U}^*) \quad \forall \mathbf{U}^* \in V \quad (13)$$

115 in which the bilinear term is

$$b(\mathbf{U}, \mathbf{U}^*) = \int_{\Omega} \boldsymbol{\varepsilon}(\mathbf{U}^*)^T \mathbf{D}_g \boldsymbol{\varepsilon}(\mathbf{U}) d\Omega. \quad (14)$$

116 When the displacements and the rotations are approximated with polynomials from the same
117 space, the discretized framework experiences locking (shear and membrane) when the thickness
118 becomes very small. The numerical procedure fails to satisfy the Kirchhoff limit (thin shell) as
119 the shear strain does not vanish with the thickness of the shell approaching zero. One explanation
120 of shear locking is that different variables involved are not compatible [36], which is also known
121 as field inconsistency. Recall Equation (2) and Equation (3), the field inconsistency only holds
122 for plate formulation but not for shell formulation. However, it is observed that for the present
123 shell formulation the element suffers from both membrane and shear locking. An explanation is
124 that in curved elements shearless bending [41] and inextensible bending deformations cannot be
125 represented exactly, because of the appearance of spurious membrane and shear terms that absorb

126 the major part of the strain energy [23], and this results in an overestimation of the stiffness. In
 127 the next section, a locking-free Reissner-Mindlin plate/shell formulation is proposed within the
 128 framework of IGA.

129 **3. Development of locking-free Reissner-Mindlin plates and shells**

130 In this section, after introducing the classical \bar{B} method, the numerical consistency is discussed.
 131 In order to further improve the efficiency and introduce flexibility into the formulation, a local and
 132 a generalized \bar{B} form is proposed.

133 *3.1. Classical B-bar method in IGA*

134 The novel idea behind the \bar{B} method is using a modified strain instead of the original one. It
 135 is believed that the modified strain should kept the numerical consistency and more importantly
 136 release the locking constrains thus have a better accuracy. In classical \bar{B} method [22, 23], a common
 137 way is to use the projection of the original strain to formulate the bilinear term

$$\bar{b}(\mathbf{U}, \mathbf{U}^*) = \int_{\Omega} \bar{\boldsymbol{\epsilon}}^{*T} \mathbf{D} \bar{\boldsymbol{\epsilon}} d\Omega \quad (15)$$

138 The projected strain $\bar{\boldsymbol{\epsilon}}$ and the original strain $\boldsymbol{\epsilon}$ are equal in the sense of the least square projection.
 139 The projection space is chosen to be one order lower, i.e. $Q_{\bar{p}, \bar{q}} = Q_{p-1, q-1}$ (see Figure (2)(a)). Built
 140 from one order lower knot vectors, with all the weights given as $W_{\bar{A}} = 1, \bar{A} = \{1, \dots, \bar{n}\bar{m}\}$, one
 141 order lower B-spline basis functions $\bar{N}_{\bar{A}}$ are obtained. The L_2 projection process is performed on
 142 the physical domain as

$$\int_{\Omega} \bar{N}_{\bar{B}} (\boldsymbol{\epsilon}^h - \bar{\boldsymbol{\epsilon}}^h) d\Omega = 0 \quad (16)$$

$$\bar{B} = 1, \dots, \bar{n}\bar{m}$$

143 in which the discretized form of the projected strain is

$$\bar{\boldsymbol{\epsilon}}^h = \sum_{\bar{A}=1}^{\bar{n}\bar{m}} \bar{N}_{\bar{A}} \bar{\boldsymbol{\epsilon}}^{\bar{A}h} \quad (17)$$

144 where $\bar{\boldsymbol{\varepsilon}}^{\bar{A}^h}$ means the projection of $\boldsymbol{\varepsilon}^h$ onto $\bar{N}_{\bar{A}}$. Finally, we have

$$\bar{\boldsymbol{\varepsilon}}^h = \sum_{\bar{A}, \bar{B}=1}^{\bar{n} \bar{m}} \bar{N}_{\bar{A}} \mathbf{M}_{\bar{A} \bar{B}}^{-1} \int_{\Omega} \boldsymbol{\varepsilon}^h \bar{N}_{\bar{B}} d\Omega \quad (18)$$

145 where $\mathbf{M}_{\bar{A} \bar{B}}$ is the inner product matrix

$$\mathbf{M}_{\bar{A} \bar{B}} = (\bar{N}_{\bar{A}}, \bar{N}_{\bar{B}})_{\Omega} = \int_{\Omega} \bar{N}_{\bar{A}} \bar{N}_{\bar{B}} d\Omega \quad (19)$$

146 The Hu-Washizu principle is utilized to prove the variational consistency of the \bar{B} method,
147 while the verification of the average strain demonstrates its numerical consistency. More details of
148 these contributions are given in [22–24, 42]. The Hu-Washizu principle is written as

$$\delta \Pi_{HW}(\mathbf{U}, \tilde{\boldsymbol{\varepsilon}}, \tilde{\boldsymbol{\sigma}}) = \int_{\Omega} \delta \tilde{\boldsymbol{\varepsilon}}^T \mathbf{D} \boldsymbol{\varepsilon} d\Omega + \delta \int_{\Omega} \tilde{\boldsymbol{\sigma}}^T (\boldsymbol{\varepsilon} - \tilde{\boldsymbol{\varepsilon}}) d\Omega - \int_{\Gamma_f} \mathbf{t} \delta \mathbf{U} d\Gamma_f \quad (20)$$

149 Here, the displacement field $\mathbf{U} \in S$, the assumed strain $\tilde{\boldsymbol{\varepsilon}} \in [L^2(\Omega)]^d$ and the assumed stress
150 $\tilde{\boldsymbol{\sigma}} \in [L^2(\Omega)]^d$. The constraint condition of the variational consistency is expressed as

$$\int_{\Omega} \delta \tilde{\boldsymbol{\sigma}}^T (\boldsymbol{\varepsilon} - \tilde{\boldsymbol{\varepsilon}}) d\Omega = 0 \quad (21)$$

151 and in the \bar{B} case

$$\int_{\Omega} \delta \bar{\boldsymbol{\varepsilon}}^{h^T} \mathbf{D} (\boldsymbol{\varepsilon}^h - \bar{\boldsymbol{\varepsilon}}^h) d\Omega = 0 \quad (22)$$

152 As for the numerical consistency, the constraint condition is expressed as

$$\int_{\Omega} \bar{N}_{\bar{C}} (\boldsymbol{\varepsilon}^h - \bar{\boldsymbol{\varepsilon}}^h) d\Omega = 0 \quad (23)$$

153 Since the terms of the constitutive matrix \mathbf{D}_g are constant at every quadrature point, and
154 recalling Equation (16), it can be shown that Equation (22) and Equation (23) are satisfied.
155 If the whole part of the original strain is projected, these two consistency conditions are both
156 satisfied. However, if only part of the original strain, for instance the average of the original strain,

157 is projected, then only the numerical consistency condition is satisfied according to [24]. This
 158 conclusion also stands for the proposed method in this paper. In addition, [23, 25] proved that the
 159 \bar{B} method is equivalent to the mixed method.

160 3.2. Local and generalized \bar{B} method for Reissner-Mindlin plates and shells

161 It is noticed that one needs to calculate the inverse of matrix \mathbf{M} in Equation (18), which could
 162 be computationally expensive if the projection is applied globally. Thus, from a practical point of
 163 view, it is highly recommended to project the strains locally [25, 28], i.e. element-wise

$$\bar{\boldsymbol{\varepsilon}}_e^h = \sum_{\bar{A}, \bar{B}=1}^{(\bar{p}+1)(\bar{q}+1)} \bar{N}_{\bar{A}} \mathbf{M}_{\bar{A}\bar{B}}^{-1} \int_{\Omega_e} \boldsymbol{\varepsilon}_e^h \bar{N}_{\bar{B}} d\Omega \quad (24)$$

164 with

$$\mathbf{M}_{\bar{A}\bar{B}} = (\bar{N}_{\bar{A}}, \bar{N}_{\bar{B}})_{\Omega_e} = \int_{\Omega_e} \bar{N}_{\bar{A}} \bar{N}_{\bar{B}} d\Omega. \quad (25)$$

165 Moreover, instead of projecting the strains onto $Q_{p-1,q-1}$, different sets of projection spaces
 166 are adopted in this work. This is called the *generalized strategy*, which could bring more flexibility
 167 into the formulation. The idea behind this generalized projection is that, with the opinion of
 168 projecting the original strains into the lower order space could release the locking constraints, we
 169 treat the corner, boundary and inner elements separately by using the lowest possible order of each
 170 element thus release the locking constraints as much as possible. The projection spaces need to be
 171 chosen carefully to avoid ill-condition or rank deficiency, readers interested in the corresponding
 172 mathematical theory is recommended to see [43], which is in the context of volume locking (nearly-
 173 incompressible) problems. Here, the strategy in our previous work [28] is extended to bi-dimensional
 174 cases. One difference between [28] and the present work is that in [28] the strain projection is
 175 performed within the parametric domain, while in present work the projection is performed within
 176 the physical domain as shown in Equation (24), which makes the present formulation more suitable
 177 for geometries of varied shapes. Specifically, for space $Q_{2,2}$, we adopt $Q_{1,1}$ for corner elements, $Q_{0,1}$
 178 and $Q_{1,0}$ for boundary elements, and $Q_{0,0}$ for inner elements, as shown in Figure (2)(b).

