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Abstract

Cells must signal in order to adapt to environmental changes. They typically detect extracel-
lular signals by the receptors on the cellular plasma membrane. Such a signal is transferred
to the cellular processes through the second messengers which leads to activating a cellular
response. To enable information transferring and information processing, cells need energy
which is mainly provided by mitochondria in eukaryotic cells. Thus, the crosstalk between

cellular signaling and energy metabolism is essential for proper cellular function.

Ca’* is a versatile and universal intracellular second messenger that regulates many di-
verse cellular processes and is therefore under very tight spatiotemporal homeostatic control.
Ca’" homeostasis is performed through a set of components from the Ca>*-signaling toolkit
to create signals with different spatial and temporal properties. Mitochondria are not only
the main energy providers in eukaryotic cells, but represent an essential component of the
Ca’*-signaling toolkit having a significant impact on the spatiotemporal features of Ca>"
signals. In addition to the role of Ca>* buffering, mitochondria also play a vital function
in Ca>* homeostasis by providing ATP. The released Ca®" from internal and external Ca>*
stores should be sequestered or pumped back across the large concentration gradient. This
process is performed by Ca?*-ATPase pumps or by ion gradients which are kept by consum-
ing ATP. Furthermore, Ca>* plays an important role in energy metabolism by enhancing the
activity of rate limiting enzymes in the mitochondrial matrix. Rising the Ca>* concentration
in the mitochondrial matrix leads to an increasing activity of mitochondrial dehydrogenases,
oxidative phosphorylation and ATP production. Recent studies revealed that altered Ca’*
homeostasis and mitochondrial metabolism contribute to the development of neurodegener-
ative diseases like Parkinson’s and Alzheimer’s diseases.

The present thesis investigates the crosstalk between Ca”* signaling and mitochondrial
metabolism by combining mathematical modeling with Ca>* imaging and metabolic flux
analysis in electrically non-excitable cells. First, we showed by modeling and experiments
that glucose deprivation results in decreasing cellular ATP, increasing frequency of Ca®* sig-
nals and rising glutamine uptake rate. Second, we investigated the effect of different Ca’*
oscillation frequencies on the cellular metabolic activity. For this purpose, we stimulated
cells by extracellular agonists that stimulate IP3- mediated Ca>* signaling and measured the
period of Ca?" signals and glucose/glutamine uptake rates. The analysis showed a well-
defined relation between the frequency of Ca®* spiking and glucose/glutamine uptake rates
indicating a metabolic decoding of Ca®" signaling. Third, we simulated the effect of PINK1
deficiency on the Ca®" dynamics and mitochondrial metabolism using our proposed Ca”*-
mitochondrial metabolism model. We showed by modeling that down regulation of the mi-

tochondrial Ca>* uniporter (MCU) restores Ca’" homeostasis and respiration in the cells




with PINK1 deficiency. This result was in agreement with experiments on dopaminergic
(DA) neurons in the zebrafish larvae. Finally, to analyze Ca®" signals captured during Ca®*
imaging experiments, we developed a user-friendly software which can precisely compute
the signal’s features of diverse Ca’* signals.

We conclude that compromising cellular metabolism modifies the profile of Ca>* sig-
nals and Ca”* spikes in turn can change the metabolic profile of the cell. We also showed
that the information of extracellular stimuli encoded in the frequency of Ca’* signals is
decoded by the energy metabolism through increasing glucose and glutamine uptake rates.
We speculate that the encoded information of the extracellular stimuli in the frequency of
Ca’" signals is transferred into mitochondria and subsequently decoded by the mitochon-
drial Ca®*- sensitive enzymes leading to an increase in the TCA cycle activity and rising
oxidative phosphorylation. We also showed that stimulating cells with extracellular stimuli
leads to increasing ATP production. Therefore, dysregulation of the crosstalk between Ca’*
signaling and mitochondrial metabolism compromises the information transfer and decod-
ing mechanism which may lead to energy deficit, Ca>* dysregulation and subsequently may

cause neurodegeneration.
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Chapter 1

Introduction

1.1 Motivation

Life is made of cells. Individual cells perform biochemical processes needed to maintain
their structure and functionality. For this purpose, cells permanently turn over energy and
communicate with the environment and each other to orchestrate the chemical reactions sus-
taining life. This thesis analyzes the crosstalk between Ca’*, a versatile second messenger,
and mitochondrial metabolism as the power plant of the cells. Calcium signaling is com-
posed of several components like cell membrane Ca®* channels, the endoplasmic reticulum,
Ca®" buffers and mitochondria to create the intracellular Ca®* signaling toolkit. Energy
metabolism is formed by all metabolic pathways that transform energy which is required
for multiple cellular functions where mitochondria play a predominante role in eukaryotic
cells. To analyze the crosstalk between these two essential cellular systems, the present in-
terdisciplinary thesis combines mathematical modeling, Ca** imaging and metabolic flux

analysis.

Due to the complexity of the calcium and energy metabolism system, we used a systems
biology approach to study the interaction between Ca’* regulation and energy metabolism
system. This systems biology approach takes into account the complexity of the underly-
ing mechanisms by integrating computational and experimental techniques to understand
the system as a whole and not the role of a particular gene or protein. A systems biology
approach aims at understanding how the dynamics of a cellular system originates from the
underlying structure and is organized in a cycle with four steps shown in Figure 1.1. The
loop starts with defining a biological problem. Then the problem is modeled using mathe-
matics and statistics in order to acquire, store and analyze the current biological information.
Using the model simulations a set of hypotheses are tested and a number of predictions are

made. These predictions are subsequently tested by the wet lab experiments which lead to
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Defining biological
problem or contradictory
biological issue

Mathematical modelling
and simulation of system
behaviour

Knowledge
Generation

Wet lab experiments and
analyzing the results

Prediction and create
hypothesis using in silico
analysis

Figure 1.1. Steps for creating knowledge of a biological system by a systems biology approach. The
loop starts with identifying biological problem. The problem is subsequently modeled by mathemat-
ical equations and solved by computer simulations. In the next step, new predictions are done by the
in silico model. The model predictions are examined by wet lab experiments and new biological data
are provided which can be used for improving the mathematical model.

model acceptance or rejection, or the model has to be improved in order to capture the exper-
imental observations successfully. The newly generated experimental data for the biological
question should subsequently be integrated in the model. By repeating the cycle and refining
the in silico model and performing new in vivo and in vitro experiments, we obtain a deeper
understanding of the biological system. This thesis performs all steps of the systems biology
approach to develop a mechanistic understanding of the crosstalk between Ca’>* signaling

and mitochondrial metabolism.

Ca’* is a versatile and universal intracellular messenger and operates as a critical sig-
nal within the cells from conception to death [Berridge et al., 1998]. Cells utilize different
sources of Ca’*t for signaling. The concentration of Ca?>* within the cytoplasm is main-
tained at a low level in a non-stimulated cell, typically around 100 nM. Ca?* concentration
increases inside the cytoplasm by a wide variety of external stimuli, including binding of
hormones or growth factors, electrical depolarization or mechanical stimulation. The stim-
ulus is detected by a specific transduction machinery and leads to increasing cytoplasmic
Ca’" concentration, with typically cytoplasmic Ca>* concentration of 1 uM, but it depends
on the cell type, stimulus and exactly where the Ca** concentration is measured [Clapham,
2007]. Changing the cytosolic Ca’" concentration generates calcium signals inside the cy-
tosol which can be measured by Ca® indicator dyes. Cells have access to multiple sources of
Ca’". The extracellular space is generally believed to have the largest concentration of Ca’*,
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around 1.5 mM. In addition to the extracellular space, cells also can access Ca?* stores from
intracellular organelles. Some intracellular Ca?>* sources are the sarcoplasmic/endoplasmic
reticulum, golgi apparatus and mitochondria. Ca®>* signals exhibit complex spatiotemporal
properties which allow them to control many different cellular processes such as cell growth,

secretion, contraction and metabolism [Berridge et al., 2003].

The interplay between Ca®* regulation and energy metabolism was initially described by
Vasington and Murphy [Vasington and Murphy, 1961] and Deluca and Engstrom [DeLuca
and Engstrom, 1961] in 1961 who discovered that isolated kidney mitochondria could accu-
mulate large amounts of Ca>* in an energy driven process [Carafoli, 2012]. Ca>* can transfer
the information content of extracellular stimuli downstream to the intracellular events in a
reliable way. Binding a signal molecule (agonist) to the cell membrane receptors stimulates
formation of inositol 1,4,5-trisphosphate (IP3) that leads to releasing Ca?* from intracellular
Ca’* stores. Upon Ca’* release from these stores, mitochondria take up the large amount
of Ca®* that activates several dehydrogenases within the tricarboxylic acid (TCA) cycle and
thus increases ATP production [Griffiths and Rutter, 2009]. Ca?t is then extruded from
mitochondria by different Ca?* exchangers. The existence of these Ca?t channels allows
mitochondria to operate as a Ca>* buffer which makes a significant impact on the spatiotem-
poral features of Ca®" signals. In addition to the mitochondrial role in Ca** buffering,
energy metabolism also plays a vital function in Ca>* homeostasis by providing ATP. The
released Ca>* from internal and external Ca®* stores should be sequestered or pumped back
across the large plasma membrane concentration gradient. This process is performed by
Ca’*-ATPase pumps or by ion gradients which are kept by consuming ATP and rendering
Ca®" homeostasis to an energy demanding process that has metabolic cost for cells [Chan
et al., 2009]. Thus, on one hand calcium ions regulate mitochondrial activity which leads to
ATP production and on the other hand the produced ATP by mitochondria is consumed by
ATPase pumps for Ca’* regulation inside the cell (see Figure 1.2).

The Ca’* signals are created by variation of the *on’ reactions that introduce Ca’* into
cytoplasm and the ’off’ reactions through which this Ca?* is removed [Berridge et al.,
2003]. Thus, cells can use frequency or amplitude of Ca®* signals to encode informa-
tion. Several studies have shown that the encoded information in the frequency of Ca’*
signals then can be decoded by proteins with multiple Ca®* binding sites that can regulate
the proteins activity and thereby cellular program. To date, NFAT (nuclear factor of activated
T-cells) [Dolmetsch et al., 1998, Tomida et al., 2003], NF-kB (nuclear factor kappa-light-
chain-enhancer of activated B cell) [Dolmetsch et al., 1998, Frantz et al., 1994, Hu et al.,
19991, CaMKII (Ca”*/calmodulin-dependent protein kinase IT) [De Koninck and Schulman,
1998, Dupont and Goldbeter, 1998], MAPK (mitogen- activated protein kinase) [Kupzig
et al., 2005] and calpain [Tompa et al., 2001] have been reported to have frequency decoding
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properties. In 1980, a study by Denton and McCormack showed that Ca’" enhances the
activity of three key intramitochondrial dehydrogenases: pyruvate dehydrogenase (PDH),
NAD-isocitrate dehydrogenase (ICDH) and oxoglutarate dehydrogenase (KGDH) [Denton
et al., 1980]. In 1995 Hajnoczky et al. studied the control of Ca>*-sensitive mitochondrial
enzymes by monitoring mitochondrial Ca>* and the redox state of flavoproteins and pyridine
nucleotides simultaneously with cytosolic Ca®* in single hepatocytes. They showed a de-
pendency between Ca’* spikes and mitochondrial NADH concentration and concluded that
the hormone-induced Ca”* oscillation activates Ca’T-sensitive mitochondrial enzymes in a
frequency dependent manner [Hajndéczky et al., 1995]. Although they could show that cy-
tosolic Ca®" signals can be decoded by mitochondrial enzymes, they could not describe the

decoding relation between frequency of Ca>* signals and the mitochondrial enzyme activity.

In order to have a mechanistic understanding of the intracellular calcium pathways and
Ca’" downstream effects, accurate analysis of Ca>* signals is crucial. Real time single cell
florescence imaging of Ca®T concentration is one of the common techniques for capturing
Ca’* transients. Ca®* signals are extracted from image frames by averaging the light intensi-
ties in the regions of interest. Computing features of Ca>" signals like frequency, amplitude
and spike width precisely needs setting parameters that are fitted to each signal and can over-
come the issues resulting from noise in the Ca®* signals. While there are widely available
implementations of the peak detection and signal analysis methods in software packages like
Matlab, R, octave and python, using them for Ca>* signal analysis needs specific modifica-
tions for each signal that requires typically a lot of efforts while at the end there is a high
possibility to have high rate of false positives in detected signal’s peaks. Thus, there is high

demand for a software which can easily and precisely analyze Ca** signals.

