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Abstract

We propose a generalized local B framework, addressing locking in degenerated Reissner-Mindlin
plate and shell formulations in the context of isogeometric analysis. Parasitic strain components
are projected onto the physical space locally, i.e. at the element level, using a least-squares ap-
proach. The formulation is general and allows the flexible utilization of basis functions of different
order as the projection bases. The present formulation is much cheaper computationally than the
global B method. Through numerical examples, we show the consistency of the scheme, although
the method is not Hu-Washizu variationally consistent. The numerical examples show that the
proposed formulation alleviates locking and yields good accuracy for various thicknesses, even for
slenderness ratios of 1 x 10, and has the ability to capture deformations of thin shells using rel-
atively coarse meshes. From the detailed numerical study, it can be opined that the proposed

method is less sensitive to locking and mesh distortion.
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1. Introduction

The conventional (Lagrange-based) finite element method (FEM) employs polynomial basis
functions to represent the geometry and the unknown fields. The commonly employed approxima-
tion functions are Lagrangian polynomials. However, these Lagrange polynomials are usually built
upon a mesh structure which needs to be generated, from the CAD or Image file provided for the
domain of interest. This mesh generation leads to the loss of certain geometrical features: e.g. a
circle becomes a polyhedral domain. Moreover, Lagrange polynomials lead to low order continuity
at the interface between elements, which is disadvantageous in applications requiring high order
partial differential equations.

The introduction of isogeometric analysis (IGA) [I] provides a general theoretical framework for
the concept of “design-through-analysis” which has attracted considerable attention. The key idea
of IGA is to provide a direct link between the computer aided design (CAD) and the simulation, by
utilizing the same functions to approximate the unknown field variables as those used to describe
the geometry of the domain under consideration, similar to the idea proposed in [2]. Moreover, it
also provides a systematic construction of high-order basis functions [3]. Note that, more recently,
a generalisation of the isogeometric concept was proposed, whereby the geometry continues to be
described by NURBS functions, as in the CAD, but the unknown field variables are allowed to
live in different (spline) spaces. This lead to the concept of sub and super-geometric analysis,
also known as Geometry Independent Field approximaTion (GIFT), described within a boundary
element framework in [4] and proposed in [5l 6] and later refined in [7]. Related ideas, aiming at
the construction of tailored spline spaces for local refinement were proposed recently in [§].

In the literature, the IGA has been applied to study the response of plate and shell structures, in-
volving two main theories, viz., the Kirchhoff-Love theory and the Reissner-Mindlin theory. Thanks
to the C'-continuity of the NURBS basis functions adopted in IGA, Kiendl et al. [9] developed an
isogeometric shell element based on Kirchhoff-Love shell theory. The isogeometric Kirchhoff-Love
shell element for large deformations was presented in [I0]. The isogeometric Reissner-Mindlin shell
element was implemented in [I1], including linear elastic and nonlinear elasto-plastic constitutive

behavior. The blended shell formulation was proposed to glue the Kirchhoff-Love structures with
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Reissner-Mindlin structures in [12]. In addition, the isogeometric Reissner-Mindlin shell formula-
tion that is derived from the continuum theory was presented in [13], in which the exact director
vectors were used to improve accuracy. The solid shell was developed in [14], in this formulation
the NURBS basis functions were used to construct the mid-surface and a linear Lagrange basis
function was used to interpolate the thickness field.

The Kirchhoff-Love type elements are rotation-free and are only valid for thin structures. Due
to the absence of rotational degrees of freedom (DoFs), special techniques are required to deal
with the rotational boundary conditions [9, [I5] and multi-patch connection [16]. Theoretically, the
Reissner-Mindlin theory is valid for both thick and thin structures, however it is observed from the
literature [11},17] that both the FEM and the IGA approaches suffer from locking for thin structures
when the kinematics is represented by Reissner-Mindlin theory, especially for lower order elements
and coarse meshes. This has attracted engineers and mathematicians to develop robust elements
that alleviates this pathology. Adam et.al. proposed a family of concise and effective selective and
reduced integration (SRI) [18] rules for beams [19], plates and shells [20], and non-linear shells using
T-splines [21] within the IGA framework. Elgued; et. al. [22] presented B method and F' method to
handle nearly incompressible linear and non-linear problems. The B method has been successfully
applied to alleviate shear locking in curved beams [23], two dimensional solid shells [24], three-
dimensional solid shells [25] and in nonlinear solid shell formulation [26]. Reviewing the literature
of the B method since its appearance [27], one valuable contribution is the introduction of local
B concept [25], 28], thanks to which lots of computational effort has been saved without too much
accuracy loss. In addition, the equivalence between the B method and the mixed formulation
were proved [23, 25]. Echter and Bischoff [I7, 29] employed the DSG method [30] within the
IGA framework to alleviate shear locking syndrome effectively. Other approaches include twist
Kirchhoff theory [31], virtual element method [32], collocation method [33] [34], simple first order
shear deformation theory [35], and single variable method [36], B7]. The above approaches have
been employed with Lagrangian elements and IGA framework with varying order of success.

