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ABSTRACT
In this work, we investigate the practice of patch construction in

the Linux kernel development, focusing on the di�erences between

three patching processes: (1) patches crafted entirely manually to

�x bugs, (2) those that are derived from warnings of bug detec-

tion tools, and (3) those that are automatically generated based on

�x patterns. With this study, we provide to the research commu-

nity concrete insights on the practice of patching as well as how

the development community is currently embracing research and

commercial patching tools to improve productivity in repair. The

result of our study shows that tool-supported patches are increas-

ingly adopted by the developer community while manually-written

patches are accepted more quickly. Patch application tools enable

developers to remain committed to contributing patches to the

code base. Our �ndings also include that, in actual development

processes, patches generally implement several change operations

spread over the code, even for patches �xing warnings by bug

detection tools. Finally, this study has shown that there is an op-

portunity to directly leverage the output of bug detection tools to

readily generate patches that are appropriate for �xing the problem,

and that are consistent with manually-written patches.
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1 INTRODUCTION
Patch construction is a key task in software development. In par-

ticular, it is central to the repair process when developers must

engineer change operations for �xing the buggy code. In recent

years, a number of tools have been integrated into software devel-

opment ecosystems, contributing to reducing the burden of patch

construction. The process of a patch construction indeed includes

various steps that can more or less be automated: bug detection

tools for example can help human developers characterize and often

localize the piece of code to �x, while patch application tools can

systematize the formation of concrete patches that can be applied

within an identi�ed context of the code.

Tool support however can impact patch construction in a way

that may in�uence acceptance or that focuses the patches to speci�c

bug kinds. The growing �eld of automated repair[20, 24, 29, 33],

for example, is currently challenged by the nature of the patches

that are produced and their eventual acceptance by development

teams. Indeed, constructed patches must be applied to a code base

and later maintained by human developers.

This situation raises the question of the acceptance of patches

within a development team, with regards to the process that was

relied upon to construct them. The goal of our study is therefore to

identify di�erent types of patches written by di�erent construction

processes by exploring patches in a real-world project, to re�ect on

how program repair is conducted in current development settings.

In particular, we investigate how advances in static bug detection

and patch application have already been exploited to reduce human

e�orts in repair.

We formulate research questions for comparing di�erent types

of patches, produced with varying degrees of automation, to of-

fer to the community some insights on i) whether tool-supported

patches can be readily adopted, ii) whether tool-supported patches

target speci�c kinds of bugs, and iii) where further opportunities

lie for improving automated repair techniques in production envi-

ronments.

In this work, we consider the Linux operating system develop-

ment since it has established an important code base in the history

of software engineering. Linux is furthermore a reliable artifact [17]

for research as patches are validated by a strongly hierarchical com-

munity before they can reach the mainline code base. Developers

involved in Linux development, especially maintainers who are in

charge of acknowledging patches, have relatively extensive experi-

ence in programming. Linux’s development history constitutes a

valuable information for repair studies as a number of tools have

been introduced in this community to automate and systematize
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various tasks such as code style checking, bug detections, and sys-

tematic patching. Our analysis unfolds as an empirical comparative

study of three patch construction processes:

• Process H: In the �rst process, developers must rely on a bug

report written by a user to understand the problem, locate the

faulty part of source code, and manually craft a �x. We refer to

it as Process H, since all steps in the process appear to involve

Human intervention.

• Process DLH: In the second process, static analysis tools �rst

scan the source code and report on lines which are likely faulty.

Fixing the reported lines of code can be straightforward since

the tools may be very descriptive on the nature of the problem.

Nevertheless, dealing with static debugging tools can be tedious

for developers with little experience as these tools often yield

too many false positives. We refer to this process as Process
DLH, sinceDetection and Localization are automated butHuman

intervention is required to form the patch.

• Process HMG: Finally, in the third process, developers may rely

on a systematic patching tool to search for and �x a speci�c

bug pattern. We refer to this process as Process HMG, since

Human input is needed to express the bug/�x patterns which are

Matched by a tool to a code base to Generate a concrete patch.

We ensure that the collected dataset does not include patch in-

stances that can be attributed to more than one of the processes

described above. Our analyses have eventually yielded a few impli-

cations for future research:

Acceptance of patches: development communities, such as the

Linux kernel team, are becoming aware of the potential of tool

support in patch construction i) to gain time by prioritizing engi-

neering tasks and ii) to attract contributions from novice developers

seeking to join a project.

Kinds of bugs: Tool-supported patches do not target the same

kinds of bugs as manual patches. However, we note that patches

�xing warnings outputted by bug detection tools are already com-

plex, requiring several change operations over several lines, hunks

and even �les of code.

Opportunities for automated repair: We have performed prelim-

inary analyses which show that bug detection tools can be leveraged

as a stepping stone for automated repair in conjunction with patch

generation tools, to produce patches that are consistent with human

patches (for maintenance), correct (derived from past experience of

�xing a speci�c bug type) and thus likely to be rapidly accepted by

development teams.

2 BACKGROUND
Linux is an open-source operating system that is widely used in

environments ranging from embedded systems to servers. The

heart of the Linux operating system is the Linux kernel, which

comprises all the code that runs with kernel privileges, including

device drivers and �le systems. It was �rst introduced in 1994, and

has grown to 14.3 million lines of C code with the release of Linux

4.8 in Oct. 2016.
1

All data used in this paper are related to changes

propagated to the mainline code base until Oct. 2, 2016
2
.

A recent study has shown that, for a collection of typical types

of faults in C code, the number of faults is staying stable, even

1
Computed with David A. Wheeler’s ‘SLOCCount’.

2
Kernel’s Git HEAD commit id is c8d2bc9bc39ebea8437fd974fdbc21847bb897a3.

though the size of the kernel is increasing, implying that the overall

quality of the code is improving [37]. Nevertheless, ensuring the

correctness and maintainability of the code remains an important

issue for Linux developers, as re�ected by discussions on the kernel

mailing list [42].