179 For degenerated plates and shells, although the geometries are represented in two dimensions,

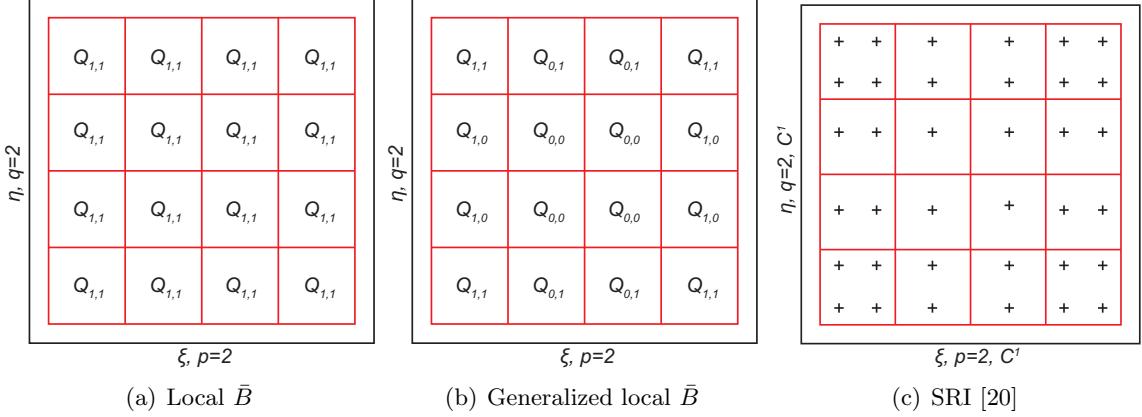


Figure 2: Unlock strategies in bi-dimensional parameter space. Projecting spaces for locking strains are denoted as $Q_{p,q}$. For local \bar{B} method (a), one order lower B-spline basis functions are employed for all elements. The presented generalized local \bar{B} method (b) uses basis functions of different orders, inspired by the SRI method (c), while C^1 continuities of elements are not restricted as in (c).

180 there is the thickness z involved in the formulation. In this case, if the whole part of strain is
 181 projected, rank deficiency appears and the formulation yields inaccurate results as shown in [24]
 182 and also to our computational experience. Following the similar approach as outlined in [24, 25],
 183 in this work, only the average strain through the thickness is projected as

$$\overline{\mathbf{MID}(\boldsymbol{\varepsilon}_e^h)} = \sum_{\bar{A}, \bar{B}=1}^{(\bar{p}+1)(\bar{q}+1)} \bar{N}_{\bar{A}} \mathbf{M}_{\bar{A}\bar{B}}^{-1} \int_{\Omega_e} \mathbf{MID}(\boldsymbol{\varepsilon}_e^h) \bar{N}_{\bar{B}} d\Omega \quad (26)$$

184 where $\mathbf{MID}(\boldsymbol{\varepsilon}_e^h)$ is the average strain through the thickness within a single element

$$\mathbf{MID}(\boldsymbol{\varepsilon}_e^h) = \frac{1}{h} \int_{-\frac{h}{2}}^{\frac{h}{2}} \boldsymbol{\varepsilon}_e^h dz. \quad (27)$$

185 The modified bi-linear form is defined as

$$\bar{b}(\mathbf{U}, \mathbf{U}^*) = \int_{\Omega} \left(\underbrace{\boldsymbol{\varepsilon}^{*T} \mathbf{D} \boldsymbol{\varepsilon}}_{\text{original}} - \underbrace{\mathbf{MID}(\boldsymbol{\varepsilon}^*)^T \mathbf{D} \mathbf{MID}(\boldsymbol{\varepsilon})}_{\text{average strain}} + \underbrace{\overline{\mathbf{MID}(\boldsymbol{\varepsilon})}^T \mathbf{D} \overline{\mathbf{MID}(\boldsymbol{\varepsilon})}}_{\text{projected average strain}} \right) d\Omega. \quad (28)$$

186 Within local \bar{B} , if the shape functions over the elements possess \mathcal{C}^0 continuity (which is obviously

187 fulfilled), the Hu-Washizu principle can be rewritten as [44]

$$\delta\Pi_{HW}(\mathbf{U}, \tilde{\boldsymbol{\varepsilon}}, \tilde{\boldsymbol{\sigma}}) = \sum_m \left(\int_{\Omega_m} \delta\tilde{\boldsymbol{\varepsilon}}^T \mathbf{D}\boldsymbol{\varepsilon} d\Omega + \delta \int_{\Omega_m} \tilde{\boldsymbol{\sigma}}^T (\boldsymbol{\varepsilon} - \tilde{\boldsymbol{\varepsilon}}) d\Omega - \int_{\Gamma_{fm}} \mathbf{t} \delta \mathbf{U} d\Gamma_f \right) \quad (29)$$

188 in which m denotes the number of elements. In this context the assumed displacements should
 189 satisfy \mathcal{C}^0 continuous between elements, but discontinuous assumed strains are allowed, this explains
 190 why different sets of basis functions can be used. The constraint condition is expressed as

$$\int_{\Omega_m} \delta\tilde{\boldsymbol{\sigma}}^T (\boldsymbol{\varepsilon} - \tilde{\boldsymbol{\varepsilon}}) d\Omega = 0. \quad (30)$$

191 However, when the local \bar{B} method is applied for degenerated plates, it is shown in the appendix of
 192 [24] that only the numerical consistency is satisfied, but the variational consistency is not satisfied.

193 *3.3. Discussions*

194 This generalized strategy is similar with the SRI strategy in [20]. The approach of using multiple
 195 sets of lower order basis functions was firstly presented for one-dimensional cases in [28]. In the
 196 case of only one quadrature point being used for an element, the functions are detected only at
 197 this quadrature point but nowhere else, which is analogous to its projection onto a $Q_{0,0}$ space. To
 198 achieve a better understanding of the proposed projection strategy, the basis functions are shown
 199 in Fig.3. There are four elements per side. In the local \bar{B} method, only one single set of basis
 200 functions (i.e. $Q_{1,1}$) is used to form the projection space. While in the generalized local \bar{B} method,
 201 four set of basis functions (i.e. $Q_{\bar{p},\bar{q}}$) are used. As shown in Fig.3 (b), this strategy means that
 202 the modified strains are assumed to be constant for the four internal elements and bi-linear for the
 203 four corner elements. In particular, for the side elements, the modified strains are assumed to be
 204 constant along the patch boundary, and linear facing inside. Moreover, it is noted that for cases
 205 of 1 element and 4 elements, there is no difference between the local \bar{B} and generalized local \bar{B} .

206 The advantage of SRI method is that its implementation is simple and the computations in-
 207 volve less calculations because fewer quadrature points are employed. But one must consider the
 208 continuity between neighboring elements, which requires additional efforts. However, for the local
 209 \bar{B} method, there is no problem in continuity because the projection procedure is applied element-

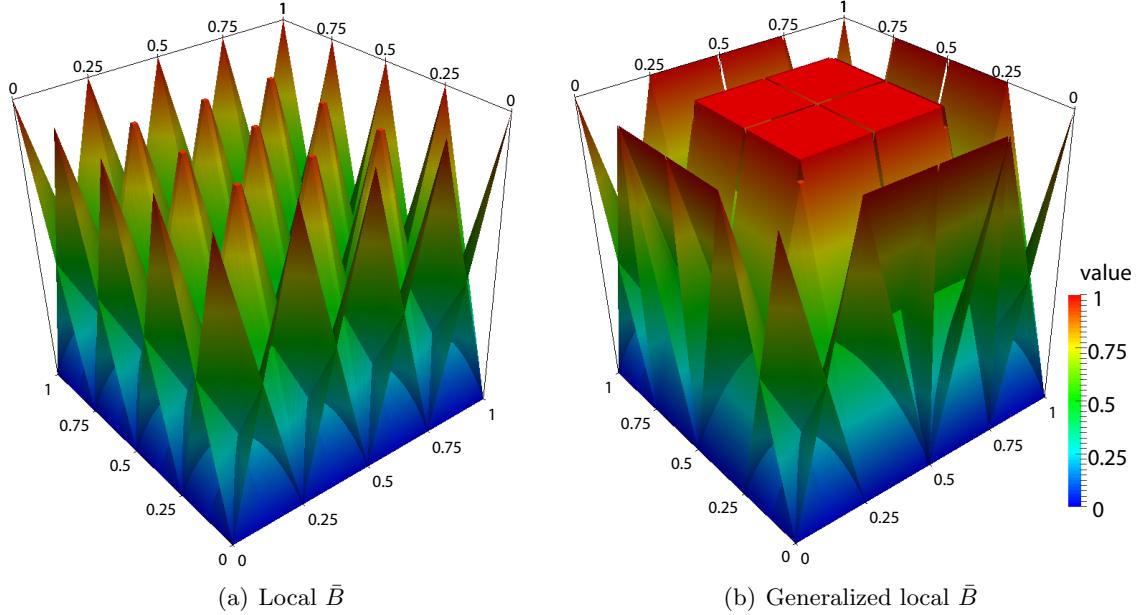


Figure 3: Bi-dimensional basis functions for projecting locking strains of each element, let $Q_{p,q}$ denote the projecting space. There are 4×4 elements. (a) Basis functions of $Q_{1,1}$ in the local \bar{B} method. (b) Basis functions in $Q_{\bar{p},\bar{q}}$ (see Fig.2) in the generalized local \bar{B} method, the strains at the corners are assumed to be linear along both sides, the strains at the patch sides are assumed to be linear toward inside and constant along the boundary, the strains within the patch are assumed to be constant.

210 wise. This conclusion is also found in [28]. Thus, one could always use knot vectors of order \bar{p}
 211 and continuity $C^{\bar{p}-1}$ (i.e. without inner repeated knots) as the projection knot vector. Apart
 212 from being accurate, since the lower order basis functions are used, for example linear functions
 213 for corner elements and constants for inner elements, better efficiency can be achieved with fewer
 214 quadrature points than usual.

215 Compared with the global \bar{B} method, the local \bar{B} method shows promising advantages in terms
 216 of computational efficiency. In the global \bar{B} method, the calculation of the inverse of matrix
 217 \mathbf{M} requires large amounts of memory. Thus, the adoption of local projection rather than global
 218 one saves lots of computational efforts. Similar conclusions had been carried out in the context of
 219 LLSQ fitting for boundary conditions [38] and further LLSQ algorithm [39]. In these contributions,
 220 assuming \mathbf{A} is the global Boolean assembly operator, the matrix

$$(\mathbf{A}\mathbf{A}^T)^{-1} \mathbf{A} \quad (31)$$

221 is used to calculate the uniformly weighted average of shared nodes. For instance, if a node
 222 (control point) is shared by n elements, then the values corresponding to this node is divided by n .
 223 Furthermore, in the local \bar{B} method [25], same procedure named by strain smoothing is employed
 224 to ensure the continuity of the projected strains and thus to obtain results of better accuracy.
 225 The price to pay is that one need to calculate the average operator and the bandwidth is larger
 226 than classical IGA. In this research to obtain the strain field of higher order continuity, we use
 227 the original strain of discretized form ε^h instead of $\bar{\varepsilon}^h$, i.e. recover the displacement field firstly by
 228 Eq.(5) and then get the strain field as usual, in this way the continuity property of NURBS basis
 229 functions is utilized.