This paper builds on [28] for beam and rod structures using Timoshenko theory, aiming to

develop a locking-free formulation for plates and shells governed by Reissner-Mindlin theory within



57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

IGA framework. In order to alleviate the locking phenomena, the locking strains are projected onto
lower order physical space by the least square method. The novel idea behind the formulation is to
use multiple sets of basis functions to project the locking strains locally i.e. element-wise, instead of
projecting globally i.e. all over the patch. The local projecting algorithm is inspired by the local B
method [25] and also by the work of local least square method [38] [39]. These kind of formulations
allow one to perform least-square projections locally, thereby reducing the computational effort
significantly.

The outline of this paper is as follows: Section [2| gives an overview of Reissner-Mindlin theory
for plates and shells. In Section [3| we present the novel approach, the generalized local B method
to alleviate the locking (both shear and membrane) problems encountered in thin structures whilst
employing Reissner-Mindlin formulation. The robustness, accuracy and the convergence properties
are demonstrated with some benchmark examples in Section [4] followed by concluding remarks in

the last section.

2. Theoretical formulation for Reissner-Mindlin plates and shells

2.1. Reissner-Mindlin shell model

In IGA, the parametric space is typically Cartesian, while the physical domain of the unde-
formed shell can be of complex shape, not necessarily rectangular. For simplicity, we consider a
rectangular shell of length L, width ¢ and constant thickness h. The linear elastic material, as-
sumed to be homogeneous and isotropic, is described by Young’s modulus, £ and Poisson’s ratio
v. Figure (1| represents the mid-surface of the shell in the parametric and physical spaces.

The main difference between the Reissner-Mindlin and the Kirchhoff-Love shell theory is in
the assumptions on the deformation behavior of the section and in the resulting independent
kinematic quantities attached to the mid-surface in order to describe the deformation. According
to the Reissner-Mindlin theory, a first order kinematic description is used in the thickness direction
to account for the transverse shear deformations. Assuming a Cartesian coordinate system, any

arbitrary point P in the shell structure is described by:

Tp =T+ zn (1)
4
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Figure 1: Mid-surface in the parameter space (left) and physical space (right) for a degenerated shell mid-surface.
The real model is recovered by Eq..

and its displacement is calculated assuming small deformation as
up=u+z20xn (2)

where x is the geometry of the mid-surface as shown in F ig z € [—%, %] denotes the thickness. wu,
0 and n are the displacement vector, the rotation vector and the normal vector on the mid-surface
point projected by point P. The linearized strain tensor valid for small deformations is adopted
here

1
€= i(up@ + u}:w) (3)

2.2. Isogeometric approach

In the context of shells, bi-variate NURBS basis functions are employed. Let 2 = {&1, ..., &nqpy1}
and H = {m,...,Mm+q+1} be open knot vectors, and w4 be given weights, A = {1,...,nm}. Then,
the NURBS basis functions R4(&,7n) are constructed, where p and ¢ are the orders along the di-
rections £ and 7 respectively. For more details about IGA, interested readers are referred to [40)]
and references therein.

Following the degenerated type formulation, the geometry of the undeformed mid-surface is

described by:

T = Z Raxa (4)
A=1
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and the mid-surface discrete displacement field is interpolated as:
nm
U"=> Raqa (5)
A=1

where x4 defines the location of the control points, U? = (u,0)", g4 = (u4,04)T is the vector
of control variables corresponding to each control point, specifically uq = (u,v,w)" and 84 =
(0, 0y, 6.)". The approximation space for displacement field is denoted as (Qp,q in order to highlight
the orders of the basis functions.

Once the mid-surface is described using Eq. and Eq. , any arbitrary point P in the shell

body can be traced by the following discrete forms:

Tp = ZRA($A+ZTLA) (6)
A=1
uPZZRA(uA—{—Z@AXTLA) (7)
A=1
where,
n T ¢ X Ty (8)

e x @l
is the normal vector. The normal vectors at the Greville abscissae n4 are adopted here because
it can achieve a good balance between the accuracy and the efficiency [20]. It should be noted
that the above equation includes the plate formulation, which can be considered as a special case.
For plates, one always has n(z,y,2) = (0,0,1)", which means that there are only two rotational
degrees of freedom, 6, and 0,.

