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Abstract

Homotopical geometry over differential operators is a convenient setting for a coordinate-
free investigation of nonlinear partial differential equations modulo symmetries. One of
the first issues one meets in the functor of points approach to homotopical D-geometry, is
the question of a model structure on the category DGAlg(D) of differential non-negatively
graded O-quasi-coherent sheaves of commutative algebras over the sheaf D of differential
operators of an appropriate underlying variety (X, 0). We define a cofibrantly generated
model structure on DGAlg(D) via the definition of its weak equivalences and its fibra-
tions, characterize the class of cofibrations, and build an explicit functorial ‘cofibration -
trivial fibration’ factorization. We then use the latter to get a functorial model categori-
cal Koszul-Tate resolution for D-algebraic ‘on-shell function’ algebras (which contains the
classical Koszul-Tate resolution). The paper is also the starting point for a homotopical
D-geometric Batalin-Vilkovisky formalism.
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1 Introduction

The solution functor of a linear PDE D - m = 0 is a functor Sol : Mod(D) — Set defined
on the category of left modules over the ring D of linear differential operators of a suitable
underlying space: for D € D and M € Mod(D), we have

Sol(M)={meM:D-m=0}.

For a polynomial PDE, we get a representable functor Sol : Alg(D) — Set defined on the
category of D-algebras, i.e., of commutative monoids in Mod(D). According to [BD04], the
solution functor of a nonlinear PDE should be viewed as a ‘locally representable’ sheaf Sol :
Alg(D) — Set. To allow for still more general spaces, sheaves Alg(D) — SSet valued in
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simplicial sets, or sheaves DGAlg(D) — SSet on (the opposite of) the category DGAlg(D) of
differential graded D-algebras, have to be considered.

More precisely, when constructing the Batalin-Vilkovisky formalism, not, as usual, in the
world of function algebras, but, dually, on the space side, we first consider the quotient of
the infinite jet space by the global gauge symmetries. It turns out [BPP17| that this quotient
should be thought of as a 1-geometric derived X-Dx-stack, where X is an underlying smooth
affine algebraic variety. This new homotopical algebraic D-geometry provides in particular
a convenient way to encode total derivatives and it allows actually to recover the classical
Batalin-Vilkovisky complex as a specific case of its general constructions [PP17b]. In the
functor of points approach to spaces, the derived X-Dx-stacks F' are those presheaves F' :
DGAlg(D) — SSet that satisfy the fibrant object (sheaf-)condition for the local model structure
on the presheaf category Fun(DGAlg(D), SSet) — the category of derived X-Dx-stacks is in fact
the homotopy category of this model category of functors — . More precisely, the choice of
an adequate model (pre-)topology allows to construct the local model structure, via a double
Bousfield localization, from the global model structure of the considered presheaf category,
which is implemented ‘object-wise’ by the model structure of the target category SSet. The
first of the two Bousfield localizations is the localization of this global model structure with
respect to the weak equivalences of the (category opposite to the) source category DGAlg(D).
Furthermore, the D-geometric counterpart of an algebra C°°(X) of on-shell functions is an
algebra A € Alg(D) C DGAlg(D), and it appears [PP17a] that the Koszul-Tate resolution of
C*°(X) corresponds to the cofibrant replacement of A in a coslice category of DGAlg(D).

In view of the two preceding reasons, it is clear that our first task is the definition of a model
structure on DGAlg(D). In the present paper, we give an explicit description of a cofibrantly
generated model structure on the category DGAlg(D) of differential non-negatively graded O-
quasi-coherent sheaves of commutative algebras over the sheaf D of differential operators of a
smooth affine algebraic variety (X, 0). In particular, we characterize the cofibrations as the
retracts of the relative Sullivan D-algebras and we give an explicit functorial ¢ Cof — TrivFib’
factorization (as well as the corresponding functorial cofibrant replacement functor — which is
specific to our setting and is of course different from the one provided, for arbitrary cofibrantly
generated model categories, by the small object argument).

To develop the afore-mentioned homotopical D-geometry, we have to show inter alia that
the triplet (DGMod(D),DGMod(D),DGAlg(D)) is a homotopical algebraic context [TVO08]. This
includes proving that the model category DGA1g(D) is proper and that the base change functor
B ® 4 —, from modules in DGMod(D) over A € DGAlg(D) to modules over B € A | DGAlg(D),
preserves weak equivalences. These results [BPP17| are based on our characterization of
cofibrations in DGA1lg(D), as well as on the explicit functorial ¢ Cof — TrivFib’ factorization.

Notice finally that our two assumptions — smooth and affine — on the underlying variety X
are necessary. Exactly the same smoothness condition is indeed used in [BD04] [Remark p.56],
since for an arbitrary singular scheme X, the notion of left Dx-module is meaningless. On the
other hand, the assumption that X is affine is needed to substitute global sections to sheaves,
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i.e., to replace the category of differential non-negatively graded O-quasi-coherent sheaves of
commutative algebras over the sheaf D by the category of differential non-negatively graded
commutative algebras over the ring D(X) of global sections of D. However, this confinement is
not merely a comfort solution: the existence of the projective model structure — that we transfer
from DGMod (D) to DGAlg(D) — requires that the underlying category has enough projectives,
and this is in general not the case for a category of sheaves over a not necessarily affine scheme
|Gil06]|, |Har97, Ex.I11.6.2|. In addition, the confinement to the affine case allows to use the
artefacts of the model categorical environment, as well as to extract the fundamental structure
of the main actors of the considered problem, which may then be extended to an arbitrary
smooth scheme X [PP17a].

Let us still stress that the special behavior of the noncommutative ring D turns out to be
a source of possibilities, as well as a source of problems. For instance, a differential graded
commutative algebra over a field or a commutative ring k is a commutative monoid in the cat-
egory of differential graded k-modules. The extension of this concept to noncommutative rings
R is problematic, since the category of differential graded (left) R-modules is not symmetric
monoidal. In the case R = D, we deal with differential graded (left) D-modules and these are
symmetric monoidal — and also closed — . However, the tensor product and the internal Hom
are taken, not over D, but over O: one considers the O-modules given, for M, N € DGMod (D),
by M ®o N and Homp (M, N), and shows that their O-module structures can be extended
to D-module structures. This and other — in particular related — specificities must be kept in
mind throughout the whole paper.
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2 Conventions and notation

According to the anglo-saxon nomenclature, we consider the number 0 as being neither
positive, nor negative.

All the rings used in this text are implicitly assumed to be unital.

In most parts of our paper, the underlying space is a smooth affine algebraic variety.

3 Sheaves of modules

Let Top be the category of topological spaces and, for X € Top, let Openy be the category
of open subsets of X. If Rx is a sheaf of rings, a left R x-module is a sheaf Px, such that,
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for each U € Openy, Px(U) is an Rx(U)-module, and the Rx(U)-actions are compatible
with the restrictions. We denote by Mod(R x) the abelian category of R x-modules and of their
(naturally defined) morphisms.

In the following, we omit subscript X if no confusion arises.

If P,Q € Mod(R), the (internal) Hom Homg (P, Q) is the sheaf of abelian groups (of
R-modules, i.e., is the element of Mod(R), if R is commutative) that is defined by

Homp (P, Q)(U) := Homg,, (P|v, Qlu) , (1)

U € Openy. The RHS is made of the morphisms of (pre)sheaves of R|y-modules, i.e., of the
families ¢y : P(V) — Q(V), V € Openy, of R(V)-linear maps that commute with restrictions.
Note that Homz (P, Q) is a sheaf of abelian groups, whereas Homg (P, Q) is the abelian group
of morphisms of (pre)sheaves of R-modules. We thus obtain a bi-functor

Homp (e, @) : (Mod(R))°P x Mod(R) — Sh(X) , (2)

valued in the category of sheaves of abelian groups, which is left exact in both arguments.

Further, if P € Mod(R°P) and Q € Mod(R), we denote by P ®r Q the sheaf of abelian
groups (of R-modules, if R is commutative) associated to the presheaf

(Por QU) :=PU) @rw) QU) (3)
U € Openy. The bi-functor
e ®R @ : Mod(RP) x Mod(R) — Sh(X) (4)

is right exact in its two arguments.

If S is a sheaf of commutative rings and R a sheaf of rings, and if S — R is a morphism
of sheafs of rings, whose image is contained in the center of R, we say that R is a sheaf of
S-algebras. Remark that, in this case, the above functors Hompg (e, e) and e @z e are valued
in Mod(S).

4 D-modules and D-algebras

Depending on the author(s), the concept of D-module is considered over a base space X
that is a finite-dimensional smooth [Cos11]| or complex [KS90] manifold, or a smooth algebraic
variety [HTTO08] or scheme [BD04], over a fixed base field K of characteristic zero. We denote
by Ox (resp., ©x, Dx) the sheaf of functions (resp., vector fields, differential operators acting
on functions) of X, and take an interest in the category Mod(Ox) (resp., Mod(Dx)) of Ox-
modules (resp., Dx-modules).

Sometimes a (sheaf of) Dx-module(s) is systematically required to be coherent or quasi-
coherent as (sheaf of) Ox-module(s). In this text, we will explicitly mention such extra
assumptions.
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4.1 Construction of D-modules from O-modules

It is worth recalling the following

Proposition 1. Let Mx be an Ox-module. A left Dx-module structure on Mx that extends
its Ox-module structure is equivalent to a K-linear morphism

V:Ox — Ende(Myx)
such that, for all f € Ox, 0,0’ € Ox, and all m € My,
1. Viygm = f-Vgm,
2. Vo(f-m)=f-Vom+0(f) -m,

3. V[@ﬂ/]m = [VQ7 Vg/]m .

In the sequel, we omit again subscript X, whenever possible.

In Proposition 1, the target Endg (M) is interpreted in the sense of Equation (1), and V
is viewed as a morphism of sheaves of K-vector spaces. Hence, V is a family VY, U € Openy,
of K-linear maps that commute with restrictions, and VgU, Oy € ©(U), is a family (VQUU)V,

V € Openy,, of K-linear maps that commute with restrictions. It follows that (VgUmU) ly =
VXU|VmU‘V , with self-explaining notation: the concept of sheaf morphism captures the locality

of the connection V with respect to both arguments.

Further, the requirement that the conditions (1) — (3) be satisfied for all f € O, 6,60' € ©,
and m € M, means that they must hold for any U € Openy and all fy € O(U), 0y, 0}, € ©(U),
and my € M(U).

We now detailed notation used in Proposition 1. An explanation of the underlying idea of
this proposition can be found in Appendix 11.2.

4.2 Closed symmetric monoidal structure on Mod(D)

If we apply the Hom bi-functor (resp., the tensor product bi-functor) over D (see (2) (resp.,
see (4))) to two left D-modules (resp., a right and a left D-module), we get only a (sheaf of)
K-vector space(s) (see remark at the end of Section 3). The good concept is the Hom bi-functor
(resp., the tensor product bi-functor) over O. Indeed, if P, Q € Mod(Dx) C Mod(Oyx), the Hom
sheaf Homo (P, Q) (resp., the tensor product sheaf P ®p, Q) is a sheaf of Ox-modules. To
define on this Ox-module, an extending left D x-module structure, it suffices, as easily checked,
to define the action of # € ©x on ¢ € Home, (P, Q), for any p € P, by

(Vo) (p) = Vo(é(p)) — ¢(Vop) (5)
(resp.,onp®q,peP,q€ Q, by

Vo(p®q) = (Vap) @ ¢ +p @ (Voq) ) . (6)
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The functor
Homo, (P, e) : Mod(Dx) — Mod(Dx) ,

P € Mod(Dyx), is the right adjoint of the functor
e ®oy P:Mod(Dx) — Mod(Dx) :
for any N, P, Q € Mod(Dx), there is an isomorphism
Homp, (N @0, P,Q)3 fr— (n+ (p— f(n®p))) € Homp, (N, Homo, (P, Q)) .

Hence, the category (Mod(Dx ), ®o,, Ox, Homo, ) is abelian closed symmetric monoidal. More
details on D-modules can be found in [KS90, Sch12, Sch94].

Remark 2. In the following, the underlying space X is a smooth algebraic variety over an
algebraically closed field K of characteristic 0.

We denote by qcMod(Ox) (resp., qgcMod(Dx)) the abelian category of quasi-coherent Ox-
modules (resp., Dx-modules that are quasi-coherent as Ox-modules [HTT08]). This category
is a full subcategory of Mod(Ox) (resp., Mod(Dy)). Since further the tensor product of two
quasi-coherent O x-modules (resp., Ox-quasi-coherent Dx-modules) is again of this type, and
since Ox € qcMod(Ox) (resp., Ox € qcMod(Dy)), the category (qcMod(Ox), ®o ., Ox) (resp.,
(qcMod(Dx ), ®oy, Ox)) is a symmetric monoidal subcategory of (Mod(Ox), ®o,,Ox) (resp.,
(Mod(Dx ), ®0oy,Ox)). For additional information on quasi-coherent modules over a ringed
space, we refer to Appendix 11.1.

4.3 Commutative D-algebras

A Dx-algebra is a commutative monoid in the symmetric monoidal category Mod(Dx).
More explicitly, a Dx-algebra is a Dx-module A, together with Dx-linear maps

p:A®o, A=+ A and 1:0x = A,

which respect the usual associativity, unitality, and commutativity conditions. This means
exactly that A is a commutative associative unital Ox-algebra, which is endowed with a flat
connection V — see Proposition 1 — such that vector fields 6 act as derivations Vy. Indeed,
when omitting the latter requirement, we forget the linearity of p and ¢ with respect to the
action of vector fields. Let us translate the © x-linearity of u. If § € Ox, a,a’ € A, and if
axa :=pula®ad), we get

Volaxd') = Vo(ula ® d')) = u((Voa) © ' +a ® (Va') = (Voa) ¥’ +ax (Vod') . (7)

If we set now 14 := ¢(1), Equation (7) shows that Vg(14) = 0. It is easily checked that the
O x-linearity of ¢ does not encode any new information. Hence,

Definition 3. A commutative Dx-algebra is a commutative monoid in Mod(Dx), i.e., a
commutative associative unital Ox-algebra that is endowed with a flat connection V such that
Vg, 0 € Ox, is a derivation.
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5 Differential graded D-modules and differential graded D-
algebras

5.1 Monoidal categorical equivalence between chain complexes of Dx-
modules and of Dy (X)-modules

It is well known that any equivalence F' : C 2 D : G between abelian categories is exact.
Moreover, if F': C &2 D : G is an equivalence between monoidal categories, and if one of the
functors I or G is strong monoidal, then the other is strong monoidal as well [KROO07].

