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Abstract

Homotopical geometry over di�erential operators is a convenient setting for a coordinate-

free investigation of nonlinear partial di�erential equations modulo symmetries. One of

the �rst issues one meets in the functor of points approach to homotopical D-geometry, is
the question of a model structure on the category DGAlg(D) of di�erential non-negatively

graded O-quasi-coherent sheaves of commutative algebras over the sheaf D of di�erential

operators of an appropriate underlying variety (X,O). We de�ne a co�brantly generated

model structure on DGAlg(D) via the de�nition of its weak equivalences and its �bra-

tions, characterize the class of co�brations, and build an explicit functorial `co�bration -

trivial �bration' factorization. We then use the latter to get a functorial model categori-

cal Koszul-Tate resolution for D-algebraic `on-shell function' algebras (which contains the

classical Koszul-Tate resolution). The paper is also the starting point for a homotopical

D-geometric Batalin-Vilkovisky formalism.
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1 Introduction

The solution functor of a linear PDE D ·m = 0 is a functor Sol : Mod(D) → Set de�ned
on the category of left modules over the ring D of linear di�erential operators of a suitable
underlying space: for D ∈ D and M ∈ Mod(D), we have

Sol(M) = {m ∈M : D ·m = 0} .

For a polynomial PDE, we get a representable functor Sol : Alg(D) → Set de�ned on the
category of D-algebras, i.e., of commutative monoids in Mod(D). According to [BD04], the
solution functor of a nonlinear PDE should be viewed as a `locally representable' sheaf Sol :

Alg(D) → Set. To allow for still more general spaces, sheaves Alg(D) → SSet valued in
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simplicial sets, or sheaves DGAlg(D) → SSet on (the opposite of) the category DGAlg(D) of
di�erential graded D-algebras, have to be considered.

More precisely, when constructing the Batalin-Vilkovisky formalism, not, as usual, in the
world of function algebras, but, dually, on the space side, we �rst consider the quotient of
the in�nite jet space by the global gauge symmetries. It turns out [BPP17] that this quotient
should be thought of as a 1-geometric derived X-DX -stack, where X is an underlying smooth
a�ne algebraic variety. This new homotopical algebraic D-geometry provides in particular
a convenient way to encode total derivatives and it allows actually to recover the classical
Batalin-Vilkovisky complex as a speci�c case of its general constructions [PP17b]. In the
functor of points approach to spaces, the derived X-DX -stacks F are those presheaves F :

DGAlg(D)→ SSet that satisfy the �brant object (sheaf-)condition for the local model structure
on the presheaf category Fun(DGAlg(D), SSet) � the category of derived X-DX -stacks is in fact
the homotopy category of this model category of functors � . More precisely, the choice of
an adequate model (pre-)topology allows to construct the local model structure, via a double
Bous�eld localization, from the global model structure of the considered presheaf category,
which is implemented `object-wise' by the model structure of the target category SSet. The
�rst of the two Bous�eld localizations is the localization of this global model structure with
respect to the weak equivalences of the (category opposite to the) source category DGAlg(D).
Furthermore, the D-geometric counterpart of an algebra C∞(Σ) of on-shell functions is an
algebra A ∈ Alg(D) ⊂ DGAlg(D), and it appears [PP17a] that the Koszul-Tate resolution of
C∞(Σ) corresponds to the co�brant replacement of A in a coslice category of DGAlg(D).

In view of the two preceding reasons, it is clear that our �rst task is the de�nition of a model
structure on DGAlg(D). In the present paper, we give an explicit description of a co�brantly
generated model structure on the category DGAlg(D) of di�erential non-negatively graded O-
quasi-coherent sheaves of commutative algebras over the sheaf D of di�erential operators of a
smooth a�ne algebraic variety (X,O). In particular, we characterize the co�brations as the
retracts of the relative Sullivan D-algebras and we give an explicit functorial `Cof � TrivFib'
factorization (as well as the corresponding functorial co�brant replacement functor � which is
speci�c to our setting and is of course di�erent from the one provided, for arbitrary co�brantly
generated model categories, by the small object argument).

To develop the afore-mentioned homotopical D-geometry, we have to show inter alia that
the triplet (DGMod(D), DGMod(D), DGAlg(D)) is a homotopical algebraic context [TV08]. This
includes proving that the model category DGAlg(D) is proper and that the base change functor
B ⊗A − , from modules in DGMod(D) over A ∈ DGAlg(D) to modules over B ∈ A ↓ DGAlg(D),
preserves weak equivalences. These results [BPP17] are based on our characterization of
co�brations in DGAlg(D), as well as on the explicit functorial `Cof � TrivFib' factorization.

Notice �nally that our two assumptions � smooth and a�ne � on the underlying variety X
are necessary. Exactly the same smoothness condition is indeed used in [BD04] [Remark p.56],
since for an arbitrary singular scheme X, the notion of left DX -module is meaningless. On the
other hand, the assumption that X is a�ne is needed to substitute global sections to sheaves,
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i.e., to replace the category of di�erential non-negatively graded O-quasi-coherent sheaves of
commutative algebras over the sheaf D by the category of di�erential non-negatively graded
commutative algebras over the ring D(X) of global sections of D. However, this con�nement is
not merely a comfort solution: the existence of the projective model structure � that we transfer
from DGMod(D) to DGAlg(D) � requires that the underlying category has enough projectives,
and this is in general not the case for a category of sheaves over a not necessarily a�ne scheme
[Gil06], [Har97, Ex.III.6.2]. In addition, the con�nement to the a�ne case allows to use the
artefacts of the model categorical environment, as well as to extract the fundamental structure
of the main actors of the considered problem, which may then be extended to an arbitrary
smooth scheme X [PP17a].

Let us still stress that the special behavior of the noncommutative ring D turns out to be
a source of possibilities, as well as a source of problems. For instance, a di�erential graded
commutative algebra over a �eld or a commutative ring k is a commutative monoid in the cat-
egory of di�erential graded k-modules. The extension of this concept to noncommutative rings
R is problematic, since the category of di�erential graded (left) R-modules is not symmetric
monoidal. In the case R = D, we deal with di�erential graded (left) D-modules and these are
symmetric monoidal � and also closed � . However, the tensor product and the internal Hom
are taken, not over D, but over O: one considers the O-modules given, for M,N ∈ DGMod(D),
by M ⊗O N and HomO(M,N), and shows that their O-module structures can be extended
to D-module structures. This and other � in particular related � speci�cities must be kept in
mind throughout the whole paper.
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2 Conventions and notation

According to the anglo-saxon nomenclature, we consider the number 0 as being neither
positive, nor negative.

All the rings used in this text are implicitly assumed to be unital.

In most parts of our paper, the underlying space is a smooth a�ne algebraic variety.

3 Sheaves of modules

Let Top be the category of topological spaces and, for X ∈ Top, let OpenX be the category
of open subsets of X. If RX is a sheaf of rings, a left RX-module is a sheaf PX , such that,
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for each U ∈ OpenX , PX(U) is an RX(U)-module, and the RX(U)-actions are compatible
with the restrictions. We denote by Mod(RX) the abelian category of RX -modules and of their
(naturally de�ned) morphisms.

In the following, we omit subscript X if no confusion arises.

If P,Q ∈ Mod(R), the (internal) Hom HomR(P,Q) is the sheaf of abelian groups (of
R-modules, i.e., is the element of Mod(R), if R is commutative) that is de�ned by

HomR(P,Q)(U) := HomR|U (P|U ,Q|U ) , (1)

U ∈ OpenX . The RHS is made of the morphisms of (pre)sheaves of R|U -modules, i.e., of the
families φV : P(V )→ Q(V ), V ∈ OpenU , of R(V )-linear maps that commute with restrictions.
Note that HomR(P,Q) is a sheaf of abelian groups, whereas HomR(P,Q) is the abelian group
of morphisms of (pre)sheaves of R-modules. We thus obtain a bi-functor

HomR(•, •) : (Mod(R))op × Mod(R)→ Sh(X) , (2)

valued in the category of sheaves of abelian groups, which is left exact in both arguments.

Further, if P ∈ Mod(Rop) and Q ∈ Mod(R), we denote by P ⊗R Q the sheaf of abelian
groups (of R-modules, if R is commutative) associated to the presheaf

(P �R Q)(U) := P(U)⊗R(U) Q(U) , (3)

U ∈ OpenX . The bi-functor

• ⊗R • : Mod(Rop)× Mod(R)→ Sh(X) (4)

is right exact in its two arguments.

If S is a sheaf of commutative rings and R a sheaf of rings, and if S → R is a morphism
of sheafs of rings, whose image is contained in the center of R, we say that R is a sheaf of
S-algebras. Remark that, in this case, the above functors HomR(•, •) and • ⊗R • are valued
in Mod(S).

4 D-modules and D-algebras

Depending on the author(s), the concept of D-module is considered over a base space X
that is a �nite-dimensional smooth [Cos11] or complex [KS90] manifold, or a smooth algebraic
variety [HTT08] or scheme [BD04], over a �xed base �eld K of characteristic zero. We denote
by OX (resp., ΘX , DX) the sheaf of functions (resp., vector �elds, di�erential operators acting
on functions) of X, and take an interest in the category Mod(OX) (resp., Mod(DX)) of OX -
modules (resp., DX -modules).

Sometimes a (sheaf of) DX -module(s) is systematically required to be coherent or quasi-
coherent as (sheaf of) OX -module(s). In this text, we will explicitly mention such extra
assumptions.
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4.1 Construction of D-modules from O-modules

It is worth recalling the following

Proposition 1. LetMX be an OX-module. A left DX-module structure onMX that extends
its OX-module structure is equivalent to a K-linear morphism

∇ : ΘX → EndK(MX) ,

such that, for all f ∈ OX , θ, θ′ ∈ ΘX , and all m ∈MX ,

1. ∇fθm = f · ∇θm,

2. ∇θ(f ·m) = f · ∇θm+ θ(f) ·m,

3. ∇[θ,θ′]m = [∇θ,∇θ′ ]m.

In the sequel, we omit again subscript X, whenever possible.

In Proposition 1, the target EndK(M) is interpreted in the sense of Equation (1), and ∇
is viewed as a morphism of sheaves of K-vector spaces. Hence, ∇ is a family ∇U , U ∈ OpenX ,
of K-linear maps that commute with restrictions, and ∇UθU , θU ∈ Θ(U), is a family (∇UθU )V ,

V ∈ OpenU , of K-linear maps that commute with restrictions. It follows that
(
∇UθUmU

)
|V =

∇VθU |VmU |V , with self-explaining notation: the concept of sheaf morphism captures the locality
of the connection ∇ with respect to both arguments.

Further, the requirement that the conditions (1) � (3) be satis�ed for all f ∈ O, θ, θ′ ∈ Θ,
andm ∈M, means that they must hold for any U ∈ OpenX and all fU ∈ O(U), θU , θ′U ∈ Θ(U),
and mU ∈M(U).

We now detailed notation used in Proposition 1. An explanation of the underlying idea of
this proposition can be found in Appendix 11.2.

4.2 Closed symmetric monoidal structure on Mod(D)

If we apply the Hom bi-functor (resp., the tensor product bi-functor) over D (see (2) (resp.,
see (4))) to two left D-modules (resp., a right and a left D-module), we get only a (sheaf of)
K-vector space(s) (see remark at the end of Section 3). The good concept is the Hom bi-functor
(resp., the tensor product bi-functor) over O. Indeed, if P,Q ∈ Mod(DX) ⊂ Mod(OX), the Hom
sheaf HomOX (P,Q) (resp., the tensor product sheaf P ⊗OX Q) is a sheaf of OX -modules. To
de�ne on this OX -module, an extending left DX -module structure, it su�ces, as easily checked,
to de�ne the action of θ ∈ ΘX on φ ∈ HomOX (P,Q), for any p ∈ P, by

(∇θφ)(p) = ∇θ(φ(p))− φ(∇θp) (5)

( resp., on p⊗ q, p ∈ P, q ∈ Q, by

∇θ(p⊗ q) = (∇θp)⊗ q + p⊗ (∇θq) ) . (6)
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The functor
HomOX (P, •) : Mod(DX)→ Mod(DX) ,

P ∈ Mod(DX), is the right adjoint of the functor

• ⊗OX P : Mod(DX)→ Mod(DX) :

for any N ,P,Q ∈ Mod(DX), there is an isomorphism

HomDX (N ⊗OX P,Q) 3 f 7→ (n 7→ (p 7→ f(n⊗ p))) ∈ HomDX (N ,HomOX (P,Q)) .

Hence, the category (Mod(DX),⊗OX ,OX ,HomOX ) is abelian closed symmetric monoidal. More
details on D-modules can be found in [KS90, Sch12, Sch94].

Remark 2. In the following, the underlying space X is a smooth algebraic variety over an
algebraically closed �eld K of characteristic 0.

We denote by qcMod(OX) (resp., qcMod(DX)) the abelian category of quasi-coherent OX -
modules (resp., DX -modules that are quasi-coherent as OX -modules [HTT08]). This category
is a full subcategory of Mod(OX) (resp., Mod(DX)). Since further the tensor product of two
quasi-coherent OX -modules (resp., OX -quasi-coherent DX -modules) is again of this type, and
since OX ∈ qcMod(OX) (resp., OX ∈ qcMod(DX)), the category (qcMod(OX),⊗OX ,OX) (resp.,
(qcMod(DX),⊗OX ,OX)) is a symmetric monoidal subcategory of (Mod(OX),⊗OX ,OX) (resp.,
(Mod(DX),⊗OX ,OX)). For additional information on quasi-coherent modules over a ringed
space, we refer to Appendix 11.1.

4.3 Commutative D-algebras

A DX -algebra is a commutative monoid in the symmetric monoidal category Mod(DX).
More explicitly, a DX -algebra is a DX -module A, together with DX -linear maps

µ : A⊗OX A → A and ι : OX → A ,

which respect the usual associativity, unitality, and commutativity conditions. This means
exactly that A is a commutative associative unital OX -algebra, which is endowed with a �at
connection ∇ � see Proposition 1 � such that vector �elds θ act as derivations ∇θ. Indeed,
when omitting the latter requirement, we forget the linearity of µ and ι with respect to the
action of vector �elds. Let us translate the ΘX -linearity of µ. If θ ∈ ΘX , a, a

′ ∈ A, and if
a ∗ a′ := µ(a⊗ a′), we get

∇θ(a ∗ a′) = ∇θ(µ(a⊗ a′)) = µ((∇θa)⊗ a′ + a⊗ (∇θa′)) = (∇θa) ∗ a′ + a ∗ (∇θa′) . (7)

If we set now 1A := ι(1), Equation (7) shows that ∇θ(1A) = 0. It is easily checked that the
ΘX -linearity of ι does not encode any new information. Hence,

De�nition 3. A commutative DX-algebra is a commutative monoid in Mod(DX), i.e., a
commutative associative unital OX-algebra that is endowed with a �at connection ∇ such that
∇θ, θ ∈ ΘX , is a derivation.
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5 Di�erential graded D-modules and di�erential graded D-
algebras

5.1 Monoidal categorical equivalence between chain complexes of DX-
modules and of DX(X)-modules

It is well known that any equivalence F : C � D : G between abelian categories is exact.
Moreover, if F : C � D : G is an equivalence between monoidal categories, and if one of the
functors F or G is strong monoidal, then the other is strong monoidal as well [KRO07].

In addition, see (91), for any a�ne algebraic variety X, we have the equivalence

Γ(X, •) : qcMod(OX)� Mod(OX(X)) : •̃ (8)

between abelian symmetric monoidal categories, where •̃ is isomorphic to OX⊗OX(X) • . Since
the latter is obviously strong monoidal, both functors, Γ(X, •) and •̃ , are exact and strong
monoidal. Similarly,

Proposition 4. If X is a smooth a�ne algebraic variety, its global section functor Γ(X, •)
yields an equivalence

Γ(X, •) : (qcMod(DX),⊗OX ,OX)→ (Mod(DX(X)),⊗OX(X),OX(X)) (9)

between abelian symmetric monoidal categories, and it is exact and strong monoidal.