Using Voigt notation, the relation between the strains and the stresses is expressed as

o=Dge (9)
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where D, is the global constitutive matrix, and

D,=T"D/T (10)

here D; is the given local constitutive matrix. To make D); suitable for the physical geometry, the
transformation matrix T is employed, which is composed of ¢ and x ;.
Upon employing the Galerkin framework and using the following discrete spaces for the dis-

placement field,

S

{U e [H'(2)])",Ulr, = Ud} (11)

V

{vem @) vin =0}, (12)
the variational function reads: find U € S such that

U, U")=1(U") YU €V (13)
in which the bilinear term is

bU,U*) = /QE(U*)TDge(U)dQ. (14)

When the displacements and the rotations are approximated with polynomials from the same
space, the discretized framework experiences locking (shear and membrane) when the thickness
becomes very small. The numerical procedure fails to satisfy the Kirchhoff limit (thin shell) as
the shear strain does not vanish with the thickness of the shell approaching zero. One explanation
of shear locking is that different variables involved are not compatible [36], which is also known
as field inconsistency. Recall Equation and Equation , the field inconsistency only holds
for plate formulation but not for shell formulation. However, it is observed that for the present
shell formulation the element suffers from both membrane and shear locking. An explanation is
that in curved elements shearless bending [41] and inextensible bending deformations cannot be

represented exactly, because of the appearance of spurious membrane and shear terms that absorb
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the major part of the strain energy [23], and this results in an overestimation of the stiffness. In
the next section, a locking-free Reissner-Mindlin plate/shell formulation is proposed within the

framework of IGA.

3. Development of locking-free Reissner-Mindlin plates and shells

In this section, after introducing the classical B method, the numerical consistency is discussed.
In order to further improve the efficiency and introduce flexibility into the formulation, a local and

a generalized B form is proposed.

3.1. Classical B-bar method in IGA

The novel idea behind the B method is using a modified strain instead of the original one. It
is believed that the modified strain should kept the numerical consistency and more importantly
release the locking constrains thus have a better accuracy. In classical B method [22] 23], a common

way is to use the projection of the original strain to formulate the bilinear term

LU, U*) = / e*TDed (15)
2

The projected strain € and the original strain € are equal in the sense of the least square projection.
The projection space is chosen to be one order lower, i.e. Qpg = Qp—1,4—1 (see Figure (a)). Built
from one order lower knot vectors, with all the weights given as W5 = 1,4 = {1,...,7im}, one
order lower B-spline basis functions Nz are obtained. The L projection process is performed on

the physical domain as

(16)
B=1,...,am
in which the discretized form of the projected strain is
nm -
e =) Nzt (17)
A=1

8
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where 4" means the projection of e” onto N ;. Finally, we have

im
gl = iM L | €"Npdn (18)
A,B=1 f
where M 75 is is the inner product matrix
Mg = (NpNg)a = | NaNpd2 (19)

The Hu-Washizu principle is utilized to prove the variational consistency of the B method,
while the verification of the average strain demonstrates its numerical consistency. More details of

these contributions are given in [22H24] [42]. The Hu-Washizu principle is written as
5HH1/V(U,§,5') = / 0T Ded 2 + (5/ &T(é‘ —E,‘)CLQ — / t(SUde (20)
0 0 Iy

Here, the displacement field U € S, the assumed strain & € [Lz(_())]d and the assumed stress

o< [LQ(Q)] . The constraint condition of the variational consistency is expressed as

/ 66T (e —-&)dnN =0 (21)
(9

and in the B case

/Q se"" D (sh - gh) AR =0 (22)

As for the numerical consistency, the constraint condition is expressed as

/9 Ne (eh - éh) A2 =0 (23)

Since the terms of the constitutive matrix D, are constant at every quadrature point, and
recalling Equation , it can be shown that Equation and Equation are satisfied.
If the whole part of the original strain is projected, these two consistency conditions are both

satisfied. However, if only part of the original strain, for instance the average of the original strain,
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is projected, then only the numerical consistency condition is satisfied according to [24]. This
conclusion also stands for the proposed method in this paper. In addition, [23| 25] proved that the

B method is equivalent to the mixed method.

3.2. Local and generalized B method for Reissner-Mindlin plates and shells

It is noticed that one needs to calculate the inverse of matrix M in Equation , which could
be computationally expensive if the projection is applied globally. Thus, from a practical point of

view, it is highly recommended to project the strains locally [25, 28], i.e. element-wise

