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Abstract

Access control is concerned with the policies and mechanisms that permit or deny

the use of a resource or capability. In a distributed environment, the system’s access

control policy may be scattered among different principals (e.g. users, processes,

nodes, sub-systems, etc.). Many logics have been developed and applied to access

control, most of which use a modality says . The says statements issued may become

part of the access control policy. The main advantage of such logics is that they

allow to model and reason about common primitives in access control, including

delegation, revocation and denial of rights. The revocation and denial of access rights

lead to non-monotonic behaviour of the system. We analyze delegation revocation

and says-based logics using several formal approaches. First, we develop a logic

called Trust Delegation Logic (TDL) to reason about the trust between principals.

We equip this logic with two epistemic operators to accommodate for different levels

of trust and with a non-monotonic negation by failure. Second, we systematically

study the relation between the reasons for revocating (expressed in TDL) and the

graph-theoretic definitions of revocation schemes. TDL allows us to formulate a

desirable property that a graph-theoretically defined revocation framework should

satisfy. Third, we use distributed autoepistemic logic with inductive definitions

(dAEL(ID)) to model the behaviour of the says operator. dAEL(ID) is a non-

monotonic logic, thus allowing to naturally capture the behaviour required for a

issuing authorization denials. Finally, we describe a query-based decision procedure

for dAEL(ID). We specify a meta-reasoning procedure in the knowledge-based system

IDP that allows to examine the local access control policy of each principal and extract

which statements have to be queried to other principals.
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Chapter 1

Introduction

1.1 Motivation

The access control problem can be described as “Who (or what) can access which

(protected) resource”. Access control is an important topic in computer security. It

consists of methods, mechanisms, procedures and/or processes to determine who has

the right to access a particular resource. In general, access control is concerned with

the policies and mechanisms that permit or deny the use of a resource or capability.

The basic elements of an access control model can be summarized as follows:

• The access request : representing the target resource (e.g. a file, a communication

channel) and the type of access requested (e.g. read/write file, open/close

channel).

• The source of the request: often called principal, representing an abstract entity

(e.g. user, process, communication channel) which needs to be granted access

to interact with a resource.

• The reference monitor : in charge of determining whether or not the principal

has a access rights, i.e. is authorized to user the resource according to the

system’s policy.
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There are several approaches to access control, so called access control models.

We give a brief summary of some of the most relevant access control models:

• Attribute-based Access Control (ABAC): access rights are granted to principals

through the use of policies which evaluate one or more attributes, e.g. principals’

attributes, resource attributes, context and environment, etc [HFK+13].

• Role-Based Access Control (RBAC): access rights are pre-defined based on roles

that carry specific set of privileges associated to the role and which principals

are assigned to each role [FSG+01].

• Ownership-Based Access Control (OBAC): the principal owner of a resource

determines who has which access rights to the resource.

In the simplest scenario, the authorization specification for the system is given

in the access control policy, and the reference monitor has a complete view over the

system’s policy.

In a distributed environment the access control policy of the system can be

scattered among different nodes, sub-systems, etc.

Logic is a suitable general purpose tool to analyze and reason about access control

policies. Many logics have been developed and applied to access control, most

of which use a modality k says indexed by a principal k [Aba08, GP12, Gen12].

k says ϕ is usually explained informally to mean that k supports ϕ [Aba08, GP12,

Gen12]. k says ϕ means that k has issued statements that—together with additional

information present in the system—imply ϕ. Most of these logics are designed

for application in a system based on proof-carrying authorization [AF99, MP11].

Different access control logics vary in their account of which rules of inference and

which additional information may be used in deriving statements that k supports from

the statements that k has explicitly issued. The statements that different principals

can issue may become part of the access control policy.
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The main advantage of such logics is that they permit to model and reason about

common primitives in access control. The says operator can be conveniently used

(among other behaviours) to model delegation of rights from one principal to another.

The delegation of rights has its complementary operations, those which remove

rights e.g. to regain full control of the resource again. On the one hand we can perform

a revocation of rights that the principal already had been granted. On the other hand

we can perform a denial of rights to a principal. The difference is that a denial of

rights can be issued even before the principal has acquired the concerning rights, and

it should forbid that other principals effectively grant rights to the affected principal.

Delegation and Revocation. In ownership-based frameworks for access control,

it is common to allow principals the possibility of delegating permissions and delegate

administrative rights to other principals in the system. Often it is also desirable to

grant a principal the right to further grant permissions and administrative rights

to other principals. This may lead to delegation chains starting at a source of

authority (the principal owner of a resource) and passing on certain permissions

to other principals in the chain. Furthermore, such frameworks commonly allow

a principal to revoke a permission that she granted to another principal.

Several revocation schemes have been discussed in the context of database man-

agement systems [GW76, Fag78, BJS96, BSJ97]. Hagström et al. [HJPPW01] have

presented a comprehensive framework for classifying possible revocation schemes.

The framework’s design decisions are carried over from these database management

systems and are often not fully motivated.

Depending on the reasons for the revocation, different ways to treat the chain

of principals whose permissions depended on the second principal’s delegation rights

can be desirable. For example, if one is revoking a permission given to an employee

because he is moving to another position in the company, it makes sense to keep in

place the permissions of principals who received their permissions from this employee;

but if one is revoking a permission from a user who has abused his rights and is

3



hence distrusted by the user who granted the permission, it makes sense to delete

the permissions of principals who received their permission from this user. Any

algorithm that determines which permissions to keep intact and which permissions to

delete when revoking a permission is called a revocation scheme. Revocation schemes

are usually defined in a graph-theoretical way on the graph that represents which

authorizations between the principals are intact.

We identify a number of problems with Hagström et al.’s framework and the

definitions of the revocation schemes. We refine Hagström et al.’s framework and

fully motivate our choices based on the reasons a principal may have for revocating

an authorization.

Non-monotonicity in Access Control. A logic is monotonous if adding new

assumptions never leads to less statements being derivable. Monotonicity is a property

usually assumed by existing access control logics. Thus, the following property

inherently holds: “new statements cannot lead to less access rights”. Additionally,

monotonicity implies that it is impossible to derive a statement of the form ¬k says ϕ

from the fact that principal k has not issued any statement implying ϕ. However,

being able to derive statements of the form ¬k says ϕ makes it possible to model

access denials naturally in a says-based access control logic: Suppose A is a professor

with control over a resource r, B is a PhD student of A who needs access to r, and

C is a postdoc of A supervising B. A wants to grant B access to r, but wants to

grant C the right to deny B’s access to r, for example in case B misuses her rights.

A natural way for A to do this using the says-modality is to issue the statement

(¬C says ¬access(B, r)) ⇒ access(B, r). This should have the effect that B has

access to r unless explicitly C denies him access.

As explained in Chapter 4, only a non-monotonic says-based logic can ensure that

access denials work in this way. This motivates our development of a novel says-based

access control logic that is non-monotonic.

4



1.2 Research Questions

We have described how logical formalisms are aimed to achieve different interests in

access control. We will focus on the development of new logical approaches to address

the following research questions.

Research Question 1. How to formally characterize the different reasons for

revoking or denying access rights?

The literature on revocation schemes usually motivates the distinction between

different kids of revocations with reference to varying reasons for revoking. However,

the revocation schemes are then defined in an ad hoc way with no systematic link

to those reasons. This informal treatment may lead to discrepancies between the

originally intended behaviour and the resulting revocation schemes proposed. As

a remedy to this problem we have developed a logic called Trust Delegation Logic

(TDL) to formalize the reasons that a principal may have to revoke or deny an access

right.

Research Question 2. Can the different revocation schemes be defined in such

a way that they are in line with the different reasons for revocating?

It is important to ensure that the reasons a principal has to perform a revocation

coincide with the revocation scheme that is to be applied. The reasons a principal

may have to revoke a previously granted access right are based on trust, and the

revocation schemes refer to a changes in the delegation graph representing the actual

situation of the system. Thus, it is crucial that the link between these two is sound

and reflects the desired behaviour.

Research Question 3. How can a says-based access control logic support denials

in a natural way?

To revoke an access right from a principal intrinsically assumes that this access

right had been previously granted. When denying a principal from access rights to a

resource, this assumption is no longer valid since the denial can be issued even before

the principal has been granted the concerning rights. Moreover, a denial should
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forbid that other principals effectively grant rights to the affected principal. Denials

can cause a non-monotonic behaviour in which granting new access rights does not

necessarily result in a principal having more access rights.

Research Question 4. Can a decision procedure for such an access control logic

be developed?

An important property for any logic is its decidability, that is, the existence of an

effective method to determine if a formula is valid or not. This is especially relevant

for a logic meant to be implemented as part of a system. The existence of a decision

procedure ensures that the logic is decidable.

1.3 Methodology

We use a variety of formal approaches to address the research questions. We analyze

delegation revocation and says-based logics using techniques from social choice theory,

epistemic logic, and logic programming. We now examine in detail the methodology

used to approach each research question.

Research Question 1. How to formally characterize the different reasons for

revoking or denying access rights?

We develop the logic TDL to reason about the trust between principals. We equip

this logic with two epistemic operators to accommodate for different levels of trust.

We allow principals to make public announcement statements describing their access

control policy.

Research Question 2. Can the different revocation schemes be defined in such a

way that they are in line with the different reasons for revocating?

As mentioned in Section 1.1, we identify some problems in other approaches to

delegation revocation such as Hagström et al.’s framework. In order to ensure that our

refined framework does not itself suffer from similar problems, we systematically study

the relation between the reasons for revocating and the graph-theoretic definitions of
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revocation schemes. We use TDL in order to formalize reasons for revocating based

on trust and distrust.

TDL allows us to formulate a postulate (or axiom) i.e. a desirable property that the

revocation schemes must satisfy. This desirable property is based on a correspondence

between revocation schemes and reasons for revocating, and requires the revocation

schemes to be defined in such a way that access is granted whenever this is justifiable

on the basis of the reasons for granting and revocating. This ‘axiomatic method’

originates from social choice theory, where it was first applied to the study of electoral

systems.

Research Question 3. How can a says-based access control logic support denials in

a natural way?

We use distributed autoepistemic logic with inductive definitions (dAEL(ID))

[VHCBD16] to model the behaviour of the says operator. Autoepistemic logic

considers an agent’s theory to be a complete characterization of what the agent knows

[Moo85a]. Similarly, we assume that the statements issued by a principal is a complete

characterization of what the principal supports.

dAEL(ID) is a non-monotonic logic, thus allowing to naturally capture the

behaviour required for a issuing authorization denials.

Research Question 4. Can a decision procedure for such an access control logic be

developed?

We describe a query-based decision procedure. For this, we use concepts of logic

programming and specify a meta-reasoning procedure in the knowledge-based system

IDP [PDJD16], that allows to examine the local access control policy and extract

which statements have to be queried to other principals.

1.4 Thesis Overview

The rest of this thesis is organized as follows.
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• Chapter 2: Preliminaries.

We introduce some basic concepts that will be used in later chapters, especially

Chapter 4. These topics include an overview of classical first order logic (FO),

three-valued logic, extensions to FO an the IDP framework. We conclude the

chapter with basic definitions of lattices and fixpoints, and some important

results from approximation fixpoint theory.

• Chapter 3 : Delegation Revocation.

We study the revocation of delegated access rights and propose a framework

to reason about the reasons that the principals may have to perform such

revocation based on trust.

• Chapter 4: A Query-Driven Decision-Procedure for Distributed

Autoepistemic Logic with Inductive Definitions.

We first give a summary of Autoepistemic logic (AEL) and Distributed

Autoepistemic logic (dAEL). We motivate its use for access control and define

a query-driven decision procedure for the well-founded semantics of dAEL(ID)

(distributed autoepistemic logic with inductive definitions).

• Chapter 5: Abstract Cumulative Aggregation.

The scope of this chapter is out of the main topic of this thesis; it is result of

parallel work in the domain of deontic logic. Thus, this chapter is self-contained

and can be studied in isolation.

We develop an abstract theory of normative reasoning. We focus on conditional

obligations. This abstract framework allows us to reason about the relation

among conditional norms from an aggregative point of view. Similar programs

had been followed from a transitive point of view. We motivate our choice for

the aggregative perspective and briefly contrast similarities and differences with

related approaches.

8



• Chapter 6: Conclusion and Further Work We summarise the contributions

of this thesis, draw some conclusions, and make suggestions for future work.

1.5 Details of Contributions

The writings in this Ph.D. thesis are composed of the results obtained by the

collaboration with colleagues. Thus, in the following a comprehensive summary of

individual and collective contributions to this thesis:

• Chapter 3 : Delegation Revocation.

This chapter is based on a joint paper with Marcos Cramer and Pieter Van

Hertum [CAV15].

The formal definition of Trust Delegation Logic (TDL) and Theorem 3.1 were

provided by Marcos Cramer.

• Chapter 4: A Query-Driven Decision-Procedure for Distributed

Autoepistemic Logic with Inductive Definitions.

This chapter is based on joint work with Marcos Cramer and Pieter Van Hertum

[CAV15, AC17].

The definition of the communication procedure (Algorithms 5 and 6) and the

correctness of the communication procedure (Lemmas 4.1, 4.2, 4.3, and Theorem

4.1) were provided by Marcos Cramer.

• Chapter 5: Abstract Cumulative Aggregation.

This chapter is based on a joint paper with Xavier Parent and Leon van der

Torre [AXL16].

The proofs for Theorem 5.2, Proposition 4, Proposition 8 and Proposition 10;

and the comparison between our framework with Tossato et al. and Parent and

van der Torre frameworks and Theorem 5.3 were provided by Xavier Parent.

9



Chapter 2

Preliminaries

Abstract. In this chapter we introduce concepts and notions needed and used in

later chapters, especially in Chapter 4. Even though most of them are well-known

logical formalisms, we provide a brief introduction in order to fix our notation and

terminology, and in order to aid the reader throughout the rest of the thesis.

In Section 2.1 we take a look to (classical) first-order logic (FO). Later, in Section

2.2 we introduce three-valued logic. In Section 2.3 we descibe the IDP framework

and finally in Section 2.4, we describe some basic notions of lattices, fixpoints and

approximation fixpoint theory.

2.1 First-Order Logic

For those readers unfamiliar with FO, we present the full definition of the syntax and

semantics of this logic.

FO uses two types of symbols: logical and non-logical symbols. The logical

symbols are fixed and they have a precise meaning in the language, whilst the non-

logical symbols are context-dependant, these are declared in the language’s signature

(see Definition 2.1 bellow).

The set of logical symbols of FO contains: variables (x, y, z, . . .), logical connectives

(¬,∧,∨,⇒,=, . . .), quantifiers (∀,∃) and punctuation symbols (‘(′, ‘)′).

10



Definition 2.1 (Signature). A signature is a pair Σ = (σP , σf ) consisting of non-

logical symbols, where σP and σf are disjoint sets, called predicate symbols and

function symbols respectively, described as follows:

(i) Function Symbols: A (countable, possibly empty) set of function symbols

f0, f1, ..., where each function symbol f has an associated arity ≥ 0 i.e. the

number of arguments of the function.

(ii) Predicate symbols: A (countable, possibly empty) set of predicate symbols

P0, P1, ..., where each predicate symbol P has an associated arity ≥ 0 i.e. the

number of arguments of the predicate.

We often use P/n (f/n) to denote the predicate symbol P (respectively function

symbol f) with arity n.

We call function symbols with arity 0 constants.

We call predicate symbols with arity 0 propositional variables.

In order to define formulas for our language, we first introduce the concept of

term. These are the basic building blocks from which formulas are built.

Definition 2.2 (FO-terms). Given a signature Σ, the set of Σ-terms is inductively

defined as follows:

(i) Every constant and every variable is a term.

(ii) If t1, ..., tn are terms and f is a function of arity n, then f(t1, ..., tn) is a term.

Definition 2.3 (FO-Syntax). Given a signature Σ, a formula of FO is inductively

defined as follows:

(i) ⊥ is an atomic formula.

(ii) Every predicate symbol of arity 0 is an atomic formula.

(iii) If t1 and t2 are terms, then t1 = t2 is an atomic formula.
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(iv) If t1, ..., tn are terms and P is a predicate symbol of arity n > 0, then P (t1...tn)

is an atomic formula.

(v) Every atomic formula is a formula.

(vi) For every two formulae ϕ and ψ, (ϕ ∧ ψ) and ¬ϕ are also formulae.

(vii) For any variable xi and any formula ϕ, ∀xi ϕ is also a formula.

The set of Σ-formulae can also be defined by the following EBNF rule:

ϕ := ⊥ | P/0 | P (t, . . . , t) | ¬ϕ | ϕ ∧ ϕ | t = t | ∀xϕ

We define L Σ
FO to be the set of formulae over the signature Σ.

The expresions ϕ ∨ ψ, ϕ ⇒ ψ, ϕ ⇔ ψ and ∃xϕ are treated as abbreviations for

¬(¬ϕ∧¬ψ), ¬ϕ∨ψ, (ϕ⇒ ψ)∧(ψ ⇒ ϕ), and ¬∀¬ϕ respectively. We write t̄ for tuples

of terms t1, . . . , tn. We write x̄ for a tuple of variables x1, . . . , xn and the formula ∀x̄ϕ

represents the formula ∀x1∀x2 . . . ∀xnϕ.

Definition 2.4 (Sentence). A sentence is a formula without free variables, i.e each

variable is associated to a quantifier.

The subset of the language LFO that does not use ∀ or =, and in which all

predicates have arity 0 is called propositional logic, denoted by LProp.

Definition 2.5 (FO-Theory). An FO theory T is a set consisting of FO sentences.

Now that we have defined the syntax of FO, we proceed to define its semantics.

A structure represents a state of affairs.

Definition 2.6 (Structure). A structure over a signature Σ is a tuple (D, I), where

D is a non-empty set called the domain of Σ, and I is an assignment function that

assigns an interpretation to each symbol in Σ. For a predicate symbol P of arity n,

the interpretation P I is a subset of Dn; for a function symbol f of arity n, fI is a

function from Dn to D.
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We assume that every d ∈ D is also a constant symbol with interpretation dI = d.

We call a structure finite if its domain is finite.

We now define a valuation for the formulae of FO with respect to a structure S.We

use truth values t for truth, f for falsity.

Definition 2.7 (FO-Valuation). We inductively define a valuation of formulas with

respect to a structure S = (D, I) as follows:

⊥S = f for any structure S

(P (t̄))S = t iff tI ∈ P I

(t1 = t2)S = t iff tI1 = tI2

(ϕ1 ∧ ϕ2)S = t iff (ϕ1)S = t and (ϕ2)S = t

(¬ϕ)S = t iff (ϕ)S = f

(∀x ϕ)S = t iff for each d ∈ D, (ϕ[x/d])S = t

The expression [x/d] represents the uniform substitution of all free occurrences of

the variable x by the domain element d.

We define the valuation T S ∈ {t, f} of an FO theory T by T S = t iff ϕS = t for

all ϕ ∈ T .

The notion of a model is defined as follows. A model is any structure that makes

all formulae in a theory true.

Definition 2.8 (Model). A structure S is a model of a theory T iff T S = t.

When a formula ϕ is true with respect to a structure S, i.e. ϕS = t, we say that

“S satisfies ϕ”, or “S is a model of ϕ”, with notation S |= ϕ.
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2.2 Three-Valued Logic

Three-valued logic is a particular kind of many-valued logic in which there are three

truth values, truth (t), falsity (f), and a third value specifying an undetermined

truth value. We call this third value undefined (u). We follow what is known as

Kleene’s “strong logic of indeterminacy” [Kle38] which we also call Kleene’s three-

valued logic. This logic was first conceived to describe partial recursive relations–

that are interpreted as propositional functions of natural numbers–describing partial

recursive functions. The correspondence between the relation and the function can

take a value of 1 (true), 0 (false), or be undefined. The undefined value can be thought

of as neither true nor false.

The logical connectives applied to these relations combine these three truth values

as shown below.

The language of three-valued logic L3val is defined as the language of propositional

logic LProp. The main difference lies on how the logical connectives are semantically

defined. We define the semantics of this logic by presenting the value of the truth

function for the logical connectives.

Just for clarity’s sake, Tables 2.2, 2.3 and 2.4 should be read as follows. The

top row represents the truth values assigned to the formula ϕ. The left-most column

represents the truth values assigned to the formula ψ. Inclosed in the remaining

central rows/columns are the value assigned resulting from the logical operation.

The truth functions of connectives are defined as follows:

2.3 IDP and FO(ID)

Following [DBBD14a] we use the term FO(·) for a family of extensions of first-order

logic. FO(·) is developed with the purpose to combine ideas from multiple domains

of knowledge representation, logic programming and non-monotonic reasoning in a

conceptually clear manner. The basis of this family of languages lies in first order
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ϕ ¬ϕ
t f
f t
u u

Table 2.1: Kleene truth table for ¬ϕ

ϕ ∧ ψ t f u
t t f u
f f f f
u u f u

Table 2.2: Kleene truth table for ϕ ∧ ψ

ϕ ∨ ψ t f u
t t t t
f t f u
u t u u

Table 2.3: Kleene truth table for ϕ ∨ ψ

ϕ⇒ ψ t f u
t t f u
f t t t
u t u u

Table 2.4: Kleene truth table for ϕ⇒ ψ

logic, extended with new language constructs from the fields of logic programming,

constraint programming and non-monotonic reasoning. As a trade-off for extending

the language, we restrict its semantics to finite domains.

IDP [DWD11] is a Knowledge Base System which supports an FO(·) language,

denoted by FO(·)IDP. IDP combines a declarative specification (knowledge base),

written in an extension of first-order logic, with an imperative management of

the specification via the Lua [IHC96] scripting language. The extension of first-

order logic supported by IDP allows for inductive definitions. Inductive definitions

can be (loosely) understood as logic programs in which clause bodies can contain

arbitrary first-order formulas. The combination of the declarative specification and

the imperative programming environment makes this logic programming tool suitable

for solving a large variety of different problems.

IDP supports multiple inferences that can be used to perform a range of different

reasoning tasks on a given specification. Here we only define two of them, as they are

needed in Chapter 4.

The logical system supported by IDP is FO(ID,Agg,PF,T). This logic is an

extension of first order logic (FO) with inductive definitions, aggregates, partial

functions and types. To ease the presentation and focus only in relevant components
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of this rich language, we restrict our attention to th fragment FO(ID) i.e. first order

logic with inductive definitions.

First we define some basic notions. These extend those already presented in

Section 2.1 for FO logic. For those definitions which remain invariable we refer to the

definitions present in Section 2.1.

An FO(ID) specification consists of a vocabulary, a theory and a possibly partial

structure. We first modify the definition of an FO signature to what in IDP is called

vocabulary. The difference here is the addition of types or sorts.

Definition 2.9 (Vocabulary Σ). A vocabulary Σ is a tuple Σ = (σP , σf , σT )

consisting of non-logical symbols, where σP , σf , and σT are disjoint sets, called

predicate symbols, function symbols, and type symbols respectively, described as

follows:

(i) Function Symbols: A (countable, possibly empty) set of function symbols

f0, f1, ..., where each function symbol f has an associated arity ≥ 0, and a

type [τ1, . . . τn]→ τn+1, which is a tuple of type symbols τi ∈ σT .

(ii) Predicate symbols: A (countable, possibly empty) set of predicate symbols

P0, P1, ..., where each predicate symbol P has an associated arity ≥ 0, and a

type [τ1, . . . τn], which is a tuple of type symbols τi ∈ σT .

We write P (τ1, . . . , τn) for a predicate P with type [τ1, . . . , τn] and f(τ1, . . . , τn) : τ

for a function f with type [τ1, . . . , τn]→ τ .

The definitions of terms, formulae and sentences are analogous to Definitions

2.1, 2.3 and 2.4 respectively, including the type restrictions imposed by the typed

vocabulary.

An IDP theory consist of sentences and inductive definitions.

Definition 2.10 (Inductive Definition). An inductive definition ∆ is a set of rules

of the form: ∀x : P (x) ← ϕ(y) where y ⊂ x and ϕ(y) is a FO formula. We call
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predicate P the head of the rule, and a defined predicate of the definition. Any other

predicate or function symbol in ∆ is called a parameter.

Because of their rule-based nature, formal inductive definitions also bear strong

similarities in syntax and formal semantics with logic programs. A formal inductive

definition could also be understood intuitively as a logic program which has arbitrary

formulas in the body and which defines only a subset of the predicates in terms of

parameter predicates not defined in the definition.

Definition 2.11 (Theory). A theory T over a vocabulary Σ is a set that consists of

sentences and inductive definitions with symbols in Σ.

This concludes the syntactical account. We now proceed to define the semantical

notions of FO(ID). We first define the notion of partial set, which is the three-valued

analogue of the two-valued notion of a set.

Definition 2.12 (Partial Set). A partial set on the domain D is a function from D to

{t, f,u}, where t, f and u stand for the three truth-values true, false and undefined.

A partial set is two-valued (or total) if u does not belong to its range.

We extend the concept of structure as presented in Definition 2.6 to the concept

of a partial structure in order to accommodate for partial sets and types. Given a

vocabulary Σ, a partial structure gives an interpretation to the elements of Σ.

Definition 2.13 (Partial Structure). A partial structure over a fixed vocabulary Σ =

(σP , σf , σT ) is a tuple (Dτ1 , . . . , Dτn , I), where σT = {τ1, . . . , τn} and for each Dτi is

a non-empty set, called the domain of type τi, and I is an assignment function that

assigns an interpretation to each symbol in Σ. For a predicate symbol P [τ1, . . . , τn] of

arity n, the interpretation P I is a partial subset of Dτ1 × . . . × Dτn; for a function

symbol f [τ1, . . . , τn] → τ of arity n, fI is a partial function from Dτ1 × . . . ×Dτn to

Dτ .

When the predicate symbol P has arity 0, i.e. is a propositional variable, P I is

just an element of {t, f,u}.
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We call a partial structure S = (Dτ , I) finite if and only if its domain Dτ is finite

(i.e. the domain Dτ is finite for every τ ∈ στ ). We call a partial structure two-valued

(or total) iff P I(d̄) ∈ {t, f} for all P ∈ σP , d̄ ∈ Dτ1 × . . . × Dτn , and f I is a total

function for all f ∈ σf .

A precision order can be defined on partial structures.

Definition 2.14 (Ordering-Structure). Given two partial structures S = (D, I) and

S ′ = (D, I ′), we write S ≤p S ′ (and say S ′ is more precise than S, or S ′ expands

S) iff for every function symbol f of arity n and every tuple (d̄, d) ∈ f of domain

elements such that fI(d̄) = d, we have fI
′
(d̄) = fI(d̄), and for every predicate symbol

P of arity n and every tuple d̄ ∈ Dn of domain elements such that P I(d̄) 6= u, we

have P I
′
(d̄) = P I(d̄).

2.4 Lattices, Operators and Approximation Fix-

point Theory

In Chapter 4, we will make use of lattice theory and a lattice-theoretical method

called Approximation Fixpoint Theory (AFT) [DMT00] to define multiple semantics

of autoepistemic logic. We recall the basic concepts of lattice theory and some

important results from AFT.

A complete lattice is a partially ordered set 〈L,≤〉 such that every subset S ∈ L

has a least upper bound, written lub(S), and a greatest lower bound, written glb(S).

A complete lattice has a least element denoted by ⊥ and a greatest element denoted

by >.

An operator on a lattice 〈L,≤〉 is any mapping O : L → L. An operator O is

monotone if for every pair (x, y) of elements such that x ≤ y, we have O(x) ≤ O(y).

The main technical result in fixpoint theory is the so called Knaster-Tarski

Theorem [Tar55].a

aThis theorem is also known as the Tarski’s fixed point theorem.
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Theorem 2.1. Let O be a monotone operator on a complete lattice 〈L,≤〉. Then O

has a fixpoint and the set of all fixpoints of O is also a complete lattice.

Using Theorem 2.1 we can ensure that a monotone operator O in a complete

lattice has a least fixpoint, written lfp(O). This fixpoint can be calculated as the

least upper bound of the of the transfinite sequence Oα given by:

1- O0(x) = ⊥

2- Oα+1(x) = O(Oα(x)), for any ordinal α.

3- Oλ(x) = lub{Oα(x) | α ≤ λ}, with λ a limit ordinal.

Later we will restrict ourselves to use finite domains. In that case, the sequence

will converge after finitely many steps, so the third clause in the definition of Oα

is not required. Moreover in this case, we can devise an algorithm to calculate the

sequence of Oα up to the fixpoint.

After this basic introduction to lattices and operators over lattices we define the

basic notions of Approximation Fixpoint Theory.

Given a lattice L, we generate a bi-lattice L2 with its usual projections: (x, y)1 = x

(first component) and (x, y)2 = y (second component). Each pair (x, y) ∈ L2 is used

to approximate an element z in the interval [x, y] = {z | x ≤ z ≤ y}. Not every pair

(x, y) ∈ L2 can be used to approximate elements of L; it is necessary that x ≤ y. We

call these pairs (x, y) ∈ L2 consistent if [x, y] is non-empty, in other words if x ≤ y.

Otherwise, we call these pairs inconsistent. We call the set of all consistent pairs Lc.

The pairs (x, x) ∈ L2 are called exact. We identify each point x ∈ L with the exact

bi-lattice point (x, x) ∈ Lc.

The precision ordering over L2 is defined as follows: (x, y) ≤p (u, v) if x ≤ u and

v ≤ y. So, (x, y) ≤p (u, v) holds if and only if the interval [u, v] given by the pair

(u, v) is included in the interval [x, y] given by the pair (x, y). Thus, (u, v) is more

precise than (x, y).
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Figure 2.1 depicts the relation between the intervals [x, y] and [u, v] when (x, y) ≤p
(u, v).

x < u v < y

Figure 2.1: Inclusion relation among intervals

If L is a complete lattice, then 〈L2,≤p〉 is also a complete lattice [Gin88]. But,

the collection of consistent pairs does not generally form a complete sub-lattice of L2.

The main purpose of AFT is to study fixpoints of lattice operators O : L → L

through associated operators in the bi-lattice A : L2 → L2 approximating O.

Definition 2.15 (Approximator). Let O : L→ L be an operator over a lattice L. A

lattice operator A : L2 → L2 is an approximator of O if:

• A is ≤p-monotone.

• ∀x ∈ L : O(x) ∈ [x′, y′], where (x′, y′) = A(x, x).

Approximators map elements of Lc into Lc. We will restrict ourselves to symmetric

approximators. An approximators A is symmetric if for all x and y, A(x, y)1 =

A(y, x)2. In the case of symmetric approximators all the fixpoints of interest later to

be used to define the semantics of autoepistemic logic in Chapter 4, namely supported,

stable, well-founded are uniquely determined by an approximator’s restriction to Lc

[DMT04, Theorem 4.5]. Thus, when defining an operator, we will only define its

restriction to Lc.
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Chapter 3

Delegation Revocation

Abstract. In this chapter we introduce Trust Delegation Logic (TDL), proposed

to formalize the different reasons a principal may have for performing a revocation.

Hagström et al. [HJPPW01] proposed a framework for classifying revocation schemes,

motivated by presenting various scenarios in which the principals have different

reasons for revocating. The new logic arises from the observation that there are some

problems with Hagström et al.’s definitions of the revocation schemes, which have led

us to propose a refined framework. In order to formally study the merits and demerits

of desirable definitions of revocation schemes, we propose to apply the axiomatic

method originating in social choice theory to revocation schemes. We employ TDL

for formulating an axiom, i.e. a desirable property of revocation frameworks. We

show that our refined framework, unlike Hagström et al.’s original definitions, satisfy

the desirable property that can be formulated using TDL.