In addition, see (91), for any affine algebraic variety X, we have the equivalence
I'(X,e) : qcMod(Ox) = Mod(Ox (X)) :'® (8)

between abelian symmetric monoidal categories, where @ is isomorphic to Ox ®p, (x)® . Since
the latter is obviously strong monoidal, both functors, I'(X,e) and e, are exact and strong
monoidal. Similarly,

Proposition 4. If X is a smooth affine algebraic variety, its global section functor T'(X,e)
yields an equivalence

I'(X,e) : (qeMod(Dx), ®oy, Ox) — (Mod(Dx (X)), Qo (x), Ox (X)) 9)
between abelian symmetric monoidal categories, and it is exact and strong monoidal.

Proof. For the categorical equivalence, see [HTTO08, Proposition 1.4.4]. Exactness is now clear
and it suffices to show that I'(X,e) is strong monoidal. We know that I'(X,e) is strong
monoidal as functor between modules over functions, see (8). Hence, if P, Q € qcMod(Dx),
then

I(X, P @oy Q) =T(X,P) ®oyx) T'(X, Q) (10)

as Ox(X)-modules. Recall now that we defined the Dx-module structure on P ®o, Q by
‘extending’ the © y-action (6) on the presheaf P@o, Q, see (3). In view of (10), the action V¥
of Ox(X) on P(X)®p, (x)Q(X) and (P®o, Q)(X) ‘coincide’, and so do the Dx (X)-module
structures of these modules. Eventually, the global section functor is strong monoidal. O

Remark 5. In the sequel, we work systematically over a smooth affine algebraic variety X
over an algebraically closed field K of characteristic 0.

Since the category qcMod(Dx ) is abelian symmetric monoidal, the category DGqcMod(Dx )
of differential non-negatively graded O x-quasi-coherent Dx-modules is abelian and symmetric
monoidal as well — for the usual tensor product of chain complexes and chain maps — . The
unit of this tensor product is the chain complex Ox concentrated in degree 0. The symmetry
B:Pe @ Qo — Qo @ P, is given by

Blp®q) =(-)Pqep,

where ‘tilde’ denotes the degree and where the sign is necessary to obtain a chain map. Let
us also mention that the zero object of DGyqcMod(Dx) is the chain complex ({0},0).
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Proposition 6. If X is a smooth affine algebraic variety, its global section functor induces an
equivalence

F(X, O) : (DG+qCMOd(Dx), ROy Ox) — (DG+MOd(Dx(X)), ®(’)X(X)’ Ox(X)) (11)
of abelian symmetric monoidal categories, and is exact and strong monoidal.

Proof. Let FF =T(X,e) and G be quasi-inverse (additive) functors that implement the equiv-
alence (9). They induce functors F and G between the corresponding categories of chain
complexes. Moreover, the natural isomorphism a : id = G o F induces, for each chain complex
Pe € DG1qcMod(Dx ), a chain isomorphism ap, : Pe — (G o F)(P,), which is functorial in P, .
Both, the chain morphism property of ap, and the naturality of a, are direct consequences
of the naturality of a. Similarly, the natural isomorphism b : F' o G = id induces a natural
isomorphism b : F o G = id, so that DG qcMod(Dx) and DG+Mod(Dx (X)) are actually equiv-
alent categories. Since F': qcMod(Dx) — Mod(Dx (X)) is strong monoidal and commutes with
colimits (as left adjoint of G), it is straightforwardly checked that F is strong monoidal. [J

5.2 Differential graded Dx-algebras vs. differential graded Dy (X)-algebras

The strong monoidal functors F : DG;qcMod(Dy) = DG Mod(Dx (X)) : G yield an equiv-
alence between the corresponding categories of commutative monoids:

Corollary 7. For any smooth affine variety X, there is an equivalence of categories
I'(X,e) : DG4 qcCAlg(Dx) — DG4+ CAlg(Dx (X)) (12)

between the category of differential graded quasi-coherent commutative Dx-algebras and the
category of differential graded commutative Dx (X )-algebras.

The main goal of the present paper is to construct a model category structure on the LHS
category. In view of the preceding corollary, it suffices to build this model structure on the RHS
category. We thus deal in the sequel exclusively with this category of differential graded
D-algebras, where D := Dx(X), which we denote simply by DGDA. Similarly, the objects of
DG Mod(Dx (X)) are termed differential graded D-modules and their category is denoted
by DGDM.

5.3 The category DGDA
In this subsection we describe the category DGDA and prove first properties.

Whereas
Homp(P, Q) = HOHlMod(D)(Pa Q) ,

P,Q € Mod(D), is a K-vector space, the set

HomDA(A’ B) = HomCAlg(D) (A’ B) )
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A, B € CAlg(D), is even not an abelian group. Hence, there is no category of chain complexes
over commutative D-algebras and the objects of DGDA are (probably useless to say) no chain
complexes of algebras.

As explained above, a D-algebra is a commutative unital O-algebra, endowed with a (an
extending) D-module structure, such that vector fields act by derivations. Analogously, a
differential graded D-algebra is easily seen to be a differential graded commutative unital
O-algebra (a graded O-module together with an O-bilinear degree respecting multiplication,
which is associative, unital, and graded-commutative; this module comes with a square 0,
degree —1, O-linear, graded derivation), which is also a differential graded D-module (for the
same differential, grading, and O-action), such that vector fields act as non-graded derivations.

Proposition 8. A differential graded D-algebra is a differential graded commutative unital
O-algebra, as well as a differential graded D-module, such that vector fields act as derivations.
Further, the morphisms of DGDA are the morphisms of DGDM that respect the multiplications
and units.

In fact:

Proposition 9. The category DGDA is symmetric monoidal for the tensor product of DGDM
with values on objects that are promoted canonically from DGDM to DGDA and same values on
morphisms. The tensor unit is O; the initial object (resp., terminal object) is O (resp., {0} ).

Proof. Let Ao, Bo € DGDA. Consider homogeneous vectors a € Az, a' € Ay, b€ B;, b' € By,
such that @ + b =m and @ + b = n. Endow now the tensor product As ®» Be € DGDM with
the multiplication * defined by

(Ao ®(’) Bo)m X (Ao ®(’) B.)n > (CL &® b, CL, & b/) —

(@®@b)x(d @) = (—1)7(axsd) @ (bxp V) € (As ®0 Ba)mn » (13)

where the multiplications of A, and B, are denoted by x4 and *p, respectively. The multi-
plication x equips Ae ®p Be with a structure of differential graded D-algebra. Note also that
the multiplication of A, € DGDA is a DGDA-morphism 4 : Ae ®0 Ae — A, -

Further, the unit of the tensor product in DGDA is the unit (O, 0) of the tensor product in
DGDM.

Finally, let Ao, Be,Ce, Do € DGDA and let ¢ : Aq — C,o and 9 : Be — Dy be two DGDA-
morphisms. Then the DGDM-morphism ¢®1) : Aeg @0 Be — Co @0 D, is also a DGDA-morphism.

All these claims (as well as all the additional requirements for a symmetric monoidal
structure) are straightforwardly checked.

The initial and terminal objects in DGDA are the differential graded D-algebras (O, 0) and
({0},0), respectively. As concerns the terminal object, this is the expected and easily verified
result. The initial object however is not the same as the one in DGDM. The problem with the
initial object candidate ({0},0), is that a DGDA-morphism ¢ : ({0},0) — (A.,d4) has to map
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0 to 04 and to 14, what in only possible if 04 = 14, i.e., if Aq = {0}. As for (O,0), the sole
point to check is that the unique morphism ¢ : (0,0) — (As,d4), which is necessarily defined
by

o(f) =o(f-lo) = f-d(lo)=f-1a,

is a DGDA-morphism. For the latter, only D-linearity, i.e., ©-linearity, has to be checked. We
get

¢(Vof) = (0(f)) =0(f)-1a,
whereas

Vo(o(f)) = Vo(f-14) = Voorla =0(f) - 1a+ Vyepla =6(f) - 1a,

as in a differential graded D-algebra vector fields act as derivations and thus annihilate the
unit. O

Let us still mention the following

Proposition 10. If ¢ : Aq — Cs and 1) : B¢ — C, are DGDA-morphisms, then X : Ae®0 Be —
Ce, which is well-defined by x(a ® b) = ¢(a) *c ¥ (b), is a DGDA-morphism that restricts to ¢
(resp., 1) on Ae (Tesp., Be).

Proof. Tt suffices to observe that x = puc o (¢ ® ). O

6 Finitely generated model structure on DGDM

When dealing with model categories, we use the definitions of [Hov07]. A short comparison
of various definitions used in the literature can be found in Appendix 11.4. For additional
information, we refer the reader to [GS06], [Hir00], [Hov07], and [Qui67].

Let us recall that DGDM is the category Chy (D) of non-negatively graded chain complexes
of left modules over the non-commutative unital ring D = Dx(X) of differential operators of
a smooth affine algebraic variety X. The remaining part of this section actually holds for any
not necessarily commutative unital ring R and the corresponding category Chi(R). We will
show that Chy (R) is a finitely (and thus cofibrantly) generated model category.

In fact, most of the familiar model categories are cofibrantly generated. For instance, in
the model category SSet of simplicial sets, the generating cofibrations I (resp., the generating
trivial cofibrations J) are the canonical simplicial maps 0A[n] — A[n| from the boundaries of
the standard simplicial n-simplices to these simplices (resp., the canonical maps A"[n] — A[n]
from the r-horns of the standard n-simplices, 0 < r < n, to these simplices). The generating
cofibrations and trivial cofibrations of the model category Top of topological spaces — which
is Quillen equivalent to SSet — are defined similarly. The homological situation is analogous
to the topological and combinatorial ones. In the case of Chy(R), the set I of generating
cofibrations (resp., the set J of generating trivial cofibrations) is made (roughly) of the maps
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S7=1 — D" from the (n — 1)-sphere to the n-disc (resp., of the maps 0 — D"). In fact, the
n-disc D" is the chain complex

() (n=1) (0)
Dl:-.i.50—=-0—-R— R —-0—=---—=0, (14)

whereas the n-sphere S™ is the chain complex

(n) (0)
Seg i+ —>0—->0—-R—>0—---—0 . (15)

Definition (14), in which the differential is necessarily the identity of R, is valid for n > 1.
Definition (15) makes sense for n > 0. We extend the first (resp., second) definition to n =0
(resp., n = —1) by setting D? := S? (resp., S;' := 0,). The chain maps S"~! — D" are
canonical (in degree n — 1, they necessarily coincide with idg), and so are the maps 0 — D".
We now define the set I (resp., J) by

I={t,:S8"! = D" n>0} (16)

(resp.,
J={(:0—=>D" n>1}). (17)

Theorem 11. For any unital ring R, the category Chy(R) of non-negatively graded chain
complezes of left R-modules is a finitely ((and thus a cofibrantly ) generated model category (in
the sense of [GS06] and in the sense of [Hov07]), with I as its generating set of cofibrations and
J as its generating set of trivial cofibrations. The weak equivalences are the maps that induce
isomorphisms in homology, the cofibrations are the injective maps with degree-wise projective
cokernel ( projective object in Mod(R)), and the fibrations are the maps that are surjective
in ( strictly) positive degrees. Further, the trivial cofibrations are the injective maps i whose
cokernel coker(i) is strongly projective as a chain complex ( strongly projective object coker (i)
in Chy(R), in the sense that, for any map c: coker(i) — C and any map p: D — C, there is
a map £ : coker(i) — D such that po £ =1, if p is surjective in ( strictly) positive degrees).

Proof. The following proof uses the differences between the definitions of (cofibrantly gener-
ated) model categories given in [DS96], [GS06], and [Hov07|: we refer again to the Appendix
11.4.

It is known that Ch (R), with the described weak equivalences, cofibrations, and fibrations
is a model category (Theorem 7.2 in [DS96]). A model category in the sense of [DS96] contains
all finite limits and colimits; the Cof — TrivFib and TrivCof — Fib factorizations are neither
assumed to be functorial, nor, of course, to be chosen functorial factorizations. Moreover, we
have Fib = RLP(J) and TrivFib = RLP(I) (Proposition 7.19 in [DS96]).

Note first that Chy (R) has all small limits and colimits, which are taken degree-wise.

Observe also that the domains and codomains S™ (n > 0) and D™ (n > 1) of the maps in
I and J are bounded chain complexes of finitely presented R-modules (the involved modules
are all equal to R). However, every bounded chain complex of finitely presented R-modules is
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n-small, n € N, relative to all chain maps (Lemma 2.3.2 in [Hov07]). Hence, the domains and
codomains of I and J satisfy the smallness condition of a finitely generated model category,
and are therefore small in the sense of the finite and transfinite definitions of a cofibrantly
generated model category.

It thus follows from the Small Object Argument that there exist in Chy(R) a functorial
Cof — TrivFib and a functorial TrivCof — Fib factorization. Hence, the first part of Theorem
11.

As for the part on trivial cofibrations, its proof is the same as the proof of Lemma 2.2.11
in [Hov07]. O

In view of Theorem 11, let us recall that any projective chain complex (K, d) is degree-wise
projective. Indeed, consider, for n > 0, an R-linear map k, : K,, — N and a surjective R-linear
map p: M — N, and denote by D"t (N) (resp., D"*t1(M)) the disc defined as in (14), except
that R is replaced by N (resp., M). Then there is a chain map k : K — D"TY(N) (resp., a
surjective chain map 7 : D"TY(M) — D"1(N)) that is zero in each degree, except in degree
n + 1 where it is ky, o d,,41 (resp., p) and in degree n where it is k, (resp., p). Since (K,d) is
projective as chain complex, there is a chain map ¢ : K — D"*!1(M) such that mo ¢ = k. In
particular, £, : K, — M is R-linear and po ¥, = k,, .