(p+1)(g+1)

gh = Z NiM / e"Nzdn (24)

with

Mg = (Ni,Np)a. =/ NiNpdo. (25)
2

Moreover, instead of projecting the strains onto ()p—14—1, different sets of projection spaces
are adopted in this work. This is called the generalized strategy, which could bring more flexibility
into the formulation. The idea behind this generalized projection is that, with the opinion of
projecting the original strains into the lower order space could release the locking constrains, we
treat the corner, boundary and inner elements separately by using the lowest possible order of each
element thus release the locking constrains as much as possible. The projection spaces need to be
chosen carefully to avoid ill-condition or rand deficiency, readers interested in the corresponding
mathematical theory is recommended to see [43], which is in the context of volume locking (nearly-
incompressible) problems. Here, the strategy in our previous work [2§] is extended to bi-dimensional
cases. One difference between [28] and the present work is that in [28] the strain projection is
performed within the parametric domain, while in present work the projection is performed within
the physical domain as shown in Equation , which makes the present formulation more suitable
for geometries of varied shapes. Specifically, for space ()22, we adopt Q1,1 for corner elements, Qo1
and Q1 for boundary elements, and Qg for inner elements, as shown in Figure (b)

For degenerated plates and shells, although the geometries are represented in two dimensions,

10
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Q1 1 Q1 1 Q1 1 Q1 1 Q1,1 001 QD1 Q1 1
+ o+ o+ + |+ o+
Q1 1 Q1 1 Q1 1 Q1 1 Q1 0 QU,O QOO Q7 0 E) + + + + + +
o~ N .
1] 1] N
> > i
< < S
Q1 1 Q1,1 Q‘l 1 Q1 1 Q1 0 QUO QO,O Q‘l 0 < + + + * + +
o+ |+ + |+ o+
Q1,1 Q1,1 Q1,1 Q1,1 Q1,1 Q0,1 QD,1 Q1,1
+ o+ o+ + |+ o+
§ p=2 § p=2 §p=2C
(a) Local B (b) Generalized local B (c) SRI [20]

Figure 2: Unlock strategies in bi-dimensional parameter space. Projecting spaces for locking strains are denoted as
Qp,q. For local B method (a), one order lower B-spline basis functions are employed for all elements. The presented
generalized local B method (b) uses basis functions of different orders, inspired by the SRI method (c), while C*
continuities of elements are not restricted as in (c).

there is the thickness z involved in the formulation. In this case, if the whole part of strain is
projected, rank deficiency appears and the formulation yields inaccurate results as shown in [24]

and also to our computational experience. Following the similar approach as outlined in [24] 25],

in this work, only the average strain through the thickness is projected as

(P+h@+D) )
MID@El) = ) aM L / MID(e")Ngdn (26)
= )
A,B=1 e

where MID(g!) is the average strain through the thickness within a single element

h
MID(!) = ;/2 ehdz. (27)

[Ny

The modified bi-linear form is defined as

bU,U") = / " De — MID(e*)" DMID(e) + MID(e) DMID(e) | df2. (28)
original average strain projected average strain

Within local B, if the shape functions over the elements possess C° continuity (which is obviously

11
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fulfilled), the Hu-Washizu principle can be rewritten as [44]

Syw(U,6,6) = ( 06T Ded2+6 | &%(e —&)d2 — t5Udrf> (29)
2m

m Om It

in which m denotes the number of elements. In this context the assumed displacements should
satisfy CY continuous between elements, but discontinuous assumed strains are allowed, this explains

why different sets of basis functions can be used. The constraint condition is expressed as

66 (e —&)dn =o0. (30)
Om

However, when the local B method is applied for degenerated plates, it is shown in the appendix of

[24] that only the numerical consistency is satisfied, but the variational consistency is not satisfied.

3.3. Discussions

This generalized strategy is similar with the SRI strategy in [20]. The approach of using multiple
sets of lower order basis functions was firstly presented for one-dimensional cases in [2§]. In the
case of only one quadrature point being used for an element, the functions are detected only at
this quadrature point but nowhere else, which is analogous to its projection onto a Qo0 space. To
achieve a better understanding of the proposed projection strategy, the basis functions are shown
in Fig There are four elements per side. In the local B method, only one single set of basis
functions (i.e. Q1,1) is used to form the projection space. While in the generalized local B method,
four set of basis functions (i.e. Qp4) are used. As shown in Figl3| (b), this strategy means that
the modified strains are assumed to be constant for the four internal elements and bi-linear for the
four corner elements. In particular, for the side elements, the modified strains are assumed to be
constant along the patch boundary, and linear facing inside. Moreover, it is noted that for cases
of 1 element and 4 elements, there is no difference between the local B and generalized local B.

The advantage of SRI method is that its implementation is simple and the computations in-
volve less calculations because fewer quadrature points are employed. But one must consider the
continuity between neighboring elements, which requires additional efforts. However, for the local

B method, there is no problem in continuity because the projection procedure is applied element-

12
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Figure 3: Bi-dimensional basis functions for projecting locking strains of each element, let Qp,q denote the projecting
space. There are 4 x 4 elements. (a) Basis functions of Q1,1 in the local B method. (b) Basis functions in Q5,5 (see
Fig in the generalized local B method, the strains at the corners are assumed to be linear along both sides, the
strains at the patch sides are assumed to be linear toward inside and constant along the boundary, the strains within
the patch are assumed to be constant.

wise. This conclusion is also found in [28]. Thus, one could always use knot vectors of order p
and continuity CP~! (i.e. without inner repeated knots) as the projection knot vector. Apart
from being accurate, since the lower order basis functions are used, for example linear functions
for corner elements and constants for inner elements, better efficiency can be achieved with fewer
quadrature points than usual.