3.1 Introduction

In ownership-based frameworks for access control, it is common to allow principals

(users or processes) to grant both permissions and administrative rights to other

principals in the system. Often it is desirable to grant a principal the right to further

grant permissions and administrative rights to other principals. This may lead to
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delegation chains starting at a source of authority (the owner of a resource) and

passing on certain permissions to other principals in the chain.

Furthermore, such frameworks commonly allow a principal to revoke a permission

that she granted to another principal. Depending on the reasons for the revocation,

different ways to treat the chain of principals whose permissions depended on the

second principal’s delegation rights can be desirable. For example, if one is revoking

a permission given to an employee because he is moving to another position in the

company, it makes sense to keep in place the permissions of principals who received

their permissions from this employee; but if one is revoking a permission from a

user who has abused his rights and is hence distrusted by the user who granted

the permission, it makes sense to delete the permissions of principals who received

their permission from this user. Any algorithm that determines which permissions

to keep intact and which permissions to delete when revoking a permission is called

a revocation scheme. Revocation schemes are usually defined in a graph-theoretical

way on the graph that represents which authorizations between the principals are

intact.

Hagström et al. [HJPPW01] have presented a framework for classifying possible

revocation schemes along three different dimensions: the extent of the revocation

to other grantees (propagation), the effect on other grants to the same grantee

(dominance), and the permanence of the negation of rights (resilience). Since

there are two options along each dimension, there are in total eight different

revocation schemes in Hagström et al.’s framework. This classification was based

on revocation schemes that had been implemented in database management systems

[GW76, Fag78, BJS96, BSJ97]. The framework’s design decisions are carried

over from these database management systems and are often not fully motivated.

Furthermore, the behaviour of the revocation schemes is dependent on the conflict

resolution policy of the system, which is not integrated into the framework.

We identify a number of problems with Hagström et al.’s framework and the

definitions of the revocation schemes included in the framework. This motivates
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our refined framework, in which the conflict resolution policy is integrated into the

framework, and in which the graph-theoretic definitions of the revocation schemes

have been modified.

In order to avoid that our refined framework turns out to have undesirable

properties like those we identified in Hagström et al.’s framework, we propose to

formally study the merits and demerits of various definitions of revocation schemes

using the axiomatic method originating in social choice theory. Which behaviour

is desirable for a revocation scheme depends on the reasons for performing the

revocation. So in order to formulate an axiom, i.e. a desirable property of revocation

schemes, we propose a logic, Trust Delegation Logic (TDL), with which one can

formalize the different reasons an agent may have for performing a revocation. We

show that our modified graph-theoretic definitions of the revocation schemes, unlike

Hagström et al.’s original definitions, satisfy the desirable property that can be

formulated using TDL.

The reminder of the chapter is structured as follows. In Section 3.2, we discuss

related work, giving an overview of Hagström et al.’s framework as well as of the

conflict resolution policies proposed in the literature. In Section 3.3 we motivate and

define a refinement to Hagström et al.’s framework. In Section 3.4 we discuss a formal

difficulty caused by a simultaneous induction presented in Section 3.3. In Section 3.5,

we consider the diverse reasons for revocating on some example scenarios, and sketch

how these reasons can be used to formulate the desirable behaviour of the revocation

schemes. In Section 3.6, we motivate and define Trust Delegation Logic (TDL). In

Section 3.7 we illustrate how the scenarios discussed in Section 3.5 can be formalized

in TDL. In Section 3.8 we use TDL to formally formulate a desirable property for

revocation frameworks, which our revocation framework satisfies. We summarize and

conclude the chapter in Section 3.9.
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3.2 Related work

Hagström et al. [HJPPW01] have introduced three dimensions according to which

revocation schemes can be classified. These are called propagation, dominance and

resilience:

Propagation. The decision of a principal i to revoke an authorization previously

granted to a principal j may either be intended to affect only the direct recipient j or

to propagate and affect all the other users in turn authorized by j. In the first case,

we say that the revocation is local, in the second case that it is global.

Dominance. This dimension deals with the case when a principal losing a

permission in a revocation still has permissions from other grantors. If these other

grantors’ revocation rights are dependent on the revoker, the revoker can dominate

over these grantors and revoke the permissions from them. This is called a strong

revocation. The revoker can also choose to make a weak revocation, where permissions

from other grantors to a principal losing a permission are kept.

Resilience. This dimension distinguishes revocation by removal (deletion) of

positive authorizations from revocation by issuing a negative authorization which just

inactivates positive authorizations. In the first case another principal may grant a

similar authorization to the one that had been revoked, so the effect of the revocation

does not persist in time. In the second case a negative authorization will overrule any

(new) positive permission given to the same principal, so its effect will remain until

the negative permission is revoked. We call a revocation of the first kind a delete or

non-resilient revocation, and a revocation of the second kind a negative or resilient

revocation.

Since there are two possible choices along each dimension, Hagström et al.’s

framework allows for eight different revocation schemes.

Delegation frameworks that allow issuing negative authorization can bring about

a state in which a conflict may arise. If a principal is granted both a positive and a

negative authorization for the same object, then we say that these two authorizations
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conflict each other. A system’s conflict resolution policy determines how to resolve

such a conflict. Here is a list of possible conflict resolution policies as described by

Ruan and Varadharajan [RV02]:

Negative-takes-precedence: If there is a conflict occurring on the authoriza-

tion for some object, the negative authorizations will take precedence over the positive

one.

Positive-takes-precedence: Positive authorizations from i to j take prece-

dence over negative authorizations from k to j for all k 6= i. This means that a

negative authorization from i to j directly inactivates only positive authorizations

from i to j, and leaves other permission to j active.

Strong-and-Weak: Authorizations are categorized in two types, strong and

weak. The strong authorizations always take precedence over the weak ones.

Conflicts among strong authorizations are not allowed. In conflicts between weak

authorizations negative ones take precedence. Note that the intended meaning

of strong and weak in this policy differs from their meaning in Hagström et al.’s

dominance dimension.

Time-takes-precedence: New authorizations take precedence over previously

existing ones. Note that this policy will make negative authorizations non-resilient.

Predecessor-takes-precedence: If the principal i delegates (possibly tran-

sitively) some right to principal j, then authorizations issued by i to some other

principal k concerning that right will take precedence over authorizations issued by

j to k. In other words, the priority of subjects decreases as the privilege is delegated

forward.

Hagström et al. assume the system to have either a negative-takes-precedence or

a positive-takes-precedence conflict resolution policy. Note that under a negative-

takes-precedence policy, a negative revocations on principal k dominates all positive

authorizations to k, so that the difference between weak and strong negative

revocations disappears.
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3.3 Refining the revocation framework

In this section we first analyze some problems with the revocation framework by

Hagström et al. [HJPPW01]. While analyzing the problems, we already informally

sketch how we propose to solve them. Next we define a refined revocation framework

in which all of these problems have been solved.

3.3.1 Problems with Hagström et al.’s framework

(1) In Hagström et al.’s framework, strong global revocations will propagate forward

dominating over all the existing delegation chains, making them even stronger than

desired. We illustrated this by an example:

Example 3.1. User A issues an authorization to users B and C. B also grants this

authorization to C. If a strong global delete revocation (in Hagström et al.’s sense) is

performed over the authorization from A to B, then the authorization A granted to C

is also deleted. But since A granted this authorization to C independently from B, it

seems unjustified to delete it (Hagström et al. give no motivation for this behaviour).

(2) In Hagström et al.’s framework, the choice of a conflict resolution policy is not

incorporated into the revocation framwork, even though it affects the behaviour of

the dominance dimension. We extend the dominance dimension to incorporate the

choice of how to resolve conflicts between positive and negative authorizations in the

revocation framework. In our refined framework, there are three choices along the

dominance dimension:

• weak: The principal performing the revocation only dominates over direct

authorizations granted by herself, authorizations from other grantors are kept

intact.

• predecessor-takes-precedence (p-t-p): The principal performing the revo-

cation dominates over other grantors’ authorizations that are dependent on her.
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• strong: The principal performing the revocation dominates over all other

grantors’ authorizations.

Note that we now use the terminology from conflict-resolution policies as presented

in [RV02] and in Section 3.2 for the choices on the dominance dimension. Hence

“strong” now has a different meaning than in Hagström et al.’s framework: As long as

Hagström et al.’s framework is combined with a positive-takes-precedence policy, the

strong revocations in their framework have the same force as our p-t-p revocations.

The strength of our strong revocations can only be achieved in Hagström et al.’s

framework by combining it with a negative-takes-precedence policy.

It is not desirable to allow all users who have a delegation right to perform strong

revocations. Hence we include in our framework the possibility for a principal to grant

to another principal a special right to perform strong revocations to other users.

(3) In Hagström et al.’s framework, delete revocations are supposed to be non-

resilient, which according to Hagström et al. means that “another user may issue the

same permission that was just revoked, and the effect of the revocation disappears”.

This property fails to be satisfied in global deletion revocations, as illustrated by this

example:

Example 3.2. User A issues an authorization to user B, and B further grant this

authorization to C. If A deletes the authorization given to B, then the authorization

from B to C is also deleted. Reissuing the authorization from A to B will not re-instate

the authorization from B to C as before the revocation.

To avoid this problem in our framework, when a delete is performed, we do not

delete the forward chain, but just inactivate it.

(4) Hagström et al. motivate the distinction between delete and negative

revocations mainly through the notion of resilience as defined in Section 3.2. However,

in weak revocations there can be no difference between a resilient and a non-resilient

revocation, since a weak revocation does not affect authorizations issued by others

than the revoker. They motivate the usage of weak negatives by pointing out that
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they are useful for temporary revocations. But since in our framework the forward

chain does not get deleted in a delete revocation (see point (3)), a delete can also be

easily undone, so that a delete revocation is a sensible choice even when the revocation

is likely to be only temporary. Hence we do not need weak negative revocations.

Furthermore, p-t-p and strong deletes would have undesirable effects, as illustrated

by the following example:

Example 3.3. User A issues an authorization to user B, and gives user C the right to

perform strong revocations. User C performs a strong delete on B, removing without

traces the authorization provided to B by A. Later A realizes that C cannot be trusted

to perform strong revocations, and takes away C’s right to do so. Even though C can

no longer perform strong revocations, the effect of his strong delete remain: B does not

have the right originally issued to him by A until someone issues a new authorization

to him.

Hence we do not have a p-t-p or strong delete revocation in our framework, but

instead have the distinction between a resilient and a non-resilient negative for p-t-p

and strong revocations.

To conclude, if the dominance of a revocation is p-t-p or strong, there are

two options along the resilience dimension, non-resilient and resilient. But if the

dominance is weak, there is no choice along the resilience dimension, and the

revocation is characterized as a “weak delete”. So there are five possible choices

to be made along the dominance and resilience dimensions: weak delete, p-t-p non-

resilient, p-t-p resilient, strong non-resilient, and strong resilient.

(5) Hagström et al. do not allow negative authorizations to be inactivated. The

reason they give is that they “do not want a revocation to result in a subject having

more permissions than before the revocation”. However, the deletion of negative

authorizations is allowed, even though it may have the same effect. We do allow

negative authorizations to be inactivated, but the only kind of revocation that can
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result in a subject having more permissions than before is a revocation of someone’s

right to perform strong revocations, and in this case this is a desirable property.

3.3.2 The refined framework

Let S be the set of principals (subjects) in the system, let O be the set of objects in

the system and let A be the set of access types. For every object o ∈ O, there is a

source of authority (SOA), i.e. the manager of object o.

For any α ∈ A and o ∈ O, the SOA of o can grant the right to access α on object o

to other principals in the system. Secondly, the SOA can delegate this granting right

further. Thirdly, the SOA can grant the right to perform strong revocations and to

delegate this right further. Accordingly we have three permissions : access right (A),

delegation right (D) and strong revocation right (S). We assume that delegation right

implies access right. The set {A,D, S} of permissions is denoted by P.

Additionally to positive authorizations (+), our framework admits four different

types of negative authorizations, p-t-p resilient negative (−PR), p-t-p non-resilient

negative (−PN), strong resilient negative (−SR) and strong non-resilient negative

(−SN). The set {+,−PR,−PN,−SR,−SN} of authorization types is denoted by T.

Definition 3.1. An authorization is a tuple (i, j, α, o, τ, π, t), where i, j ∈ S, α ∈ A,

o ∈ O, τ ∈ T, π ∈ P, t ∈ Z.

The meaning of an authorization (i, j, α, o, τ, π, t) is that at time point t principal

i has granted to principal j an authorization of type τ for permission π concerning

access type α on object o. We assume that all authorizations in the system are

stored in an authorization specification. There is no interaction between the rights

of principals concerning different access-object pairs (α, o). For this reason, we

can consider α and o to be fixed for the rest of the chapter, and can simplify

(i, j, α, o, τ, π, t) to (i, j, τ, π, t).

Since delegation right implies access right, an authorization (i, j,+, D, t) can only

be issued if an authorization (i, j,+, A, t) is also issued. By taking the contrapositive,
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the connection is reversed for negative authorizations: For τ 6= +, an authorization

(i, j, τ, A, t) can only be issued if an authorization (i, j, τ,D, t) is issued.

We visualize an authorization specification by a labelled directed graph, as in

Example 3.4, in which A is the SOA. For every authorization (i, j, τ, π, t) in the

authorization specification, this graph contains an edge from i to j labelled τ, π, t.

We refrain from showing the authorizations that can be implied to exist by the rules

specified in the previous paragraph.

Example 3.4. An authorization specification.

A B C

D E

+, D, 2

+, S, 9

+, A, 1

+, D, 6

+
, D

, 4 +
, A

, 5

+
, D

, 8

A negative authorization can inactivate other authorizations in the authorization

specification. Which authorizations get inactivated by a negative authorization

depends on which type of negative authorization it is. There are three basic ideas

governing the inactivation of authorizations: Firstly, non-resilient authorizations can

only inactivate previously issued authorizations, whereas resilient authorizations can

also inactivate authorizations issued after the negative authorization. Secondly, a

strong negative authorization from i to j inactivates every positive authorization

from some principal k to j, whereas a p-t-p authorization from i to j only inactivates

an authorizations from k to j if k is dependent on i. Thirdly, any authorization that

is no longer connected back to the SOA through active authorizations is inactivated.

In order to formally specify which authorizations get inactivated when issuing

a negative authorization, we simultaneuosly define the notions of an authorization

being active and an authorization being directly inactivated in Definitions 3.2 and

3.3. The auxiliary notion of a directly inactivated authorization captures the idea
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of an authorization from k to j being inactivated by a strong negative authorization

from i to j.

Definition 3.2. An authorization (i, j, τ, π, t) is active if it is not directly inactivated

and there are principals p1, . . . , pn, pn+1 and integers t1, . . . , tn satisfying the following

properties:

(i) p1 = SOA, pn = i, pn+1 = j and tn = t;

(ii) for 1 ≤ l < n there is an authorization (pl, pl+1,+, π
′, tl) that is not directly

inactivated, where π′ = S if either τ ∈ {−SR,−SN} or π = S, and π′ = D

otherwise;

(iii) there do not exist l,m with 1 ≤ l ≤ m ≤ n and an authorization

(pl, pm+1, τ
′, π′′, t′) such that π′′ = π and τ = + if m = n, and π′′ = π′ otherwise,

and such that either τ ′ = −PN and t′ > tm or τ ′ = −PR.

Definition 3.3. An authorization (i, j,+, π, t) is directly inactivated if there is an ac-

tive authorization (k1, j,−SR, π, t1) or there is an active authorization (k2, j,−SN, π, t2)

with t2 > t.

Definitions 3.2 and 3.3 inductively depend on each other. They should be read

as an inductive definition with the well-founded semantics [Den98]. In Section 3.4

we discuss some of the issues resulting from the inductive interdependence of these

definitions and later in Chapter 4 we give a full account of inductive definitions and

the well-founded semantics.

A principal j has the right to access of type α on object o iff j is the SOA or there

is an active authorization of the form (i, j, α, o,+, A, t) or (i, j, α, o,+, D, t). j has

the right to perform strong revocations concerning action α on object o iff j is the

SOA or there is an active authorization of the form (i, j, α, o,+, S, t). Strong negative

authorizations towards the SOA are disallowed.

In Definition 3.4, we define the ten revocation schemes of our refined framework.

We use W, P, S, L, G, N, R and D as abbreviations for weak, p-t-p (predecessor-

takes-precedence), strong, local, global, non-resilient, resilient and delete respectively.
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Note that when defining the revocation schemes, we do not need to specify which

of the authorizations get inactivated, because Definition 3.2 already tells us what to

inactivate. Hence we just specify which authorizations get added and/or deleted.

Definition 3.4. Let i, j be principals, and π ∈ {A,D, S}.

• A WGD revocation for permission π from i to j at time t consists of deleting

any authorization of the form (i, j,+, π, t′).

• For δ ∈ {P,S} and ρ ∈ {N,R}, a δGρ revocation for permission π from i to j

at time t consists of issuing the negative authorization (i, j,−δρ, π, t).

• For (δ, ρ) ∈ {(W,D), (P,N), (P,R), (S,N), (S,R)}, a δLρ revocation for permis-

sion π from i to j at time t consists of deleting and adding the same revocations

as in a δGρ revocation from i to j, and – if π is D or S – additionally adding an

authorization (i, l, τ, π′, t′) for every authorization (j, l, τ, π′, t′) such that π′ = S

if π = S, and π′ is either D or A if π = D.

Since delegation right implies access right, a revocation for permission A can only

be performed if the corresponding revocation for permission D is performed at the

same time.

3.3.3 Examples of revocations

Here are ten examples for different revocations from B to C on the authorization

specification from Example 3.4. In all examples, we show the effect of simultaneous

revocations for permissions A and D. In order to illustrate better the difference

between resilient and non-resilient revocations, we show the state of the authorization

specification after D reissues the previously issued authorization to C after the

revocation.

Example 3.5. Weak Local Delete revocation from B to C
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(a)
active

(b)
inactive

Example 3.6. P-t-p Global Non-resilient revocation from B to C

A B C

D E

+, D, 2

+, S, 9

+, A, 1

+, D, 6

−PN, D, 10
+
, D

, 4 +
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+
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Example 3.7. Strong Global Resilient revocation from B to C

A B C

D E

+, D, 2

+, S, 9

+, A, 1

+, D, 6

−SR, D, 10
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Example 3.8. Weak Global Delete revocation from B to C

A B C

D E

+, D, 2

+, S, 9

+, A, 1
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Example 3.9. P-t-p Global Resilient revocation from B to C
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Example 3.10. P-t-p Local Resilient revocation from B to C

A B C

D E
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Example 3.11. P-t-p Local Non-resilient revocation from B to C

A B C

D E
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Example 3.12. Strong Global Non-resilient revocation from B to C

A B C

D E

+, D, 2
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Example 3.13. Strong Local Resilient revocation from B to C

A B C

D E

+, D, 2
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Example 3.14. Strong Local Non-resilient revocation from B to C

A B C

D E
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+, S, 9

+, A, 1
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+, D, 8

3.4 Inductive interdependence of Definitions 3.2

and 3.3

Definitions 3.2 and 3.3, in which we define the notions of an authorization being

active and being directly inactivated, depend one on another. This interdependence

looks similar to a problematic circular definition, but can actually be understood

as an inductive definition, which can be formally interpreted using the well-founded

semantics [Den98]. In this section we briefly sketch the theory of inductive definitions

under the well-founded semantics, and comment about what practical consequences

follow from using an inductive definition for defining the notion of an active

authorization.
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An inductive definition of predicates P1, . . . , Pn consists of rules of the form

∀x̄ P (x̄) ← ψ, where P ∈ {P 1, . . . , P n} and ψ may itself refer to predicates in

{P 1, . . . , P n}. In such a rule, P (x̄) is called the head of the rule, and ψ the body of

the rule.

An inductive definition may have a form, which makes it impossible to interpret

the defined predicates in a way that is consistent with the rules. For example, the

inductive definition {P ← ¬P}, which defined P to be the case if ¬P is the case

is problematic: If we assume P is false, then ¬P is true, so by the single rule of

this definition, P should be true. So P cannot be false. However, since P is defined

through this inductive definition, it can only be true if some rule in the inductive

definition is true. But the only rule in this definition cannot make P true.

One approach to avoid such problems is to define some syntactic restrictions on

the set of rules that ensure that such problems cannot arise. However, such syntactic

restrictions are usually too restrictive, barring some inductive definitions that we can

intuitively and formally make sense of.

Another approach to avoid such problems is that of using the well-founded

semantics for inductive definitions, which is a partial semantics, i.e. for problematic

definitions like the above, it does not define a truth function for the predicates

that were purported to be defined by the inductive definition. But whenever an

inductively defined predicate has an intuitively meaningful interpretation, the well-

founded semantics formally assigns this interpretation to the predicate [Den98].

The well-founded semantics is defined through an inductive process which involves

adding new information about the defined predicates at each step of the induction

based on the rules in the inductive definition: This information consists of an

assignment of truth values to domain atoms ; a domain atom is a pair (P, ā) – usually

written as P (ā) – where P is an n-ary predicate symbol defined in the inductive

definition, and ā ∈ Dn, where D is the domain of the structure. At the first step of

the induction, no truth values are assigned to domain conditions. At every subsequent

step, the truth value t may be assigned to a domain atom P (ā) if applying the rules
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for P to the previous assignment of truth values to domain atoms establishes that

P (ā) is true; the truth value f may be assigned to domain atoms P1(ā1), . . . , Pk(āk) if

applying the rules for P1, . . . , Pk to the resulting assignment of truth values to domain

atoms establishes that P1(ā1), . . . , Pk(āk) are false. This different treatment of the

two truth values reflects the inductive nature of the definition, according to which a

domain atom can only be true if some rule makes it true, whereas a domain atom

should be considered false in the absense of a rule making it true. The well-founded

model of an inducive definition is defined to be the limit assignment of truth values

to domain atoms in such an induction [Den98]. If the well-founded model does not

assign either t or f to every domain atom of the defined predicates, it is a partial

model.

The inductive definition of authorizations being active and directly inactivated can

in some contexts lead to a partial well-founded model, i.e. to the notions of active

and directly inactivated not having a coherently determinable meaning. Consider for

example the following authorization specification:

Example 3.15.

A B C

D

+, S, 1 +, S, 2

+
, S

, 3
−
SR , S, 4

If we assume that the negative authorization from D to B is active, it directly

inactivates the authorization from A to B. But then there is no active chain of

authorizations that supports the authorization from D to B, so it would have to

be inactive. If on the other hand we assume that the authorization from D to B

is inactive, then the authorization from A to B is not directly inactivated, an the

chain of authorization from A via B and C to D is active, thus ensuring that the

authorization from D to to B is active. So either way we run into a contradiction.
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This means that the interpretation of “active” under the well-founded semantics is

partial in the context of this authorization specification.

In this example, the problem was caused by principal D using its power to perform

strong revocations in order to remove the rights from B, even though D’s right to

perform strong revocations depended on a delegation chain including B. The problem

can be avoided by adding a constraint to the system that disallows principals from

using their strong revocation right to remove the strong revocation right from a

principal on whom they depend for their strong revocation right.

This constraint needs to be formulated in both a more formal and a more general

way. For this we first need the notion of a +−S-chain, which formalizes the notion of

a potentially active chain of positive S-authorizations followed by a strong negative

S-authorization, which can only be inactivated if attacked by another +−S-chain.

The time stamp of a +−S-chain indicates the least time stamp that a positive

authorization must have in order not to be affected by the +−S-chain.

Definition 3.5. A +−S-chain with time stamp t is a chain of authorizations

(p0, p1,+, S, t1), (p1, p2,+, S, t2), . . . , (pn−1, pn,+, S, tn), (pn, pn+1, τ, S, tn+1) satisfy-

ing the following properties:

• p0 = SOA

• Either τ = −SR and t =∞, or τ = −SN and t = tn+1.

• There are no i, j with 0 ≤ i < j ≤ n such that there is an authorization

(pi, pj,−PR, S, t
′).

• There are no i, j with 0 ≤ i < j ≤ n such that there is an authorization

(pi, pj,−PN, S, t
′) with t′ < tj.

We say that a +−S-chain C1 with time stamp t attacks a +−S-chain C2 iff C1

ends in a principal that has issued one of the authorizations in C2 at some time t′ > t.

Now the formalized and generalized constraint can be formulated as follows: We

require that the +−S-chain in the authorization specification can be partially ordered

in such a way that a +−S-chain C1 attacks a +−S-chain C2 only if C1 < C2 in the

38



partial ordering. Informally, this means that there should be no loops of +−S-chains

under the attack relation. An authorization specification satisfying this constraint is

called free of strong S-revocation loops.

3.5 Reasons for revocating

Hagström et al. have motivated the variety of revocation schemes by sketching various

scenarios in which the principals performing the revocation have different reasons

for revocating, so that different behaviour of the revocation is desirable. In order

to study the desirable behaviour of the various revocation schemes, in this section

we first present some scenarios, which we use to illustrate the different reasons the

revocator has to perform the revocation, based on her level of trust or distrust towards

the revokee. Having presented the scenarios, we informally sketch how we want to

define the desirable behaviour of the various revocation schemes. These ideas will be

formalized in subsequent sections.

3.5.1 Four scenarios

Scenario 1. User A caught user C leaking information to a third-party. A revokes

C’s rights, ensuring that C cannot be given access by other users in the system.

In this scenario user A had trusted user C in the past, thus issuing him an

authorization, but now A distrusts principal C due the fact that he has leaked

information to a third-party. So A will perform a P-t-p Global Resilient revocation,

and—if she has strong revocation right—additionally a Strong Global Resilient

revocation, both in order to remove the authorization she had granted and to forbid

as many other principals as possible to grant new authorizations to C.

Scenario 2. User C is leaving to join the rival company. When user A notices

the situation, she preemptively blocks C’s capabilities (but keeping the authorizations

previously issued by C).
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In this scenario user A had trusted user C in the past, thus issuing him an

authorization. Since C is leaving to the rival company, A now distrusts C to access

files or to newly delegate access right to others, but since C never misused any rights,

A still has trust in the delegation authorization previously issued by C. So A will

perform a P-t-p Local Resilient revocation and—if possible—a Strong Local Resilient

revocation, in order to remove the authorizations that had been granted to C and to

forbid as many other principals as possible to grant new authorizations to C, at the

same time preserving the effect of authorizations that C had previously delegated.

Scenario 3. User A hears the rumour that user B has received a bribe, but A does

not know whether the rumour is true. Upon informing other users, A revokes B’s

rights, allowing other users to re-issue them.

In this scenario, A no longer trusts B since she has heard the rumour about B, so

she will revoke B’s rights. But since A does not know whether the rumour is true, A

allows other users to give the rights back to B (A will tell others about the rumour

and trusts them to only give the rights back to B if they know the rumour to be

false). So A will perform a P-t-p Global Non-resilient revocation and – if possible –

a Strong Global Non-resilient revocation, in order to inactivate the previously issued

authorizations granted to B, at the same time allowing other users to newly grant

authorizations to B.

Scenario 4. User A is revising the authorizations she had granted in the past. During

the process A finds an authorization to user C, whom A does not remember.

In this scenario user A had trusted user C in the past, thus issuing him an

authorization, but now A neither trusts nor distrusts C, as she has no recollection

of who C is or why the authorization had been granted. So A will perform a Weak

Global Delete in order to remove the authorization she had granted to C without

affecting authorizations granted to C by other users.
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3.5.2 Desirable behaviour of revocation schemes

When explaining the above scenarios, we referred to the level and manner of trust

or distrust between the revoker and the revokee in order to motivate the choice of

different revocation schemes in different scenarios. The main novel idea of this chapter

is to formalize this reasoning about trust, delegation and revocation in such a way that

we can formulate desirable properties that graph-theoretic definitions of revocation

schemes should satisfy. Before we present this formalization, we will—for the rest

of this section—first sketch the ideas behind this formalization and these desirable

properties.

In Section 3.6, we will define Trust Delegation Logic (TDL), a logic that allows

us to reason about the different levels and manners of trust or distrust that we find

in the above four scenarios. One central idea in this logic is that A grants B the

right to further delegate some right only if A trusts B to make correct judgments

about who should be given that right. By expressing her trust in B to make correct

judgments about something, A commits herselves to the truth of judgments that

she has not made herself, namely the judgments that B has committed himself to.

When A makes a judgment herself, we say that A has explicit belief in the judgment,

whereas a judgment that A is committed to in the light of a principal trusted by A

believing the statement is an implicit belief of A. Trust of principal A in principal

B is modelled as A’s belief in B’s trustworthy. Depending on whether A’s belief is

explicit or implicit, we can also call this trust explicit or implicit. For example, if A

expresses trust in B concerning the action of expressing trust in other principals, and

B expresses trust in C, then A explicitly trusts B and implicitly trusts C.

A further central idea is that a principal A should have access right of access type

α iff the SOA of that object trusts A, either explicitly or implicitly, concerning access

α. Delegation chains correspond to chains of principals along whom an implicit trust

in some principal can project upwards towards the SOA. A revocation takes place
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when at some point along such a chain of principals, a principal stops trusting in the

next principal on the chain, thus disabling this upward projection of implicit trust.

TDL allows us to model different ways in which a principal can stop trusting or

start distrusting another principal. Some of these ways have been illustrated in the

above four scenarios. The various revocation schemes correspond to these various

ways of stopping to trust.

Given these explanations, we can now sketch how TDL allows us to formulate a

desirable property for graph-theoretic definitions of revocation schemes: The graph-

theoretic definitions of the revocation schemes should be such that for any given

delegation and revocation interaction between the principals, an active authorization

to a principal A should exist in a graph if and only if—translating the delegation and

revocation behaviour to TDL—the SOA believes A to be trustworthy for the access

in question.

3.6 A logic for reasoning about delegation and

revocation

In this section we present a logic for formalizing the reasons for revoking delegations.

This logic, which we call Trust Delegation Logic (TDL), is a first-order multi-modal

logic with both classical negation and negation-as-failure. TDL formalizes both the

relation of trust between principals and the action of announcing one’s trust in another

principal by delegating some right to him/her/it. In developing TDL, we have taken

over some ideas from [Dem04] and [ABB+11].

We first define the syntax of TDL. Next we motivate its constructs and some of

its axioms by sketching how we apply TDL for modelling delegation and revocation.

After that we formally define the proof theory of TDL, briefly motivating the

remaining axioms. TDL is only defined proof-theoretically, i.e. it does not have a

formal semantics, since this is not needed for the application that we have in mind.
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3.6.1 TDL syntax

There are five types of objects, principal, access, time point, set of principal-time-

pairs and announcement modality. SOA is a constant symbol of type principal, ∅ is

a constant symbol of type set of principal-time-pairs, B, 6B, K and 6K are constants

of type announcement modality, and ∞ and all integers are constants of type time

point. scons is a ternary function symbol taking a term of type principal, a term

of type time and a term of type set of principal-time-pairs, and returning a term

of type set of principal-time-pairs. We use t, t′, t2, t3 as time point variables, i, j, k

as principal variables, Σ,Σ′,Σ2 as variables of type set of principal-time-pairs, α as

an action variable, m as an announcement modality variable, and x as a variable of

arbitrary type. Formulae of TDL are defined by the following EBNF rule:

ϕ ::=¬ϕ | ∼ϕ | (ϕ ∧ ϕ) | ∀x ϕ | Tiα | T tiϕ | TiDα | TiSα |

Bt
i,Σϕ | Kt

i,Σϕ | I timϕ | Rt
i,Σmϕ | rtiα | t > t′ | (i, t) ∈ Σ

We write ϕ → ψ for ¬(ϕ ∧ ¬ψ), ϕ ↔ ψ for (ϕ → ψ) ∧ (ψ → ϕ), ∃t > t′ ϕ

for ∃t (t > t′ ∧ ϕ), and ∃x ϕ for ¬∀x ¬ϕ. We drop brackets according to usual

conventions. If ϕ is of the form ¬ψ, ϕ̄ denotes ψ. Else ϕ̄ denotes ¬ϕ.