In the present thesis, we investigate the crosstalk between Ca®" signaling and mitochon-
drial metabolism. Recent studies have revealed that the disruption of this interplay contribute
to neurodegenration diseases. Dysregulation in the cellular Ca®* signaling may lead to mi-
tochondrial Ca>* overload, decreasing respiration and result in increased mitochondrial au-
tophagy [Soman et al., 2016]. In addition, It is hypothesized that repetitive stimulation of
oxidative phosphorylation by Ca>* signals leads to increased production of reactive oxy-
gen species (ROS) which damage mitochondrial proteins such as complex I and mtDNA,
reducing the efficiency of oxidative phosphorylation. ROS also can damage ER proteins and
increase the concentration of misfolded proteins. This model has been particularly popular

to explain the increased vulnerability of SNc DA neurons [Surmeier et al., 2010].

The present thesis uses an interdisciplinary approach to understand the underlying mech-

anism of the interpaly between Ca’" signaling and mitochondrial metabolism by:
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e Developing a in silico model of the crosstalk between Ca”>* signaling and mitochon-
drial metabolism.

e Exploring the effect of mitochondrial carbon inputs on the intracellular ATP level and
frequency of Ca’* signals by model simulations and wet lab experiments.

e Identifying the impact of Ca>* signaling on the mitochondrial substrate uptake and
ATP production by experiments.

e Establishing the metabolic decoding relation of intracelluar Ca>* signals.

e Simulating the PINK1 deficiency and the rescue mechanism using the in silico model.

e Developing a user-friendly tool for characterizing Ca®* signals for a large amount of

observations, fast, easily and precisely.

1.2 Our Systems Biology Approach

To address the open questions on calcium-energy metabolism crosstalk, we rely on a sys-
tems biology approach. In the modeling part, we use ordinary differential equations (ODEs).
Several models have been proposed for modeling Ca>* dynamics, but most of them ne-
glect mitochondria, although it is an effective organelle which can shape spatio-temporal
properties of Ca>* signals [Goldbeter et al., 1990, Li et al., 1994, De Young and Keizer,
1992]. They also do not consider Ca®* signaling as an energy demanding process since they
don’t take into account the ATP consumption of the Ca>* ATPase-pumps [Fall and Keizer,
2001, Bertram and Arceo II, 2008]. Thus, most of the existing Ca?* and mitochondrial mod-
els do not focus on the crosstalk between Ca®* signaling and mitochondrial metabolism. In
this thesis, we extend the previous studies to propose a mathematical model which can sim-
ulate the crosstalk between calcium signaling and mitochondrial metabolism in electrically
non-excitable cells. Thus we integrate a well-established model of IP3- mediated Ca®" sig-
naling with the simplified model of mitochondrial Ca>* handling and metabolic function.
With the model, we investigate the effect of Ca?" on the mitochondrial metabolism as well
as the impact of mitochondrial substrates on the Ca>* signaling. We also explore how vary-
ing the expression levels of different Ca’* channels affects the period of cytosolic Ca**

signals.

In the experimental part, we use live cell Ca’t imaging, extracellular metabolic flux
analysis and ADP/ATP ratio assays. We perform Ca’" imaging of individual cells while
exposing them to extracellular agonists that stimulate IP3 production and Ca®" release from
endoplasmic reticulum. We measure Ca®* signals in two cell lines, human embryonic kid-
ney (HEK) 293 and C8-D1A astrocytic cells while exposing them to carbachol (CCh) and
adenosine triphosphate (ATP). Then we extract Ca>* signals from individual cells and mea-

sure interspike intervals (ISI) using our developed Calcium Signaling Analysis (CaSiAn)
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Endoplasmic
Reticulum

ﬁ Knowledge </>

CaSiAn: Calcium Signalling Generat|on

Analysis Software Modelling and Simulation

Extracellular

Calcium Imaging Flux Analysis

Figure 1.2. Our approach for dissecting the crosstalk between Ca?* signaling and mitochondrial
metabolism. The crosstalk between IP3-mediated Ca>* signaling and mitochondrial metabolism is
mathematically modeled and the predicted scenarios are tested by Ca’* imaging and metabolic flux
analyses. The extracted Ca>" signals are analyzed by the developed software and the results are used
for validation and improvement of the model. We also used the outcome of Ca’" imaging experi-
ments for designing the experiments of flux analysis and vice versa. Thus, we performed all steps
of a system’s biology approach (Figure 1.1) to have a mechanistic understanding of the biological
problem.

software. CaSiAn is an open source software implemented with java language that provides
a full-fledged user interface allowing biologists to easily analyze a large amount of Ca>* sig-
nals, tune peak detection parameters for each signal, examine detected peaks/nadirs of Ca*
signals and access the quantified descriptors of Ca’" spikes in the form of an excel or text
file.

To know the effect of IP3-mediated Ca>* signaling on the mitochondrial metabolism, we
measure glucose and glutamine uptake rate for different agonist concentrations. To quan-
tify glucose and glutamine uptake rate, we measure the remaining metabolites within the
medium and then compute the consumed amount of glucose and glutamine over the time.
By normalizing the total glucose or glutamine uptake rate to the cell number, we obtain the

glucose or glutamine uptake rates per cell. Together with the measured periods of Ca®™ sig-
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nals for different agonist concentration, these uptake rates can be expressed as a metabolic

decoding relation of Ca®* signaling. Finally, we investigate the effect of IP3-mediated Ca’*

signaling on the intracellular ATP by measuring the ADP/ATP ratio of the cells to explore

how exposing cells to extracellular stimuli affects mitochondrial metabolism.

1.3 Aims

In this dissertation, we characterize the crosstalk between Ca?" signaling and mitochondrial

metabolism by an interdisciplinary approach (Figure 1.2). Specifically, we have the follow-

ing aims:

1.

Developing a computational in silico model, dedicated to simulate the interplay be-
tween Ca”" signaling and mitochondrial metabolism. This model integrates a well-
established model of IP3- mediated Ca?* signaling with the simplified model of mi-
tochondrial Ca>* handling and metabolic function. This model is discussed in Sec-
tion 3.1.

Predicting the effect of mitochondrial carbon inputs and cellular ATP level on the Ca’*
homeostasis using in silico simulations. The results of simulations are validated by in
vitro experiments where periods of Ca?T signals are measured in the glucose deprived

cells. These results are discussed in Sections 4.1.2 and 4.2.3.

. Exploring the effect of different Ca?>* profiles on the cellular metabolic activity by

measuring the glucose/glutamine uptake rate and cellular ATP level. For this purpose,
we measured the glucose/glutamine uptake rate while exposing cells to the different
concentrations of extracellular stimulus which induce Ca’* releasing from IP3Rs chan-

nels. The results of these experiments are discussed in Sections 4.2.6 and 4.2.8.

. Establishing the metabolic decoding relation of Ca®* signals by measuring the periods

of Ca™ signals as well as glucose/glutamine uptake rate while cells are stimulated with
different concentrations of extracellular stimuli. The results of these experiments are
discussed in Section 4.2.7.

Simulating the PINK1 deficiency and the rescue mechanism using in silico model. The
model could reveal the experimental results which are discussed in Section 4.3.
Developing an open source software implemented with java language that provides
a full-fledged user interface allowing biologists to analyze a large amount of Ca’*

signals fast and precisely. This software is explained in Section 4.4.




Chapter 1. Introduction

1.4 Organization of the Dissertation

Chapter 2 contains a description of the Ca>* signaling components, energy metabolism
system and the crosstalk between Ca®" signaling and mitochondrial metabolism. Then we
provide the medical relevance of the Ca>*-mitochondrial crosstalk in the neurodegenerative
diseases like Parkinson’s and Alzheimer’s diseases. We also describe a background informa-

tion about modeling biological reactions using ordinary differential equations (ODEs).

Chapter 3 describes our developed mathematical model for the crosstalk between intracel-
lular Ca>* signaling and mitochondrial metabolism. The parameter scan is performed to
validate the applicability of our proposed model. The results of simulations are compared
with the experimental observations and also published data. Then we describe the applied

experimental methods for answering the biological questions.

Chapter 4 describes the simulations and experiments which are performed for dissecting the
crosstalk between Ca?" signaling and mitochondrial metabolism. The robustness of the ATP-
dependent model versus ATP-independent model is discussed. Then the ATP-dependent
model is used for simulating the impact of mitochondrial carbon inputs on the Ca>* signaling
and cellular ATP level. The model predictions are validated by our experiments. The effect
of extracellular stimuli and frequency of Ca”* signals on the glucose and glutamine fluxes
is investigated by performing a set of in vitro experiments and the results show metabolic
decoding of Ca”>* signals by the energy metabolism. The application of our developed Ca”*-
mitochondrial model in predicting the effect of PINK1 deficiency is discussed. At the end, a
description of the implemented software for analyzing Ca>* signals is provided.

Chapter S discusses the results.

Chapter 6 summaries the thesis contributions and discusses perspectives on future work.




Chapter 2

The Calcium-Energy Metabolism System

The calcium-energy metabolism system, formed by spatiotemporal interaction between cal-
cium regulation and energy metabolism components, plays a pivotal role in cell survival or
death. Ca?" is known as signal of life and death and Ca®>* signaling is highly controlled by
different proteins and organelles. Metabolism is also highly regulated and any dysregulation

of metabolism leads to disease.

To get more insights into the calcium-energy metabolism system and its important roles
in diseases, we provide some background information in this chapter. The chapter is designed

as follows:

e We review the components of Ca>* signaling toolkit (Section 2.1).

e We explain the glycolysis pathway and mitochondrial functioning as the main sources
of ATP production in the eukaryotic cells (from Section 2.2).

e We discuss the role of Ca?>* dyshomeostasis and mitochondrial dysfunction in Parkin-
son’s and Alzheimer’s diseases (Sections 2.4)

e We explain the crosstalk between Ca”>* regulation and mitochondrial metabolism (Sec-
tion 2.3).

e We illustrate the description of biological systems by mathematical models (Section
2.5).

2.1 The Calcium Signaling Toolkit

Calcium is the fifth most abundant element in the earth’s crust. Ca®" is a ubiquitous in-
tracellular messenger which plays an important role in signal transduction pathways and
biochemistry of cells [Berridge et al., 2003]. The level of intracellular Ca?" is determined
by a balance between the reactions that introduce Ca>* into the cytoplasm and the reactions
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through which the Ca>* is removed. Releasing Ca>* from internal or external stores in re-
sponse to stimuli, and then removing it from the cytosol cause to the creation of Ca®* signals

inside the cell.

Calcium is involved in many cellular processes ranging from the regulation of enzyme
activity to programmed cell death. Ca>* operates over a wide temporal and spatial scale to
control many different cellular processes as fertilization, proliferation, learning and mem-
ory, muscle contraction, gene regulation and metabolism [Berridge et al., 1998]. Synaptic
plasticity which is one of the important neurochemical foundations of learning and mem-
ory is strongly affected by the level of Ca>* ions. Neurons communicate with each other
primarily through fast chemical synapses. At such synapses an action potential generated
near the cell body propagates down the axon where it opens voltage-gated Ca’>* channels.
Ca’" ions entering nerve terminals trigger the rapid release of vesicles containing neuro-
transmitter, which is ultimately detected by receptors on the postsynaptic cell [Zucker and
Regehr, 2002]. Synaptic plasticity is often dependent on Ca®* influx through the N-Methyl-
D-aspartic acid (NMDA) receptor (NMDAR) which then leads to the release of Ca%t from
intracellular stores [Colbran and Brown, 2004]. A large Ca?* influx to the neurons through
NMDARSs is called long-term potentiation and small Ca®" influx to the neurons through
NMDARSs is called long-term depression [Abraham and Bear, 1996]. Very high Ca’* con-
centration around nerve cells leads to neural over-excitation and the resulting brain damage

can cause progressive memory loss [Berridge, 2010].