230 4. Numerical examples

231 In this section, we demonstrate the performance of the proposed generalized local \bar{B} framework
 232 for Reissner-Mindlin plates/shells by solving a few standard benchmark problems. Unless otherwise
 233 mentioned consistent units are employed in this study. The numerical examples include: (a)
 234 Rectangular plate; (b) Scordelis-Lo roof; (c) Pinched cylinder and (d) Pinched hemisphere with a
 235 hole. In all the numerical examples, the following knot vectors are chosen as the initial ones:

$$\begin{aligned}\Xi &= \{0, 0, 0, 1, 1, 1\} \\ H &= \{0, 0, 0, 1, 1, 1\}\end{aligned}\tag{32}$$

236 In the following examples, $(p + 1) \times (q + 1)$ Gauss points are used for numerical integration, $p \times q$
 237 Gauss points are used for the family of \bar{B} methods for simplicity, the reduced quadrature scheme
 238 in [20] is adopted for comparison. The following conventions are employed whilst discussing the
 239 results:

- 240 • LB: Local \bar{B} method without strain smoothing in Equation (31). The projection is applied
 241 element by element as shown in Eq.(24) and Figure (2)(a)
- 242 • GLB: Generalized local \bar{B} method, which means that based on LB, the strategy of using
 243 multi-sets of basis functions as shown in Figure (2)(b) is adopted

244 • SRI: Selective reduced integration [20]

245 For the degenerated plates and shells, only the average strain through the thickness (Eq.(27)) is
 246 projected, thus the key word M is added and we have LBM and GLBM. The proposed formulation
 247 is implemented within the open source C++ IGA framework *Gismo*¹ [45].

248 4.1. *Simply supported square plate*

249 Consider a square plate simply supported on its edges with thickness h and the length of the
 250 side $L = 1$. Owing to symmetry, only one quarter of the plate, i.e, $a = L/2$ is modeled as shown in
 251 Figure (4). The plate is assumed to be made up of homogeneous isotropic material with Young's
 252 modulus $E = 200$ GPa and Poisson's ratio, $\nu = 0.3$. Two sets of loading are considered: (a) a
 253 point load P at the center of the plate and (b) uniform pressure. The control points and the
 254 corresponding weights are given in Table 1.

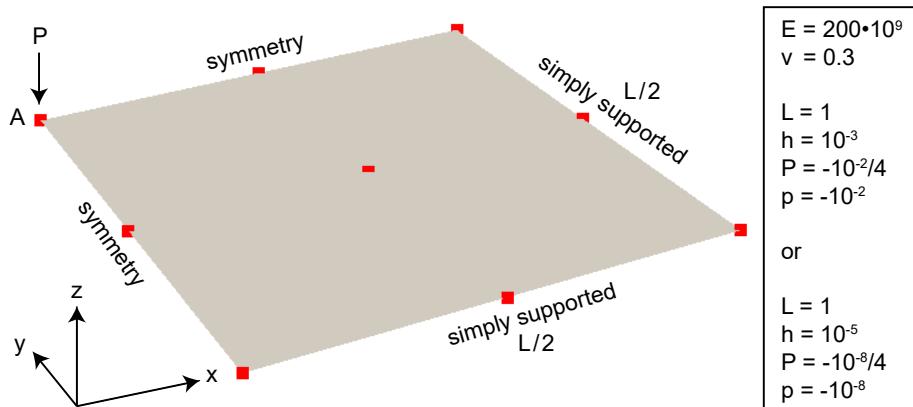


Figure 4: Mid-surface of the rectangular plate in Section 4.1: geometry and boundary conditions. Only one quarter of the plate is shown here. The red filled squares are the corresponding control points.

Table 1: Control points and weights for the rectangular plate in Figure (4).

	1	2	3	4	5	6	7	8	9
x	0.5	0.75	1	0.5	0.75	1	0.5	0.75	1
y	0	0	0	0.25	0.25	0.25	0.5	0.5	0.5
z	0	0	0	0	0	0	0	0	0
w	1	1	1	1	1	1	1	1	1

¹<https://ricamsvn.ricam.oeaw.ac.at/trac/gismo/wiki/WikiStart>

The analytical out-of-plane displacements for a thin plate with simply supported edges are given by:

$$\text{Concentrated load : } w(x, y) = \frac{4P}{\pi^4 D L^2} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sin\left(\frac{m\pi a}{L}\right) \sin\left(\frac{n\pi b}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \sin\left(\frac{n\pi y}{L}\right)}{\left[\left(\frac{m}{L}\right)^2 + \left(\frac{n}{L}\right)^2\right]^2}$$

$$\text{Uniform pressure : } w(x, y) = \frac{16p}{\pi^6 D} \sum_{m=1,3,5,\dots}^{\infty} \sum_{n=1,3,5,\dots}^{\infty} \frac{\sin\left(\frac{m\pi x}{L}\right) \sin\left(\frac{n\pi y}{L}\right)}{mn \left[\left(\frac{m}{L}\right)^2 + \left(\frac{n}{L}\right)^2\right]^2} \quad (33)$$

255 where $D = \frac{Eh^3}{12(1-\nu^2)}$. The transverse displacement is constant when the applied load is proportional
 256 to h^3 , i.e. $P = P_o (h/h_o)^3$, where $P_o = 10$ and $h_o = 10^{-2}$ in this study. With this modification, the
 257 numerical solution does not depend on the thickness of the plate. For a plate bending problem with
 258 simply supported edges, the relationship between the Kirchhoff theory and the Mindlin theory can
 259 be obtained by the analogy of load equivalence as [46, 47]

$$w^M = w^K - \frac{D \nabla^2 w^K}{\kappa G h} \quad (34)$$

260 where w^K and w^M are the theoretical transverse deflection of the middle surface obtained by
 261 the Kirchhoff theory and Mindlin theory respectively, $\kappa = 5/6$ is the shear correction factor and
 262 $\nabla^2(\cdot) = \partial^2(\cdot)/\partial x^2 + \partial^2(\cdot)/\partial y^2$, w^K is given in Equation (33). Equation (34) is suitable for both
 263 thick and thin plates, because the second term tends to vanish when the thickness h becomes
 264 small. Theoretically, for a thin plate, one could obtain $w^M \approx w^K$. However, classical FEM and
 265 IGA elements using Mindlin theory suffers from shear locking syndrome. This is because the
 266 spurious strains appear such that the stiffness matrix is overestimated.

267 Figure (5) shows the normalized displacement as a function of mesh refinement for two different
 268 plate thickness, the reference value is $w_A = -6.33410 \times 10^{-6}$. For thickness $h = 10^{-3}$, although
 269 the conventional IGA yields inaccurate results for coarse meshes, the results tend to improve upon
 270 refinement. However, it suffers from shear locking syndrome when $h = 10^{-5}$. In this case the results
 271 seem remain horizontal with respect to number of control points, indicating that the elements are

272 fully locked. For LBM and GLBM slight rank deficiency occur for coarse meshes. GLBM get quite
 273 good results when $h = 10^{-5}$. From the numerical study it is inferred that the proposed formulation
 274 alleviates shear locking phenomenon and yields accurate results even for thin plates with coarse
 275 meshes.

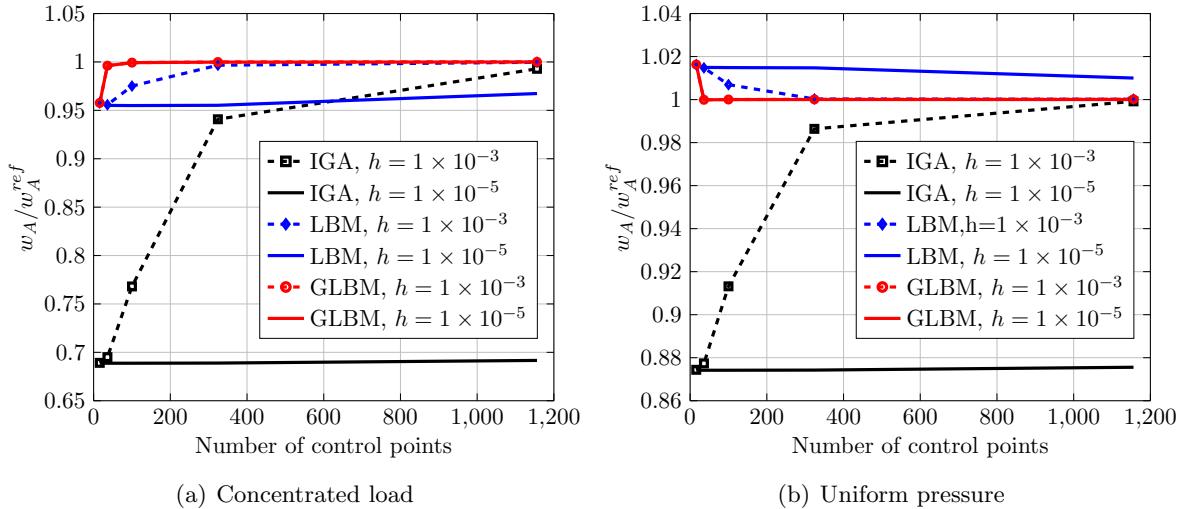


Figure 5: Normalized center displacement w_A with mesh refinement for the rectangular plate 4. LBM means local \bar{B} , GLBM means the generalized local \bar{B} , $h = 10^{-5}$ stands for thickness. IGA of order 2 suffer from locking. For LBM and GLBM rank deficiency occur for coarse meshes. GLBM gets good accuracy.

276 Figure (6) compares the convergence behavior by a severe locking case, in which the plate is
 277 subjected to concentrated load and its thickness is $h = 10^{-5}$. In this study, elements by IGA of
 278 order 2 are locked even by more than 1000 elements, the convergence rate is nearly zero. Elements
 279 by IGA of order 3 start with smaller error, but suffer from locking until the elements are refined
 280 to a certain number, specifically 361 control points in this case. It is inferred that classical IGA
 281 elements are locked until the elements are refined to a certain number, and higher order elements
 282 could reach this number earlier, this conclusion is already known in literatures. As discussed before,
 283 LBM behaves the same as GLBM for the first two refine steps, i.e. 9 control points and 16 control
 284 points respectively. GLBM achieves a good convergence rate at beginning, but in general the
 285 convergence rate is smaller as the meshes are refined, at the last two steps the errors become even
 286 larger, which is also observed for IGA of order 3 and order 4. Finally the errors seem to gather
 287 together.