The Linux kernel is developed according to a hierarchical open

source model referred to as Benevolent dictator for life (BDFL) [50],

in which anyone can contribute, but ultimately all contributions

are integrated by a single person, Linus Torvalds. A Linux kernel

maintainer receives patches related to a particular �le or subsystem

from developers or more specialized maintainers. After evaluating

and locally committing them, he/she propagates them upwards in

the maintainer hierarchy eventually towards Linus Torvalds.

Finally, Linux developers are urged to “solve a single problem per

patch”
3
, and maintainers are known to enforce this rule as revealed

by discussions on contributors’ patches in the Linux Kernel Mailing

List (LKML) [42] archive.

Recently, the development and maintenance of the Linux kernel

have become a massive e�ort, involving a huge number of people.

1,731 distinct commit authors have contributed to the development

of Linux 4.8
4
. The patches written by these commit authors are

then validated by the 1,142 maintainers of Linux 4.8
5
, who are

responsible for the various subsystems.

Since the release of Linux 2.6.12 in June 2005, the Linux kernel

has used the source code management system git [13]. The current

Linux kernel git tree [47] only goes back to Linux 2.6.12, and thus

we use this version as the starting point of our study. Between

Linux 2.6.12 and Linux 4.8 there were 616,291 commits, by 20,591

di�erent developers
6
. These commits are retrievable from the git

repository as patches. Basically, a patch is an extract of code, in

which lines beginning with - are to be removed lines beginning

with + are to be added.

The Linux kernel community actively uses the Bugzilla [19] issue

tracking system to report and manage bugs. As of November 2016,

over 28 thousands bug reports were �led in the kernel tracking

system, with about 6,000 marked as highly severe or even blocking.

The Linux community has also built, or integrated, a number of

tools for improving the quality of its source code in a systematic

way. For example, The mainline code base includes the coding

style checker checkpatch, which was released in July 2007, in Linux

2.6.22. The use of checkpatch is supported by the Linux kernel

guidelines for submitting patches
7
, and checkpatch has been reg-

ularly maintained and extended since its inception. Sparse [49] is

another example of the tools built by Linus Torvalds and colleagues

to enforce typechecking.

Commercial tools, such as Coverity [44], also often help to �x

Linux code. More recently, researchers at Inria/LiP6 have developed

the Coccinelle project [25] for Linux code matching and transforma-

tion. Initially, the project was designed to help developers perform

collateral evolutions [35]. It is now intensively used by Linux de-

velopers to apply �x patterns to the whole code base.

3
see Documentation/SubmittingPatches in linux tree.

4
Obtained using git log v4.7..v4.8 | grep ^Author | sort -u | wc -l,

without controlling for variations in names or email addresses.

5
Obtained using grep ^M: MAINTAINERS | sort -u | wc -l without controlling

for variations in names or email addresses.

6
Again, we have not controlled for variations in names or email addresses.

7Documentation/SubmittingPatches in the Linux tree.
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3 METHODOLOGY
Our objective is to empirically check the impact of tool support in

the patch construction process in Linux. To achieve this goal, we

must collect a large, consistent and clean set of patches constructed

in di�erent processes. Speci�cally, we require:

(1) patches that have been a-priori manually prepared by developers

based on the knowledge of a potential bug, somewhere in the

code. For this type of patches, we assume that a user may have

reported an issue while running the code. In the Linux ecosystem,

such reporters are often kernel developers.

(2) patches that have been constructed by using the output of bug

�nding tools, which are integrated into the development chain.

We consider this type of patches to be tool-supported, as debug-

ging tools often provide reliable information on what the bug is

(hence, how to �x it) and where it is located.

(3) patches that have been constructed, by a tool, based fully on

change rules. Such �xes, validated by maintainers, are actually

based on templates of �x patterns which are used to i) match

(i.e., locate) incorrect code in the project and ii) generate a corre-

sponding concrete �x.

3.1 Dataset Collection
To collect patches constructed via Process H, hereafter referred to

as H patches, we consider patches whose commits are explicitly

linked to a bug report from the kernel bugzilla tracking system

and any other Linux distributions bug tracking systems. We con-

sider that such patches have been engineered manually after a

careful consideration of the report �led by a user, and often after a

replication step where developers dynamically test the software.

Until Linux 4.8, we have found 5,758 patches �xing defects de-

scribed in bug reports. Unfortunately, for some of the patches, the

link to its bug report provided in the commit log was not accessible

(e.g., because of restriction in access rights of some Redhat bug

reports or because the web page was no longer live). Consequently,

we were able to collect 4,417 bug patches corresponding to a bug

report (i.e., ∼ 77% of H patches). Table 1 provides statistics on the

bugs associated with those patches.

Table 1: Statistics on H patches in Linux Kernel.
Sevirity # reports # patches

Severe 965 1,052

Medium 2,961 3,163

Minor 138 136

Enhancement 47 66

Total 4,111 4,417

First, we note that the severity of most bugs (2,961, i.e., 72.0%) is

medium, and H patches have �xed substantially more severe bugs

(965, i.e., 23.5%) than minor bugs (138, i.e., 3.3%). Only 47 (1.1%)

bug reports represent mere enhancements. Second, exploring the

data shows that there is not always a 1 to 1 relationship between

bug reports and patches: a bug report may be addressed by several

patches, while a single patch may relate to several bug reports.

Nevertheless, we note that 4,270 out of 5,265 (i.e., 89%) patches

address a single bug report. Third, a large number of unique de-

velopers (1,088 out of 18,733= 6.95%) have provided H patches to

�x user bug reports. Finally, H patches have touched about 17%

(= 9,650/57,195) of �les in the code base. Overall, these statistics

suggest that the dataset of H patches is diverse as they are indeed

written by a variety of developers to �x a variably severe set of

bugs spread across di�erent �les of the program.