In fertilization, Ca®>* signal might occur via several routes which leads to increasing Ca>*
concentration inside the egg and initiate cell proliferation and gene regulation [Santella et al.,
2004]. Muscle contraction happens by releasing Ca>* from intracellular stores and binding
to troponin. Binding Ca®* to troponin leads to binding myosin to actin which cause pulling
actin filaments. As an example of Ca>* involvement in gene expression, we can point to the
NFAT transcription factor which is activated by Ca?* and the Ca?*/calmodulin-dependent
serine phosphatase calcineurin [Hogan et al., 2003]. NFAT proteins are phosphorylated and
reside in the cytoplasm in resting cells. Upon stimulation, they are dephosphorylated by
calcineurin, translocate to the nucleus, and become transcriptionally active providing a di-
rect link between intracellular Ca?* signaling and gene expression [Hogan et al., 2003]. In
metabolism Ca?* acts as a driving force for ATP production in mitochondria by activating
TCA cycle enzymes. Calcium is also signal of death. Very high cytosolic Ca®* concentration
can lead to apoptosis by overloading mitochondrial Ca®>* which leads to abnormal mitochon-
drial metabolism, releasing more cytochrome ¢, which may activate caspases (a family of
protease enzymes playing essential roles in programmed cell death) [Berridge et al., 1998].
Because of involvement of Ca®" in variety cellular functions, it is under very tight homeo-

static control to ensure that the resting level of intracellular Ca>* is maintained low (between
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20-100 nM) [Berridge, 1997].

Intracellular Ca’T concentration have spatiotemporal properties. At the spacial domain,
they can either activate highly localized cellular processes like mitochondrial metabolism
or can activate processes in global scale like insulin secretion. In the temporal domain,
information of certain cellular processes are encoded in the frequency of calcium signals.
Regulation of widely different Ca>* profiles needs involvement of different cellular channels
and organelles in Ca>* homeostasis [Berridge et al., 2003]. Intracellular Ca>* levels increase
either from sources outside of the cell or from Ca?* stores inside the cells like endoplasmic
reticulum (ER). In the electrically excitable cells like dopaminergic (DA) neurons, opening
of voltage gated channels on the cell membrane leads to increasing intracellular Ca>* level,
while in the electrically non-excitable cells like astrocytes cellular Ca’* levels increase due
to releasing Ca®* from ER. So in each cell type, different components of the Ca>* signaling
system are expressed to create different Ca>t signal profiles based on their functionality.
Figure 2.1 shows different components of Ca®* signaling toolkit. In the following, we will

describe each component and their roles in the Ca>* homeostasis.

2.1.1 Plasma Membrane Calcium Proteins

Voltage-gated calcium channels: Voltage-gated calcium channels (VGCC) or voltage-operated
channels (VOC) are key transducers of membrane potential variations into intracellular Ca’*
transients that initiate many physiological events [Catterall, 2011]. These channels transfer
the information content of an action potential in the cell surface membrane into the cell
through an intracellular Ca®* transient. Among the many types of voltage-gated Ca>* chan-
nel, L-type Ca’" channels exhibit slow voltage-dependent inactivation, therefore are long
(L) lasting [Zuehlke et al., 1999]. This channel has four subunits: Ca,l1.1, Ca,1.2, Ca,1.3,
Ca,1.4.

In cardiac and smooth muscle cells, activation of L-type Ca>* channels initiates con-
traction directly by increasing cytosolic Ca®* concentration and indirectly by activating cal-
cium induced calcium release (CICR) process by ryanodine-sensitive Ca>* release channels
(RyR) in the sarcoplasmic reticulum (SR) [Catterall, 2011]. Neuronal L-type calcium chan-
nels, Ca, 1.2 and Ca,1.3 which localize to soma and dendrites of neurons, open with fast
kinetics and carry substantial calcium entry in response to individual action potential wave-
forms [Helton et al., 2005]. Dihydropyridine antagonist blockade demonstrates that L-type
calcium channels are critical for activity-dependent gene expression and for regulating plas-

ticity at certain synapses [Hell et al., 1993].

Dopaminergic (DA) neurons in the substantia nigra pars compacta express L-, N-, P/Q-

and R-type Ca’t channels, but it is indicated that L-type channels have lower threshold
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Figure 2.1. Overview of the calcium signaling toolkit. Binding a stimuli to a G protein-coupled recep-
tor (GPCR) activates phospholipase C (PLC) through G protein and leads to cleaving phosphatidyli-
nositol bisphosphate (PIP2) and forming diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3).
DAG stays on the plasma membrane whereas IP3 diffuses into cytosol and binds to IP3 channels that
leads to opening them and induce Ca’* release from ER into cytosol. Ca>* can also release from ER
through ryanodine receptors (RyR). Ca?>* concentration inside the cytosol can also increase via other
sources: Ca’* release through store-operated Ca>* channels (SOC), Ca’>* release through voltage-
operated channels (VOC) and Ca®>* entry through mitochondrial Na*/Ca’>* exchanger (NCX). Ca>*
can be removed from the cytoplasm by SERCA and PMCA pumps, through the plasma membrane
Na*/Ca?* exchanger (NCX) or by mitochondrial uniporter Ca>* channel (MCU). Different proteins
and organelles can buffer Ca?*. Calmodulin (CaM) is one of the main Ca?" binding proteins which
has capacity of the binding four Ca>*. STIM: stromal interaction molecule

activation and conduct the large portion of whole cellular calcium. This finding supports
the previous studies suggesting that rhythmic firing in DA neurons is blocked by L-type
Ca%t channels [Durante et al., 2004]. Ca,1.2 and Ca,1.3 channels respond well to brief
action potential-like stimuli and deactivate slowly and permit calcium influx for several mil-
liseconds after the membrane potential returns to -80 mV [Helton et al., 2005]. Elevated
intracellular Ca>" triggers inactivation of L-type calcium channels [Peterson et al., 1999]. It
has been shown that calmodulin is a critical Ca>* sensor for both inactivation and facilitation
of L-type Ca’" channels [Zuehlke et al., 1999].

Store-operated channels: Store-operated Ca>* channels (SOC), store-operated Ca’* entry
(SOCE) or Ca’*release-activated Ca?* current (Icgac) is a Ca>* influx pathway in electri-
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cally non-excitable cells that is controlled by the Ca?T content of the intracellular stores.
These channels are activated by emptying of intracellular Ca®* stores, but the mechanism
that translate the fall in Ca>* content of SR/ER to plasma membrane Ca>" channels is not
completely understood [Venkatachalam et al., 2002]. Recently it was shown that stromal
interaction molecule-1 (STIM1) which is a single spanning transmembrane protein located
mainly on the ER membrane and Orail (calcium release-activated calcium channel protein
1) which is a plasma membrane protein, are two key players in activating SOCE in response
to diminished luminal CaZ*t levels [Stathopulos et al., 2008]. The current view is that the
ER Ca?* sensor STIM1 re-localizes and forms puncta at the junction of the ER and the cell
plasma membrane (PM) upon store depletion. By a mechanism that is unknown, STIM1 in-
teracts with Orail, leading to its activation. Such a spatial arrangement implies a very close
association between the superficial part of the ER and the PM, estimated to be around 10-20
nm [Prakriya et al., 2006, Demaurex et al., 2009].

Due to binding of a Ca>*-mobilizing signal such as IP3, Ca* is released from the ER.
Emptying the intracellular stores is detected by a protein, most probably an inositol-1,4,5-
triphosphate receptor (IP3R) or a rynodine receptor (RYR), which leads to a conformational
change that is transported to SOC to induce Ca>" entry across plasma membrane [Berridge
et al., 2003]. Emptying the internal Ca>* stores and activating Icgac can be induced by
inhibition sarcoplasmic/endoplasmic reticulum Ca**-ATPase (SERCA) pumps or by Ca>*
buffers which passively uptake Ca’" or by mitochondria that can effectively compete with
SERCA pumps and reduce the rate of store refilling. Mitochondrial Ca>* uptake decreases
the opening threshold of SOC and increase their sensitivity to inositol-1,4,5-triphophate (IP3)
[Parekh, 2003]. SOCE can be deactivated by Ca®"-dependent inactivation process, which
results from a negative feedback of Ca>*t entering through the SOCE that can be partially
prevented by the use of fast Ca>* chelators like BAPTA or the slow one like EGTA.

Plasma membrane Ca’>*-ATPase pump: The plasma membrane Ca’>"-ATPase (PMCA)
pumps export one Ca>" ion to the extracellular space by hydrolysis one molecule ATP in
all eukaryotic cells. Ca’" pumps are important for the precise maintenance of the cellu-
lar Ca>* homeostasis and their malfunction cause numerous disease phenotypes [Brini and
Carafoli, 2009]. PMCA types 1 and 4 are distributed ubiquitously while PMCA types 2 and
3 are restricted to some tissues, the most important being the nervous system. The transcripts
of all four PMCA genes undergo alternative splicing, which greatly increases the number of
PMCA variants [Brini et al., 2013].

All PMCA types except type 2 are activated in the presence of calmudulin (CaM) that
increases their affinity by one or even two orders of magnitude. The kinetics of interplay
with calmodulin differ in the four basic isoform, PMCA type 1 and 4 have lower affinity
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than two tissue restricted isoforms. PMCAs are inhibited in the absence of CaM (calcium-
modulated protein) by a mechanism that involves binding of their C-terminal tail to the two
major intracellular loops [Strehler et al., 2007]. For activation, Ca2*-CaM should bind to the
C-terminal and make a conformational change that displaces the auto-inhibitory tail from the
major catalytic domain. PMCAs type 2 which are highly expressed in the central nervous
system and its related tissues are highly active in absence of CaM. The PMCA?2 pump is
widely distributed in the brain and is expressed in high levels in the cerebellum.

Sodium-calcium exchanger: The sodium-calcium exchanger (NCX) is an ion transport pro-
tein on the plasma membrane that extrudes Ca’* in parallel with PMCA. It also can work in
the reverse mode and mediates Ca®" entry in parallel with various ion channels. The amount
of Ca’* movement and its direction depend on the net electrochemical driving force on the
exchanger like the Na™, Ca>*and K™ gradients across plasma membrane or membrane po-
tential which varies during action potential. The rate of Ca>* transport by NCX increases or
decreases as Ca>t concentration is raised or lowered, respectively in order to meet cellular
demands for rapid transport of Ca>* and Ca®>* regulation [Blaustein and Lederer, 1999].

G protein coupled receptors: G protein-coupled receptors (GPCRs) are the fourth largest
protein superfamily in mammalian genomes [Marinissen and Gutkind, 2001]. They have a
seven-transmembrane topology coupled with heterotrimeric G protein and mediate cellular
response to a variety of extracellular signals ranging from photons and small molecules to
peptides and proteins, and thus have great potential as therapeutic targets for a broad spec-
trum of diseases.

The heterotrimeric G protein is composed of three subunits: a, 8 and y. Binding of ago-
nist to GPCRs leads to the exchange of GDP for GTP bound to the ¢ subunit and separate G
and Gy subunits. These activated subunits affect their target proteins and activate or inhibit
the production of variety second messengers such as cAMP (cyclic-adenosine monophos-
phate), cGMP, diacylglycerol (DAG), inositol (1,4,5)-trisphosphate (IP3), arachidonic acid
and phosphatidic acid. G is inactivated when a GTPase enzyme binds to it and hydrolyzes
the GTP, causing it to re-associate with Gfy.

Among all second messengers that are activated by Gor subunit, the cAMP and the phos-
phatidylinositol signal pathways are two canonical ones. Gsa and Gia activate adenylyl
cyclase (AC). The specific isoforms of AC catalyse the conversion of intracellular ATP to
cAMP. Due to binding of two cAMP molecules to each cAMP-dependent protein kinase or
protein kinase A (PKA) regulatory subunit, they become active. Thus cAMP is considered
a second messenger and PKA a secondary effector. In human airway smooth muscle cells,
PKA phosphorylates cAMP response element binding (CREB) transcription factor, phos-
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pholipase C (PLC), the inositol trisphosphate receptor (IP3R) and myosin light chain kinase
(MLCK) [Billington and Hall, 2012].