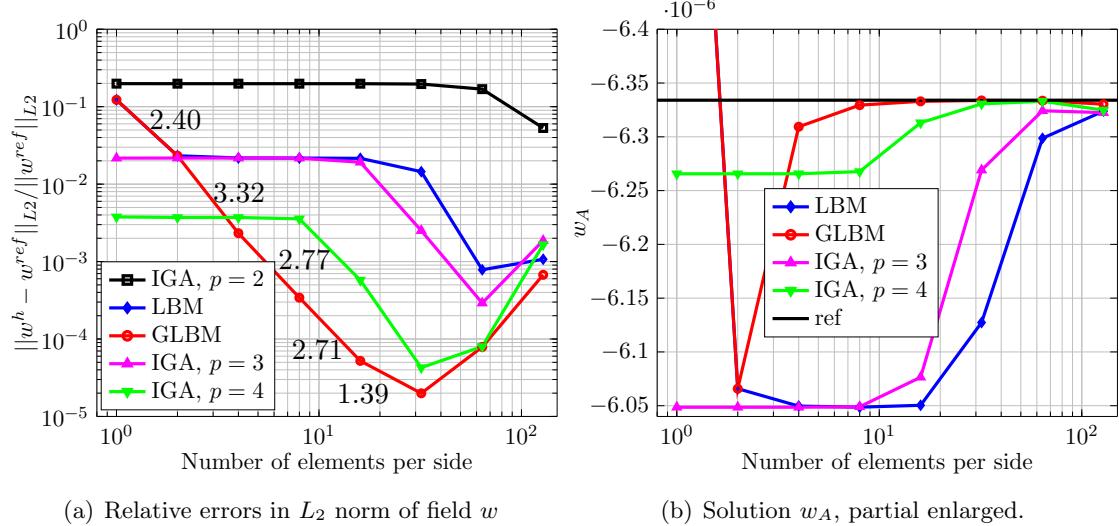


Figure 6: The L_2 error of deflection w for the rectangular plate 4 subjected to concentrated load, thickness $h = 10^{-5}$. LBM means local \bar{B} , GLBM means the generalized local \bar{B} . IGA elements are locked until the elements are refined to a certain number. For GLBM in general the convergence rate is smaller as the meshes are refined, at the last two steps the errors become larger. Finally the errors seem to gather together.

288 To figure out why the errors become larger for very refined meshes in Figure (6), the errors
 289 of thicker plates are studied. However, for plate thickness larger than $h = 10^{-3}$, Equation (34)
 290 is expensive to use because the coefficient before $\nabla^2 w^K$ is much larger, which makes the solution
 291 difficult to converge. Due to the fact that the error of w_A can express the field error to some extent,
 292 for thicker plates only the errors of w_A are studied instead of the field error, and the reference
 293 solutions are obtained by commercial FEM software using 250000 four-node doubly curved shell
 294 elements with reduced integration and hourglass control. To be specific, for plate of thickness $h =$
 295 10^{-2} and concentrated force $P = 10$, the reference value is $w_A = -6.39650 \times 10^{-6}$. Figure (7) show
 296 that for thicker plates the convergence rates seem more straight until the number of elements reach
 297 a certain value, and the results converges slower than thinner plates.

298 From the above, it is opined that for plates, only when the slenderness ratio reaches a large
 299 number, e.g. 10^3 or 10^5 , the classical IGA elements suffer from locking. However, the studies
 300 above are done in an ideal condition that the plates are discretized by structured meshes. The
 301 influence of the mesh distortion on the performance of the proposed formulation is investigated by

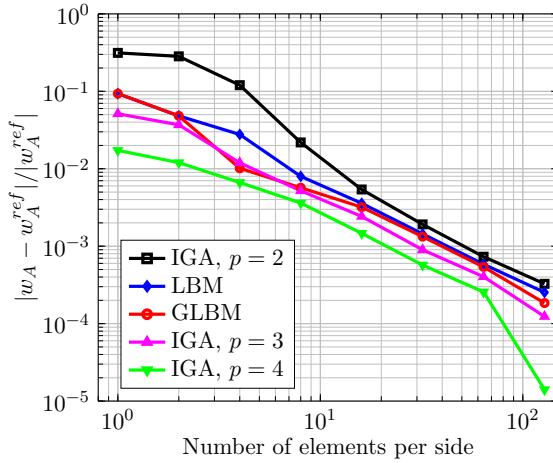


Figure 7: Relative errors of deflection w_A for the rectangular plate 4 subjected to concentrated load, thickness $h = 10^{-2}$. LBM means local \bar{B} , GLBM means the generalized local \bar{B} .

302 considering two different kinds of mesh distortions as shown in Figure (8). Thickness $h = 10^{-5}$ is
 303 considered here as the case when both locking and mesh distortion appear, and $h = 10^{-1}$ is chosen
 304 as the control case when only mesh distortion appears. The influence of mesh distortion on the
 305 normalized center displacement is depicted in Figure (9). When locking and mesh distortion occur
 306 at the same time, errors of IGA drop down quickly, while GLBM keeps good accuracy even for
 307 severe distortions. It can be inferred that the results with classical IGA deteriorates with mesh
 308 distortion, while the proposed formulation is less sensitive to the mesh distortion.

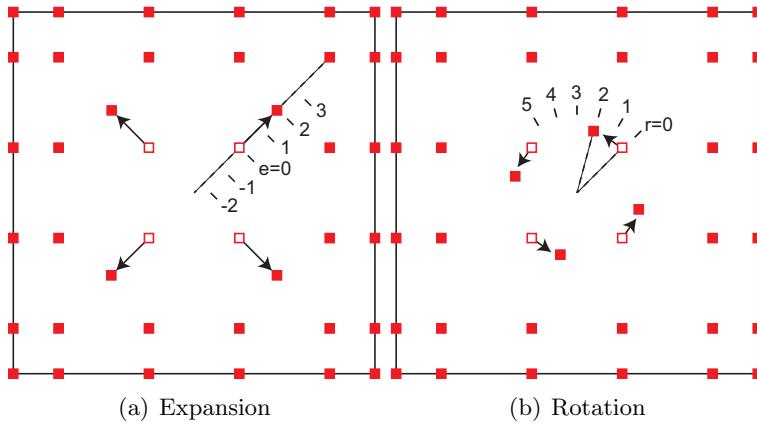


Figure 8: Illustration of control mesh distortions. In (a), four selected control points are moved along the diagonal. In (b), four selected control points are moved around the center of the patch. Indexes e and r are employed to indicate the stages of distortions.

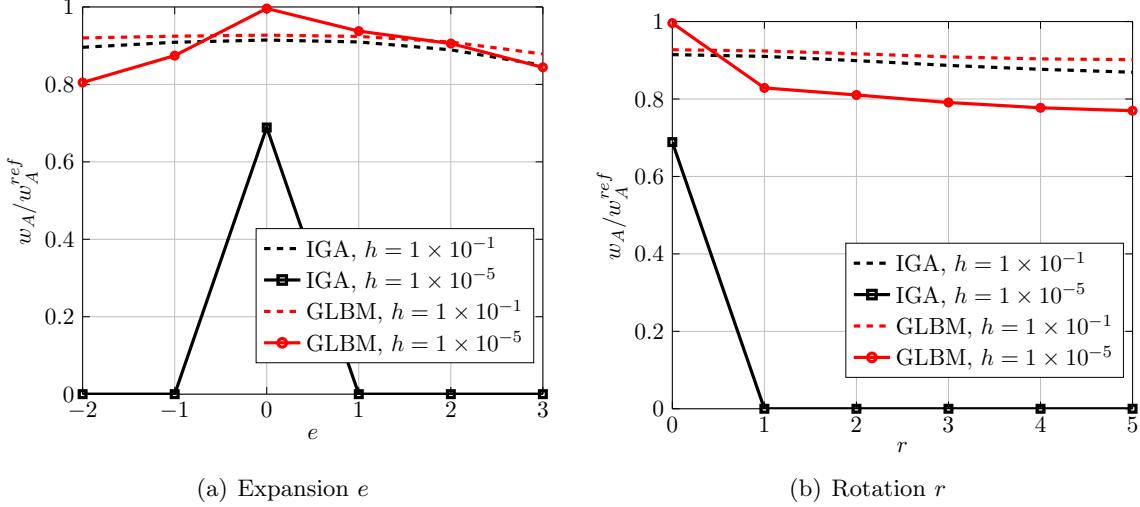


Figure 9: Normalized results of w_A of the rectangular plate 4 with control mesh distortions 8. GLBM means the generalized local \bar{B} . h stands for thickness. When locking and mesh distortion occur at the same time, errors of IGA of order 2 drop down quickly, while GLBM keeps good accuracy even for severe distortions.

309 4.2. Scordelis-Lo roof

310 Next to demonstrate the performance of the proposed formulation when a structure experiences
 311 membrane locking, Scordelis-Lo roof problem is considered. It features a cylindrical panel with
 312 ends supported by rigid diaphragm. For the geometry considered here, $R/h = 100$ and $L/h = 200$,
 313 the structure experiences membrane locking as the transverse shear strain is negligible. The roof
 314 is dominated by membrane and bending deformations. Owing to symmetry only one quarter of
 315 the roof is modeled as shown in Figure (10). The roof is modeled with the control points (x, y, z)
 316 and the weights, w given in Table 2.

Table 2: Control points and weights for the Scordelis-Lo roof problem 10.