While ¬ϕ is the classical negation of ϕ, ∼ϕ is negation as failure, i.e. ∼ϕ is

provable when ϕ is not provable.

∅ refers to the empty set, and given a set Σ of principal-time-pairs, scons(i, t,Σ)

refers to the set Σ ∪ {(i, t)} (scons stands for set constructor [JJ99]). The following

two axioms model this behaviour of ∅ and scons:

(∅) ∀i ∀t ¬(i, t) ∈ ∅

(scons) ∀i, j, t, t′,Σ ((i, t) ∈ scons(j, t′,Σ) ↔

(i = j ∧ t = t′) ∨ (i, t) ∈ Σ)
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For the sake of readability, we abuse notation by using common set-theoretic notation

in TDL formulas, writing for example Σ ∪ {(i, t)} instead of scons(i, t,Σ), and

{(i, t), (j, t′)} instead of scons(j, t′, scons(i, t, ∅)).

3.6.2 Motivating TDL

The formula rtiα intuitively means that at time t, i has access right of access type α

(the object o which may be accessed with access type α is not made explicit in TDL).

As [Dem04], we make a distinction between belief and strong belief : A principal

who believes ϕ at time t (denoted Bt
i,Σϕ) has some justification for ϕ but believes

that the justification might be wrong. A principal i who strongly believes ϕ at time

t (denoted Kt
i,Σϕ) on the other hand believes that his/her/its justification for ϕ is

correct. The Σ in the subscript of the belief operators indicates whether the belief

is explicit or implicit (see Section 3.5.2 for this distinction): If Σ is ∅, it is explicit

belief. If Σ is a non-empty set, the belief is implicit, and Σ indicates the principals who

mediate this implicit belief together with the time points of their beliefs that mediate

this belief. For example, if i trusts j at time t, j trusts k at time t′, and k believes ϕ

at time t2, then i implicitly believes ϕ at time t, and this implicit belief is mediated

by j and k through their beliefs at time t′ and t2 respectively: Bt
i,{(j,t′),(k,t2)}ϕ.

Similarly as in [ABB+11], the fact that a principal i trusts a principal j on access

α is formalized in TDL by a formula of the form Kt
i,ΣTjα. Here Tjα can be read

intuitively as “j is trustworthy on access α”. This way of formalizing the trust relation

between two agents has the advantage of formally clarifying the difference between

not trusting someone and actively distrusting someone, the first being formalized by

¬Kt
i,ΣTjα (i.e. i lacks a strong belief about the trustworthiness of j), and the second

by Kt
i,Σ¬Tjα (i.e. i believes that j not trustworthy). Furthermore, weak distrust

(Bt
i,Σ¬Tjα) is a useful formalization for the reserved kind of distrust that we have in

Scenario 3.
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TDL allows us to model five different levels of trust between a principal i and a

principal j: Strong trust, where i strongly believes that j is trustworthy (Kt
i,ΣTjα),

weak trust (Bt
i,ΣTjα∧¬Kt

i,ΣTjα), lack of trust (¬Bt
i,ΣTjα∧¬Bt

i,Σ¬Tjα), weak distrust

(Bt
i,Σ¬Tjα ∧ ¬Kt

i,Σ¬Tjα), and strong distrust (Kt
i,Σa¬Tjα). The distinction between

weak trust and lack of trust will not be relevant for modelling the reasoning about

delegation and revocation, but the distinction between the remaining four levels of

trust will be relevant.

Additionally to trust in someone on an action, the logic can also express epistemic

trust: Kt
i,ΣT

t′
j ϕ intuitively means that i trusts j not to make mistakes in judgements

about the truth value of ϕ, if the judgement is made before time point t′. The time

point at which the judgement was made needs to be considered in order to correctly

model local revocations, in which an agent still trusts the authorizations previously

produced by the revokee, but does not trust new authorizations issued by the revokee

(see Scenario 2).

The action of granting to j the right to perform action α is modelled in TDL

by the action of publicly announcing one’s trust in j on action α. Whenever one

makes a public announement, the announcement gets marked as an announcement of

belief (B), strong belief (K), lack of belief ( 6B) or lack of strong belief ( 6K). [Dem04]

uses the letter I for the action of informing someone, which is similar to the action

of public announcement; so we have decided to use the letter I to denote public

announcements: For example, I tiKϕ intuitively means that i publicly announces its

strong belief in ϕ at time t. I tiKTjα means that i announces its strong trust in j on

action α, and corresponds to i issuing a positive authorization for j with permission α

at time t. Performing a Weak Global Delete revocation for permission α is achieved by

the public announcement I ti 6BTjα, with which i retracts its trust in j by announcing

that it no longer believes j to be trustworthy.

If i wanted to give j the right to give any principal k the right to perform access α,

i could achieve this by publicly announcing its strong trust in j concerning judgements

about the trustworthiness of other principals: I tiK ∀k T∞j Tkα. If i was trusted by
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the SOA to make such an announcement, then j would now be trusted by the SOA

to announce its trust in any principal k on access α, i.e. to grant the right to perform

access α to any principal. However, j would not yet be permitted to delegate to

someone else the right to grant this right. To give j this right, the i’s announcement

would have to be I tiK ∀k1T
∞
j ∀k2 T

∞
k1
Tk2α. After this announcement, j can make an

announcement of the form I t
′
j K ∀k2 T

∞
k1
Tk2α, i.e. j can grant to some principal k1 the

right to grant to some further principal k2 the right to perform access α.

This method can be used to model delegation with an arbitrary bound on the

length for the delegation chain. But both Hagström et al.’s framework and our

refinement of it do not put any bound on the length of delegation chains. In order

to use this method for modelling delegation with no bound on the length of the

delegation chain, we would have to allow principals to make infinitely many public

announcements at once. In order to avoid this complication, we have introduced a

third kind of trust, denoted TiDα. Its intuitive meaning is that i is trusted to delegate

the right to perform access α. Formally, its intended semantics is that TjDα should

imply every formula in the infinite set {Tjα, ∀k T∞j Tkα, ∀k1T
∞
j ∀k2 T

∞
k1
Tk2α, . . . }.

This is achieved by the following axiom governing the behaviour of TiDα:

(TD) TiDα→ Tiα ∧ T∞i TjDα

Using this new kind of trust, we can use the public announcement IiKTjDα to

model i’s issuing a positive authorization for j with permission D at time t. I ti 6BTjDα

models i’s performing a Weak Global Delete revocation on j for permission D.

Performing a P-t-p Global Resilient revocation can be modelled by announcing

strong distrust in another principal: I tiK¬Tjα or I tiK¬TjDα. If i explicitly announces

its distrust j in this way, i thereby prevents an implicit belief in the trustworthiness

of j to be passed through i to the SOA. Hence j will need to be connected to the

SOA via some trust chain that is independent of i in order to get access or delegation

right.
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If i’s strong distrust in j corresponds to a p-t-p revocation, what will correspond

to a strong revocation? The answer is that for a strong revocation i needs to make

an announcement that will ensure that the SOA does not trust j. For if the SOA is

ensured not to trust j, then j’s rights are blocked, just as after a strong revocation.

Of course, in blocking j’s rights in this way, i will have to make use of the fact that

the SOA has—either directly or indirectly—granted i the right to perform a strong

revocation. As a first attempt at modelling strong revocation and the right to perform

strong revocations in TDL, it therefore makes sense to consider the following approach

(for simplicity, we restrict ourselves to strong revocations for permission α):

Approach 1. I tiK¬Tjα models not only p-t-p revocation, but also strong revocation.

The stronger effect of strong revocation is achieved by having the SOA believe in i’s

judgements of other principals non-trustworthiness when i has the strong revocation

right. So i’s issuing a positive authorization to j for permission S should be modelled

by i announcing j to be trusted on distrusting other principals: I tiK∀k T∞j ¬Tkα.

The problem with this approach is that it would lead to blocked access in some

situations where access should be granted. Suppose for example that the SOA grants

A strong revocation right, A grants this right further to B, and B uses this right to

issue a strong negative authorization to C. Furthermore, the SOA grants simple access

right to A, who grants this further directly to C. So far, C does not have access, since

its access is blocked by the strong negative authorization issued by B. But suppose

next that the SOA globally revokes A’s strong revocation right. Then B also loses

its strong revocation right, so that the negative authorization issued by B becomes

inactive. Hence C should now have access. But with the above approach, the fact

that A granted B the strong revocation right means that A trusts B on distrusting

other principals. Since B still distrusts C, this would mean that A implicitly distrusts

C, so that C cannot have access based on a trust chain going through A.

To solve this problem, we model i’s performing a Strong Global Resilient

revocation on j for permission α by i announcing that the SOA should strongly
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distrust j: I tiK∀t Kt
SOA,∅¬Tjα. Note that nested belief modalities are interpreted

in a deontic way: Kt
i,∅K

t
j,∅ϕ means that i strongly believes that j should strongly

believe that ϕ. Granting i strong delegation right should make i being trusted on

judgements about the SOA’s strong distrust in other principals. In order to also be

able to model performing a Strong Global Resilient revocation for permission S, we

need to introduce a fourth kind of trust denoted TiSα, for reason similar as the reasons

for introducing TiDα. The intuitive meaning of TiSα is that i is trusted in judgements

about the SOA’s strong distrust in other principals; here we need to allow for public

announcements of distrust of various kinds: ¬Tjα, ¬TjDα and ¬TjSα. Furthermore,

TiSα should imply that i is trusted to delegate the right to perform strong revocations,

i.e. to consider another principal k trustworthy for performing strong revocations. The

following axiom captures all this:

(TS) TiSα→ T∞i TjSα ∧ T∞i ∀t Kt
SOA,∅¬Tjα ∧

T∞i ∀t Kt
SOA,∅∀k ∀t2 ¬T

t2
j TkDα ∧ T∞i ∀t Kt

SOA,∅¬TjSα

A principal i may epistemically trust both a principal who believes ϕ and a

principal who believes ¬ϕ. In such a situation we do not want i to implicitly hold

the inconsistent beliefs that ϕ and that ¬ϕ, because we want implicit belief to stay

consistent. Instead, we want i to implicitly believe neither ϕ nor ¬ϕ. So the principle

that i’s epistemic trust in j concerning ϕ and j’s belief in ϕ together imply i’s implicit

belief in ϕ cannot hold without exception. Instead, we say that if i epistemically trusts

j concerning ϕ and j believes ϕ, then i has a reason to believe ϕ. To deduce that i

believes ϕ from the fact that i has a reason to believe ϕ we additionally require there

to be no reason for i to believe ¬ϕ. In TDL, Rt
i,ΣBϕ (respectively Rt

i,ΣKϕ) denotes

the fact that at time t, i has a reason to believe (respectively to strongly believe) ϕ

implicitly, mediated by Σ. In order for the absence of a reason for i to believe ¬ϕ to

be provable, it needs to be formulated using negation-as-failure rather than classical

negation: ∼∃Σ Rt
i,ΣB¬ϕ.
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3.6.3 TDL proof theory

In order to correctly capture the intended functioning of negation-as-failure in TDL’s

proof theory, we need TDL’s deducibility relation Γ ` ϕ to be defined in such a

way that Γ 6` ϕ in general implies Γ ` ∼ϕ. This can be achieved by defining this

deducibility relation inductivelya as follows:

Definition 3.6. We define Γ ` ϕ to be the case if one of the following conditions

holds:

• ϕ ∈ Γ

• ϕ is an axiom of TDL

• For some formula ψ, Γ ` ψ and Γ ` ψ → ϕ (modus ponens)

• ϕ is of the form Kt
i,Σψ and ` ψ (necessitation for strong belief)

• ϕ is of the form Rt
i,ΣKψ and ` ψ (necessitation for reasons for strong belief)

• ϕ is of the form ∼ψ, where ψ is not of the form ∼χ, and Γ 6` ψ (negation-as-

failure)

The axioms of TDL include the axioms of the standard Hilbert system for first-

order logic (as described for example in subchapter 3.6 of [Rau06]) as well as all

axioms mentioned in section 3.6.2 and in the rest of this section.

The axioms governing the behaviour of the two belief modalities and their

interaction are taken over from Demelombe [Dem04]. Both belief modalities obey

the system (KD):

(KB) Bt
i,Σϕ ∧Bt

i,Σ(ϕ→ ψ)→ Bt
i,Σψ

(DB) ¬(Bt
i,Σϕ ∧Bt

i,Σ¬ϕ)

(KK) Kt
i,Σϕ ∧Kt

i,Σ(ϕ→ ψ)→ Kt
i,Σψ

(DK) ¬(Kt
i,Σϕ ∧Kt

i,Σ¬ϕ)

aSince Definition 3.6 is also an inductive definition, it can–similarly to Definitions 3.2 and 3.3
discussed in Section 3.4–in some contexts lead to the relation ` being undefined. However, as
follows from the proof of Theorem 3.1, Γ ` ϕ is defined whenever Γ is a set of announcement
formulas corresponding to a authorization specification free of strong S-revocation loops.
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Furthermore, strong belief satisfies the axiom schema (KT), which intuitively says

that a principal strongly believes that what it strongly believes is true:

(KT) Kt
i,Σ(Kt

i,∅ϕ→ ϕ)

Strong belief implies weak belief:

(KB) Kt
i,Σϕ→ Bt

i,Σϕ

We need axioms similar to these axioms about the two belief modalities for the

reason-for-belief modality:

(KRB) Rt
i,ΣBϕ ∧Rt

i,ΣB(ϕ→ ψ)→ Rt
i,ΣBψ

(KRK) Rt
i,ΣKϕ ∧Rt

i,ΣK(ϕ→ ψ)→ Rt
i,ΣKψ

(KTR) Rt
i,ΣKK

t
i,∅Kϕ→ Rt

i,ΣKϕ

(RKRB) Rt
i,ΣKϕ→ Rt

i,ΣBϕ

Recall that Bt
i,ΣB

t′

j,Σ′ϕ is interpreted to mean that i believes that j should believe

that ϕ. It is reasonable to assume that i believes that someone else should believe ϕ

iff i herself believes ϕ. This is captured by the following four axiom schemas:

(BB1) Bt
i,Σϕ→ Bt

i,Σ∀t′Bt′

j,∅ϕ

(BB2) Bt
i,ΣB

t′

j,∅ϕ→ Bt
i,Σϕ

(KK1) Kt
i,Σϕ→ Kt

i,Σ∀t′Kt′

j,∅ϕ

(KK2) Kt
i,ΣK

t′

j,∅ϕ→ Kt
i,Σϕ

The action of asserting a strong belief is always also considered an action of

asserting the corresponding weak belief, and the action of denying a weak belief
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is always also considered an action of denying the corresponding strong belief:

(IKB) I tiKϕ→ I tiBϕ

(IBK) I ti 6Bϕ→ I ti 6Kϕ

Since the SOA has the ultimate authority over the object in question, every

principal has the right to perform an action iff it is trusted by the SOA on that

action:

(SOA) rtiα↔ ∃Σ Kt
SOA,ΣTiα

If at time t, i has epistemic trust in j concerning the judgements about ϕ made

before time point t′, this means that if j believes ϕ at time min(t, t′), i generally has a

reason to believe ϕ. However, this reason to believe ϕ cannot be inferred if j believes

ϕ only implicitly, mediated by the belief of some principal k at time t, and i has a

reason to distrust k concerning judgements about ϕ held at time t. This is formalized

in the axiom schemas of epistemic trust :

(ETB) Bt
i,∅T

t′

j ϕ ∧ ((t′ > t ∧ t2 = t) ∨ (¬t′ > t ∧ t2 = t′)) ∧

Bt2
j,Σϕ ∧ ∼∃k, t3,Σ

′ ((k, t3) ∈ Σ ∧Rt
i,Σ′B¬T

t3
k ϕ)

→ Rt
i,Σ∪{(j,t2)}Bϕ

(ETK) Kt
i,∅T

t′

j ϕ ∧ ((t′ > t ∧ t2 = t) ∨ (¬t′ > t ∧ t2 = t′)) ∧

Kt2
j,Σϕ ∧ ∼∃k, t3,Σ

′ ((k, t3) ∈ Σ ∧Rt
i,Σ′B¬T

t3
k ϕ)

→ Rt
i,Σ∪{(j,t2)}Kϕ
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The following axioms govern the relationship between belief and reason to belief

that we already explained at the end of Section 3.6.2:

(RB) Rt
i,ΣBϕ ∧ ∼∃Σ′ Rt

i,Σ′B¬ϕ→ Bt
i,Σϕ

(RK) Rt
i,ΣKϕ ∧ ∼∃Σ′ Rt

i,Σ′B¬ϕ→ Kt
i,Σϕ

(BR) Bt
i,Σϕ→ Rt

i,ΣBϕ

(KR) Kt
i,Σϕ→ Rt

i,ΣKϕ

We assume that principals are sincere, in the sense that in general a principal

believes what he/she/it has previously announced. However, this principle needs

some restrictions: Firstly, a principal can distance itself from a previous annoncement

by making an announcement with the same content as before but with opposite

announcement modality (e.g., to distance itself from its previous announcement of

belief in ϕ, a principal can announce its non-belief in ϕ). Secondly, an announcement

of weak belief in ϕ can be made obsolete by an announcement of strong belief in ϕ̄ by

a trustworthy principal. Thirdly, an announcement of strong belief only implies that

the principal has reasons for strong belief; strong belief can be implied using axiom

(RK) in the absence of reasons for the negation. This is formalized in the sincerity

axiom schemas :

(SinB) I t
′

i Bϕ ∧ t > t′ ∧ ∼∃t2 > t′ (t > t2 ∧ I t2i 6Bϕ) ∧

∼∃j,Σ ∃t3 > t′ (t > t3 ∧Bt3
i,ΣT

t
j ϕ̄ ∧ I

t3
j Kϕ̄)→ Bt

i,∅ϕ

(SinK) I t
′

i Kϕ ∧ t > t′ ∧ ∼∃t2 > t′ (t > t2 ∧ I t2i 6Kϕ)→ Rt
i,∅Kϕ

(Sin 6B) I t
′

i 6Bϕ ∧ t > t′ ∧ ∼∃t2 > t′ (t > t2 ∧ I t2i Bϕ)→ ¬Bt
i,∅ϕ

(Sin 6K) I t
′

i 6Kϕ ∧ t > t′ ∧ ∼∃t2 > t′ (t > t2 ∧ I t2i Kϕ)→ ¬Kt
i,∅ϕ

We assume that all principals trust themselves, as stated by the axiom of self-trust :

(ST) Kt
i,∅Tiα
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Since T tkϕmeans that k’s judgements made before time point t about ϕ are trusted,

T tkϕ should clearly imply T t
′

k ϕ if t′ is an earlier time point than t:

(T t) T tkϕ ∧ t > t′ → T t
′

k ϕ

In order for the binary relation > to function properly in the logic, we need the

following axiom scheme. For any two time point constants c1, c2 ∈ Z∪{∞}, if c1 < c2

in the natural ordering of Z ∪ {∞} (in which ∞ is larger than any integer), the

following formula is a TDL axiom:

(>) c1 < c2 ∧ ¬c2 < c1 ∧ ¬c1 < c1

3.7 Scenarios in TDL

In this section we show how TDL can be used to model the reasoning about trust

and distrust involved in justifying the choices of revocation schemes in the scenarios

from section 3.5.1.

In order to formalize scenario 3, we need to add some details to the description

of the scenario: Suppose that A is the SOA and that at time point 1, A grants C

delegation right concerning the access α, i.e. I1
AKTCDα. At time 2, C grants B this

delegation right: I2
CKTBDα. Later, let’s say at time point 9, A finds out that C is

leaving to join the rival company, and hence now distrusts C concerning access α or to

grant delegation right concerning access a to anyone else: I9
AK¬TCα and I9

AK¬TCDα.

A also explicitly denies her previous trust statement to make clear it is no longer in

place: I9
A 6KTCDα. But since C never misused any rights, A still trusts the delegation

authorizations issued by C before time point 9: I9
AK ∀k T 9

CTkDα. We expect that C

loses his access and delegation rights at time point 9, but that B retains these rights.

We now explain how this expected result is actually attained in TDL: By axiom

(SinK), I1
AKTCDα and the fact that A does not deny this announcement before time
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point 9 imply that for 1 ≤ t ≤ 8, Kt
A,∅TCDα, which by (TD) and (KK) further implies

Kt
A,∅TCα. Since A = SOA, axiom (SOA) implies rtCα and rtCDα, i.e. C has access

and delegation rights from time point 2 until time point 8. But since I9
A 6KTCDα,

we cannot deduce r9
Cα and r9

CDα in this way: At time point 9, C no longer has

access and delegation right, as expected. However, for 2 ≤ t ≤ 9, we can deduce

rtBα and rtBDα, i.e. that B has access and delegation rights: First, note that for

1 ≤ t ≤ 9 we have Kt
A,∅ ∀k T 9

CTkDα (which by (KK) implies Kt
A,∅T

9
CTBDα). In case

1 ≤ t ≤ 8, this follows from Kt
A,∅TCDα, (TD) and (KK); in case t = 9, it follows

from I9
AK ∀k T 9

CTkDα and (SinK). I2
CKTBDα and (SinK) imply that for 2 ≤ t ≤ 9,

Kt
CTBDα, so using (ETK), we can derive Kt

A,∅TBDα, which similarly as in the above

proofs of rtCα and rtCDα implies rtBa and rtBDα.

Here is how the other scenarios discussed in Section 3.5 can be formalized in TDL

(we assume that the revocation always takes place at time point 9):

Scenario 1. User A distrusts user C concerning access and delegation:

I9
AK¬TCDα. This implies not only K9

A,∅¬TCDα, but by axiom (KK1) also

K9
A,∅∀t Kt

SOA,∅¬TCDα. According to the explanations about strong revocations in

section 3.6.2, if the SOA trusts A on strong revocations (∃Σ K9
SOA,ΣTASα), the latter

formula has the same effect as a Strong Global Resilient revocation.

Scenario 3. The reserved kind of distrust resulting from hearing a rumour for

which one does not know whether it is true is modelled in TDL as weak distrust, i.e.

weak belief in the non-trustworthiness of the principal in question: I9
AB¬TBDα. Since

axiom (SinB) blocks the inference of Bt
i,∅B¬TBDα from I9

AB¬TBDα if some trusted

principal announces trust in j (i.e. delegates to j), I9
AB¬TBDα loses its effect as soon

as such an anouncement takes place. Hence we have the effect of a non-resilient

revocation, as desired.

Scenario 4. User A neither trusts nor distrusts user C: I9
A 6BTCDα and

IA 6B9¬TCDα. These announcements remove the effect of any previous announcement

made by A about the trustworthiness of C, i.e. the situation is now practically the
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same as if A had never trusted C. This corresponds to a Weak Global Delete, in which

a positive authorization is removed, leaving no trace of it ever having been there.

3.8 Desirable behaviour of revocation schemes

In this section we show how TDL can be used to formally formulate a desirable

property for a graph-theoretically defined revocation framework. This allows us to

study revocation frameworks using the axiomatic method originating in social choice

theory.

There are different revocation schemes because there are different reasons for

revocating. We start this section by exhibiting a correspondence between revocation

schemes and reasons for revocating formalizable in TDL. The main idea behind the

desirable property of revocation frameworks that we define is that if performing

revocation schemes and granting rights was replaced by publicly announcing one’s

formal reasons for revocating or granting, then these public announcements should

logically imply (in TDL) a principal’s access right iff that principal is actually granted

access based on the delegation graph.

3.8.1 Matching reasons for revocating to revocation schemes

As explained in Section 3.6, there are five levels of trust that an agent can have in

another agent, of which four need to be distinguished in modelling delegation and

revocation. But even when i explicitly strongly distrusts j concerning delegation

right (Kt
i,∅¬TjDα), i may still trust j’s previous judgements concerning TkDα for

other principals k (Kt
i,∅∀kT tjTkDα). So the level of trust in another agent concerning

delegation right can be different from the level of trust concerning previously granted

authorizations. However, these two levels of trust are not completely independent

of each other: For example, Kt
i,∅TjDα implies Kt

i,∅∀kT tjTkDα. More generally, the
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second level of trust must be at least as high as the first level of trust. This means

that only 10 of the 16 ensuing combinations of trust levels are actually possible.

Table 3.1 shows which granting-revocation behaviour corresponds to each of these

ten possible combinations of trust levels. Some cells contain multiple revocation

schemes. This means that the granting-revocation behaviour corresponding to the

combination of trust levels represented by that cell consists of performing multiple

revocation schemes at the same time. For an agent without strong revocation rights,

the granting-revocation behaviour corresponding to some combination of trust levels

is determined by dropping the strong revocations from the revocations in the cell that

represent that combination of trust levels.

The formulas in the table have π̄ in place of α, Dα or Sα. π̄ is defined as follows:

Definition 3.7. For π ∈ {A,D, S}, we define π̄ by setting π̄ := α if π = A, π̄ := Dα

if π = D, and π̄ := Sα if π = S.

The revocation schemes in the table should always be for the same π that is used

in the π̄ in the formulas.

We consider the pair of levels of trust that i has in j to be the reason i has for

granting a right to j or revoking a right from j. Hence the graph-theoretic definitions

of the revocation schemes should be such that access is granted whenever this is

justifiable on the basis of these trust-based reasons for granting and revocating. We

use deducibility in TDL as our formal criterion for justifiablity.

These explanations already determine the desirable property for a set of graph-

theoretic definitions of revocation schemes. We now proceed to formalizing this

desirable property.

3.8.2 Formal desirable property

We first define a set C corresponding to the ten meaningful cells of Table 3.1:

Definition 3.8. C := {(m,n) ∈ {1, 2, 3, 4}2 | m ≥ n}.
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Next we define a granting-revocation action corresponding to a cell in the table:

Definition 3.9. For i, j ∈ S, (m,n) ∈ C and π ∈ P, define GR(i, j, (m,n), π) to

be the granting-revocation behavior in the cell in row m and column n of Table 1

performed by i onto j for permission π.

For example, GR(A,B, (2, 2), D) is a Weak Global Delete revocation from A to

B for permission D.

Next we define a public announcement corresponding to a cell in the table:

Definition 3.10. For i, j ∈ S, (m,n) ∈ C and π ∈ P, define I(i, j, (m,n), π) to be

the set of public announcements by i in trust in j for permission π according to the

level of trust of row m and column n of Table 1.

For example, I(A,B, (4, 1), α) is {I tAK∀kT tBTkπ̄, I tAK¬TBπ̄}.

We now need to define the notion of an authorization specification resulting from

a sequence of granting-revocation-actions.

Definition 3.11. Given a sequence σ of elements of S × S ×C × P, we define the

authorization specification A(σ) inductively as follows:

• A(〈〉) = ∅

• A(〈(i1, j1, a1, r1), . . . , (in, jn, an, rn)〉 is the authorization specification resulting

from performing GR(in, jn, an, rn) on A(〈(i1, j1, a1, r1), . . . , (in−1, jn−1, an−1, rn−1)〉).

Now we need to define which sequences of granting-revocation-actions are actually

valid in our system:

Definition 3.12. A sequence 〈(i1, j1, a1, r1), . . . , (in, jn, an, rn)〉 of elements of S ×

S × C × P is called a valid granting-revocation pattern iff for every k ≤ n, the

authorization specification A(〈(i1, j1, a1, r1), . . . , (ik, jk, ak, rk)〉) is free of strong S-

revocation loops and authorizes ik to perform GR(ik, jk, ak, rk).

Now we need to define the notion of a π-chain for π ∈ P:
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Definition 3.13. A π-chain is a chain of authorizations (p0, p1,+, π
′, t1), (p1, p2,+, π

′, t2),

. . . , (pn−1, pn,+, π
′, tn), (pn, pn+1,+, π, tn+1) satisfying the following properties:

• p0 = SOA

• π′ = D if π = A, and π′ = π otherwise.

• There are no i, j with 0 ≤ i < j ≤ n + 1 such that there is an authorization

(pi, pj,−PR, π
′′, t′), where π′′ = π if j = n+ 1, and π′′ = π′ otherwise.

• There are no i, j with 0 ≤ i < j ≤ n + 1 such that there is an authorization

(pi, pj,−PN, π
′′, t′) with t′ < tj, where π′′ = π if j = n+1, and π′′ = π′ otherwise.

The following theorem formally expresses that our refined revocation framework

has the desirable property that we have previously already explained and motivated:

Theorem 3.1. Let n ∈ N, and let σ be a valid granting-revocation pattern of length

n. Then for all i ∈ S, I(σ) |= rni α iff i is the SOA or there is an active authorization

of the form (p, i,+, α, t) in A(σ).

Proof Sketch. {Proof Sketch by Marcos Cramer} We present a proof sketch by

first exhibiting a procedure for determining which authorizations in A(σ) are active,

and then exhibiting a correspondence between statements about the activeness of

authorization in A(σ) and statements about the deducibility of certain TDL formulas

from I(σ).

Note that a +−S-chain is an S-chain followed by negative S-authorization.

σ is a valid granting-revocation pattern, so A(σ) is free of strong S-revocation

loops, i.e. there is a partial ordering < on the set of +−S-chains over A(σ). Since

the set of +−S-chains over A(σ) is finite, < is a well-ordering, and we can perform

induction along <. This allows us to determine which +−S-chains are active: A

+−S-chain C1 is active iff it is not attacked by an active +−S-chain C2 < C1.

Next we can establish which positive S-authorizations are active: A positive S-

authorization is directly inactivated iff its end node is attacked by an active +−S-

chain. A positive S-authorization is active iff it is an element of an S-chain whose

authorizations are not directly inactivated.
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Next we can establish that a strong negative authorizations is active iff it starts at

some principal at which some active S-chain ends. This allows us to establish which

other authorizations are directly inactivated: (i, j,+, π, t) is directly inactivated iff

there is an active authorization (k, j, τ, π, t′) such that either τ = −SR or τ = −SN

and t < t′. Finally, we can establish that a positive π-authorization is active iff it is

an element of a π-chain whose authorizations are not directly inactivated.

In a similar way as one can show in a step-by-step way the correctness of this

procedure for determining the activeness of authorizations in A(σ), one can prove

the following three equivalences:

1. For τ = −SR or τ = −SN, (i, j, τ, π, t) is active at time t′ iff I(σ) `

∃Σ Kt′
SOA,ΣTiSα.

2. (i, j,+, π, t) is directly inactivated at time t′ iff I(σ) ` ∃Σ Rt′
SOA,ΣB¬Tjπ̄.

3. (i, j,+, π, t) is active at time t′ iff I(σ) ` ∃Σ Kt′
SOA,ΣTiπ̄ and I(σ) 6`

∃Σ Rt′
SOA,ΣB¬Tjπ̄.