Proof. For the categorical equivalence, see [HTT08, Proposition 1.4.4]. Exactness is now clear
and it su�ces to show that Γ(X, •) is strong monoidal. We know that Γ(X, •) is strong
monoidal as functor between modules over functions, see (8). Hence, if P,Q ∈ qcMod(DX),
then

Γ(X,P ⊗OX Q) ' Γ(X,P)⊗OX(X) Γ(X,Q) (10)

as OX(X)-modules. Recall now that we de�ned the DX -module structure on P ⊗OX Q by
`extending' the ΘX -action (6) on the presheaf P�OXQ, see (3). In view of (10), the action ∇X

of ΘX(X) on P(X)⊗OX(X)Q(X) and (P⊗OXQ)(X) `coincide', and so do the DX(X)-module
structures of these modules. Eventually, the global section functor is strong monoidal.

Remark 5. In the sequel, we work systematically over a smooth a�ne algebraic variety X
over an algebraically closed �eld K of characteristic 0.

Since the category qcMod(DX) is abelian symmetric monoidal, the category DG+qcMod(DX)

of di�erential non-negatively graded OX -quasi-coherent DX -modules is abelian and symmetric
monoidal as well � for the usual tensor product of chain complexes and chain maps � . The
unit of this tensor product is the chain complex OX concentrated in degree 0. The symmetry
β : P• ⊗Q• → Q• ⊗ P• is given by

β(p⊗ q) = (−1)p̃q̃q ⊗ p ,

where `tilde' denotes the degree and where the sign is necessary to obtain a chain map. Let
us also mention that the zero object of DG+qcMod(DX) is the chain complex ({0}, 0) .
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Proposition 6. If X is a smooth a�ne algebraic variety, its global section functor induces an
equivalence

Γ(X, •) : (DG+qcMod(DX),⊗OX ,OX)→ (DG+Mod(DX(X)),⊗OX(X),OX(X)) (11)

of abelian symmetric monoidal categories, and is exact and strong monoidal.

Proof. Let F = Γ(X, •) and G be quasi-inverse (additive) functors that implement the equiv-
alence (9). They induce functors F and G between the corresponding categories of chain
complexes. Moreover, the natural isomorphism a : id⇒ G◦F induces, for each chain complex
P• ∈ DG+qcMod(DX), a chain isomorphism aP• : P• → (G ◦ F)(P•), which is functorial in P• .
Both, the chain morphism property of aP• and the naturality of a, are direct consequences
of the naturality of a. Similarly, the natural isomorphism b : F ◦ G ⇒ id induces a natural
isomorphism b : F ◦G⇒ id, so that DG+qcMod(DX) and DG+Mod(DX(X)) are actually equiv-
alent categories. Since F : qcMod(DX)→ Mod(DX(X)) is strong monoidal and commutes with
colimits (as left adjoint of G), it is straightforwardly checked that F is strong monoidal.

5.2 Di�erential graded DX-algebras vs. di�erential graded DX(X)-algebras

The strong monoidal functors F : DG+qcMod(DX) � DG+Mod(DX(X)) : G yield an equiv-
alence between the corresponding categories of commutative monoids:

Corollary 7. For any smooth a�ne variety X, there is an equivalence of categories

Γ(X, •) : DG+qcCAlg(DX)→ DG+CAlg(DX(X)) (12)

between the category of di�erential graded quasi-coherent commutative DX-algebras and the
category of di�erential graded commutative DX(X)-algebras.

The main goal of the present paper is to construct a model category structure on the LHS
category. In view of the preceding corollary, it su�ces to build this model structure on the RHS
category. We thus deal in the sequel exclusively with this category of di�erential graded
D-algebras, where D := DX(X), which we denote simply by DGDA. Similarly, the objects of
DG+Mod(DX(X)) are termed di�erential graded D-modules and their category is denoted
by DGDM.

5.3 The category DGDA

In this subsection we describe the category DGDA and prove �rst properties.

Whereas
HomD(P,Q) = HomMod(D)(P,Q) ,

P,Q ∈ Mod(D), is a K-vector space, the set

HomDA(A,B) = HomCAlg(D)(A,B) ,
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A,B ∈ CAlg(D), is even not an abelian group. Hence, there is no category of chain complexes
over commutative D-algebras and the objects of DGDA are (probably useless to say) no chain
complexes of algebras.

As explained above, a D-algebra is a commutative unital O-algebra, endowed with a (an
extending) D-module structure, such that vector �elds act by derivations. Analogously, a
di�erential graded D-algebra is easily seen to be a di�erential graded commutative unital
O-algebra (a graded O-module together with an O-bilinear degree respecting multiplication,
which is associative, unital, and graded-commutative; this module comes with a square 0,
degree −1, O-linear, graded derivation), which is also a di�erential graded D-module (for the
same di�erential, grading, and O-action), such that vector �elds act as non-graded derivations.

Proposition 8. A di�erential graded D-algebra is a di�erential graded commutative unital
O-algebra, as well as a di�erential graded D-module, such that vector �elds act as derivations.
Further, the morphisms of DGDA are the morphisms of DGDM that respect the multiplications
and units.

In fact:

Proposition 9. The category DGDA is symmetric monoidal for the tensor product of DGDM
with values on objects that are promoted canonically from DGDM to DGDA and same values on
morphisms. The tensor unit is O; the initial object ( resp., terminal object ) is O ( resp., {0} ).

Proof. Let A•, B• ∈ DGDA. Consider homogeneous vectors a ∈ Aã, a′ ∈ Aã′ , b ∈ Bb̃, b
′ ∈ Bb̃′ ,

such that ã+ b̃ = m and ã′ + b̃′ = n. Endow now the tensor product A• ⊗O B• ∈ DGDM with
the multiplication ? de�ned by

(A• ⊗O B•)m × (A• ⊗O B•)n 3 (a⊗ b, a′ ⊗ b′) 7→

(a⊗ b) ? (a′ ⊗ b′) = (−1)ã
′b̃(a ?A a

′)⊗ (b ?B b
′) ∈ (A• ⊗O B•)m+n , (13)

where the multiplications of A• and B• are denoted by ?A and ?B, respectively. The multi-
plication ? equips A• ⊗O B• with a structure of di�erential graded D-algebra. Note also that
the multiplication of A• ∈ DGDA is a DGDA-morphism µA : A• ⊗O A• → A• .

Further, the unit of the tensor product in DGDA is the unit (O, 0) of the tensor product in
DGDM.

Finally, let A•, B•, C•, D• ∈ DGDA and let φ : A• → C• and ψ : B• → D• be two DGDA-
morphisms. Then the DGDM-morphism φ⊗ψ : A•⊗OB• → C•⊗OD• is also a DGDA-morphism.

All these claims (as well as all the additional requirements for a symmetric monoidal
structure) are straightforwardly checked.

The initial and terminal objects in DGDA are the di�erential graded D-algebras (O, 0) and
({0}, 0), respectively. As concerns the terminal object, this is the expected and easily veri�ed
result. The initial object however is not the same as the one in DGDM. The problem with the
initial object candidate ({0}, 0) , is that a DGDA-morphism φ : ({0}, 0)→ (A•, dA) has to map
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0 to 0A and to 1A, what in only possible if 0A = 1A, i.e., if A• = {0} . As for (O, 0), the sole
point to check is that the unique morphism φ : (O, 0)→ (A•, dA), which is necessarily de�ned
by

φ(f) = φ(f · 1O) = f · φ(1O) = f · 1A ,

is a DGDA-morphism. For the latter, only D-linearity, i.e., Θ-linearity, has to be checked. We
get

φ(∇θf) = φ(θ(f)) = θ(f) · 1A ,

whereas
∇θ(φ(f)) = ∇θ(f · 1A) = ∇θ◦f1A = θ(f) · 1A +∇f◦θ1A = θ(f) · 1A ,

as in a di�erential graded D-algebra vector �elds act as derivations and thus annihilate the
unit.

Let us still mention the following

Proposition 10. If φ : A• → C• and ψ : B• → C• are DGDA-morphisms, then χ : A•⊗OB• →
C•, which is well-de�ned by χ(a ⊗ b) = φ(a) ?C ψ(b), is a DGDA-morphism that restricts to φ
(resp., ψ) on A• (resp., B•).

Proof. It su�ces to observe that χ = µC ◦ (φ⊗ ψ) .

6 Finitely generated model structure on DGDM

When dealing with model categories, we use the de�nitions of [Hov07]. A short comparison
of various de�nitions used in the literature can be found in Appendix 11.4. For additional
information, we refer the reader to [GS06], [Hir00], [Hov07], and [Qui67].

Let us recall that DGDM is the category Ch+(D) of non-negatively graded chain complexes
of left modules over the non-commutative unital ring D = DX(X) of di�erential operators of
a smooth a�ne algebraic variety X. The remaining part of this section actually holds for any
not necessarily commutative unital ring R and the corresponding category Ch+(R). We will
show that Ch+(R) is a �nitely (and thus co�brantly) generated model category.

In fact, most of the familiar model categories are co�brantly generated. For instance, in
the model category SSet of simplicial sets, the generating co�brations I (resp., the generating
trivial co�brations J) are the canonical simplicial maps ∂∆[n]→ ∆[n] from the boundaries of
the standard simplicial n-simplices to these simplices (resp., the canonical maps Λr[n]→ ∆[n]

from the r-horns of the standard n-simplices, 0 ≤ r ≤ n, to these simplices). The generating
co�brations and trivial co�brations of the model category Top of topological spaces � which
is Quillen equivalent to SSet � are de�ned similarly. The homological situation is analogous
to the topological and combinatorial ones. In the case of Ch+(R), the set I of generating
co�brations (resp., the set J of generating trivial co�brations) is made (roughly) of the maps
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Sn−1 → Dn from the (n − 1)-sphere to the n-disc (resp., of the maps 0 → Dn). In fact, the
n-disc Dn is the chain complex

Dn
• : · · · → 0→ 0→

(n)

R→
(n−1)
R → 0→ · · · →

(0)

0 , (14)

whereas the n-sphere Sn is the chain complex

Sn• : · · · → 0→ 0→
(n)

R→ 0→ · · · →
(0)

0 . (15)

De�nition (14), in which the di�erential is necessarily the identity of R, is valid for n ≥ 1.
De�nition (15) makes sense for n ≥ 0. We extend the �rst (resp., second) de�nition to n = 0

(resp., n = −1) by setting D0
• := S0

• (resp., S−1• := 0•). The chain maps Sn−1 → Dn are
canonical (in degree n− 1, they necessarily coincide with idR), and so are the maps 0→ Dn.
We now de�ne the set I (resp., J) by

I = {ιn : Sn−1 → Dn, n ≥ 0} (16)

( resp.,
J = {ζn : 0→ Dn, n ≥ 1} ) . (17)

Theorem 11. For any unital ring R, the category Ch+(R) of non-negatively graded chain
complexes of left R-modules is a �nitely ( and thus a co�brantly ) generated model category ( in
the sense of [GS06] and in the sense of [Hov07] ), with I as its generating set of co�brations and
J as its generating set of trivial co�brations. The weak equivalences are the maps that induce
isomorphisms in homology, the co�brations are the injective maps with degree-wise projective
cokernel ( projective object in Mod(R) ), and the �brations are the maps that are surjective
in ( strictly ) positive degrees. Further, the trivial co�brations are the injective maps i whose
cokernel coker(i) is strongly projective as a chain complex ( strongly projective object coker(i)

in Ch+(R), in the sense that, for any map c : coker(i)→ C and any map p : D → C, there is
a map ` : coker(i)→ D such that p ◦ ` = i, if p is surjective in ( strictly ) positive degrees ).

Proof. The following proof uses the di�erences between the de�nitions of (co�brantly gener-
ated) model categories given in [DS96], [GS06], and [Hov07]: we refer again to the Appendix
11.4.

It is known that Ch+(R), with the described weak equivalences, co�brations, and �brations
is a model category (Theorem 7.2 in [DS96]). A model category in the sense of [DS96] contains
all �nite limits and colimits; the Cof −TrivFib and TrivCof −Fib factorizations are neither
assumed to be functorial, nor, of course, to be chosen functorial factorizations. Moreover, we
have Fib = RLP(J) and TrivFib = RLP(I) (Proposition 7.19 in [DS96]).

Note �rst that Ch+(R) has all small limits and colimits, which are taken degree-wise.

Observe also that the domains and codomains Sn (n ≥ 0) and Dn (n ≥ 1) of the maps in
I and J are bounded chain complexes of �nitely presented R-modules (the involved modules
are all equal to R). However, every bounded chain complex of �nitely presented R-modules is
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n-small, n ∈ N, relative to all chain maps (Lemma 2.3.2 in [Hov07]). Hence, the domains and
codomains of I and J satisfy the smallness condition of a �nitely generated model category,
and are therefore small in the sense of the �nite and trans�nite de�nitions of a co�brantly
generated model category.

It thus follows from the Small Object Argument that there exist in Ch+(R) a functorial
Cof −TrivFib and a functorial TrivCof −Fib factorization. Hence, the �rst part of Theorem
11.

As for the part on trivial co�brations, its proof is the same as the proof of Lemma 2.2.11
in [Hov07].

In view of Theorem 11, let us recall that any projective chain complex (K, d) is degree-wise
projective. Indeed, consider, for n ≥ 0, an R-linear map kn : Kn → N and a surjective R-linear
map p : M → N , and denote by Dn+1(N) (resp., Dn+1(M)) the disc de�ned as in (14), except
that R is replaced by N (resp., M). Then there is a chain map k : K → Dn+1(N) (resp., a
surjective chain map π : Dn+1(M)→ Dn+1(N)) that is zero in each degree, except in degree
n+ 1 where it is kn ◦ dn+1 (resp., p) and in degree n where it is kn (resp., p). Since (K, d) is
projective as chain complex, there is a chain map ` : K → Dn+1(M) such that π ◦ ` = k. In
particular, `n : Kn →M is R-linear and p ◦ `n = kn .

7 Finitely generated model structure on DGDA

7.1 Adjoint functors between DGDM and DGDA

We aim at transferring to DGDA, the just described �nitely generated model structure on
DGDM. Therefore, we need a pair of adjoint functors.

Proposition 12. The graded symmetric tensor algebra functor S and the forgetful functor
For provide an adjoint pair

S : DGDM� DGDA : For

between the category of di�erential graded D-modules and the category of di�erential graded
D-algebras.

Proof. For any M• ∈ DGDM, the sum

⊗∗OM• = O ⊕
⊕
n≥1

M⊗On• ∈ DGDM

is the free associative unital O-algebra over the O-module M• . When passing to graded sym-
metric tensors, we divide by the obvious O-ideal I, which is further a sub DG D-module.
Therefore, the free graded symmetric unital O-algebra

S∗OM• = ⊗∗OM•/I , (18)

with multiplication [S]� [T ] = [S⊗T ] , is also a DG D-module. It is straightforwardly checked
that S∗OM• ∈ DGDA. The de�nition of S on morphisms is obvious.
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As concerns the proof that the functors For and S are adjoint, i.e., that

HomDGDA(S∗OM•, A•) ' HomDGDM(M•,ForA•) , (19)

functorially inM• ∈ DGDM and A• ∈ DGDA , let φ : M• → ForA• be a DGDM-map. Since S∗OM•
is free in the category GCA of graded commutative associative unital graded O-algebras, a GCA-
morphism is completely determined by its restriction to the graded O-moduleM• . Hence, the
extension φ̄ : S∗OM• → A• of φ, de�ned by φ̄(1O) = 1A and by

φ̄(m1 � . . .�mk) = φ(m1) ?A . . . ?A φ(mk) ,

is a GCA-morphism. This extension is also a DGDA-map, i.e., a DGDM-map that respects the
multiplications and the units, if it intertwines the di�erentials and is D-linear. These require-
ments, as well as functoriality, are straightforwardly checked.