	1	2	3	4	5	6	7	8	9
x	0	1.091910703	1.928362829	0	1.091910703	1.928362829	0	1.091910703	1.928362829
y	0	0	0	1.5	1.5	1.5	3	3	3
z	3	3	2.298133329	3	3	2.298133329	3	3	2.298133329
w	1	0.9396926208	1	1	0.9396926208	1	1	0.9396926208	1

317 The roof is subjected to uniform pressure, $p_z = 6250 \text{ N/m}^2$ and the vertical displacement of the
 318 mid-point of the side edge is monitored to study the convergence behavior. The analytical solution
 319 based on the deep shell theory $w_B^{\text{ref}} = -0.0361 \text{ m}$ [48] is taken as reference solution. The material
 320 properties are Young's modulus: $E = 30 \text{ GPa}$ and Poisson's ratio, $\nu = 0.0$. The convergence of the

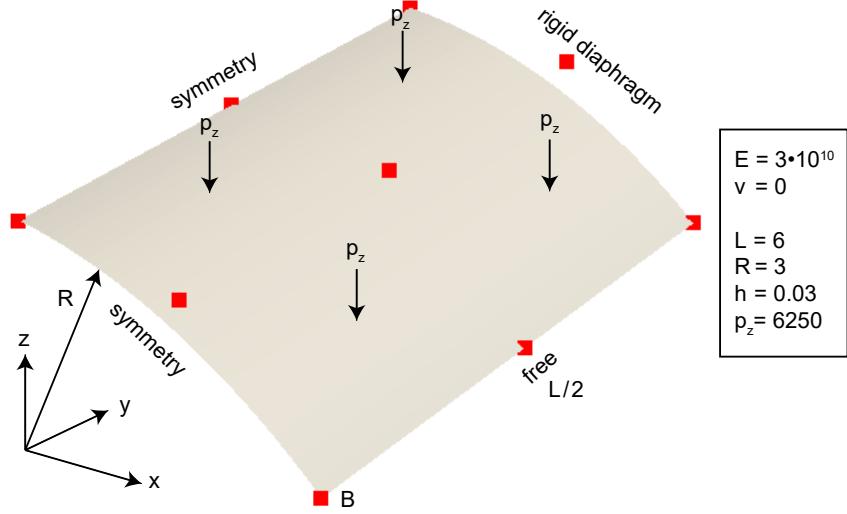


Figure 10: Scordelis-Lo roof problem in Section 4.2: geometry and boundary conditions. The red filled squares are the corresponding control points. The mid-surface of the cylindrical panel is modeled and the roof is subjected to a uniform pressure.

321 normalized vertical displacement with mesh refinement is shown in Figure (11). It is noticed that
 322 for coarse meshes the present method and local \bar{B} method lead to rank deficient matrices, as in
 323 the strain smoothing method by a single subcell [49]. The results from the proposed formulation
 324 is compared with selective reduced integration technique [20]. It can be seen that except IGA of
 325 order 2, the convergence lines by others stall in the middle, while GLBM captures the stall first
 326 and then converge as before. In addition, the contour plot of the deflection w_B by IGA and GLBM
 327 are given in Figure (12) and Figure (13) as a function of mesh refinement. It is obvious that IGA
 328 is locked in the case of coarse mesh, while GLBM captures the deformation quite very well even
 329 for coarse meshes.

330 *4.3. Pinched cylinder*

331 From the above two examples, it is clear that the proposed formulation yields accurate results
 332 when the structure experience either shear locking or membrane locking. To demonstrate the
 333 robustness of the proposed formulation when the structure experiences both shear and membrane
 334 locking, we consider the pinched cylinder problem. The geometry of the cylinder is assumed to be
 335 same as the previous example. This example serves a test case to evaluate the performance when
 336 the structure is dominated by bending behaviour. Again, due to symmetry only one quarter of

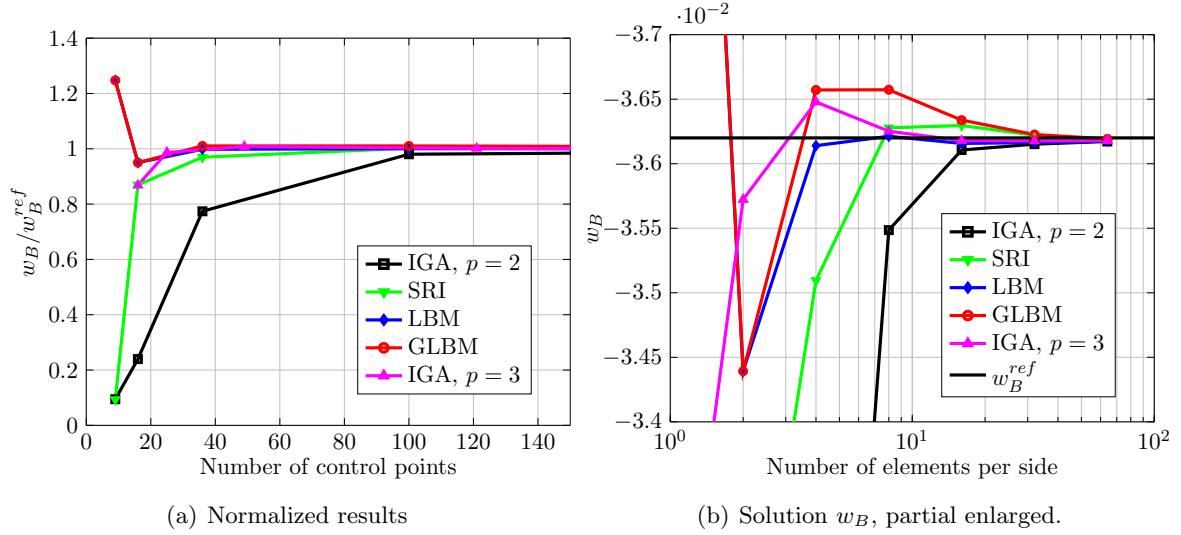


Figure 11: Results of w_B of the Scordelis-Lo roof 10. LBM means local \bar{B} , GLBM means the generalized local \bar{B} . IGA suffers from locking. LBM and GLBM get slightly rank deficiency for coarse meshes, but finally converge. After a short stall, GLBM converges as before.

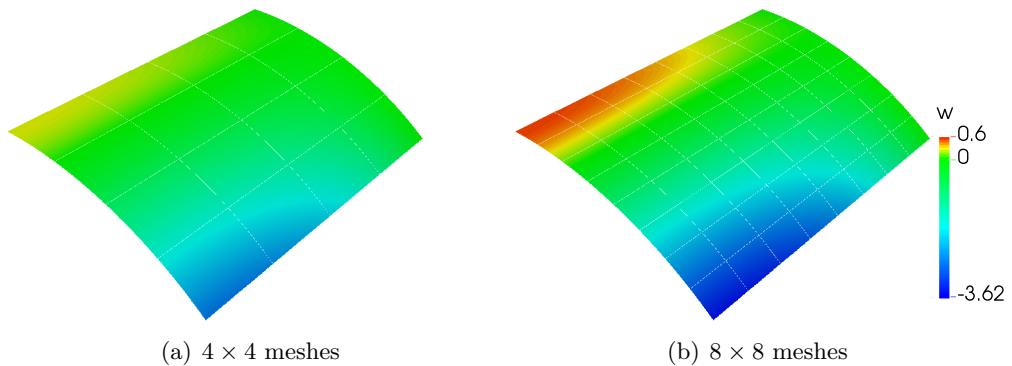


Figure 12: Deflection field $w \times 10^2$ of the Scordelis-Lo roof 10 by IGA. IGA is locked for coarse meshes.

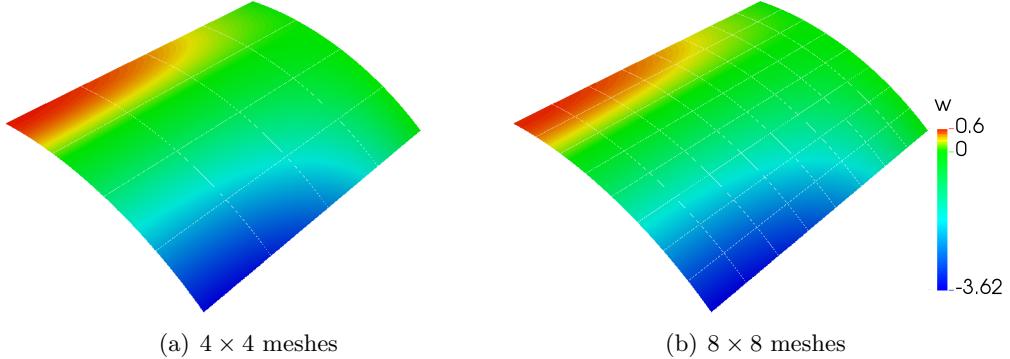


Figure 13: Deflection field $w \times 10^2$ of the Scordelis-Lo roof 10 by the generalized local \bar{B} . Deformation is captured very well for coarse meshes.

337 the cylinder is modeled as shown in Figure (14). The corresponding control points and weights
 338 are given in Table 3. The cylinder is made up of homogeneous isotropic material with Young's
 339 modulus, $E = 30$ GPa and Poisson's ratio, $\nu = 0.3$. The concentrated load acting on the cylinder
 340 is $P = 0.25$ N. The reference value of the vertical displacement is take as $w^{\text{ref}} = -1.8248e^{-7}$ m. The
 341 convergence of the vertical displacement with mesh refinement is shown in Figure (15) and it is
 342 evident that the proposed formulation yields more accurate results than the conventional IGA. All
 343 the used methods stall finally because they all mismatch the adopted reference value. The contour
 344 plot of w_C is shown in Figure (16) and Figure (17), the elements by GLBM seem more flexible
 345 than IGA to be deformed.

Table 3: Control points and weights for the pinched cylinder problem 14.