We identify patches constructed via Process DLH, hereafter re-

ferred to as DLH patches, by matching in commit logs messages

on the form “found by <tool>”
8

where <tool> refers to a tool

used by kernel developers to �nd bugs. In this work, we consider

the following notable tools, for static analysis:

• checkpatch: a coding style checker for ensuring some basic level

of patch quality.

• sparse: an in-house tool for static code analysis that helps kernel

developers to detect coding errors based on developer annota-

tions.

• Linux driver veri�cation (LDV) project : a set of programs, such

as the Berkeley Lazy Abstraction Software veri�cation Tool

(BLAST) that solves the reachability problem, dedicated to im-

proving the quality of kernel driver modules.

• Smatch: a static analysis tool.

• Coverity: a commercial static analysis tool.

• Cppcheck: an extensible static analysis tool that feeds on checking

rules to detect bugs.

and for dynamic analysis:

• Strace: a tracer for system calls and signals, to monitor interac-

tions between processes and the Linux kernel.

• Syzkaller: a supervised, coverage-guided Linux syscall fuzzer for

testing untrusted user input.

• Kasan: the Linux Kernel Address SANitizer is a dynamic memory

error detector for �nding use-after-free and out-of-bounds bugs.

After collecting patches referring to those tools, we further check

that commit logs include terms “bug” or “�x”, to focus on bug �x

patches. Table 2 provides details on the distribution of patches

produced based on the output of those tools.

Table 2: Statistics on DLH patches in Linux Kernel.
Tool # patches Tool # patches

checkpatch 292 sparse 68

LDV 220 smatch 39

coverity 84 cppcheck 14

strace 4 syzkaller 7

kasan 1

Checkpatch and the Linux driver veri�cation project tools are the

most mentioned in commit logs. The Coverity commercial tool and

the sparse internal tool also helped to �nd and �x dozens of bugs

in the kernel. Finally, we note that static tools are more frequently

referred to than dynamic tools.

HMG patches in Linux are mainly carried out by Coccinelle,

which was originally designed to document and automate collateral

evolutions in the kernel source code [35]. Coccinelle is built on an

approach where the user guides the inference process using patterns

of code that re�ect the user’s understanding of the conventions and

design of the target software system [23].

Static analysis by Coccinelle is speci�ed by developers who use

control-�ow sensitive concrete syntax matching rules [9]. Coc-

cinelle provides a language, SmPL
9
, for specifying search and trans-

formations referred to as semantic patches. It also includes a trans-

formation engine for performing the speci�ed semantic patches. To

8
We also use “generated by <tool>” since the commit authors also often refer to

warnings as “generated by” a given tool.

9
Semantic Patch Language.
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avoid confusion with semantic patches in the context of automated

repair literature, we will refer to Coccinelle-generated patches as

SmPL patches.
1 @@
2 expression E;
3 constant c;
4 type T;
5 @@
6 -kzalloc(c * sizeof(T), E)
7 +kcalloc(c, sizeof(T), E)

(a) Example of SmPL tem-
plates.

1 void main(int i)
2 {
3
4 kzalloc(2 * sizeof(int), GFP_KERNEL);
5 kzalloc(sizeof(int) * 2, GFP_KERNEL);
6
7 }

(b) C code matching the template on the
left. (iso-kzalloc.c).

Figure 1: Illustration of SmPL matching and patching.

Figure 1 illustrates a SmPL patch example. This SmPL patch

is aimed at changing all function calls of kzalloc to kcalloc with a

reorganization of call arguments. For more details on how SmPL

patches are speci�ed, we refer the reader to the project documen-

tation
10

. Figure 2 represents the concrete Unix di� generated by

Coccinelle engine and which is included in the patch to forward to

mainline maintainers.

diff =
--- iso-kzalloc.c
+++ /tmp/cocci-output-52882-062587-iso-kzalloc.c
@@ -1,7 +1,7 @@
void main(int i)
{
- kzalloc(2 * sizeof(int), GFP_KERNEL);
- kzalloc(sizeof(int) * 2, GFP_KERNEL);
+ kcalloc(2, sizeof(int), GFP_KERNEL);
+ kcalloc(2, sizeof(int), GFP_KERNEL);
}

Figure 2: Patch derived from the SmPL template in Figure 1a.

In some cases, the �x is not directly implemented in the SmPL

patch (which is then referred to as SmPL match). Nevertheless,

since each bug pattern must be clearly de�ned with SmPL, the

associated �x is straightforward to engineer. Overall, we have

collected 4,050 HMG patches mentioning “coccinelle” or “semantic

patch” and applied to C code
11

.

3.2 Research Questions
We now enumerate and motivate our research questions in the

context of the three processes of patch construction:

RQ1 How does the developer community react to the introduction
of bug detection and patch application tools?
With this research question, we check that the temporal dis-

tributions of patches in each patch construction process are

in line with the upstream discussions for accepting patches.

Such discussions may shed light on the proportions of tool-

supported patches that are pushed by developers but that

never get into the code base.

RQ2 Who is using bug detection and patch application tools?
In this research question, we investigate the pro�le of patch

authors in the di�erent patch construction processes.

RQ3 What is the impact of patch construction process in the sta-
bility of patches?
We investigate the stability, i.e., whether or not the patch

is reverted after being propagated in the mainline tree, of

accepted patches to highlight the reliability of each patch

application tool within the community.

10
http://coccinelle.lip6.fr/documentation.php

11
We have controlled with a random subset of 100 commits that this grep-based

approaches yielded indeed only relevant patches constructed by Coccinelle.

RQ4 Do the patch construction processes target the same kind of
bugs?
We approximate the categorization of bugs with two met-

rics related to (1) the locality of the �xes as well as (2) the

nature and number of change operators of the patch.

4 EMPIRICAL STUDY FINDINGS
4.1 Descriptive Statistics on the Data
We �rst provide statistics on how the di�erent patch construction

processes are used by developers over time and across project mod-

ules. Temporal distribution of patches may shed some light on the

adoption of a patch construction process by kernel maintainers.