Recall that a free object in a category D over an object C in a category C, such that
there is a forgetful functor For : D → C, is a universal pair (F (C), i), where F (C) ∈ D and
i ∈ HomC(C,ForF (C)) .

Remark 13. Equation (19) means that S?OM• is the free di�erential graded D-algebra
over the di�erential graded D-module M• .

A de�nition of S∗OM• via invariants can be found in Appendix 11.5.

7.2 Relative Sullivan D-algebras

If V• is a non-negatively graded D-module and (A•, dA) a di�erential graded D-algebra,
the tensor product A• ⊗O S?OV• is a graded D-algebra. In the following de�nition, we assume
that this algebra is equipped with a di�erential d, such that

(A• ⊗O S?OV•, d) ∈ DGDA

contains (A•, dA) as sub-DGDA. The point is that (A•, dA) is a di�erential submodule of the
tensor product di�erential module, but that usually the module S?OV• is not. The condition
that (A•, dA) be a sub-DGDA can be rephrased by asking that the inclusion

A• 3 a 7→ a⊗ 1 ∈ A• ⊗O S?OV•

be a DGDA-morphism. This algebra morphism condition or subalgebra condition would be
automatically satis�ed, if the di�erential d on A• ⊗O S?OV• was de�ned by

d = dA ⊗ id + id⊗dS , (20)

where dS is a di�erential on S?OV• (in particular the di�erential dS = 0). However, as men-
tioned, this is generally not the case.

We omit in the sequel •, ?, as well as subscript O, provided clarity does not su�er hereof.
Further, to avoid confusion, we sometimes substitute � to ⊗ to emphasize that the di�erential
d of A� SV is not necessarily obtained from the di�erential dA and a di�erential dS .
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De�nition 14. A relative Sullivan D-algebra (RSDA ) is a DGDA-morphism

(A, dA)→ (A� SV, d)

that sends a ∈ A to a⊗ 1 ∈ A� SV . Here V is a free non-negatively graded D-module

V =
⊕
α∈J
D · vα ,

which admits a homogeneous basis (vα)α∈J that is indexed by a well-ordered set J , and is such
that

dvα ∈ A� SV<α , (21)

for all α ∈ J . In the last requirement, we set V<α :=
⊕

β<αD · vβ . We refer to Property (21)
by saying that d is lowering.

A RSDA with the property

α ≤ β ⇒ deg vα ≤ deg vβ (22)

( resp., with Property (20); over (A, dA) = (O, 0) ) is called a minimal RSDA ( resp., a split
RSDA; a Sullivan D-algebra ( SDA ) ) and it is often simply denoted by (A � SV, d) ( resp.,
(A⊗ SV, d); (SV, d) ).

The next two lemmas are of interest for the split situation.

Lemma 15. Let (vα)α∈I be a family of generators of homogeneous non-negative degrees, and
let

V := 〈vα : α ∈ I〉 :=
⊕
α∈I
D · vα

be the free non-negatively graded D-module over (vα)α∈I . Then, any degree −1 map d ∈
Set((vα), V ) uniquely extends to a degree −1 map d ∈ DM(V, V ). If moreover d2 = 0 on (vα),
then (V, d) ∈ DGDM .

Since SV is the free di�erential graded D-algebra over the di�erential graded D-module
V , a morphism f ∈ DGDA(SV,B), valued in (B, dB) ∈ DGDA, is completely de�ned by its
restriction f ∈ DGDM(V,B). Hence, the

Lemma 16. Consider the situation of Lemma 15. Any degree 0 map f ∈ Set((vα), B) uniquely
extends to a morphism f ∈ GDM(V,B). Furthermore, if dB f = f d on (vα), this extension is
a morphism f ∈ DGDM(V,B), which in turn admits a unique extension f ∈ DGDA(SV,B).

7.3 Quillen's transfer theorem

We use the adjoint pair
S : DGDM� DGDA : For (23)

to transfer the co�brantly generated model structure from the source category DGDM to the
target category DGDA. This is possible if Quillen's transfer theorem [GS06] applies.
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Theorem 17. Let F : C� D : G be a pair of adjoint functors. Assume that C is a co�brantly
generated model category and denote by I (resp., J) its set of generating co�brations (resp.,
trivial co�brations). De�ne a morphism f : X → Y in D to be a weak equivalence (resp., a
�bration), if Gf is a weak equivalence (resp., a �bration) in C. If

1. the right adjoint G : D→ C commutes with sequential colimits, and

2. any map in D with the LLP with respect to all �brations is a weak equivalence,

then D is a co�brantly generated model category that admits {Fi : i ∈ I} (resp., {Fj : j ∈ J})
as set of generating co�brations (resp., trivial co�brations).

Of course, in this version of the transfer principle, the mentioned model structures are
co�brantly generated model structures in the sense of [GS06].

Condition 2 is the main requirement of the transfer theorem. It can be checked using the
following lemma [Qui67]:

Lemma 18 (Quillen's path object argument). Assume in a category D (which is not yet a
model category, but has weak equivalences and �brations),

1. there is a functorial �brant replacement functor, and

2. every object has a natural path object, i.e., for any D ∈ D, we have a natural commutative
diagram

D D ×D

Path(D)

∆

i q

where ∆ is the diagonal map, i is a weak equivalence and q is a �bration. Then every map in
D with the LLP with respect to all �brations is a weak equivalence.

We think about Path(D) ∈ D is an internalized `space' of paths in D. In simple cases,
Path(D) = HomD(I,D), where I ∈ D and where HomD is an internal Hom. Moreover, by
�brant replacement of an object D ∈ D, we mean a weak equivalence D → D̄ whose target is
a �brant object.

7.4 Proof of Condition 1 of Theorem 17

Let λ be a non-zero ordinal and let X : λ→ C be a diagram of type λ in a category C, i.e.,
a functor from λ to C. Since an ordinal number is a totally ordered set, the considered ordinal
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λ can be viewed as a directed poset (λ,≤). Moreover, the diagram X is a direct system in C

over λ � made of the C-objects Xβ , β < λ, and the C-morphisms Xβγ : Xβ → Xγ , β ≤ γ � ,
and the colimit colimβ<λXβ of this diagram X is the inductive limit of the system (Xβ, Xβγ).

Let now A : λ→ DGDA be a diagram of type λ in DGDA and let For ◦A : λ→ DGDM be the
corresponding diagram in DGDM. To simplify notation, we denote the latter diagram simply by
A. As mentioned in the proof of Theorem 11, the colimit of A does exist in DGDM and is taken
degree-wise in Mod(D). For any degree r ∈ N, the colimit Cr of the functor Ar : λ → Mod(D)

is the inductive limit in Mod(D) of the direct system (Aβ,r, Aβγ,r) � which is obtained via
the usual construction in Set � . Due to universality, one naturally gets a Mod(D)-morphism
dr : Cr → Cr−1. The complex (C•, d) is the colimit in DGDM of A. It is now straightforwardly
checked that the canonical multiplication � in C• provides an object (C•, d, �) ∈ DGDA and
that this object is the colimit of A in DGDA.

Hence, the

Proposition 19. Let λ be a non-zero ordinal. The forgetful functor For : DGDA → DGDM
creates colimits of diagrams of type λ in DGDA, i.e., for any diagram A of type λ in DGDA, we
have

For(colimβ<λAβ,•) = colimβ<λ For(Aβ,•) . (24)

If λ is the zero ordinal, it can be viewed as the empty category ∅. Therefore, the colimit
in DGDA of the diagram of type λ is in this case the initial object (O, 0) of DGDA. Since the
initial object in DGDM is ({0}, 0), we see that For does not commute with this colimit. The
above proof fails indeed, as ∅ is not a directed set.

It follows from Proposition 19 that the right adjoint For in (23) commutes with sequential
colimits, so that the �rst condition of Theorem 17 is satis�ed.

Remark 20. Since a right adjoint functor between accessible categories preserves all �ltered
colimits, the �rst condition of Theorem 17 is a consequence of the accessibility of DGDM and
DGDA. We gave a direct proof to avoid the proof of the accessibility of DGDA.

7.5 Proof of Condition 2 of Theorem 17

We prove Condition 2 using Lemma 18. In our case, the adjoint pair is

S : DGDM� DGDA : For .

As announced in Subsection 7.2, we omit •, ?, and O, whenever possible. It is clear that every
object A ∈ D = DGDA is �brant. Hence, we can choose the identity as �brant replacement
functor, with the result that the latter is functorial.

As for the second condition of the lemma, we will show that any DGDA-morphism φ : A→ B

naturally factors into a weak equivalence followed by a �bration.

Since in the standard model structure on the category of di�erential graded commutative
algebras over Q, co�brations are retracts of relative Sullivan algebras [Hes00], the obvious
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idea is to decompose φ as A → A ⊗ SV → B, where i : A → A ⊗ SV is a (split minimal)
relative Sullivan D-algebra, such that there is a projection p : A ⊗ SV → B, or, even better,
a projection ε : V → B in positive degrees. The �rst attempt might then be to use

ε : V =
⊕
n>0

⊕
bn∈Bn

D · 1bn 3 1bn 7→ bn ∈ B ,

whose source incorporates a copy of the sphere Sn for each bn ∈ Bn, n > 0 . However, ε is
not a chain map, since in this case we would have dBbn = dBε1bn = 0, for all bn. The next
candidate is obtained by replacing Sn by Dn: if B ∈ DGDM, set

P (B) =
⊕
n>0

⊕
bn∈Bn

Dn
• ∈ DGDM ,

where Dn
• is a copy of the n-disc

Dn
• : · · · → 0→ 0→ D · Ibn → D · s−1Ibn → 0→ · · · → 0 .

Since

Pn(B) =
⊕

bn+1∈Bn+1

D · s−1Ibn+1 ⊕
⊕
bn∈Bn

D · Ibn (n > 0) and P0(B) =
⊕
b1∈B1

D · s−1Ib1 ,

the free non-negatively graded D-module P (B) is projective in each degree, what justi�es the
chosen notation. On the other hand, the di�erential dP of P (B) is the degree −1 square 0
D-linear map induced by the di�erentials in the n-discs and thus de�ned on Pn(B) by

dP (s−1Ibn+1) = 0 ∈ Pn−1(B) and dP (Ibn) = s−1Ibn ∈ Pn−1(B)

(see Lemma 15). The canonical projection ε : P (B) → B , is de�ned on Pn(B), as degree 0
D-linear map, by

ε(s−1Ibn+1) = dB(bn+1) ∈ Bn and ε(Ibn) = bn ∈ Bn .

It is clearly a DGDM-morphism and extends to a DGDA-morphism ε : S(P (B))→ B (see Lemma
16).

We de�ne now the aforementioned DGDA-morphisms i : A → A ⊗ S(P (B)) and p : A ⊗
S(P (B)) → B, where i is a weak equivalence and p a �bration such that p ◦ i = φ . We set
i = idA⊗1 and p = µB ◦ (φ⊗ ε) . It is readily checked that i and p are DGDA-morphisms (see
Proposition 10) with composite p ◦ i = φ . Moreover, by de�nition, p is a �bration in DGDA, if
it is surjective in degrees n > 0 � what immediately follows from the fact that ε is surjective
in these degrees.

It thus su�ces to show that i is a weak equivalence in DGDA, i.e., that

H(i) : H(A) 3 [a]→ [a⊗ 1] ∈ H (A⊗ S(P (B)))
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is an isomorphism of graded D-modules. Since ı̃ : A → A⊗O is an isomorphism in DGDM, it
induces an isomorphism

H (̃ı) : H(A) 3 [a]→ [a⊗ 1] ∈ H(A⊗O) .

In view of the graded D-module isomorphism

H(A⊗ S(P (B))) ' H(A⊗O)⊕H(A⊗ S∗≥1(P (B))) ,

we just have to prove that
H(A⊗ Sk≥1(P (B))) = 0 (25)

as graded D-module, or, equivalently, as graded O-module.

To that end, note that

0 −→ kerkS
ι−→ P (B)⊗k

S−→ (P (B)⊗k)Sk −→ 0 ,

where k ≥ 1 and where S is the averaging map, is a short exact sequence in the abelian cate-
gory DGOM of di�erential non-negatively graded O-modules (see Appendix 11.5, in particular
Equation (94)). Since it is canonically split by the injection

I : (P (B)⊗k)Sk → P (B)⊗k ,

and
(P (B)⊗k)Sk ' Sk(P (B))

as DG O-modules (see Equation (96)), we get

P (B)⊗k ' Sk(P (B))⊕ kerkS and A⊗ P (B)⊗k ' A⊗ Sk(P (B)) ⊕ A⊗ kerkS ,

as DG O-modules. Therefore, it su�ces to show that the LHS is an acyclic chain complex of
O-modules.

We begin showing that D = DX(X), where X is a smooth a�ne algebraic variety, is a �at
module over O = OX(X). Note �rst that, the equivalence (8)

Γ(X, •) : qcMod(OX)� Mod(O) : •̃

is exact and strong monoidal (see remark below Equation (8)). Second, observe that DX is a
locally free OX -module, hence, a �at (and quasi-coherent) sheaf of OX -modules, i.e., DX⊗OX •
is exact in Mod(OX). To show that D ⊗O • is exact in Mod(O), consider an exact sequence

0→M ′ →M →M ′′ → 0

in Mod(O). From what has been said it follows that

0→ DX ⊗OX M̃ ′ → DX ⊗OX M̃ → DX ⊗OX M̃ ′′ → 0
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is an exact sequence in Mod(OX), as well as an exact sequence in qcMod(OX) (kernels and
cokernels of morphisms of quasi-coherent modules are known to be quasi-coherent). When
applying the exact and strong monoidal global section functor, we see that

0→ D ⊗OM ′ → D ⊗OM → D ⊗OM ′′ → 0

is exact in Mod(O).

Next, observe that

H(A⊗ P (B)⊗k) =
⊕
n>0

⊕
bn∈Bn

H(Dn
• ⊗A⊗ P (B)⊗(k−1)) .

To prove that each of the summands of the RHS vanishes, we apply Künneth's Theorem
[Wei93, Theorem 3.6.3] to the complexes Dn

• and A ⊗ P (B)⊗(k−1), noticing that both, Dn
•

(which vanishes, except in degrees n, n − 1, where it coincides with D) and d(Dn
• ) (which

vanishes, except in degree n− 1, where it coincides with D), are termwise �at O-modules. We
thus get, for any m, a short exact sequence

0→
⊕

p+q=m

Hp(D
n
• )⊗Hq(A⊗ P (B)⊗(k−1))→ Hm(Dn

• ⊗A⊗ P (B)⊗(k−1))→⊕
p+q=m−1

Tor1(Hp(D
n
• ), Hq(A⊗ P (B)⊗(k−1)))→ 0 .

Finally, since Dn
• is acyclic, the central term of this exact sequence vanishes, since both, the

�rst and the third, do.