	1	2	3	4	5	6	7	8	9
x	0	3	3	0	3	3	0	3	3
y	0	0	0	1.5	1.5	1.5	3	3	3
z	3	3	0	3	3	0	3	3	0
w	1	0.7071067812	1	1	0.7071067812	1	1	0.7071067812	1

346 4.4. Pinched hemisphere with hole

347 As the last example, consider a pinched hemisphere with 18° hole subjected to equal and
 348 opposite concentrated forces applied at the four cardinal points. As before, owing to symmetry,
 349 only one quadrant of the hemisphere is modeled as shown in Figure (18). The location of the
 350 control points is also shown. The control points and weights employed to model the hemisphere

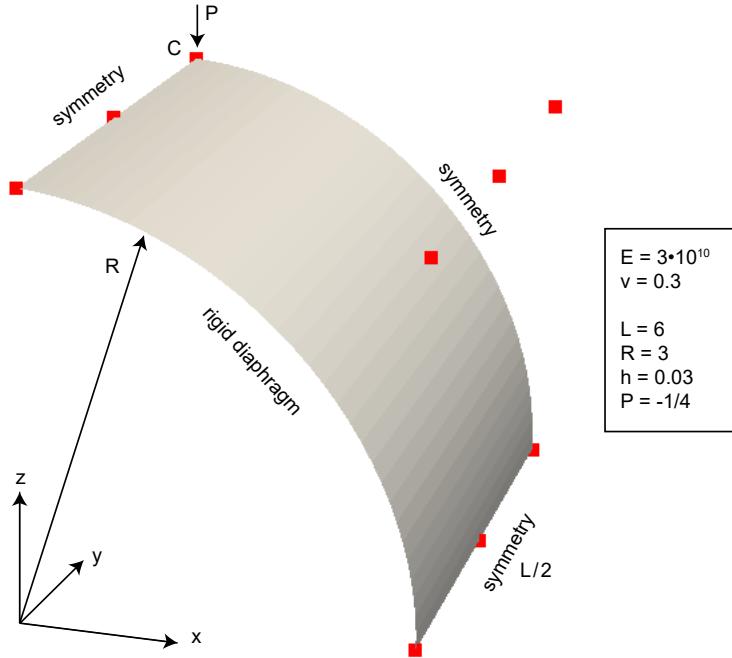


Figure 14: The mid-surface of a fourth of the pinched cylinder in Section 4.3. The red filled squares are the corresponding control points.

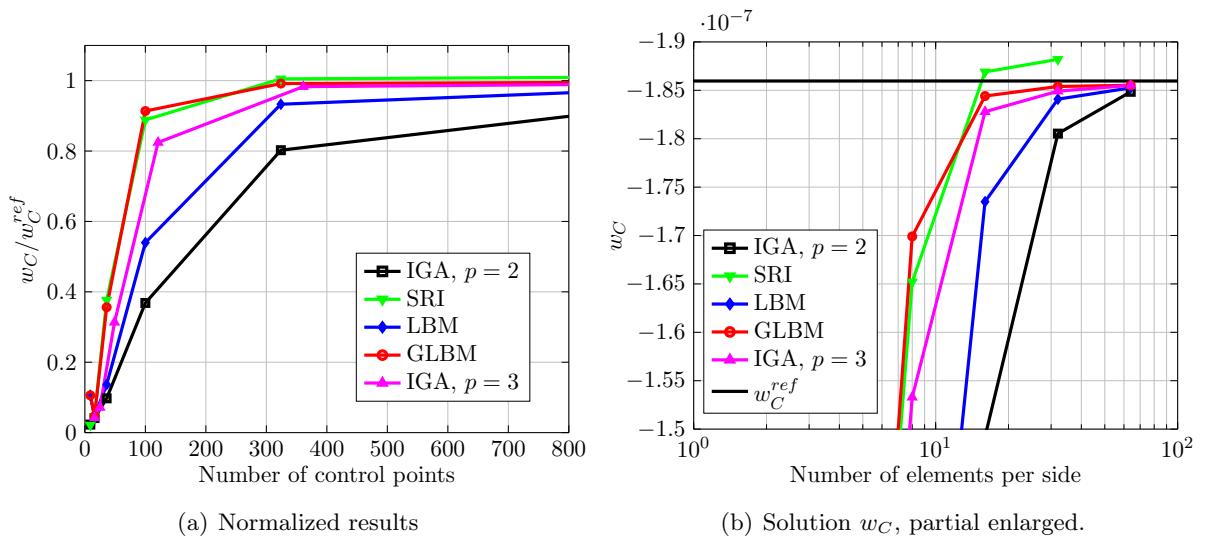


Figure 15: Convergence of normalized vertical displacement with mesh refinement for the pinched cylinder 14. LBM means local \bar{B} , GLBM means the generalized local \bar{B} . GLBM achieves a good accuracy and convergence.

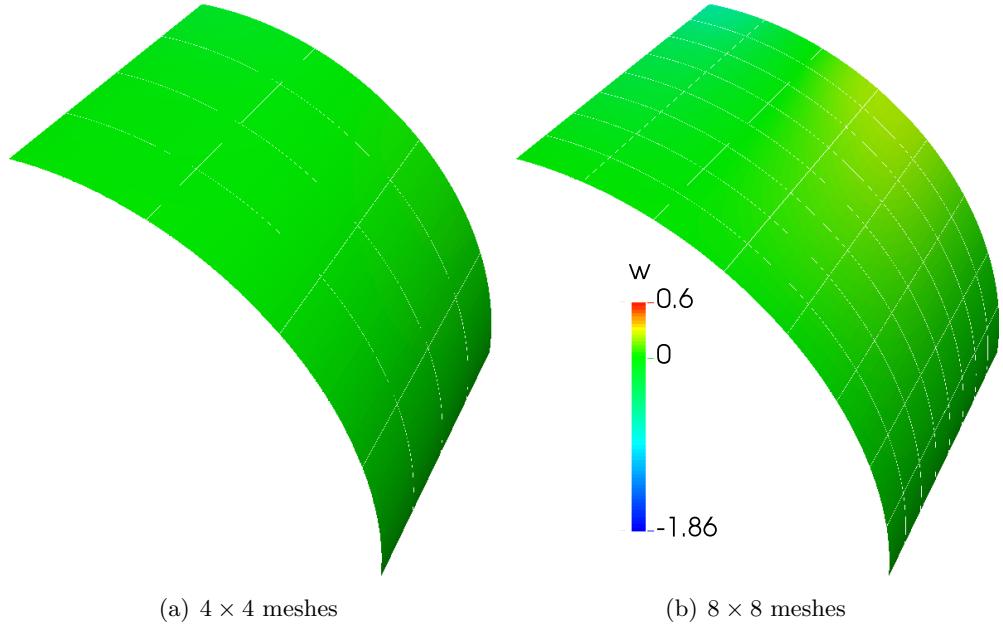


Figure 16: Field of $w \times 10^7$ of the pinched cylinder 14 by IGA. IGA is locked for coarse meshes and refined meshes.

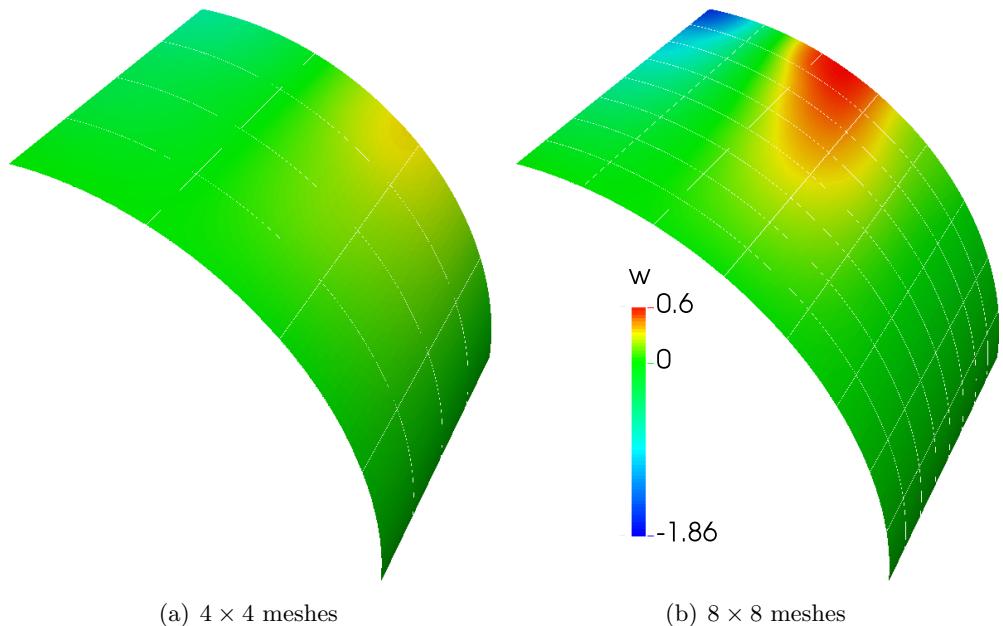


Figure 17: Field of $w \times 10^7$ of the pinched cylinder 14 by the generalized local \bar{B} method. The elements seem more flexible than IGA to be deformed.

351 are given in Table 4. This example experiences severe membrane and shear locking, has right
 352 body rotations and the discretization experiences severe mesh distortion. The mesh distortion
 353 further enhances the locking pathology. To evaluate the convergence properties, the horizontal
 354 displacement $u_{\text{ref}} = 0.0940$ m is taken as the reference solution. The hemisphere is modeled with
 355 Young's modulus, $E = 68.25$ MPa, Poisson's ratio $\nu = 0.3$ and concentrated force, $P = 1$ N. The
 356 results from the proposed formulation are plotted in Figure (19), in which numerical instability of
 357 \bar{B} methods (LBM and GLBM) is observed for the initial single element case. As the elements are
 358 refined, GLBM behaves similarly to SRI, but the results obtained by GLBM is slightly accurate.
 359 The reason that prevents the error to go below is the mismatch between the convergence value and
 360 the adopted reference value. Moreover, the field of displacement u_x is plotted in Figure (20) and
 361 Figure (21), it seems that GLBM has more abilities to capture the deformations.

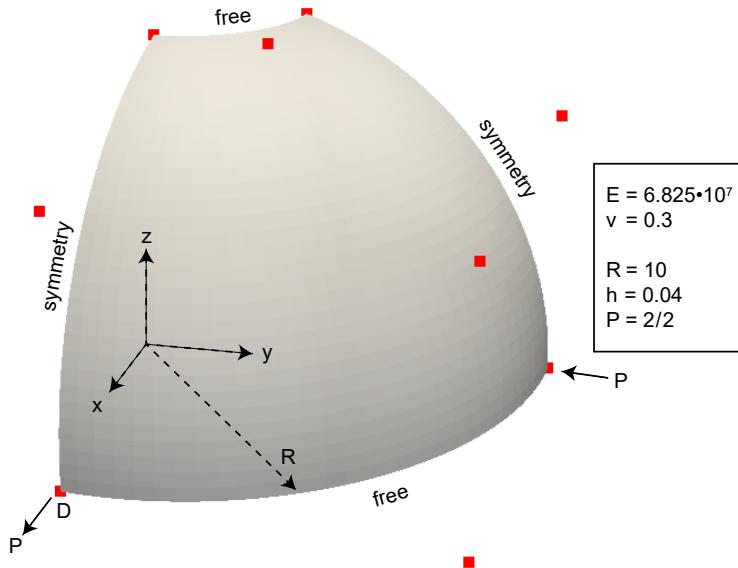


Figure 18: The mid-surface of a fourth of the pinched hemisphere in Section 4.4. The red filled squares are the corresponding control points.