An important second messenger stimulated by GPCRs is Ca?*. Many hormones and neu-
rotransmitters transmit their information by increasing cytosolic Ca’" concentration. Gqo
or Gi (activated by released G ) activate phospholipase C-f (PLCJ) that catalyzes forma-
tion of IP3 and diacylglycerol (DAG) from phosphatidylinositol 4,5-biphosphate (PIP2). IP3
binds to IP3R on the membrane of ER and open these channels that leads to leaking Ca’*
to cytoplasm. The released Ca’t from ER then can activate SOCE channels on the plasma
membrane and lead to a global rise in cytosolic Ca>* concentration.

Metabotropic Glutamate Receptors: The metabotropic glutamate receptors (mGluRs) are
member of the GPCRs family and are activated by binding glutamate. Many studies have
shown improved learning and memory by drugs that target mGluRs activation [Rickard and
Ng, 1995]. The mGluRs have many subtypes that can be categorized into three groups based
on their functions in the central nervous system: group I includes mGluR1 and mGIuRS5,
group II includes mGluR2 and mGluR3, and group III includes mGluR4, mGluR6, mGIluR?7,
and mGluR8. Activation of group I of mGluRs increase neuronal excitation whereas activa-

tion of group II and group III mGluRs tends to decrease excitation [Holscher et al., 1999].

Stimulation of group I by glutamate leads to forming IP3 that cause to Ca’" release from
ER, and making diaglycerol (DAG) that increase protein kinase C (PKC) activity which is
needed for upregulating N-methyl-D-aspartate (NMDA) receptors. NMDA receptor gated
Ca" channels are the ionotropic family (ligand-gated ion channels) of glutamate receptors
that are activated when glutamate is bound to NMDA and the postsynaptic neuron is largely
depolarized by Na™. This leads to opening the channel and Ca>* enter to the neurons. Open-
ing NMDA leads to entering Ca’* to the cell which then activate many cellular processes.
Increasing neural Ca®T concentration either through NMDA receptors or IP3 -induced Ca®*
release from internal stores is required for long term potentiation (LTP) induction. Neuro-
logical disorders like Alzheimer’s disease displaying memory loss have shown abnormalities

in glutamate receptors and Ca>* regulation [Rickard and Ng, 1995, Holscher et al., 1999].

Purinergic receptors: ATP and related purine nucleotide act as an extracellular signaling
molecule that stimulates a large family of purinergic receptors found on the cell surface of
virtually all mammalian cells. There are three class of purinergic receptors: P1 and P2Y
receptors that are GPCRs and P2X receptors that are ligand-gated ion channels. P1 receptors
are stimulated by binding adenosine, P2Y receptors are activated by nucleotides like, ATP,
ADP, UTP, UTD and P2X receptors are activated just by binding ATP. Thus, ATP not only

act as a key source of the cellular energy, it also functions as a potent extracellular messenger
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producing its effects via the P2 receptor family (P2X and P2Y).

Binding three ATP molecules to each subunit of P2X receptors evokes a conformational
change in the structure of the ion channel that results in the opening of the ion-permeable
pore, allowing cations such as Nat and Ca?* enter the cell, depolarize cell membrane and
activate various Ca’" sensitive intracellular processes. P2X receptors are expressed in nerve
and glial cells and have been shown to modulate synaptic transmission. They are also able to
initiate contraction in cells of the heart muscle, skeletal muscle, and various smooth muscle
tissues. Binding ATP to P2Y receptors leads to forming IP3 second messenger and releasing
Ca’* from internal stores. ATP can release from cells in physiological conditions with a
number of neurotransmitters like acetylcholine, norepinephrine, glutamate. Released ATP
can be degraded to ADP, AMP and adenosine by a family of enzymes called ectonucleoside
triphosphate diphosphohydrolases (E-NTPases). ATP directly can activate P2X and P2Y
receptors while when is degraded to ADP and AMP it can activate P2Y7/P2Y |, receptors
and P1 receptors, respectively [Burnstock and Williams, 2000].

2.1.2 Sarco/Endoplamic Reticulum

The Sarco/Endoplasmic reticulum (SR/ER) is a multifunctional signaling organelle that is
involved in the synthesis, folding, and transport of proteins and also plays an important role in
Ca’* signaling by functioning as a Ca>* store. Opening of either inositol 1,4,5-trisphosphate
receptors (IP3Rs) or ryanodine receptors (RYRs) located on the ER/SR membrane leads to
leaking of Ca>* from the ER into the cytoplasm. In low Ca>* concentration, the opening of
one channel stimulates opening of neighboring channels, called Ca®*-induced Ca’* release
process, that generates a global Ca>™ wave in the cytosol. This repetitive mechanism of
Ca’* releasing is particularly important in the control of muscle cells and neurons [Berridge,
2002].

The two major functions of ER, protein synthesis and Ca?" regulation can affect each
other. Accumulation of misfolded proteins alter Ca’>* homostasis in the ER while changing
the Ca®>* concentration within ER influences the process of protein synthesis. The ER is
divided into three different regions based on their localization in the cell: rough ER, smooth
ER and nuclear membrane. The rough ER is studded on its outer surface with ribosomes
that is responsible for protein synthesis, called translation. In the lumen of the rough ER
proteins are folded and also quality control of proteins is performed. Proteins that are folded
incorrectly are rejected or are tagged and sent for recycling for the break down to amino
acids. The smooth ER has a long network of a folded, tube-like structure and is involved in
Ca’" signaling as well as making lipids and steroid production. In muscle cells, this structure
helps to release Ca>t synchronously within the cell and create a rapid global signal in the
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whole cell to contract the muscle.

The sarcoplasmic reticulum (SR) is an intracellular membranous network found in mus-
cle cells. It serves to initiate muscle contraction by releasing calcium through the ryanodine
receptors (RyR) into the cytosol and facilitates muscle relaxation by active reuptake of cal-
cium by the sarcoendoplasmic reticulum Ca’>*- ATPase (SERCA) pumps. The SR/ER is
highly sensitive to even minor perturbations in its environment, and is particularly sensitive

to alterations in calcium homeostasis.

The function of ER and mitochondria is highly coupled. The released Ca’>" from ER
is rapidly taking up by mitochondria and subsequently is released slowly to the cytosol that
helps ER to refill instead of pumping to the extracellular space. Disturbance of Ca’>* con-
centration balance in the ER alters the function of chaperones that are responsible for folding
the proteins. If mitochondria uptake more Ca®* or don’t release Ca’>* properly, it can lead to
"ER stress". If a physiological and pathological stimuli can disrupt ER homeostasis result-
ing to an accumulation of misfolded and unfolded proteins, a condition known as ER stress.
ER stress activates a complex signaling network referred as the Unfolded Protein response
(UPR) to reduce ER stress and restore homeostasis [Oslowski and Urano, 2011]. A variety of
physiologic conditions such as glucose deprivation, oxidative stress, ischemia, and infection

can disrupt ER function that can result in ER stress.

Also if the amount of released Ca>™ is not controlled by ER, it can damage mitochondria
by creating mitochondrial permeability transition pores (MPTP) within the mitochondrial
membrane. Under conditions of mitochondrial calcium overload, especially when accompa-
nied by oxidative stress, elevated phosphate concentrations and adenine nucleotide depletion,
MPTP opens in the inner mitochondrial membrane. MPTP opening enables free passage into
the mitochondria of molecules of < 1.5 kDa including protons. The resulting uncoupling of
oxidative phosphorylation leads to ATP depletion and necrotic cell death [Halestrap, 2009].

IPs receptor (IP3R) channels: 1P; receptors (IP3R) are a family of Ca%*t channels responsi-
ble for Ca>* mobilization from Ca>* stores and are generally located on the ER membrane,
but in some tissues they have been seen on the plasma membrane and nuclei. IP3Rs are
tetrameric intracellular Ca>* channels with four 313 kD subunits [Taylor and Laude, 2002].
IP3Rs are expressed in three isoforms: IP3R1, IP3R2 and IP3R3, but the structural organiza-

tion of each subunit appears to be similar [Watras et al., 1991].

These channels are opened by binding one IP3 molecule and one Ca>* ion at low cytoso-
lic Ca>* concentration and are closed also by rising Ca?* concentration. Thus, their open
probability of IP3Rs follow the biphasic regulation and bell-shaped curve in dependence on
the local calcium level. The effect of Ca>* on the IP3Rs may be mediated by cytosolic
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Ca”*-binding proteins such as calmodulin (CaM) and the neuronal Ca>*-binding protein 1
(CaBP1), which both have documented interaction sites with the IP3R. The amount of Ca%*
in the ER also regulates IP3R activity. Overloading luminal Ca®" increases sensitivity of
IP3Rs to IP3 which eventually leads to spontaneous Ca>" release from permeabilized hep-
atocytes [Missiaen et al., 1991]. On the other hand, some studies have shown decreasing
IP3Rs activity to IP3 by depletion of ER [Nunn and Taylor, 1992]. In common with cytosolic
Ca’*, ATP also has biphasic effects on IP3 receptors. IP3Rs activity increases by micromolar
concentrations of ATP and decreases by presence of millimolar concentrations of ATP.

The most common pathway for producing IP3 molecules is binding an agonist to G-
protein coupled receptor on the cell membrane and activating phospholipase C (PLC). Then
IP3 diffuses into the cytosol and binds to IP3 channels that leads to opening them and induce
Ca’™ release from ER into cytosol due to the large concentration differences between the two
compartments. In the low cytosolic Ca>* concentration, binding Ca®" and IP5 to IP3Rs in-
crease their open probability and leads to releasing Ca>* from these channels. Fluorescence
imaging and modeling studies have shown that IP3-evoked Ca>* signals are generated in a
hierarchical process where Ca’" releasing from one single IP3R channel (blip) stimulates
opening of neighbor channels at the same cluster, creating puffs and these puffs may activate
adjacent clusters by diffusion of Ca?" that may result in a global Ca?>" wave in the whole
cell [Lipp et al., 1997, Skupin and Falcke, 2010]. IP3-evoked Cat signals do not behave
as regular oscillators since they are made from random sequences of Ca2* spikes with not
deterministic inter spike intervals (ISIs). Each ISI has a large stochastic period which leads
to forming ISIs with different lengths and distributions [Skupin et al., 2008, Thurley et al.,
2011]. Stochastic binding of IP3 and Ca®* to IP3 receptors leads to stochastic opening and
closing of each channel. These openings lead to the release of a small amount of Ca>* , and
are called "blips’. When IP3Rs are situated in clusters, the opening of one IP3R can initiate
the opening of neighboring IP3R, leading to the simultaneous opening of a group of IP3R.
This is called a Ca>* *puff’. One Ca’*t puff can excite neighboring clusters of IP3R, leading
to large coordinated release of Ca>* across an entire cell, called a Ca>* spike. Each of these
levels relies on the combination of stochastic events, and thus the time between CaZt waves
follows a distribution, rather than being a fixed interval [Moenke et al., 2012, Dupont et al.,
2016]. In contrast to random spikes, the relation between average of ISIs (7,y) and standard
deviation of ISIs (o) does not depend on channel and cluster properties and is determined by
the global feedback processes in the Ca>" signaling pathway, like global Ca?>* concentration,
IP3 metabolism or ER depletion [Thurley and Falcke, 2011].

Ca’" oscillations start from IP3R cluster area and then propagate through the cell as a
Ca’" wave. Ca’T signals can spread into neighboring cells, generating intercellular Ca®*

waves. The complex Ca’*t oscillations contribute to diverse physiological processes such
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as development, synaptic plasticity, fertilization, gene expression and apoptosis. Abnor-
mal IP;R-mediated Ca?* signaling can disturb the communication between ER and mito-
chondria and lead to cell death. Type 1 IP3R (IP3R1) is the predominantly expressed in
the central nervous system. Experiments on new born mice with genetically manipulated
IP3R1-knockdown led to the death of mice after 3 weeks. Lack of IP3R1 cause long term
depression which affect motor learning and coordination and also shown impairment in hip-
pocampal synaptic plasticity. IP3-evoked Ca>* oscillations play important roles in astrocytes
as increased Ca®* concentration triggers release of neuroactive molecules from astrocytes,
including glutamate, d-serine, ATP, adenosine, y-aminobutyric acid and tumor necrosis fac-
tor o (TNF-o) [Hisatsune and Mikoshiba, 2012].