7 Finitely generated model structure on DGDA

7.1 Adjoint functors between DGDM and DGDA

We aim at transferring to DGDA, the just described finitely generated model structure on
DGDM. Therefore, we need a pair of adjoint functors.

Proposition 12. The graded symmetric tensor algebra functor S and the forgetful functor
For provide an adjoint pair
S : DGDM = DGDA : For

between the category of differential graded D-modules and the category of differential graded
D-algebras.

Proof. For any M, € DGDM, the sum
®pMs = O & P MZ™ € DGDM
n>1

is the free associative unital O-algebra over the O-module M, . When passing to graded sym-
metric tensors, we divide by the obvious O-ideal Z, which is further a sub DG D-module.
Therefore, the free graded symmetric unital O-algebra

SHM, = @5 M. /T, (18)

with multiplication [S]®[T] = [S®T], is also a DG D-module. It is straightforwardly checked
that S5 M, € DGDA. The definition of S on morphisms is obvious.
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As concerns the proof that the functors For and S are adjoint, i.e., that
HOIHD(;DA(SZ;M., A.) ~ I‘IOIHD(;DM(]\f.7 For A.) y (19)

functorially in M, € DGDM and A, € DGDA, let ¢ : M, — For A, be a DGDM-map. Since S, M,
is free in the category GCA of graded commutative associative unital graded O-algebras, a GCA-
morphism is completely determined by its restriction to the graded O-module M, . Hence, the
extension ¢ : S M, — Aq of ¢, defined by ¢(1p) = 14 and by

¢(m1 @...@mk) :¢(m1) *A ... KkA ¢(mk) ,

is a GCA-morphism. This extension is also a DGDA-map, i.e., a DGDM-map that respects the
multiplications and the units, if it intertwines the differentials and is D-linear. These require-
ments, as well as functoriality, are straightforwardly checked. O

Recall that a free object in a category D over an object C in a category C, such that
there is a forgetful functor For : D — C, is a universal pair (F(C),i), where F(C) € D and
i € Home(C, For FI(C)) .

Remark 13. Equation (19) means that SHM, is the free differential graded D-algebra
over the differential graded D-module M, .

A definition of S} M, via invariants can be found in Appendix 11.5.

7.2 Relative Sullivan D-algebras

If Vs is a non-negatively graded D-module and (A,,d4) a differential graded D-algebra,
the tensor product A, ®o SHV4 is a graded D-algebra. In the following definition, we assume
that this algebra is equipped with a differential d, such that

(Ae ®0 SHVa, d) € DGDA

contains (Ae,d4) as sub-DGDA. The point is that (Ae,d4) is a differential submodule of the
tensor product differential module, but that usually the module S5V, is not. The condition
that (As,d4) be a sub-DGDA can be rephrased by asking that the inclusion

Aeda—a®l e Ae @0 SHVe

be a DGDA-morphism. This algebra morphism condition or subalgebra condition would be
automatically satisfied, if the differential d on Ae ®o S;Ve was defined by

d=dy®id+id®ds , (20)
where ds is a differential on S5V, (in particular the differential ds = 0). However, as men-
tioned, this is generally not the case.

We omit in the sequel o, %, as well as subscript O, provided clarity does not suffer hereof.
Further, to avoid confusion, we sometimes substitute X to ® to emphasize that the differential
d of AX SV is not necessarily obtained from the differential d4 and a differential ds.
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Definition 14. A relative Sullivan D-algebra ( RSDA) is a DGDA-morphism
(A,da) = (AR SV, d)

that sendsa € Atoa®1 € AKSV. Here V is a free non-negatively graded D-module

V=D va,

aed

which admits a homogeneous basis (Vo )ae that is indexed by a well-ordered set J, and is such
that
dvg € ARSV (21)

for all o € J. In the last requirement, we set Ve, := @/kal) -vg. We refer to Property (21)
by saying that d is lowering.
A RSDA with the property

a < = degv, < degug (22)

(resp., with Property (20); over (A,d4) = (0,0)) is called a minimal RSDA (resp., a split
RSDA; o Sullivan D-algebra (SDA)) and it is often simply denoted by (AX SV, d) (resp.,
(A® SV,d); (SV,d)).

The next two lemmas are of interest for the split situation.

Lemma 15. Let (vq)acr be a family of generators of homogeneous non-negative degrees, and
let
Vi=(vg:ael) ::@D-va
acl
be the free mon-negatively graded D-module over (va)acr- Then, any degree —1 map d €
Set((va), V) uniquely extends to a degree —1 map d € DM(V, V). If moreover d> = 0 on (vy),
then (V,d) € DGDM.

Since SV is the free differential graded D-algebra over the differential graded D-module
V, a morphism f € DGDA(SV, B), valued in (B,dp) € DGDA, is completely defined by its
restriction f € DGDM(V, B). Hence, the

Lemma 16. Consider the situation of Lemma 15. Any degree 0 map f € Set((vy), B) uniquely
extends to a morphism f € GDM(V, B). Furthermore, if dg f = fd on (vy), this extension is
a morphism f € DGDM(V, B), which in turn admits a unique extension f € DGDA(SV, B).

7.3 Quillen’s transfer theorem

We use the adjoint pair
S : DGDM <=2 DGDA : For (23)

to transfer the cofibrantly generated model structure from the source category DGDM to the
target category DGDA. This is possible if Quillen’s transfer theorem [GS06] applies.
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Theorem 17. Let F : C =D : G be a pair of adjoint functors. Assume that C is a cofibrantly
generated model category and denote by I (resp., J) its set of generating cofibrations (resp.,
trivial cofibrations). Define a morphism f : X — Y in D to be a weak equivalence (resp., a
fibration), if Gf is a weak equivalence (resp., a fibration) in C. If

1. the right adjoint G : D — C commutes with sequential colimits, and
2. any map in D with the LLP with respect to all fibrations is a weak equivalence,

then D is a cofibrantly generated model category that admits {Fi:i € I} (resp., {Fj:j € J})
as set of generating cofibrations (resp., trivial cofibrations).

Of course, in this version of the transfer principle, the mentioned model structures are
cofibrantly generated model structures in the sense of [GS06].

Condition 2 is the main requirement of the transfer theorem. It can be checked using the
following lemma [Qui67]:

Lemma 18 (Quillen’s path object argument). Assume in a category D (which is not yet a
model category, but has weak equivalences and fibrations),

1. there is a functorial fibrant replacement functor, and
2. every object has a natural path object, i.e., for any D € D, we have a natural commutative

diagram

Path(D)

A

D D x D

where A is the diagonal map, i 1s a weak equivalence and q is a fibration. Then every map in
D with the LLP with respect to all fibrations is a weak equivalence.

We think about Path(D) € D is an internalized ‘space’ of paths in D. In simple cases,
Path(D) = Homp(I, D), where I € D and where Homyp is an internal Hom. Moreover, by
fibrant replacement of an object D € D, we mean a weak equivalence D — D whose target is
a fibrant object.

7.4 Proof of Condition 1 of Theorem 17

Let A be a non-zero ordinal and let X : A — C be a diagram of type A in a category C, i.e.,
a functor from A to C. Since an ordinal number is a totally ordered set, the considered ordinal
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A can be viewed as a directed poset (A, <). Moreover, the diagram X is a direct system in C
over A — made of the C-objects X3, 8 < A, and the C-morphisms Xg, : Xg — X, 8 < v —,
and the colimit colimg<y Xp of this diagram X is the inductive limit of the system (X3, Xg5).

Let now A : A — DGDA be a diagram of type A in DGDA and let ForoA : A — DGDM be the
corresponding diagram in DGDM. To simplify notation, we denote the latter diagram simply by
A. As mentioned in the proof of Theorem 11, the colimit of A does exist in DGDM and is taken
degree-wise in Mod(D). For any degree r € N, the colimit C, of the functor A, : A — Mod(D)
is the inductive limit in Mod(D) of the direct system (Ag,, Ag,,) — which is obtained via
the usual construction in Set — . Due to universality, one naturally gets a Mod(D)-morphism
dy : Cr — Cyr_1. The complex (C,,d) is the colimit in DGDM of A. It is now straightforwardly
checked that the canonical multiplication ¢ in Co provides an object (Ce,d, o) € DGDA and
that this object is the colimit of A in DGDA.

Hence, the

Proposition 19. Let \ be a non-zero ordinal. The forgetful functor For : DGDA — DGDM
creates colimits of diagrams of type A in DGDA, i.e., for any diagram A of type X\ in DGDA, we
have

For(colimg.) Age) = colimg For(Ag,) . (24)

If X is the zero ordinal, it can be viewed as the empty category (). Therefore, the colimit
in DGDA of the diagram of type A is in this case the initial object (O,0) of DGDA. Since the
initial object in DGDM is ({0},0), we see that For does not commute with this colimit. The
above proof fails indeed, as () is not a directed set.

It follows from Proposition 19 that the right adjoint For in (23) commutes with sequential
colimits, so that the first condition of Theorem 17 is satisfied.

Remark 20. Since a right adjoint functor between accessible categories preserves all filtered
colimits, the first condition of Theorem 17 is a consequence of the accessibility of DGDM and
DGDA. We gave a direct proof to avoid the proof of the accessibility of DGDA.

7.5 Proof of Condition 2 of Theorem 17

We prove Condition 2 using Lemma 18. In our case, the adjoint pair is
S : DGDM = DGDA : For .

As announced in Subsection 7.2, we omit e, x, and O, whenever possible. It is clear that every
object A € D = DGDA is fibrant. Hence, we can choose the identity as fibrant replacement
functor, with the result that the latter is functorial.

As for the second condition of the lemma, we will show that any DGDA-morphism ¢ : A - B
naturally factors into a weak equivalence followed by a fibration.

Since in the standard model structure on the category of differential graded commutative
algebras over QQ, cofibrations are retracts of relative Sullivan algebras [Hes00|, the obvious
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idea is to decompose ¢ as A - A® SV — B, where i : A - A® SV is a (split minimal)
relative Sullivan D-algebra, such that there is a projection p: A ® SV — B, or, even better,
a projection € : V' — B in positive degrees. The first attempt might then be to use

e V=P H 1,5, »bcB,
n>0b,€B,

whose source incorporates a copy of the sphere S™ for each b, € B,, n > 0. However, € is
not a chain map, since in this case we would have dgb,, = dgelp, = 0, for all b,. The next
candidate is obtained by replacing S™ by D": if B € DGDM, set

PB)= & D cpepy,

n>0b,E€B,

where D7 is a copy of the n-disc

Dl:ii50—=0—=D-I, -D-5', 20—=---—0.

P(B)= P D s, P DL, (n>0) and R(B)= @ D s,
bnt1€8Bnt1 bn€Bn bi1€B;

the free non-negatively graded D-module P(B) is projective in each degree, what justifies the
chosen notation. On the other hand, the differential dp of P(B) is the degree —1 square 0
D-linear map induced by the differentials in the n-discs and thus defined on P, (B) by

dp(s™'T, . ,)=0€ P, 1(B) and dp(ly,) =s ‘I, € P,_1(B)

n+1)

(see Lemma 15). The canonical projection € : P(B) — B, is defined on P,(B), as degree 0
D-linear map, by

5(5_1]Ibn+1) =dp(bny1) € B, and e(I,) =b, € By, .

It is clearly a DGDM-morphism and extends to a DGDA-morphism ¢ : S(P(B)) — B (see Lemma
16).

We define now the aforementioned DGDA-morphisms i : A - A® S(P(B)) and p : A®
S(P(B)) — B, where i is a weak equivalence and p a fibration such that poi = ¢. We set
i=1da®1 and p = up o (¢ ® €) . It is readily checked that i and p are DGDA-morphisms (see
Proposition 10) with composite p oi = ¢. Moreover, by definition, p is a fibration in DGDA, if
it is surjective in degrees n > 0 — what immediately follows from the fact that ¢ is surjective
in these degrees.

It thus suffices to show that ¢ is a weak equivalence in DGDA, i.e., that

H(G):HA)>a] = [a®1] € H(A® S(P(B)))
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is an isomorphism of graded D-modules. Since 7: A - A ® O is an isomorphism in DGDY, it
induces an isomorphism

HGi):HA)>[a] 5 [a® 1] € HA®O).
In view of the graded D-module isomorphism
H(A®S(P(B))) ~ H(A® O) & H(A® 8 (P(B))).

we just have to prove that
H(A® S*Y(P(B))) =0 (25)

as graded D-module, or, equivalently, as graded O-module.
To that end, note that
0 —s ker* & - P(B)®* - (P(B)®%)S — 0,

where £ > 1 and where G is the averaging map, is a short exact sequence in the abelian cate-
gory DGOM of differential non-negatively graded O-modules (see Appendix 11.5; in particular
Equation (94)). Since it is canonically split by the injection

35 (P(B)*) — P(B)**

and
(P(B)®")% ~ S*(P(B))

as DG O-modules (see Equation (96)), we get
P(B)®* ~ S*(P(B)) @ker*& and A® P(B)** ~ A® S*(P(B)) ® A®ker* &,

as DG O-modules. Therefore, it suffices to show that the LHS is an acyclic chain complex of
O-modules.

We begin showing that D = Dx (X), where X is a smooth affine algebraic variety, is a flat
module over O = Ox(X). Note first that, the equivalence (8)

I'(X,e): qcMod(Ox) = Mod(O) : '@

is exact and strong monoidal (see remark below Equation (8)). Second, observe that Dy is a
locally free O x-module, hence, a flat (and quasi-coherent) sheaf of Ox-modules, i.e., Dx®p, ®
is exact in Mod(Ox). To show that D ® e is exact in Mod(O), consider an exact sequence

0—-M —-M-—M"—0
in Mod(O). From what has been said it follows that

0—>DX®OXMJ’—>DX®0X]\7—>DX®0XM7—>O
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is an exact sequence in Mod(Ox), as well as an exact sequence in qcMod(Ox) (kernels and
cokernels of morphisms of quasi-coherent modules are known to be quasi-coherent). When
applying the exact and strong monoidal global section functor, we see that

0=DPRoM Do M =D M' =0

is exact in Mod(0O).