To completely �nish checking the requirements of Lemma 18 and thus of Theorem 17, we
still have to prove that the factorization (i, p) = (i(φ), p(φ)) of φ is functorial. In other words,
we must show that, for any commutative DGDA-square

A

u
��

φ // B

v ,
��

A′
φ′ // B′

(26)

there is a commutative DGDA-diagram

A

u
��

∼
i(φ)
// A⊗ SU

w
��

p(φ)
// // B

v ,
��

A′
∼
i(φ′)
// A′ ⊗ SU ′

p(φ′)
// // B′

(27)

where we wrote U (resp., U ′) instead of P (B) (resp., P (B′)).
To construct the DGDA-morphism w, we �rst de�ne a DGDA-morphism ṽ : SU → SU ′, then

we obtain the DGDA-morphism w by setting w = u⊗ ṽ.
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To get the DGDA-morphism ṽ, it su�ces, in view of Lemma 16, to de�ne a degree 0 Set-
map ṽ on G := {s−1Ibn , Ibn : bn ∈ Bn, n > 0}, with values in the di�erential graded D-algebra
(SU ′, dU ′), which satis�es dU ′ ṽ = ṽ dU on G. We set

ṽ(s−1Ibn) = s−1Iv(bn) ∈ SU
′ and ṽ(Ibn) = Iv(bn) ∈ SU

′ ,

and easily see that all the required properties hold.
We still have to verify that the diagram (27) actually commutes. Commutativity of the

left square is obvious. As for the right square, let t := a⊗ x1 � . . .� xk ∈ A⊗ SU , where the
xi are elements of U , and note that

v p(φ)(t) = v (µB ◦ (φ⊗ ε))(t) = v φ(a) ? v ε(x1) ? . . . ? v ε(xk)

and
p(φ′)w(t) = (µB′ ◦ (φ′ ⊗ ε′))(u(a)⊗ ṽ(x1)� . . .� ṽ(xk))

= φ′u(a) ? ε′ ṽ(x1) ? . . . ? ε
′ ṽ(xk) ,

where ? denotes the multiplication in B′. Since the square (26) commutes, it su�ces to check
that

v ε(x) = ε′ ṽ(x) , (28)

for any x ∈ U . However, the D-module U is freely generated by G and the four involved
morphisms are D-linear: it is enough that (28) holds on G � what is actually the case.

7.6 Transferred model structure

We proved in Theorem 11 that DGDM is a �nitely generated model category whose set of
generating co�brations (resp., trivial co�brations) is

I = {ιk : Sk−1• → Dk
• , k ≥ 0} (29)

( resp.,
J = {ζk : 0→ Dk

• , k ≥ 1} ) . (30)

Theorem 17 thus allows to conclude that:

Theorem 21. The category DGDA of di�erential non-negatively graded commutative D-
algebras is a �nitely ( and thus a co�brantly ) generated model category ( in the sense of [GS06]
and in the sense of [Hov07] ), with SI = {Sιk : ιk ∈ I} as its generating set of co�brations
and SJ = {Sζk : ζk ∈ J} as its generating set of trivial co�brations. The weak equivalences
are the DGDA-morphisms that induce an isomorphism in homology. The �brations are the
DGDA-morphisms that are surjective in all positive degrees p > 0.

The co�brations will be described below.

Quillen's transfer principle actually provides a [GS06] co�brantly generated (hence, a
[Hov07] co�brantly generated) [GS06] model structure on DGDA (hence, a [Hov07] model struc-
ture, if we choose for instance the functorial factorizations given by the small object argument).
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In fact, this model structure is �nitely generated, i.e. the domains and codomains of the maps
in SI and SJ are n-small DGDA-objects, n ∈ N, relative to Cof. Indeed, these sources and
targets are SDk

• (k ≥ 1), SSk• (k ≥ 0), and O. We already observed (see Theorem 11) that
Dk
• (k ≥ 1), Sk• (k ≥ 0), and 0 are n-small DGDM-objects with respect to all DGDM-morphisms.

If S• denotes any of the latter chain complexes, this means that the covariant Hom func-
tor HomDGDM(S•,−) commutes with all DGDM-colimits colimβ<λMβ,• for all limit ordinals λ.
It therefore follows from the adjointness property (19) and the equation (24) that, for any
DGDA-colimit colimβ<λAβ,•, we have

HomDGDA(SS•, colimβ<λAβ,•) ' HomDGDM(S•,For(colimβ<λAβ,•)) =

HomDGDM(S•, colimβ<λ For(Aβ,•)) = colimβ<λ HomDGDM(S•,For(Aβ,•)) '

colimβ<λ HomDGDA(SS•, Aβ,•) .

8 Description of DGDA-co�brations

8.1 Preliminaries

The next lemma allows to de�ne non-split RSDA-s, as well as DGDA-morphisms from such
an RSDA into another di�erential graded D-algebra.

Lemma 22. Let (T, dT ) ∈ DGDA, let (gj)j∈J be a family of symbols of degree nj ∈ N, and let
V =

⊕
j∈J D · gj be the free non-negatively graded D-module with homogeneous basis (gj)j∈J .

(i) To endow the graded D-algebra T ⊗ SV with a di�erential graded D-algebra structure
d, it su�ces to de�ne

dgj ∈ Tnj−1 ∩ d−1T {0} , (31)

to extend d as D-linear map to V , and to equip T ⊗ SV with the di�erential d given, for any
t ∈ Tp, v1 ∈ Vn1 , . . . , vk ∈ Vnk , by

d(t⊗ v1 � . . .� vk) =

dT (t)⊗ v1 � . . .� vk + (−1)p
k∑
`=1

(−1)n`
∑
j<` nj (t ∗ d(v`))⊗ v1 � . . . ̂̀. . .� vk , (32)

where ∗ is the multiplication in T . If J is a well-ordered set, the natural map

(T, dT ) 3 t 7→ t⊗ 1O ∈ (T � SV, d)

is a RSDA.

(ii) Moreover, if (B, dB) ∈ DGDA and p ∈ DGDA(T,B), it su�ces � to de�ne a morphism
q ∈ DGDA(T � SV,B) (where the di�erential graded D-algebra (T � SV, d) is constructed as
described in (i)) � to de�ne

q(gj) ∈ Bnj ∩ d−1B {p d(gj)} , (33)
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to extend q as D-linear map to V , and to de�ne q on T ⊗ SV by

q(t⊗ v1 � . . .� vk) = p(t) ? q(v1) ? . . . ? q(vk) , (34)

where ? denotes the multiplication in B.

The reader might consider that the de�nition of d(t ⊗ f), f ∈ O, is not an edge case of
De�nition (32); if so, it su�ces to add the de�nition d(t ⊗ f) = dT (t) ⊗ f . Note also that
De�nition (32) is the only possible one. Indeed, denote the multiplication in T ⊗ SV (see
Equation (13)) by � and choose, to simplify, k = 2. Then, if d is any di�erential that is
compatible with the graded D-algebra structure of T ⊗ SV , and coincides with dT (t)⊗ 1O '
dT (t) on any t ⊗ 1O ' t ∈ T (since (T, dT ) → (T � SV, d) must be a DGDA-morphism) and
with d(v)⊗ 1O ' d(v) on any 1T ⊗ v ' v ∈ V (since d(v) ∈ T ), we have necessarily

d(t⊗ v1 � v2) =

d(t⊗ 1O) � (1T ⊗ v1) � (1T ⊗ v2) +

(−1)p(t⊗ 1O) � d(1T ⊗ v1) � (1T ⊗ v2) +

(−1)p+n1(t⊗ 1O) � (1T ⊗ v1) � d(1T ⊗ v2) =

(dT (t)⊗ 1O) � (1T ⊗ v1) � (1T ⊗ v2)+

(−1)p(t⊗ 1O) � (d(v1)⊗ 1O) � (1T ⊗ v2)+

(−1)p+n1(t⊗ 1O) � (1T ⊗ v1) � (d(v2)⊗ 1O) =

dT (t)⊗ v1 � v2 + (−1)p(t ∗ d(v1))⊗ v2 + (−1)p+n1n2(t ∗ d(v2))⊗ v1 .

An analogous remark holds for De�nition (34).

Proof. It is easily checked that the RHS of Equation (32) is graded symmetric in its arguments
vi and O-linear with respect to all arguments. Hence, the map d is a degree −1 O-linear map
that is well-de�ned on T ⊗SV . To show that d endows T ⊗SV with a di�erential graded D-
algebra structure, it remains to prove that d squares to 0, is D-linear and is a graded derivation
for �. The last requirement follows immediately from the de�nition, for D-linearity it su�ces to
prove linearity with respect to the action of vector �elds � what is a straightforward veri�cation
�, whereas 2-nilpotency is a consequence of Condition (31). The proof of (ii) is similar.

We are now prepared to give an example of a minimal non-split RSDA.

Example 23. Consider the generating co�brations ιn : Sn−1 → Dn, n ≥ 1, and ι0 : 0 → S0

of the model structure of DGDM. The pushouts of the induced generating co�brations

ψn = S(ιn) and ψ0 = S(ι0)

of the transferred model structure on DGDA are important instances of minimal non-split
RSDA-s � see Figure 2 and Equations (35), (36), (37), (39), and (40).
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S(Sn−1) (T, dT )

S(Dn)

φ

ψ

Figure 1: Pushout diagram

Proof. We �rst consider a pushout diagram for ψ := ψn, for n ≥ 1: see Figure 1, where
(T, dT ) ∈ DGDA and where φ : (S(Sn−1), 0)→ (T, dT ) is a DGDA-morphism.

In the following, the generator of Sn−1 (resp., the generators of Dn) will be denoted by
1n−1 (resp., by In and s−1In, where s−1 is the desuspension operator).

Note that, since S(Sn−1) is the free DGDA over the DGDM Sn−1, the DGDA-morphism
φ is uniquely de�ned by the DGDM-morphism φ|Sn−1 : Sn−1 → For(T, dT ), where For is the
forgetful functor. Similarly, since Sn−1 is, as GDM, free over its generator 1n−1, the restriction
φ|Sn−1 is, as GDM-morphism, completely de�ned by its value φ(1n−1) ∈ Tn−1. The map φ|Sn−1

is then a DGDM-morphism if and only if we choose

κn−1 := φ(1n−1) ∈ kern−1 dT . (35)

We now de�ne the pushout of (ψ, φ): see Figure 2. In the latter diagram, the di�erential

S(Sn−1) (T, dT )

S(Dn) (T � S(Sn), d)

i

φ

ψ

j

Figure 2: Completed pushout diagram

d of the GDA T � S(Sn) is de�ned as described in Lemma 22. Indeed, we deal here with the
free non-negatively graded D-module Sn = Snn = D · 1n and set

d(1n) := κn−1 = φ(1n−1) ∈ kern−1 dT .

Hence, if x` ' x` · 1n ∈ D · 1n, we get d(x`) = x` · κn−1, and, if t ∈ Tp, we obtain

d(t⊗ x1 � . . .� xk) =

dT (t)⊗ x1 � . . .� xk + (−1)p
k∑
`=1

(−1)n(`−1)(t ∗ (x` · κn−1))⊗ x1 � . . . ̂̀. . .� xk , (36)
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see Equation (32). Eventually the map

i : (T, dT ) 3 t 7→ t⊗ 1O ∈ (T � S(Sn), d) (37)

is a (minimal and non-split) RSDA.

Just as φ, the DGDA-morphism j is completely de�ned if we de�ne it as DGDM-morphism on
Dn. The choices of j(In) and j(s−1In) de�ne j as GDM-morphism. The commutation condition
of j with the di�erentials reads

j(s−1In) = d j(In) : (38)

only j(In) can be chosen freely in (T ⊗ S(Sn))n .

The diagram of Figure 2 is now fully described. To show that it commutes, observe that,
since the involved maps φ, i, ψ, and j are all DGDA-morphisms, it su�ces to check commutation
for the arguments 1O and 1n−1. Only the second case is non-obvious; we get the condition

d j(In) = κn−1 ⊗ 1O . (39)

It is easily seen that the unique solution is

j(In) = 1T ⊗ 1n ∈ (T ⊗ S(Sn))n . (40)

To prove that the commuting diagram of Figure 2 is the searched pushout, it now su�ces
to prove its universality. Therefore, take (B, dB) ∈ DGDA, as well as two DGDA-morphisms
i′ : (T, dT )→ (B, dB) and j′ : S(Dn)→ (B, dB), such that j′ ◦ψ = i′ ◦ φ, and show that there
is a unique DGDA-morphism χ : (T � S(Sn), d)→ (B, dB), such that χ ◦ i = i′ and χ ◦ j = j′.

If χ exists, we have necessarily

χ(t⊗ x1 � . . .� xk) = χ((t⊗ 1O) � (1T ⊗ x1) � . . . � (1T ⊗ xk))

= χ(i(t)) ? χ(1T ⊗ x1) ? . . . ? χ(1T ⊗ xk) , (41)

where we used the same notation as above. Since any di�erential operator xi ' xi · 1n is
generated by functions and vector �elds, we get

χ(1T ⊗ xi) = χ(1T ⊗ xi · 1n) = xi · χ(1T ⊗ 1n) = xi · χ(j(In)) = xi · j′(In) = j′(xi · In) . (42)

When combining (41) and (42), we see that, if χ exists, it is necessarily de�ned by

χ(t⊗ x1 � . . .� xk) = i′(t) ? j′(x1 · In) ? . . . ? j′(xk · In) . (43)

This solves the question of uniqueness.

We now convince ourselves that (43) de�nes a DGDA-morphism χ (let us mention explicitly
that we set in particular χ(t⊗f) = f ·i′(t), if f ∈ O). It is straightforwardly veri�ed that χ is a
well-de�ned D-linear map of degree 0 from T ⊗S(Sn) to B, which respects the multiplications
and the units. The interesting point is the chain map property of χ. Indeed, consider, to
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simplify, the argument t⊗x, what will disclose all relevant insights. Assume again that t ∈ Tp
and x ∈ Sn, and denote the di�erential of S(Dn), just as its restriction to Dn, by s−1. It
follows that

dB(χ(t⊗ x)) = i′(dT (t)) ? j′(x · In) + (−1)p i′(t) ? j′(x · s−1In) .

Since ψ(1n−1) = s−1In and j′◦ψ = i′◦φ, we obtain j′(s−1In) = i′(φ(1n−1)) = i′(κn−1). Hence,

dB(χ(t⊗ x)) = χ(dT (t)⊗ x) + (−1)p i′(t) ? i′(x · κn−1) =

χ(dT (t)⊗ x+ (−1)pt ∗ (x · κn−1)) = χ(d(t⊗ x)) .

As afore-mentioned, no new feature appears, if we replace t⊗ x by a general argument.

As the conditions χ ◦ i = i′ and χ ◦ j = j′ are easily checked, this completes the proof of
the statement that any pushout of any ψn, n ≥ 1, is a minimal non-split RSDA.

The proof of the similar claim for ψ0 is analogous and even simpler, and will not be detailed
here.

Actually pushouts of ψ0 are border cases of pushouts of the ψn-s, n ≥ 1. In other words,
to obtain a pushout of ψ0, it su�ces to set, in Figure 2 and in Equation (36), the degree n
to 0. Since we consider exclusively non-negatively graded complexes, we then get S(S−1) =

S(0) = O, S(D0) = S(S0), and κ−1 = 0.

8.2 DGDA-co�brations

The following theorem characterizes the co�brations of the co�brantly generated model
structure we constructed on DGDA.

Theorem 24. The DGDA-co�brations are exactly the retracts of the relative Sullivan D-
algebras.

Since the DGDA-co�brations are exactly the retracts of the trans�nite compositions of
pushouts of generating co�brations

ψn : S(Sn−1)→ S(Dn), n ≥ 0 ,

the proof of Theorem 24 reduces to the proof of

Theorem 25. The trans�nite compositions of pushouts of ψn-s, n ≥ 0, are exactly the relative
Sullivan D-algebras.

Lemma 26. For any M,N ∈ DGDM, we have

S(M ⊕N) ' SM ⊗ SN

in DGDA .
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Proof. It su�ces to remember that the binary coproduct in the category DGDM = Ch+(D)

(resp., the category DGDA = CMon(DGDM)) of non-negatively graded chain complexes of D-
modules (resp., the category of commutative monoids in DGDM) is the direct sum (resp., the
tensor product). The conclusion then follows from the facts that S is the left adjoint of the
forgetful functor and that any left adjoint commutes with colimits.