Sarco/Endoplasmic reticulum Ca>*-ATPase pump: Sarco/Endoplasmic reticulum Ca”*-
ATPase pump (SERCA) pumps belong to P-type ATPase family that involves also plasma
membrane Ca’t-ATPase (PMCA), Nat/K+ ATPase and HY/K* ATPase channels. P-type
ATPases move ions against the concentration gradient across a biological membrane by hy-
drolysis of ATP. The SERCA pump is a single polypeptide with molecular mass of 110 kDa
and is localized on both the ER and the SR membrane. The family of SERCA pumps are
encoded by three genes: SERCA1, SERCA2 and SERCA3 [Periasamy and Huke, 2001].

SERCA pumps push Ca?* into the endoplasmic reticulum against the steep concentra-
tion gradient between ER and cytosol. They consume one molecule of ATP for pumping
two calcium ions. SERCA activity impairment leads to an imbalance of the cellular Ca%*
level. This is implicated in many pathological processes, such as heart disease, Alzheimer’s
and Parkinson’s diseases. In the muscles, SERCA pumps play two roles: first they cause
muscle relaxation by lowering the cytosolic calcium, and second they restore calcium of SR
necessary for muscle contraction. Contraction and relaxation cycle of the heart is tightly
regulated by release and uptake of Ca>t between the SR and the cytoplasm. Ca>T enters the
cell via L-type Ca®" channels and as a consequence triggers Ca’* release from SR through
ryanodine receptor by CICR mechanism which leads to muscle contraction.

The SERCA pump is identified as an ER protein whose normal function is required by all
cells and represents a potential therapeutic target for cancer therapy. It has been shown that
inhibition of SERCA by thapsigargin directly leads to depletion of Ca®* inside the ER and
activation of ER-stress response and simultaneous activation of apoptotic pathways within
the ER and the mitochondria. Anti-apoptotic members such as Bcl-2 prevent cell death in
response to a wide variety of stimuli including thapsigargin. Overexpression of Bcl-2 in
breast epithelial cells modulates ER Ca* store by upregulation of SERCA?2 expression with
little effect on IP3R-3 expression [Kuo et al., 1998].
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2.1.3 Mitochondria

Mitochondria are responsible for synthesis of most of the ATP in eukaryotic cells by ox-
idative phosphorylation. Besides this function, mitochondria also play a vital role in cell
signaling by sensing and shaping Ca>" signals. Fast uptaking and slow releasing mecha-
nism of mitochondrial Ca>* channels plus organelle movement profoundly influence Ca’**
dynamics and cellular function. Mitochondria uptake a large amount (~ 80%) of cytosolic
Ca’" through mitochondrial Ca®* uniporter (MCU) and release it via Nat/Ca?T(NCX) and
Ht/Ca®*t exchangers [Marhl et al., 2000]. Mitochondrial membrane potential (A¥) which is
mainly made by translocation of H* across the inner membrane of mitochondria make very
large driving force for Ca?* accumulation [Jacobson and Duchen, 2004]. MCUs are located
close to IP3Rs and RYRs on the ER/SR as well as close VGCCs and SOCEs on the plasma
membrane, thus they sense micro-domain of high cytosolic Ca>* concentration which meets
the low affinity of the MCUs and that dissipates rapidly, thus preventing mitochondrial Ca>*

overload and/or Ca>* cycling across the mitochondrial membrane [Rizzuto et al., 2012].

Sensing the micro-domains of cytosolic calcium that dissipate rapidly by mitochondria
has major functional consequences. Mitochondria sense highly localized cellular Ca>* and
act as a Ca>* buffer while they can influence cell survival and various functions, such as
metabolism, secretion and signaling [Rizzuto et al., 2012]. It has been shown that inhibition
of mitochondrial Ca>* uptake by compounds that dissipate mitochondrial membrane poten-
tial disturbs Ca>* dependent inactivation of Ca’>* release-activated Ca’t (CRAC) channels
which can be due to the buffering capability of mitochondria that reduces the Ca>* concen-

tration near the sites that govern inactivation [Hoth et al., 2000].

The Ca** buffering by mitochondria also regulates Ca>* release from IP3Rs on the ER.
Opening IP3Rs and releasing Ca>* from the ER creates a high cytosolic Ca>* concentration
locally which may inhibit IP3Rs and close these channels. But due to the presence of mito-
chondria in close contact with the ER, the Ca”* is uptaken by mitochondria. Therefore mito-
chondrial Ca®T uptake reduces the negative feedback inhibition of cytosolic Ca>* and leads
to further Ca2t release from ER [Rizzuto et al., 2012]. Both GFP labelling of organelles
in living cells and electron micrographs revealed the existence of close contacts (<200 nm)
between mitochondria and the ER [Rizzuto et al., 1998]. The ER-mitochondrial junction and
movement of Ca>* between ER and mitochondria result in fundamental processes happens
by Ca?™ like its role in energy production, cell fate and cell growth. A number of chaperones
and regulatory proteins control the formation of the ER-mitochondria junction. Mitofusin 2

(MFN2) is involved in both mitochondrial fusion and in ER-mitochondria tethering.

The Ca’* buffering capabilities of mitochondria also affect activity of Ca?>" dependent
proteins. It can deactivate plasma membrane channels that are regulated by changes in Ca>*
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concentrations, like store-operated Ca>t channels and voltage-gated Ca>* channels. It has
been shown that mitochondria can modulate the activity of SOCE by buffering the incoming
Ca’" or by generating ATP. In some cell types like T-lymphocytes, by opening the SOCs,
mitochondria move close to plasma membrane and uptake the large amount of entering Ca®*
which leads to a more sustained Ca>* influx. Mitochondria, by supplying ATP and slow re-
lease of Ca?* through mitochondrial NCX, provide substrate and energy that PMCA needs
to remove Ca’" from cytoplasm. This process in the local domain close to the plasma mem-
brane leads to relieving of Ca?*-dependent inhibition mechanism in SOCEs and VGCCs
which drastically change their temporal pattern and keep them active for longer time in the
presence of nearby mitochondria. In contrast, mitochondria by providing ATP to SERCA
pumps enhance the lumen Ca?* concentration and reduce SOCE activity. The spatial or-
ganization of mitochondria and their contribution in Ca>* buffering and supplying ATP for
Ca’"-ATPase pumps define their role in activating or inhibition of plasma membrane Ca>*

channels [Demaurex et al., 2009].

2.1.4 Calcium-Regulated Enzymes

Enzyme acts as a catalyst in living organisms, regulating the rate at which chemical reactions
proceed without itself being altered in the process. The term kinase refers to a large category
of enzymes that catalyze the transfer of phosphate from the gamma position of ATP to the
hydroxyl group of Ser, Thr, or Tyr within protein substrates. So the importance of protein
kinases in the regulation of protein function has become an integral part of our understanding
of biology [Swulius and Waxham, 2008]. This process is known as phosphorylation. Three
well-known kinases which are activated by Ca®* ions are: Ca’*/calmodulin-dependent pro-

tein kinase, Inositol 1,4,5-trisphosphate 3-kinase and protein kinase C.

Ca’*t/calmodulin-dependent protein kinase (CaM-kinase): Ca>" binding proteins (CBP)
are a heterogeneous and wide group of proteins that participate in numerous cellular func-
tions. Although they have different structures and properties, most CBP selectively and
reversibly bind Ca>* in specific domains and the kinetics of this interaction being very fast.
One group of intracellular CBPs exhibits EF-hand domains. This domain is found in a large
family of proteins that includes some of the most important and ubiquitous CBP, such as
calmodulin, troponin C or calcineurin. Calmodulin (CaM) is an ubiquitous Ca>* binding
protein that has been conserved throughout biological evolution. CaM has the capacity of
binding four Ca?*. Saturation of CaM with Ca?* induces a conformational change in pro-
tein which makes it active to interact with diverse set of target enzymes. CaM itself has no
enzymatic activity, and its function is to integrate with Ca?>* and transduce it to other down-
stream enzymes. The Ca®T/CaM complex interacts with and modulates the functionality

of a large number of proteins including several Ser/Thr protein kinases. Among many tar-
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get enzymes, calmodulin-dependent protein kinases (CaM-kinases) are critically important
for proper cellular functions like gene transcription, apoptosis, cytoskeletal reorganization,
and learning and memory. In neurons Ca’>*/CaM-dependent protein kinase II (CaM-KII) is
highly expressed and localized with certain subcellular structures. Upon activation, it can
translocate to excitatory synapses where it regulates a number of proteins involved in synap-

tic transmission and its downstream signaling pathways [Soderling et al., 2001].

Inositol 1,4,5-trisphosphate 3-kinase (IP; 3-kinase): Inositol 1,4,5-trisphosphate 3-kinase
(IP33-kinase/IP3K or ITP3K) is another calcium-regulated kinase which is activated directly
by Ca®>*/CaM and also through protein kinase A (PKA or cAMP-dependent protein kinase)
and Ca”*/calmodulin-dependent protein kinase II (CAMKII). IP3K phosphorylates (con-
sume ATP) second messenger Inositol 1,4,5-trisphosphate (IP3) that mediates Ca2t release
from ER to the cytosol to another messenger Inositol 1,3,4,5-tetrakisphopsphate (IP4) re-
sponsible for mediating Ca®* entry through plasma membrane. Thus, IP3K plays a key role
in maintaining Ca>* homeostasis by regulating the concentrations of IP3 and IP4. Another
pathway of IP3 metabolism is removal of the 5-phosphate from the inositol ring by inositol
polyphosphate 5-phosphatases (IP5-ases) results in the production of Ins(1,4)P2, an inactive
inositol phosphate [Pattni and Banting, 2004].

Protein kinase C: Protein kinase C (PKC) is belong to a family of serine/threonine kinases
that play important roles in several signal transduction cascades and is involved in receptor
desensitization, in mediating immune responses, in regulating cell growth, and in learning
and memory [Cole et al., 1988, Fenster et al., 1999, Dempsey et al., 2000]. PKC are acti-
vated by signals such as increases in the concentration of diacylglycerol (DAG) or calcium
ions. DAG is known as second messenger signaling lipid. DAG and IP3 are produced by
hydrolysis of the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) by the enzyme
phospholipase C (PLC). IP; diffuses into the cytosol and stimulates Ca>* release from ER,
whereas DAG remains within the plasma membrane and activates PKC. The production of
DAG in the membrane facilitates translocation of PKC from the cytosol to the plasma mem-

brane. Disruption of PKC regulation is implicated in tumorigenesis and drug resistance.

2.1.5 Calcium Signaling in Electrically Non-Excitable Cells

Ca’" signaling in electrically non-excitable cells have different dynamics from excitable
cells. In excitable cells, changing the voltage of cellular plasma membrane leads to opening
of voltage-gated Ca>* channels and entering Ca>* from extracellular space into the cytosol.
Thus, excitable cells often have a cytosolic Ca>T oscillator linked to a membrane potential
oscillator, potentially giving rise to highly complex behaviours. However, in electrcally non-
excitable cells like astrocytes, the cytosolic Ca>* dynamics occur independent of the cell
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membrane potential and is governed by the periodic Ca’* release from ER through IP3R and
RyR [Dupont et al., 2016].

Calcium signaling in Astrocytes:Calcium signaling is an important feature in the physiology
of astrocytes. Indeed, astrocytes have developed various efficient ways to generate complex
changes in intracellular calcium concentration. This machinery allows these cells to sense,
integrate, and respond to external stimuli released mainly by neurons. Astrocytes are electri-
cally non-excitable cells for their lack of voltage-gated sodium channels. They make contact
with most synapses in the central nervous system (CNS) and respond to synaptic activity
with increases in cytosolic Ca”*.

The widely accepted mechanism for astrocytic Ca>* increases is the IP3 pathway. Upon
activation of G, GPCR, phospholipase C (PLC) hydrolyzes the DAG and IP3, which leads
to activation IP3Rs and releasing Ca’" from ER. It has been shown that IP3R2 subtype is
the primary functional IP3R within hippocampus astrocytes [Petravicz et al., 2008]. In cul-
tured and acutely prepared astrocytes, cytosolic Ca>* concentration changes spontaneously
or in response to mechanical stimulation, membrane potential depolarization, activation of

metabotropic glutamate receptors and stimulation of purinergic receptors.