Next, observe that

HAePB)*) = @ HD;® Az P(B)**1).

n>0 b, €By

To prove that each of the summands of the RHS vanishes, we apply Kiinneth’s Theorem
[Wei93, Theorem 3.6.3] to the complexes D? and A ® P(B)®*~1 noticing that both, D}
(which vanishes, except in degrees m,n — 1, where it coincides with D) and d(D7) (which
vanishes, except in degree n — 1, where it coincides with D), are termwise flat O-modules. We
thus get, for any m, a short exact sequence

0~ P H,(DY) @ Hy(Aw P(B)** V) — H,, (D} ® A P(B)**1) —
pt+g=m
B Tori(H,(DY), Hy(A® P(B)**1)) - 0.
p+gq=m—1

Finally, since D] is acyclic, the central term of this exact sequence vanishes, since both, the
first and the third, do.

To completely finish checking the requirements of Lemma 18 and thus of Theorem 17, we
still have to prove that the factorization (i,p) = (i(¢),p(¢)) of ¢ is functorial. In other words,
we must show that, for any commutative DGDA-square

A——B (26)
i/ d)l i/
there is a commutative DGDA-diagram
A —SA®SU ——B (27)

i($) p(9)
]
A —S5ASU —=DB
i(¢") p(¢)
where we wrote U (resp., U’) instead of P(B) (resp., P(B')).
To construct the DGDA-morphism w, we first define a DGDA-morphism v : SU — SU’, then
we obtain the DGDA-morphism w by setting w = u ® 0.
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To get the DGDA-morphism o, it suffices, in view of Lemma 16, to define a degree 0 Set-
map ¥ on G := {s7 0, , Ty, : by € By,n > 0}, with values in the differential graded D-algebra
(SU’,dy), which satisfies dy» © = 0dy on G. We set

5(s™',) = s 'y, € SU" and 9(I,,) = L, € SU’,

and easily see that all the required properties hold.

We still have to verify that the diagram (27) actually commutes. Commutativity of the
left square is obvious. As for the right square, let t ;= a® 21 ® ... ® 2 € AR SU, where the
x; are elements of U, and note that

vp(p)(t) =v(ppo(p®e))(t) =vo(a)xve(xy) * ... xve(zy)
and
p(8)w(t) = (pp o (¢ ®e))(ula) @ o(21) © ... © 0(zk))
)

where x denotes the multiplication in B’. Since the square (26) commutes, it suffices to check
that

B

= ¢u(a)x e v(zy) * ... x € v(x

ve(x) =& o(x) (28)

for any « € U. However, the D-module U is freely generated by G and the four involved
morphisms are D-linear: it is enough that (28) holds on G — what is actually the case.

7.6 Transferred model structure

We proved in Theorem 11 that DGDM is a finitely generated model category whose set of
generating cofibrations (resp., trivial cofibrations) is

I={u:S1 = DFE>0} (29)

(resp.,
J={G:0—= D k>1}). (30)

Theorem 17 thus allows to conclude that:

Theorem 21. The category DGDA of differential non-negatively graded commuitative D-
algebras is a finitely ( and thus a cofibrantly) generated model category (in the sense of [GS06]
and in the sense of [Hov07]), with SI = {Suy : v € I} as ils generating set of cofibrations
and 8J = {SC : Cx € J} as ils generating set of trivial cofibrations. The weak equivalences
are the DGDA-morphisms that induce an isomorphism in homology. The fibrations are the
DGDA-morphisms that are surjective in all positive degrees p > 0.

The cofibrations will be described below.

Quillen’s transfer principle actually provides a |GS06] cofibrantly generated (hence, a
|Hov07] cofibrantly generated) |[GS06] model structure on DGDA (hence, a [Hov07| model struc-
ture, if we choose for instance the functorial factorizations given by the small object argument).
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In fact, this model structure is finitely generated, i.e. the domains and codomains of the maps
in 81 and §J are n-small DGDA-objects, n € N, relative to Cof. Indeed, these sources and
targets are SDF (k > 1), SS¥ (k > 0), and O. We already observed (see Theorem 11) that
D¥ (k>1), S¥ (k> 0), and 0 are n-small DGDM-objects with respect to all DGDM-morphisms.
If &, denotes any of the latter chain complexes, this means that the covariant Hom func-
tor Hompgpu(Se, —) commutes with all DGDM-colimits colimg.y Ma o for all limit ordinals .
It therefore follows from the adjointness property (19) and the equation (24) that, for any
DGDA-colimit colimg.y Ag., we have

Hompgpa (SG.,, colimp ) Ag o) =~ Hompepu(S., For(colimgey Age)) =

Hompgpu (S, colimgy For(Ag,)) = colimg.y Hompgpu(S,, For(Ag,)) ~
colimg. x Hompgpa (SG., Ag) -

8 Description of DGDA-cofibrations

8.1 Preliminaries

The next lemma allows to define non-split RSDA-s, as well as DGDA-morphisms from such
an RSDA into another differential graded D-algebra.

Lemma 22. Let (T,dr) € DGDA, let (g;)jes be a family of symbols of degree n; € N, and let
V= @jEJ D - g; be the free non-negatively graded D-module with homogeneous basis (g;);c.
(i) To endow the graded D-algebra T'® SV with a differential graded D-algebra structure

d, it suffices to define
dg; € Tp,—1 Nd7" {0}, (31)

to extend d as D-linear map to V, and to equip T ® SV with the differential d given, for any
teTy, vi € Vo, ooy v € Vi, by

dt@v1 ©...0v) =

k
dr(t) @ v © ... Qv+ (—1)P Y (1) i<t (tx d(v)) @ 1 © ... L. Oy, (32)
/=1

where * is the multiplication in T. If J is a well-ordered set, the natural map
(T,dr)ot—t®1lp € (TKSV,d)

1s a RSDA.
(i) Moreover, if (B,dp) € DGDA and p € DGDA(T, B), it suffices — to define a morphism
q € DGDA(T X SV, B) (where the differential graded D-algebra (T X SV, d) is constructed as
described in (i)) — to define
a(95) € Bn, Ndy {pd(g;)} . (33)



Model structure on differential graded algebras over differential operators 23

to extend q as D-linear map to V', and to define g on T @ SV by

qtRv1 O...0uvk) =p(t) *q(vy) *...xq(vg) , (34)
where x denotes the multiplication in B.

The reader might consider that the definition of d(t ® f), f € O, is not an edge case of
Definition (32); if so, it suffices to add the definition d(t ® f) = dp(t) ® f. Note also that
Definition (32) is the only possible one. Indeed, denote the multiplication in 7' ® SV (see
Equation (13)) by ¢ and choose, to simplify, & = 2. Then, if d is any differential that is
compatible with the graded D-algebra structure of T'® SV, and coincides with dp(t) ® 1o ~
dr(t) on any t ® 1p ~ t € T (since (T,dr) — (T ¥ SV, d) must be a DGDA-morphism) and
with d(v) ® 1o >~ d(v) on any 17 ® v ~ v € V (since d(v) € T'), we have necessarily

dt® v ©uvg) =

dt®1p)o(Ir®@v) o (I @ v2) +
(_1)p(t X 1(9) <O d(lT (024 ’Ul) o (1T (029 ’1)2) +
(—)PMt @ lo)o (Ir @ v) od(ly @ vp) =

(dr(t) ® 1o) o (1r ® v1) © (17 ®@ v2)+
(—DP(t®lo) o (d(v1) ®1o) o (11 ® va)+
(=1)PM(t@1e) o (Ir @ v1) o (d(v2) ® 1o) =

dr(t) @ v1 ® vy + (=1)P(t * d(v1)) @ va + (—=1)PT™"2(¢ % d(v2)) @ vy .
An analogous remark holds for Definition (34).

Proof. 1t is easily checked that the RHS of Equation (32) is graded symmetric in its arguments
v; and O-linear with respect to all arguments. Hence, the map d is a degree —1 O-linear map
that is well-defined on T'® SV. To show that d endows T'® SV with a differential graded D-
algebra structure, it remains to prove that d squares to 0, is D-linear and is a graded derivation
for ©. The last requirement follows immediately from the definition, for D-linearity it suffices to
prove linearity with respect to the action of vector fields — what is a straightforward verification
—, whereas 2-nilpotency is a consequence of Condition (31). The proof of (ii) is similar. O

We are now prepared to give an example of a minimal non-split RSDA.

Example 23. Consider the generating cofibrations ¢, : S*~! — D" n > 1, and ¢ : 0 — S°
of the model structure of DGDM. The pushouts of the induced generating cofibrations

Un =8S(ty) and Yy = S(1o)

of the transferred model structure on DGDA are important instances of minimal non-split
RSDA-s — see Figure 2 and Equations (35), (36), (37), (39), and (40).
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S(sn-1y 2

(Ta dT)
P

S(D™)

Figure 1: Pushout diagram

Proof. We first consider a pushout diagram for ¢ := ¥,, for n > 1: see Figure 1, where
(T,dr) € DGDA and where ¢ : (S(S™"1),0) — (T, dr) is a DGDA-morphism.

In the following, the generator of S"~! (resp., the generators of D") will be denoted by
1,_1 (resp., by I, and s~ 'I,,, where s~! is the desuspension operator).

Note that, since S(S"~!) is the free DGDA over the DGDM S™"~!  the DGDA-morphism
¢ is uniquely defined by the DGDM-morphism ¢|gn-1 : S"~1 — For(T,dr), where For is the
forgetful functor. Similarly, since S?~! is, as GDM, free over its generator 1,,_1, the restriction
¢|gn-1 is, as GDM-morphism, completely defined by its value ¢(1,,—1) € T,—1. The map ¢|gn-1
is then a DGDM-morphism if and only if we choose

Kp—1 1= ¢(1n—1) € ker,,_1dp . (35)
We now define the pushout of (1, ¢): see Figure 2. In the latter diagram, the differential

¢

S(S™ 1) (T, dr)

|

S(D") (TR S(S™),d)

Figure 2: Completed pushout diagram

d of the GDA T X S(S™) is defined as described in Lemma 22. Indeed, we deal here with the
free non-negatively graded D-module S™ = S} =D - 1,, and set

d(1,) := kp—1 = ¢(1p—1) € kery_1 dyp .
Hence, if 2y ~ 24 -1,, € D - 1,, we get d(x¢) = x4 - kn—1, and, if ¢ € T}, we obtain

dtR@z1O...0xK) =

k
dr(t) @21 0. Oz + (P> ()" Dt (g kn)) @1 0. L Oz, (36)
/=1
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see Equation (32). Eventually the map
i:(T,dp)>t—t®1lp € (TRS(S"),d) (37)

is a (minimal and non-split) RSDA.

Just as ¢, the DGDA-morphism j is completely defined if we define it as DGDM-morphism on
D"™. The choices of j(I,) and j(s~'I,,) define j as GDM-morphism. The commutation condition
of 7 with the differentials reads

3(s7 ') = dj(I,) : (38)
only j(I,) can be chosen freely in (T’ ® S(S™))y, .

The diagram of Figure 2 is now fully described. To show that it commutes, observe that,
since the involved maps ¢, i, 1, and j are all DGDA-morphisms, it suffices to check commutation
for the arguments 1» and 1,_1. Only the second case is non-obvious; we get the condition

dj(l,) =kn-1® 1o . (39)
It is easily seen that the unique solution is
JIn) =1 ® 1y € (T ®S(S™))n - (40)

To prove that the commuting diagram of Figure 2 is the searched pushout, it now suffices
to prove its universality. Therefore, take (B,dp) € DGDA, as well as two DGDA-morphisms
i': (T,dr) — (B,dp) and j' : S(D™) — (B, dp), such that j' 01 =i’ o0 ¢, and show that there
is a unique DGDA-morphism y : (T'X S(S™),d) — (B, dp), such that xoi =14 and xyoj = j"

If x exists, we have necessarily
X(t@l’l@...@xk) :X((t®10)0(1T®5L'1)<>...<>(1T®xk))

:X(i(t))*x(lT®x1)*...*X(1T®xk) , (41)

where we used the same notation as above. Since any differential operator x; ~ xz; - 1, is
generated by functions and vector fields, we get

X(r @ i) = x(1r @ z; - 1n) = 2 - X(Ir ® 1n) = 23 - X(§(In)) = @i - §'(In) = 5'(2 - 1) . (42)
When combining (41) and (42), we see that, if x exists, it is necessarily defined by
Xt@z1 ..oz =7 (#) x5 (w1 - 1y) % ... x5 (2 - T) (43)

This solves the question of uniqueness.

We now convince ourselves that (43) defines a DGDA-morphism x (let us mention explicitly
that we set in particular x(t® f) = f-i'(t), if f € O). It is straightforwardly verified that x is a
well-defined D-linear map of degree 0 from T'® S(S™) to B, which respects the multiplications
and the units. The interesting point is the chain map property of x. Indeed, consider, to
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simplify, the argument ¢ ® z, what will disclose all relevant insights. Assume again that ¢ € T,
and x € S™, and denote the differential of S(D"), just as its restriction to D", by s~1. It
follows that

dp(x(t ©2)) = (dr() * /(5 T) + (1P 7(E) # 'z - 57T,)
Since ¥(1,_1) = s ', and j' 09 = i’ 0 ¢, we obtain j'(s'I,,) = i’ (¢(1,_1)) = 7’ (kn_1). Hence,
dp(x(t® z)) = x(dr(t) @ ) + (=17 i'(t) % i (z - k1) =

X(dr(t) @z + (1)t x (x - kp—1)) = x(d(t @ 2)) .
As afore-mentioned, no new feature appears, if we replace t ® x by a general argument.

As the conditions y o¢ = ¢’ and x o j = j’ are easily checked, this completes the proof of
the statement that any pushout of any v, n > 1, is a minimal non-split RSDA.

The proof of the similar claim for g is analogous and even simpler, and will not be detailed
here. O

Actually pushouts of ¢y are border cases of pushouts of the ¢,-s, n > 1. In other words,
to obtain a pushout of vy, it suffices to set, in Figure 2 and in Equation (36), the degree n
to 0. Since we consider exclusively non-negatively graded complexes, we then get S(S~!) =
S(0) =0, §(D°) = 8(SY), and k_1 = 0.

8.2 DGDA-cofibrations

The following theorem characterizes the cofibrations of the cofibrantly generated model
structure we constructed on DGDA.