The theorem now follows from equivalence 3 together with TDL axioms (SOA), (RK)

and (ST). �

Note that if we had refrained from implementing in our revised framework one

of the five changes to Hagström et al.’s framework discussed in section 3.3.1, the

resulting framework would not satisfy this desirably property.

3.9 Conclusion

After identifying some problems with Hagström et al.’s [HJPPW01] revocation

framework, we presented a refined framework that avoids these problems. In order

to ensure that our refined framework does not itself suffer from similar problems,

we systematically studied the relation between the reasons for revocating and the

graph-theoretic definitions of revocation schemes. In order to formalize reasons

for revocating based on trust and distrust, we developed Trust Delegation Logic
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(TDL). TDL allowed us to formulate a desirable property that a graph-theoretically

defined revocation framework should satisfy. This desirable property is based on a

correspondence between revocation schemes and reasons for revocating, and requires

the revocation schemes to be defined in such a way that access is granted whenever

this is justifiable on the basis of the reasons for granting and revocating. The main

theorem of the chapter asserts that our refined framework does satisfy this desirable

property.
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Chapter 4

A Query-Driven Decision-Procedure

for Distributed Autoepistemic Logic

with Inductive Definitions

Abstract. In this chapter we first give a summary of autoepistemic logic (AEL)

and distributed autoepistemic logic (dAEL). dAEL is a multiagent non-monotonic

epistemic logic [VHCBD16]. We motivate its use for access control and define a query-

driven decision procedure for the well-founded semantics of dAEL(ID) (distributed

autoepistemic logic with inductive definitions). The decision procedure is designed in

such a way that it allows to determine access rights while minimizing the information

flow between principals in order to enhance security and reduce privacy concerns.

4.1 Motivation

Many logics have been proposed for dealing with access control (AC). Some

approaches focus on a more ‘centralized’ setting, e.g. assuming a central reference

monitor. Other approaches focus on a distributed setting i.e. there is no central
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monitoring. We will focus our study on the second case on which we do not assume

any kind of centralization.

Most of these logics use a modality k says indexed by a principal k. In this context

a principal can be a process, organization, user, etc, i.e. any entity that can manage

a resource or issue statements about the system’s resources/artifacts. In the context

of modal logics we can replace the concept of principal with agent, and may use these

terms interchangeably.

Says-based access control logics are designed for systems in which different

principals can issue statements that become part of the access control policy. The

statement k says ϕ is usually understood as “principal k supports statement ϕ”, which

can be interpreted to mean that principal k has issued statements that—together

with some additional information present in the system—imply ϕ. Different access

control logics vary in their account of which additional information may be assumed

in deriving the statements that k supports.

Many state-of-the-art says-based access control logics, e.g. Deepak Garg’s BL

[GP12], do not provide the means for deriving statements of the form ¬k says ϕ or

j says (¬k says ϕ). However, being able to derive statements of the form ¬k says ϕ

and j says (¬k says ϕ) makes it possible to model access denials naturally in a says-

based access control logic: Suppose A is a professor with control over a resource r, B

is a PhD student of A who needs access to r, and C is a postdoc of A supervising B.

A wants to grant B access to r, but wants to grant C the right to deny B’s access to

r, for example in case B misuses her rights. A natural way for A to do this using the

says-modality is to issue the statement (¬C says ¬access(B, r))⇒ access(B, r). This

should have the effect that B has access to r unless C denies her access. However,

this effect can only be achieved if our logic allows A to derive ¬C says ¬access(B, r)

from the fact that C has not issued any statements implying ¬access(B, r).

The derivation of ¬C says ¬access(B, r) from the fact that C has not issued any

statements implying ¬access(B, r) is non-monotonic: If C issues a statement implying

¬access(B, r), the formula ¬C says ¬access(B, r) can no longer be derived. In other
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words, adding a formula to the access control policy causes that something previously

implied by the policy is no longer implied. Existing says-based access control logics

are monotonic, so they cannot support the reasoning described above for modelling

denial with the says-modality.

In order to derive statements of the form ¬k says ϕ, we have to assume the

statements issued by a principal to be a complete characterization of what the

principal supports. This is similar to the motivation behind Moore’s autoepistemic

logic (AEL) to consider an agent’s theory to be a complete characterization of what

the agent knows [Moo85b, Lev90, Nie91, DMT11]. This motivates an application of

AEL to access control.

However, AEL cannot model more than one agent. In order to extend it to the

multi-agent case, one needs to specify how the knowledge of the agents interacts.

Most state-of-the-art access control logics allow j says (k says ϕ) to be derived from

k says ϕ, as this is required for standard delegation to be naturally modelled using

the says-modality. In the knowledge terminology of AEL, this can be called mutual

positive introspection between agents. In order to also model denial as described

above, we also need mutual negative introspection, i.e. that j says (¬k says ϕ) to be

derived from ¬k says ϕ. Van Hertum et al. [VHCBD16] have defined the semantics

of dAEL(ID) in such a way that mutual positive and negative introspection between

the agents is ensured.

dAEL(ID) also incorporates inductive definitions, thus allowing principals to

define access rights and other properties relevant for access control in an inductive way.

Inductive (recursive) definitions are a common concept in all branches of mathematics.

Inductive definitions in dAEL(ID) are intended to be understood in the same way as

in the general purpose specification language FO(·) of the IDP system [DBBD14b].

Denecker [Den00] showed that in classical logics, adding definitions leads to a strictly

more expressive language.

Most of the semantics that have been proposed for logic programs can be adapted

to inductive definitions. Denecker and Venneckens [DV14] have argued that the
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well-founded semantics correctly formalizes our intuitive understanding of inductive

definitions, and hence that it is actually the right semantics. Following them, we use

the well-founded semantics for inductive definitions.

4.2 Autoepistemic Logic AEL

We introduce the basic concepts of autoepistemic logic [Moo85b]. Autoepistemic logic

augments first-order logic with the modal operator for knowledge K.

Informally, the modal formula Kϕ is to be read as “it is known that ϕ”. Contrary

to other epistemic theories, we will not distinguish between belief and knowledge, and

may use these terms interchangeably.

The language of AEL is defined using the standard rules for the syntax of FO

(Definition 2.3) augmented with the epistemic modality K.

Definition 4.1 (AEL-Syntax). The set of formulae of LAEL is defined by the

following EBNF rule:

ϕ := P (t1, . . . , tn) | ¬ϕ | ϕ ∧ ϕ | t = t | ∀xϕ | Kϕ

The symbols ∨,⇒, ⇔ and ∃ are treated as abbreviations in the standard way.

We will say theory for a conjunctively interpreted collection of formulae.

Definition 4.2 (AEL-Theory). An AEL theory T is a set consisting of AEL

formulae.

We have all the syntactic machinery in place, we now start with the semantic

considerations.

In order to define the semantics for AEL we first introduce possible-world

structures.

A structure, as defined in Definition 2.6, represents a state of affairs. It gives an

account of a state of the world. We extend this concept to a set of structures that

can represent several states of affairs that can be possible in our world.
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Definition 4.3 (Possible-World Structure). A possible-world structure (pws) Q is a

set of structures.

A pws contains all structures that are consistent with the agents’ beliefs. We can

order this set of structures with respect to the amount of knowledge they contain.

Definition 4.4 (Ordering-pws). Given two pws Q1 and Q2, we define the following

order over pws’s: Q1 ≤K Q2 if and only if Q1 ⊇ Q2.

When Q1 ≤K Q2, we say that Q2 contains more knowledge then Q1.

We must point out that the the knowledge ordering is inverse to the subset

ordering. Intuitively in a pws containing less elements, some of the uncertainties

about possible knowledge states (or possibilities) have been ‘settled’. Having more

elements reflect a higher level of uncertainty.

In the following examples, and for most part of the chapter, we will restrict

ourselves to use only the propositional fragment of the logic. That is, we assume

that all predicate symbols have arity 0, i.e. are propositional variables. Thus, the

domain becomes irrelevant at this point, and we omit the domain from the structure

when it is not required.

For this propositional fragment we use set notation to express the structures by

listing the cases in which propositional variables are fixed to have the truth value

true. For example, if we have a language with two propositional variables p and q,

{p} denotes the structure that makes p true and q false.

Example 4.1 (pws). Consider the vocabulary with only one propositional variable p.

There are four possible world structures:

• Q0 = {{}, {p}} represents the lack of knowledge, every structure is considered

possible. We write ⊥ for this pws. ⊥ represents the state of complete

uncertainty.

• Q1 = {{p}} represents the knowledge of p being true.
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• Q2 = {{}} represents the knowledge that p is false.

• Q3 = ∅ represents the inconsistent set of beliefs. We write > for this pws.

In the pws ⊥ we have a state of uncertainty, p can be either true or false. By

fixing the truth value of p to be true we get Q1 and if we fix p to be false we get Q2.

We have that Q1, Q2 contain more knowledge than ⊥, that is, ⊥ ≤K Q1, ⊥ ≤K Q2,

since ⊥ ⊇ Q1 and ⊥ ⊇ Q2.

The complete (partial) ordering over the pws’s is as follows: ⊥ ≤K Q1, ⊥ ≤K Q2,

⊥ ≤K >, Q1 ≤K >, and Q2 ≤K >.

We now define a two-valued valuation for the formulae of AEL with respect to a

pws (which represents the state of mind of an agent) and a structure, representing

the actual state of the world.

Definition 4.5 (Two-Valued AEL-Valuation). We inductively define a valuation

ϕQ,I ∈ {t, f} for an AEL formula ϕ with respect to a pws Q and a structure I as

follows:

(P (t̄))Q,I = t iff tI ∈ P I

(t1 = t2)Q,I = t iff tI1 = tI2

(ϕ1 ∧ ϕ2)Q,I = t iff (ϕ1)Q,I = t and (ϕ2)Q,I = t

(¬ϕ)Q,I = t iff (ϕ)Q,I = f

(∀x ϕ)Q,I = t iff for each d ∈ D, (ϕ[x/d])Q,I = t

(Kϕ)Q,I = t iff ϕ(Q,J) = t for all J ∈ Q

We define the two-valued valuation TQ,I ∈ {t, f} of an AEL theory T by TQ,I = t

iff ϕQ,I = t for all ϕ ∈ T

The notion of supported model is defined as follows.
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Definition 4.6 (Supported Model). A pws Q is a supported model of a theory T iff:

Q = {I | TQ,I = t}

Note that a supported model only contains those structures that make the theory

true, and no other structure. That is, a supported model Q contains exactly all

structures I such that I makes T true given Q (i.e. TQ,I = t).

We must point out that a supported model is what Moore [Moo85b] originally

called the autoepistemic expansion of the theory.

In the following example we show how to calculate some simple supported models.

Even though this minimal examples may seem trivial, thanks to the small number of

pws ’s we can iterate over the whole set of possible structures.

Example 4.2 (Supported Model Example).

a) T = {Kp ⇒ p}: we have the following pws’s: ⊥ = {{p}, {}}, Q1 = {{p}},

Q2 = {{}}, > = ∅.

First we check the truth value of the propositional variables, since it does not

depend on the pws’s:

(i) pQ,{} = f for any pws Q; and

(ii) pQ,{p} = t for any pws Q.

Now calculate the valuation of the formulae contained in T for each pws:

⊥:

(Kp)⊥,I = f for any I, since p⊥,{} = f and {} ∈ ⊥.

So, (Kp ⇒ p)⊥,I = t for any I. Therefore, ⊥ = {I | T⊥,I = t}, i.e. ⊥ is

a supported model for T .

Q1:

(Kp)Q1,I = t since, Q1 = {{p}} and pQ1,{p} = t.
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So, (Kp ⇒ p)Q1,I = t iff I = {p}. Therefore, Q1 = {I | TQ1,I = t}, i.e.

Q1 is a supported model for T . Note that (Kp⇒ p)Q1,{} = f, that is, Q1

contains exactly all I that make T true given Q1.

Q2:

(Kp)Q2,I = f for any I since, pQ2,{} = f and {} ∈ Q2.

So, (Kp⇒ p)Q2,I = t for any I. Since {p} 6∈ Q2, it follows that Q2 is not

a supported model for T .

>:

(Kp)>,I = t is vacuously true since there is no element in the pws >;

So, (Kp ⇒ p)>,I = t iff I = {p}. Since {p} 6∈ >, it follows that > is not

a supported model for T .

Thus, the supported models for T are the pws’s ⊥ and {{p}}. This means that

following the supported model semantics, an agent with theory T = {Kp ⇒ p}

might have no knowledge concerning the truth value of p or ¬p, or might know

p, but certainly does not know ¬p.

b) T = {Kp ⇔ p}: we have the following pws’s: ⊥ = {{p}, {}}, Q1 = {{p}},

Q2 = {{}}, > = ∅.

The truth assignments for the propositional variables are the same as in a):

(i) pQ,{} = f, and (ii) pQ,{p} = t; for any pws Q.

Now we calculate the valuation of the formulae contained in T for each pws:

⊥:

(Kp)⊥,I = f for any I since, p⊥,{} = f and {} ∈ ⊥.

So, (Kp⇔ p)⊥,I = t iff I = {}. Since {p} ∈ ⊥, it follows that ⊥ is not a

supported model.

Q1:

(Kp)Q1,I = t since Q1 = {{p}} and pQ1,{p} = t.

So, (Kp ⇔ p)Q1,I = t iff I = {p}. Therefore, Q1 = {I | TQ1,I = t}, i.e.

Q1 is a supported model for T .
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Q2:

(Kp)Q2,I = f for any I since, pQ2,{} = f and {} ∈ Q2,

So, (Kp⇔ p)Q2,I = t iff I = {}. Therefore, Q2 = {I | TQ2,I = t}, i.e. Q2

is a supported model for T .

>:

(Kp)>,I = t is vacuously true since there is no element in the pws >;

So, (Kp ⇔ p)>,I = t iff I = {p}. Since {p} 6∈ >, it follows that > is not

a supported model for T .

Thus, the supported models for T are the pws’s {{p}} and {{}}. This means that

following the supported model semantics, an agent with theory T = {Kp ⇔ p}

might either know p or might know ¬p, but certainly knows precisely one of the

two.

Supported models (more precisely autoepistemic expasions semantics) lead to

certain anomalies in the constructed models. Some of these anomalies have been

pointed out Halpern and Moses [HM85], and Konolige [Kon88]. Subsequently, various

semantics for AEL have been proposed over time in order to avoid these anomalies.

Denecker et al. [DMT04] showed that most proposed semantics of AEL can be defined

by direct application of Approximation Fixpoint Theory (AFT). We will define four

further semantics for AEL following the methodology of AFT.

Before defining these four further semantics, we first present an alternative

definition of the stable semantics that motivates the semantic constructions that we

will introduce thereafter. For this, we will first define an operator DT on the lattice

of pws ’s.

Definition 4.7 (DT Operator). Given an AEL theory T , we define the operator DT

over pws’s as follows:

DT (Q) = {I | TQ,I = t}
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Now we can re-define the concept of supported models in terms of the fixpoints

of such operator.

A pws Q is a supported model of T if and only if DT (Q) = Q. In other words, Q

is a supported model of T if Q is a fixpoint of DT .

We take this fixpoint construction as basis for defining different semantics for

AEL using Approximation Fixpoint Theory. The idea is that we approximate the

operator DT by an approximator and study fixpoints of the approximator.

To approximate the operator DT , we approximate each pws by an interval called

belief pair. Then the approximator of DT applies to such interval.

Definition 4.8 (Belief Pair). A belief pair B is a pair is a tuple (Bc, Bl) where Bc

and Bl are two pws’s.

We define a precision ordering for belief pairs.

Definition 4.9 (Precision Ordering on Belief Pairs). Given to belief pairs B1 and

B2, we define the following order over belief pairs: B1 ≤p B2 if and only if Bc
1 ≤K Bc

2

and Bl
1 ≥K Bl

2

Following the preliminary discussion in Section 2.4, we are only interested in a

particular set of belief pairs.

Definition 4.10 (Consistent Belief Pair). A belief pair B is consistent if an only if

Bc ≤K Bl (i.e. Bc ⊇ Bl)

Belief pairs are used to approximate a pws Q such that Bc ≤K Q ≤K Bl.

Therefore, we are only interested in consistent belief pairs where Bc is a lower bound

for Q and Bl is the upper bound for Q. We call Bc the conservative bound and Bl

the liberal bound for Q.

From this point forward we use only consistent belief pairs and will refer to them

collectively as belief pair without any distinction.

We now define a three-valued semantic valuation. The main difference respect

with the previous semantical characterization is that the boolean connectives, i.e.
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¬ and ∧, are interpreted as defined in Kleene’s three-valued logic (see Section 2.2).

Additionally, a three-valued valuation is defined for the modal operator K.

We again use truth values t for truth and f for falsity, and now we have a value

u for undefined. The truth order <t on truth values is induced by f <t u <t t. The

precision order <p on truth values is induced by u <p t, u <p f. We define t−1 = f,

f−1 = t and u−1 = u.

Definition 4.11 (Three-Valued AEL Valuation). We inductively define a three-

valued valuation of AEL formulas with respect to a consistent belief pair B and a

structure I (we write ϕB,I) as follows:

(P (t̄))B,I =

 t if t̄I ∈ P I

f if t̄I 6∈ P I

(¬ϕ)B,I = (ϕB,I)−1

(ϕ ∧ ψ)B,I = glb≤t(ϕ
B,I , ψB,I)

(∀x ϕ)B,I = glb≤t{ϕ[x/d]B,I | d ∈ D}

(Kϕ)B,I =


t if ϕB,I

′
= t for all I ′ ∈ Bc

f if ϕB,I
′
= f for some I ′ ∈ Bl

u otherwise

We define the three-valued valuation TB,I ∈ {t,u, f} of an AEL theory T by

TB,I = glb≤t({ϕB,I | ϕ ∈ T})

We approximate the value of the operator DT by defining the approximator D∗T ,

an operator on belief pairs [DMT00].

Definition 4.12 (D∗T Approximator). We define the approximator D∗T over consistent

belief pairs as follows:

D∗T (B) = ({I | TB,I 6= f}, {I | TB,I = t})
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Intuitively, the approximator D∗T gathers: (i) all structures I such that I makes

T true or undecided given B, for the conservative bound; and, (ii) all structures I

such that I makes T true given B, for the liberal bound.

The approximator D∗T maps a belief pair B to a belief pair B′. The new

conservative bound B′c contains all the knowledge that can be certainly derived from

the current state. The new liberal bound B′l contains all the knowledge that can be

possibly derived from the current state.

By the use of approximators instead of just a simple fixpoint characterization (the

operator DT ) a class of semantics emerge for AEL. Namely the following semantics

can be defined:

• Kripke-Kleene semantics [DMT98] (Kripke-Kleene fixpoints).

• Stable semantics [DMT03] (stable fixpoints).

• Partial Stable semantics [DMT03] (partial stable fixpoints).

• Well-founded semantics [DMT03] (well-founded fixpoints).

Well-founded and stable semantics were new semantics induced by the usage of

AFT. These semantics closely correspond to the same semantic defined for logic

programs. We are especially interested in the well-founded semantics, since this

semantic—afterwards extended to the multi-agent case—has the desired behaviour

for access control applications [VHCBD16].

As discussed in Section 2.4, AFT in general presupposes an approximator defined

for the whole bi-lattice L2, i.e. also for inconsistent pairs. However, for a symmetric

operator A on L2, the restriction Ac of A to Lc has the same consistent fixpoints of

the different kinds (KK, Stable, WF) as A [DMT04, Theorem 4.2]. So, it is enough

to define an operator on Lc (as we have done) and assume that it gets extended to

some symmetric operator.
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We are interested only in consistent belief pairs. Nonetheless inconsistent belief

pairs may appear when we iteratively calculate the fixpoints of an operator, or more

precisely of an approximator.

We extend the approximator to a particular set of inconsistent belief pairs i.e.

those inconsistent belief pairs that are symmetric with respect to the belief pairs in

Lc. We define L′ to be Lc ∪ {(x, y) | (y, x) ∈ Lc}. Alternatively L′ can be defined as

L′ = Lc ∪ (Lc)−1. We have that Lc ⊆ L′ ⊆ L.

We extend D∗T to L′ by defining:

D∗T (Bc, Bl) = (D∗T (Bl, Bc)l, D∗T (Bl, Bc)c) whenever Bl ≤K Bc

The importance of this definition can be seen in the coming examples.

Definition 4.13 (Kripke-Kleene Model). The belief pair B is the Kripke-Kleene

model of T iff B is the least precise fixpoint of D∗T .

The Kripke-Kleene model always exists, since the operator D∗T is monotone

[DMT03, Prop 3.9]. When the domain is finite its construction is decidable. For

a finite theory T over a finite domain, the Kripke-Kleene model can be computed

using the following algorithm:

Algorithm 1 Kripke-Kleene Model

Require: finite theory T over a finite domain
Ensure: the KK-Model for T

1: Let B0 := (⊥,>)
2: repeat
3: Bi+1 := D∗T (Bi)
4: until D∗T (Bk) = Bk

5: return Bk

Proposition 1 (Algorithm 1 Correctness). Let T be a finite AEL theory, where the

domain also finite. Algorithm 1 returns the Krike-Kleene model for T .
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Proof. Follows directly from the fact that the operator D∗T is a monotone operator

[DMT03, Prop 3.9]. This ensures the existence of a fixpoint for the operator. Since

the domain (and theory) are finite, this fixpoint can be computed in finitely may

steps, so the termination of the algorithm is ensured. Every iteration generates a

belief pair more precise than the previous, until the least precise fixpoint is reached,

that is the Kripke-Kleene model for the theory.

In the following example we show how to apply Algorithm 1 to compute the

Kripke-Kleene model for the theories in Example 4.2.

Example 4.3 (Kripke-Kleene Model Example).

a) T = {Kp⇒ p}: we start with the belief pair B0 := (⊥,>).

The truth assignment for the propositional variables is as follows:

(i) pQ,{} = f for any Q, and (ii) pQ,{p} = t for any Q. From (ii) it follows

that (Kp⇒ p)Q,{p} = t for any Q.

We calculate B1:

(Kp)(⊥,>),{} = u since ∃I ∈ ⊥ such that pQ,I = f; and 6 ∃I ∈ > such that

pQ,I = f. So, (Kp⇒ p)(⊥,>),{} = u since pQ,{} = f

B1 := D∗T ((⊥,>))

:= ({I | T (⊥,>),I 6= f}, {I | T (⊥,>),I = t})

:= (⊥, {{p}})

We calculate B2:

(Kp)(⊥,{{p}}),{} = u since ∃I ∈ ⊥ such that pQ,I = f and 6 ∃I ∈ {{p}} such

that pQ,I = f. So, (Kp⇒ p)(⊥,{{p}}),{} = u since pQ,{} = f.

B2 := D∗T ((⊥, {{p}}))

:= ({I | T (⊥,{{p}}),I 6= f}, {I | T (⊥,{{p}}),I = t})

:= (⊥, {{p}})
We have reached a fixpoint, because B2 = B1. So the Kripke-Kleene model

for the theory is: (⊥, {{p}}). This means that following the Kripke-Kleene
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semantics, an agent with theory T = {Kp⇒ p} might have no knowledge

concerning p or ¬p, or might know p, but certainly does not know ¬p.

b) T = {Kp⇔ p}: we start with the belief pair B0 := (⊥,>).

The truth assignment for the propositional variables is as follows:

(i) pQ,{} = f for any Q, and (ii) pQ,{p} = t for any Q

We calculate B1:

(Kp)(⊥,>),{} = u since ∃I ∈ ⊥ such that pQ,I = f and 6 ∃I ∈ > such that

pQ,I = f. So, (Kp⇔ p)(⊥,>),{} = u.

(Kp)(⊥,>),{p} = u since ∃I ∈ ⊥ such that pQ,I = f and 6 ∃I ∈ ⊥ such that

pQ,I = f. So, (Kp⇔ p)(⊥,>),{p} = u.

Finally, B1 := ({{}, {p}}, ∅) = (⊥,>).

We have reached a fixpoint, because B1 = B0 So the Kripke-Kleene model

for the theory is: (⊥,>). This means that following the Kripke-Kleene

semantics, an agent with theory T = {Kp⇔ p} might have no knowledge

concerning p or ¬p, or might have the inconsistent knowledge that p and

¬p both hold, or might have some intermediate knowledge, like just the

knowledge of p or just the knowledge of ¬p.

We procede to define the rest of the semantics described above. For that purpose

we introduce a new operator, the stable operator Dst
T .

Definition 4.14 (Dst
T Operator). The stable operator Dst

T is the least fixpoint of the

conservative bound given a fixed liberal bound, that is, Dst
T (Q) = lfp(D∗T (·, Q)c)

Intuitively, the operator Dst
T can be viewed as new conservative bound of what is

believed given a fixed liberal point of view.

The stable operator Dst
T over a finite domain can be calculated using the following

algorithm:
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Algorithm 2 Stable Operator Dst
T

Require: theory T , pws Q
Ensure: a stable model for T

1: Let Q0 := ⊥
2: repeat
3: Qi+1 := D∗T (Qi, Q)c

4: until Qi = Qi+1

5: return Qi

Proposition 2 (Algorithm Correctness). Let T be an AEL theory. Algorithm 2

returns Dst
T (Q) for input T , Q.

Proof. The proof can be constructed in a similar manner as in Proposition 1.

Definition 4.15 (Stable Model). Let T be an AEL theory. A stable model of T is

a pws Q, that is a fixpoint of Dst
T .

There are several equivalent ways in which a stable and partial stable models can

be defined, see Van Hertum et al. [VHCBD16] and Denecker et al. [DMT04] for an

alternative definition.

Definition 4.16 (Dst∗
T Approximator). We define the approximator Dst∗

T over a belief

pair B as follows:

Dst∗
T = (Dst

T (Bl), Dst
T (Bc))

This last approximator yields the last remaining semantical characterizations,

partial stable models and well-founded models.

Definition 4.17 (Partial Stable Model). Let T be an AEL theory. A partial stable

model of T is a fixpoint of Dst∗
T .

Definition 4.18 (Well-founded Model). Let T be an AEL theory. The well-founded

model (wfm) of T is the least precise fixpoint of Dst∗
T .

The wfm for a finite AEL theory (over a finite domain) can be calculated using

the following algorithm:
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Algorithm 3 Well-Founded Model

Require: theory T
Ensure: the well-founded model for T

1: Let B0 := (⊥,>)
2: repeat
3: Bc

i+1 := Dst
T (Bl

i) **Algorithm 2
4: Bl

i+1 := Dst
T (Bc

i ) ** Algorithm 2
5: until Bi+1 = Bi

6: return Bi

Proposition 3 (Algorithm Correctness). Let T be an AEL theory. For input T ,

Algorithm 3 returns the well founded model of T .

Proof. Follows from Proposition 2.

Example 4.4 (Stable Model Example).

a) T = {Kp⇒ p}:

We calculate the fixpoints of Dst
T by calculating Dst

T (Q) for each possible pws:

We calculate Dst
T (⊥):

Q0 := ⊥

(Kp)(⊥,⊥),{} = f since ∃I ∈ ⊥ such that p(⊥,⊥),I = f. So, (Kp⇒ p)(⊥,⊥),{} =

t. Similarly, (Kp⇒ p)(⊥,⊥),{p} = t .

Q1 := D∗T ((⊥,⊥))c

:= ({I | T (⊥,⊥),I 6= f}, {I | T (⊥,⊥),I = t})c

:= (⊥,⊥)c

:= ⊥

We have reached a fixpoint, because Q1 = Q0. Thus, Dst
T (⊥) = ⊥

We calculate Dst
T ({{p}}):

Q0 := ⊥
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(Kp)(⊥,{{p}}),{} = u since ∃I ∈ ⊥ such that p(⊥,{{p}}),I = f and 6 ∃I ∈ {{p}}

such that p(⊥,{{p}}),I = f. So, (Kp⇒ p)(⊥,{{p}}),{} = u since p(⊥,{{p}}),{} = f.

Similarly, (Kp⇒ p)(⊥,{{p}}),{p} = t since p(⊥,{{p}}),{p} = t.

Q1 := D∗T ((⊥, {{p}}))c

:= ({I | T (⊥,{{p}}),I 6= f}, {I | T (⊥,{{p}}),I = t})c

:= (⊥, {{p}})c

:= ⊥

We have reached a fixpoint, because Q1 = Q0. Thus, Dst
T ({{p}}) = ⊥.

We calculate Dst
T ({{}}):

Q0 := ⊥

(Kp)(⊥,{{}}),{} = f since ∃I ∈ {{}} such that p(⊥,{{}}),I = f. So, (Kp ⇒

p)(⊥,{{}}),{} = t. Similarly, (Kp⇒ p)(⊥,{{}}),{p} = t.

Q1 := D∗T ((⊥, {{}}))c

:= (⊥,⊥)c

:= ⊥

We have reached a fixpoint, because Q1 = Q0. Thus, Dst
T ({{}}) = ⊥.

We calculate Dst
T (>):

Q0 = ⊥

(Kp)(⊥,>),{} = u since ∃I ∈ ⊥ such that p(⊥,>),I = f and 6 ∃I ∈ > such

that p(⊥,>),I = f. So, (Kp ⇒ p)(⊥,>),{} = u since p(⊥,>),{} = f. Similarly,

(Kp⇒ p)(⊥,>),{p} = t since p(⊥,>),{p} = t.

Q1 := D∗T ((⊥,>))c

:= (⊥, {{p}})c

:= ⊥

We have reached a fixpoint, because Q1 = Q0. Thus, Dst
T (>) = ⊥.
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The above results imply that Dst
T has only one fixpoint Dst

T (⊥) = ⊥. So the stable

model for the theory is: ⊥. This means that following the stable semantics, an

agent with theory T = {Kp ⇒ p} has no knowledge concerning the truth value

of p or ¬p.

b) T = {Kp⇔ p}:

We calculate the fixpoints of Dst
T by calculating Dst

T (Q) for each possible pws:

We calculate Dst
T (⊥):

Q0 := ⊥

(Kp)(⊥,⊥),{} = f since ∃I ∈ ⊥ such that p(⊥,⊥),I = f. So, (Kp⇔ p)(⊥,⊥),{} =

t since p(⊥,⊥),{} = f. Similarly, (Kp⇔ p)(⊥,⊥),{p} = f since p(⊥,⊥),{p} = t.

Q1 := D∗T ((⊥,⊥))c

:= ({{}}, {{}})c

:= {{}}

Q2 := D∗T (({{}},⊥))c. The belief pair ({{}},⊥) is not consistent. As

previously discussed, since the approximator D∗T is symmetric we swap

the belief pair to regain consistency and calculate accordingly for the new

consistent belief pair.

(Kp)(⊥,{{}}),{} = f since ∃I ∈ {{}} such that p(⊥,{{}}),I = f. So, (Kp ⇔

p)(⊥,{{}}),{} = t since p(⊥,{{}}),{} = f. Similarly, (Kp ⇔ p)(⊥,{{}}),{} = f

since pQ,{p} = t.

Q2 := D∗T ((⊥, {{}}))c

:= ({{}}, {{}})c

:= {{}}

We have reached a fixpoint, because Q2 = Q1. Thus, Dst
T (⊥) = ⊥.