Compared with the global B method, the local B method shows promising advantages in terms
of computational efficiency. In the global B method, the calculation of the inverse of matrix
M requires large amounts of memory. Thus, the adoption of local projection rather than global
one saves lots of computational efforts. Similar conclusions had been carried out in the context of

LLSQ fitting for boundary conditions [38] and further LLSQ algorithm [39]. In these contributions,

assuming A is the global Boolean assembly operator, the matrix

(AAT) ' A (31)
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is used to calculate the uniformly weighted average of shared nodes. For instance, if a node
(control point) is shared by n elements, then the values corresponding to this node is divided by n.
Furthermore, in the local B method [25], same procedure named by strain smoothing is employed
to ensure the continuity of the projected strains and thus to obtain results of better accuracy.
The price to pay is that one need to calculate the average operator and the bandwidth is larger
than classical IGA. In this research to obtain the strain field of higher order continuity, we use
the original strain of discretized form " instead of &, i.e. recover the displacement field firstly by
Eq. and then get the strain field as usual, in this way the continuity property of NURBS basis

functions is utilized.

4. Numerical examples

In this section, we demonstrate the performance of the proposed generalized local B framework
for Reissner-Mindlin plates/shells by solving a few standard benchmark problems. Unless otherwise
mentioned consistent units are employed in this study. The numerical examples include: (a)
Rectangular plate; (b) Scordelis-Lo roof; (¢) Pinched cylinder and (d) Pinched hemisphere with a
hole. In all the numerical examples, the following knot vectors are chosen as the initial ones:

£=1{0,0,0,1,1,1}

(32)
H=1{0,0,0,1,1,1}

In the following examples, (p+ 1) x (¢ + 1) Gauss points are used for numerical integration, p X g
Gauss points are used for the family of B methods for simplicity, the reduced quadrature scheme
in [20] is adopted for comparison. The following conventions are employed whilst discussing the

results:

e LB: Local B method without strain smoothing in Equation . The projection is applied
element by element as shown in Eq. and Figure (a)

e GLB: Generalized local B method, which means that based on LB, the strategy of using

multi-sets of basis functions as shown in Figure (2)(b) is adopted

14



204 e SRI: Selective reduced integration [20]

s For the degenerated plates and shells, only the average strain through the thickness (Eq) is

2

I

6 projected, thus the key word M is added and we have LBM and GLBM. The proposed formulation

27 is implemented within the open source C++ IGA framework Gismo [1] [45].

us  4.1. Simply supported square plate

249 Consider a square plate simply supported on its edges with thickness h and the length of the
20 side L = 1. Owing to symmetry, only one quarter of the plate, i.e, a = L/2 is modeled as shown in

1 Figure . The plate is assumed to be made up of homogeneous isotropic material with Young’s

a1

2 modulus E = 200 GPa and Poisson’s ratio, v = 0.3. Two sets of loading are considered: (a) a
253 point load P at the center of the plate and (b) uniform pressure. The control points and the

24 corresponding weights are given in Table

P ~ E = 200+10°
s\]m‘l‘e“\! S, v=03
i “ L2
Ap = %0 L=1
7% h =103
- v P =-10%4
5 =-102
2. E |
% or
),
z 2 d
§5upPo" L=1
y so® [ h=10°
« ¥ P=-10%4
p=-10°

Figure 4: Mid-surface of the rectangular plate in Section geometry and boundary conditions. Only one quarter
of the plate is shown here. The red filled squares are the corresponding control points.

Table 1: Control points and weights for the rectangular plate in Figure (4)).