Theorem 24. The DGDA-cofibrations are ezactly the retracts of the relative Sullivan D-
algebras.

Since the DGDA-cofibrations are exactly the retracts of the transfinite compositions of
pushouts of generating cofibrations

Yy S(S™H = S(D™), n>0,
the proof of Theorem 24 reduces to the proof of

Theorem 25. The transfinite compositions of pushouts of Y¥,-s, n > 0, are exactly the relative
Sullivan D-algebras.

Lemma 26. For any M, N € DGDM, we have
S(M®N)~SM®SN

in DGDA .
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Proof. 1t suffices to remember that the binary coproduct in the category DGDM = Ch, (D)
(resp., the category DGDA = CMon(DGDM)) of non-negatively graded chain complexes of D-
modules (resp., the category of commutative monoids in DGDM) is the direct sum (resp., the
tensor product). The conclusion then follows from the facts that S is the left adjoint of the
forgetful functor and that any left adjoint commutes with colimits. O

Any ordinal is zero, a successor ordinal, or a limit ordinal. We denote the class of all
successor ordinals (resp., all limit ordinals) by Og (resp., Oy).

Proof of Theorem 25. (i) Consider an ordinal A and a A-sequence in DGDA, i.e., a colimit
respecting functor X : A — DGDA (here ) is viewed as the category whose objects are the
ordinals o < A and which contains a unique morphism « — § if and only if o < f):

Xo—=X1—.. 00X, > X1 — ... Xo 2> X1 — ... —m Xog = Xag1 — -1

We assume that, for any « such that a +1 < A, the morphism X, — X,y1 is a pushout
of some 1y, ., (na+1 > 0). Then the morphism Xy — colim,<) X, is exactly what we call
a transfinite composition of pushouts of ¥,-s. Our task is to show that this morphism is a
RSDA.

We first compute the terms X,, a < A, of the A-sequence, then we determine its colimit.
For a < A (resp., for o < A\, € O;), we denote the differential graded D-algebra X, (resp.,
the DGDA-morphism X,_1 = Xq) by (Aqa,da) (resp., by Xoa—1: (Aa=1,da—1) = (Aa,da)).
Since X -1 1s the pushout of some 1), and some DGDA-morphism ¢, its target algebra is
of the form

(Aom da) = (Aafl X S<aa>> da) (4:4)

and X, o—1 is the canonical inclusion
Xa,oz—l : (Aoz—lydoa—l) D dag-1 Ga-1®1lp € (Aa—l X S<CLa>, da) , (45)

see Example 23. Here a, is the generator 1, of S™ and (a4 ) is the free non-negatively graded
D-module S™ =D - a, concentrated in degree n,; further, the differential

do, is defined by (36) from dy—1 and Kn,—1 = da(ln,—1) - (46)

In particular, 4; = Ag X S<a1> , dl(al) = Kpy—-1 = ¢1(1n1—1> € Ay, and Xq9: Ag — A; is the
inclusion.

Lemma 27. For any o < A, we have
Ag ~ Ay @ S{as: 0 < a,0 € Oy) (47)
as a graded D-algebra, and

do(as) € Ag @ S{a: 1 e < d,e € ), (48)
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forall 6 < «a, § € Og. Moreover, for any v < < a < X, we have
Ag=A, ®8(as: 7 <6< B,6 € Oy)
and the DGDA-morphism Xg. is the natural inclusion
Xgy 1 (Ay,dy) 20y = a,® 10 € (45,dg) . (49)

Since the latter statement holds in particular for v =0 and 8 = «, the DGDA-inclusion X0 :
(Ao, do) — (Aa,dy) s a RSDA ( for the natural ordering of {as : 6 < a,d € O4}).

Proof of Lemma 27. To prove that this claim (i.e., Equations (47) — (49)) is valid for all
ordinals that are smaller than A, we use a transfinite induction. Since the assertion obviously
holds for a = 1, it suffices to prove these properties for o < A, assuming that they are true for
all B < a. We distinguish (as usually in transfinite induction) the cases a € O5 and « € Dy.

If a € Oy, it follows from Equation (44), from the induction assumption, and from Lemma
26, that
Agy = Aao1 ®S{aq) ~ Ay @ S{asg : 0 < a,0 € Oy)

as graded D-algebra. Further, in view of Equation (46) and the induction hypothesis, we get
do(aa) = ¢a(lp,—1) € Ag—1 = Ao R S{as : § < a,d € Oy)
and, for d < a—1,0 € O,
do(as) = da—1(as) € Ag®@ S(ay 1y < 8,7 € Ds) .

Finally, as concerns Xg,, the unique case to check is v < a — 1 and § = a. The DGDA-map
Xa—1, is an inclusion
Xa—l,"/ : A’Y S0, —~ 0y ® lp € Auq

(by induction), and so is the DGDA-map
Xa,a—l tAa—1 2 a—1 = aq—1 ® 1o € Ay

(in view of (45)). The composite X, is thus a DGDA-inclusion as well.

In the case a € Oy, ie., a = colimg., 3, we obtain (A, dy) = colimp.(Ag,dg) in
DGDA, since X is a colimit respecting functor. The index set « is well-ordered, hence, it is
a directed poset. Moreover, for any § < v < 8 < «, the DGDA-maps Xgs5, X5, and Xp,
satisfy Xgs = Xgy 0 Xy5. It follows that the family (Ag, dg)g<a, together with the family
Xgy, v < B < a, is a direct system in DGDA, whose morphisms are, in view of the induction
assumption, natural inclusions

Xgy:Ayday a0, @10 € Ag .

The colimit (An,dn) = colimgq(Ag,dg) is thus a direct limit. However, a direct limit in
DGDA coincides with the corresponding direct limit in DGDM, or even in Set (which is then
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naturally endowed with a differential graded D-algebra structure). As a set, the direct limit
(Aq,dq) = colimpg.y(Ag,dg) is given by

Aa:HAﬂ/Nv

B<a

where ~ means that we identify a,, v < 3, with
ay ~ Xpy(ay) =a, ® 10,

i.e., that we identify A, with
A,y ~ AW ® 0 C Aﬁ .

It follows that

A= |JAg=A008(as: 6 <, 0 €D,)=A@S(as: 6 <, 6 €D,) .
B<la

As just mentioned, this set A, can naturally be endowed with a differential graded D-algebra
structure. For instance, since, in view of what has been said, all ~ - classes consist of a single
element, and since any a, € A, belongs to some Ag, 8 < «, the differential d, is defined by
do(aq) = dg(ag). In particular, any generator as, § < a, § € Oy, belongs to As. Hence, by
definition of d, and in view of the induction assumption, we get

do(as) = ds(as) € Ag @ S{as 1 e < d,e € Oy) .

Eventually, since X is colimit respecting, not only A, = colimg<, Ag = |J B<a Apg, but, further-
more, for any v < «, the DGDA-morphism X, : A, — A, is the map X,y : A, — U5<a Ag,
i.e., the canonical inclusion. O

We now come back to the proof of Part (i) of Theorem 25, i.e., we now explain why the
morphism ¢ : (Ap,dp) — C, where C' = colimy<)(Aq,dn) and where i is the first of the
morphisms that are part of the colimit construction, is a RSDA — see above. If A € 9, the
colimit C' coincides with (Ay_1,dy—1) and i = X)_1. Hence, the morphism 7 is a RSDA in
view of Lemma 27. If A € Oy, the colimit C' = colim,<)(Aq,ds) is, like above, the direct
limit of the direct DGDA-system (X, = (Aq,da), Xop) indexed by the directed poset A, whose
morphisms X, are, in view of Lemma 27, canonical inclusions. Hence, C is again an ordinary
union:

C=|JAv=40Sa;:6<\deD,), (50)
a<A
where the last equality is due to Lemma 27. We define the differential do on C' exactly
as we defined the differential d, on the direct limit in the proof of Lemma 27. It is then
straightforwardly checked that ¢ is a RSDA.

(ii) We still have to show that any RSDA (Ao, dy) — (Ao K SV, d) can be constructed as a
transfinite composition of pushouts of generating cofibrations v, n > 0. Let (a;)jcs be the
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basis of the free non-negatively graded D-module V. Since J is a well-ordered set, it is order-
isomorphic to a unique ordinal g = {0,1,...,n,...,w,w + 1,...}, whose elements can thus
be utilized to label the basis vectors. However, we prefer using the following order-respecting
relabelling of these vectors:

ag ~ a1,a1 ~> A2, ... Gp M Apgly -5 QG 7 Qs Gw+1 7 Qw25 - - -

In other words, the basis vectors of V' can be labelled by the successor ordinals that are strictly
smaller than X\ := p+ 1 (this is true, whether p € Og, or p € Oy ):

V= EB D-as.

O<\, €05

For any o < A, we now set
(An,do) == (Ao R S{as : d <, 0 € Og),dla,,) -

It is clear that A, is a graded D-subalgebra of Ag®@ SV. Since A, is generated, as an algebra,
by the elements of the types ap ® 1p and D - (14, ® as), D € D, § < a, § € Oy, and since

d(ap ® 1lo) = do(ap) ® 1o € A,

and
d(D-(1a,®as)) € Ag®@S(as 1€ <d,e € Og) C Ay,

the derivation d stabilizes A,. Hence, (Aq,dy) = (Aa,d|4,) is actually a differential graded
D-subalgebra of (A9 K SV, d).

If 3 < a < A, the algebra (Ag,d|a,) is a differential graded D-subalgebra of (Aq,d|4,),
so that the canonical inclusion ing : (Ag,dg) — (Aa,dq) is a DGDA-morphism. In view of
the techniques used in (i), it is obvious that the functor X = (A_,d_) : A — DGDA respects
colimits, and that the colimit of the whole A-sequence (remember that A\ = u+ 1 € Oj) is the
algebra (A,,d,) = (Ao XSV, d), i.e., the original algebra.

The RSDA (Ao,dy) — (Ao X SV,d) has thus been built as transfinite composition of
canonical DGDA-inclusions i : (A, do) = (Aa+1,da+1), @+ 1 < A. Recall that

Aat1 = Ao ® S{aa+1) = Aa © S(S")

if we set n := deg(aq+1). It suffices to show that i is a pushout of 1,, see Figure 3. We
will detail the case n > 1. Since all the differentials are restrictions of d, we have k,_1 :=
dot1(aat1) € Ag Nkery,_1 dy, and ¢(1,-1) := kp—1 defines a DGDA-morphism ¢, see Example
23. When using the construction described in Example 23, we get the pushout i : (Aq, do) —
(Aa®S(S™),0) of the morphisms v, and ¢. Here i is the usual canonical inclusion and 0 is the
differential defined by Equation (36). It thus suffices to check that @ = dn+1. Let a, € A5 and
let 1 >~ 21 - Gag1y---, Tk =2 Tk - Qa1 € D+ a1 = S™. Assume, to simplify, that k& = 2; the
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S(871) — s (An,da)
Pn i
S(D") — s (A0 R S(S™), dus1)

Figure 3: i as pushout of ¢,

general case is similar. When denoting the multiplication in A, (resp., Aq+1 = Aq @ S(S™))
as usual by * (resp., x ), we obtain

0(ap @21 © x2) =

da(a0) ® 1 ® 29 + (—1)P(an * (21 - kn—1)) @ 22 + (—1)PT(aq * (T2 - p_1)) @ 11 =

(do(aa) ®1o) * (1a, @ z1) * (14, ® x2)+
(—1)P(aq ® 10) * ((z1 - kn—1) ® lo) * (14, ® z2)+
(=1)P (a0 @ 10) * (14, @ 1) * (72 - Kn—1) @ 1lo) =

dot1(0a @ 10) * (14, @ 1) * (14, @ z2)+
(_1);0(% @ 1(9) *da+1(1Aa & 1'1) * (1Aa &® xl)—i—
(1P (aq ® 10) * (14, @ 71) * dat1(la, ® x2) =

do+1(00 ® 11 © 22) .

9 Explicit functorial factorizations

The main idea of Subsection 7.5 is the decomposition of an arbitrary DGDA-morphism
¢ : A — B into a weak equivalence i : A - A ® SU and a fibration p : A ® SU — B. It is
easily seen that ¢ is a split minimal relative Sullivan D-algebra. Indeed,

U=PB)= & D coepn (51)
n>0b,€By,

with differential diy = dp defined by

dU(S_l]Ibn) =0 and dy(ly,) = 8_1]1(, (52)

n *
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Hence, SU € DGDA, with differential dg induced by dy7, and A ® SU € DGDA, with differential
di = dy ®id +id ®dyg . (53)

Therefore, i : A - A ® SU is a DGDA-morphism. Since U is the free non-negatively graded
D-module with homogeneous basis

G=1{s"',,,I, :b, € B,,n>0},

all the requirements of the definition of a split minimal RSDA are obviously satisfied, except
that we still have to check the well-ordering, the lowering, and the minimality conditions.

Since every set can be well-ordered, we first choose a well-ordering on each B,, n > 0:
if A, denotes the unique ordinal that belongs to the same equivalence class of well-ordered
sets, the elements of B,, can be viewed as labelled by the elements of A,,. Then we define the
following total order: the s~'l,, by € Bj, are smaller than the I, which are smaller than
the s7!,,, and so on ad infinitum. The construction of an infinite decreasing sequence in this
totally ordered set amounts to extracting an infinite decreasing sequence from a finite number
of ordinals A1, A\1,..., Ag. Since this is impossible, the considered total order is a well-ordering.
The lowering condition is thus a direct consequence of Equations (52) and (53).

Let now {7, : @ € J} be the set G of generators endowed with the just defined well-order.
Observe that, if the label « of the generator 7, increases, its degree deg~, increases as well,
i.e., that

a<pB = degy, <degys. (54)

Eventually, any DGDA-morphism ¢ : A — B admits a functorial factorization
A A9SU - B, (55)

where p is a fibration and ¢ is a weak equivalence, as well as a split minimal RSDA. In view of
Theorem 24, the morphism ¢ is thus a cofibration, with the result that we actually constructed
a natural decomposition ¢ = p o i of an arbitrary DGDA-morphism ¢ into ¢ € TrivCof and
p € Fib. The description of this factorization is summarized below, in Theorem 28, which
provides essentially an explicit natural ‘Cof — TrivFib’ decomposition

A Aesu s B. (56)

Before stating Theorem 28, we sketch the construction of the factorization (56). To simplify,
we denote algebras of the type A ® SV, by Ry, , or simply Ry .