Any ordinal is zero, a successor ordinal, or a limit ordinal. We denote the class of all
successor ordinals (resp., all limit ordinals) by Os (resp., O`).

Proof of Theorem 25. (i) Consider an ordinal λ and a λ-sequence in DGDA, i.e., a colimit
respecting functor X : λ → DGDA (here λ is viewed as the category whose objects are the
ordinals α < λ and which contains a unique morphism α→ β if and only if α ≤ β):

X0 → X1 → . . .→ Xn → Xn+1 → . . . Xω → Xω+1 → . . .→ Xα → Xα+1 → . . .

We assume that, for any α such that α + 1 < λ, the morphism Xα → Xα+1 is a pushout
of some ψnα+1 (nα+1 ≥ 0). Then the morphism X0 → colimα<λXα is exactly what we call
a trans�nite composition of pushouts of ψn-s. Our task is to show that this morphism is a
RSDA.

We �rst compute the terms Xα, α < λ, of the λ-sequence, then we determine its colimit.
For α < λ (resp., for α < λ, α ∈ Os), we denote the di�erential graded D-algebra Xα (resp.,
the DGDA-morphism Xα−1 → Xα) by (Aα, dα) (resp., by Xα,α−1 : (Aα−1, dα−1) → (Aα, dα)).
Since Xα,α−1 is the pushout of some ψnα and some DGDA-morphism φα, its target algebra is
of the form

(Aα, dα) = (Aα−1 � S〈aα〉, dα) (44)

and Xα,α−1 is the canonical inclusion

Xα,α−1 : (Aα−1, dα−1) 3 aα−1 7→ aα−1 ⊗ 1O ∈ (Aα−1 � S〈aα〉, dα) , (45)

see Example 23. Here aα is the generator 1nα of Snα and 〈aα〉 is the free non-negatively graded
D-module Snα = D · aα concentrated in degree nα; further, the di�erential

dα is de�ned by (36) from dα−1 and κnα−1 := φα(1nα−1) . (46)

In particular, A1 = A0 � S〈a1〉 , d1(a1) = κn1−1 = φ1(1n1−1) ∈ A0 , and X10 : A0 → A1 is the
inclusion.

Lemma 27. For any α < λ, we have

Aα ' A0 ⊗ S〈aδ : δ ≤ α, δ ∈ Os〉 (47)

as a graded D-algebra, and

dα(aδ) ∈ A0 ⊗ S〈aε : ε < δ, ε ∈ Os〉 , (48)
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for all δ ≤ α, δ ∈ Os. Moreover, for any γ ≤ β ≤ α < λ, we have

Aβ = Aγ ⊗ S〈aδ : γ < δ ≤ β, δ ∈ Os〉

and the DGDA-morphism Xβγ is the natural inclusion

Xβγ : (Aγ , dγ) 3 aγ 7→ aγ ⊗ 1O ∈ (Aβ, dβ) . (49)

Since the latter statement holds in particular for γ = 0 and β = α, the DGDA-inclusion Xα0 :

(A0, d0)→ (Aα, dα) is a RSDA ( for the natural ordering of {aδ : δ ≤ α, δ ∈ Os} ).

Proof of Lemma 27. To prove that this claim (i.e., Equations (47) � (49)) is valid for all
ordinals that are smaller than λ, we use a trans�nite induction. Since the assertion obviously
holds for α = 1, it su�ces to prove these properties for α < λ, assuming that they are true for
all β < α. We distinguish (as usually in trans�nite induction) the cases α ∈ Os and α ∈ O`.

If α ∈ Os, it follows from Equation (44), from the induction assumption, and from Lemma
26, that

Aα = Aα−1 ⊗ S〈aα〉 ' A0 ⊗ S〈aδ : δ ≤ α, δ ∈ Os〉 ,

as graded D-algebra. Further, in view of Equation (46) and the induction hypothesis, we get

dα(aα) = φα(1nα−1) ∈ Aα−1 = A0 ⊗ S〈aδ : δ < α, δ ∈ Os〉 ,

and, for δ ≤ α− 1, δ ∈ Os,

dα(aδ) = dα−1(aδ) ∈ A0 ⊗ S〈aγ : γ < δ, γ ∈ Os〉 .

Finally, as concerns Xβγ , the unique case to check is γ ≤ α − 1 and β = α. The DGDA-map
Xα−1,γ is an inclusion

Xα−1,γ : Aγ 3 aγ 7→ aγ ⊗ 1O ∈ Aα−1

(by induction), and so is the DGDA-map

Xα,α−1 : Aα−1 3 aα−1 7→ aα−1 ⊗ 1O ∈ Aα

(in view of (45)). The composite Xαγ is thus a DGDA-inclusion as well.

In the case α ∈ O`, i.e., α = colimβ<α β, we obtain (Aα, dα) = colimβ<α(Aβ, dβ) in
DGDA, since X is a colimit respecting functor. The index set α is well-ordered, hence, it is
a directed poset. Moreover, for any δ ≤ γ ≤ β < α, the DGDA-maps Xβδ, Xγδ, and Xβγ

satisfy Xβδ = Xβγ ◦ Xγδ . It follows that the family (Aβ, dβ)β<α, together with the family
Xβγ , γ ≤ β < α, is a direct system in DGDA, whose morphisms are, in view of the induction
assumption, natural inclusions

Xβγ : Aγ 3 aγ 7→ aγ ⊗ 1O ∈ Aβ .

The colimit (Aα, dα) = colimβ<α(Aβ, dβ) is thus a direct limit. However, a direct limit in
DGDA coincides with the corresponding direct limit in DGDM, or even in Set (which is then
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naturally endowed with a di�erential graded D-algebra structure). As a set, the direct limit
(Aα, dα) = colimβ<α(Aβ, dβ) is given by

Aα =
∐
β<α

Aβ/ ∼ ,

where ∼ means that we identify aγ , γ ≤ β, with

aγ ∼ Xβγ(aγ) = aγ ⊗ 1O ,

i.e., that we identify Aγ with
Aγ ∼ Aγ ⊗O ⊂ Aβ .

It follows that

Aα =
⋃
β<α

Aβ = A0 ⊗ S〈aδ : δ < α, δ ∈ Os〉 = A0 ⊗ S〈aδ : δ ≤ α, δ ∈ Os〉 .

As just mentioned, this set Aα can naturally be endowed with a di�erential graded D-algebra
structure. For instance, since, in view of what has been said, all ∼ - classes consist of a single
element, and since any aα ∈ Aα belongs to some Aβ , β < α, the di�erential dα is de�ned by
dα(aα) = dβ(aα). In particular, any generator aδ, δ ≤ α, δ ∈ Os, belongs to Aδ. Hence, by
de�nition of dα and in view of the induction assumption, we get

dα(aδ) = dδ(aδ) ∈ A0 ⊗ S〈aε : ε < δ, ε ∈ Os〉 .

Eventually, sinceX is colimit respecting, not only Aα = colimβ<αAβ =
⋃
β<αAβ , but, further-

more, for any γ < α, the DGDA-morphism Xαγ : Aγ → Aα is the map Xαγ : Aγ →
⋃
β<αAβ ,

i.e., the canonical inclusion.

We now come back to the proof of Part (i) of Theorem 25, i.e., we now explain why the
morphism i : (A0, d0) → C, where C = colimα<λ(Aα, dα) and where i is the �rst of the
morphisms that are part of the colimit construction, is a RSDA � see above. If λ ∈ Os, the
colimit C coincides with (Aλ−1, dλ−1) and i = Xλ−1,0. Hence, the morphism i is a RSDA in
view of Lemma 27. If λ ∈ O`, the colimit C = colimα<λ(Aα, dα) is, like above, the direct
limit of the direct DGDA-system (Xα = (Aα, dα), Xαβ) indexed by the directed poset λ, whose
morphisms Xαβ are, in view of Lemma 27, canonical inclusions. Hence, C is again an ordinary
union:

C =
⋃
α<λ

Aα = A0 ⊗ S〈aδ : δ < λ, δ ∈ Os〉 , (50)

where the last equality is due to Lemma 27. We de�ne the di�erential dC on C exactly
as we de�ned the di�erential dα on the direct limit in the proof of Lemma 27. It is then
straightforwardly checked that i is a RSDA.

(ii) We still have to show that any RSDA (A0, d0)→ (A0 � SV, d) can be constructed as a
trans�nite composition of pushouts of generating co�brations ψn, n ≥ 0. Let (aj)j∈J be the
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basis of the free non-negatively graded D-module V . Since J is a well-ordered set, it is order-
isomorphic to a unique ordinal µ = {0, 1, . . . , n, . . . , ω, ω + 1, . . .}, whose elements can thus
be utilized to label the basis vectors. However, we prefer using the following order-respecting
relabelling of these vectors:

a0  a1, a1  a2, . . . , an  an+1, . . . , aω  aω+1, aω+1  aω+2, . . .

In other words, the basis vectors of V can be labelled by the successor ordinals that are strictly
smaller than λ := µ+ 1 (this is true, whether µ ∈ Os, or µ ∈ O` ):

V =
⊕

δ<λ, δ∈Os

D · aδ .

For any α < λ, we now set

(Aα, dα) := (A0 � S〈aδ : δ ≤ α, δ ∈ Os〉, d|Aα) .

It is clear that Aα is a graded D-subalgebra of A0⊗SV . Since Aα is generated, as an algebra,
by the elements of the types a0 ⊗ 1O and D · (1A0 ⊗ aδ), D ∈ D, δ ≤ α, δ ∈ Os, and since

d(a0 ⊗ 1O) = d0(a0)⊗ 1O ∈ Aα

and
d(D · (1A0 ⊗ aδ)) ∈ A0 ⊗ S〈aε : ε < δ, ε ∈ Os〉 ⊂ Aα ,

the derivation d stabilizes Aα. Hence, (Aα, dα) = (Aα, d|Aα) is actually a di�erential graded
D-subalgebra of (A0 � SV, d).

If β ≤ α < λ, the algebra (Aβ, d|Aβ ) is a di�erential graded D-subalgebra of (Aα, d|Aα),
so that the canonical inclusion iαβ : (Aβ, dβ) → (Aα, dα) is a DGDA-morphism. In view of
the techniques used in (i), it is obvious that the functor X = (A−, d−) : λ → DGDA respects
colimits, and that the colimit of the whole λ-sequence (remember that λ = µ+ 1 ∈ Os) is the
algebra (Aµ, dµ) = (A0 � SV, d), i.e., the original algebra.

The RSDA (A0, d0) → (A0 � SV, d) has thus been built as trans�nite composition of
canonical DGDA-inclusions i : (Aα, dα)→ (Aα+1, dα+1), α+ 1 < λ. Recall that

Aα+1 = Aα ⊗ S〈aα+1〉 ' Aα ⊗ S(Sn) ,

if we set n := deg(aα+1). It su�ces to show that i is a pushout of ψn, see Figure 3. We
will detail the case n ≥ 1. Since all the di�erentials are restrictions of d, we have κn−1 :=

dα+1(aα+1) ∈ Aα ∩ kern−1 dα, and φ(1n−1) := κn−1 de�nes a DGDA-morphism φ, see Example
23. When using the construction described in Example 23, we get the pushout i : (Aα, dα)→
(Aα�S(Sn), ∂) of the morphisms ψn and φ. Here i is the usual canonical inclusion and ∂ is the
di�erential de�ned by Equation (36). It thus su�ces to check that ∂ = dα+1. Let aα ∈ Apα and
let x1 ' x1 · aα+1, . . . , xk ' xk · aα+1 ∈ D · aα+1 = Sn. Assume, to simplify, that k = 2; the
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S(Sn−1) (Aα, dα)

S(Dn) (Aα � S(Sn), dα+1)

i

φ

ψn

j

Figure 3: i as pushout of ψn

general case is similar. When denoting the multiplication in Aα (resp., Aα+1 = Aα ⊗ S(Sn))
as usual by ∗ (resp., ? ), we obtain

∂(aα ⊗ x1 � x2) =

dα(aα)⊗ x1 � x2 + (−1)p(aα ∗ (x1 · κn−1))⊗ x2 + (−1)p+n(aα ∗ (x2 · κn−1))⊗ x1 =

(dα(aα)⊗ 1O) ? (1Aα ⊗ x1) ? (1Aα ⊗ x2)+

(−1)p(aα ⊗ 1O) ? ((x1 · κn−1)⊗ 1O) ? (1Aα ⊗ x2)+

(−1)p+n(aα ⊗ 1O) ? (1Aα ⊗ x1) ? ((x2 · κn−1)⊗ 1O) =

dα+1(aα ⊗ 1O) ? (1Aα ⊗ x1) ? (1Aα ⊗ x2)+

(−1)p(aα ⊗ 1O) ? dα+1(1Aα ⊗ x1) ? (1Aα ⊗ x1)+

(−1)p+n(aα ⊗ 1O) ? (1Aα ⊗ x1) ? dα+1(1Aα ⊗ x2) =

dα+1(aα ⊗ x1 � x2) .

9 Explicit functorial factorizations

The main idea of Subsection 7.5 is the decomposition of an arbitrary DGDA-morphism
φ : A → B into a weak equivalence i : A → A ⊗ SU and a �bration p : A ⊗ SU → B. It is
easily seen that i is a split minimal relative Sullivan D-algebra. Indeed,

U = P (B) =
⊕
n>0

⊕
bn∈Bn

Dn
• ∈ DGDM (51)

with di�erential dU = dP de�ned by

dU (s−1Ibn) = 0 and dU (Ibn) = s−1Ibn . (52)
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Hence, SU ∈ DGDA, with di�erential dS induced by dU , and A⊗SU ∈ DGDA, with di�erential

d1 = dA ⊗ id + id⊗dS . (53)

Therefore, i : A → A ⊗ SU is a DGDA-morphism. Since U is the free non-negatively graded
D-module with homogeneous basis

G = {s−1Ibn , Ibn : bn ∈ Bn, n > 0} ,

all the requirements of the de�nition of a split minimal RSDA are obviously satis�ed, except
that we still have to check the well-ordering, the lowering, and the minimality conditions.

Since every set can be well-ordered, we �rst choose a well-ordering on each Bn, n > 0:
if λn denotes the unique ordinal that belongs to the same equivalence class of well-ordered
sets, the elements of Bn can be viewed as labelled by the elements of λn. Then we de�ne the
following total order: the s−1Ib1 , b1 ∈ B1, are smaller than the Ib1 , which are smaller than
the s−1Ib2 , and so on ad in�nitum. The construction of an in�nite decreasing sequence in this
totally ordered set amounts to extracting an in�nite decreasing sequence from a �nite number
of ordinals λ1, λ1, . . . , λk. Since this is impossible, the considered total order is a well-ordering.
The lowering condition is thus a direct consequence of Equations (52) and (53).

Let now {γα : α ∈ J} be the set G of generators endowed with the just de�ned well-order.
Observe that, if the label α of the generator γα increases, its degree deg γα increases as well,
i.e., that

α ≤ β ⇒ deg γα ≤ deg γβ . (54)

Eventually, any DGDA-morphism φ : A→ B admits a functorial factorization

A
i−→ A⊗ SU p−→ B , (55)

where p is a �bration and i is a weak equivalence, as well as a split minimal RSDA. In view of
Theorem 24, the morphism i is thus a co�bration, with the result that we actually constructed
a natural decomposition φ = p ◦ i of an arbitrary DGDA-morphism φ into i ∈ TrivCof and
p ∈ Fib. The description of this factorization is summarized below, in Theorem 28, which
provides essentially an explicit natural `Cof � TrivFib' decomposition

A
i′−→ A⊗ SU ′ p′−→ B . (56)

Before stating Theorem 28, we sketch the construction of the factorization (56). To simplify,
we denote algebras of the type A⊗ SVk by RVk , or simply Rk .