Astrocytes express receptors for most neurotransmitters, including glutamate. Gluta-
mate evokes a calcium concentration rise in astrocytes (in culture, in brain slices, in whole
retina and in vivo), which can propagate along astrocyte processes and even between glial
cells [Dani et al., 1992, Porter and McCarthy, 1996, Newman and Zahs, 1997, Hirase et al.,
2004, Wang et al., 2006, Parpura et al., 1994]. Ca’* signaling in astrocytes may be limited
to individual cells or may occur as a *wave’ of Ca’>" that is propagated from one cell to
surrounding cells. Ca?t wave propagation may happen through the gap junctions and has
been correlated with the expression of connexins in multiple cell types [Giaume and Ve-
nance, 1998]. Astrocytic Ca>t waves may be mediated by purinergic receptors in the way
that Ca®* elevation in single astrocyte is propagated to neighboring cells, thereby recruit-
ing a larger group of astrocytes. Astrocytes use ATP as a major extracellular messenger for
propagating intracellular Ca®* signaling to the neighboring cells [Guthrie et al., 1999].

Increases of astrocyte Ca®T evoked by receptor agonists such as glutamate, GABA, ATP
(ADP), or by uncaging of Ca>* or IP3, were reported to release gliotransmitters from astro-
cytes, including glutamate, ATP, D-serine and GABA [Bazargani and Attwell, 2016]. The
release of these gliotransmitters has been reported to generate a wide range of effects on
neurons. The roles that astrocytic calcium elevations play in neurophysiology and especially

in modulation of neuronal activity have been intensely researched in recent years.

In following of this chapter, we will describe the components of cellular energy metabolism
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and show the link between Ca®* signaling and energy metabolism in more detail. We also
describe the medical relevance of Ca?* and energy metabolism dysregulation in the patho-

genesis of Alzheimer’s and Parkinson’s diseases.

2.2 Energy Metabolism

Energy metabolism is the process of generating energy (ATP) from nutrients. The major
pathways that eukaryotic organism produce energy are glycolysis and mitocohndrial oxida-

tive phosphorylation [Erecinska and Wilson, 1982].

Carbohydrates, fats, and proteins are oxidized in the cells and produce large amount
of energy. Energy metabolism is highly regulated through special cellular enzymes and
substrates transfer systems that control chemical reactions and flow of metabolites along
metabolic pathways. Eighty percent of digested carbohydrate is glucose and the rests are
fructose and galactose which are rapidly converted to glucose via the liver. So the final
product of almost all carbohydrates is glucose. Glucose is either metabolized in the cytosol
through glycolysis or in the low energy demand is stored as glycogen or fat. Fatty acids
that are another source of energy for the cells are degraded and oxidized in mitochondria
where they go to beta-oxidation process and form acetyl coenzyme A. Proteins are made
by amino acids that have peptide linkage with each other. Protein metabolism denotes the
various biochemical processes responsible for the synthesis of proteins and amino acids, and
the breakdown of proteins to a-keto acids which can be recycled in the body for generation

of energy, and production of glucose or fat or other amino acids.

In order to produce ATP, cellular substrates go to Krebs cycle (also called citric acid cycle
or tricarboxylic acid (TCA) cycle) in the matrix of mitochondria where they go through
a series of chemical transformations and produce electron carrier molecules, NADH and
FADH;. These molecules further go to electron transport chain (ETC) and generate electron
gradient force for driving ATP synthesis.

Most metabolic reactions are catalyzed by enzymes, only some occur spontaneously.
There are two types of regulations in cellular metabolism: (1) long-term (hours to days) or
coarse regulation where regulation of cellular metabolism may start at the gene that encodes
different enzyme isoform, followed by the transcriptional level that selects which genes are
activated. Subsequently, alternative splicing, mRNA stability, translation, and protein degra-
dation control enzyme abundances; (2) Short-term (seconds to minutes) or fine regulation
that occurs by changing the activity of enzymes that already exist in the cell. Usually, they
are triggered by changes in local concentrations of metabolites leading to an allosteric or
post-translational regulation of enzyme activity [Wegner et al., 2015].
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2.2.1 Glycolysis

The process of converting glucose with six carbons into two molecules of pyruvate with three
carbons is called glycolysis that involves nine successive chemical reactions which produce
two molecules of ATP per molecule of glucose. Glycolysis can produce ATP in the absence

of oxygen.

This pathway can be divided into three stages. In the first stage glucose is transported
to the cells by specific transport proteins and then is phosphorylated by consuming ATP
that forms glucose 6-phosphate (G-6P). This reaction is catalyzed by hexokinase. Then G-
6P is converted to Fructose 6-phosphate (F-6P) by phosphoglucose isomerase. The sec-
ond phosphorylation happens after forming F-6P where it is phosphorylated by ATP to
fructose 1,6-bisphosphate. This reaction is catalyzed by phosphofructokinase (PFK), an
allosteric enzyme that sets the pace of glycolysis. Second stage of glycolysis is splitting
fructose 1,6-bisphosphate into two 3-carbon molecules, glyceraldehyde 3-phosphate (GAP)
and dihydroxyacetone phosphate (DHAP) by aldolase enzyme. GAP can directly move for-
ward for the rest reactions in glycolysis whereas DHAP cannot and should first converted
to GAP by the triose phosphate isomerase (TIM). This reaction is rapid and reversible.
Stage three of glycolysis is where that ATP is produced from GAP. The initial reaction in
this sequence is the conversion of GAP into 1,3-bisphosphoglycerate (1,3-BPG), a reaction
catalyzed by glyceraldehyde 3-phosphate dehydrogenase. This reaction produce also one
molecule of NADH. Then acyl phosphate of 1,3-BPG donates its phosphate group to ADP
and forms one molecule ATP and 3-phosphoglycerate. In the remaining steps of glycolysis,
3-phosphoglycerate is converted into 2-phosphoglycerate and then into phosphoenolpyru-
vate (PEP). Finally, PEP is converted into pyruvate with the concomitant conversion of ADP
into ATP [Berg et al., 2002] (see Figure 2.2). Therefore four molecules of ATP are created
from two 3-carbons molecules in the stage three while two ATP molecules are consumed in
the first stage of glycolysis. The produced pyruvate can go to mitochondria and TCA cycle

and produce more ATP molecules or they can converted to lactate by lactate dehydrogenase.

In most mammalian cells, glycolysis is inhibited by the presence of oxygen, which allows
mitochondria to oxidize pyruvate to CO; and H,O. Conversion of glucose to lactic acid in the
presence of oxygen is known as aerobic glycolysis or the *Warburg effect’. Increased aerobic
glycolysis is observed in cancers [Gatenby and Gillies, 2004]. In the astrocytes, taking
up glutamate together with Na™ leads to activating Na®/K™-ATPase pumps for removing
extra Na™ from the cell. This process stimulates glycolysis, glucose utilization and lactate
production. So glutamate uptake into astrocytes stimulates aerobic glycolysis which then
produced lactate is transported to neurons as a important energy source for brain [Bélanger
et al., 2011, Pellerin and Magistretti, 1994]
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Figure 2.2. Sequence of reactions in the glycolysis process (inspired by [Hall and Guyton, 2006])

2.2.2 Tricarboxylic Acid (TCA) Cycle and Electron Transport Chain
(ETC)

The energy production process continues with the mitochondrial reactions of the TCA cycle,
which converts phosphoenolpyruvate (PEP) to malate and/or pyruvate in the cytosol. The
pyruvate and/or malate are transported into mitochondria through mitochondrial carrier fam-
ily (MCF). In mitochondria, these acids enter to the TCA cycle. TCA cycle is a series of

chemical reactions used by all aerobic organisms to generate energy.

In mitochondria, pyruvate is either converted into acetyl-CoA or into oxaloacetate. Con-
version of pyruvate into acetyl-CoA is catalyzed by pyruvate dehydrogenase (PDH). Acetyl-
CoA which is a two carbon molecule enters TCA cycle. The TCA cycle includes eight
enzymes: citrate synthase, aconitase, isocitrate dehydrogenase, o-ketoglutarate dehydro-
genase, succinate thiokinase, succinate dehydrogenase, fumarase, and malate dehydroge-
nase [Bubber et al., 2005]. During one TCA cycle three molecules of nicotinamide adenine
dinucleotide (NAD™) are converted into NADH and one molecule of flavin adenine dinu-
cleotide (FAD) is converted into FADH, and one equivalent each of guanosine diphosphate
(GDP) and inorganic phosphate (Pi) into one equivalent of guanosine triphosphate (GTP).
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In TCA cycle some carbon molecules enter mitochondria to replenish the TCA cycle
intermediates to ensure its continued function. This process is termed anaplerosis. Pyru-
vate carboxylase, which synthesizes oxalacetate from pyruvate in the mitochondrial matrix,
is a anaplerotic enzyme. Also some carbon compounds cannot fully oxidize and must be
removed from the cycle by a process termed cataplerosis. Cataplerosis may be linked to
biosynthetic processes such as fatty acid synthesis in the liver and gluconeogenesis in the

liver and kidney cortex.

The enzymes of TCA cycle are primarily located in the mitochondrial matrix, with the
exception of succinate dehydrogenase, which is bound to the inner membrane, forming part
of complex II of the electron transport chain. The major regulators of TCA cycle enzymes
are ADP and NAD™ and calcium. The reduced amount of ADP leads to increasing the pro-
duction of NADH. Also the high amount of NADH and ATP inhibit dehydrogenases like
pyruvate dehydrogenase, isocitrate dehydrogenase, o-ketoglutarate dehydrogenase in TCA
cycle. Calcium is another regulator in TCA cycle. It activates pyruvate dehydrogenase, isoc-
itrate dehydrogenase and o-ketoglutarate dehydrogenase. This increases the reaction rate
of many of the steps in the cycle, and therefore increases flux throughout the pathway. In
the TCA cycle itself, only 2 molecules of ATP are produced: only in one chemical reaction
during changing a-ketoglutaric acid to succinic acid. Thus, for each molecule of glucose me-
tabolized, two acetyl-CoA molecules pass through the TCA cycle, each forming a molecule
of ATP, or in total two molecules of ATP are formed. Figure 2.3 shows mitochondrial com-

partments, TCA cycle and electron transport chain.

The mitochondrial ATP production relies on the electron transport chain (ETC), com-
posed of respiratory chain complexes I-IV, which transfer electrons in a stepwise fashion
until they finally reduce oxygen to form water. The NADH and FADH, formed in glycoly-
sis, fatty-acid oxidation and the citric acid cycle donate their electrons to the ETC. Electrons
move toward electron transporting complexes and the energy of electron transport leads to
pumping protons to intermembrane space, resulting in a mitochondrial membrane potential
of around 150-180 mV. ATP synthase occurs by F;Fy-ATPase molecule that utilizes the pro-
ton motive force to convert ADP and phosphate ATP, thereby coupling electron transport
and proton pumping to ATP synthase [Fontanesi, 2001, Bratic and Trifunovic, 2010]. The
rate of mitochondrial respiration depends on the phosphorylation potential expressed as a
[ATP]/[ADP] [Pi] ratio across the inner mitochondrial membrane that is regulated by the
adenine nucleotide translocase (ANT). In the case of increased cellular energy demand when
the phosphorylation potential is decreased and more ADP is available, a respiration rate is

increased and leads to an increased ATP synthesis [Slater et al., 1973].
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Figure 2.3. Overview of the tricarboxylic acid (TCA) cycle and electron transport chain (ETC) in
mitochondria. Mitochondria is responsible for synthesis of most of the ATP in eukaryotic cells by
oxidative phosphorylation. In order to produce ATP, cellular substrates go to TCA cycle in the matrix
of mitochondria where they goes through a series of chemical transformations and produce electron
carrier molecules, three NADH and one FADH,.These molecules donate their electrons to the ETC.
Electrons move toward electron transporting complexes and the energy of electron transport leads
to pumping protons to intermembrane space, resulting in a mitochondrial membrane potential. ATP
synthase happens by FFy-ATPase molecule that utilizes the proton motive force to convert ADP and
phosphate to ATP.