We calculate Dst
T ({{p}}):

Q0 := ⊥
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(Kp)(⊥,{{p}}),{} = u since ∃I ∈ ⊥ such that p(⊥,{{p}}),I = f and 6 ∃I ∈ {{p}}

such that p(⊥,{{p}}),I = f. So, (Kp ⇔ p)(⊥,{{p}}),{} = u. Similarly, (Kp ⇔

p)(⊥,{{p}}),{p} = u.

Q1 := D∗T ((⊥, {{p}}))c

:= (⊥,>)c

:= ⊥

We have reached a fixpoint, because Q1 = Q0. Thus, Dst
T ({{p}}) = ⊥.

We calculate Dst
T ({{}}):

Q0 := ⊥

(Kp)(⊥,{{}}),{} = f since ∃I ∈ {{}} such that p(⊥,{{}}),I = f. So, (Kp ⇔

p)(⊥,{{}}),{} = t. Similarly, (Kp⇔ p)(⊥,{{}}),{p} = f.

Q1 := D∗T ((⊥, {{}}))c

:= ({{}}, {{}})c

:= {{}}

(Kp)({{}},{{}}),{} = f since ∃I ∈ {{}} such that p({{}},{{}}),I = f. So, (Kp⇔

p)({{}},{{}}),{} = t. Similarly, (Kp⇔ p)({{}},{{}}),{p} = f.

Q2 := D∗T (({{}}, {{}}))c

:= ({{}}, {{}})c

:= {{}}

We have reached a fixpoint, because Q2 = Q1. Thus, Dst
T ({{}}) = {{}}

We calculate Dst
T (>):

Q0 = ⊥

(Kp)(⊥,>),{} = u since ∃I ∈ ⊥ such that p(⊥,>),I = f and 6 ∃I ∈ > such that

p(⊥,>),I = f. So, (Kp⇔ p)(⊥,>),{} = u. Similarly, (Kp⇔ p)(⊥,>),{p} = u.

Q1 := D∗T ((⊥,>))c

:= (⊥,>)c

:= ⊥
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We have reached a fixpoint, because Q1 = Q0. Thus, Dst
T (>) = ⊥.

The above results mean that Dst
T has only one fixpoint: Dst

T ({{}}) = {{}}. So

the stable model for the theory is: {{}}. This means that following the stable

semantics, an agent with theory T = {Kp⇔ p} certainly knows ¬p.

The following example shows how to calculate the well-founded model. We use

the results from Example 4.4.

Example 4.5 (Well-Founded Model Example).

a) T = {Kp⇒ p}: we start with the belief pair B0 := (⊥,>).

We calculate B1:

Bc
1 := Dst

T (>) = ⊥

Bl
1 := Dst

T (⊥) = ⊥

We have B1 := (⊥,⊥).

We calculate B2:

Bc
2 := Dst

T (⊥) = ⊥

Bl
2 := Dst

T (⊥) = ⊥

We have B2 := (⊥,⊥).

We have reached a fixpoint, because B2 = B1. So the Well-founded

model for the theory is: (⊥,⊥). This means that following the well-

founded semantics, an agent with theory T = {Kp⇒ p} has no knowledge

concerning the truth value of p or ¬p.

b) T = {Kp⇔ p}: we start with the belief pair B0 := (⊥,>).

We calculate B1:

Bc
1 := Dst

T (>) = ⊥

Bl
1 := Dst

T (⊥) = {{}}

We have B1 := (⊥, {{}}).
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We calculate B2:

Bc
2 := Dst

T ({{}}) = {{}}

Bl
2 := Dst

T (⊥) = {{}}

We have B2 := ({{}}, {{}}).

We calculate B3:

Bc
3 := Dst

T ({{}}) = {{}}

Bl
3 := Dst

T ({{}}) = {{}}

We have B3 := ({{}}, {{}}).

We have reached a fixpoint, because B3 = B2 So the Well-founded model

for the theory is: ({{}}, {{}}). This means that following the well-founded

semantics, an agent with theory T = {Kp⇔ p} certainly knows that ¬p.

4.3 Distributed Autoepistemic Logic - dAEL

Now we introduce a multi-agent variant for AEL called dAEL first introduced by

Van Hertum et al. [VHCBD16].

Throughout the remainder of the chapter, we assume a set A of principals and a

first-order vocabulary Σ with a finite domain, they are both assumed given and fixed

(except stated otherwise).

Definition 4.19 (dAEL Syntax). dAEL formulas are defined by the following EBNF

rule, where t denotes an arbitrary term and x and arbitrary variable:

ϕ ::= P (t, . . . , t) | t = t | ¬ϕ | (ϕ ∧ ϕ) | ∀x ϕ | t says ϕ

The symbols ∨, ⇒, ⇔ and ∃ are treated as abbreviations in the standard way.

The intuitive reading of t says ϕ is “t is a principal and t supports ϕ”. So if the

term t does not denote a principal, t says ϕ will be interpreted to be false.

83



In [VHCBD16], t says ϕ is also written as Ktϕ, which is more in line with the

notation of standard autoepistemic logic. We chose the former to be in line with

the notation in the access control literature. We have motivated the usage of

autoepistemic logic as an access control logic.

Inductive definitions are generally used to define a reduced set of predicates. We

call these defined predicates. The rest of the predicates defined in the language (i.e.

outside the inductive definition) are called parameters.

Definition 4.20. Let ∆ = {P1(t̄1) ← ϕ1, . . . , Pn(t̄n) ← ϕn} be an inductive

definition. Then Def(∆) is defined to be {P1, . . . , Pn} and is called the set of defined

predicates of ∆. The set of predicates in Σ that are not in Def(∆) is denoted Par(∆)

and is called the set of parameters of ∆.

Definition 4.21 (dAEL-Theory). A dAEL-Theory is a set that consists of dAEL

formulas and inductive definitions.

Definition 4.22 (Distributed Theory). A distributed theory is an indexed family

T = (TA)A∈A where each TA is a dAEL-Theory.

We now start with the semantical considerations. We lift all the common

definitions already introduced for the semantics of AEL to the distributed case in

dAEL.

A pws (as in Definition 4.3) represents the possible states of affairs for a particular

theory, i.e. one principal. We extend this concept, to a set of pws ’s for each principal

on the system.

Definition 4.23 (Distributed PWS). A distributed possible-world structure (dpws)

Q = (QA)A∈A is a family of pws’s QA for each principal A ∈ A.

We define again a precedence ordering, now over dpws .

Definition 4.24 (Precedence Ordering on dpws). Given two dpws Q1 and Q2, we

define the following order over dpws’s: Q1 ≤K Q2 if and only if Q1
A ≤K Q2

A for each

A ∈ A.
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We now define a two-valued valuation for the formulae of dAEL with respect to

dpws , which represents the collective state of mind of the agents, and a structure

representing the actual state of the world.

Definition 4.25 ( Two-Valued dAEL Valuation). We inductively define a two-valued

valuation of dAEL(ID) formulas with respect to a dpws Q and a structure I (we write

ϕQ,I) as follows:

(P (t̄))Q,I = t iff t̄I ∈ P I

(t1 = t2)Q,I = t iff tI1 = tI2

(ϕ1 ∧ ϕ2)Q,I = t iff (ϕ1)Q,I = t and (ϕ2)Q,I = t

(¬ϕ)Q,I = t iff (ϕ)Q,I = f

(∀x ϕ)Q,I = t iff for each d ∈ D, (ϕ[x/d])Q,I = t

(t says ϕ)Q,I = t iff tI ∈ A and ϕ(Q,J) = t for all J ∈ QtI

We define the two-valued valuation TQ,I ∈ {t, f} of a dAEL theory T by TQ,I = t

iff ϕQ,I = t for all ϕ ∈ T .

The set of dpws ’s equipped with the precision ordering forms a complete lattice.

We define an operator DT over this lattice.

Definition 4.26 (DT Operator). We define the operator DT over dpws’s as follows:

DT (Q) = ({I | (TA)Q,I = t})A∈A

To approximate the operator DT , we build an interval called distributed belief

pair. Intuitively, a belief pair represents an approximation of the state of mind of the

the set of agents. The pair consists of a conservative bound Bc and a liberal bound

Bl of each agent’s state of mind.

Definition 4.27 (Distributed Belief Pair). A distributed belief pair B is a pair B =

(Bc,Bl) of two dpws’s Bc, and Bl such that Bc ≤K Bl of dpws’s.
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We define a precision ordering for distributed belief pairs.

Definition 4.28 (Precision Ordering on Distributed Belief-Pairs). Given to belief

pairs B1 and B2, we define the following order over belief pairs: B1 ≤p B2 if and only

if Bc1 ≤K Bc2 and Bl1 ≥K Bl2

We now define a two-valued valuation for the formulae of dAEL with respect to

distributed belief pair and a structure representing the actual state of the world.

Definition 4.29 (Three-Valued dAEL Valuation). We inductively define a three-

valued valuation of dAEL(ID) formulas with respect to a distributed belief pair B and

a structure I as follows:

(P (t̄))B,I =

 t if t̄I ∈ P I

f if t̄I 6∈ P I

(¬ϕ)B,I = (ϕB,I)−1

(ϕ ∧ ψ)B,I = glb≤t(ϕ
B,I , ψB,I)

(∀x ϕ)B,I = glb≤t{ϕ[x/d]B,I | d ∈ D}

(t says ϕ)B,I =



t if tI ∈ A and

ϕB,I
′
= t for all I ′ ∈ BctI

f if tI /∈ A or

ϕB,I
′
= f for some I ′ ∈ BltI

u otherwise

We define the three-valued valuation TB,I ∈ {t,u, f} of a dAEL theory T by

TB,I = glb≤t({ϕB,I | ϕ ∈ T})

Inductive definitions in dAEL(ID) are interpreted according to the well-founded

semantics for inductive definitions, for details see [DV14]. The well-founded model of

an inductive definition ∆ is always defined relative to a context O. This context is an

interpretation of the predicate symbols outside the inductive definition (i.e. Par(∆)).

We denote the well-founded model of ∆ relative to O by wfm∆(O).
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Inductive definitions in dAEL(ID) may contain the says-modality in the body

of the definition. The well-founded model in [DV14] is only defined for inductive

definition over a first-order language without any modality. We define how to interpret

the says-modality in the body. We evaluate inductive definitions with respect to a

dpws Q and a structure I. The dpws Q assigns a truth-value to every formula of

the form k says ϕ. When evaluating an inductive definition ∆ with respect to Q and

I, it should get evaluated in the same way as the inductive definition ∆Q, which is

defined to be ∆ with all instances of formulas of the form k says ϕ replaced by t or f

according to their interpretation in Q.

As already stated in the motivation, we are interested in the well-founded model for

the theories with respect to our application on the access control logic domain. Thus

we define a three-valued valuation of dAEL(ID) inductive definitions with respect to

a distributed belief pair B and a structure I in terms of well-founded semantics for

dAEL(ID).

Definition 4.30 (Three-Valued dAEL(ID) Inductive Definition Valuation). We

define a three-valued valuation of dAEL(ID) inductive definitions with respect to a

distributed belief pair B and a structure I as follows:

∆B,I =


t iff I = wfm∆B(I|Par(∆))

f iff I 6≥p wfm∆B(I|Par(∆))

u otherwise

where ∆B is the definition ∆ with all formulas t says ϕ replaced by t, f or u, according

to their interpretation in B.

In a partial context (B is three-valued), we cannot yet evaluate the exact

value of the predicates in Def(∆). We can, however, obtain an approximation

wfm∆B(I|Par(∆)) of their value. Thus, the three-valued valuation of dAEL(ID)

inductive definitions can be intuitively understood as follows: (i) ∆B,I = t if the

approximation is actually two-valued and equal to I, (ii) ∆B,I = u if I is still
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consistent with–but not equal to–this approximation, and (iii) ∆B,I = f in any other

case.

We can combine the three-valued valuations for formulas and inductive definitions

into a three-valued valuation of a single agent’s theory as follows:

Definition 4.31 (Three-Valued dAEL(ID) Theory Valuation). We define a three-

valued valuation of dAEL(ID) theories with respect to a distributed belief pair B and

a structure I as follows:

TB,I := glb≤t({ϕB,I |ϕ ∈ TA} ∪ {∆B,I |∆ ∈ TA})

We define the operators and approximators required to define the well-founded

semantics for dAEL(ID).

Definition 4.32 (D∗T Approximator). We define the approximator D∗T over dis-

tributed belief pairs as follows:

D∗T (B) = (({I | (TA)B,I 6= f})A∈A, ({I | (TA)B,I = t})A∈A)

Definition 4.33 (Dst
T Operator). The stable operator Dst

T is the least fixpoint of the

conservative bound given a fixed liberal bound, that is, Dst
T (Q) = lfp(D∗T (·,Q)c)

Definition 4.34 (Dst∗
T Approximator). We define the approximator Dst∗

T over a belief

pair B as follows:

Dst∗
T (B) = (Dst

T (Bl), Dst
T (Bc))

As in the case for AEL, different fixpoints of these operators lead to different

semantics to be defined.

Definition 4.35 (Supported Model). The dpws Q is a supported model of T iff Q

is a fixpoint of DT .

Definition 4.36 (Kripke-Kleene Model). The distributed belief pair B is the Kripke-

Kleene model of T iif B is the least precise fixpoint of D∗T .
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Definition 4.37 (Stable Model). The dpws Q is a stable model of T iff Q is a

fixpoint of Dst
T .

Definition 4.38 (Partial Stable Model). The distributed belief pair B is a partial

stable model of T iff B is a fixpoint of Dst∗
T .

Definition 4.39 (Well-Founded Model). The distributed belief pair B is the well-

founded model (wfm) of T iff B is the least precise fixpoint of Dst∗
T .

The following example shows how the different semantics for dAEL(ID) can be

calculated. Again, this is a minimal example and for simplicity we do not include any

inductive definition.

Example 4.6 (Candy). Suppose two principals, the mother and father of a child.

A common scenario is one where the child fancies candy. The father says “You can

have some candy if your mother says it is okay” while the mother says “You can have

some candy if your father says it is okay”. We model these statements in dAEL(ID)

as:

TD = {M says c⇒ c} TM = {D says c⇒ c}

If there is no further information available (i.e. which semantics to use) the child

now can choose between the various semantics. We analyze all possible semantic to

help the child choose. There exists four possible pws’s for each agent:

(1) The lack of knowledge: ⊥{D,M} = {{c}, {}}

(2) The belief of c: Q1
{D,M} = {{c}}

(3) The disbelief of c: Q2
{D,M} = {{}}

(4) The empty pws or inconsistent belief: >{D,M} = ∅

Supported Model: There are two supported models: (⊥D,⊥M) and ({{c}}D, {{c}}M).
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Kripke-Kleene Model: The Kripke-Kleene model is: ((⊥, {{c}})D, (⊥, {{c}})M).

Stable Model: The stable model is: (⊥D,⊥M).

Partial Stable Model: The partial stable model is: ((⊥D,⊥M), (⊥D,⊥M)).

Well-Founded Model: The well-founded model is: ((⊥D,⊥M), (⊥D,⊥M))

4.4 Decision Procedure for dAEL(ID)

In this section, we motivate the minimization of the information flow between

principals. We introduce the concepts required to build our decision procedure for

the well-founded semantics of dAEL(ID). Finally, we provide a proof sketch for the

correctness of the decision procedure.

4.4.1 IDP Inferences

The decision procedure defined in the next section is based on the IDP system.

We now define the two IDP inferences that we make use of. The first one, which

is called sat in the IDP system, determines whether a given finite partial structure

is a partial model of a given theory:

Definition 4.40. Let S be a partial structure and T an FO(ID) theory. We say S

is a partial model for T if and only if there exists a total structure S ′ ≥p S such that

S ′ |= T .

The second IDP inference that we make use of, which is called unsatstructure

in the IDP system, picks a minimal partial structure inconsistent with a given theory

and less precise than a given finite partial structure:

Definition 4.41. Let S be a partial structure and T be an FO(ID) theory. We

define min incons set(T , S) to be the set of ≤p-minimal partial structures S ′ ≤p S

such that S ′ is not a partial model of T .
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If the input structure S is not a partial model of the input structure T ,

min incons set(T , S) is always non-empty, and unsatstructure picks an element

from it and returns it. If S is a partial model of T unsatstructure throws an error.

4.4.2 Decision Procedure

In this section, we define a query-driven decision procedure for the well-founded

semantics of dAEL(ID), which allows to determine access rights while minimizing

the information flow between principals in order to enhance security and reduce

privacy concerns. This decision procedure is implemented with the help of the IDP

system. Given that IDP can only work with finite domains, the decision procedure

also assumes the domain D to be finite.a For simplicity, we assume that for every

principal there is a constant symbol referring to that principal, and that the t in

every formula of the form t says ϕ is such a constant symbol. This simplification

could be removed, but would make the description of the decision procedure much

more complicated.

The decision procedure is query-driven in the following sense: A query in the form

of a dAEL(ID) formula ϕ is posed to a principal A. A determines whether her theory

contains enough information in order to verify ϕ. It can happen that A cannot verify

ϕ just on the basis of her theory, but can determine that if a certain other principal

supports a certain formula, her theory implies the query. For example, A’s theory

may contain the formula B says p ⇒ ϕ. In this case, A can forward a remote sub-

query to B concerning the status of p in B’s theory. If B verifies the sub-query p and

informs A about this, A can complete her verification of the original query ϕ.

aGiven that propositional logic has the same expressive power as first-order logic over a finite
domain, the decision procedure could in theory also be viewed as a decision procedure for the
propositional fragment of dAEL(ID). But since first-order logic over a finite domain can model the
same scenarios more concisely and more naturally than propositional logic, we stick to the first-order
variant of dAEL(ID) with a finite-domain assumption.
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4.4.3 Motivation for minimization of information flow

Consider the following distributed theory of the two principals A and B:

TA =

{
r ∧B says s⇒ p
r

}
TB =

{
s
¬s ∧ A says p⇒ p

}

In both theories we have a guard, namely, r for theory TA and ¬s for theory TB.

The guards can be checked locally before performing a remote query to other theories.

If A is queried about p, we can continue with the evaluation and query TB about the

truth value of s, since the guard r is true. If B is queried about p, on the other hand,

we do not need to perform any remote query since it will always fail due to the guard

being false in the theory.

If B nevertheless were to send the remote subquery p to A, this would be

an unnecessary sub-query. Since B does not actually need to know whether A

supports p, this would violate the need-to-know principle [SS94], which states that

a principal should only be given those accesses and be provided with those non-

public informations which the principal requires to carry out her responsibilities.

Additionally, it is reasonable to assume that for privacy considerations, the principals

do not want to disclose their full access control policies to other principals, but only

the parts that are required to verify a given access request. So there are both security

and privacy reasons for B not to send the remote subquery p to A.

In general, more complex behaviors rather than guards can occur in a distributed

theory. The decision procedure we define minimizes the communication even when

more complex reasoning is required to determine which sub-queries have a chance of

leading to a verification of the primary query and which subqueries are certainly not

useful. As discussed in Subsection 4.4.7, this ideal minimization of the communication

is computationally very expensive, so in a practically applicable system, a trade-off

between the security and privacy motivation for minizing communication on the one

hand and computational cost on the other hand would need to be found. Nevertheless,
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we consider our ideal minimization of communication an interesting proof of concept

as a foundation for further research.

The decision procedure that determines whether a query α is true given a

distributed theory T is composed of two distinct modules. The first module, the

Query Minimization Procedure, looks at the theory of the agent to whom the query

is directed, and determines minimal sets of remote calls to other theories that could

verify the query. The second module, the Communication Procedure, takes care of

communication between the principals, including the handelling of the loops that may

occur.

4.4.4 Query Minimization Procedure

Translation Mechanism

In order to implement a query mechanism for dAEL(ID) in IDP we need to translate

dAEL(ID) theories to FO(ID) theories. The only syntactic construct of dAEL(ID)

that does not exist in FO(ID) is the says-modality. So when translating a dAEL(ID)

theory T to an FO(ID) theory T , we need to replace each says-atoms in T by some

first-order formula. For this purpose, we extend the vocabulary Σ to an extended

vocabulary Σ′ by adding to it new propositional variables of the form p+
A says ϕ,

p−A says ϕ and wA says ϕ for every modal statement A says ϕ of dAEL(ID).

Before we formally define the translation mechanism, let us first motivate why we

have the three different propositional variables p+
A says ϕ, p−A says ϕ and wA says ϕ

for translating different occurrences of the same says-atom A says ϕ. First, note that

the well-founded semantics of dAEL(ID) evaluates says-atoms in a three-valued way.

The propositional variables p+
A says ϕ and p−A says ϕ are used to model the three-

valued valuation of A says ϕ in the two-valued logic FO(ID): On the precision order

<p on the three truth values t (true), f (false) and u (undefined) induced by u <p t

and u <p f, the propositional variable p+
A says ϕ represents the upper bound for the

truth value of A says ϕ and p−A says ϕ the lower bound. For this reason, we replace
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every positive occurrence of A says ϕ by p+
A says ϕ, and every negative occurrence

by p−A says ϕ. Given that occurrences of a formula in an inductive definition cannot

be meaningfully termed only positive or only negative, we first replace occurrences

of A says ϕ in an inductive definition by wA says ϕ and add two implications to the

theories that express the equivalence between wA says ψ and A says ϕ.

The translation function t only performs this first step of the translation

mechanism:

Definition 4.42. Let T be a dAEL(ID) theory. We define t(T ) to be a dAEL(ID)

theory equivalent to T , constructed as follows:

For every modal atom A says ϕ occurring in the body of an inductive definition in

theory T ,

• replace A says ϕ by the propositional variable wA says ϕ

• add to t(T ) the two formulae wA says ϕ ⇒ A says ϕ and A says ϕ⇒ wA says ϕ.

We next introduce the notion of polarity necessary to further translate dAEL(ID)

theories into FO(ID) theories.

Definition 4.43. Let ϕ be a dAEL(ID) formula. The polarity of an occurrence of a

subformula of ϕ is defined recursively as follows:

• The occurrence of ϕ in ϕ is a positive occurrence.

• Given a positive (resp. negative) occurrence of the the subformula ¬ψ of ϕ, the

occurence of ψ in this occurrence of ¬ψ is negative (resp. positive) in ϕ.

• Given a positive (resp. negative) occurrence of the subformula ψ ∧ χ of ϕ,

the occurrences of ψ and χ in this occurrence of ψ ∧ χ are both positive (resp.

negative) in ϕ.

Definition 4.44. Let T be a dAEL(ID) theory, let ϕ ∈ T . We call a positive (resp.

negative) occurrence of a subformula ψ of ϕ a positive (resp. negative) occurrence

of ψ in T .
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Now we can define the translation function τ from dAEL(ID) theories to FO(ID)

theories:

Definition 4.45. Let T be a dAEL(ID) theory. τ(T ) is constructed from t(T ) by

performing the following replacements for every says-atom A says ϕ occurring in t(T )

that is not the subformula of another says-atom:

• Replace every positive occurrence of A says ϕ in T by p+
A says ϕ.

• Replace every negative occurrence of A says ϕ in T by p−A says ϕ.

We will illustrate the translation procedure with a simple example, which we will

use as a running example to be extended throughout the section.

Example 4.7. Let A = {A,B,C}, and let the distributed theory T consist of the

folowing three dAEL(ID) theories:

TA =



{ p← B says p,

p← r }

p ∧ s ∧B says z ⇒ z

r ∨ ¬r ⇒ s

B says r ∨ ¬(B says r)⇒ z



TB =


p

C says z ⇒ z

C says r ⇒ r


TC =

 ¬(B says z)⇒ z

B says r ⇒ r


We translate these theories as follows:

τ(TA) =



{ p← wB says p,

p← r }

wB says p ⇒ p+
B says p

p−B says p ⇒ wB says p

p ∧ s ∧ p−B says z ⇒ z

r ∨ ¬r ⇒ s

p−B says r ∨ ¬p
+
B says r ⇒ z



τ(TB) =


p

p−C says z ⇒ z

p−C says r ⇒ r


τ(TC) =

 ¬p+
B says z ⇒ z

p−B says r ⇒ r


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Query Minimization Procedure

The query minimization procedure works as follows: given a theory T and a query α,

the procedure returns a set L of sets of modal atoms. The intended meaning of L is

as follows: When all modal atoms in a set L ∈ L can be determined to be true, the

query α succeeds, and L is the set of all sets L with this property. This means that

if L = ∅, the query necessarily fails, whereas if L contains ∅, the query necessarily

succeeds.

A partial structure S over the extended vocabulary Σ′ contains information about

the truth values of the propositional variables of the form p−A says ϕ and p+
A says ϕ.

Taking into account that p−A says ϕ and p+
A says ϕ are used to represent the three-

valued valuation of A says ϕ, this information can also be represented by a set of

says-literals, which we denote LS:

Definition 4.46. For a partial structure S = (D, I), we define LS to be

{A says ϕ | (p−A says ϕ)I = t} ∪ {¬A says ϕ | (p+
A says ϕ)I = f}

We say that a says-atom A says ϕ occurs directly in a dAEL(ID) theory, if some

occurrence of A says ϕ in T is not a subformula of another says-atom. In the

Query Minimization Procedure, we need to take into account all possible three-valued

valuations of the says-atoms directly occurring in the input dAEL(ID) theory T . Such

a valuation can be represented by a partial structure that contains information only

about propositional variables of the form p+
A says ϕ and p−A says ϕ, and for which this

information is coherent in the sense that the truth values assigned to p+
A says ϕ and

p−A says ϕ are compatible. This is made formally precise in the following definition

of the set ST that contains all structures that represent three-valued valuations of

says-atoms directly occurring in T :
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Definition 4.47. Let T be a dAEL(ID) theory. We define ST to be the set containing

every partial structure S = (D, I) over vocabulary Σ′ satisfying the following

properties:

• P IS = u for every symbol in Σ′ that is not of the form p+
A says ϕ or p−A says ϕ for

some says-atom A says ϕ occurring in τ(T ).

• For every says-atom A says ϕ, (p+
A says ϕ)I 6= t.

• For every says-atom A says ϕ, (p−A says ϕ)I 6= f.

• For no says-atom A says ϕ, (p+
A says ϕ)I = f and (p−A says ϕ)I = t.

We are now ready to define the Query Minimization Procedure. Its pseudo-code

is as follows (Algorithm 1).

Algorithm 4 Query Minimization Procedure

Require: theory T , dAEL(ID) query α
Ensure: set L of sets of modal atoms

1: L := ∅
2: T := τ(T )
3: for each S ∈ ST do
4: if S is not a partial model of T ∪ {¬α} then
5: pick a partial structure Smin from min incons set(T ∪ {¬α}, S)
6: L := L ∪ {LSmin}
7: return L

The algorithm is to be read as follows. A query α asked to theory T is given

as input. First (line 2) we translate T to the FO(ID) theory T = τ(T ). Next we

iterate over the structures S ∈ ST (lines 3-6). Line 4 ensures that we limit ourselves

to structures S ∈ ST that are not a partial models of T ∪ {¬α}; note that the

information in such a structure S together with the information in T entails the query

α. Furthermore, note that for such a structure S, min incons set(T ∪{¬α}, S) is non-

empty. So next (line 5), we pick a structure Smin from min incons set(T ∪{¬α}, S);

by definition Smin is a minimal structure such that Smin ≤p S and Smin is not a partial
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model of T ∪ {¬α}; this means that Smin contains a minimal amount of information

from S that together with the information in T ensures the query α to be true. So

the set LSmin , which represents the same information as a set of says-literals, is a

minimal set of says-literals that together with the information in T ensure the query

α to be true.b Line 6 adds LSmin to the set of sets of says-literals that we output at

the end (line 7), after the iteration over the elements of ST is completed.

We continue Example 4.7 to illustrate the query minimization procedure.

Example 4.8. We apply the Query Minimization Procedure to the theory TA and the

query z. First we translate the theory TA to T = τ(TA), which we have shown in

Example 4.7. Then we iterate over the structures S ∈ STA.

Let, for example, S be the element of STA that makes p−B says p and p−B says r true and

everything else undefined. Then S is a not partial model of T ∪{¬z}, because p−B says p

is inconsistent with p−B says r∨¬p
+
B says r ⇒ z and z. Now min incons set(T ∪{¬z}, S)

is the set consisting only of the structure S ′ that makes p−B says p true and everyting

else undefined. So in line 5, we necessarily pick Smin to be this structure S ′. In line

6 we calculate LS
′

to be {B says r} and add {B says r} to L.

When we iterate over all structures S ∈ STA, the value of L finally becomes

{{B says r}, {B says p,B says z}, {¬B says r}}.

4.4.5 Communication and loop handling

In this subsection we describe the Communication Procedure, which also takes care

of the loop-handling. The Communication Procedure calls the Query Minimization

Procedure and thereby constitutes our decision procedure for dAEL(ID).

When a query is asked to a principal, the Query Minimization Procedure

determines minimal sets of says-literals that need to be satisfied in order to verify

bLemma 4.1 makes this claim more precise.
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the query. The Communication Procedure then produces remote sub-queries to other

principals that can determine the status of the says-literals.

The Communication Procedure works by dynamically producing a query graph

and attaching three-valued truth values to the query vertices in it:

Definition 4.48. A query graph is a labelled directed graph with two kinds of vertices

and two kinds of edges:

• The first kind of vertices are the query vertices. Each query vertex is labelled

by a directed query of the form 〈k : ϕ〉, where k is the principal whose theory

is being queried and ϕ is the formula representing the query. Additionally, a

query vertex is potentially labelled by a truth value in {t, f,u}, which represents

the currently active valuation of the query at any moment during the execution

of the decision procedure.

• The second kind of vertices are the says-literal set vertices. Each says-literal

set vertex is labelled by a set of says-literals, i.e. formulas of the form k says ϕ

or ¬k says ϕ.

• The first kind of edges are unlabelled edges going from a query vertex to a says-

literal set vertex. The intended meaning of such an unlabelled edge from 〈k : α〉

to the says-literal set L is that one way of making α true in k’s theory is to

make all says-literals in L true.

• The second kind of edged are edges labelled by t or f, going from a says-literal

set vertex to a query vertex. The intended meaning of such an edge labelled by t

or f and going from the says-literal set L to the query 〈k : α〉 is that L contains

the literal k says α or the literal ¬k says α respectively.

The query graphs are actually always trees, with the query vertex corresponding

to the original query as their root.

The Communication Procedure starts with a query graph consisting just of the

query vertex 〈A : α〉, where A is the principal to whom the primary query α is asked.
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Next the Communication Procedure calls the Query Minimization Procedure to add

sub-queries to the query graph and attach truth values to them. This procedure is

iteratively continued until a truth-value has been attached to the root vertex 〈A : α〉.

The Communication Procedure is defined via an initialization procedure defined

under Algorithm 5, which calls the main recursive procedure defined under Algorithm

6.

Algorithm 5 Communication Procedure Initialization

Require: distributed theory T , principal A, dAEL(ID) formula α
Ensure: truth-value V ∈ {t, f,u}

1: G := the labelled graph consisting only of a single vertex v labelled 〈A : α〉 and
no edges

2: G := Communication Procedure(T ,G,v)
3: V := the label on the query vertex 〈A : α〉 in G
4: return V

Informally, the Communication Procedure can be explained as follows: The Query

Minimization Procedure is called for TA and α. It returns a set of sets of says-literals.