We start from the `small' `Cof � Fib' decomposition (55) of a DGDA-morphism A
φ−→ B,

i.e., from the factorization A
i−→ RU

p−→ B. To �nd a substitute q for p, which is a trivial
�bration, we mimic an idea used in the construction of the Koszul-Tate resolution: we add
generators to improve homological properties.

Note �rst that H(p) is surjective if, for any homology class [βn] ∈ Hn(B), there is a class
[ρn] ∈ Hn(RU ), such that [p ρn] = [βn]. Hence, consider all the homology classes [βn], n ≥ 0,
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of B, choose in each class a representative β̇n ' [βn], and add generators Iβ̇n to those of U .
It then su�ces to extend the di�erential d1 (resp., the �bration p) de�ned on RU = A⊗ SU ,
so that the di�erential of Iβ̇n vanishes (resp., so that the projection of Iβ̇n coincides with β̇n)
(�1 � this triangle is just a mark that allows us to retrieve this place later on). To get a
functorial `Cof � TrivFib' factorization, we do not add a new generator Iβ̇n , for each homology

class β̇n ' [βn] ∈ Hn(B), n ≥ 0, but we add a new generator Iβn , for each cycle βn ∈ kern dB,
n ≥ 0 . Let us implement this idea in a rigorous manner. Assign the degree n to Iβn and set

V0 := U ⊕G0 := U ⊕ 〈Iβn : βn ∈ kern dB, n ≥ 0〉 =

〈s−1Ibn , Ibn , Iβn : bn ∈ Bn, n > 0, βn ∈ kern dB, n ≥ 0〉 . (57)

Set now

δV0(s−1Ibn) = d1(s
−1Ibn) = 0, δV0Ibn = d1Ibn = s−1Ibn , δV0Iβn = 0 , (58)

thus de�ning, in view of Lemma 15, a di�erential graded D-module structure on V0. It follows
that (SV0, δV0) ∈ DGDA and that

(R0, δ0) := (A⊗ SV0, dA ⊗ id + id⊗ δV0) ∈ DGDA . (59)

Similarly, we set

qV0(s−1Ibn) = p(s−1Ibn) = ε(s−1Ibn) = dBbn, qV0Ibn = pIbn = εIbn = bn, qV0Iβn = βn . (60)

We thus obtain, see Lemma 16, a morphism qV0 ∈ DGDM(V0, B) � which uniquely extends to a
morphism qV0 ∈ DGDA(SV0, B). Finally,

q0 = µB ◦ (φ⊗ qV0) ∈ DGDA(R0, B) , (61)

where µB denotes the multiplication in B. Let us emphasize that RU = A ⊗ SU is a direct
summand of R0 = A⊗ SV0, and that δ0 and q0 just extend the corresponding morphisms on
RU : δ0|RU = d1 and q0|RU = p .

So far we ensured that H(q0) : H(R0)→ H(B) is surjective; however, it must be injective
as well, i.e., for any σn ∈ ker δ0, n ≥ 0, such that H(q0)[σn] = 0, i.e., such that q0σn ∈ im dB,
there should exist σn+1 ∈ R0 such that

σn = δ0σn+1 . (62)

We denote by B0 the set of δ0-cycles that are sent to dB-boundaries by q0 :

B0 = {σn ∈ ker δ0 : q0σn ∈ im dB, n ≥ 0} .

In principle it now su�ces to add, to the generators of V0, generators I1σn of degree n + 1,
σn ∈ B0, and to extend the di�erential δ0 on R0 so that the di�erential of I1σn coincides with
σn (�2). However, it turns out that to obtain a functorial `Cof � TrivFib' decomposition, we
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must add a new generator I1σn,bn+1
of degree n+1, for each pair (σn, bn+1) such that σn ∈ ker δ0

and q0σn = dBbn+1 : we set

B0 = {(σn, bn+1) : σn ∈ ker δ0, bn+1 ∈ d−1B {q0σn}, n ≥ 0} (63)

and
V1 := V0 ⊕G1 := V0 ⊕ 〈I1σn,bn+1

: (σn, bn+1) ∈ B0〉 . (64)

To endow the graded D-algebra

R1 := A⊗ SV1 ' R0 ⊗ SG1 (65)

with a di�erential graded D-algebra structure δ1, we apply Lemma 22, with

δ1(I1σn,bn+1
) = σn ∈ (R0)n ∩ ker δ0 , (66)

exactly as suggested by Equation (62). The di�erential δ1 is then given by Equation (32) and
it extends the di�erential δ0 on R0. The extension of the DGDA-morphism q0 : R0 → B by a
DGDA-morphism q1 : R1 → B is built from its de�nition

q1(I1σn,bn+1
) = bn+1 ∈ Bn+1 ∩ d−1B {q0δ1(I

1
σn,bn+1

)} (67)

on the generators and from Equation (34) in Lemma 22.

Eventually, starting from (RU , d1) ∈ DGDA and p ∈ DGDA(RU , B), we end up � when trying
to make H(p) bijective � with (R1, δ1) ∈ DGDA and q1 ∈ DGDA(R1, B) � so that the question
is whether H(q1) : H(R1) → H(B) is bijective or not. Since (R1, δ1) extends (R0, δ0) and
H(q0) : H(R0)→ H(B) is surjective, it is easily checked that this property holds a fortiori for
H(q1). However, when working with R1 ⊃ R0, the `critical set' B1 ⊃ B0 increases, so that we
must add new generators I2σn , σn ∈ B1 \ B0, where

B1 = {σn ∈ ker δ1 : q1σn ∈ im dB, n ≥ 0} . (�3)

To build a functorial factorization, we consider not only the `critical set'

B1 = {(σn, bn+1) : σn ∈ ker δ1, bn+1 ∈ d−1B {q1σn}, n ≥ 0} , (68)

but also the module of new generators

G2 = 〈I2σn,bn+1
: (σn, bn+1) ∈ B1〉 , (69)

indexed, not by B1 \B0, but by B1. Hence an iteration of the procedure (63) - (67) and the
de�nition of a sequence

(R0, δ0)→ (R1, δ1)→ (R2, δ2)→ . . .→ (Rk−1, δk−1)→ (Rk, δk)→ . . .

of canonical inclusions of di�erential gradedD-algebras (Rk, δk), Rk = A⊗SVk, δk|Rk−1
= δk−1,

together with a sequence of DGDA-morphisms qk : Rk → B, such that qk|Rk−1
= qk−1. The
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de�nitions of the di�erentials δk and the morphisms qk are obtained inductively, and are based
on Lemma 22, as well as on equations of the same type as (66) and (67).

The direct limit of this sequence is a di�erential graded D-algebra (RV , d2) = (A⊗SV, d2),
together with a morphism q : A⊗ SV → B.

As a set, the colimit of the considered system of canonically included algebras (Rk, δk), is
just the union of the sets Rk, see Equation (50). We proved above that this set-theoretical
inductive limit can be endowed in the standard manner with a di�erential graded D-algebra
structure and that the resulting algebra is the direct limit in DGDA. One thus obtains in
particular that d2|Rk = δk .

Finally, the morphism q : RV → B comes from the universality property of the colimit and
it allows to factor the morphisms qk : Rk → B through RV . We have: q|Rk = qk .

We will show that this morphism A⊗SV q−→ B really leads to a `Cof � TrivFib' decompo-

sition A
j−→ A⊗ SV q−→ B of A

φ−→ B.

Theorem 28. In DGDA, a functorial `TrivCof � Fib' factorization (i, p) and a functorial `Cof
� TrivFib' factorization (j, q) of an arbitrary morphism

φ : (A, dA)→ (B, dB) ,

see Figure 4, can be constructed as follows:

(A, dA) (A� SU, d1)

(A� SV, d2) (B, dB)

p
φ

∼
i

j

∼
q

Figure 4: Functorial factorizations

(1) The module U is the free non-negatively graded D-module with homogeneous basis⋃
{s−1Ibn , Ibn} ,

where the union is over all bn ∈ Bn and all n > 0, and where deg(s−1Ibn) = n − 1 and
deg(Ibn) = n . In other words, the module U is a direct sum of copies of the discs

Dn = D · Ibn ⊕D · s−1Ibn ,

n > 0. The di�erentials
s−1 : Dn 3 Ibn → s−1Ibn ∈ Dn

induce a di�erential dU in U , which in turn implements a di�erential dS in SU . The di�erential
d1 is then given by d1 = dA⊗ id + id⊗dS . The trivial co�bration i : A→ A⊗SU is a minimal
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split RSDA de�ned by i : a 7→ a ⊗ 1O, and the �bration p : A ⊗ SU → B is de�ned by p =

µB ◦ (φ⊗ε), where µB is the multiplication of B and where ε(Ibn) = bn and ε(s−1Ibn) = dBbn .

(2) The module V is the free non-negatively graded D-module with homogeneous basis⋃
{s−1Ibn , Ibn , Iβn , I1σn,bn+1

, I2σn,bn+1
, . . . , Ikσn,bn+1

, . . .} ,

where the union is over all bn ∈ Bn, n > 0, all βn ∈ kern dB, n ≥ 0, and all pairs

(σn, bn+1), n ≥ 0, in B0,B1, . . . ,Bk, . . . ,

respectively. The sequence of sets

Bk−1 = {(σn, bn+1) : σn ∈ ker δk−1, bn+1 ∈ d−1B {qk−1σn}, n ≥ 0}

is de�ned inductively, together with an increasing sequence of di�erential graded D-algebras
(A ⊗ SVk, δk) and a sequence of morphisms qk : A ⊗ SVk → B, by means of formulas of the
type (63) - (67) (see also (57) - (61)). The degrees of the generators of V are

n− 1, n, n, n+ 1, n+ 1, . . . , n+ 1, . . . (70)

The di�erential graded D-algebra (A⊗SV, d2) is the colimit of the preceding increasing sequence
of algebras:

d2|A⊗SVk = δk . (71)

The trivial �bration q : A⊗ SV → B is induced by the qk-s via universality of the colimit:

q|A⊗SVk = qk . (72)

Eventually, the co�bration j : A → A ⊗ SV is a minimal (non-split) RSDA, which is de�ned
as in (1) as the canonical inclusion; the canonical inclusion jk : A→ A⊗SVk , k > 0 , is also
a minimal (non-split) RSDA, whereas j0 : A→ A⊗ SV0 is a minimal split RSDA.

Proof. See Appendix 11.6.

Remark 29. • If we are content with a non-functorial `Cof � TrivFib' factorization, we
may consider the colimit A ⊗ SV of the sequence A ⊗ SVk that is obtained by adding
only generators (see (�1))

Iβ̇n , n ≥ 0, β̇n ' [βn] ∈ Hn(B) ,

and by adding only generators (see (�2) and (�3))

I1σn , I
2
σn , . . . , n ≥ 0, σn ∈ B0,B1 \ B0, . . .

• An explicit description of the functorial �brant and co�brant replacement functors, in-
duced by the `TrivCof � Fib' and `Cof � TrivFib' decompositions of Theorem 28, can be
found in Appendix 11.7.
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10 First remarks on Koszul-Tate resolutions

In this last section, we provide �rst insight into Koszul-Tate resolutions. Given a poly-
nomial partial di�erential equation acting on sections of a vector bundle, we obtain, via our
preceding constructions, a Koszul-Tate resolution (KTR) of the corresponding algebra R of
on-shell functions. This resolution is a co�brant replacement of R in the appropriate under-
category of DGDA.

In a separate paper [PP17a], we give a general and precise de�nition of Koszul-Tate resolu-
tions. We further show in that work that the classical Tate extension of the Koszul resolution
[HT92], the KTR implemented by a compatibility complex [Ver02], as well as our just men-
tioned and below detailed model categorical KTR, are Koszul-Tate resolutions in the sense
of this improved de�nition. Eventually, we investigate the relationships between these three
resolutions.

Hence, the present section should be viewed as an introduction to topics on which we will
elaborate in [PP17a].

10.1 Undercategories of model categories

When recalling that the coproduct in DGDA is the tensor product, we get from [Hir05] that:

Proposition 30. For any di�erential graded D-algebra A, the coslice category A ↓ DGDA
carries a co�brantly generated model structure given by the adjoint pair L⊗ : DGDA � A ↓
DGDA : For, in the sense that its distinguished morphism classes are de�ned by For and its
generating co�brations and generating trivial co�brations are given by L⊗ .

10.2 Basics of jet bundle formalism

The jet bundle formalism allows for a coordinate-free approach to partial di�erential equa-
tions (PDE-s), i.e., to (not necessarily linear) di�erential operators (DO-s) acting between
sections of smooth vector bundles (the con�nement to vector bundles does not appear in more
advanced approaches). To uncover the main ideas, we implicitly consider in this subsection
trivialized line bundles E over a 1-dimensional manifold X, i.e., we assume that E ' R× R.

The key-aspect of the jet bundle approach to PDE-s is the passage to purely algebraic
equations. Consider the order k di�erential equation (DE)

F (t, φ(t), dtφ, . . . , d
k
t φ) = F (t, φ, φ′, . . . , φ(k))|jkφ = 0 , (73)

where (t, φ, φ′, . . . , φ(k)) are coordinates of the k-th jet space JkE and where jkφ is the k-jet
of the section φ(t). Note that the algebraic equation

F (t, φ, φ′, . . . , φ(k)) = 0 (74)

de�nes a `surface' Ek ⊂ JkE, and that a solution of the considered DE is nothing but a section
φ(t) whose k-jet is located on Ek.
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A second fundamental feature is that one prefers replacing the original system of PDE-s by
an enlarged system, its in�nite prolongation, which also takes into account the consequences
of the original one. More precisely, if φ(t) satis�es the original PDE, we have also

d`t(F (t, φ(t), dtφ, . . . , d
k
t φ)) = (∂t + φ′∂φ + φ′′∂φ′ + . . .)`F (t, φ, φ′, . . . , φ(k))|j∞φ =:

D`
tF (t, φ, φ′, . . . , φ(k))|j∞φ = 0, ∀` ∈ N . (75)

Let us stress that the `total derivative' Dt or horizontal lift Dt of dt is actually an in�nite sum.
The two systems of PDE-s, (73) and (75), have clearly the same solutions, so we may focus
just as well on (75). The corresponding algebraic system

D`
tF (t, φ, φ′, . . . , φ(k)) = 0, ∀` ∈ N (76)

de�nes a `surface' E∞ in the in�nite jet bundle π∞ : J∞E → X. A solution of the original
system (73) is now a section φ ∈ Γ(X,E) such that (j∞φ)(X) ⊂ E∞. The `surface' E∞ is
often referred to as the `stationary surface' or the `shell'.

The just described passage from prolonged PDE-s to prolonged algebraic equations involves
the lift of di�erential operators d`t acting on O(X) = Γ(X,X ×R) (resp., sending � more gen-
erally � sections Γ(X,G) of some vector bundle to sections Γ(X,K)), to horizontal di�erential
operators D`

t acting on O(J∞E) (resp., acting from Γ(J∞E, π∗∞G) to Γ(J∞E, π∗∞K)). As
seen from Equation (75), this lift is de�ned by

(D`
tF ) ◦ j∞φ = d`t(F ◦ j∞φ)

(note that composites of the type F ◦ j∞φ, where F is a section of the pullback bundle π∗∞G,
are sections of G). The interesting observation is that the jet bundle formalism naturally
leads to a systematic base change X  J∞E. The remark is fundamental in the sense that
both, the classical Koszul-Tate resolution (i.e., the Tate extension of the Koszul resolution of a
regular surface) and Verbovetsky's Koszul-Tate resolution (i.e., the resolution induced by the
compatibility complex of the linearization of the equation), use the jet formalism to resolve
on-shell functions O(E∞), and thus enclose the base change • → X  • → J∞E. This
means, dually, that we pass from DGDA, i.e., from the coslice category O(X) ↓ DGDA to the
coslice category O(J∞E) ↓ DGDA.