We start from the ‘small’ ‘Cof — Fib’ decomposition (55) of a DGDA-morphism A N B,
i.e., from the factorization A N Ry -2 B. To find a substitute q for p, which is a trivial
fibration, we mimic an idea used in the construction of the Koszul-Tate resolution: we add
generators to improve homological properties.

Note first that H(p) is surjective if, for any homology class [3,] € H,(B), there is a class
[on] € Hn(Ry), such that [ppn] = [Bn]- Hence, consider all the homology classes [(,], n > 0,
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of B, choose in each class a representative 3, ~ [Br], and add generators H/in to those of U.
It then suffices to extend the differential d; (resp., the fibration p) defined on Ry = A ® SU,
so that the differential of I; vanishes (resp., so that the projection of I; coincides with Bn)
(>>1 — this triangle is just a mark that allows us to retrieve this place later on). To get a
functorial ‘Cof — TrivFib’ factorization, we do not add a new generator I B for each homology

class B3y, ~ [Bn] € Hy(B), n > 0, but we add a new generator I , for each cycle f,, € ker, dp,
n > 0. Let us implement this idea in a rigorous manner. Assign the degree n to Iz, and set

Vo =U®Go:=Ua® (g, : fn € kerpdp,n > 0) =

(s 7'y, , Ty, , 15, : by € Byyn > 0,83, € ker,,dg,n > 0) . (57)

Set now
(5{/0(8_1an) = dl(S_l]Ibn) = 0, (5\/01[1)” = dlﬂbn = S_lﬂbn, (5V0H5n =0 s (58)

thus defining, in view of Lemma 15, a differential graded D-module structure on Vj. It follows
that (SVp, dy,) € DGDA and that

(Ro,00) = (A® SVp,da ®id +id ® dy,) € DEDA . (59)
Similarly, we set
avp (s 'I,) = p(s ' I,) = (s 'I,.) = dbn, qvly, = Py, = lp, = bn, qrpls, = Bn . (60)

We thus obtain, see Lemma 16, a morphism gy, € DGDM(Vy, B) — which uniquely extends to a
morphism gy, € DGDA(SVp, B). Finally,

qo = B o (¢ ® qv,) € DGDA(Roy, B) , (61)

where pp denotes the multiplication in B. Let us emphasize that Ry = A ® SU is a direct
summand of Ry = A ® SVp, and that §y and qg just extend the corresponding morphisms on
RUZ 50’RU = d1 and qolRU =p.

So far we ensured that H(qo) : H(Rog) — H(B) is surjective; however, it must be injective
as well, i.e., for any o, € ker dp, n > 0, such that H(qo)[on] = 0, i.e., such that gyo,, € imdp,
there should exist 0,41 € Rp such that

On = 500'71—&-1 . (62)
We denote by By the set of dp-cycles that are sent to dp-boundaries by qq:
By = {0y, € ker b : qooy, € imdp,n > 0} .

In principle it now suffices to add, to the generators of Vy, generators ]Ii_n of degree n + 1,
on € By, and to extend the differential dg on Ry so that the differential of H},n coincides with
n (>2). However, it turns out that to obtain a functorial ‘Cof — TrivFib’ decomposition, we
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must add a new generator ]I}Tn bt of degree n+1, for each pair (o, by+1) such that o,, € ker dy
and goo, = dpbyi1: we set

Bo = {(on, bpt1) : o € ker g, by € d;l{qoan},n >0} (63)
and
Vii=Vo@Gr=Vo@ (L} , (00 bui1) € Bo). (64)

To endow the graded D-algebra
R = A®SV] ~ Ry ® SG4 (65)
with a differential graded D-algebra structure 1, we apply Lemma 22, with

61 (13 ) =on € (Ro)n Nkerdo , (66)

Un7hn+1

exactly as suggested by Equation (62). The differential 0; is then given by Equation (32) and
it extends the differential g on Ry. The extension of the DGDA-morphism ¢qg : Rg — B by a
DGDA-morphism ¢ : Ry — B is built from its definition

q1(I}, 6,01) = b1 € Buyr Ndg' {qod1 (I} 6, , )} (67)
on the generators and from Equation (34) in Lemma 22.

Eventually, starting from (Ry,d1) € DGDA and p € DGDA(Ry, B), we end up — when trying
to make H(p) bijective — with (Ry,01) € DGDA and ¢; € DGDA(R;, B) — so that the question
is whether H(q1) : H(R1) — H(B) is bijective or not. Since (R, d1) extends (Rp,dp) and
H(qo) : H(Ry) — H(B) is surjective, it is easily checked that this property holds a fortiori for
H(q1). However, when working with R; D Ry, the ‘critical set’ B; D By increases, so that we
must add new generators I2 | o, € By \ By, where

By ={on, € kerdy : 1o, € imdg,n >0} . (>3)
To build a functorial factorization, we consider not only the ‘critical set’
B1 = {(0n, byt1) : 0y € ker 81, b1 € d5' {qron},n >0}, (68)
but also the module of new generators
Go=(I2, .01 (00, buy1) € By), (69)

indexed, not by B; \ By, but by B;. Hence an iteration of the procedure (63) - (67) and the
definition of a sequence

(R0,50) — (Rl,él) — (R2,52) — ... (Rk—lu(sk—l) — (Rk,ék) - ...

of canonical inclusions of differential graded D-algebras (Ry, 0x), Ry = ARSVy, Ok|r,_, = Ok—1,
together with a sequence of DGDA-morphisms g : Ry, — B, such that gx|r, , = qx—1. The
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definitions of the differentials d; and the morphisms g are obtained inductively, and are based
on Lemma 22, as well as on equations of the same type as (66) and (67).

The direct limit of this sequence is a differential graded D-algebra (Ry,ds) = (AR SV, d2),
together with a morphism ¢: A ® SV — B.

As a set, the colimit of the considered system of canonically included algebras (R, dx), is
just the union of the sets Ry, see Equation (50). We proved above that this set-theoretical
inductive limit can be endowed in the standard manner with a differential graded D-algebra
structure and that the resulting algebra is the direct limit in DGDA. One thus obtains in
particular that da|g, = dj .

Finally, the morphism ¢ : Ry — B comes from the universality property of the colimit and
it allows to factor the morphisms gy, : R — B through Ry. We have: q|r, = qx .

We will show that this morphism A ® SV —% B really leads to a ‘Cof - TrivFib’ decompo-
sition A 5 A SV -5 B of A - B.

Theorem 28. In DGDA, a functorial ‘TrivCof — Fib’ factorization (i,p) and a functorial ‘Cof
— TrivFib’ factorization (j,q) of an arbitrary morphism

d): (A,dA) — (B,dB) s

see Figure 4, can be constructed as follows:

(A,dya) - (AXSU, dy)
[ e )
@
(AR SV, dy) : (B,dg)

Figure 4: Functorial factorizations

(1) The module U is the free non-negatively graded D-module with homogeneous basis

U {8_1an s an} s

where the union is over all b, € By and all n > 0, and where deg(s™',,) = n — 1 and
deg(l, ) = n. In other words, the module U is a direct sum of copies of the discs

D'=D-T, @D s T, ,

n > 0. The differentials
st:D" 5T, —s ', € D"

iduce a differential dyy in U, which in turn implements a differential dg in SU. The differential
dy is then given by di = da ®1d+1id ®dg . The trivial cofibration i : A — AR SU is a minimal
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split RSDA defined by i : a — a ® 1o, and the fibration p : A ®@ SU — B is defined by p =
pupo(dp®e), where up is the multiplication of B and where (I, ) = b, and e(s™ ') = dpby, .

(2) The module V is the free non-negatively graded D-module with homogeneous basis

—1 1 2 k
G RCI 10 0 PR G AR AT I

where the union is over all b, € B,, n > 0, all B, € ker,dp, n > 0, and all pairs
(o0n, bp+1), n >0, in By, B1,..., By, ...,
respectively. The sequence of sets
By 1 = {(0n,bns1) : 0y € ker 1, by11 € dg' {qr_104},1n > 0}

is defined inductively, together with an increasing sequence of differential graded D-algebras
(A® SVi, k) and a sequence of morphisms q : A @ SV, — B, by means of formulas of the
type (63) - (67) (see also (57) - (61)). The degrees of the generators of V are

n—1,nnn+1l,n+1,...,n+1,... (70)

The differential graded D-algebra (AQSV, dg) is the colimit of the preceding increasing sequence
of algebras:

da|aesv, = Ok - (71)

The trivial fibration q: A @ SV — B is induced by the qi-s via universality of the colimit:

qlagsv, = ak - (72)

Eventually, the cofibration j : A — A® SV is a minimal (non-split) RSDA, which is defined
as in (1) as the canonical inclusion; the canonical inclusion ji, : A > AR SVi, k>0, is also
a minimal (non-split) RSDA, whereas jo : A — A ® SVp is a minimal split RSDA.

Proof. See Appendix 11.6. O

Remark 29. e If we are content with a non-functorial ‘Cof — TrivFib’ factorization, we
may consider the colimit A ® SV of the sequence A ® SV}, that is obtained by adding
only generators (see (>1))

Hﬁ.n’ n >0, /Bn = [ﬁn] € Hn(B) )
and by adding only generators (see (>>2) and (>>3))

]Iclrmﬂinv"'? n>0, o, € B(),Bl \Bg,...

e An explicit description of the functorial fibrant and cofibrant replacement functors, in-
duced by the ‘TrivCof — Fib’ and ‘Cof — TrivFib’ decompositions of Theorem 28, can be
found in Appendix 11.7.
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10 First remarks on Koszul-Tate resolutions

In this last section, we provide first insight into Koszul-Tate resolutions. Given a poly-
nomial partial differential equation acting on sections of a vector bundle, we obtain, via our
preceding constructions, a Koszul-Tate resolution (KTR) of the corresponding algebra R of
on-shell functions. This resolution is a cofibrant replacement of R in the appropriate under-
category of DGDA.

In a separate paper [PP17a], we give a general and precise definition of Koszul-Tate resolu-
tions. We further show in that work that the classical Tate extension of the Koszul resolution
[HT92], the KTR implemented by a compatibility complex [Ver02|, as well as our just men-
tioned and below detailed model categorical KTR, are Koszul-Tate resolutions in the sense
of this improved definition. Eventually, we investigate the relationships between these three
resolutions.

Hence, the present section should be viewed as an introduction to topics on which we will
elaborate in [PP17a].

10.1 Undercategories of model categories
When recalling that the coproduct in DGDA is the tensor product, we get from [Hir05] that:

Proposition 30. For any differential graded D-algebra A, the coslice category A | DGDA
carries a cofibrantly generated model structure given by the adjoint pair Lg : DGDA = A |
DGDA : For, in the sense that its distinguished morphism classes are defined by For and its
generating cofibrations and generating trivial cofibrations are given by Lg .

10.2 Basics of jet bundle formalism

The jet bundle formalism allows for a coordinate-free approach to partial differential equa-
tions (PDE-s), i.e., to (not necessarily linear) differential operators (DO-s) acting between
sections of smooth vector bundles (the confinement to vector bundles does not appear in more
advanced approaches). To uncover the main ideas, we implicitly consider in this subsection
trivialized line bundles E over a 1-dimensional manifold X, i.e., we assume that £ ~ R x R.

The key-aspect of the jet bundle approach to PDE-s is the passage to purely algebraic
equations. Consider the order k differential equation (DE)

F(t, ¢(t),dio,...,df¢) = F(t,6,¢,....,6W) ks =0, (73)

where (t, ¢, ¢, ..., q’)(k)) are coordinates of the k-th jet space J*E and where j¥¢ is the k-jet
of the section ¢(t). Note that the algebraic equation

F(t,¢,¢,...,0%) =0 (74)

defines a ‘surface’ £¥ ¢ J*E, and that a solution of the considered DE is nothing but a section
#(t) whose k-jet is located on &F.



Model structure on differential graded algebras over differential operators 38

A second fundamental feature is that one prefers replacing the original system of PDE-s by
an enlarged system, its infinite prolongation, which also takes into account the consequences
of the original one. More precisely, if ¢(t) satisfies the original PDE, we have also

d(F(t, ¢(t), di, ..., df ) = (O + ¢y + "0y + .. ) F(t, b, ¢, ..., d")|jocy =:

DiF(t,¢,¢ ..., )| jooy = 0, VL €N (75)

Let us stress that the ‘total derivative’ Dy or horizontal lift D, of d; is actually an infinite sum.
The two systems of PDE-s, (73) and (75), have clearly the same solutions, so we may focus
just as well on (75). The corresponding algebraic system

D'F(t,¢,¢,....,6%)=0, v eN (76)

defines a ‘surface’ £ in the infinite jet bundle 7o : J*FE — X. A solution of the original
system (73) is now a section ¢ € I'(X, E) such that (j°¢)(X) C £°°. The ‘surface’ £ is
often referred to as the ‘stationary surface’ or the ‘shell’.

The just described passage from prolonged PDE-s to prolonged algebraic equations involves
the lift of differential operators df acting on O(X) = I'(X, X x R) (resp., sending — more gen-
erally — sections I'(X, G) of some vector bundle to sections I'(X, K)), to horizontal differential
operators Dy acting on O(J®E) (resp., acting from T'(J®E, 1% G) to T'(J®E, 7% K)). As
seen from Equation (75), this lift is defined by

(D{F) 0 j®¢ = di(F o j>*¢)

(note that composites of the type F o j*°¢, where F' is a section of the pullback bundle 7% G,
are sections of GG). The interesting observation is that the jet bundle formalism naturally
leads to a systematic base change X ~» J®E. The remark is fundamental in the sense that
both, the classical Koszul-Tate resolution (i.e., the Tate extension of the Koszul resolution of a
regular surface) and Verbovetsky’s Koszul-Tate resolution (i.e., the resolution induced by the
compatibility complex of the linearization of the equation), use the jet formalism to resolve
on-shell functions O(£%°), and thus enclose the base change ¢ — X ~» e — J*E. This
means, dually, that we pass from DGDA, i.e., from the coslice category O(X) | DGDA to the
coslice category O(J*FE) | DGDA.