Spatial distributions on the other hand may highlight the accep-

tance of a process based on the type (i.e., to some extent the critical

nature) of the code to �x.

Temporal distribution of patches. We compute the temporal

distribution of patches since Linux 2.6.12 (June 2005) until Linux

4.8 (October 2016) and outline them in Figure 3. Note that although

Linux 2.6.12 was released in June 2005, a few commit patches in

the code base pre-date this release date.
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Figure 3: Temporal distributions of patches.

Overall, H patches are consistently applied over time with ap-

proximately 50 �xes per month. DLH patches have been very slow

to take up. Indeed, the number of patches built based on bug �nding

tools has been narrow for several years, with a slight increase in

recent years, partly due to the improvements made for reducing

false positives. Finally, HMG patches have rapidly increased and

now account for a signi�cant portion of patches propagated to the

mainline code base.
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Figure 4: Temporal distributions of DLH patches broken
down by tool.

Figure 4 represents the detailed temporal evolutions of DLH

patches. Checkpatch, after a slow adoption, is now commonly used,

http://coccinelle.lip6.fr/documentation.php
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Figure 5: Spatial distribution of patches.

followed by Coverity, which regularly contributes to �x vulnerabili-

ties and common operating system errors. Linux driver veri�cation

project tools and Smatch �nd fewer issues in mainline code base;

such tools are indeed extensively used by developers before code is

committed in the code base.

Spatial distribution of patches. We compute the spatial dis-

tribution of patches across Linux sub-systems. Linux Kernel’s code

is split into several folders, each roughly containing all code related

to a speci�c sub-system such as �le systems, device drivers, archi-

tectures, networking, etc. We investigate the scenarios of patches

with regards to the folders where the �les are changed and the

results are shown in Figure 5. Most patches are targeted to device

drivers code, and code in early development (i.e., in staging/12
) that

is not yet part of the running kernel. It is noteworthy that header

code (include/), core kernel code (kernel/), and to some extent �le

system code (fs/), which have been extensively tested over the years,

remain repaired mainly in an all-human process.

Driver code in general, and drivers/staging/ code, in particular,

appear to be the place where tool support is most prevalent. Per-

centages distribution in Figure 5b shows that half (46%) of DLH

patches are targeted at staging code. 39% of DLH patches are ap-

plied to driver code. Several studies [12, 37, 38] have already shown

that driver and staging code contained most kernel errors identi�ed

by static analysis tools. Similarly, HMG patches are applied in a

large majority in drivers code and staging code.

4.2 Acceptance of Patches (RQ1)
We investigate the reaction of the developer community to the

introduction of bug �nding and patch application tools. To that end,

we explore, �rst, the delays in integrating commits, then, the gaps

between the number of patches proposed to the Linux community

and those that are �nally integrated.

Delay in commit acceptance. Kernel patches are change sug-

gestions proposed by developers to maintainers who often need

time to review them before propagating the changes to the mainline

code base. Thus, depending on several factors — including the criti-

cality of the bug, complexity of the �x, reliability of the suggested

�x, and patch quality — there can be a more or less signi�cant delay

in commits.

We compute a delay in commit acceptance as the time di�erence

between the author contribution date and the commit date (i.e.,

when the maintainer propagated the patch to mainline tree). Fig-

ure 6 shows the distribution of delays in the three di�erent patch

12staging is a sub-directory of drivers and contains code that does not yet meet kernel

coding standards. We thus separate its statistics from statistics of drivers.

construction processes. Overall, H patches appear to be more
13

rapidly propagated (median = 2 days) than DLH (median = 4 days)

and HMG patches (median = 4 days).

Delays (in days) 

H Patches
DLH Patches

HMG Patches

H Patches
DLH Patches

HMG Patches

Figure 6: Delay in commit acceptance.

Gaps between discussion and acceptance trends. A patch

represents the conclusion of an email exchange between the patch

author and the relevant maintainers about the correctness of the

proposed change. As the discussion takes place in natural language,

it is di�cult to categorize how the use of bug �nding and patching

tools are valued in the process. Nevertheless, we can use the mailing

list to study the frequency at which developers speci�cally mention

bug �nding tools when a patch is �rst submitted. Then, we can

correlate this frequency on a monthly basis with the corresponding

statistics on accepted DLH patches related to the speci�c tools.
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Figure 7: # of Patches submitted / discussed / accepted.

We have crawled all emails archived in the Linux Kernel Mailing

List (LKML) using Scrapy
14

. We use heuristics to di�erentiate mes-

sage replies from original mail content: we consider lines starting

with ‘>’ as part of a previous conversation. Finally, we naively

search for the tool name reference in the message text. In total,

we crawled
15

1,601,606 original email messages and 885,814 reply

13
We have checked with the Mann-Whitney Wilcoxon test that the di�erence between

delay values is statistically signi�cant.

14
https://scrapy.org/, a framework for deploying and running spiders

15
7,510 entries were empty messages and were thus dropped out.

https://scrapy.org/
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messages. As examples, we provide in Figures 7a and 7c the distri-

butions per month of the number of patches that were submitted

through LKLM mentioning checkpatch or coccinelle respectively,

as well as the number of maintainer replies referencing those tools,

and the number of related commits accepted into the mainline git

tree. To ease observation, we compute in Figures 7b and 7d the

integration gap as a percentage between the number of patches

submitted to LKML and the number of patches that are eventually

integrated. We draw the slope of the evolution of this gap over

time. While checkpatch presents roughly the same gap, the gap is

clearly reducing for coccinelle. We have computed the slope for

the di�erent sets of tool-supported patches and checked that it was

negative for 3 out of 4 of the tools
16

: the gap is thus closing over

time for most tool-supported processes.