10.3 Revision of the classical Koszul-Tate resolution

We �rst recall the local construction of the Koszul resolution of the function algebra
O(Σ) of a regular surface Σ ⊂ Rn. Such a surface Σ, say of codimension r, can locally always
be described � in appropriate coordinates � by the equations

Σ : xa = 0, ∀a ∈ {1, . . . , r} . (77)

The Koszul resolution of O(Σ) is then the chain complex made of the free Grassmann algebra

K = O(Rn)⊗ S[φa∗]
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on r odd generators φa∗ � associated to the equations (77) � and of the Koszul di�erential

δK = xa∂φa∗ . (78)

Of course, the claim that this complex is a resolution of O(Σ) means that the homology of
(K, δK) is given by

H0(K) = O(Σ) and Hk(K) = 0, ∀k > 0 . (79)

TheKoszul-Tate resolution of the algebraO(E∞) of on-shell functions is a generalization
of the preceding Koszul resolution. In gauge �eld theory (our main target), E∞ is the stationary
surface given by a system

E∞ : Dα
xFi = 0, ∀α, i (80)

of prolonged algebraized (see (76)) Euler-Lagrange equations that correspond to some action
functional (here x ∈ Rp and α ∈ Np). However, there is a di�erence between the situations
(77) and (80): in the latter, there exist gauge symmetries that implement Noether identities
and their extensions � i.e., extensions

Dβ
x G

i
jαD

α
xFi = 0, ∀β, j (81)

of O(J∞E)-linear relations GijαD
α
xFi = 0 between the equations Dα

xFi = 0 of E∞ �, which do
not have any counterpart in the former. It turns out that, to kill the homology (see (79)), we
must introduce additional generators that take into account these relations. More precisely,
we do not only associate degree 1 generators φα∗i to the equations (80), but assign further
degree 2 generators Cβ∗j to the relations (81). The Koszul-Tate resolution of O(E∞) is then
(under appropriate irreducibility and regularity conditions) the chain complex, whose chains
are the elements of the free Grassmann algebra

KT = O(J∞E)⊗ S[φα∗i , C
β∗
j ] , (82)

and whose di�erential is de�ned in analogy with (78) by

δKT = Dα
xFi ∂φα∗i +Dβ

x G
i
jαD

α
xφ
∗
i ∂Cβ∗j

, (83)

where we substituted φ∗i to Fi (and where total derivatives have to be interpreted in the
extended sense that puts the `anti�elds' φ∗i and C∗j on an equal footing with the `�elds' φi

(�ber coordinates of E), i.e., where we set

Dxk = ∂xk + φikα∂φiα + φkα∗i ∂φα∗i + Ckβ∗j ∂
Cβ∗j

) .

The homology of this Koszul-Tate chain complex is actually concentrated in degree 0, where
it coincides with O(E∞) (compare with (79)).
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10.4 D-algebraic version of the Koszul-Tate resolution

In this subsection, we brie�y report on the D-algebraic approach to `Koszul-Tate' (see
[PP17a] for additional details).

Proposition 31. The functor
For : DA→ OA

has a left adjoint
J∞ : OA→ DA ,

i.e., for B ∈ OA and A ∈ DA, we have

HomDA(J∞(B), A) ' HomOA(B,For(A)) , (84)

functorially in A,B.

Let now π : E → X be a smooth map of smooth a�ne algebraic varieties (or a smooth
vector bundle). The function algebra B = O(E) (in the vector bundle case, we only consider
those smooth functions on E that are polynomial along the �bers, i.e., O(E) := Γ(SE∗))
is canonically an O-algebra, so that the jet algebra J∞(O(E)) is a D-algebra. The latter
can be thought of as the D-algebraic counterpart of O(J∞E). Just as we considered above
a scalar PDE with unknown in Γ(E) as a function F ∈ O(J∞E) (see (74)), an element
P ∈ J∞(O(E)) can be viewed as a polynomial PDE acting on sections of π : E → X.
Finally, the D-algebraic version of on-shell functions O(E∞) = O(J∞E)/(F ) is the quotient
R(E,P ) := J∞(O(E))/(P ) of the jet D-algebra by the D-ideal (P ).

A �rst candidate for a Koszul-Tate resolution of R := R(E,P ) ∈ DA is of course the
co�brant replacement of R in DGDA given by the functorial `Cof � TrivFib' factorization of
Theorem 28, when applied to the canonical DGDA-morphism O → R. Indeed, this decompo-
sition implements a functorial co�brant replacement functor Q (see Theorem 34 below) with
value Q(R) = SV described in Theorem 28:

O� SV
∼
� R .

Since R is concentrated in degree 0 and has 0 di�erential, it is clear that Hk(SV ) vanishes,
except in degree 0 where it coincides with R.

As already mentioned, we propose a general and precise de�nition of a Koszul-Tate res-
olution in [PP17a]. Although such a de�nition does not seem to exist in the literature, it is
commonly accepted that a Koszul-Tate resolution of the quotient of a commutative ring k by
an ideal I is an k-algebra that resolves k/I.

The natural idea � to get a J∞(O(E))-algebra � is to replace SV by J∞(O(E)) ⊗ SV ,
and, more precisely, to consider the `Cof � TrivFib' decomposition

J∞(O(E))� J∞(O(E))⊗ SV
∼
� J∞(O(E))/(P ) .
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The DGDA
J∞(O(E))⊗ SV (85)

is a J∞(O(E))-algebra that resolves R = J∞(O(E))/(P ), but it is of course not a co�brant
replacement, since the left algebra is not the initial object O in DGDA (further, the considered
factorization does not canonically induce a co�brant replacement in DGDA, since it can be
shown that the morphism O → J∞(O(E)) is not a co�bration). However, as emphasized
above, the Koszul-Tate problem requires a passage from DGDA to J∞(O(E)) ↓ DGDA. It is
easily checked that, in the latter undercategory, J∞(O(E))⊗SV is a co�brant replacement

of J∞(O(E))/(P ). To further illuminate the D-algebraic approach to Koszul-Tate, let us
mention why the complex (82) is of the same type as (85). Just as the variables φ(k) (see (73))
are algebraizations of the derivatives dkt φ of a section φ of a vector bundle E → X (�elds), the
generators φα∗i and Cβ∗j (see (80) and (81)) symbolize the total derivatives Dα

xφ
∗
i and Dβ

xC∗j
of sections φ∗ and C∗ of some vector bundles π∗∞F1 → J∞E and π∗∞F2 → J∞E (anti�elds).
Hence, the φα∗i and Cβ∗j can be thought of as the horizontal jet bundle coordinates of π∗∞F1

and π∗∞F2 . These coordinates may of course be denoted by other symbols, e.g., by ∂αx ·φ∗i and
∂βx · C∗j , provided we de�ne the D-action as the action Dα

xφ
∗
i and D

β
xC∗j by the corresponding

horizontal lift, so that we get appropriate interpretations when the φ∗i -s and the C∗j -s are the
components of true sections. This convention allows to write

KT = J ⊗ S[∂αx · φ∗i , ∂βx · C∗j ] = J ⊗O SO(⊕iD · φ∗i ⊕ ⊕j D · C∗j ) ,

where J = J∞(O(E)) , so that the space (82) is really of the type (85). Let us emphasize that
(82) and (85), although of the same type, are of course not equal (for instance, the classical
Koszul-Tate resolution is far from being functorial). For further details, see [PP17a].

11 Appendices

The following appendices do not contain new results but might have a pedagogical value.
Various (also online) sources were used. Notation is the same as in the main part of the text.

11.1 Appendix 1 � Quasi-coherent sheaves of modules

A quasi-coherent R-module is an object P ∈ Mod(R) that is locally presented, i.e., for
any x ∈ X, there is a neighborhood U 3 x, such that there is an exact sequence of sheaves

RKU |U → RJU |U → P|U → 0 , (86)

where RKU and RJU are (not necessarily �nite) direct sums. Let us recall that an in�nite
direct sum of sheaves need not be a sheaf, so that a shea��cation is required. The category
qcMod(R) of quasi-coherent R-modules is not abelian in general, but is abelian in the context
of Algebraic Geometry, i.e., if R is the function sheaf of a scheme.
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11.2 Appendix 2 � D-modules

We already indicated that D-modules are fundamental in algebraic analysis: they allow
to apply methods of homological algebra and sheaf theory to the study of systems of PDE-s
[KS90].

We �rst explain the key idea of Proposition 1 considering � to simplify � total sections
instead of sheaves.

We denote by D the ring of di�erential operators acting on functions of a suitable base
space X, e.g., a �nite-dimensional smooth manifold [Cos11]. A D-module M ∈ Mod(D) (resp.,
M ∈ Mod(Dop)) is a left (resp., right) module over the noncommutative ring D. Since D is
generated by smooth functions f ∈ O and smooth vector �elds θ ∈ Θ, modulo the obvious
commutation relations between these types of generators, a D-action on an O-module M ∈
Mod(O) is completely de�ned if it is given for vector �elds and satis�es the natural compatibility
conditions. More precisely, let

· : O ×M 3 (f,m) 7→ f ·m ∈M

be the O-action, and let
∇ : Θ×M 3 (θ,m) 7→ ∇θm ∈M (87)

be an R-bilinear `Θ-action'. For f ∈ O and θ, θ′ ∈ Θ, we then necessarily extend ∇ by de�ning
the action ∇θθ′ (resp., ∇θf ) of the di�erential operator θθ′ = θ ◦ θ′ (resp., θf = θ ◦ f) by

∇θθ′ := ∇θ∇θ′

(resp.,
∇θf := ∇θ(f · −)) .

Since fθ = f ◦ θ, we get the compatibility condition

∇fθ = f · ∇θ , (88)

and, as θf = fθ + θ(f) (resp., θθ′ = θ′θ + [θ, θ′]) � where θ(f) (resp., [θ, θ′]) denotes the Lie
derivative Lθf of f with respect to θ (resp., the Lie bracket of the vector �elds θ, θ′) � , we
also �nd the compatibility relations

∇θ(f · −) = f · ∇θ + θ(f) · − (89)

(resp.,
∇θ∇θ′ = ∇θ′∇θ +∇[θ,θ′]) . (90)

Hence, if the compatibility conditions (88) � (90) hold, we de�ned the unique structure of left
D-module on M that extends the `action of Θ'. In view of Equations (87) � (90), a D-module
structure on M ∈ Mod(O) is the same as a �at connection on M .

When resuming now our explanations given in Subsection 4.1, we understand that a mor-
phism ∇ of sheaves of K-vector spaces satisfying the conditions (1) � (3) is exactly a family
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of DX(U)-modules MX(U), U ∈ OpenX , such that the DX(U)-actions are compatible with
restrictions, i.e., is exactly a DX -module structure on the considered sheafMX ofOX -modules.

As concerns examples, it follows from what has been said that O ∈ Mod(D) with action
∇θ = Lθ, that top di�erential forms Ωtop ∈ Mod(Dop) with action ∇θ = −Lθ, and that
D ∈ Mod(D) ∩ Mod(Dop) with action given by left and right compositions.

11.3 Appendix 3 � Sheaves versus global sections

In Classical Di�erential Geometry, the fundamental spaces (resp., operators), e.g., vector
�elds, di�erential forms... (resp., the Lie derivative, the de Rham di�erential...) are sheaves
(resp., sheaf morphisms). Despite this sheaf-theoretic nature, most textbooks present Di�er-
ential Geometry in terms of global sections and morphisms between them. Since these sections
are sections of vector bundles (resp., these global morphisms are local operators), restriction
and gluing is canonical (resp., the existence of smooth bump functions allows to localize the
global morphisms in such a way that they commute with restrictions; e.g., for the de Rham
di�erential, we have

(d|UωU )|V = (d(αV ωU )) |V and d|Uω|U = (dω)|U ,

where αV is a bump function with constant value 1 in V ⊂ U and support in U). Such global
viewpoints are not possible in the real-analytic and holomorphic settings, since no interesting
analytic bump functions do exist.

There is a number of well-known results on the equivalence of categories of sheaves and the
corresponding categories of global sections, essentially when the topological space underlying
the considered sheaves is an a�ne scheme or variety. In the present paper, we use the fact
that, for an a�ne scheme (X,OX), there is an equivalence [Har97]

Γ(X, •) : qcMod(OX)� Mod(OX(X)) : •̃ (91)

between the category of quasi-coherent OX -modules and the category of OX(X)-modules. The
functor •̃ is isomorphic to the functor OX ⊗OX(X) • .

11.4 Appendix 4 � Model categories

Quite a few non-equivalent de�nitions of model categories and co�brantly generated model
categories can be found in the literature. In this paper, we use the de�nitions of [Hov07] and
of [GS06].

In the de�nition ofmodel categories, both texts [Hov07] and [GS06] assume the existence
of all small limits and colimits in the underlying category � in contrast with Quillen's original
de�nition, which asks only for the existence of �nite limits and colimits � . However, the
two references use di�erent `co�bration - trivial �bration' and `trivial co�bration - �bration'
factorization axioms MC5. Indeed, in [GS06], the authors use Quillen's original axiom, which
merely requires the existence of the two factorizations, whereas in [Hov07], the author requires
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the factorizations to be functorial, and even includes the choice of a pair of such functorial
factorizations in the axioms of the model structure. However, this di�erence does not play any
role in the present paper, since we are dealing with co�brantly generated model categories, so
that a choice of functorial factorizations is always possible via the small object argument.

For the de�nitions of co�brantly generated model structures, some preparation is needed.

An ordinal λ is �ltered with respect to a cardinal κ, if λ is a limit ordinal such that
the supremum of a subset of λ of cardinality at most κ is smaller than λ. This condition is
actually a largeness condition for λ with respect to κ: if λ is κ-�ltered for κ > κ′, then λ is
also κ′-�ltered. For a �nite cardinal κ, a κ-�ltered ordinal is just a limit ordinal.

Smallness of an object A in a category C (assumed to have all small colimits) is de�ned
with respect to a class of morphisms W in C and a cardinal κ (that can depend on A) [Hov07].
The point is that the covariant Hom-functor

C(A, •) := HomC(A, •)

commutes with limits, but usually not with colimits. However, if the considered sequence
is su�ciently large with respect to A, then commutation may be proven. More precisely, for
A ∈ C, we consider the colimits of all the λ-sequences (with arrows in W ) for all κ-�ltered
ordinals λ (usually for κ = κ(A)), and try to prove that the covariant Hom-functor C(A, •)
commutes with these colimits. In this case, we say that A ∈ C is small with respect to κ

and W . Of course, if κ < κ′, then κ-smallness implies κ′-smallness.

In [GS06], `small' (with respect to W ) means `sequentially small': the covariant Hom-
functor commutes with the colimits of the ω-sequences. This concept matches the notion
`n-small', i.e., small relative to a �nite cardinal n ∈ N: the covariant Hom-functor commutes
with the colimits of the λ-sequences for all limit ordinals λ. In [Hov07], `small' (relative to W )
means κ-small for some κ: the covariant Hom-functor commutes with the colimits of all the
λ-sequences for all the κ-�ltered ordinals λ. It is clear that n-small implies κ-small, for any
κ > n.

More precisely, a λ-sequence in C is a colimit respecting functor X : λ → C. Usually this
diagram is denoted by X0 → X1 → . . .→ Xβ → . . . It is natural to refer to the map

X0 → colimβ<λXβ

as the composite of the λ-sequence X. If W is a class of morphisms in C and every map
Xβ → Xβ+1, β+ 1 < λ, is in W , we refer to the composite X0 → colimβ<λXβ as a trans�nite
composition of maps in W . Let us also recall that, if we have a commutative square in C, the
right down arrow is said to be the pushout of the left down arrow. We now denote by W -cell

the class of trans�nite compositions of pushouts of arrows in W . It turns out that
W -cell is a subclass of the class LLP(RLP(W )) (where notation is self-explaining).