For each such says-literal set, we add a says-literal set vertex connected to the root

query vertex 〈A : α〉 (lines 6-7). For each says-literal in this set, we add a query vertex

and an edge from the set vertex to this query vertex labelled by t or f depending on

the sign of the says-literal (8-15). We then apply Query Minimization Procedure

and the rest of the procedure just explained to each new query vertex (line 22). At

the same time, we label query vertices with truth values as follows: When all query

vertices emerging from a says-literal set vertex are labelled with the same truth value

as the edge through which they are connected to the says-literal set vertex, the query

that produced that says-literal set vertex is labelled t (lines 23-24). There is a dual

procedure for labelling query vertices with f (lines 25-26). When a loop is detected,

the query vertex causing the loop (by having the same label as a query vertex that is

an ancestor of it) is labelled either with f or u, depending on whether the loop is over

a negation (i.e. there is an f-labelled edge in the path connecting the two vertices
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with the same label) or not (lines 16-20). u-labels can also propagate towards the

root of the graph (line 28).

Algorithm 6 Communication Procedure

Require: distributed theory T , query graph G, query vertex v of G,
Ensure: updated query graph G

1: k := the principal mentioned in the label of v
2: ϕ := the formula mentioned in the label of v
3: L := Query Minimization Procedure(Tk,ϕ)
4: while the input query vertex v does not have a truth-value attached to it do
5: for L ∈ L do
6: add a new says-literal set vertex L to G
7: add to G a new edge from vertex v to vertex L
8: for l ∈ L do
9: k′ := the principal such that l is of the form k′ says ψ or ¬k′ says ψ

10: ψ := the formula such that l is of the form k′ says ψ or ¬k′ says ψ
11: add a query vertex v′ labelled by 〈k′ : ψ〉 to G
12: if l is k′ says ψ then
13: add to G a new edge labelled t from vertex L to vertex 〈k′ : ψ〉
14: if l is ¬k′ says ψ then
15: add to G a new edge labelled f from vertex L to vertex 〈k′ : ψ〉
16: if a query vertex v′′ that is an ancestor of v′ is also labelled 〈k′ : ψ〉 then
17: if all labelled edges between v′′ and v′ are labelled by t then
18: add f-label to v′

19: else
20: add u-label to v′

21: else
22: Communication Procedure(T ,G,v′)
23: if every query vertex v′ such that there is an edge from L to v′ is labelled

with the same truth value as this edge then
24: label v with t
25: if for every says literal set vertex L such that there is an edge from v to L,

there is a query vertex v′ such that there is an edge from L to v′ labelled with
the opposite truth value as v′ then

26: label v with f
27: else
28: label v with u
29: return G

We continue Example 4.7 to illustrate the Communication Procedure.
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Example 4.9. Given the distributed theory T = {TA, TB, TC}, we query the principal

A about the truth value of z. We show the final graph in Figure 4.1 and now

explain its construction. We start by calling the Communication Initialization

Procedure; this generates a graph G with the vertex v = 〈A : z〉 (with no associated

truth value label). Then we call the Communication Procedure with arguments

T , G and v. We call the Query Minimization Procedure returning the set L =

{{B says p,B says z}, {B says r}, {¬B says r}} as shown in Example 4.8. Since the

input vertex v has no truth-value associated to it, we next iterate over the sets L ∈ L.

The says-literal set vertex {B says p,B says z} is added to G with its corresponding

edge. Now we consider each says-literal in the vertex.

(i) For literal B says p generate a new query vertex v′ = 〈B : p〉 with an edge

labelled t (since the literal is not negated) and recursively call the Communication

Procedure with the updated graph as argument and vertex v′. v′ has no truth-value

associated, the Query Minimization Procedure returns the set L′ = {{}}; so after

adding the says-literal set vertex {} connected to v′, the truth-value t is assigned to

v′ by lines 21-22 of the Communication Procedure (this corresponds to the intuitive

idea that L′ = {{}} means that p is true in TB).

(ii) For literal B says z generate a new query vertex v′ = 〈B : z〉 with an edge

labelled t and recursively call the Communication Procedure with the updated graph

as argument and vertex v′. The Query Minimization Procedure is called returning the

set L = {{C says z}}; for this literal we generate a new query vertex v′′ = 〈C : z〉 with

an edge labelled t. In turn, the Query Minimization Procedure is called returning the

set L′′ = {{¬B says z}}; for this literal we generate a new query vertex v′′′ = 〈B : z〉

with an edge labelled f . At this point we detect a loop, as the query vertex v′ that is

an ancestor of v′′′ is also labelled by 〈B : z〉. Since the loop contains an edge with

label f , the truth-value assignment for v′′′ is u. This truth-value u is propagated up

to label the query vertices v′′ and v′, since u does not match with either t nor f .
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Finally, the truth-values for (i) matches the labeled edge, but not for the case of

(ii). Thus we cannot yet label the root vertex with t, and continue with the next

says-literal {B says r} ∈ L.

For vertex {B says r}, we repeat the procedure as described above until we (again)

detect a loop. This loop does not contain edges with label f , so the truth-value

assignment for the vertex at which the loop is detected is f . Again this truth-value

is propagated to label the two query vertices above this vertex, as the labelled edges

are labelled by t. Since the truth-value f assigned to the query vertex 〈B : r〉 does

not match the truth value of the labelled edge above it, the root vertex can still not be

labelled with t.

The subgraph produced below the final says-literal set vertex {¬B says r} is the

same as below says-literal set vertex {B says r}, only that the labelled edge directly

below this says-literal set vertex is now labelled f instead of t. So this time the label

on the query vertex 〈B : r〉 matches the label on the labelled edge, to that the root

vertex is labelled t. This ends the main while loop and therefore the Communication

Procedure. Finally, the Communication Procedure Initialization returns the output t.
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Figure 4.1: Query Graph

4.4.6 Correctness of decision procedure

In this section, we provide definitions and lemmas necessary to prove the correctness

of the decision procedure. The proofs sketched in this section were provided by my

collaborator Marcos Cramer.

First we need to establish that the Query Minimization Procedure (Algorithm 4)

really does what it is supposed to do, namely to return the set of all minimal sets

of says-literals that make the query true. In order to formalize the notion of a set

of says-literals that makes the query true, we first need the following definitions of

three-valued valuations of dAEL(ID) formulas, inductive definitions and theories with

respect to a set of says-literals and a structure. These definitions are analogous to

the definitions 4.29, 4.30 and 4.31:
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Definition 4.49. We inductively define a three-valued valuation of dAEL(ID)

formulas with respect to a set L of says-literals and a structure I as follows:

(P (t))L,I =

 t if tI ∈ P I

f if tI /∈ P I

(¬ϕ)L,I = (ϕL,I)−1

(ϕ ∧ ψ)L,I = glb≤t(ϕ
L,I , ψL,I)

(∀x ϕ)L,I = glb≤t{ϕ[x/d]L,I | x ∈ D}

(A says ϕ)L,I =



t if A ∈ A and

(A says ϕ) ∈ L

f if A /∈ A or

(¬A says ϕ) ∈ L

u otherwise

Definition 4.50. We define a three-valued valuation of dAEL(ID) inductive defini-

tions with respect to a set L of says-literals and a structure I as follows:

∆L,I =


t if I = wfm∆L(I|Par(∆))

f if I 6≥p wfm∆L(I|Par(∆))

u otherwise

where ∆L is the definition ∆ with every formula A says ϕ replaced by t, f or u,

according to whether (A says ϕ) ∈ L, (¬A says ϕ) ∈ L or neither of them is in L.

Definition 4.51. We define a three-valued valuation of dAEL(ID) theories with

respect to a distributed belief pair L and a structure I as follows:

TL,I := glb≤t({ϕL,I |ϕ ∈ T} ∪ {∆L,I |∆ ∈ T})

Now we can define what it means for a set L of says-literals to make true a formula:
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Definition 4.52. Let L be a set of says-literals, let ϕ be a dAEL(ID) formula and

let T be a dAEL(ID) theory. Then we say that L makes ϕ true relative to T iff for

every structure I such that TL,I 6= f we have ϕL,I = t.

The following lemma states that the Query Minimization Procedure (Algorithm

4) really does what it is supposed to do:

Lemma 4.1. Let T be a dAEL(ID) theory and let α be a dAEL(ID) formula. The

set L returned by Query Minimization Procedure(T, α) is

{L | L is minimal (under set inclusion) among the sets L′ of

says-literals that make α true with respect to T}

Proof. For proving this lemma, we need to show that L ∈ L iff L is a minimal set

that makes α true with respect to T .

First suppose L ∈ L. Then by the definition of Algorithm 4, α and min incons, L is

a minimal set such that T ∪{p−A says ϕ | (A says ϕ) ∈ L}∪{¬p+
A says ϕ | (¬A says ϕ) ∈

L} ∪ {α} |= ⊥. Hence L is a minimal set such that T ∪ {p−A says ϕ | (A says ϕ) ∈

L}∪{¬p+
A says ϕ | (¬A says ϕ) ∈ L} |= α. So by Definitions 4.49, 4.51 and 4.52 above,

L is a minimal set that makes α true with respect to T , as required.

Conversely, suppose L is a minimal set that makes α true with respect to T .

Define S to be the partial structure that makes α true, makes p−A says ϕ true whenever

(A says ϕ) ∈ L, that makes p+
A says ϕ false whenever (¬A says ϕ) ∈ L, and that is

undefined on all other symbols. Then applying lines 4-6 of Algorithm 4 to this

structure S leads to L being added to L, as required.

The well-founded model of T is the ≤p-least fixpoint of Dst
T . When the domain is

finite, as we are assuming when applying the decision procedure, there is a natural

number n such that wfm(T ) = (Dst
T )n(⊥,>). In other words, the well-founded model
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can be computed by a finite number of application of Dst
T to (⊥,>), until a fixpoint

is reached.

The steps in the decision procedure defined in Section 4.4.5 do not directly

correspond to the steps in the computation of the well-founded model by a finite

number of application of Dst
T to (⊥,>). In order to prove that the two computations

nevertheless always yield the same result, we first define a decision procedure that

resembles the decision procedure defined in Section 4.4.5, but whose steps correspond

more directly to the iterative application of Dst
T to (⊥,>). We call this auxiliary

decision procedure the Dst
T -based decision procedure. So we prove the correctness of

the decision procedure in Section 4.4.5 by proving two things:

• The decision procedure defined in Section 4.4.5 is equivalent to the Dst
T -based

decision procedure.

• When A’s theory TA is queried about α, the Dst
T -based decision procedure

returns yes iff (A says α)wfm(T ) = t.

At this point the reader may wonder why we don’t directly use the Dst
T -based

decision procedure as our decision procedure for the well-founded semantics. There

are two reasons: The decision procedure defined in Section 4.4.5 is more efficient,

and it is better at minimizing communication between the different agents’ theories,

which is a relevant feature for the access control application we have in mind.

In the definition of the Dst
T -based decision procedure, we use a query graph as

defined in section 4.4.5. Unlike the query graph produced in the decision procedure

from Section 4.4.5, the labelling of the query vertices in the query graph produced

by the Dst
T -based decision procedure are unique, i.e. there are no two distinct query

vertex with the same labelling k : ϕ.

There is a direct correspondence between distributed belief pairs and certain truth-

value labelling of the query vertices in a query graph:
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Definition 4.53. Let G be a query graph. Let B be a distributed belief pair. We say

that the truth-value labelling of the query vertices of G corresponds to B iff for each

query vertex k : ϕ in G, the truth-value with which this vertex is labelled is (k says ϕ)B.

Note that there are truth-labellings of the query vertices that do not correspond

to any distributed belief pair. We call a truth-labelling of the query vertices good iff

it corresponds to some distributed belief pair.

The Dst
T -based decision procedure works by first producing a query graph and then

iteratively modifying the truth-value labelling of the query vertices. We need to ensure

that after each iteration of this iterative modification, the truth-value labelling of the

query vertices is good. However, there are intermediate steps within each iteration

which lead to a bad labelling of the query vertices. In order to get back to a good

labelling, we apply the changes defined by Algorithm 7.

Algorithm 7 Make labelling of query vertices good

Require: query graph G
Ensure: modified query graph G

1: while there is a u-labelled query vertex k : ϕ in G such that replacing says-atoms
in ϕ corresponding to t- or f-labelled query vertices by t and f respectively makes
ϕ a tautology do

2: change the u-label in each such query vertex in G by t
3: while there is a f-labelled query vertex k : ϕ in G such that replacing says-

atoms in ϕ corresponding to u-, t- or f-labelled query vertices by t or f, t and f
respectively makes ϕ a tautology do

4: change the f-label in each such query vertex in G by u
5: return G

In order to define the Dst
T -based decision procedure, we furthermore need the

following two definitions:

Definition 4.54. In a query graph, a says-literal set vertex L is defined to be satisfied

if for every t-labelled edge from L to a query vertex, the query vertex is labelled by t,

and for every f-labelled edge from L to a query vertex, the query vertex is labelled f.

Definition 4.55. In a query graph, a says-literal set vertex L is defined to be

potentially satisfied if for every t-labelled edge from L to a query vertex, the query
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vertex is labelled by t or u, and for every f-labelled edge from L to a query vertex, the

query vertex is labelled f or u.

The definition of the Dst
T -based decision procedure is given by the pseudo-code

under Algorithm 8. Here is an informal explanation of this definition:

• First (lines 1-20) produce a query graph G without truth-value label on query

vertices by iteratively applying the query minimization procedure from Section

4.4.5 to the main query Aα, to its subqueries, their subqueries etc., adding

vertices and edges to the graph in line with the informal meaning of the vertices

and edges given in Definition 4.48 above.

• Each query vertex in G is labelled u (line 21).

• Next (lines 22-36) we iteratively turn some of the u-labels on queries into t-

labels and f-labels. At each step of this iteration, we separately calculate which

u-labels to change to t and which u-labels to turn to f as follows:

1. In order to calculate which u-labels to change to t, we recursively do the

following (lines 25-27): When there is an edge from a query vertex labelled

u to a satisfied says-literal set, change the label of the query vertex to t.

Then make the labelling of the query vertices good. (All the queries whose

labels change from u to t in this recursive procedure are changed to t in

G in line 33.)

2. In order to calculate which u-labels to change to f, we first change the

labelling of all u-labelled queries to f (line 29) and then recursively do the

following (lines 30-32): When there is an edge from a query vertex labelled

f to a potentially satisfied says-literal set, change the label of the query

vertex to u. Then make the labelling of the query vertices good. (All the

queries whose labels stay f in this recursive procedure are changed to f in

G in line 34.)
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• Finally, we return the truth-value by which the query vertex of the main query

A : α is labelled in G (lines 37-38).

Lemma 4.2. Let T be a dAEL(ID) theory, A be a principal and α be a dAEL(ID)

formula. The truth value returned by Communication Procedure Initialization(T ,A,α)

is equivalent to the truth value returned by Dst
T -based decision procedure(T ,A,α)

Proof Sketch. The only fundamental difference between these two decision procedures

is the loop-handling. Step 2) of the Dst
T -based decision procedure takes care of making

queries looping over t-labelled edges false. Queries looping over f-labelled edges will

always be left undecided by the Dst
T -based decision procedure, which corresponds to

making them undecided in the decision procedure defined in section 4.4.5. �

We now establish that the Dst
T -based decision procedure always gives the same

result as the well-founded semantics. Note that the labelling corresponding to the

distributed belief pair (⊥,>) is the labelling in which all query vertices are labelled

by u. Keeping in mind that the well-founded model can be computed by a finite

number of application of Dst
T to (⊥,>), it is now easy to see that the following lemma

is sufficient to establish that the Dst
T -based decision procedure always gives the same

result as the well-founded semantics:

Lemma 4.3. Let T be a distributed theory, A be a principal and α be a dAEL(ID)

formula. Let G be the query graph produced by lines 1-20 of Algorithm 8 applied to

T , A and α. Let B be a distributed belief pair. Labelling the query vertices in G

according to B and then applying lines 24 to 34 of Algorithm 8 to G yields a labelling

of the queries corresponding to Dst
T (B).

Proof Sketch. For proving this lemma, it is enough to prove the following four

properties:

1. The change in the truth-value labelling of the query vertices of G1 in lines

26-27 of Algorithm 8 corresponds to changing the belief pair (Q1,Q2) to

(D∗T (Q1,Q2)1,Q2).
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2. The change in the truth-value labelling of the query vertices of G2 in line 29 of

Algorithm 8 corresponds to changing the belief pair (Q1,Q2) to (Q1,Q1).

3. The change in the truth-value labelling of the query vertices of G2 in lines

31-32 of Algorithm 8 corresponds to changing the belief pair (Q1,Q2) to

(Q1, D
∗
T (Q1,Q2)2).

4. Let Q1,Q2,Q3,Q4 be DPWS’s such that Q3 ≤K Q1 ≤K Q4 ≤K Q2. If the

query vertices are labelled t in correspondence with the distributed belief pair

(Q1,Q2), labelled f in correspondence with the distributed belief pair (Q3,Q4),

and labelled u otherwise, the resulting labelling corresponds to the distributed

belief pair (Q1,Q4).

Noting that a says-atom satisfied by the DPWS Q1 is true according to the

distributed belief pair (Q1,Q2), and that a says-atom satisfied by the DPWS Q2

is not false according to the distributed belief pair (Q1,Q2), it is easy to see that

Properties 2) and 4) hold.

Proof of Property 1): Suppose the labelling of query vertices corresponds to

(Q1,Q2). It is enough to show that lines 26-27 change a labelling of a query vertex

k : ϕ from u to t iff (k says ϕ)D
∗
T (Q1,Q2) = t.

So first suppose that line 26 changes the labelling of k : ϕ from u to t. This means

that there is an edge from k : ϕ to a satisfied says-literal set vertex L. By Lemma

4.1, L fixes the truth value of ϕ to be true relative to Tk. Since the says-literal set

vertex L is satisfied under the labelling of query vertices corresponding to (Q1,Q2),

this means that ϕ(Q1,Q2),I = t for every structure I such that (Tk)
(Q1,Q2),I 6= f. Since

(Q1,Q2) ≤p D∗T (Q1,Q2), it follows that ϕD
∗
T (Q1,Q2),I = t for every structure I such

that (Tk)
(Q1,Q2),I 6= f. By Definition 4.34, D∗T (Q1,Q2)1 = (TA)(Q1,Q2),I 6= f})A∈A. So

(k says ϕ)D
∗
T (Q1,Q2) = t, as required.

Now suppose that line 27 changes the labelling of k : ϕ from u to t. So there is

a distributed belief pair B with (Q1,Q2) ≤p B ≤p D∗T (Q1,Q2) such that replacing

says -atoms in ϕ by their truth values under B makes ϕ a tautology. In other
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words, ϕB,I = t for any structure I, i.e. ϕD
∗
T (Q1,Q2),I = t for any structure I, i.e.

(k says ϕ)D
∗
T (Q1,Q2) = t ,as required.

Now suppose that (k says ϕ)D
∗
T (Q1,Q2) = t. Then ϕD

∗
T (Q1,Q2),I = t for every I such

that (Tk)
(Q1,Q2),I 6= f. Now there are two different cases: Either ϕQ1,Q2),I = t for

every I such that (Tk)
(Q1,Q2),I 6= f, or ϕD

∗
T (Q1,Q2),I = t for every structure I. In the

first case, line 26 changes the labelling of k : ϕ from u to t. In the second case, line

27 changes the labelling of k : ϕ from u to t.

Property 3) can be proven in a similar way as property 1). �

The following theorem states that the result of the decision procedure is always

in line with the well-founded semantics of dAEL(ID):

Theorem 4.1. Let T be a distributed theory, let A be an agent, let let α be a

dAEL(ID) formula. When A’s theory TA is queried about α, the decision procedure

returns (A says α)wfm(T ), i.e. the truth value of A says α in the well-founded model of

T .

Proof. Follows from Lemmas 4.3 and 4.2

4.4.7 Complexity of the decision procedure

The minimization of the information flow in the decision procedure is computationally

expensive: The Query Minimization Procedure has a worst-case runtime that is

exponential in the maximum of the number of different says-atoms in T , the size of the

vocabulary Σ and the size of the domain D: Its for-loop has 3n iterations, where n is

the number of different says-atoms in T , and as min incons has a worst-case runtime

exponential in the maximum of the size of the vocabulary Σ and the size of the domain

D. On the other hand, if we count each call to the Query Minimization Procedure

as one step, the communication and loop-handling on has runtime quasilinear in the

number of subqueries called.
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To make the decision procedure practically applicable, a compromise between

computational cost and limiting information flow will have to be found. One

modification of the decision procedure that reduces the expected runtime, even

though it does not reduce the worst-case runtime, is to not calculate the whole of

L immediately in the Query Minimization Procedure, but to instead first calculate

just one L ∈ L, then do the communication necessary for determining whether this L

actually makes the query true, and continue with the step-wise calculation of L only

if the query has not yet been determined true.

4.5 Related Work

Most access control logics proposed in the literature have been defined in a proof-

theoretical way, i.e. by specifying which axioms and inference rules they satisfy.

This contrasts with Van Hertum et al.’s [VHCBD16] approach of defining dAEL(ID)

semantically rather than proof-theoretically. This difference means that the tasks

of defining decision procedures for these access control logics involve very different

technical machinery.

Garg and Abadi [GA08, Gar08] and Genovese [Gen12] have defined Kripke

semantics for many of the access control logics that were previously defined proof-

theoretically in the literature. They introduced these Kripke semantics as a tool for

defining decision procedures for those access control logics. Genovese [Gen12] follows

the methodology of Negri and von Plato [NvP01, NvP11] of using a Kripke semantics

of a modal logic to define Labelled Sequent Calculus, which forms the basis of a

decision procedure for the logic.

Denecker et al. [DMT03] have defined a procedure for computing the well-founded

model of an autoepistemic theory. This procedure might be extendable to a procedure

for computing the well-founded model of dAEL(ID). However, such an extension of

their procedure would not have the feature of minimizing the communication between
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principals, and thus violate the need-to-know principle and cause privacy concerns

(see section 4.4.3).

4.6 Conclusion

We have defined a query-based decision procedure for the well-founded semantics of

dAEL(ID). When applying dAEL(ID) to access control, this decision procedure allows

to determine access rights while minimizing the information flow between principals

in order to enhance security and reduce privacy concerns.
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Algorithm 8 Dst
T -based decision procedure

Require: distributed theory T , principal A, dAEL(ID) formula α
Ensure: truth-value V ∈ {t, f,u}

1: G := the empty graph
2: add a new query vertex A : α to G
3: query stack := 〈A : α〉
4: while query stack 6= 〈〉 do
5: k : ϕ := first element of query stack
6: L := Query Minimization Procedure(Tk,ϕ)
7: for L ∈ L do
8: if G does not contain a says-literal set vertex L then
9: add a new says-literal set vertex L to G

10: for l ∈ L do
11: k′ := the principal such that l is of the form k′ says ψ or ¬k′ says ψ
12: ψ := the formula such that l is of the form k′ says ψ or ¬k′ says ψ
13: if G does not contain a query vertex k′ : ψ then
14: add a query vertex k′ : ψ to G
15: add k′ : ψ to query stack
16: if l is k′ says ψ then
17: add to G a new edge labelled t from vertex L to vertex k′ : ψ
18: if l is ¬k′ says ψ then
19: add to G a new edge labelled f from vertex L to vertex k′ : ψ
20: add to G a new edge from vertex k : ϕ to vertex L
21: add the label u to all query vertices in G
22: finished := 0
23: while finished = 0 do
24: G1 := G
25: while in G1 there is a query vertex labelled by u with an edge to a satisfied

says-literal set vertex do
26: change every u-label on a query vertex with an edge to a satisfied says-literal

set vertex to t
27: G := Make labelling of query vertices good(G)
28: G2 := G
29: change every u-label on a query vertex in G2 to f
30: while in G2 there is a query vertex labelled by f with an edge to a potentially

satisfied says-literal set vertex do
31: change every f-label on a query vertex with an edge to a potentially satisfied

says-literal set vertex to u
32: G := Make labelling of query vertices good(G)
33: in G, change the label on all query vertices that are labelled u in G and labelled

t in G1 into t
34: in G, change the label on all query vertices that are labelled u in G and labelled

f in G2 into f
35: if no changes were made to G in the previous two lines then
36: finished := 1
37: V := the label on the query vertex A : α in G
38: return V
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Chapter 5

Abstract Cumulative Aggregation

Abstract From any two conditional obligations “X if A” and “Y if B”, cumulative

aggregation derives the combined obligation “X ∪ Y if A∪ (B \X)”, whereas simple

aggregation derives the obligation “X∪Y if A∪B”. We propose two types of systems,

one consisting of factual detachment together with (simple) aggregation (FA systems),

and the other consisting of factual detachment together with cumulative aggregation

(FC systems). We give a representation result for FC systems, as well as for FA

systems consisting of simple aggregation together with factual detachment. We relate

FC and FA systems to each other and to input/output logics recently introduced by

Parent and van der Torre.

5.1 Introduction

In this chapter, we contrast and study two different principles of aggregation for

norms in the context of the framework of Abstract Normative Systems (ANS) due to

Tosatto et al. [CTBvdTV12].

This one is intended as a general framework to compare logics for normative

reasoning. Only fragments of the standard input/output logics [MvdT00] are covered

by Tosatto et al., and so here we set ourselves the task of applying the framework to

the input/output logic recently introduced by Parent and van der Torre [PvdT14a].
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(Cf. also [PvdT14b].) Its most salient feature is the presence of a non-standard

form of cumulative transitivity, called “aggregative” (ACT, for short). Such a rule is

used in order to block the counter-examples usually given to the principle known as

“deontic detachment”: from the obligation of X and the obligation of Y if X, infer

the obligation of Y .

Our contribution is first and foremost technical. We acknowledge that the benefits

of using the theory of abstract normative systems may not be obvious to the reader.

We will not discuss the question of whether it has a reasonable claim to be a general

framework subsuming others, nor will we discuss the question of whether aggregative

cumulative transitivity is, ultimately, the right form of transitivity.

A central feature of the Tosatto et al. account is that it abstracts away from the

language of propositional logic. We recall that as initially conceived input/output

logic is an attempt to generalize the study of conditional obligation from modal

logic to the abstract study of conditional codes viewed as relations between Boolean

formulas. The underlying language is taken from propositional logic. It contains

truth-functional connectives, and is assumed to be closed under application of these

connectives. It is natural to ask if one can extend the generality further, by working

with an arbitrary language, viewed as a collection of items, and without requiring

that the items under consideration be “given” or regimented in some special way.

This level of abstraction favour the study of the relation among conditional norms

without any demerit from the underlying logical language.

Tosatto et al.’s account has no apparatus for handling conjunction of outputs, and

our main purpose in this chapter is to develop it to do so. We follow the ideas of

so-called “multiple-conclusion logic”, and treat normative consequence as a relation

between sets, whose elements are understood conjunctively. No assumption about

the inner structure of these elements is made.

An example of an abstract normative system studied in this chapter is given in

Figure 5.1. It should be read as follows. Conditionals A → X,B → Y, . . . are the

norms of the normative system. Each of A,X,B and Y is a set of language elements

117



Figure 5.1: An Abstract Normative System

(whose inner structure remains unanalyzed). Sets are understood conjunctively on

both sides of →. The input I is a collection of language elements representing the

context. Rules are used to generate derivations and arguments based on I. The set

of detachments {X, Y, . . .} is the output consisting of all detached obligations. The

elements of Figure 5.1 are explained in more detail in the next two sections.

The prime focus in [PvdT14a] was the contrast between two forms of transitivity,

called “cumulative transitivity” and “aggregative cumulative transitivity”. This

chapter shifts the emphasis on the contrast between the following two forms of

aggregation.

Simple aggregation If X is obligatory in context A, and Y is obligatory in context

B, then X∪Y is obligatory in context A∪B. In other words, simple aggregation

derives the obligation “X ∪ Y if A ∪ B” from any two conditional obligations

“X if A” and “Y if B”.a

Cumulative aggregation If X is obligatory in context A, and Y is obligatory in

context B, then X ∪ Y is obligatory in context A ∪ (B \ X). In other words,

cumulative aggregation derives the combined obligation “X ∪Y if A∪ (B \X)”

from the same two conditional obligations.

The rule of simple aggregation gives the most straightforward way of collecting

items as detachments are performed. When A = B, simple aggregation gives the rule

“If X is obligatory given A, and Y is obligatory given A, then X∪Y is obligatory given

aNote that intersection as used in abstract normative systems does not correspond to disjunction
in propositional logic. Take ({p}, {x}) and ({q}, {x}). The intersection of the two contexts yields
({}, {x}). Reasoning by cases would yield ({p ∨ q}, {x}) instead.
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A.” A drawback of simple aggregation is that it does not capture transitive reasoning.

Given the two conditional obligations “{x} if {}” and “{y} if {x}”, simple aggregation

only yields “{x, y} if {x}”. This motivates the rule of cumulative aggregation. In

the particular case where B = A ∪ X, cumulative aggregation yields the form of

transitivity introduced by Parent and van der Torre [PvdT14a] under the name ACT.

This is the rule (A,X), (A ∪ X, Y )/(A,X ∪ Y ). In our example, one gets “{x, y} if

{}.”b

To summarize, we adress the following issues:

• How to develop the theory of abstract normative systems to handle conjunction

of outputs and the form of cumulative transitivity described in [PvdT14a]?

• How to define the proof theory of the system? What are the most significant

properties of the framework?

• How to provide a semantical characterisation, along with a representation result

linking it with the proof theory?

The reminder of this chapter is organized as follows. In Section 5.2, we introduce

some preliminary notions from deontic logic and its relations with aggregation. In

Section 5.7 we provide a brief historical perspective on aggregation in the deontic

literature. In Section 5.3, we provide a brief outline in regard to aggregation and a

motivating example. In Section 5.4, we introduce FA systems for simple aggregation.

In Section 5.5, we introduce FC systems for cumulative aggregation. We give

representation results for both systems. In Section 5.6, we show how FA and FC

systems relate to one another, and we discuss some properties of the systems. In

Section 5.8 we show how FA and FC systems relate with the input/output logics

introduced by Parent and van der Torre [PvdT14a]. In Section 5.9, we discuss

possible extensions to the present framework as well as some limitations of the current

approach. In Section 5.10, we provide a summary.

b As mentioned, it is not our purpose to discuss this rule in any greater depth. For more details
on it, see Parent and van der Torre [PvdT14a].
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5.2 Aggregation and Dilemmas

In its simplest form, aggregation is the derivation of the join obligation©(p∧q) from

the obligations ©(p) and ©(q).

Aggregation is part of all deontic logics we are aware of.c Whereas there are

many principles criticized and debated in deontic logic, aggregation has received less

attention.

In this chapter we introduce a new kind of aggregation, called Cumulative

Aggregation.

Deontic logic is intrinsically loaded with paradoxes. Thus we can distinguish two

main lines of thought, Contrary-to-Duty (CTD) that studies and tries to tame the

paradoxical or counterintuitive reasoning often generated by introducing violations in

some way or another; and According-to-Duty (ATD) a more abiding perspective on

which the main aim is to build frameworks resilient to counterintuitive or misleading

detachments/inferences.

We also show how cumulative aggregation sheds a new light on some of the well

known examples and paradoxes of deontic logic.

Most of the literature in deontic logic refers to CTD reasoning. From our point of

view—and only focusing on the study of the aggregation—we follow ATD reasoning.

ATD captures the behaviour of aggregation without many of the drawbacks that we

could find in CTD. For example, most forms of aggregation in a CTD setting triggers

what is known in the literature as “pragmatic oddity” [PS96].