Tool-supported patches (DLH and HMG alike) have been overall

accepted at an increasing rate by Linux developers. Integration

of such patches by maintainers remains, however, slower than

that of traditional H patches.

4.3 Pro�le of Patch Authors (RQ2)
We investigate the speciality and commitment of developers who

rely on patch application and bug �nding tools to construct patches.

Speciality is de�ned as a metric for characterizing the extent to

which a developer is focused on a speci�c subsystem. We compute

it as the percentage of patches, among all her/his patches, which

a developer contributes to a speci�c subsystem. Thus, speciality
is measured with respect to each Linux code directory. We then

draw, in Figure 8, the distributions of speciality metric values of

developers for the di�erent types of patches: e.g., for an automated

patch applied to a �le in a subsystem, we consider the commit

author speciality w.r.t that subsystem.

% of Speciality

H Patches
DLH Patches

HMG Patches

Figure 8: Speciality of developers Vs. Patch types.

H patches are mostly provided by specialized developers. This

may imply that the developers focus on implementing speci�c func-

tionalities over time. Similarly, DLH patches appear to be mostly

applied by specialized developers (even slightly more specialized

than those who made H patches). This �nding is inline with the

requirements for developers to be aware of the idiosyncrasies of

the programming of a particular subsystem to validate the warn-

ings of bug detection tools and sift through various false positives

to produce patches that are eventually accepted by maintainers.

HMG patches, on the other hand, are performed by developers on

subsystem code which they are not known to be specialized on.

To measure developer commitment, we follow the approach of

Palix et al. [38] and compute, for each developer, the product of (1)

the number of patches (H, DLH or HMG) that have been integrated

into Linux and (2) the number of days between the �rst patch and

the last patch. This metric favours both developers who have con-

tributed many patches over a short period of time and developers

who have contributed fewer patches over a longer period of time:

16
We considered only tools associated to at least 50 patches.

e.g., a developer who gets 10 commits integrated during one year,

will have the same degree of commitment as another developer

who gets 40 commits integrated in 3 months.

Developer commitment is studied here as an approximation of

developer expertise, since the more a developer works on the Linux

project or with a tool, the more expertise the developer may be

assumed to acquire (on the Linux project and/or with the use of

the tool). Figure 9 shows the distribution of commitment scores of

developers for the di�erent types of patches.

Commitment

H Patches
DLH Patches

HMG Patches

Figure 9: Commitment of developers Vs. Patch types.

DLH patches are shown to be produced by developers with a

more varying degree of commitment (greater standard deviation).

The median value of commitment is further lower than the median

commitment for HMG patches. Finally, overall, the distributions

of commitment values of developers indicate that H patch authors

present lesser commitment than HMG patch authors.

We then use Spearman’s ρ [43] to measure the degree of corre-

lation between the commitment of developers and the number of

tool-supported patches that they submit. We focus on specialized
17

developers of two very di�erent kinds of code: mature �le system

(fs) code and early-development (staging) code. The correlation

is then revealed to be higher (ρ = 0.42) for staging than for fs

(ρ = 0.11). We also note that 64% of developers committing code in

staging stick to this part of the code for over half of their contribu-

tions. Finally, developers specialized in kernel have never relied on

tool support to produce a patch.

Bug detection tools are generally used by developers with (to

some extent) knowledge of the code. Patch application tools,

on the other hand, enable developers to remain committed to

contributing patches to the code base.

4.4 Stability of Patches (RQ3)
Although patches are carefully validated before they are integrated

to the mainline code base, a patch might be simply incorrect and

thus the relevant code may require further changes, or the patch

may simply be reverted. However, it is challenging to precisely

detect and resolve such a change in recently patched code hunks.

Even this requires heuristics that may prove to be error-prone. Thus,

in this study, we focus on commits whose reverting is explicit.

It is common for software developers to cancel patches that they

hastily committed to the code base. The git revert command is

an excellent means for developers to roll back their commits. How-

ever, given the hierarchical organization in Linux, when a patch

has reached the mainline, a simple revert (using git commands) is

uncommon. The submitting developer (or another one) must write

another patch explaining the need to revert. This patch again goes

through the process to be accepted in the mainline. In this setting,

the revert of a commit is likely strongly justi�ed. We search for

17
speciality metric value greater than 50%
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commits that are reverted by looking at commit messages where

we have seen a pattern of the form “revert <hash>”
18

.

We have found that 2.81% of H-patch commits have been later

reverted. In contrast, only 0.27% and 0.32% respectively of DLH

and HMG patch commits have been reverted. Figure 10 further

provides the distributions of delays in reverting commits.

Time Lag (in days) 

H Patches
DLH Patches

HMG Patches

Figure 10: Time lag betweenpatch integration and reverting.

H-patches revert delay distribution is the most spread. On aver-

age (median), a DLH patch, when it is reverted, will be so after 250

days (8 months). On the other hand, HMG patches will be reverted

in less than a month (20 days). The median delay for revert is of 60

days for H patches.

Tool-supported patches are generally stable. However, while

patches �xing tool warnings may be found inadequate long

after their integration, issues with patches generated based on

�x patterns appear to be discovered quickly.

4.5 Bug Kinds (RQ4)
We study bug kinds in two dimensions: the spread of buggy code

and the complexity of the bugs. We investigate the locality of

patches as an approximation of the spread of buggy code, and

the change operations at the level of Abstract syntax tree nodes

modi�cations to approximate complexity of bugs.

4.5.1 Locality of Patches. The locality of patches is a key di-

mension for characterizing patches. Patch size has been measured

in the literature [8, 38] in terms of the number of code locations

that it involves, while several state-of-the-art automated repair

approaches mostly focus on single/limited code changes to �x soft-

ware. The Linux project is a particularly adequate study subject

for this comparison since developers are often reminded that they

must “solve a single problem per patch”
19

: �x operations are then

generally separated from cosmetic changes.