10.3 Revision of the classical Koszul-Tate resolution

We first recall the local construction of the Koszul resolution of the function algebra
O(%) of a regular surface ¥ C R™. Such a surface ¥, say of codimension r, can locally always
be described — in appropriate coordinates — by the equations

Y:x%=0,Vae{l,...,r}. (77)
The Koszul resolution of O(X) is then the chain complex made of the free Grassmann algebra

K= O(R") ® S[¢*"]
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on 7 odd generators ¢** — associated to the equations (77) — and of the Koszul differential
5}( == x“8¢a* . (78)

Of course, the claim that this complex is a resolution of O(X) means that the homology of
(K, k) is given by
Ho(K)=0(¥) and Hp(K)=0,Vk>0. (79)

The Koszul-Tate resolution of the algebra O(£°°) of on-shell functions is a generalization
of the preceding Koszul resolution. In gauge field theory (our main target), £°° is the stationary
surface given by a system

EX:DIF; =0, Va,i (80)

of prolonged algebraized (see (76)) Euler-Lagrange equations that correspond to some action
functional (here x € RP and o € NP). However, there is a difference between the situations
(77) and (80): in the latter, there exist gauge symmetries that implement Noether identities
and their extensions — i.e., extensions

D] Gi, DgFi =0, V8, j (81)

of O(J*®°E)-linear relations Géa DS F; = 0 between the equations D F; = 0 of £ —, which do
not have any counterpart in the former. It turns out that, to kill the homology (see (79)), we
must introduce additional generators that take into account these relations. More precisely,
we do not only associate degree 1 generators ¢$* to the equations (80), but assign further
degree 2 generators C’f* to the relations (81). The Koszul-Tate resolution of O(€>) is then
(under appropriate irreducibility and regularity conditions) the chain complex, whose chains
are the elements of the free Grassmann algebra

KT = O(J¥E) ® S[¢f, 0" | (82)
and whose differential is defined in analogy with (78) by

Skt = DSF; Ogox + D G, D37 0 (83)

B
(G

where we substituted ¢} to Fj (and where total derivatives have to be interpreted in the
extended sense that puts the ‘antifields’ ¢; and C7 on an equal footing with the ‘fields’ P’
(fiber coordinates of E), i.e., where we set

Dy = Oy + GOy, + OF* Oy + C 6*80,5* ) -

The homology of this Koszul-Tate chain complex is actually concentrated in degree 0, where
it coincides with O(£*°) (compare with (79)).
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10.4 D-algebraic version of the Koszul-Tate resolution

In this subsection, we briefly report on the D-algebraic approach to ‘Koszul-Tate’ (see
|PP17a] for additional details).

Proposition 31. The functor
For : DA — OA

has a left adjoint
J>* :0A — DA,

i.e., for B€ OA and A € DA, we have
HomDA(jOO(B)> A) = HOIH@A(B, FOT(A)) ) (84)
functorially in A, B.

Let now m : E — X be a smooth map of smooth affine algebraic varieties (or a smooth
vector bundle). The function algebra B = O(FE) (in the vector bundle case, we only consider
those smooth functions on E that are polynomial along the fibers, ie., O(E) := I'(SE"))
is canonically an O-algebra, so that the jet algebra J°°(O(FE)) is a D-algebra. The latter
can be thought of as the D-algebraic counterpart of O(J*°FE). Just as we considered above
a scalar PDE with unknown in I'(E) as a function F' € O(J*®E) (see (74)), an element
P € J*(O(F)) can be viewed as a polynomial PDE acting on sections of 7 : E — X.
Finally, the D-algebraic version of on-shell functions O(E%°) = O(J*E)/(F) is the quotient
R(E,P) :=J>®(O(F))/(P) of the jet D-algebra by the D-ideal (P).

A first candidate for a Koszul-Tate resolution of R := R(F,P) € DA is of course the
cofibrant replacement of R in DGDA given by the functorial ‘Cof — TrivFib’ factorization of
Theorem 28, when applied to the canonical DGDA-morphism O — R. Indeed, this decompo-
sition implements a functorial cofibrant replacement functor @ (see Theorem 34 below) with

value Q(R) = SV described in Theorem 28:

O—8SV>R.
Since R is concentrated in degree 0 and has 0 differential, it is clear that Hy(SV') vanishes,
except in degree 0 where it coincides with R.

As already mentioned, we propose a general and precise definition of a Koszul-Tate res-
olution in [PP17a]. Although such a definition does not seem to exist in the literature, it is
commonly accepted that a Koszul-Tate resolution of the quotient of a commutative ring k& by
an ideal I is an k-algebra that resolves k/I.

The natural idea — to get a J°°(O(F))-algebra — is to replace SV by J*(O(F)) @ SV,
and, more precisely, to consider the ‘Cof — TrivFib’ decomposition

T=(O(E)) — T*(O(E) @ SV = J*(O(E))/(P) .
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The DGDA
T*(O(E)) @ SV (85)

isa J°(O(F))-algebra that resolves R = J°(O(F))/(P), but it is of course not a cofibrant
replacement, since the left algebra is not the initial object O in DGDA (further, the considered
factorization does not canonically induce a cofibrant replacement in DGDA, since it can be
shown that the morphism O — J°°(O(FE)) is not a cofibration). However, as emphasized
above, the Koszul-Tate problem requires a passage from DGDA to J*°(O(E)) | DGDA. It is
easily checked that, in the latter undercategory, J*°(O(FE))®SV is a cofibrant replacement
of 7*°(O(E))/(P). To further illuminate the D-algebraic approach to Koszul-Tate, let us
mention why the complex (82) is of the same type as (85). Just as the variables ¢(¥) (see (73))
are algebraizations of the derivatives dfqﬁ of a section ¢ of a vector bundle £ — X (fields), the
generators ¢$* and Cf " (see (80) and (81)) symbolize the total derivatives D¢} and Db C;
of sections ¢* and C* of some vector bundles 7} Fy — J*E and 7% Fy — J*FE (antifields).
Hence, the ¢ and Cf* can be thought of as the horizontal jet bundle coordinates of 7} F}
and 73 F5. These coordinates may of course be denoted by other symbols, e.g., by 0% - ¢; and
85 . CJ"»‘, provided we define the D-action as the action D¢} and Dg C]’»k by the corresponding
horizontal lift, so that we get appropriate interpretations when the ¢;-s and the C'f-s are the
components of true sections. This convention allows to write

KT =J®S8[0% 4,00 - C}l=J @0 So(®:;D-¢f @& &;D-C}),

where J = J>°(O(E)), so that the space (82) is really of the type (85). Let us emphasize that
(82) and (85), although of the same type, are of course not equal (for instance, the classical
Koszul-Tate resolution is far from being functorial). For further details, see [PP17a].

11 Appendices

The following appendices do not contain new results but might have a pedagogical value.
Various (also online) sources were used. Notation is the same as in the main part of the text.

11.1 Appendix 1 — Quasi-coherent sheaves of modules

A quasi-coherent R-module is an object P € Mod(R) that is locally presented, i.e., for
any x € X, there is a neighborhood U 3 z, such that there is an exact sequence of sheaves

RKU|U—>'RJU|U%'P|U—>O, (86)

where REU and R’V are (not necessarily finite) direct sums. Let us recall that an infinite
direct sum of sheaves need not be a sheaf, so that a sheafification is required. The category
qcMod(R) of quasi-coherent R-modules is not abelian in general, but is abelian in the context
of Algebraic Geometry, i.e., if R is the function sheaf of a scheme.
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11.2 Appendix 2 — D-modules

We already indicated that D-modules are fundamental in algebraic analysis: they allow
to apply methods of homological algebra and sheaf theory to the study of systems of PDE-s
[KS90].

We first explain the key idea of Proposition 1 considering — to simplify — total sections
instead of sheaves.

We denote by D the ring of differential operators acting on functions of a suitable base
space X, e.g., a finite-dimensional smooth manifold [Cosl11l]. A D-module M € Mod(D) (resp.,
M € Mod(D°P)) is a left (resp., right) module over the noncommutative ring D. Since D is
generated by smooth functions f € O and smooth vector fields 8 € ©, modulo the obuvious
commutation relations between these types of generators, a D-action on an O-module M €
Mod(Q) is completely defined if it is given for vector fields and satisfies the natural compatibility
conditions. More precisely, let

2 OxXM>3(fm)—f-meM
be the O-action, and let

V:OxM>(0,m)—Veme M (87)
be an R-bilinear ‘O-action’. For f € O and 6,6 € O, we then necessarily extend V by defining
the action Vggr (resp., Vgy) of the differential operator 6’ =6 o 0’ (resp., f =6 o f) by

Voo := VoV
(resp.,
Vor:=Vo(f - —))-

Since f0 = f o6, we get the compatibility condition

Vig=f Ve, (88)

and, as 0f = f0+ 6(f) (resp., 00’ = 6’60 + [0,0']) — where 0(f) (resp., [0,0']) denotes the Lie
derivative Lgf of f with respect to 6 (resp., the Lie bracket of the vector fields 6,60') — | we
also find the compatibility relations

Vo(f - =) =f-Ve+0(f) - — (89)
(resp.,
VQVQ/ = VQ/VQ + V[gﬁ/}) . (90)

Hence, if the compatibility conditions (88) — (90) hold, we defined the unique structure of left
D-module on M that extends the ‘action of ©’. In view of Equations (87) — (90), a D-module
structure on M € Mod(O) is the same as a flat connection on M.

When resuming now our explanations given in Subsection 4.1, we understand that a mor-
phism V of sheaves of K-vector spaces satisfying the conditions (1) — (3) is exactly a family
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of Dx(U)-modules Mx(U), U € Openy, such that the Dx(U)-actions are compatible with
restrictions, i.e., is exactly a Dx-module structure on the considered sheaf M x of Ox-modules.

As concerns ezamples, it follows from what has been said that O € Mod(D) with action
Vg = Ly, that top differential forms Q%P € Mod(D°P) with action Vy = —Ly, and that
D € Mod(D) N Mod(D°P) with action given by left and right compositions.

11.3 Appendix 3 — Sheaves versus global sections

In Classical Differential Geometry, the fundamental spaces (resp., operators), e.g., vector
fields, differential forms... (resp., the Lie derivative, the de Rham differential...) are sheaves
(resp., sheaf morphisms). Despite this sheaf-theoretic nature, most textbooks present Differ-
ential Geometry in terms of global sections and morphisms between them. Since these sections
are sections of vector bundles (resp., these global morphisms are local operators), restriction
and gluing is canonical (resp., the existence of smooth bump functions allows to localize the
global morphisms in such a way that they commute with restrictions; e.g., for the de Rham
differential, we have

(dlvwy)ly = (d(aywy)) lv and  dlywly = (dw)lv ,

where ay is a bump function with constant value 1 in V' C U and support in U). Such global
viewpoints are not possible in the real-analytic and holomorphic settings, since no interesting
analytic bump functions do exist.

There is a number of well-known results on the equivalence of categories of sheaves and the
corresponding categories of global sections, essentially when the topological space underlying
the considered sheaves is an affine scheme or variety. In the present paper, we use the fact
that, for an affine scheme (X, Ox), there is an equivalence [Har97]

I'(X,e) : qcMod(Ox) = Mod(Ox (X)) : '@ (91)

between the category of quasi-coherent Ox-modules and the category of Ox (X )-modules. The
functor e is isomorphic to the functor Ox ®p, (x)®-

11.4 Appendix 4 — Model categories

Quite a few non-equivalent definitions of model categories and cofibrantly generated model
categories can be found in the literature. In this paper, we use the definitions of [Hov07] and
of [GS06].

In the definition of model categories, both texts [Hov07| and [GS06] assume the existence
of all small limits and colimits in the underlying category — in contrast with Quillen’s original
definition, which asks only for the existence of finite limits and colimits — . However, the
two references use different ‘cofibration - trivial fibration’ and ‘trivial cofibration - fibration’
factorization axioms MC5. Indeed, in [GS06], the authors use Quillen’s original axiom, which
merely requires the existence of the two factorizations, whereas in [Hov07], the author requires
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the factorizations to be functorial, and even includes the choice of a pair of such functorial
factorizations in the axioms of the model structure. However, this difference does not play any
role in the present paper, since we are dealing with cofibrantly generated model categories, so
that a choice of functorial factorizations is always possible via the small object argument.

For the definitions of cofibrantly generated model structures, some preparation is needed.

An ordinal ) is filtered with respect to a cardinal &, if A is a limit ordinal such that
the supremum of a subset of A of cardinality at most x is smaller than . This condition is
actually a largeness condition for \ with respect to k: if X\ is k-filtered for k > &/, then X is
also k’-filtered. For a finite cardinal x, a k-filtered ordinal is just a limit ordinal.

Smallness of an object A in a category C (assumed to have all small colimits) is defined
with respect to a class of morphisms W in C and a cardinal x (that can depend on A) [Hov07].
The point is that the covariant Hom-functor

C(A,e) := Homc(A,e)

commutes with limits, but usually not with colimits. However, if the considered sequence
1s sufficiently large with respect to A, then commutation may be proven. More precisely, for
A € C, we consider the colimits of all the A-sequences (with arrows in W) for all k-filtered
ordinals A (usually for kK = k(A)), and try to prove that the covariant Hom-functor C(A,e)
commutes with these colimits. In this case, we say that A € C is small with respect to «
and W. Of course, if k < K/, then k-smallness implies r’'-smallness.

In [GS06], ‘small’ (with respect to W) means ‘sequentially small’: the covariant Hom-
functor commutes with the colimits of the w-sequences. This concept matches the notion
‘n-small’; i.e., small relative to a finite cardinal n € N: the covariant Hom-functor commutes
with the colimits of the A-sequences for all limit ordinals A. In [Hov07], ‘small’ (relative to W)
means k-small for some x: the covariant Hom-functor commutes with the colimits of all the
A-sequences for all the x-filtered ordinals A. It is clear that n-small implies x-small, for any
K> n.