In order to talk about CTD or ATD in a proper way, we need to distinguish

between primary and secondary obligations. These concepts are linked to (and arise

from) CTD reasoning. This distinction might seem arbitrary or artificial if it is not

discussed in the context of CTD.

cFor example, the deontic logics D and CD introduced by Chellas [Che80, Chap. 10] reject the
principle of aggregation. In Chellas’ terms, the axiom schemes OC and COC are not theorems in
these logics.

120



A primary obligation describes some ideal behaviour, these obligations often come

from modelling a particular problem or, in some sense, are given, e.g. unconditional

obligations. A secondary obligation describes the current state of affairs; particularly

in CTD, a secondary obligation is an obligation that comes into effect when

the primary obligation is violated. Secondary obligations can be understood as

subordinated to other obligations, that is primary.

Secondary obligations refer to an optimal choice under sub-ideal situations. In

the sub-ideal situation that a primary obligation is violated, the best thing to do is

to fulfil the secondary obligation.

As aforementioned we focus our study in ATD reasoning, but since CTD is the

most prominent source for interesting examples in deontic logic, we borrow most of our

examples from this line of reasoning. These examples are commonly constituted by

some form of paradoxical construction i.e. Ross’ Paradox [Ros44], Forrester’s Paradox

[For84] , the Good Samaritan Paradox [Pri58] and Chilsholm’s Paradox [Chi63].

The following definitions formalize some relations between primary and secondary

obligations:

Definition 5.1 (ATD [vdT97a]). The conditional obligation©(a/b) is an According-

to-Duty obligation of ©(c/d) if and only if c logically implies b.

Definition 5.2 (CTD [vdT97a]). The conditional obligation ©(a/b) is a Contrary-

to-Duty obligation of ©(c/d) if and only if c and b are inconsistent.

Definition 5.3 (Dilemma [vdT97a]). The conditional obligations©(a/b) and©(c/d)

are a Dilemma if and only the obligations a and c are inconsistent.

Figure 5.2 visualizes definitions of According-to-Duty, Contrary-to-Duty and

Dilemmas.
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©(a/b) ©(a/b) ©(a/b)

©(c/d) ©(c/d) ©(c/d)

|= c→ b |= ¬(b ∧ c) |= ¬(a ∧ c)

Secondary
Obligation

Primary
Obligation

(a) ATD (b) CTD (c) Dilemma

implies inconsistent inconsistent

Figure 5.2: According-to-duty, Contrary-to-duty Obligations and Dilemmas

We use Chisholm’s Paradox to exemplify these concepts.

Example 5.1 (Chilsholm’s Paradox [Chi63]). Consider the following set of

conditional norms:

(1) “You ought to assist your neighbour” ©(a/>)

(2) “If you assist your neighbour, you should tell him that you will assist” ©(t/a)

(3) “If you do not assist your neighbour, you should not tell you will assist”

©(¬t/¬a)

(4) “You do not assist your neighbour” ¬a

We first identify primary and secondary obligations. The ideal situation is such

that you help your neighbour and you tell him, thus (1) constitute a primary obligation

and the rest can be treated as secondary.d We could also argue that (2) is a primary

obligation, we leave this discussion aside, since its not relevant at this point, and the

example is only meant to exercise the concepts in Definitions 5.1 - 5.3.

We have that,

• i) the secondary obligation©(t/a) is according-to-duty of the primary obligation

©(a/>) since a logically implies a.

dThe rest of the sub-ideal situations can be ordered as follows: 1- you help your neighbour, but
you do not tell him before. 2- you do not help your neighbour (and you do not tell him). 3- you do
not help your neighbour, but you tell him you will.
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• ii) the secondary obligation ©(¬t/¬a) is contrary-to-duty of the primary

obligation ©(a/>) since ¬a and a are inconsistent.

• iii) the obligation ©(t/a) and the obligation ©(¬t/¬a) form are a dilemma

since t and ¬t are inconsistent.

5.3 Motivating example

As discussed in Sections 5.1 and 5.2, aggregation and dilemmas are an intrinsic part of

deontic logics. Whereas many principles have been extensively criticized and debated

in deontic logic, aggregation has received less attention.

We first give an example to illustrate the rule of simple aggregation.

Example 5.2 (Double Taxation [Gre04]). An extract of the Belgian-French bilateral

agreement preventing double taxation. The agreement (among others) has two

separate clauses:

(i) A resident in Belgium should pay taxes in Belgium unless he/she is a French

civil servant.

(ii) A resident in Belgium should pay taxes in Belgium unless he/she is working in

France.

We can represent the obligation of β given a context α as ©(β/α) [Che80].

Intuitively, we will use the following representation: “being resident in Belgium” (r),

“to be taxable” (t), “being a French civil servant” (fcs) and “working in France”

(wf). We can consider this simple formulation for the example:

(i) ©(t/r ∧ ¬fcs)

(ii) ©(t/r ∧ ¬wf)

Combining these two norms by means of simple aggregation gives us: ©(t/r ∧

¬fcs ∧ ¬wf). This is as it should be.
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Now we give an example meant to illustrate the benefits of cumulative aggregation

over simple aggregation.

Example 5.3 (Winter Chills). Suppose you are conformably sitting in your couch

and you start to feel cold. Someone has opened the window to aerate the room. You

wish to raise the temperature in the heating system, but first, you have to close the

window. Intuitively, we will use the following representation: “the window is open”

(wo), “the window is closed” (wc), “it is cold outside” (c) and “put the heating on”

(h). The following two norms seem to apply:

“If the window is open, then you ought to close the window” ©(wc/wo)

“if it is cold outside and the window is closed, then you ought to put the heating

on” ©(h/c ∧ wc)

Cumulative aggregation gives©(wc∧h/wo∧c). Intuitively: if the window is open and

it is cold outside, then you ought to close the window and put the heating on. Simple

aggregation gives©(wc∧h/wo∧c∧wc). Intuitively: if the window is open and closed,

and it is cold outside, then you ought to close the window and put the heating on. The

key difference is that the antecedent of the second obligation is contradictory.

In what follows we introduce an abstract system to accommodate for simple

aggregation. This system is meant to set grounds for the subsequent system for

cumulative aggregation.

5.4 FA systems for simple aggregation

In this section, we introduce abstract normative systems for simple aggregation, and

we give a representation result. Though FA systems may be interesting in their own

right, in this chapter the main role of FA systems is to set the stage for FC systems

for cumulative aggregation, introduced in the next section. Thus, although we talk
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about normative systems and use examples from normative system it must be kept

in mind that FA systems are not appropriate for all kinds of normative reasoning.

In general, a system 〈L,C,R〉 consists of a language L, a set of conditionals C

defined over this language, and a set of rules R. The input is a set of sentences from

L. A conditional A → X can be read as the norm “if A, then obligatory X”. A

normative system contains at least one set of norms, the regulative norms from which

obligations and prohibitions can be detached. It may also contain permissive norms,

from which explicit permissions can be detached, and constitutive norms, from which

institutional facts can be detached [MvdT03, BvdT04, XvdT14]. In this chapter we

do not consider permissive and constitutive norms. In the present setting, a system

generates or produces a set of obligations.

All abstract normative systems we consider satisfy at least factual detachment.

To represent factual detachment, we write (A,X) for the argument for X in context

A, in other words, for input A the output contains X. Factual detachment is the rule

A→ X/(A,X), and says that if there is a conditional with the context as antecedent,

then the output contains the consequent.

Besides factual detachment, FA systems have the rule of so-called simple

aggregation. This one is usually given the form (A,X), (A, Y )/(A,X ∪ Y ). In this

chapter aggregation is given the more general form (A,X), (B, Y )/(A ∪ B,X ∪ Y ).

This more general form allows for the inputs not to be the same. Given strengthening

of the input, (A,X)/(A∪B,X), the two rules are equivalent. Since we do not assume

strengthening of the input, our rule is strictly stronger.

Definition 5.4 (FA system with input). An FA system is a triple 〈L,C,R〉 with L a

language, C ⊆ 2L × 2L a set of conditionals written as A→ X, and R a set of rules.

For every conditional A → X ∈ C, A and X are finite sets, where R consists of the

rule of factual detachment (FD) and the rule of aggregation (AND):

A→ X
FD

(A,X)
(A,X) (B, Y )

AND
(A ∪B,X ∪ Y )

An input I ⊆ L for system 〈L,C,R〉 is a subset of the language.
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We write a(A→ X) = A for the antecedent of a conditional, and c(A→ X) = X

for the consequent of a conditional. We write a(C) = ∪{a(A → X) | A → X ∈ C}

for the union of the antecedents of all the conditionals in C. We write c(C) =

∪{c(A → X) | A → X ∈ C} for the union of the consequents of all the conditionals

in C.e

The following example is meant to exercise the notation. We build a language,

and introduce a set of conditionals and an input. The language L is the domain (or

universe) of discourse. For the purpose of the example, L is a set of literals. Following

Tosatto et al., we also introduce a complement function e for the elements e of the

language L.

Example 5.4 (Sing and dance, adapted from Goble [Gob90]). Given a language L0

which does not contain formulas of the form ∼a, the language L is L0∪{∼a | a ∈ L0}

where ∼stands for classical negation. For a ∈ L, if a ∈ L0 then a =∼a, and otherwise

a = b for the b ∈ L0 such that a =∼b.

Let L0 be {x, y, d, s}. Intuitively: “it is Spring” (x); “it is Sunday” (y); “a dance

is performed” (d); and “a song is performed” (s).

Suppose the conditionals C1 = {y → d, x → s} apply to a wedding party. This

says that on Sundays one ought to dance, and in Spring one ought to sing. The

antecedents of the conditionals are: a(y → d) = y; a(x → s) = x; a(C1) = {x, y}.

Their consequents are: c(y → d) = d; c(x→ s) = s; c(C1) = {s, d}.

We distinguish three related kinds of output from a system and an input, called

derivations, arguments and detachments, respectively. A derivation is a finite tree,

whose leaves are elements from the set of conditionals and whose root is a pair (A,X)

obtained by successive applications of the rules, with the further constraint that

A ⊆ I.f An argument is a pair (A,X) for which such a derivation exists, and X is a

detachment if there exists an argument (A,X). Formally:

eTo ease readability we will omit curly braces when referring to singleton sets, and we write
a→ x for {a} → {x}.

f Alternatively, we could add the condition A ⊆ I only to the definitions of arguments and
detachments, or only to the definition of detachments. There are pros and cons to both choices. For
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Definition 5.5 (Derivations der, Arguments arg, and Detachments det ). Given a

system 〈L,C,R〉 and an input I,

• a derivation of (A,X) on the basis of I in system 〈L,C〉 is a finite treeg using

the rules R, with as leaves elements of C, and as root the pair (A,X) where

A ⊆ I and X ⊆ L.

• an argument is a pair (A,X), such that there exists a derivation d with root(d) =

(A,X).

• a detachment is a set X such that there is an argument (A,X).

We write der(L,C, I, R) for the set of all the derivations which can be constructed

in this way, we write arg(L,C, I, R) for the set of all such arguments, and we write

det(L,C, I, R) for the set of all such detachments.

We write leaves(d) for the set of all the leaves of derivation d, i((A,X)) = A for

the input of a pair (A,X) and o((A,X)) = X for the output of a pair (A,X). Also

we write i(D) = ∪{i((A,X)) | (A,X) ∈ D} and o(D) = ∪{o((A,X)) | (A,X) ∈ D}

for the inputs and outputs of sets of such pairs.

The essence of a derivation resides in the fact that they are always based on

an input. This is reflected by the constraint i(root(d)) ⊆ I. But we stress that

such a constraint is put on the root of the derivation only, and that all the other

nodes need not verify this constraint. Otherwise we would not be able to chain

conditionals together. Because of this, the property of closure under sub-derivations

does not always hold. It depends on the rules being used. We will see an example

of this phenomenon with system FC in Section 5.5. This also makes the proof of the

representation theorem for FC trickier. The standard method of induction over the

length of derivations is not available any more.

example, the advantage of our definition is that the set of derivations is smaller, but the disadvantage
is that the set of derivations is not closed under sub-derivations, which complicates the proofs of the
formal results.

gBy a finite tree, we mean one with finitely many nodes.
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A derivation is a relative notion, since it is meant to represent the inner structure of

an argument. As argued before derivations are tied to the context giving a justification

for the argument put forward based on what is, or is not, the case. In the literature,

the notion of argument is defined in two ways. An argument is viewed as either a pair

whose first element is a set of formulas (the support) and second element a formula

(the conclusion), or as a derivation in a logical proof system, i.e. a sequence, tree or

graph of logical formulas [PM12]. Here we choose the first definition. In the context of

this study, the pair itself denotes a norm. However, it could represent any conditional

statement. We use the term argument rather than norm, just to emphasize that we

are interested in the relationship between a set of premises and its set of conclusions.

We now can briefly explain the notion of abstraction at stake in the theory of

abstract normative systems. Intuitively, the detachment system treats the elements of

L as atomic, in the sense that detachments have no relation with the logical structure

of language L. Formally, we can replace one language L by another one L′, define a

one-to-one function f between elements of L and L′, and extend f to subsets of L

and C. Then we have f(det(L,C, I, R)) = det(f(L), f(C), f(I), R). In this sense, it

is an abstract theory.

We continue Example 5.4 to illustrate factual detachment and aggregation, as well

as the distinction between derivations, arguments and detachments. In the absence of

the rule of strengthening of the antecedent, one cannot derive that X is obligatory in

context A∪B from the fact that X is obligatory in context A. This reflects the idea

that arguments are minimal, in the sense that one cannot add irrelevant elements like

B to their support. For example, if the input is {A,B} and the sole conditional is

A → X, then there is no argument (A ∪ B,X). But X will be detached, since the

input set triggers the conditional in question. The absence of the rule of strengthening

of the antecedent does not reflect the fact that rules may leave room for exceptions.

Example 5.5 (Example 5.4 - Continued). Given L = L0 ∪ {∼ a | a ∈ L0}, we say

that an element a ∈ I is a violation if there is a detachment containing a, and this
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detachment is called a violated obligation. Moreover, we say that a detachment is a

cue for action if it is not a violated obligation.

The derivations for C1 = {y → d, x→ s} and I1 = {x, y} are der(L,C1, I1, FA) =

{
y → d

d1 = FD
(y, d)

,
x→ s

d2 = FD
(x, s) ,

x→ d
FD

(x, d)

y → s
FD

(y, s)
d3 = AND

({x, y}, {s, d})

}
,

the arguments are arg(L,C1, I1, FA) = {(y, d), (x, s), ({x, y}, {s, d})} and the detach-

ments are det(L,C1, I1, FA) = {{d}, {s}, {s, d}}, which are all cues for action. Thus

I1 does not contain violations. Factual detachment derives d and s, and aggregation

combines them to {d, s}. First, note that some strengthening of the input is built in

the aggregation inference rule AND, as we derive the conditional norm ({x, y}, {s, d})

whose antecedent is stronger than the antecedent of the conditional norms in C1.

Second, note that, for the context where there is no singing I2 = {x, y, s̄}, we obtain

exactly the same derivations, arguments and detachments. However, now s̄ is a

violation, and the detachments {s} and {s, d} are violated obligations, and only {d}

is a cue for action.

Now consider C2 = {{x, y} → {s, d}} and, e.g., I2. The derivation is

der(L,C2, I2, FA) =
{

{x, y} → {s, d}
d4 = FD

({x, y}, {s, d})

}
,

the arguments are arg(L,C2, I2, FA) = {({x, y}, {s, d})} and the detachments are

det(L,C2, I2, FA) = {{s, d}}.

It should not come as a surprise that the set of detachments is syntax-dependent.

This follows at once from letting the rule of weakening of the output go. This

phenomenon is familiar from the literature on belief revision.h

Theorem 5.1 gives a representation result for FA systems. The left-hand side of

the bi-conditional pertains to the proof theory, while the right-hand side of it provides

hFor more on the rule of weakening of the output, and the reason why it may be considered
counter-intuitive, we refer the reader to the discussion in Goble [Gob90] (see also Parent and van
der Torre [PvdT14a].)

129



a semantic characterization in terms of subset selection. For X to be derivable from a

set of conditionals C on the basis of input I, X must be the union of the consequents

of finitely many conditionals in C, which are all ‘triggered’ by the input set I.i

Theorem 5.1 (Representation result, FA). X ∈ det(L,C, I, FA) if and only if there

is some non-empty and finite C ′ ⊆ C such that a(C ′) ⊆ I and X = c(C ′).

Proof. The argument from the left to the right appeals to the following lemma.

Lemma 5.1. For all d ∈ der(L,C, I, FA),

o(root(d)) = c(leaves(d)) and i(root(d)) = a(leaves(d)) P (d)

Proof of Lemma 5.1. We prove the lemma by induction:

• Basis: the derivation d consists in an application of the rule FD; d = A→X
(A,X)

.

Then, root(d) = (A,X) and leaves(d) = {A → X}. We have o(root(d)) =

c(leaves(d)) = X and i(root(d)) = a(leaves(d)) = A. Thus P (d) holds.

• Inductive step: the derivation d ends with an application of the rule AND.

That is,
d =

.

..
d1 =

(A,X)

...
= d2

(B, Y )
AND

(A ∪B,X ∪ Y )

The sub-derivations d1 and d2 in d are such that root(d1) = (A,X) and

root(d2) = (B, Y ). The derivation d is such that root(d) = (A ∪B,X ∪ Y ).

As inductive hypothesis we assume that the claim holds for d1 and d2. That is,

we assume that:

o(root(d1)) = c(leaves(d1)) and i(root(d1)) = a(leaves(d1)) P (d1)

o(root(d2)) = c(leaves(d2)) and i(root(d2)) = a(leaves(d2)) P (d2)

i In FA systems, we call ‘triggered’ those conditionals whose antecedents are in I.
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We have the following chains of equalities:

o(root(d)) = X ∪ Y

= o(root(d1)) ∪ o(root(d2))

= c(leaves(d1)) ∪ c(leaves(d2)) (by P (d1) and P (d2))

= c(leaves(d1) ∪ leaves(d2))

= c(leaves(d))

i(root(d)) = A ∪B

= i(root(d1)) ∪ i(root(d2))

= a(leaves(d1)) ∪ a(leaves(d2)) (by P (d1) and P (d2))

= a(leaves(d1) ∪ leaves(d2))

= a(leaves(d))

Hence, P (d) holds under the assumption that P (d1) and P (d2) hold.

With Lemma 5.1 in hand, we can establish the left-to-right direction of Theorem

5.1 as follows. Let X ∈ det(L,C, I, FA). By definition 5.5, there is some derivation

d ∈ der(L,C, I, FA) such that root(d) = (A,X) and A ⊆ I. We have o(root(d)) = X

and i(root(d)) = A. Consider leaves(d). By construction, leaves(d) ⊆ C, leaves(d) 6=

{} and leaves(d) is finite, since a derivation tree has finitely many nodes. Lemma

5.1 tells us that o(root(d)) = c(leaves(d)). Thus, c(leaves(d)) = X. Lemma 5.1 also

tells us that i(root(d)) = a(leaves(d)), so that a(leaves(d)) ⊆ I too. Thus, there exists

some non-empty and finite C ′ ⊆ C such that a(C ′) ⊆ I and X = c(C ′) as required.

We now establish the right-to-left direction of Theorem 5.1. Assume there is

a non-empty and finite C ′ ⊆ C such that a(C ′) ⊆ I and X = c(C ′). Let C ′ =

{B1 → Y1, . . . , Bn → Yn}. We construct a derivation d ∈ der(L,C, I, FA) such that

root(d) = (A,X) where A = B1 ∪ . . . ∪Bn and X = Y1 ∪ . . . ∪ Yn.
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B1 → Y1
FD

(B1, Y1)

B2 → Y2
FD

(B2, Y2)
AND

(B1 ∪B2, Y1 ∪ Y2)

B3 → Y3
FD

(B3, Y3)

(B1 ∪B2 ∪B3, Y1 ∪ Y2 ∪ Y3)

B4 → Y4
FD

(B4, Y4)

...
(B1 ∪ . . . ∪Bn−1, Y1 ∪ . . . ∪ Yn−1)

Bn → Yn
FD

(Bn, Yn)
AND

(B1 ∪ . . . ∪Bn, Y1 ∪ . . . ∪ Yn)

The fact that d ∈ der(L,C, I, FA) is guaranteed by the fact that a(C ′) = A ⊆ I.

Hence, X ∈ det(L,C, I, FA) as required.

Corollary 5.1.1 (Monotonicity of det). det(L,C, I, FA) ⊆ det(L,C ′, I, FA) when-

ever C ⊆ C ′.

The following example illustrates how to calculate the detachments using the

semantic characterization described in the statement of Theorem 5.1.

Example 5.6 (Example 5.4 - Continued). We calculate det(L,C1, I1, FA), now using

Theorem 5.1. The set of conditionals C1 has three non-empty subsets: C1.1 = {y →

d}, C1.2 = {x → s}, and C1.3 = {y → d, x → s}. Here a(C1.1) ⊆ I1, a(C1.2) ⊆ I1

and a(C1.3) ⊆ I1. Also c(C1.1) = {d}, c(C1.2) = {s} and c(C1.3) = {s, d}. So

det(L,C1, I1, FA) = {c(C1.1), c(C1.2), c(C1.3)} = {{d}, {s}, {s, d}}.

5.5 FC systems for cumulative aggregation

In this section we introduce FC systems for cumulative aggregation. FC is much

alike FA except that the rule of aggregation AND is replaced with that of cumulative

aggregation CAND.

Definition 5.6 (FC system with input). An FC system is a triple 〈L,C,R〉 where R

consists of the following rule of factual detachment (FD), and the rule of cumulative

aggregation (CAND). We write FC = {FD,CAND}.
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A→ X
FD =

(A,X)
(A,X) (B, Y )

CAND =
(A ∪ (B \X), X ∪ Y )

To illustrate the difference between FA and FC systems, we use the same example

as the one that Parent and van der Torre [PvdT14a] use in order to motivate their

rule ACT. We reckon that, compared to the framework described in [PvdT14a], the

present framework does not yield any new insights into the analysis of the example

itself.

Example 5.7 (adapted from Broome [Bro13]). C contains two conditionals. One

says that you ought to exercise hard everyday: {} → x. The other says that, if you

exercise hard everyday, you ought to eat heartily: x → h. Intuitively, in context {},

we would like to be able to derive {x, h}, but not {h}.

FA systems do not allow us to do it.

Let I = {}. With simple aggregation the set of derivations is der(L,C, I, FA) ={
{} → x

d1 = FD
({}, x)

}
, the set of arguments is arg(L,C, I, FA) = {({}, x)} and the set of

detachments is det(L,C, I, FA) = {{x}}. Thus the desired obligation is not detached.

Norms can be chained together only in so far as the input set contains their antecedent.

Let I ′ = {x}. Then the set of derivations is der(L,C, I ′, FA) =

{
{} → x

d1 = FD
({}, x)

, x→ h
d2 = FD

(x, h)
,

{} → x
FD

({}, x)

x→ h
FD

(x, h)
d3 = AND

(x, {x, h})

}
,

the set of arguments is arg(L,C, I ′, FA) = {({}, x), (x, h), (x, {x, h})} and the

detachments are det(L,C, I ′, FA) = {{x}, {h}, {x, h}}.

With cumulative aggregation, the derivations for C and I = {} are der(L,C, I, FC) =

{
{} → x

d1 = FD
({}, x)

,
{} → x

FD
({}, x)

x→ h
FD

(x, h)
d2 = CAND

({}, {x, h})

}
The arguments are arg(L,C, I, FC) = {({}, x), ({}, {x, h})} and the detachments are

det(L,C, I, FC) = {{x}, {x, h}}. Factual detachment allows us to detach {x}, and

cumulative aggregation allows us to detach {x, h} in addition. Like in [PvdT14a], h
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C ′ f(C ′, D) g(C ′, {})
{} → x {x} {D | x ∈ D}

x→ h
{} if x 6∈ D,
{h} if x ∈ D

{D | x 6∈ D or
{x, h} ⊆ D}

{} → x,
x→ h

{x} if x 6∈ D,
{x, h} if x ∈ D {D | {x, h} ⊆ D}

Table 5.1: Functions f and g.

cannot be derived without x. Intuitively, the obligation to eat heartily no longer holds,

if you take no exercise.

Definition 5.7 introduces the functions f and g, to be used later on in the

semantic characterization of cumulative aggregation. Intuitively, given a set D ⊆ L,

the function f(C,D) gathers all the consequents of the conditionals in C that are

triggered by D. The function g(C, I) gathers all the sets D that extend the input set

I and are closed under f(C, ·).

Definition 5.7 (f and g). We define

f(C,D) =
⋃
{X | A→ X ∈ C;A ⊆ D}

g(C, I) = {D | I ⊆ D ⊇ f(C,D)}

We illustrate the calculation of functions f and g continuing Example 5.7.

Example 5.8 (Example 5.7 - Continued). Consider Table 5.1. The left-most column

shows the relevant subsets C ′ of C. The middle column shows what consequents can

be detached depending on what set D is used as input. The right-most column shows

the sets D extending I and closed under f(C ′, D), for each subset C ′.

Theorem 5.2 gives a representation result for FC systems. For X to be derivable

from a set of conditionals C on the basis of input I, X must be the union of the

consequents of finitely many conditionals in C, which are either directly triggered by
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the input set I (in the sense of Footnote i), or indirectly triggered by the input set I

(via a chain of norms).

Theorem 5.2 (Representation result, FC). X ∈ det(L,C, I, FC) if and only if there

is some non-empty and finite C ′ ⊆ C such that, for all D ∈ g(C ′, I), we have

a(C ′) ⊆ D and X = f(C ′, D).

Proof. See [APv16]j

We show with an example how to calculate the detachments using the semantic

characterization given in the statement of Theorem 5.2.

Example 5.9 (Example 5.8 - Continued). We again calculate det(L,C, I, FC), now

using Theorem 5.2. We use Table 5.1.

The top row tells us that, {x} ∈ det(L,C, I, FC). This is because, when C ′ =

{{} → x} for all D in g(C ′, {}), f(C ′, D) = {x}.

The bottom row tells us that, {x, h} ∈ det(L,C, I, FC). This is because, C ′ =

{{} → x, x→ h} for all D in g(C ′, {}), f(C ′, D) = {x, h}.

We can also conclude that, {h} 6∈ det(L,C, I, FC) because, for all C ′, there is a

D in g(C ′, {}) such that f(C ′, D) 6= {h}.

Finally, the set of detachments is det(L,C, I, FC) = {{x}, {x, h}}.

5.6 Some properties of FA systems and FC sys-

tems

We start by showing how FA systems and FC systems relate to each other.

Definition 5.8 (Argument subsumption). Argument (A,X) subsumes argument

(B, Y ) if A ⊆ B and X = Y . Given two sets of arguments S and T , we say that T

subsumes S (notation: S v T ), if for all (B, Y ) ∈ S there is an argument (A,X) ∈ T

such that (A,X) subsumes (B, Y ).
jThe proof of this theorem is credited to Xavier Parent.
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Example 5.10. Consider the following derivation.

(A,X) (A ∪B ∪X,X ∪ Y )
d = CAND

(A ∪B,X ∪ Y )

The argument (A ∪B,X ∪ Y ) subsumes the argument (A ∪B ∪X,X ∪ Y ).

Proposition 4. arg(L,C, I, FA) v arg(L,C, I, FC).

Proof. Let (A,X) ∈ arg(L,C, I, FA), where A ⊆ I. Let d be the derivation of (A,X)

on the basis of I using the rules FD and AND. Let leaves(d) = {A1 → X1, . . . , An →

Xn}. We have A =
⋃n
i=1Ai and X =

⋃n
i=1Xi.

k That is,

(A,X) = (
n⋃
i=1

Ai,
n⋃
i=1

Xi)

One may transform d into a derivation d′ of (A′, X) on the basis of I using the rules

FD and CAND. Keep the leaves and their parent nodes (obtained using FD) as they

are in d, and replace any application of AND by an application of CAND. The result

will be a tree whose root is

(A′, X) = (A1 ∪
n⋃
i=2

(Ai \
i−1⋃
j=1

Xj),
n⋃
i=1

Xi)

We have

A1 ∪
n⋃
i=2

(Ai \
i−1⋃
j=1

Xj) ⊆
n⋃
i=1

Ai ⊆ I and
n⋃
i=1

Xi =
n⋃
i=1

Xi

On the one hand, (A′, X) ∈ arg(L,C, I, FC). On the other hand, (A′, X) subsumes

(A,X).

Corollary 5.2.1. det(L,C, I, FA) ⊆ det(L,C, I, FC)

Proof. This follows at once from Proposition 4.

We now point out a number of other properties of FA and FC systems.

kStrictly speaking, this follows from a lemma used in the proof of the representation result for
FA systems, Lemma 5.1.
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Proposition 5 (Applicability). The rules AND and CAND can be applied to any

arguments (A,X) and (B, Y ).

Proof. Trivial. Assume arguments (A,X) and (B, Y ). By definition of an argument,

A ⊆ I, B ⊆ I, X ⊆ L and Y ⊆ L. Thus, A ∪ B ⊆ I, A ∪ (B \ X) ⊆ I and

X ∪ Y ⊆ L.

Proposition 6 (Premises permutation, FA). The result of applying AND to two

arguments (A,X) and (B, Y ) does not depend on the order of the two arguments.

Proof. Straightforward.

It is noteworthy that Proposition 6 fails for CAND, as shown by the following

counterexample, where A 6= B:

(A,B) (B,A)
CAND

(A,A ∪B)
6⇐⇒ (B,A) (A,B)

CAND
(B,A ∪B)

The arguments (A,A ∪B) and (B,A ∪B) are distinct.

Proposition 7 considers two successive applications of AND, or of CAND.

Proposition 7 (Associativity). Each of AND and CAND is associative, in the sense

of being independent of the grouping of the pairs to which it is applied.

Proof. The argument for AND is straightforward, and is omitted. For CAND, it

suffices to show that the pairs appearing at the bottom of the following two derivations

are equal:

...

(A,X)

...

(B, Y )

...

(C,Z)

(B ∪ (C \ Y ), Y ∪ Z)

(A ∪ ((B ∪ (C \ Y )) \X), X ∪ Y ∪ Z)

...

(A,X)

...

(B, Y )

(A ∪ (B \X), X ∪ Y )

...

(C,Z)

(A ∪ (B \X) ∪ (C \ (X ∪ Y )), X ∪ Y ∪ Z)
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The fact that the two pairs in question are equal follows at once from the following

two laws from set-theory:

(A ∪B) \X = (A \X) ∪ (B \X) (5.1)

B \ (X ∪ Y ) = (B \X) \ Y (5.2)

We have:

A ∪ ((B ∪ (C \ Y )) \X) = A ∪ (B \X) ∪ ((C \ Y ) \X) [by law (5.1)]

= A ∪ (B \X) ∪ (C \ (X ∪ Y )) [by law (5.2)]

Proposition 8. FA systems are closed under sub-derivations in the following sense:

given a derivation d ∈ der(L,C, I, FA), for all sub-derivations d′ of d, d′ ∈

der(L,C, I, FA)–that is, i(root(d′)) ⊆ I.