A bug �x patch may involve changes across �les. Figure 11

shows that most �xes are localized to a single �le independently of

the way they are constructed.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

H pathes
DLH Patches

HMG Patches

% of patches

1 file 2 files 3 files 4 files 5+ files

Figure 11: Distribution of patch sizes in terms of �les.

DLH patches appear to be the more local, while more than 20%

of H patches implement simultaneous changes in at least two �les.

Interestingly, we note that HMG patches include the largest propor-

tion of patches (5.6%) that simultaneously change 5 �les or more.

Such patches are generated to �x pervasive bugs such as the wrong

usage of an API, or to implement a collateral evolution.

18
We use: git show ’+sha+’ | grep -E -i "revert .[0-9a-f]5+ | commit

.[0-9a-f]5+ | [0-9a-f]{40}$*
19

see Documentation/SubmittingPatches

We further investigate the locality of patches in terms of the

number of code hunks (i.e., a contiguous group of code lines
20

) that

are changed by a patch. Indeed, code �les can be large, and a patch

may variably spread changes inside the �le, which, to some extent,

may represent a degree of complexity of the �x. Figure 12 shows

that H patches are more likely to involve several hunks of code

than HMG and DLH patches.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

H pathes
DLH Patches

HMG Patches

% of patches

1 hunk 2 hunks 3 hunks 4 hunks 5+ hunks

Figure 12: Distribution of patch sizes in terms of hunks.

Our observations on patch sizes suggest that developers, with or

without bug �nding tools, must correlate data and code statements

across di�erent code blocks to repair programs.

Finally, we compute the locality of the patches in terms of the

number of lines that are a�ected by the changes. Such a study

is relevant for estimating the proportions of isolated change (i.e.,

single-line changes) that �x bugs in the three scenarios of repairs.

Figure 13 reveals that the large majority of patches that are manually

crafted as responses to bug reports change several lines, with almost

70% patches impacting at least 5 lines. On the other hand, over 40%

HMG patches impact only at most two lines of code.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

H pathes
DLH Patches

HMG Patches

% of patches

1 line 2 lines 3 lines 4 lines 5+ lines

Figure 13: Distribution of patch sizes in terms of lines.

4.5.2 Change Operations in Patches. In general, line-based di�

tools, such as the GNU Di�, are limited in the expression of the

kinds of changes that can be identi�ed since they consider only

adds and removes, but no moves and updates [36]. Thus, to in-

vestigate change operations performed by patches, we rely on ap-

proaches that compute modi�cations based on abstract syntax trees

(AST) [21]. Such approaches produce �ne-grained results at the

level of individual nodes. For this study, we consider an extended

version of the open-source GumTree [14] with support for the C

language [36]. This tool speci�cally takes into account additions,

deletions, updates and moves of individual tree nodes, and has the

goal of producing results that are easier for users to understand

than those of GNU Di�.

The output of GumTree is an edit script enumerating a sequence

of operations that must be carried out on an AST tree to yield the

other tree. To that end, GumTree implements a mapping algorithm

between the nodes in two abstract syntax trees. This algorithm is

inspired by the way developers manually look at changes between

two �les, �rst searching for the largest unmodi�ed chunks of code

(i.e., isomorphic subtrees) and then identifying modi�cations (i.e.,

given two mapped nodes, �nd descendants that share a large per-

centage of common mappings, and so on). Given those mappings,

GumTree leverages an optimal and quadratic algorithm [11] to

20
https://www.gnu.org/software/di�utils/manual/htmlnode/Hunks.html

https://www.gnu.org/software/diffutils/manual/html_node/Hunks.html
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Figure 14: Distribution of change operations (Total # of operations & # of distinct operations in patches).
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Figure 15: Top-5 change operations appearing at least once in a patch from the three processes.

compute the edit script. More details on the algorithm can be found

in the original articles [11, 14].

For simplicity, in this paper, we express change operations in

their abstract form as a triplet “scope/element:action” where scope
represents the type of node (e.g., the program, an If block, a com-

pound block, a generic list, an identi�er, etc.) where the change

occurs, element represents the element (e.g., an expression, a decla-

ration, a generic string, a compound block, an if block, etc.) that is

changed and action represents the move/update/add/delete opera-

tors that are used. This abstract representation indeed does not take

into account any variable names and functions involved (and avail-

able in the output of GumTree). Figure 16 shows a patch example

for a change operation where a new If block code is inserted.

diff --git a/drivers/gpu/drm/i915/intel_display.c b/.../drm/i915/intel_display.c
index 6e0d828..182f849 100644

--- a/drivers/gpu/drm/i915/intel_display.c
+++ b/drivers/gpu/drm/i915/intel_display.c
@@ -13351,6 +13351,9 @@ int intel_atomic_prepare_commit(struct drm_device *dev,

for_each_crtc_in_state(state, crtc, crtc_state, i) {
+ if (state->legacy_cursor_update)
+ continue;
+

ret = intel_crtc_wait_for_pending_flips(crtc);

Figure 16: Example of Compound/If:add – Add an If block.

Figure 14 illustrates the distributions of the number of operations

that are performed in a patch. To limit the bias of changes that

are identically performed in several �les (e.g., Coccinelle collateral

evolutions), we focus on patches that touch a single �le, then on

patches that are limited to a single hunk. All distributions are

long-tail, revealing that most patches apply very few operations

in terms of number and variety. While the three processes have

similar average (median) values of change operations performed on

a �le, HMG patches appear to implement changes with a consistent

number of operations (limited standard deviation). On the other

hand, when we consider change operations at the hunk level, DLH

patches apply fewer operations than HMG patches
21

.

21
We have checked with MWW tests that the di�erence is statistically signi�cant.

Figure 15 summarizes the top-5 change operations that are re-

currently implemented by patches constructed in the di�erent pro-

cesses considered in our study. Changes performed appear to be spe-

ci�c for each process. For example, while Ident/GenericString
and Compound/If-related change operations occur in most patches,

they do not display the same proportions in terms of additions,

moves, updates and deletions.