1 2 3 4 ) 6 7 8 9
05 07 1 05 0.75 1 05 0.75 1
0 0 0 025 025 025 05 05 0.5
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1

f v e 8

"https://ricamsvn.ricam.oeaw.ac.at /trac/gismo/wiki/ WikiStart

15
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The analytical out-of-plane displacements for a thin plate with simply supported edges are

given by:
oo o0 mma nwb\ o mmnx : nmy
Concentrated load : w(z,y) = 4415112 Z Z sm( L ) sm( L ) - ( LQ ) o ( L )
7T m=1n=1 (% 2 + %)2}
o0 o0 : ML\ o3 nny
Uniform pressure :  w(z,y) = 7:6& Z sin (%) sin (°F )2 (33)

Eh3
12(1—02)"

where D = The transverse displacement is constant when the applied load is proportional
to h3,ie. P =P, (h/ho)3, where P, = 10 and h, = 1072 in this study. With this modification, the
numerical solution does not depend on the thickness of the plate. For a plate bending problem with

simply supported edges, the relationship between the Kirchhoff theory and the Mindlin theory can

be obtained by the analogy of load equivalence as [406, [47]

DV2wk

M K

_ _ 34
s KGh (34)
where w® and wM are the theoretical transverse deflection of the middle surface obtained by

the Kirchhoff theory and Mindlin theory respectively, K = 5/6 is the shear correction factor and
V2(:) = 02(:)/0x? + 0%(-)/0y?, w is given in Equation (33)). Equation is suitable for both
thick and thin plates, because the second term tends to vanish when the thickness h becomes

M ~ w’. However, classical FEM and

small. Theoretically, for a thin plate, one could obtain w
IGA elements using Mindlin theory suffers from shear locking syndrome. This is because the
spurious strains appear such that the stiffness matrix is overestimated.

Figure shows the normalized displacement as a function of mesh refinement for two different
plate thickness, the reference value is wy = -6.33410 x 1075, For thickness h = 1073, although
the conventional IGA yields inaccurate results for coarse meshes, the results tend to improve upon

refinement. However, it suffers from shear locking syndrome when A = 10~°. In this case the results

seem remain horizontal with respect to number of control points, indicating that the elements are
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287

fully locked. For LBM and GLBM slight rank deficiency occur for coarse meshes. GLBM get quite
good results when 2 = 10 ~°. From the numerical study it is inferred that the proposed formulation

alleviates shear locking phenomenon and yields accurate results even for thin plates with coarse

meshes.
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Figure 5: Normalized center displacement w4 with mesh refinement for the rectangular plate E[ LBM means local
B, GLBM means the generalized local B, h = 10~° stands for thickness. IGA of order 2 suffer from locking. For
LBM and GLBM rank deficiency occur for coarse meshes. GLBM gets good accuracy.

Figure @ compares the convergence behavior by a severe locking case, in which the plate is
subjected to concentrated load and its thickness is h = 107°. In this study, elements by IGA of
order 2 are locked even by more than 1000 elements, the convergence rate is nearly zero. Elements
by IGA of order 3 start with smaller error, but suffer from locking until the elements are refined
to a certain number, specifically 361 control points in this case. It is inferred that classical IGA
elements are locked until the elements are refined to a certain number, and higher order elements
could reach this number earlier, this conclusion is already known in literatures. As discussed before,
LBM behaves the same as GLBM for the first two refine steps, i.e. 9 control points and 16 control
points respectively. GLBM achieves a good convergence rate at beginning, but in general the
convergence rate is smaller as the meshes are refined, at the last two steps the errors become even
larger, which is also observed for IGA of order 3 and order 4. Finally the errors seem to gather

together.
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Figure 6: The Ly error of deflection w for the rectangular plate [4] subjected to concentrated load, thickness h =
107°. LBM means local B, GLBM means the generalized local B. IGA elements are locked until the elements are
refined to a certain number. For GLBM in general the convergence rate is smaller as the meshes are refined, at the
last two steps the errors become larger. Finally the errors seem to gather together.

To figure out why the errors become larger for very refined meshes in Figure @, the errors
of thicker plates are studied. However, for plate thickness larger than h = 1073, Equation
is expensive to use because the coefficient before VZwX is much larger, which makes the solution
difficult to converge. Due to the fact that the error of w4 can express the field error to some extent,
for thicker plates only the errors of wy are studied instead of the field error, and the reference
solutions are obtained by commercial FEM software using 250000 four-node doubly curved shell
elements with reduced integration and hourglass control. To be specific, for plate of thickness h =
102 and concentrated force P = 10, the reference value is w4 = -6.39650 x 1076, Figure show
that for thicker plates the convergence rates seem more straight until the number of elements reach
a certain value, and the results converges slower than thinner plates.

From the above, it is opined that for plates, only when the slenderness ratio reaches a large
number, e.g. 103 or 10°, the classical IGA elements suffer from locking. However, the studies
above are done in an ideal condition that the plates are discreted by structured meshes. The

influence of the mesh distortion on the performance of the proposed formulation is investigated by

18



10° g ]
1071 E
< ]
;5 ]
<1072 3
< 1
L ]
3 3 )
|<c 1077 [@=1GA, p =2 E
El ——LBM 1
1041 —-e— GLBM |
——IGA, p=3
——IGA, p=14 ]

1075 Ll L T S N A | Ll

100 10! 102

Number of elements per side

Figure 7: Relative errors of Eleﬁection wa for the rectangular plate {f subjected to concentrated load, thickness
h =10"2. LBM means local B, GLBM means the generalized local B.