2.2.3 Glycogenesis and Glycogenolysis

Forming glycogen from glucose is called glycogenesis that happens when glucose demand
is low. Glycogenolysis is the breakdown of glycogen to glucose-6-phosphate and glycogen.
When glucose intake is reduced as during a period of starvation, glycogen is metabolized
to release energy substrate in the form of glucose (or glucose-related substrates). In the
liver glycogen is break down to glucose when the glucose level in blood decrease and is
released into the systemic circulation. In skeletal muscle glycogen has a different function.
It is metabolized when energy demand is high to provide ATP to muscles via glycolysis and
the produced lactate is released into blood which then can be absorbed by brain or heart as
energy source. Thus the dogmatic view is that liver glycogen is used for the benefit of the

entire body, whereas skeletal muscle glycogen is used solely by that tissue or by brain.

The brain contains glycogen but at low concentration compared with liver and muscle
cells. In the adult brain, glycogen is found predominately in astrocytes. Neurons have two
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main sources of neural energy substrates, the first one is direct entry of glucose into neurons
from blood vessel and the second source is lactate which is provided by astrocytes. The
stored glycogen by astrocytes can be rapidly metabolized, converted to lactate and trans-
ported to neurons as efficient energy substrate. Thus, astrocytic storage of glycogen provides

a supplemental energy reserve available to neurons when demand is high [Gibbs, 2015].

2.2.4 Glutaminolysis

Glutaminolysis, which catabolizes glutamine to generate ATP and lactate, is a mitochondrial
pathway that involves the initial deamination of glutamine (Gln) by glutaminase, yielding
glutamate (Glu) and ammonia. Glutamate is then converted via a second deamination step to
a TCA cycle intermediate, o-ketoglutarate (-KG). The conversion of glutamate to o-KG
is catalyzed by either glutamate dehydrogenase (GDH) or transaminases, such as glutamate
pyruvate transaminases (GPTs, that is, alanine aminotransferases) and glutamate oxaloac-
etate transaminases (GOTs, that is, aspartate aminotransferase), which convert a-KG acids
into their corresponding amino acids. Glutamine not only provides a major substrate for
respiration but also for the synthesis of other macromolecules, such as nucleotides, proteins
and hexosamines.

Glutamine is transported into the cells through transporters such as SLC1AS and SLC7AS.
Glutaminolysis produces ¢-KG and replenishes the TCA cycle, which not only provides in-
termediates for other biosynthetic pathways but also supports energy production. Glutamine
becomes conditionally essential when the demand for glutamine surpasses the supply, espe-
cially for rapidly proliferating cells such as cancer cells. Cancer cells display enhanced and
unusual metabolic activities compared with normal differentiated cells, as they reprogram
their metabolic machinery in order to satisfy their bioenergetic and biosynthetic require-
ments. One of these metabolic abnormalities is that cancer cells take up glucose at higher
rates than normal tissue, yet use less glucose for oxidative phosphorylation (OXPHOS) and
favor the incomplete oxidation of glucose through the glycolytic pathway even in the pres-
ence of oxygen. Pyruvate generated from the glycolytic pathway is converted to lactate,
rather than being used in the TCA cycle. Although the requirement for mitochondrial ATP
production is decreased in tumor cells, the demand for biosynthetic precursors and NADPH
is increased. To compensate for these changes and to maintain a functional TCA cycle,

cancer cells often rely on elevated glutaminolysis [Jin et al., 2015].

2.2.5 Regulation of Cellular Metabolism

Organisms and cells have evolved systems to modulate metabolic flux over short and long

time scales. Extracellular signals like hormones and growth factors communicate signals
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between tissues to regulate metabolic function [Metallo and Vander Heiden, 2013]. Most

metabolic reactions are catalyzed by enzymes.

Regulation of cellular metabolism can start from genes that encode several enzymes and
followed by transcriptional level that selects which genes are activated and the abundance
of enzyme is controlled by mRNA transcription, spilicing, mRNA stability and translation.
This kind of enzyme regulation takes time from hours to days and are called long-term or
coarse regulations. The more rapid adjustment (seconds to minutes) of enzymes also can
happen by changing the activity of enzyme which is already present in the cell. This kind
of regulation is called short-term or fine regulation. Regulation of enzymes by substrate and
product concentration, allosteric regulation and reversible covalent modifications of enzymes

are different means for fine regulation of enzymes.

All metabolic reactions are dependent on both the concentration of substrate and product.
Since the concentration of many intracellular substrates are in the range of K/, an increase
in substrate concentration causes an increase in enzyme activity which tends to returns the
concentration of substrate toward normal. The Kj, value is the substrate concentration at
which the reaction rate is half of the maximum rate achieved by the system for a given
enzyme concentration. Allosteric regulation of enzyme activity is a more precise means for
finely controlling cellular metabolism on a short time scale. In allosteric regulation, enzymes
are regulated by binding specific ligand at a site other than enzyme’s active site which induces
conformational change modulating the enzyme’s activity. Allosteric enzymes show reaction
kinetics that deviate from classical Michaelis-Menten kinetics, changing from hyperbolic to

sigmoidal saturation [Wegner et al., 2015].

Understanding the role of Ca?* homeostasis and mitochondrial metabolism in the dis-
eases, requires a mechanistic understanding of the crosstalk between these two systems. In
the next section, we will give the background information about the crosstalk between Ca>*

signaling and mitochondrial metabolism.

2.3 Crosstalk Between Intracellular Ca’>* Signaling and
Mitochondrial Metabolism

An early hypothesis about controlling the rate of oxidative phosphorylation was that the
feedback of ADP and inorganic phosphate (P;) from the cytosol to mitochondria determine
the rate of ATP production. This hypothesis is based on the economic low of supply and
demand where ATP is the currency of energy in biological systems [Gunter et al., 2004].

Today, although we accept the supply and demand process, we know that it is not the usual
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process by which ATP production is controlled. It is found that the metabolic rate and the
work performed by the perfused heart and other samples can vary up to a factor of around
four without observed changes in ADP, ATP or P; concentrations [Balaban, 2002]. Therefore

something else must act as the metabolic mediator in these circumstances.

The link between Ca>* ions and its regulatory role in cellular metabolic activity has been
discovered more than 50 years ago, when Krebs found that phosphorylase kinase becomes
highly active in rabit muscle extracts when incubated for a short period of time with Ca’*
ions [Krebs et al., 1959]. Many studies have suggested that increases in cytosolic Ca>*
concentration lead to increasing mitochondrial calcium that is important for stimulation ox-
idative metabolism. The work by Denton and McCormack in the 1980s showed that the
activity of pyruvate dehydrogenase (PDH) can increase 3-fold in rat hearts stimulated with
adrenaline for 5 minutes. They concluded that the increased activity of PDH is induced by
the increase in cytoplasmic Ca>* concentration followed by increasing mitochondrial Ca*
concentration that leads to activation of PDH. This view further is supported by studies that
found the effects of adrenaline on pyruvate oxidation and the amount of PDH were greatly
diminished in the presence of two agents: verapamil and ionophore A23187 which alter
the normal distribution of Ca?* in the perfused heart [Hiraoka et al., 1980, Mccormack and
England, 1983, Mccormacl and Denton, 1984, Mccormack and Denton, 1981]. It has been
proposed that stimulation of hepatocytes with vasopressin evokes increases in cytosolic and
mitochondrial Ca?* that increase NAD(P)H production and PDH activity [Robb-Gaspers
et al., 1998]. A wide range of studies on isolated enzymes, separated mitochondria and intact
cell preparations have shown that the activation of pyruvate dehydrogenase upon increasing
cytoplamic Ca?* is due to the stimulation of pyruvate dehydrogenase phosphatase. In eu-
karyotes, pyruvate dehydrogenase complex is tightly regulated by its own specific pyruvate
dehydrogenase kinase (PDK) and pyruvate dehydrogenase phosphatase (PDP), deactivating
and activating it respectively. In mammalian mitochondria, there appears to be two isoforms
of pyruvate dehydrogenase phosphatase, PDP1 and PDP2, but calcium ions activate just
PDP1 isoform [Denton, 2009].

PDH is not the only intramitochondrial dehydrogenase which is activated by calcium
ions. Oxoglutarate dehydrogenase and NAD " -isocitrate dehydrogenase are also activated,
but in these cases Ca’" acts directly on the enzymes to greatly diminish the Ky, values for
their respective substrates [Denton et al., 1978, Mccormack and Denton, 1979]. Mitochon-
drial calcium also activates FAD-glycerol phosphate dehydrogenase, which is located on the
cytoplasmic surface of the inner membrane of mitochondria [Denton, 2009, Griffiths and
Rutter, 2009]. Thus Ca’* stimulates both glycogen breakdown and glucose oxidation lead-
ing to increased ATP supply. The effect of calcium ions is to lower the Ky, for glycerol

phosphate very substantially. In addition, mitochondrial calcium has been suggested to ac-
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tivate electron transport chain, adenine nucleotide translocase (ANT) [Gunter et al., 2000]
and F1FO ATP synthase [Territo et al., 2001].

Mitochondria are also a critical component of the cell signaling machinery, via their
ability to sense and shape Ca®" signals that control fundamental cellular functions. Mea-
surement of mitochondrial Ca>* concentration in the matrix demonstrated rapid fluctuation
of mitochondrial Ca>* upon cell stimulation that is in parallel with cytosolic Ca>* [Rizzuto
et al., 1992]. Ca’* can traverse the outer mitochondrial membrane through voltage depen-
dent anion-selective channels (VDAC). The protein mediating the Ca®* transport across the
inner mitochondrial membrane is referred as the uniporter channel and has been identified
as a Ca>" selective ion channel. Mitochondrial Ca>* uniporter (MCU) channel passes Ca®"
along the electrochemical gradient due to the highly negative mitochondrial membrane po-
tential [Hajndczky et al., 2006]. Thus transport by the MCU is membrane potential depen-
dent and sensitive to ruthenium red or its derivative Ru360 [Gunter and Pfeiffer, 1990]. CaZt
leaves mitochondria in exchange for sodium ions, a process catalyzed by the Na™/Ca?* ex-
changer (mNCX). The mitochondrial Ca®>* uptake and release has numerous effect on Ca’*
homeostasis. The shuffling of Ca>* by mitochondria alters the amplitude of Ca?* signals
as well as their spatial and temporal dimensions. Modifying any of MCU or mNCX path-
ways affects the frequency of the oscillations. Increasing the activity of the MCU can both
increase and decrease the frequency of oscillations [Wacquier et al., 2016]. In addition to its
effect on the frequency of the oscillations, the MCU controls the width of the spikes and the
sustainability of the oscillations, as knocking down the MCU broadens Ca’* oscillations and
accelerates the rundown of the oscillations in rat basophilic leukemia (RBL)-1 cells [Dupont
and Combettes, 2016].

Mitochondria act like a Ca®T buffer and can activate or deactivate plasma membrane
channels that are regulated by changes in Ca’" concentrations or restrict Ca>* signals to
specific cellular domains. Mitochondria are dynamic organelles that actively move, fuse, and
divide within cells. Mitochondria also act like a Ca®™ relay that can propagate Ca>* signals
and funnel CaZ* inside the cells to reload intracellular Ca?*t stores [Demaurex et al., 2009].
Because of their slow dynamics, mitochondria continue releasing Ca’" between subsequent
releases of Ca?* from the ER, thus playing a key role in determining the baseline cytosolic
Ca’" level [Dupont and Combettes, 2016]. Mitochondria are located in close proximity
to the Ca>* channels that elicit the rise in Ca,, including IP3R and RYRs on the ER and
sarcoplasmic reticulum as well as different classes of channels on the plasma membrane (for
example, voltage-operated channels and store-operated channels). Therefore, mitochondria
sense a microdomain of high Ca, that meets the low affinity of the MCU and that dissipates
rapidly, thus preventing mitochondrial Ca’* overload. Thereby, mitochondrial Ca’* uptake

can profoundly influence cell survival and various functions, such as metabolism, secretion
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and signalling [Rizzuto et al., 2012].