More precisely, a A-sequence in C is a colimit respecting functor X : A — C. Usually this
diagram is denoted by Xo — X7 — ... — X3 — ... It is natural to refer to the map

Xo — COlimg<>\ Xg

as the composite of the A-sequence X. If W is a class of morphisms in C and every map
Xg — Xgy1, B+1 <A, isin W, we refer to the composite X — colimg) Xg as a transfinite
composition of maps in W. Let us also recall that, if we have a commutative square in C, the
right down arrow is said to be the pushout of the left down arrow. We now denote by W-cell
the class of transfinite compositions of pushouts of arrows in W. It turns out that
W-cell is a subclass of the class LLP(RLP(W)) (where notation is self-explaining).

We are now prepared to give the finite and the transfinite definitions of a cofibrantly
generated model category.
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A model category is cofibrantly generated [GS06], if there exist sets of morphisms I and
J, which generate the cofibrations and the trivial cofibrations, respectively, i.e., more precisely,
if there are sets I and J such that

1. the source of every morphism in [ is sequentially small with respect to the class Cof,
and TrivFib = RLP(I),

2. the source of every morphism in J is sequentially small with respect to the class TrivCof,
and Fib = RLP(J).

It then follows that I and J are actually the generating cofibrations and the generating trivial
cofibrations:
Cof = LLP(RLP(/)) and TrivCof = LLP(RLP(J)) .

Alternatively, a model category is cofibrantly generated [Hov07], if there exist sets I
and J of maps such that

1. the domains of the maps in I are small (k-small for some fixed k) relative to I-cell, and
TrivFib = RLP(),

2. the domains of the maps in J are small (k-small for some fixed «) relative to J-cell, and
Fib = RLP(J).

It is clear that the finite definition [GS06] is stronger than the transfinite one [Hov07|. First,
n-smallness implies k-smallness, and, second, smallness with respect to Cof (resp., TrivCof)
implies smallness with respect to I-cell (resp., J-cell).

The model structures we study in the present paper are all finitely generated. A finitely
generated model structure [Hov07] is a cofibrantly generated model structure, such that
I and J can be chosen so that their sources and targets are n-small, n € N, relative to Cof.

This implies in particular that our model structures are cofibrantly generated in the sense of
[GS06].

For more information on model categories, we refer the reader to [GS06], [Hir00], [Hov07],
and [Qui67]. The background material on category theory can be found in [Bor94al, [Bor94b|,
and [Mac98|.

11.5 Appendix 5 — Invariants versus coinvariants

If G is a (multiplicative) group and k a commutative unital ring, we denote by k[G]
the group k-algebra of G (the free k-module made of all formal finite linear combinations
> geGr(g) g with coefficients in k, endowed with the unital ring multiplication that extends
the group multiplication by linearity).

In the following, we use notation of Subsection 7.1. Observe that @M, is a module over
the group O-algebra O[S, ], where S,, denotes the n-th symmetric group. There is an O-module
isomorphism

SHMe = @HMe /I NRHMe =~ (RpMs)s, = Q6 Me /(T — 0 -T) , (92)
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where (®%M,)s, is the O-module of S,-coinvariants and where the denominator is the O-
submodule generated by the elements of the type T'— o - T, T' € @} M,, 0 € Sy, (a Koszul sign
is incorporated in the action of o). It is known that, since the cardinality of S, is invertible
in O, we have also an O-module isomorphism

(@B M,)s, ~ (B M) == {T € @ M, :0-T =T,VYo €S,} (93)

between the S, -coinvariants and the S,-invariants. The averaging map or graded symmetriza-
tion operator
1 s
6:®’(‘9M.9T»—>HZU-TE(®?9M.)" (94)
O'GSn

coincides with identity on ( %M,)Sn, what implies that it is surjective. When viewed as de-
fined on coinvariants (®%Ma,)s, , it provides the mentioned isomorphism (93). It is straight-
forwardly checked that the graded symmetric multiplication V on (®*OM.)S*7 defined by

SO VE(T)=6(6(5)e6(T), (95)
endows (®}M,)%* with a DG D-algebra structure, and that the O-module isomorphism
ShHMy ~{T € @M, :0-T =T,Vo €S,} (96)

is in fact a DGDA-isomorphism.

11.6 Appendix 6 — Proof of Theorem 28

The proof of functoriality of the decompositions will be given in Appendix 11.7. Thus,
only Part (2) requires immediate explanations. We use again the above-introduced notation
Ry = A®SVy; we also set R = A®SV. The multiplication in Ry (resp., in R) will be denoted
by ¢k (resp., ©).

To show that j is a minimal RSDA, we have to check that A is a differential graded D-
subalgebra of R, that the basis of V is indexed by a well-ordered set, that do is lowering, and
that the minimality condition (22) is satisfied.

The main idea to keep in mind is that R = J,, R — so that any element of R belongs to
some Ry in the increasing sequence Ry C R; C ... — and that the DGDA structure on R is
defined in the standard manner. For instance, the product of a® X, b®Y € RN Ry, is defined
by N

(@ X)o(b@Y)=(a@X)op (6@Y)=(-1)*axb) e (X0Y),

where ‘tilde’ (resp., *) denotes as usual the degree (resp., the multiplication in A). It follows
that o restricts on A to . Similarly, da|a = do|a = da, in view of (71) and (59). Finally, we
see that A satisfies actually the mentioned subalgebra condition.

We now order the basis of V. First, we well-order, for any fixed generator degree m € N
(see (70)), the sets

{Sil]lbm+1}7 {]Ibm}’ {Hﬂm}v {Hclfmfl,bm}v {Hgm,l,bm}v s (97)
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of degree m generators of a given type (for m = 0, only the sets {s™'I,, } and {Iz,} are non-
empty). We totally order the set of all degree m generators by totally ordering its partition
(97):

{57 Dpin} < {Lo} < {I, ) < {5, 0, < {5, 6} <

A total order on the set of all generators (of all degrees) is now obtained by declaring that
any generator of degree m is smaller than any generator of degree m + 1. This total order is a
well-ordering, since no infinite descending sequence exists in the set of all generators. Observe
that our well-order respects the degree (in the sense of (22)).

Finally, the differential ds sends the first and third types of generators (see (97)) to 0 and
it maps the second type to the first. Hence, so far ds is lowering. Further, we have

do(IE  6) = Om—1 € (Re—1)m—1 ,

where m — 1 refers to the term of degree m — 1 in Rp_;. Since this term is generated by the
generators

{Sil]lbeH}? {Hbe}v {Hﬁz}ﬂ {]I}fe,l,bg}7 AR ng_ll,bg} )
where ¢ < m, the differential ds is definitely lowering.

It remains to verify that the described construction yields a morphism ¢ : A® SV — B
that is actually a trivial fibration.

Since fibrations are exactly the morphisms that are surjective in all positive degrees, and
since q|Ry = qo|Ry = p is degree-wise surjective, it is clear that ¢ is a fibration. As for
triviality, let [8,] € H(B,dgp), n > 0. Since Ig, € kerdy C kerds, the homology class
[Ig,] € H(R,d>) makes sense; moreover,

H(q)[1s,] = [qls,] = [q0ls,] = [Bn] ,

so that H(q) is surjective. Eventually, let [0,] € H(R,d2) and assume that H(q)[o,] = 0,
i.e., that go, € imdpg. Since there is a lowest k € N such that o, € Ry, we have o, € ker §;,
and qpo, = dpbyy1, for some b,+1 € B,t1. Hence, a pair (o, b,4+1) € B and a generator
M1 ¢ Rpy1 C R. Since

Unybn-&-l

— k+1 _ k+1
Un - 5k+1]10'n1bn+1 - dz]la'nyanﬁl )

we obtain that [0,] = 0 and that H(q) is injective.

11.7 Appendix 7 — Explicit functorial cofibrant replacement functor

(1) We proved in Subsection 7.5 that the factorization (i,p) = (i(¢),p(¢)) of the DGDA-
morphisms ¢, described in Theorem 28, is functorial:

Proposition 32. In DGDA, the functorial fibrant replacement functor R, which is induced by
the functorial ‘TrivCof — Fib’ factorization (i,p) of Theorem 28, is the identity functor R = id .
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(2) To finish the proof of Theorem 28, we still have to show that the factorization (j,q) is
functorial, i.e., that for any commutative DGDA-square

A——B (98)
i/ d)l B!L/
there is a commutative DGDA-diagram
A ASV =B (99)

l J=3(¢) l :=q(¢) i

A~ > A8V =B

3" :=5(¢") q:=q(¢)

Let us stress that the following proof fails, if we use the non-functorial factorization men-
tioned in Remark 29 (the critical spots are marked by <).

Just as we constructed in Section 9, the RSDA R = A® SV (resp., R’ = A’ ® SV’) as the
colimit of a sequence R, = A® SV}, (resp., R = A’ ® SV/), we will build w € DGDA(R, R') as
the colimit of a sequence

wi € DGDA(Ry, Ry,) - (100)

Recall moreover that ¢ is the colimit of a sequence g € DGDA(Ry, B), and that j is nothing
but jr € DGDA(A, Ry) viewed as valued in the supalgebra R — and similarly for ¢, q;., j', j;.-
Since we look for a morphism w that makes the left and right squares of the diagram (99)
commutative, we will construct wy so that

wy ik = Jru and v g = g wg - (101)
Since the RSDA A — Ry = A ® SV} is split, we define
wo € DGDA(A @ SV, Ry)

as
wo = j6u00 wo , (102)

where we denoted the multiplication in R{, by the same symbol ¢y as the multiplication in
Ry, where jyu € DGDA(A, Rj), and where wy € DGDA(SV), R)). As the differential dy;, see
Section 9, has been obtained via Lemma 15, the morphism wy can be built as described in
Lemma 16: we set

wo(s ' y,) = s Ly, € Vo s wo(ly,) =Ly, € Vg, and wo(lg,) =1Iyg,) € Vg,  (103)

and easily check that wg dy, = 0 wo on the generators. The first commutation condition (101)
is obviously satisfied. As for the verification of the second condition, let t = a®x1®...Oxy €
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A ® SV and remember (see (61)) that go = ¢ xqy, and ¢ = qS’*qVO/ , where we denoted again
the multiplications in B and B’ by the same symbol x. Then

vqo(t) = vo(a) * vay, (1) * . .. x vgy, (x¢)

and

qowo(t) = qoiou(a) * ghwo(z1) * . .. % gywo(we) = ¢'u(a) * gywo(z1) * . . . * gywo(we) -

It thus suffices to show that v ¢y, = ¢ wo on the generators Silﬂbn,ﬂbn,ﬂ/gn of Vp, what follows
from Equations (60) and (103) (<q).

Assume now that the wy have been constructed according to the requirements (100) and
(101), for all £ € {0, ...,k — 1}, and build their extension

wi € DGDA(Ry, R;C)

as follows. Since wy_1, viewed as valued in R}, is a morphism wy_; € DGDA(Rj;_1, R}) and
since the differential 0y of Ry ~ Ri_1 ® SG}, where G, is the free D-module

Gr={I5 o ¢ (0nbps1) € By_1),

has been defined by means of Lemma 22, the morphism wy is, in view of the same lemma,
completely defined by degree n + 1 values

wi(I o ,0) € 0 wr—16k (% 4. 1)) -

As the last condition reads
O Wk(ﬂgn,bnﬂ) = wg-1(on)
it is natural to set
Wk (T5 bnss) = 15 (o) a(onss) o (104)

provided we have
(we—1(0n),v(bns1)) € Bj_y  (<2) -

This requirement means that 6, wi—1(0,) = 0 and that ¢ wi—1(0n) = dp v(bpt1). To
see that both conditions hold, it suffices to remember that (o, bnt1) € Br_1, that w1
commutes with the differentials, and that it satisfies the second equation (101). Hence the
searched morphism wy, € DGDA(Ry, R},), such that wy|g, , = wr—1 (where the RHS is viewed
as valued in R}). To finish the construction of wy, we must still verify that wy complies with
(101). The first commutation relation is clearly satisfied. For the second, we consider

Th=Tk—1 R O...0 g € R_1 ® SG},

and proceed as above: recalling that wy, and gx have been defined via Equation (34) in Lemma

22, that ¢, and v are algebra morphisms, and that wy_; satisfies (101), we see that it suffices

k

to check that ¢ wy = vqi on the generators I b1

definitions (<3).

— what follows immediately from the
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Remember now that ((R,d2),4,) is the direct limit of the direct system ((Rpg, k), tsr), i.¢.,
that

L10 Lk k—1 Lk4+1,k
\ /
R

(105)

where all arrows are canonical inclusions, and that the same holds for ((R',d,),4,.) and
((Ry,,05,), thy). Since the just defined morphisms wy, provide morphisms i) wy, € DGDA(Ry, R')
(such that the required commutations hold — as wg|r, = wo), it follows from universality that
there is a unique morphism w € DGDA(R, R'), such that wiy = i} wy, i.e., such that

w]Rk = Wg - (106)

When using the last result, one easily concludes that wj = j'u and vqg = ¢ w.

This completes the proof of Theorem 28.

Remark 33. The preceding proof of functoriality fails for the factorization of Remark 29. The
latter adds only one mew generator ]IBn for each homology class B, ~ [Bn], and it adds only
one new generator ]Iljn for each o, € Bi_1 \ Bg—2 , where

B, = {0, € keré, : ¢.0, € imdp,n >0} .

In (<1 ), we then get that v qy, (L5 ) and 4 wo(lz) are homologous, but not necessarily equal.
In (<2), although on € Bi_1 \ Br_2, its image wy_1(0y) € Bj,_, may also belong to Bj_, .
Eventually, in (<3 ), we find that vgr (I ) and qjwr(IE ) differ by a cycle, but do not necessarily
coincide.

The next result describes cofibrant replacements.

Theorem 34. In DGDA, the functorial cofibrant replacement functor @, which is induced
by the functorial ‘Cof — TrivFib’ factorization (j,q) described in Theorem 28, is defined on
objects B € DGDA by Q(B) = SVp, see Theorem 28 and set A = O, and on morphisms
v € DGDA(B, B’) by Q(v) = w, see Equations (106), (104), and (103), and set wy = wo.
Moreover, the differential graded D-algebra SVp, see Proposition 29 and set A = O, is a
cofibrant replacement of B.
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