Overall, patches, following their construction process, di�er in

terms of size (i.e., the spread of the buggy code that they repair)

and in the nature of change operations that they implement (i.e.,

the complexity of the bug).

5 DISCUSSIONS
We discuss the implications of our �ndings for the software engi-

neering research community, in particular, the automated research

�eld, and enumerate the threats to validity that this study carries.

5.1 Implications
As the �eld of automated repair is getting mature, the community

has started to re�ect (i) on whether to build human-acceptable or

readable patches [20, 32], (ii) on the suitability of automated re-

pair �xes [41], (iii) on the relevance of patches produced by repair

tools [51]. Our work continues this re�ection from the perspective

of the acceptance of tool-support in patch construction. We further

acknowledge that HMG patches considered in this study are not

constructed in the same spirit as in automated repair: indeed, au-

tomated repair approaches make no a-priori assumption on what

and where the fault is, while tools such as Coccinelle [9] produce

patches based on �x patterns that match buggy code locations.

Nevertheless, given the lack of integration of automated repair

in a real-world development process, we claim that investigating

Linux patch cases can o�er insights which can be leveraged by the

research community to understand how the developer community
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Figure 17: Searching for redundancies among patches that �x warnings of bug �nding tools (i.e., DLH patches).

can accept tool-supported patches, and the automation of what

kind of �xes can be readily accepted in the community.

Onmanual Vs. tool-supported patches. As illustrated in Sec-

tion 4.1, tool-supported patch construction is becoming frequently

and widely used in the Linux Kernel development. In particu-

lar, HMG patches account for a larger portion of recent program

changes than H patches. This suggests that both (1) developers grad-

ually accept to use patch application tools such as Coccinelle [9]

since they are e�ective to automatically change similar code frag-

ments and (2) there are many (micro) code clones [46] in the code

base. Regarding spatial distribution, DLH and HMG patches are

committed to ‘staging’ (22-47%) while H patches in ‘staging’ ac-

count for only 1%. This may indicate that experimental features

have more opportunities for tools to help write bug �xing patches.

It implies indeed that, for early development code, the community

almost exclusively relies upon tools to solve common bugs (e.g., in

relation with programming rules, styles, code hardening, etc.) by

novice programmers (i.e., not necessary specialized in kernel code),

before expert developers can take over. Thus, reliable automated

repair techniques could be bene�cial in a production development

chain as debugging aids. This �nding comforts the human study re-

cently conducted by Tao et al. [45] which suggested that automated

repair tools can signi�cantly help debugging tasks.

On the delay in patch acceptance. We have observed a delay

in the acceptance of tool-supported patches by maintainers. How-

ever, given the di�erences in change operations with fully manual

patches, it is likely the case that tool-supported patches are �xing

less severe bugs, which makes their integration a less crucial issue

for maintainers.

Furthermore, negative percentages in evolution gap between

submission and acceptance (cf. Figure 7) suggests that there are

many HMG patches that are integrated into the mainline code

base without being discussed by maintainers. This �nding implies

that once the �x pattern has been validated, patches appear to be

accepted systematically.

On the nature of bugs being �xed. The study of patch local-

ity shows results that are in line with a previous study [51] which

revealed that most �x patches only change a single �le. Neverthe-

less, we have found that, in practice, even tool-supported patches,

in a large majority, modify several lines to �x warnings by bug de-

tection tools (which, by the way, generally �ag a single line in the

code). Although patch size does not, by any means, imply ease of

realization, our results suggest that there are considerable numbers

of repair targets and shapes that automated repair should aim for.

It is also noteworthy that the spread of change operations over

several �les may carry di�erent implications for the patch con-

struction processes. For example, while a coccinelle patch may be

applying the same change pattern over several �les to �x an API

function usage, a human patch modifying several �les may actually

carry data and behavior dependencies among the changes.

5.2 Exploiting Patch Redundancies
A large body of the literature on program repair has discussed

�ndings on the repetitiveness/redundancy of code changes in real-

world software development [3, 34]. Unfortunately, such �ndings

are not readily actionable in the context of automated repair since

they do not come with insights on how such redundant patches

will be leveraged in practice. Indeed, although it is possible to

abstract redundant patches to recommend bug �x actions [5], only

a few research directions manage to contextualize them, to some

extent, for repair scenarios [26]. Actually, researchers discuss such

redundancies for enriching the repair space with change operations

that are more likely to be appropriate �x operations.

With this study, we see concrete opportunities for exploiting

patch redundancies for systematically building patches and apply-

ing (or recommending) them to a speci�c identi�ed and localized

buggy piece of code. Indeed, bug detection tools, which are used by

various developers who then craft �xes based on speci�c warnings,

and patch application tools, which are based on �x patterns, can be

leveraged in an automated repair chain. The former will be used in

the bug detection and localization steps while the latter will focus

on building concrete patches based on patterns found in a database

of human �xes created to address warnings by bug detection tools.

To demonstrate the feasibility of this research direction, we

have conducted a study for searching redundancies in patches con-

structed following warnings by bug detection tools, and investigat-

ing the possibility of producing a generic patch which could have

been used to derive these concrete patches. Nevertheless, although

generic patch inference has been a very fertile research direction in

the past [1, 2, 30, 31], we have experimented available tool supports

and found that they do not scale in practice. We have thus devised

a process to split the set of patches into clusters, each containing

patches presenting similar change operations. Figure 17 depicts the

overall process. Based on GumTree sequences of change operations,

we rely on a sequential pattern mining tool to extract maximal se-

quential patterns. We use a fast implementation of VMSP [15] to

�nd recurrent change patterns at the level of the abstract change

operations expressed in Section 4.5. Then, we build clusters of

patches based on the elicited patterns, and leverage SpDi� [1] to

attempt the inference of a unique SmPL patch which could instan-

tiate the common redundant concrete repair actions performed in

the patches.