32 considering two different kinds of mesh distortions as shown in Figure (8]). Thickness h = 107° is

303 considered here as the case when both locking and mesh distortion appear, and h = 10~! is chosen
304 as the control case when only mesh distortion appears. The influence of mesh distortion on the
s0s normalized center displacement is depicted in Figure @D When locking and mesh distortion occur
6  at the same time, errors of IGA drop down quickly, while GLBM keeps good accuracy even for

307 severe distortions. It can be inferred that the results with classical IGA deteriorates with mesh

distortion, while the proposed formulation is less sensitive to the mesh distortion.
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Figure 8: Illustration of control mesh distortions. In (a), four selected control points are moved along the diagonal.
In (b), four selected control points are moved around the center of the patch. Indexes e and r are employed to
indicate the stages of distortions.
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Figure 9: Normalized results of wa of the rectangular plate [ with control mesh distortions [§f GLBM means the
generalized local B. h stands for thickness. When locking and mesh distortion occur at the same time, errors of IGA
of order 2 drop down quickly, while GLBM keeps good accuracy even for severe distortions.

4.2. Scordelis-Lo roof

Next to demonstrate the performance of the proposed formulation when a structure experiences
membrane locking, Scordelis-Lo roof problem is considered. It features a cylindrical panel with
ends supported by rigid diaphragm. For the geometry considered here, R/h = 100 and L/h = 200,
the structure experiences membrane locking as the transverse shear strain is negligible. The roof
is dominated by membrane and bending deformations. Owing to symmetry only one quarter of
the roof is modeled as shown in Figure . The roof is modeled with the control points (z,y, z)
and the weights, w given in Table

Table 2: Control points and weights for the Scordelis-Lo roof problem [I0}

1 2 3 4 5 6 7 8 9
z 0 1.091910703 1.928362829 0 1.091910703 1.928362829 0 1.091910703 1.928362829
y O 0 0 1.5 1.5 1.5 3 3 3
z 3 3 2.298133329 3 3 2.298133329 3 3 2.298133329
w 1 0.9396926208 1 1 0.9396926208 1 1 0.9396926208 1

The roof is subjected to uniform pressure, p, = 6250 N/m? and the vertical displacement of the
mid-point of the side edge is monitored to study the convergence behavior. The analytical solution
based on the deep shell theory w%ef =-0.0361 m [48] is taken as reference solution. The material

properties are Young’s modulus: £ = 30 GPa and Poisson’s ratio, ¥ = 0.0. The convergence of the
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Figure 10: Scordelis-Lo roof problem in Section I3} geometry and boundary conditions. The red filled squares are
the corresponding control points. The mid-surface of the cylindrical panel is modeled and the roof is subjected to a
uniform pressure.

normalized vertical displacement with mesh refinement is shown in Figure . It is noticed that
for coarse meshes the present method and local B method lead to rank deficient matrices, as in
the strain smoothing method by a single subcell [49]. The results from the proposed formulation
is compared with selective reduced integration technique [20]. It can be seen that except IGA of
order 2, the convergence lines by others stall in the middle, while GLBM captures the stall first
and then converge as before. In addition, the contour plot of the deflection wp by IGA and GLBM
are given in Figure and Figure as a function of mesh refinement. It is obvious that IGA
is locked in the case of coarse mesh, while GLBM captures the deformation quite very well even

for coarse meshes.

4.8. Pinched cylinder

From the above two examples, it is clear that the proposed formulation yields accurate results
when the structure experience either shear locking or membrane locking. To demonstrate the
robustness of the proposed formulation when the structure experiences both shear and membrane
locking, we consider the pinched cylinder problem. The geometry of the cylinder is assumed to be
same as the previous example. This example serves a test case to evaluate the performance when

the structure is dominated by bending behaviour. Again, due to symmetry only one quarter of
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(b) Solution wg, partial enlarged
Figure 11: Results of wg of the Scordelis-Lo roof LBM means local B, GLBM means the generalized local B

)
IGA suffers from locking. LBM and GLBM get slightly rank deficiency for coarse meshes, but finally converge. After

I I ‘ -3.62
(a) 4 x 4 meshes

Number of elements per side

) 8 x 8 meshes
Figure 12: Deflection field w x 102 of the Scordelis-Lo roof [10| by IGA. IGA is locked for coarse meshes
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Figure 13: Deflection field w x 10 of the Scordelis-Lo roof [10] by the generalized local B. Deformation is captured
very well for coarse meshes.

the cylinder is modeled as shown in Figure (14). The corresponding control points and weights
are given in Table The cylinder is made up of homogeneous isotropic material with Young’s
modulus, £ = 30 GPa and Poisson’s ratio, v = 0.3. The concentrated load acting on the cylinder
is P = 0.25 N. The reference value of the vertical displacement is take as w™f = -1.8248¢~7 m. The
convergence of the vertical displacement with mesh refinement is shown in Figure and it is
evident that the proposed formulation yields more accurate results than the conventional IGA. All
the used methods stall finally because they all mismatch the adopted reference value. The contour
plot of w¢ is shown in Figure and Figure , the elements by GLBM seem more flexible
than IGA to be deformed.