Table 4: Control points and the corresponding weights for the pinched hemisphere problem 18.

	1	2	3	4	5	6	7	8	9
x	10	10	0	10	10	0	3.090169944	3.090169944	0
y	0	10	10	0	10	10	0	3.090169944	3.090169944
z	0	0	0	7.265425281	7.265425281	7.265425281	9.510565163	9.510565163	9.510565163
w	1	0.7071067810	1	0.8090169942	0.5720614025	0.8090169942	1	0.7071067810	1

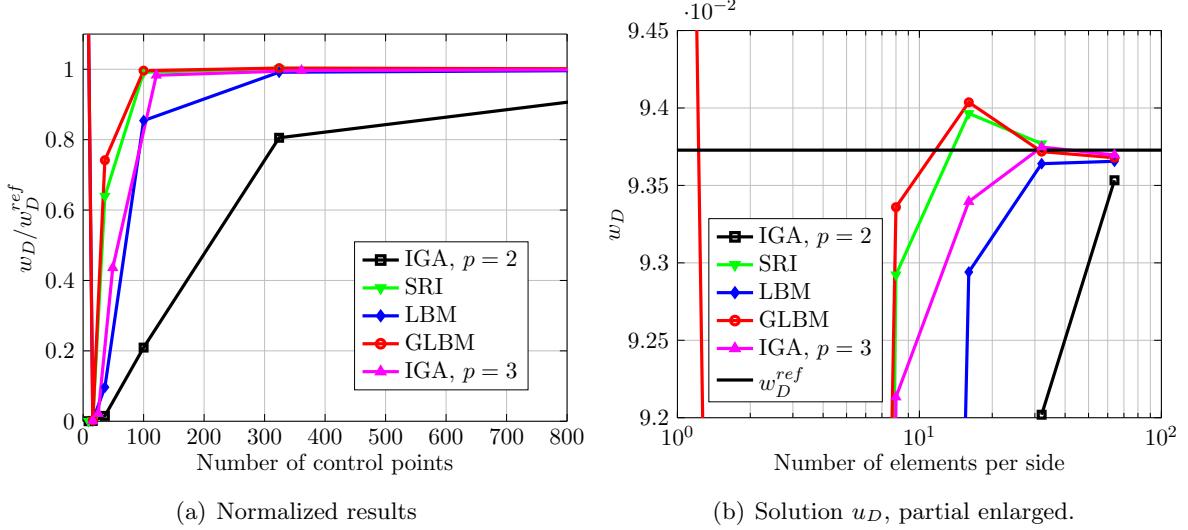


Figure 19: Results of u_D of the pinched hemisphere 18. LBM means local \bar{B} , GLBM means the generalized local \bar{B} . Rank deficiency occur for coarse meshes by LBM and GLBM but they finally converge. GLBM gets good convergence performance.

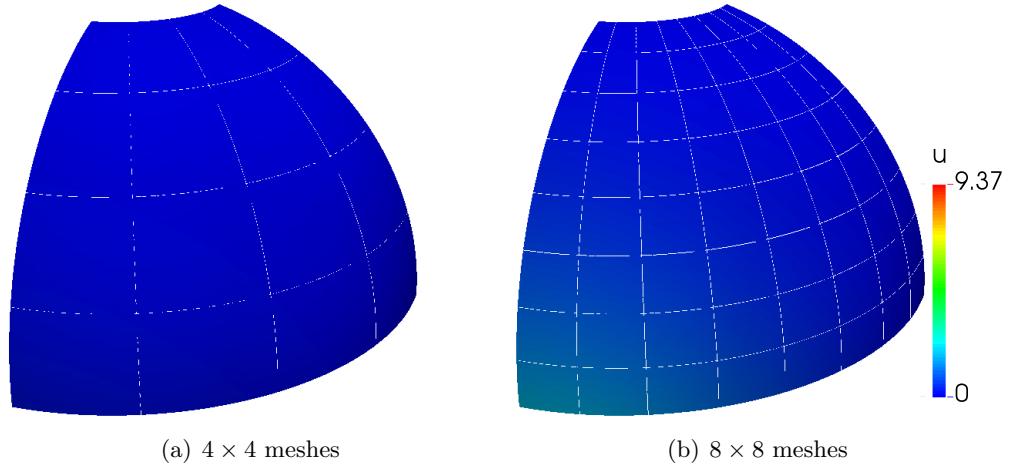


Figure 20: Field of $u_x \times 10^2$ of the pinched hemisphere 18 by IGA. Severe locking is noticed.

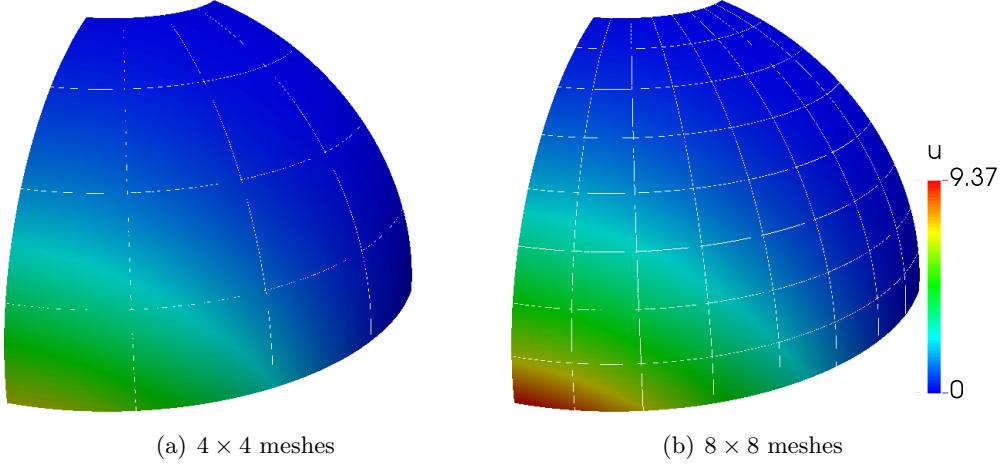


Figure 21: Field of $u_x \times 10^2$ of the pinched hemisphere 18 by the generalized local \bar{B} . Elements deform more easily.

362 **5. Conclusion remarks**

363 The generalized local \bar{B} method is adopted to unlock the degenerated Reissner-Mindlin plate
 364 and shell elements within the framework of isogeometric analysis. The plate/shell mid-surface
 365 and the unknown field is described with non-uniform rational B-splines. The proposed method
 366 uses multiple sets of lower order B-spline basis functions as projection bases, by which the locking
 367 strains are modified in the sense of L_2 projection, in this way field-consistent strains are obtained.

368 The salient features of the proposed local \bar{B} method are: (a) has less computational effort than
 369 global \bar{B} and includes local \bar{B} ; (b) yields better accuracy than classical IGA especially in cases of
 370 coarse meshes and mesh distortions; (c) suppresses both shear and membrane locking commonly
 371 encountered when lower order elements are employed and suitable for both thick and thin models;
 372 (d) for some cases of coarse meshes can lead to rank deficient matrices, as in the strain smoothing
 373 approach with a single subcell [49].

374 Future work includes extending the approach to large deformations, large deflections and large
 375 rotations as well as investigating the behaviour of the stabilization technique for enriched approx-
 376 imations such as those encountered in partition of unity methods [49–51].

377 **Acknowledgments**

378 Q. Hu is funded by China Scholarship Council and National Natural Science Foundation of
379 China (No. 11272075). Y. Xia is funded by National Natural Science Foundation of China
380 (No.61572021, 11272075). Stéphane Bordas thanks partial funding for his time provided by the
381 European Research Council Starting Independent Research Grant (ERC Stg grant agreement No.
382 279578) "RealTCut Towards real time multiscale simulation of cutting in non-linear materials
383 with applications to surgical simulation and computer guided surgery". We also thank the funding
384 from the Luxembourg National Research Fund (INTER/MOBILITY/14/8813215/CBM/Bordas
385 and INTER/FWO/15/10318764). Q. Hu is thankful for Prof. Gengdong Cheng for the valuable
386 suggestions of this research subject.

387 **References**

388 [1] T. J. Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric analysis: Cad, finite elements, nurbs, exact geometry
389 and mesh refinement, *Computer methods in applied mechanics and engineering* 194 (39) (2005) 4135–4195.

390 [2] P. Kagan, A. Fischer, P. Z. Bar-Yoseph, New b-spline finite element approach for geometrical design and
391 mechanical analysis, *International Journal for Numerical Methods in Engineering* 41 (3) (1998) 435–458.

392 [3] S. Lipton, J. A. Evans, Y. Bazilevs, T. Elguedj, T. J. Hughes, Robustness of isogeometric structural discretiza-
393 tions under severe mesh distortion, *Computer Methods in Applied Mechanics and Engineering* 199 (5) (2010)
394 357–373.

395 [4] B. Marussig, J. Zechner, G. Beer, T.-P. Fries, Fast isogeometric boundary element method based on independent
396 field approximation, *Computer Methods in Applied Mechanics and Engineering* 284 (2015) 458–488.

397 [5] G. Xu, E. Atroshchenko, S. Bordas, Geometry-independent field approximation for spline-based finite element
398 methods, in: *Proceedings of the 11th World Congress in Computational Mechanics*, 2014.

399 [6] G. Xu, E. Atroshchenko, W. Ma, S. Bordas, Geometry-independent field approximation: Cad-analysis integra-
400 tion, geometrical exactness and adaptivity, *Computer Methods in Applied Mechanics & Engineering*.

401 [7] E. Atroshchenko, G. Xu, S. Tomar, S. Bordas, Weakening the tight coupling between geometry and simulation
402 in isogeometric analysis: from sub-and super-geometric analysis to geometry independent field approximation
403 (gift), *arXiv preprint arXiv:1706.06371*.

404 [8] D. Toshniwal, H. Speleers, T. J. Hughes, Smooth cubic spline spaces on unstructured quadrilateral meshes
405 with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerations,
406 *Computer Methods in Applied Mechanics and Engineering*.