With this process, starting with a set of 571 DLH patches, we

were able to build 37 clusters based on change operations patterns.

Among the clusters, 10 led to the generation of a common generic

patch. We then manually investigated the commit messages asso-

ciated with the patches in clusters that produced a generic patch,

and found that they indeed largely dealt with the same bug type.

This �nal check con�rms, to some extent, the potential to collect

�x patterns from human repair processes to build an automated

repair chain leveraging bug detection tools.



ISSTA’17, July 2017, Santa Barbara, California USA
Anil Koyuncu, Tegawendé F. Bissyandé, Dongsun Kim,

Jacques Klein, Martin Monperrus, Yves Le Traon

5.3 Threats to Validity
We have identi�ed the following threats to validity to our study:

External validity – We focus on Linux only. It is, however, one of

the largest development project, one of the most diverse in terms

of developer population, with a signi�cant history for observing

trends, and implementing strict patch submission guidelines that

try to systematize the tracking of change information. To the best

of our knowledge, Linux is the best candidate for observing various

patch construction processes, as it encourages the use of tools for

bug detection and patching.

Construct validity – We rely on a number of heuristics to collect

and process our datasets. We have nevertheless, by design, chosen

to be conservative in the way we collect patches in each process

with the objective of having reliable and distinctive sets for each

process, to further enable replication.

Internal validity – The metrics that we leverage to elicit the dif-

ferences among the di�erent processes may lead to biased results.

However, those metrics were also used in the literature.

6 RELATEDWORK
6.1 Program Repair

6.1.1 Studies on Human-Generated Patches. Studies on patches,

generated by human developers, focus on investigating existing

patches fully written by developers (i.e., H patches) rather than

devising a new technique. Pan et al. explored syntactic bug �x

patterns in seven Java projects [39]. This study extracted 27 bug

�x patterns. Martinez and Monperrus identi�ed common program

repair actions (patterns) [27], and Zhong and Su reported statistics

on 9,000 real bug �xing patches collected from Java open source

projects [51]. These studies examined features of real bug �xes

against whether automated repair techniques can be applied to �x

those bugs. In addition, Barr et al. formulated a hypothesis called

“plastic surgery hypothesis” [3]. They studied how many changes

can be graftable by using snippets that can be found in the same

code base where the changes are made.

6.1.2 Studies on Tool-aided Patches. As discussed in Sections 1

and 3, generating tool-aided patches indicates that developers create

program patches with an aid of tools, rather than generating patches

from scratch. Tao et al. supposed that automated repair tools can

provide aids to debugging tasks [45]. They adopted Par [20] as

a patch recommendation tool and gave patches generated by the

tool to experiment participants. The �ndings include that auto-

matically generated patches can signi�cantly help debugging tasks.

MintHint [18] is a semi-automatic repair technique, which can help

developer �nd correct patches. This technique does statistical cor-

relation analysis to locate program expressions likely to perform

repaired program executions.

6.1.3 Automated Patch Generation. Generating patches with

automated tools implies minimizing a developer’s e�ort in debug-

ging. It often indicates that fully automated procedures including

fault localization, code modi�cation, and patch veri�cation. Recent

endeavors achieved an impressive progress as follows.

Weimer et al. [48] proposed GenProg, an automatic patch genera-

tion technique based on genetic programming [22]. This technique

randomly mutates buggy statements to generate several di�erent

program variants that are potential patch candidates. In 2012, the

authors extended their previous work by adding a new mutation

operation, replacement and removing the switch operation [24].

SemFix [33] leverages program synthesis to generate patches. The

technique assumes that buggy predicates are an unknown function

to be synthesized. The technique is successful for several bugs, but

it is only applicable to “one-line bug”, in which only one predicate

is buggy. DirectFix [28] and Angelix [29] extended Sem�x so that it

can generate patches for bugs in larger and complex (w.r.t the search

space) programs in a simpler way. PAR [20] automatically generates

patches by using �x patterns learned from human-written patches.

This technique is inspired by the fact that patches are redundant.

6.2 Patch Acceptability
Fry et al. conducted a human study to indirectly measure the quality

of patches generated by GenProg by measuring patch maintainabil-

ity [16]. They presented patches to participants and asked maintain-

ability related questions developed by Sillito et al. [40]. They found

that machine-generated patches [24] with machine-generated doc-

uments [10] are comparable to human-written patches in terms

of maintainability. Par [20] is presented to deal with nonsensical

patches. The approach generates patches based on �x patterns,

which are learned from human-written patches. The �x patterns

generalize common repair actions from more than 60,000 real bug

�xes enabling Par to avoid generating nonsensical patches.

6.3 Program Matching and Transformation
SYDIT [30] automatically extracts an edit script from a program

change. In its scenario, a user must specify the program change

to extract the edit script from. Coccinelle [9], on the other hand,

directly lets the user specify the edit script in a user-friendly lan-

guage, and performs the transformation by matching the change

pattern with code context. It has been used in several debugging

tasks in the literature [4–7, 37]. LASE [31] di�ers from SYDIT as it

can generate a generalized edit script based on multiple changes of

Java programs. Another approach in this direction is SpDi� [1, 2]

supports the extraction of a subset of common changes (i.e., SmPL

patches that are fed to Coccinelle) from several concrete patches.

7 CONCLUSION
We have studied the impact of tool support in patch construction,

leveraging real-world patching processes in the Linux kernel devel-

opment project. We investigated the acceptance of tool-supported

patches in the development chain as well as the di�erences that may

exist in the kinds of bugs that such patches �x in comparison with

traditional all-hand written patches. We show that in the Linux

ecosystem, bug detection and patch application tools are already

heavily used to unburden developers, and already enable relatively

complex repair schema, contrasting with a number of repair ap-

proaches in the state-of-the-art literature of automated repair. An

artefact dataset on this study is available at https://goo.gl/f1mRMM.
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