We are now prepared to give the �nite and the trans�nite de�nitions of a co�brantly
generated model category.
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A model category is co�brantly generated [GS06], if there exist sets of morphisms I and
J , which generate the co�brations and the trivial co�brations, respectively, i.e., more precisely,
if there are sets I and J such that

1. the source of every morphism in I is sequentially small with respect to the class Cof,
and TrivFib = RLP(I) ,

2. the source of every morphism in J is sequentially small with respect to the class TrivCof,
and Fib = RLP(J) .

It then follows that I and J are actually the generating co�brations and the generating trivial
co�brations:

Cof = LLP(RLP(I)) and TrivCof = LLP(RLP(J)) .

Alternatively, a model category is co�brantly generated [Hov07], if there exist sets I
and J of maps such that

1. the domains of the maps in I are small (κ-small for some �xed κ) relative to I-cell, and
TrivFib = RLP(I) ,

2. the domains of the maps in J are small (κ-small for some �xed κ) relative to J-cell, and
Fib = RLP(J) .

It is clear that the �nite de�nition [GS06] is stronger than the trans�nite one [Hov07]. First,
n-smallness implies κ-smallness, and, second, smallness with respect to Cof (resp., TrivCof)
implies smallness with respect to I-cell (resp., J-cell).

The model structures we study in the present paper are all �nitely generated. A �nitely

generated model structure [Hov07] is a co�brantly generated model structure, such that
I and J can be chosen so that their sources and targets are n-small, n ∈ N, relative to Cof.
This implies in particular that our model structures are co�brantly generated in the sense of
[GS06].

For more information on model categories, we refer the reader to [GS06], [Hir00], [Hov07],
and [Qui67]. The background material on category theory can be found in [Bor94a], [Bor94b],
and [Mac98].

11.5 Appendix 5 � Invariants versus coinvariants

If G is a (multiplicative) group and k a commutative unital ring, we denote by k[G]

the group k-algebra of G (the free k-module made of all formal �nite linear combinations∑
g∈G r(g) g with coe�cients in k, endowed with the unital ring multiplication that extends

the group multiplication by linearity).

In the following, we use notation of Subsection 7.1. Observe that ⊗nOM• is a module over
the group O-algebra O[Sn], where Sn denotes the n-th symmetric group. There is an O-module
isomorphism

SnOM• = ⊗nOM•/I ∩ ⊗nOM• ' (⊗nOM•)Sn := ⊗nOM•/〈T − σ · T 〉 , (92)
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where (⊗nOM•)Sn is the O-module of Sn-coinvariants and where the denominator is the O-
submodule generated by the elements of the type T −σ ·T , T ∈ ⊗nOM•, σ ∈ Sn (a Koszul sign
is incorporated in the action of σ). It is known that, since the cardinality of Sn is invertible
in O, we have also an O-module isomorphism

(⊗nOM•)Sn ' (⊗nOM•)Sn := {T ∈ ⊗nOM• : σ · T = T, ∀σ ∈ Sn} (93)

between the Sn-coinvariants and the Sn-invariants. The averaging map or graded symmetriza-
tion operator

S : ⊗nOM• 3 T 7→
1

n!

∑
σ∈Sn

σ · T ∈ (⊗nOM•)Sn (94)

coincides with identity on (⊗nOM•)Sn , what implies that it is surjective. When viewed as de-
�ned on coinvariants (⊗nOM•)Sn , it provides the mentioned isomorphism (93). It is straight-
forwardly checked that the graded symmetric multiplication ∨ on (⊗∗OM•)S∗ , de�ned by

S(S) ∨S(T ) = S(S(S)⊗S(T )) , (95)

endows (⊗∗OM•)S∗ with a DG D-algebra structure, and that the O-module isomorphism

S∗OM• ' {T ∈ ⊗∗OM• : σ · T = T, ∀σ ∈ S∗} (96)

is in fact a DGDA-isomorphism.

11.6 Appendix 6 � Proof of Theorem 28

The proof of functoriality of the decompositions will be given in Appendix 11.7. Thus,
only Part (2) requires immediate explanations. We use again the above-introduced notation
Rk = A⊗SVk; we also set R = A⊗SV . The multiplication in Rk (resp., in R) will be denoted
by �k (resp., �).

To show that j is a minimal RSDA, we have to check that A is a di�erential graded D-
subalgebra of R, that the basis of V is indexed by a well-ordered set, that d2 is lowering, and
that the minimality condition (22) is satis�ed.

The main idea to keep in mind is that R =
⋃
k Rk � so that any element of R belongs to

some Rk in the increasing sequence R0 ⊂ R1 ⊂ . . . � and that the DGDA structure on R is
de�ned in the standard manner. For instance, the product of a⊗X, b⊗Y ∈ R∩Rk is de�ned
by

(a⊗X) � (b⊗ Y ) = (a⊗X) �k (b⊗ Y ) = (−1)X̃ b̃(a ∗ b)⊗ (X � Y ) ,

where `tilde' (resp., ∗) denotes as usual the degree (resp., the multiplication in A). It follows
that � restricts on A to ∗ . Similarly, d2|A = δ0|A = dA, in view of (71) and (59). Finally, we
see that A satis�es actually the mentioned subalgebra condition.

We now order the basis of V . First, we well-order, for any �xed generator degree m ∈ N
(see (70)), the sets

{s−1Ibm+1}, {Ibm}, {Iβm}, {I1σm−1,bm}, {I
2
σm−1,bm}, . . . (97)
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of degree m generators of a given type (for m = 0, only the sets {s−1Ib1} and {Iβ0} are non-
empty). We totally order the set of all degree m generators by totally ordering its partition
(97):

{s−1Ibm+1} < {Ibm} < {Iβm} < {I1σm−1,bm} < {I
2
σm−1,bm} < . . .

A total order on the set of all generators (of all degrees) is now obtained by declaring that
any generator of degree m is smaller than any generator of degree m+ 1. This total order is a
well-ordering, since no in�nite descending sequence exists in the set of all generators. Observe
that our well-order respects the degree (in the sense of (22)).

Finally, the di�erential d2 sends the �rst and third types of generators (see (97)) to 0 and
it maps the second type to the �rst. Hence, so far d2 is lowering. Further, we have

d2(Ikσm−1,bm) = σm−1 ∈ (Rk−1)m−1 ,

where m− 1 refers to the term of degree m− 1 in Rk−1. Since this term is generated by the
generators

{s−1Ib`+1
}, {Ib`}, {Iβ`}, {I

1
σ`−1,b`

}, . . . , {Ik−1σ`−1,b`
} ,

where ` < m, the di�erential d2 is de�nitely lowering.

It remains to verify that the described construction yields a morphism q : A ⊗ SV → B

that is actually a trivial �bration.
Since �brations are exactly the morphisms that are surjective in all positive degrees, and

since q|RU = q0|RU = p is degree-wise surjective, it is clear that q is a �bration. As for
triviality, let [βn] ∈ H(B, dB), n ≥ 0 . Since Iβn ∈ ker δ0 ⊂ ker d2, the homology class
[Iβn ] ∈ H(R, d2) makes sense; moreover,

H(q)[Iβn ] = [qIβn ] = [q0Iβn ] = [βn] ,

so that H(q) is surjective. Eventually, let [σn] ∈ H(R, d2) and assume that H(q)[σn] = 0,
i.e., that qσn ∈ im dB. Since there is a lowest k ∈ N such that σn ∈ Rk, we have σn ∈ ker δk
and qkσn = dBbn+1, for some bn+1 ∈ Bn+1. Hence, a pair (σn, bn+1) ∈ Bk and a generator
Ik+1
σn,bn+1

∈ Rk+1 ⊂ R. Since

σn = δk+1Ik+1
σn,bn+1

= d2Ik+1
σn,bn+1

,

we obtain that [σn] = 0 and that H(q) is injective.

11.7 Appendix 7 � Explicit functorial co�brant replacement functor

(1) We proved in Subsection 7.5 that the factorization (i, p) = (i(φ), p(φ)) of the DGDA-
morphisms φ, described in Theorem 28, is functorial:

Proposition 32. In DGDA, the functorial �brant replacement functor R, which is induced by
the functorial `TrivCof � Fib' factorization (i, p) of Theorem 28, is the identity functor R = id .
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(2) To �nish the proof of Theorem 28, we still have to show that the factorization (j, q) is
functorial, i.e., that for any commutative DGDA-square

A

u
��

φ // B

v ,
��

A′
φ′ // B′

(98)

there is a commutative DGDA-diagram

A

u
��

//
j:=j(φ)

// A⊗ SV
ω
��

∼
q:=q(φ)

// // B

v .
��

A′ //
j′:=j(φ′)

// A′ ⊗ SV ′ ∼
q′:=q(φ′)

// // B′

(99)

Let us stress that the following proof fails, if we use the non-functorial factorization men-
tioned in Remark 29 (the critical spots are marked by / ).

Just as we constructed in Section 9, the RSDA R = A⊗SV (resp., R′ = A′ ⊗SV ′) as the
colimit of a sequence Rk = A⊗SVk (resp., R′k = A′⊗SV ′k), we will build ω ∈ DGDA(R,R′) as
the colimit of a sequence

ωk ∈ DGDA(Rk, R
′
k) . (100)

Recall moreover that q is the colimit of a sequence qk ∈ DGDA(Rk, B), and that j is nothing
but jk ∈ DGDA(A,Rk) viewed as valued in the supalgebra R � and similarly for q′, q′k, j

′, j′k.
Since we look for a morphism ω that makes the left and right squares of the diagram (99)
commutative, we will construct ωk so that

ωk jk = j′k u and v qk = q′k ωk . (101)

Since the RSDA A→ R0 = A⊗ SV0 is split, we de�ne

ω0 ∈ DGDA(A⊗ SV0, R′0)

as
ω0 = j′0 u �0 w0 , (102)

where we denoted the multiplication in R′0 by the same symbol �0 as the multiplication in
R0, where j′0 u ∈ DGDA(A,R′0), and where w0 ∈ DGDA(SV0, R′0). As the di�erential δV0 , see
Section 9, has been obtained via Lemma 15, the morphism w0 can be built as described in
Lemma 16: we set

w0(s
−1Ibn) = s−1Iv(bn) ∈ V

′
0 , w0(Ibn) = Iv(bn) ∈ V

′
0 , and w0(Iβn) = Iv(βn) ∈ V

′
0 , (103)

and easily check that w0 δV0 = δ′0w0 on the generators. The �rst commutation condition (101)
is obviously satis�ed. As for the veri�cation of the second condition, let t = a⊗x1� . . .�x` ∈
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A⊗SV0 and remember (see (61)) that q0 = φ ? qV0 and q
′
0 = φ′ ? qV ′0 , where we denoted again

the multiplications in B and B′ by the same symbol ?. Then

vq0(t) = vφ(a) ? vqV0(x1) ? . . . ? vqV0(x`)

and

q′0ω0(t) = q′0j
′
0u(a) ? q′0w0(x1) ? . . . ? q

′
0w0(x`) = φ′u(a) ? q′0w0(x1) ? . . . ? q

′
0w0(x`) .

It thus su�ces to show that v qV0 = q′0w0 on the generators s−1Ibn , Ibn , Iβn of V0, what follows
from Equations (60) and (103) (/1).

Assume now that the ω` have been constructed according to the requirements (100) and
(101), for all ` ∈ {0, . . . , k − 1}, and build their extension

ωk ∈ DGDA(Rk, R
′
k)

as follows. Since ωk−1, viewed as valued in R′k, is a morphism ωk−1 ∈ DGDA(Rk−1, R
′
k) and

since the di�erential δk of Rk ' Rk−1 ⊗ SGk, where Gk is the free D-module

Gk = 〈Ikσn,bn+1
: (σn, bn+1) ∈ Bk−1〉 ,

has been de�ned by means of Lemma 22, the morphism ωk is, in view of the same lemma,
completely de�ned by degree n+ 1 values

ωk(Ikσn,bn+1
) ∈ δ′−1k (ωk−1δk(Ikσn,bn+1

)) .

As the last condition reads
δ′k ωk(Ikσn,bn+1

) = ωk−1(σn) ,

it is natural to set
ωk(Ikσn,bn+1

) = Ikωk−1(σn),v(bn+1)
, (104)

provided we have
(ωk−1(σn), v(bn+1)) ∈ B′k−1 (/2) .

This requirement means that δ′k−1ωk−1(σn) = 0 and that q′k−1ωk−1(σn) = dB′ v(bn+1). To
see that both conditions hold, it su�ces to remember that (σn, bn+1) ∈ Bk−1, that ωk−1
commutes with the di�erentials, and that it satis�es the second equation (101). Hence the
searched morphism ωk ∈ DGDA(Rk, R

′
k), such that ωk|Rk−1

= ωk−1 (where the RHS is viewed
as valued in R′k). To �nish the construction of ωk, we must still verify that ωk complies with
(101). The �rst commutation relation is clearly satis�ed. For the second, we consider

rk = rk−1 ⊗ g1 � . . .� g` ∈ Rk−1 ⊗ SGk

and proceed as above: recalling that ωk and qk have been de�ned via Equation (34) in Lemma
22, that q′k and v are algebra morphisms, and that ωk−1 satis�es (101), we see that it su�ces
to check that q′k ωk = v qk on the generators Ikσn,bn+1

� what follows immediately from the
de�nitions (/3).
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Remember now that ((R, d2), ir) is the direct limit of the direct system ((Rk, δk), ιsr), i.e.,
that

R0 · · · Rk · · ·

R

i0 ik

ιk+1,kι10 ιk,k−1

(105)

where all arrows are canonical inclusions, and that the same holds for ((R′, d′2), i
′
r) and

((R′k, δ
′
k), ι

′
sr). Since the just de�ned morphisms ωk provide morphisms i′k ωk ∈ DGDA(Rk, R

′)

(such that the required commutations hold � as ωk|R0 = ω0), it follows from universality that
there is a unique morphism ω ∈ DGDA(R,R′), such that ω ik = i′k ωk , i.e., such that

ω|Rk = ωk . (106)

When using the last result, one easily concludes that ω j = j′ u and v q = q′ ω .

This completes the proof of Theorem 28.

Remark 33. The preceding proof of functoriality fails for the factorization of Remark 29. The
latter adds only one new generator Iβ̇n for each homology class β̇n ' [βn], and it adds only
one new generator Ikσn for each σn ∈ Bk−1 \ Bk−2 , where

Br = {σn ∈ ker δr : qrσn ∈ im dB, n ≥ 0} .

In ( /1 ), we then get that v qV0(Iβ̇n) and q′0w0(Iβ̇n) are homologous, but not necessarily equal.
In ( /2 ), although σn ∈ Bk−1 \ Bk−2, its image ωk−1(σn) ∈ B′k−1 may also belong to B′k−2 .
Eventually, in ( /3 ), we �nd that vqk(Ikσn) and q′kωk(Ikσn) di�er by a cycle, but do not necessarily
coincide.

The next result describes co�brant replacements.

Theorem 34. In DGDA, the functorial co�brant replacement functor Q, which is induced
by the functorial `Cof � TrivFib' factorization (j, q) described in Theorem 28, is de�ned on
objects B ∈ DGDA by Q(B) = SVB, see Theorem 28 and set A = O, and on morphisms
v ∈ DGDA(B,B′) by Q(v) = ω, see Equations (106), (104), and (103), and set ω0 = w0.
Moreover, the di�erential graded D-algebra SVB, see Proposition 29 and set A = O, is a
co�brant replacement of B.
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