407 [9] J. Kiendl, K.-U. Bletzinger, J. Linhard, R. Wüchner, Isogeometric shell analysis with kirchhoff–love elements,
 408 Computer Methods in Applied Mechanics and Engineering 198 (49) (2009) 3902–3914.

409 [10] D. Benson, Y. Bazilevs, M.-C. Hsu, T. Hughes, A large deformation, rotation-free, isogeometric shell, Computer
 410 Methods in Applied Mechanics and Engineering 200 (13) (2011) 1367–1378.

411 [11] D. Benson, Y. Bazilevs, M.-C. Hsu, T. Hughes, Isogeometric shell analysis: the reissner–mindlin shell, Computer
 412 Methods in Applied Mechanics and Engineering 199 (5) (2010) 276–289.

413 [12] D. Benson, S. Hartmann, Y. Bazilevs, M.-C. Hsu, T. Hughes, Blended isogeometric shells, Computer Methods
 414 in Applied Mechanics and Engineering 255 (2013) 133–146.

415 [13] W. Dornisch, S. Klinkel, B. Simeon, Isogeometric reissner–mindlin shell analysis with exactly calculated director
 416 vectors, Computer Methods in Applied Mechanics and Engineering 253 (2013) 491–504.

417 [14] S. Hosseini, J. J. Remmers, C. V. Verhoosel, R. Borst, An isogeometric solid-like shell element for nonlinear
 418 analysis, International Journal for Numerical Methods in Engineering 95 (3) (2013) 238–256.

419 [15] J. A. Cottrell, A. Reali, Y. Bazilevs, T. J. Hughes, Isogeometric analysis of structural vibrations, Computer
 420 methods in applied mechanics and engineering 195 (41) (2006) 5257–5296.

421 [16] J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner, K.-U. Bletzinger, The bending strip method for isogeometric
 422 analysis of kirchhoff–love shell structures comprised of multiple patches, Computer Methods in Applied
 423 Mechanics and Engineering 199 (37) (2010) 2403–2416.

424 [17] R. Echter, M. Bischoff, Numerical efficiency, locking and unlocking of nurbs finite elements, Computer Methods
 425 in Applied Mechanics and Engineering 199 (5) (2010) 374–382.

426 [18] T. J. Hughes, M. Cohen, M. Haroun, Reduced and selective integration techniques in the finite element analysis
 427 of plates, Nuclear Engineering and Design 46 (1) (1978) 203–222.

428 [19] C. Adam, S. Bouabdallah, M. Zarroug, H. Maitournam, Improved numerical integration for locking treatment
 429 in isogeometric structural elements, part I: Beams, Computer Methods in Applied Mechanics and Engineering
 430 279 (2014) 1 – 28.

431 [20] C. Adam, S. Bouabdallah, M. Zarroug, H. Maitournam, Improved numerical integration for locking treatment
 432 in isogeometric structural elements. part II: Plates and shells, Computer Methods in Applied Mechanics and
 433 Engineering 284 (2015) 106–137.

434 [21] C. Adam, S. Bouabdallah, M. Zarroug, H. Maitournam, A reduced integration for reissner-mindlin non-linear
 435 shell analysis using t-splines, in: Isogeometric Analysis and Applications 2014, Springer, 2015, pp. 103–125.

436 [22] T. Elguedj, Y. Bazilevs, V. M. Calo, T. J. R. Hughes, B over-bar and F over-bar projection methods for
 437 nearly incompressible linear and non-linear elasticity and plasticity using higher-order nurbs elements, Computer
 438 Methods in Applied Mechanics and Engineering 197 (33-40) (2008) 2732–2762.

439 [23] R. Bouclier, T. Elguedj, A. Combescure, Locking free isogeometric formulations of curved thick beams, Computer
 440 Methods in Applied Mechanics and Engineering 245 (2012) 144–162.

441 [24] R. Bouclier, T. Elguedj, A. Combescure, On the development of nurbs-based isogeometric solid shell elements:

442 2d problems and preliminary extension to 3d, *Computational Mechanics* 52 (5) (2013) 1085–1112.

443 [25] R. Bouclier, T. Elguedj, A. Combescure, Efficient isogeometric nurbs-based solid-shell elements: Mixed formu-
444 lation and-method, *Computer Methods in Applied Mechanics and Engineering* 267 (2013) 86–110.

445 [26] R. Bouclier, T. Elguedj, A. Combescure, An isogeometric locking-free nurbs-based solid-shell element for ge-
446 ometrically nonlinear analysis, *International Journal for Numerical Methods in Engineering* 101 (10) (2015)
447 774–808.

448 [27] T. J. R. Hughes, Generalization of selective integration procedures to anisotropic and nonlinear media, *Internat.
449 J. Numer. Methods Engrg.* 15 (1980) 1413–1418.

450 [28] P. Hu, Q. Hu, Y. Xia, Order reduction method for locking free isogeometric analysis of timoshenko beams,
451 *Computer Methods in Applied Mechanics and Engineering* 308 (2016) 1–22.

452 [29] R. Echter, B. Oesterle, M. Bischoff, A hierachic family of isogeometric shell finite elements, *Computer Methods
453 in Applied Mechanics and Engineering* 254 (2013) 170–180.

454 [30] K.-U. Bletzinger, M. Bischoff, E. Ramm, A unified approach for shear-locking-free triangular and rectangular
455 shell finite elements, *Computers & Structures* 75 (3) (2000) 321–334.

456 [31] F. Brezzi, J. Evans, T. Hughes, L. Marini, New quadrilateral plate elements based on twist-kirchhoff theory,
457 *Comput Methods Appl Mech Eng* (submitted).

458 [32] F. Brezzi, L. D. Marini, Virtual element methods for plate bending problems, *Computer Methods in Applied
459 Mechanics and Engineering* 253 (2013) 455–462.

460 [33] L. B. da Veiga, C. Lovadina, A. Reali, Avoiding shear locking for the timoshenko beam problem via isogeometric
461 collocation methods, *Computer Methods in Applied Mechanics and Engineering* 241 (2012) 38–51.

462 [34] F. Auricchio, L. B. da Veiga, J. Kiendl, C. Lovadina, A. Reali, Locking-free isogeometric collocation methods
463 for spatial timoshenko rods, *Computer Methods in Applied Mechanics and Engineering* 263 (2013) 113–126.

464 [35] S. Yin, J. S. Hale, T. Yu, T. Q. Bui, S. P. Bordas, Isogeometric locking-free plate element: a simple first order
465 shear deformation theory for functionally graded plates, *Composite Structures* 118 (2014) 121–138.

466 [36] J. Kiendl, F. Auricchio, T. Hughes, A. Reali, Single-variable formulations and isogeometric discretizations for
467 shear deformable beams, *Computer Methods in Applied Mechanics and Engineering* 284 (2015) 988–1004.

468 [37] L. Beirão Da Veiga, T. Hughes, J. Kiendl, C. Lovadina, J. Niiranen, A. Reali, H. Speleers, A locking-free
469 model for reissner–mindlin plates: Analysis and isogeometric implementation via nurbs and triangular nurps,
470 *Mathematical Models and Methods in Applied Sciences* 25 (08) (2015) 1519–1551.

471 [38] T. J. Mitchell, S. Govindjee, R. L. Taylor, A method for enforcement of Dirichlet boundary conditions in isoge-
472 ometric analysis, in: *Recent Developments and Innovative Applications in Computational Mechanics*, Springer,
473 2011, pp. 283–293.

474 [39] S. Govindjee, J. Strain, T. J. Mitchell, R. L. Taylor, Convergence of an efficient local least-squares fitting method
475 for bases with compact support, *Computer Methods in Applied Mechanics and Engineering* 213 (2012) 84–92.

476 [40] V. P. Nguyen, C. Anitescu, S. P. Bordas, T. Rabczuk, Isogeometric analysis: an overview and computer imple-

477 mentation aspects, *Mathematics and Computers in Simulation* 117 (2015) 89–116.

478 [41] F. Koschnick, M. Bischoff, N. Camprubí, K.-U. Bletzinger, The discrete strain gap method and membrane
479 locking, *Computer Methods in Applied Mechanics and Engineering* 194 (21) (2005) 2444–2463.

480 [42] J. Simo, T. Hughes, On the variational foundations of assumed strain methods, *Journal of Applied Mechanics*
481 53 (1) (1986) 51–54.

482 [43] P. Antolin, A. Bressan, A. Buffa, G. Sangalli, An isogeometric method for linear nearly-incompressible elasticity
483 with local stress projection, *Computer Methods in Applied Mechanics and Engineering*.

484 [44] B.-Z. Huang, V. B. Shenoy, S. Atluri, A quasi-conforming triangular laminated composite shell element based
485 on a refined first-order theory, *Computational mechanics* 13 (4) (1994) 295–314.

486 [45] B. Juettler, U. Langer, A. Mantzaflaris, S. Moore, W. Zulehner, Geometry + simulation modules: Implementing
487 isogeometric analysis, *Proc. Appl. Math. Mech.* 14 (1) (2014) 961–962.

488 [46] K. Lee, G. Lim, C. Wang, Thick Lévy plates re-visited, *International Journal of Solids and Structures* 39 (1)
489 (2002) 127–144.

490 [47] G. Lim, J. Reddy, On canonical bending relationships for plates, *International journal of solids and structures*
491 40 (12) (2003) 3039–3067.

492 [48] R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy, *Finite
493 elements in analysis and design* 1 (1) (1985) 3–20.

494 [49] S. P. Bordas, T. Rabczuk, N.-X. Hung, V. P. Nguyen, S. Natarajan, T. Bog, N. V. Hiep, et al., Strain smoothing
495 in fem and xfem, *Computers & structures* 88 (23) (2010) 1419–1443.

496 [50] L. Chen, T. Rabczuk, S. P. A. Bordas, G. Liu, K. Zeng, P. Kerfriden, Extended finite element method with edge-
497 based strain smoothing (esm-xfem) for linear elastic crack growth, *Computer Methods in Applied Mechanics
498 and Engineering* 209 (2012) 250–265.

499 [51] M. Surendran, S. Natarajan, S. Bordas, G. Palani, Linear smoothed extended finite element method, arXiv
500 preprint arXiv:1701.03997.