Table 3: Control points and weights for the pinched cylinder problem [I4]

1 2 3 4 5 6 7 8 9
z 0 3 3 0 3 3 0 3 3
y O 0 0 15 1.5 1.5 3 3 3
z 3 3 0 3 3 0 3 3 0
w 1 0.7071067812 1 1 0.7071067812 1 1 0.7071067812 1

4.4. Pinched hemisphere with hole

As the last example, consider a pinched hemisphere with 18° hole subjected to equal and
opposite concentrated forces applied at the four cardinal points. As before, owing to symmetry,
only one quadrant of the hemisphere is modeled as shown in Figure (18]). The location of the

control points is also shown. The control points and weights employed to model the hemisphere
23
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Figure 15: Convergence of normalized vertical displacement with mesh refinement for the pinched cylinder [I4 LBM
means local B, GLBM means the generalized local B. GLBM achieves a good accuracy and convergence.
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Figure 16: Field of w x 107 of the pinched cylinder [14] by IGA. IGA is locked for coarse meshes and refined meshes.
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Figure 17: Field of w x 107 of the pinched cylinder by the generalized local B method. The elements seem more
flexible than IGA to be deformed.
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are given in Table This example experiences severe membrane and shear locking, has right
body rotations and the discretization experiences severe mesh distortion. The mesh distortion
further enhances the locking pathology. To evaluate the convergence properties, the horizontal
displacement u.f = 0.0940 m is taken as the reference solution. The hemisphere is modeled with
Young’s modulus, £ = 68.25 MPa, Poisson’s ratio v = 0.3 and concentrated force, P = 1 N. The
results form the proposed formulation are plotted in Figure , in which numerical instability of
B methods (LBM and GLBM) is observed for the initial single element case. As the elements are
refined, GLBM behaves similarly to SRI, but the results obtained by GLBM is slightly accurate.
The reason that prevents the error to go below is the mismatch between the convergence value and
the adopted reference value. Moreover, the field of displacement u, is plotted in Figure and

Figure , it seems that GLBM has more abilities to capture the deformations.
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Figure 18: The mid-surface of a fourth of the pinched hemisphere in Section [{:4] The red filled squares are the
corresponding control points.

Table 4: Control points and the corresponding weights for the pinched hemisphere problem

1 2 3 4 5 6 7 8 9
z 10 10 0 10 10 0 3.090169944  3.090169944 0
y 0 10 10 0 10 10 0 3.090169944  3.090169944
z 0 0 0 7.265425281 7.265425281 7.265425281 9.510565163  9.510565163  9.510565163
w 1 0.7071067810 1 0.8090169942  0.5720614025  0.8090169942 1 0.7071067810 1
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Figure 19: Results of up of the pinched hemisphere LBM means local B, GLBM means the generalized local B.

Rank deficiency occur for coarse meshes by LBM and GLBM but they finally converge. GLBM gets good convergence
performance.

(a) 4 x 4 meshes (b) 8 x 8 meshes

Figure 20: Field of u, x 102 of the pinched hemisphere |18/ by IGA. Severe locking is noticed.
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Figure 21: Field of u,x 10? of the pinched hemisphere [18] by the generalized local B. Elements deform more easily.

5. Conclusion remarks

The generalized local B method is adopted to unlock the degenerated Reissner-Mindlin plate
and shell elements within the framework of isogeometric analysis. The plate/shell mid-surface
and the unknown field is described with non-uniform rational B-splines. The proposed method
uses multiple sets of lower order B-spline basis functions as projection bases, by which the locking
strains are modified in the sense of Lo projection, in this way field-consistent strains are obtained.

The salient features of the proposed local B method are: (a) has less computational effort than
global B and includes local B; (b) yields better accuracy than classical IGA especially in cases of
coarse meshes and mesh distortions; (c¢) suppresses both shear and membrane locking commonly
encountered when lower order elements are employed and suitable for both thick and thin models;
(d) for some cases of coarse meshes can lead to rank deficient matrices, as in the strain smoothing
approach with a single subcell [49].

Future work includes extending the approach to large deformations, large deflections and large
rotations as well as investigating the behaviour of the stabilization technique for enriched approx-

imations such as those encountered in partition of unity methods [49H51].
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