Proof. Let d ∈ der(L,C, I, FA) with root(d) = (A,X) and A = A1 ∪ . . . ∪ An ⊆ I

and X = X1 ∪ . . . ∪Xn. Without loss of generality, we can assume that n > 1. By

Proposition 7, d can be given the form:

A1 → X1
FD

(A1, X1)

A2 → X2
FD

(A2, X2)
AND

(A1 ∪A2, X1 ∪X2)

...
FD

(A3, X3)
AND

(A1 ∪A2 ∪A3, X1 ∪X2 ∪X3)
...

...
(A1 ∪ . . . ∪An−1, X1 ∪ . . . ∪Xn−1)

An → Xn
FD

(An, Xn)
AND

(A1 ∪ . . . ∪An, X1 ∪ . . . ∪Xn)

Let d′ be a sub-derivation of d with root (A′, X ′). Clearly, A′ ⊆ A, and so A′ ⊆ I,

since A ⊆ I.

Proposition 9. FC systems are not closed under sub-derivations.
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Proof. We prove this proposition by giving a counterexample. Let C be the set of

conditionals {A→ X,X → Y } and let I = {A}. Consider the following derivation:

d =
A→ Xd1 =
(A,X)

X → Y = d2
(X, Y )

(A,X ∪ Y )

We have i(root(d)) ⊆ I, so that d ∈ der(L,C, I, FC). Since i(root(d2)) = X and

X 6⊆ I, d2 6∈ der(L,C, I, FC).

Proposition 10 (Non-repetition). For every d ∈ der(L,C, I, FA) with root (A,X)

and leaves leaves(d), there exists a derivation d′ ∈ der(L,C, I, FA) with the same

root and the same set of leaves, such that each leaf in leaves(d′) is used at most once.

The same holds for every derivation d ∈ der(L,C, I, FC).

Proof. We only consider the case of FC systems (the argument for FA systems is

similar). Assume we have a derivation d with root(d) = (A,X) and leaves(d) =

{A1 → X1, . . . An → Xn}. By Proposition 7, one can transform d into a derivation d′

of the form

A1 → X1
FD

(A1, X1)

A2 → X2
FD

(A2, X2)
AND

...

A3 → X3
FD

(A3, X3)
AND

...
...

...
An → Xn

FD
(An, Xn)

AND
(A,X)

Suppose that in d′ some Al → Xl decorates at least two distinct leaves. We show

that we can eliminate the second one. To aid comprehension, let B be mnemonic for

the following union, where l ≤ j:

A1 ∪ (A2 \X1) ∪ (A3 \ (X1 ∪X2)) ∪ ... ∪ (Aj \ (X1 ∪ ... ∪Xj−1))

Suppose we have the step:
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A1 → X1

(A1, X1)

A2 → X2

(A2, X2)

(A1 ∪ (A2 \X1), X1 ∪X2)

A3 → X3

(A3, X3)

(A1 ∪ (A2 \X1) ∪ (A3 \ (X1 ∪X2)), X1 ∪X2 ∪X3)

...
...

Aj → Xj

(Aj , Xj)

(B,
⋃j

i=1 Xi)

Al → Xl

(Al, Xl)

(B ∪ (Al \
⋃j

i=1 Xi),
⋃j

i=1 Xi ∪Xl)

where the sub-derivation with root (B,
⋃j
i=1 Xi) contains a leaf carrying Al → Xl.

That is, Al → Xl is one of A1 → X1, ... and Aj → Xj, and it is re-used immediately

after Aj → Xj. Since Xl is one of X1, ... and Xj,
⋃j
i=1 Xi ∪ Xl =

⋃j
i=1 Xi. On the

other hand, (Al \
⋃j
i=1Xi) ⊆ (Al \

⋃l−1
i=1Xi) ⊆ B , so that B ∪ (Al \

⋃j
i=1Xi) = B.

Thus, we can remove from d′ all the re-occurrences of the leaves as required.

5.7 A Brief History of Aggregation

In this section we present a brief historical overview of the role of aggregation in

deontic logic. The reader not interested in this brief addendum we recommend to

skip this section.

We first give an overview of aggregation in the deontic logic literature. Most of

the logical principles have been discussed and criticised exhaustively in the deontic

literature, but aggregation has received less attention.

5.7.1 Aggregation in SDL

Standard Deontic Logic (SDL) was originally conceived by von Wright [vW51],

although some changes have been made to von Wright’s original system to achieve

what is now known as SDL. Many of these changes have been adopted by von

Wright himself, for example, one of the first revisions of ‘the old system’ can be found

in [VW71].

SDL is defined by enriching propositional logic with the modal operator ©, the

modal axiom schemata K and D, the deontic necessitation rule (and modus ponens
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inherently present in propositional logic). As mentioned above, even though there

are some differences in the definition we still refer to von Wright’s original work.

Definition 5.9 (SDL [vW51]). The set of formulae of LSDL is inductively defined

by the following EBNF rule:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ©ϕ , where p ∈ P

The symbols ∨, →, ↔, >, and ⊥ are treated is abbreviations in the standard way.

The modal formula ©ϕ is to be read as “ϕ is obligatory”.

Definition 5.10 (SDL System [Che80]). The SDL system SLSDL
is characterized by

the following axiom schemes and inference rules:

• All propositional tautologies.

• Inference rules:

ϕ→ ψ ϕ
MP :

ψ

` ϕ
N : ©(ϕ)

• Axiom Schemes:

K :©(ϕ→ ψ)→ (©ϕ→©ψ)

D : ¬(©ϕ ∧©¬ϕ)

SDL is a normal modal KD-system following the standard Chellas’ classification

[Che80]. There exist alternative axiomatizations in the literature. The following

alternative axiomatization, is also presented by Chellas [Che80].

In SDL, aggregation is represented by the scheme:

(©α ∧©β)→©(α ∧ β)

This scheme is a theorem in SDL. We can clearly see this in SDL’s alternative

axiomatization.
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Definition 5.11 (SDL Alternative System [Che80]). The SDL system S ′LSDL
is

characterized by the following axiom schemes and inference rules:

• Inference rules:

` ϕ→ ψ
ROM: ©ϕ→©ψ

• Axiom Schemes:

OC : (©ϕ ∧©ψ)→©(ϕ ∧ ψ)

ON :©>

OD : ¬©⊥

The axiom scheme D : ¬(©ϕ ∧ ©¬ϕ) is a theorem in any normal modal logic

that also validates the axiom scheme OD : ¬©⊥. Furthermore, these are (strongly)

equivalent in such logics. In turn, OD’s intuitive reading is to block impossible

obligations rather than just blocking dilemmas. Moreover, under the presence of

aggregation there is no way to distinguish D from OD.

Dilemmas arise naturally: it is not rare to find contradicting obligations. Since

obligations can be generated by different parties, sources, etc, they may not be always

coherent (or congruent). For example, you may be obliged to kill because it is your

duty as serve in the army, but obligated not to kill because of personal and/or religious

reasons ([Sar48]).

The following example adapted from [Hor93] illustrates how aggregation can be

used to derive new obligations.

Example 5.11 (Alternative Service, adapted from [Hor93]). Obligations may have

many different sources. In this example, let us say that (1) is stated by your country’s

law, and (2) may come from your mother forbidding you to join the military. This

can be seen as a re-interpretation of Sartre’s student dilemma [Sar48].

(1) “You ought to do either military service or alternative service” ©(m ∨ a)
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(2) “You ought not to do military service” ©¬m

We can formalize this example as a Hilbert style derivation. A derivation

is inductively defined as follows, every line in the derivation is either: (i) an

assumption from the set of obligations (or tautology); (ii) a statement resulting from

the application of an inference rule.

1- ©(m ∨ a) Assum.

2- ©¬m Assum.

3- ©(a ∧ ¬m) OC:1,2

From the obligation to either do military or alternative service, and the obligation

not to do military service, we conclude by using the OC inference rule, the obligation to

do alternative service and not to do military service. This holds under the assumption

of replacements of logical equivalents, since: ((a ∨m) ∧ ¬m) ≡ (a ∧ ¬m).

We can also formalize this example using a Gentzen style proof tree. We define

proof trees inductively. The root of a proof tree is statement resulting from the

application of an inference rule. The leafs are either: (i) an assumption from the

set of obligations (or tautology); (ii) the root of a proof tree.

©(s ∨m) ©¬m
OC©(s ∧ ¬m)

As we can see derivations and proofs trees are very similar. We will use one or

the other depending on the context.

In the deontic logic literature, the validity of aggregation has been questioned in

combination with the weakening principle, always in the context of dilemmas (i.e. see

Van Fraassen [VF73], Goble [Gob13], Horty [Hor94]).

The weakening principle is embedded in many logical formalisms, i.e. monotonic

logics. We will show later that this principle is one of the main culprits that–together

with the aggregation rule–allows us to detach or infer any arbitrary formula from the

existence of a dilemma.
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There are several ways in which we can describe the weakening principle, for

example, the most prominent in the literature is the following: if ©α and ` α → β,

then ©β. In our case, for our present setting, we choose to represent this principle

in the following way:
©α

W©(α ∨ β)
or ©α→©(α ∨ β) since ` α→ (α ∨ β).

Weakening can be used to derive simpler obligations from more complex obliga-

tions. For example, if we ought to pay (p) for a book and we ought to receive a

receipt (r) due the payment, we can represent this as©(p∧ r). Given the weakening

principle, we can derive the ought to pay ©(p). (For an extensive discussion on this

topic see [Gob13]).

Any logic suited for deontic reasoning, that allows the existence of dilemmas, must

not validate the principle of ‘deontic explosion’. This principle can be formalized in

SDL as follows:

DEX : (©α ∧©¬α)→©β

We alternatively present the proof theoretic formalization:

©α ©¬α
DEX©β

Intuitively, the DEX principle states that in the existence of a dilemma, then

everything is (or becomes) obligatory. Deontic dilemmas may naturally occur in

within our set of obligations. Thus, deontic explosion must be rejected at once. This

the main ‘problem’ raised by the introduction of dilemmas.

In SDL, the D axiom: ¬(©(α)∧©(¬α)) serves as a constraint on the antecedent

for DEX. Directly making dilemmas inconsistent by axiomatization. However, we

still want a language (logic) that is expressive enough to allow us to reason without

the absence of deontic dilemmas. We need to find a better way to deal with DEX,

rather than completely excluding dilemmas from our logic formalism. Therefore, we

need to find a different way to deal with DEX, while at the same time allowing for

a rich amount of inferences that are valid (or desirable) for normative reasoning.
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As a matter of clarification we provide the complete list of the schemes in the

forthcoming quote.

(RM) If ` A→ B then ` ©A→©B

(AND) ` (©A ∧©B)→©(A ∧B)

(EFQ) ` (A ∧ ¬A)→ B

(M) ` ©(A ∧B)→ (©A ∧©B)

(OR) ` ©A→©(A ∨B)

(RE) If ` A↔ B then ` ©A↔©B

Lou Goble summarizes the subtle interaction between the different prospect

culprits that lead to DEX:

The problem that deontic dilemmas present for deontic logic is simply the

question of how to avoid deontic explosion, and (D), while at the same time

accounting for the full range of inferences that do seem valid for normative

concepts. Any logic that contains the rule (RM) [ROM ] mentioned above and

the aggregation principle ... and the principle of ex falso quodlibet ... will

ipso facto contain (DEX). Hence, to be adequate for deontic dilemmas, the logic

must reject or restrict at least one of the principles (RM), (AND) and (EFQ)

[ex falso quodlibet]. The question is, What is the best way to do that?.

It is convenient to note that the inheritance rule (RM) is equivalent to the

converse of (AND) and also to the principle (OR), namely ... given the rule of

replacement for equivalents ... which seems a sine qua non for any reasonable

deontic logic. That is to say, given (RM) then both (M) and (OR) are derivable

(and, of course (RE)), and given either (M) or (OR), with (RE), then (RM)

is derivable. Hence (M) and (OR) are equally implicated in the derivation of

(DEX). [Gob05]

There are many ways on which we could proceed. As aforementioned our choice

is to drop the weakening principle. In Goble’s terms this means the rejection of the
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principle (OR). Thats not all, since this principle can be derived from the inheritance

principle (RM). Thus, we also reject the principle of inheritance (RM).

Returning back to SDL, besides rejecting the axiom scheme D, we need to reject

the axiom scheme K which–together with the necessitation inference rule–implies the

derivation of DEX. Therefore we need to consider a non-normal modal logic (i.e.

minimal models [Che80]). Non-normal modal logics are weaker normal modal logics,

i.e. they allow fewer inferences to be valid. In non-normal modal logic, there we

have a tradeoff between aggregation and weakening. Thus, the resulting logic only

supports aggregation. In Chellas’ terms, this is a logic of type EC [Che80]. In the

following section we present such logic.

The main motivation for the weakening of the logic and the rejection of the

weakening principle is solely to study aggregation in isolation.

For other other ways on how to prevent deontic explosion using non-monotonic

logic techniques we refer the reader to [Hor93] and Two-Phase deontic logic [vdT97b,

vdTT00].

5.8 Related research

We now compare our framework for cummulative aggregation with other I/O logic

systems. As mentioned in Section 5.1, the present work extends the framework

described by Tosatto et al. [CTBvdTV12] in order to handle conjunction of outputs

along with the form of cumulative transitivity introduced by Parent and van der Torre

[PvdT14a].

At the time, we are not able to report any formal result showing how the Tosatto

et al. framework relates with the present one. Care should be taken here. On the one

hand, the present account does not validate the rule of strengthening of the input,

while the Tosatto et al. one does in the following restricted form: from (>, x), infer

(y, x). On the other hand, in order to relate the proof-theory with the semantics, the
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authors make a detour through the notion of deontic redundancy [vdT10]. A more

detailed comparison between the two accounts is left as a topic for future research.

There are close similarities between the systems described in this chapter and the

systems of I/O logic introduced by Parent and van der Torre [PvdT14a]. As explained

in the introductory section, our rule CAND is the set-theoretical counterpart of their

rule ACT. In both systems, weakening of the output goes away. At the same time

there are also important differences between the two settings. First, the present

setting remains neutral about the specific language to be used. It need not be the

language of propositional logic. Second, the present account does not validate the

rule of strengthening of the input.

Tosatto et al. explain how to instantiate their abstract normative system with

propositional logic to obtain fragments of the standard input/output logics [MvdT00].

In this section we rerun the same exercise for the systems studied in [PvdT14a].

Unlike Tosatto et al., we argue semantically, and not proof-theoretically, because of

the problem alluded to above: derivations in FC are not closed under sub-derivations.

For the reader’s convenience, we first briefly recall the definitions of O1 and O3

given by Parent and van der Torre [PvdT14a]. Given a set X of formulas, and a

set N of norms (viewed as pairs of formulas), N(X) denotes the image of N under

X, i.e., N(X) = {x : (a, x) ∈ N for some a ∈ X}. Cn(X) is the consequence set

of X in classical propositional logic. And x a` y is short for x ` y and y ` x. We

have x ∈ O1(N, I) whenever there is some finite M ⊆ N such that M(Cn(I)) 6= {}

and x a`
∧
M(Cn(I)). We have x ∈ O3(N, I) if and only if there is some finite

M ⊆ N such that M(Cn(I)) 6= {} and for all B, if I ⊆ B = Cn(B) ⊇ M(B), then

x a` ∧M(B).l

Theorem 5.3 (Instantiation). Let 〈L,C,R〉 be a FA system, or a FC system, with

L the language of propositional logic (without >) and C a set of conditionals whose

lThe proof-system corresponding to O1 has three rules: from (a, x) and b ` a, infer (b, x) (SI);
from (a, x) and (a, y), infer (a, x ∧ y) (AND); from (a, x) and b a` a, infer (b, x) (EQ). The proof-
system corresponding to O3 may be obtained by replacing (AND) with (ACT). This is the rule:
from (a, x) and (a ∧ x, y), infer (a, x ∧ y).
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antecedents and consequents are singleton sets. Define N = {(a, x) | {a} → {x} ∈

C}. The following applies:

i) If X ∈ det(L,C, I, FA), then
∧
X ∈ O1(N, I), where

∧
X is the conjunction

of all the elements of X;

ii) If X ∈ det(L,C, I, FC), then
∧
X ∈ O3(N, I).

Proof. See [APv16].

We recall the general definition of a system. A system is a tuple 〈L,C,R〉, where

L is a language, C a set of conditional norms, and R is a set of rules. We also recall

the rules to be used:

A→ X
FD =

(A,X)
(A,X)

SI =
(A ∪B,X)

(A,X ∪ Y )
WO =

(A,X)

(A,X) (B, Y )
AND =

(A ∪B), X ∪ Y )

(A,X) (B, Y )
CAND =

(A ∪ (B \X), X ∪ Y )

(A,X) (B, Y )
CT =

(A ∪ (B \X), Y )

In what follows we depict a set of possible systems that can be obtained by different

combinations of such rules. We proceed in the following fashion. All the systems

validate the rule of factual detachment, hence we take this minimalistic system as

a start. Subsequently, we add the rules of aggregation (A), cumulative transitivity

(X), and cumulative aggregation (C). Thus we obtain the systems FA, FX, and FC

respectively. Later we add the rules of strengthening of the input (S), or weakening

of the output (W ) to the systems. Finally we add missing one out of S and W .

Figure 5.3 summarizes the relation between the systems depicted and those

previously defined by Parent and van der Tore [PvdT14a] and Makinson and van

der Torre [MvdT00].

Systems FA and FC are in accordance with O1 and O3 [PvdT14a] as stated in

Theorem 5.3. To prove the claim that systems FASW and FCSW are equivalent to

out1 and out3 respectively, and the logical implication between systems FCW and

FXW, we appeal solely to the proof theoretic characterizations of the systems.
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Figure 5.3: Relation between different systems

Proposition 11. {CAND,SI} ⇒ AND

Proof. Given arguments (A,X) and (B, Y ) we build a derivation for (A ∪B,X ∪ Y )

using the rules CAND and SI.

(A,X) (B, Y )
CAND

(A ∪ (B \X), X ∪ Y )
SI

(A ∪ (B \X) ∪X,X ∪ Y )

The consequent is equivalent to (A∪B,X ∪Y ), as (A∪ (B \X)∪X) = (A∪B).

Proposition 12. {CAND,WO} ⇒ CT .

Proof. Given arguments (A,X) and (A∪X, Y ) we build a derivation for (A, Y ) using

the rules CAND and WO.

(A,X) (A ∪X, Y )
CAND

(A ∪ ((A ∪X) \X), X ∪ Y )
WO

(A, Y )

The system FASW and out1 [MvdT00] are characterised by the same set of rules.

We briefly recall the definition of the proof system for out1 called deriv1(G,A) =

{SI,AND,WO}, where G and A are analogous to the set of conditional norms C
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and the input I respectively. We can have a glimpse on how these concepts relate in

Theorem 5.3.

The same claim holds for system FCSW and out3 [MvdT00], where deriv3(G,A) =

{SI,AND,CT,WO}. Even though these are not directly identical, Propositions 11

and 12 ensure that systems containing CAND, WO and SI also support AND and

CT.

Finally, we prove the implication between systems FCW and FXW.

Proposition 13. If X ∈ det(L,C, I, FXW ), then X ∈ det(L,C, I, FCW ).

Proof. This follows at once from Proposition 12

It is noteworthy that the converse of Proposition 13 does not hold. It suffices

to point out that in system FCW there is no rule that allows us to aggregate (or

combine) consequents.

5.9 Discussion and Further Work

Section 5.8 briefly compares our present framework with other I/O logic systems.

This comparison presupposed that strengthening of the input and weakening of the

output had been added to FA and FC systems. In what follows we describe possible

ways to modify the semantics in order to allow their addition.

Adding Strengthening of the Input. The natural way is to add the rule

(A,X)/(A∪B,X) to the proof theory and keep the rest of the framework unchanged.

Another way consists in reformulating the definition of derivation allowing for a subset

of the antecedent to be included in the input set i.e. A ∩ I 6= ∅. Regarding the

representation results we conjecture that it suffices to relax the constraints in the

relation between antecedents and input. That is, Ai ⊆ a(C ′) and Ai ⊆ I for Theorem

5.1. Given the subtleties of the closure functions and their interaction we refrain to
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formulate any conjecture for Theorem 5.2. Thus we leave this analysis for further

research.

Adding Weakening of the Output. Weakening of the output can be added

in different ways. On the one hand we add the following rule to our proof theory

(A,X ∪ Y )/(A,X). On the other hand we reformulate the definition of the notion of

detachment in such a way that X is detached for input I if there is an argument (A, Y )

such that A ⊆ I and X ⊆ Y . Regarding the representation results we conjecture

that it suffices to relax the constraints in the detachment set X from equality to

set inclusion. That is, X ⊆ c(C ′) and X ⊆ f(C ′, D) for Theorems 5.1 and 5.2

respectively. It still remain to be seen if the proof of the representation results still

goes trough, and in what form.

There are other rules that one may want to add. These include: plain transitivity,

(A,X), (X, Y )/(A, Y ), and reasoning by cases, (A∪{a}, X), (B∪{ā}, Y )/(A∪B,X∪

Y ). We leave the formal analysis of such kinds of extensions as a topic for further

research.

We end this section by discussing two problems.

Irrelevant Obligations. This problem was pointed out by Stolpe [Sto08] in the

context of a discussion of the principle of transitivity. It affects Makinson/van der

Torre’s initial framework and Parent and van der Torre [PvdT14a]’s one. Roughly

speaking, the irrelevant obligation problem can be described as follows. In a violation

context, i.e. ā ∈ I and a ∈ X, one can detach the obligation of any state of affairs

as long as it appears as consequent of a conditional. In our notation, this means

that given the set of conditionals C = {{} → x̄, b → y} and input I = {x}, y ∈

det(L,C, I, R). This looks counter-intuitive. We do not have this problem in either

system FA or system FC.
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FA system. Look at the statement of Theorem 5.1. There is only one candidate

C ′ ⊆ C meeting the requirement a(C ′) ⊆ I. This is C ′ = {{} → x̄}. Hence

according to Theorem 5.1, det(L,C, I, FA) = {{x̄}}.

FC system. We use a similar table as Table 5.1 for Example 5.8:

C ′ f(C ′, D) g(C ′, {x})

{} → x̄ {x̄} {D | {x, x̄} ∈ D}

b→ y
{} if b 6∈ D,

{y} if b ∈ D

{D | (x ∈ D and b 6∈ D) or

{x, b, y} ⊆ D}

{} → x̄,

b→ y

{x̄} if b 6∈ D,

{x̄, y} if b ∈ D

{D | ({x, x̄} ∈ D and b 6∈ D) or

{x, x̄, b, y} ⊆ D}

There is only one non-empty C ′ ⊆ C fulfilling the requirement “for all D ∈

g(C ′, I), a(C ′) ⊆ D” mentioned in the statement of Theorem 5.2. This is

C ′ = {{} → x̄}. For this C ′, f(C ′, D) = {x̄} , so that det(L,C, I, FC) = {{x̄}}.

Pragmatic Oddity. The derivation below depicts the problem known as of

Pragmatic Oddity [PS96]. We use the dog and sign scenario, the letters d and s

stand for “there is a dog” and “there is a warning sign” respectively. The intended

reading is the following, “there should not be a dog” ({}, d̄), and, “if there is a dog,

then it should be a warning sign” (d, s).

({}, d̄) (d, s)
AND

(d, {d̄, s})

Given the fact that we indeed have a dog (i.e. d ∈ I) we can conclude that we

should not have a dog and we should have a warning sign. This conclusion might

seem unnatural a first glance, but it is possible to find examples on which these type

of derivation makes sense. For example, if you do not pay the rent, you still ought to

pay the rent, plus some fine regulated for the delay.

There are several courses of action we could take in order to forbid or restrict

these kind of derivations. The natural way is to restrict the application of the rule
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CAND. We allow the application of the rule only if for every a ∈ A ∪ (B \ X)

there is no ā ∈ X ∪ Y . Another approach is to directly constraint the notions of

either derivations or arguments (Definition 5.5) to exclude trees with roots (resp.

pairs) in which the antecedent and consequent contain complementary elements. All

the proposed solutions are of proof theoretical nature. It remains to be seen which

semantics will follow from this constraints.

5.10 Conclusion

We have extended the Tosatto et al. framework of abstract normative systems in

order to handle conjunction of outputs along with the aggregative form of cumulative

transitivity introduced by Parent and van der Torre [PvdT14a]. We have introduced

two abstract normative systems, the FA and FC systems. We have illustrated

these two systems with examples from literature, and presented two representation

theorems for these systems. We have also shown how they relate to the original I/O

systems.

FA systems. They supplement factual detachment with the rule of simple aggrega-

tion, taking unions of inputs and outputs. The representation theorem Theorem

5.1 shows that the sets of formulas that can be detached in FA precisely

correspond to sets of conditionals that generate this output.

FC systems. They supplement factual detachment with the rule of cumulative

aggregation, a subtle kind of transitivity or reuse of the output, as introduced in

[PvdT14a]. The representation theorem Theorem 5.2 shows how the cumulative

aggregation rule corresponds to the reuse of the detached formulas.
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Chapter 6

Conclusion and Further Work

Abstract. In this chapter we provide a recap of the research questions and what

conclusions we draw after answering them. We later provide some discussion and

directions for future lines of research.

6.1 Conclusion

We have described how logical formalisms can be employed in various ways in relation

with access control. We now recapitulate over the research questions presented in

Section 1.2 and discuss how they have been answered.

Research Question 1. How to formally characterize the different reasons for

revoking or denying access rights?

We have studied the reasons that principals may have to perform revocations.

We have developed Trust Delegation Logic (TDL) in order to formalize the

reasons for revocating. We have provided different scenarios to motivate the

reasons for revocating and their relation with TDL. TDL incorporates two epistemic

operators that together allowed us to define different levels of trust among principals.

Accordingly, TDL was also equipped with a modal operator that allows principals to

make public announcements about statements describing their access control policy.
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Finally, the non-monotonic behaviour inherent to delegation revocation was captured

including negation by failure to TDL.

Research Question 2. Can the different revocation schemes be defined in such

a way that they are in line with the different reasons for revocating?

First and foremost we have tackled the problems encountered in Hagström et al.’s

[HJPPW01] revocation framework. We developed a refined framework with clear,

formal graph-theoretic definitions for each revocation scheme proposed/considered.

We have formally studied the relation between the reasons for revocating and the

definitions of revocations schemes. TDL allowed us to formulate a postulate describing

the desired behaviour, following the axiomatic method. The proposed postulate

describes the correspondence between the behaviour of the revocation schemes and the

reasons for revocating, and ensures that access is granted whenever this is justifiable

on the basis of the reasons for granting and revocating.

Research Question 3. How can a says-based access control logic support denials

in a natural way?

We have studied distributed autoepistemic logic (dAEL(ID)) and its application

to access control. We have proposed dAEL(ID) with well-founded semantics as

a characterization of the says operator. As previously discussed, issuing denials

may cause a non-monotonic behaviour in which granting new access rights does not

necessarily result in a principal having more access rights. dAEL(ID) is a non-

monotonic logic, thus allowing to naturally capture the behaviour required for a

issuing such denials. This (new) non-monotonic perspective on the says operator

sheds light over its intended behaviour allowing for new semantics to be defined.

Research Question 4. Can a decision procedure for such an access control logic

be developed?

We have defined a query-based decision procedure for the well-founded semantics

of dAEL(ID). The existence of a decision procedure ensures that dAEL(ID) is

decidable. The decision procedure allows to determine access rights with a minimal
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amount of communication between the involved principals, thus minimizing the

information flow in the system. To achieve this, first our decision procedure performs

meta-reasoning about the local policies relative to each principal. Second the decision

procedure handles the communication among principals. When loops are formed,

these are detected and treated in accordance with dAEL(ID)’s well-founded semantics.

We conclude in a general note that non-monotonicity is a core property required

for the specification of access control policies in systems that aim to support denial of

rights. However it is worth noticing that such logics with a high level of expressivity

have a high computational cost.

6.2 Further Work

We first have studied revocation for a version of delegation that does not have any

bound on the length of delegation chains. However, TDL lends itself very well also to

delegation with such a bound. Indeed, for this purpose a somewhat reduced version

of TDL, which lacks the TiD and TiS trust operators, would be sufficient. It would

be interesting to study the possibility to define a systematic revocation framework

for such bounded delegation that satisfies a desirable property analogous to the one

that our framework for revoking unbounded delegation has been shown to satisfy.

Some reasons for revoking rights cannot be captured in TDL: User A may revoke

B’s rights just because she does not consider it to be useful for B to have the right

in question, even though she strongly trusts B. And A may choose a certain kind of

revocation scheme based on considerations of responsibility, not just considerations

of trust. Our preliminary investigations into this topic suggest that our refined

framework also corresponds well to these not trust-based reasons for revocating, but

further investigations are due in order to develop an extension of TDL that can

formalize such reasons and proof our system to satisfy a desirable property based on

this extended logic.
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In order to develop an axiomatic theory of revocation schemes similar to the

application of the axiomatic method in social choice theory, other desirable properties

of revocation schems or revocation frameworks need to be identified and compared

to the desirable property that we proposed.

We propose two main extensions for TDL logic: (i) extending the logic TDL with

the concepts of utility and responsibility; and (ii) studying the semantics for TDL

logic. First the main motivation for (i) is to be able to talk about if and when a

principal ‘needs’ to have a right and how this affects the revocation of rights.

Second, the motivation for (ii) is to improve the theoretic study of the logic

TDL, allowing us to study the relation between design decisions for the logic and

the revocation frameworks characterised by the various possible logics from different

points of view rather than being forced to solve this in a proof theoretic realm. We

propose to apply the methodology used for dAEL(ID)’s semantics, i.e. AFT, in order

to capture TDL’s non-monotonic behaviour.

Although we tried to stay close to Hagström’s framework as possible, it would

be of interest to study what happens if one takes into account other approaches to

revocation.

Given that our decision procedure for dAEL(ID) has in the worst case a

exponential runtime (see Section 4.4.7), a more efficient decision procedure will

have to be developed for dAEL(ID) or an expressively rich subset of it in order

to apply it in practice. One of the reasons why our decision procedure is so inefficient

is that the minimization of information flow is very expensive. Instead of the

minimizing information flow to an absolute minimum as our decision procedure does,

a practically applicable decision procedure would have to find a compromise between

computational cost and limiting information flow. Nevertheless, we consider our ideal

minimization of information flow an interesting proof of concept as a foundation for

further research.

Our decision procedure aims at proving a query in terms of queries to other

principals. In this process, it cautiously handles possible loops between such queries.
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This is highly reminiscent of the way justifications are defined, for instance for logic

programs [DBS15]. Hence it may be interesting to define justification semantics for

dAEL(ID).

Another way to characterize dAEL(ID) would be through an axiomatic proof

system. Most other access control logics are defined in this way, hence this would

make dAEL(ID) more straightforwardly comparable to other access control logics.

To the best of our knowledge, no proof system has been developed for autoepistemic

logic with the well-founded semantics.

The possibility of defining an intuitionistic variant of dAEL(ID) should be studied.

This will allow for a direct comparison with other says-based approaches common

in the literature. Furthermore, it is worthwhile to study the possibility of adding

features of other state-of-the-art access control logics to dAEL(ID), e.g. the support

for explicit time and system state incorporated in BL [Gar09, GP12].
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Sagiv, and Peter J. Stuckey, editors, CL, volume 1861 of LNCS, pages

703–717. Springer, 2000. 64

[DMT98] Marc Denecker, Victor Marek, and Miros law Truszczyński. Fixpoint
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