After activating different cellular processes, the released Ca®* from internal and exter-
nal sources should be removed from the cytosol to prevent toxic effects. The Na®/Ca’*t
exchanger (NCX) and the plasma-membrane Ca?"-ATPase (PMCA) extrude Ca’* to the
outside, whereas the SERCA pumps Ca’>*t back into the ER. In addition to the role of mi-
tochondria as a sensor and regulator of Ca®" signals, mitochondria play significant role
in Ca®* homeostasis by producing ATP as a substrate for Ca’t-ATPase pumps and also
providing enough energy to keep ion gradients that are maintained with ATP-dependent
pumps [Berridge et al., 2003]. Several studies proposed that the metabolic demand created by
these ATP-dependent steps in Ca®"T homeostasis should increase oxidative phosphorylation
in mitochondria and the production of damaging ROS. Although this design helps prevent
bioenergetic failure when activity needs to be sustained, it leads to basal mitochondrial ox-
idative stress. ROS damage mitochondrial proteins such as complex I and mtDNA, reducing
the efficiency of oxidative phosphorylation. Over decades, this basal oxidative stress could
compromise mitochondrial function and increase mitophagy [Chan et al., 2009, Surmeier
et al., 2016].

2.4 Medical Relevance in the Neurodegenerative Diseases

Neurodegenerative diseases are defined by the progressive loss of specific neuronal cell pop-
ulations and are associated with protein aggregates. In this section, we will describe the role
of Ca®* dyshomeostasis and mitochondrial deficiency in the Parkinson’s and Alzheimer’s

diseases.

2.4.1 Parkinson’s Disease

Parkinson’s disease (PD) is a common neurodegenerative disorder which loss of dopamine
(DA) neurons in substantia nigra pars compacta (SNc) cause motor symptoms as indicated
by the effective treatment with levodopa (a dopamine precursor). SNc¢ dopaminergic neu-
rons have three features that might link them to their selective vulnerability: 1) they rely
on dopamine as a neurotransmitter; 2) they have long axons; 3) they rely on Ca** and L-
type Ca>t channels for making pacemaker that leads to increasing mitochondrial oxidantive
stress. The reliance on DA and Ca?* and also their long axons is hypothesized to increase
DA, cytosolic Ca®* and a-synuclein where there combinations is toxic especially in axon
terminals [Surmeier et al., 2016].

The pacemaking property of SNc dopaminergic neurons lead to the generation of action

potential in a clock wise manner with 2-10 Hz even in the absence of synaptic input. SNc
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dopamine neurons express Ca, 1.3 L-type Ca>* channels, which are open at relatively hyper-
polarized potentials, leading to elevated intracellular Ca>* concentration [Ritz et al., 2010].
Because of the existing steep concentration gradient between intra and extra cellular space,
the entered Ca>* during pacemaking has to be pumped out by slow membrane transporters.
This process requires energy either in the form of ATP or ion gradients that are maintained
with ATP-dependent pumps. The ER and mitochondria are partners in Ca?>" homeostasis
and are two organelles most closely linked to PD. The ER uses SERCA pumps to sequester
Ca’* and when it is filled up, the cytosolic Ca’* may trigger RyR and IP3 receptors which
leads to releasing Ca?* from ER. Since ER and mitochondria are in close contact, mitochon-
dra uptake a large amount of Ca’* through MCU into the its matrix. Accumulation of Ca’*
in the mitochondrial matrix stimulate oxidative phosphorylation and enhance free radical

generation.

Stimulating oxidative phosphorylation in the absence of strong ATP demand (that is, most
of the time) leads to mitochondrial hyperpolarization and then dissipation of electrochemical
gradient by moving back electron flux through the electron transport chain and increased
production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) [Surmeier
et al., 2016]. ROS damage mitochondrial proteins such as complex I and mtDNA, reducing
the efficiency of oxidative phosphorylation. In extreme cases, the stress on mitochondria
induces mPTP opening, swelling and the release of cytochrome ¢ and other pro-apoptotic
proteins such as apoptosis-inducing factor. ROS also can damage ER proteins and increase
the concentration of misfolded proteins. Genetic mutations or environmental toxins are
other factors compromising mitochondrial or ER function, rendering them more vulnera-
ble to Ca>*-induced stress [Chan et al., 2009]. This model has been particularly popular
to explain the increased vulnerability of SNc DA neurons, since this neuronal population is

characterized by a high oxidative burden and a low antioxidant capacity [Exner et al., 2012].

Mitochondrial respiratory complex deficits, disturbed mitochondrial calcium buffering,
altered mitochondrial morphology and mitophagy have been seen in PD models. The first
evidence for the involvement of mitochondria in PD resulted from the observation that hu-
man exposure to 1-methyl-4-phenyl-1, 2, 3, 6 tetrahydropyridine (MPTP) and rotenon, two
inhibitors of complex I of the mitochondrial electron transport chain, leads to a PD-like syn-
drome in humans [Hala et al., 1983]. Changes in the subunits of proteins or function of
complex II, III, IV, and V have also been reported in PD [Zhu and Chu, 2010]. In the muscle
of PD patients, a reduction in mitochondrial number and disruptions of the mitochondrial
membrane are noted [Ahlqvist et al., 1975]. In addition, impairment of mitochondrial cal-
cium buffering in cells enhances the vulnerability of SNc¢ DA neurons to genetic and envi-
ronmental challenges.
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PINK1 mutation also alters the Ca’" buffer capacity of mitochondria and leads to ac-
cumulation of CaZt in mitochondria and respiration reduction [Gandhi et al., 2009, Soman
et al., 2016]. Mutations in PINK 1 cause autosomal recessive Parkinson’s disease. In human
PD increased autophagy has been seen [Anglade et al., 1997]. Mitochondrial autophagy
(mitophagy) refers to selective sequestration of mitochondria by autophagosomes, which
subsequently deliver them to lysosomes for destruction. Elimination of damaged mitochon-
dria protects against cell death, as well as stimulates mitochondrial biogenesis [Thomas and
Gustafsson, 2013]. As concerning autophagy, PINK1 and Parkin have been extensively
linked to the selective removal of damaged mitochondria through the mitophagy pathway.
PINK1 overexpression has been reported to enhance autophagy through interaction with the
pro-autophagic protein Beclinl, whereas the opposite was observed upon PINK1 knock-
down. Parkin overexpression, in contrast, has been reported to impair autophagy through the
stabilization of the autophagy inhibitory protein Bcl-2 [Cieri et al., 2016].

2.4.2 Alzheimer’s Disease

Alzheimer’s disease (AD), is a chronic and progressive neurodegenerative disorder caused by
an increase in amyloid metabolism [LaFerla, 2002]. The progressive impairment of memory
and cognition is strongly correlated with death of neurons in the hippocampus and neocortex
[Qi1 and Shuai, 2016]. The series of events underlying the pathogenesis of AD is unknown.
The most widely accepted hypothesis is called the amyloid cascade, based on the observation
that the brains of AD patients contain high levels of extracellular plaques, composed mainly
of amyloid-beta (Af), and intracellular tangles, composed of hyperphosphorylated forms
of the microtubule-associated protein tau (7) [Area-Gomez and Schon, 2016]. AD is now
known as multiple stage disease where A and 7 dysfunctions are aggravated by oxidative
stress, intracellular Ca2t imbalance and metabolic disturbance.

Constant dysregulation in the Ca>* signaling affect health and functionality of neurons
over time. Recent studies have linked the accumulation of AB to the Ca’t dysregula-
tion [LaFerla, 2002, Supnet and Bezprozvanny, 2010]. The basis of the Ca>* hypothesis
is that abnormal amyloid metabolism results in an upregulation of neuronal Ca’* signaling
to induce an initial decline in memory and then progresses to a later phase of apoptosis.
One of the major and widely accepted mechanisms of Ca’>* dyshomeostasis is AB forms
Ca’*-permeable channels on the cell membrane which leads to increase of Ca®* influx to
the cell. The B-amyloid peptides, which aggregate to form complexes may enhance entry
either directly by forming channels in the membrane or by stimulating pre-existing channels
such as the N-Methyl-D-aspartate receptors (NMDARs) and voltage-operated Ca>* channels
(VOCCs) as well as store-operated channels (SOCCs). Any Ca®t that enters through these

amyloid-dependent mechanisms will contribute to the remodeling of the Ca>* signaling sys-
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tem that occurs during AD. [Berridge, 2013].

In addition to Ca®>* entry from extracellular space, many studies have shown increas-
ing Ca®* release from ER through IP;Rs and RyRs with presenilin mutation in the early
stage of AD progression, while there are evidences that show AB also affects Ca>* sig-
naling at later disease stages. Disruption of Ca’" regulation in the ER mediates the most
significant signal transduction cascades that are associated with Alzheimer’s disease. Pertur-
bations in Ca®" signaling pathway are causal factors in excitotoxicity, synaptic degeneration,
and cell death, whereas reduced Ca®* release is neuroprotective. Both neuroprotective and
pathogenic Ca>* cascades can be triggered sequentially. For example, increasing cellular
Ca’" level initially protect cells by activating genes and proteins that promote cell survival
like NFxB and cAMP while it also can lead to mitochondrial Ca’>* overload and produce
proapoptotic mitochondrial proteins such as caspases and cytochrome c, which are linked
to cell death and neurodegeneration in several AD models [Demuro et al., 2010]. Hence,
calcium signaling dyshomeostasis seems to be central to the pathogenesis of Alzheimer’s

disease and targeting this process might be therapeutically beneficial [LaFerla, 2002].

Mitochondrial dysfunction and oxidative stress also play important role in the early
pathology of Alzheimer’s disease (AD). There are strong indications that oxidative stress
occurs prior to the onset of symptoms in AD and oxidative damage is found not only in the
vulnerable regions of the brain affected in disease but also peripherally.

AD is associated with impaired glucose utilization, deficits in mitochondrial activity and
metabolic dysfunction. Although the brain represents only 2% of the body weight, it ac-
counts for 20% of total body oxygen consumption. This highly energy demand is continuous
and even brief periods of oxygen or glucose deprivation result in neuronal death. Glucose
is the primary source of fuel for any energy demanding activity in brain that together with
oxygen is delivered by the circulation for the metabolic chores that keep brain cells healthy.
When glucose delivery to the brain stops, catastrophic neurological consequences or even
death can develop. There is increasing amount of evidence suggesting that insulin present in
CNS is a regulator of central glucose metabolism.

Recently, Kim et al. [Kim et al., 2005] reported that low glucose metabolic rate of early
onset AD patients is much greater in magnitude and extent than that of late onset patients,
though both groups are similar in dementia severity. These abnormalities in cerebral glucose
utilization include a diminished activity of key enzymes involved in intermediary metabolism
notably the activity of glutamine synthetase, pyruvate dehydrogenase and o-ketoglutarate
dehydrogenase [Moreira et al., 2007]. A decreased concentration of acetyl-CoA may de-

crease the formation of intracellular cholesterol [Michikawa and Yanagisawa, 1999]. Choles-
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terol is important for normal cell function. Cholesterol levels are markedly decreased in brain

membranes and in the cerebrospinal fluid of AD patients [Moreira et al., 2007].

Swerdlow and Khan proposed that mitochondrial dysfunction is the primary event that
cause amyloid-beta (Af) deposition, synaptic degeneration, and NFTs (intracellular neu-
rofibrillary tangles) formation. Patients exhibiting cognitive impairment have shown reduced
changes in neuronal TCA cycle rate, glucose oxidation and metabolization into cerebral glu-
tamate and glutamine [Lin et al., 2003]. Furthermore, treatments directed toward overcom-
ing these deficits appear to be beneficial to AD patients. For example, glucose and insulin
improves memory in AD patients at least transiently. In the patients with AD, significant
decreases were observed in the activities of pyruvate dehydrogenase complex, isocitrate de-
hydrogenase, and the alpha-ketoglutarate dehydrogenase complex, whereas the activities of
succinate dehydrogenase (complex II) and malate dehydrogenase were increased [Bubber
et al., 2005].

Another major change associated with AD is the impairment in oxidative phosphory-
lation (OXPHOS) due to the inhibition of the electron transport chain at complex IV. In
agreement with brain studies, complex IV deficiency has been reported in fibroblasts and
platelets from AD patients [Bosetti et al., 2002, Cardoso et al., 2004]. Studies in both hu-
man cortical neuronal cells and in a transgenic mouse model for AD showed that Amyloid
beta precursor protein (plasma membrane protein, which is known to be the source of the
toxic amyloid 3) accumulates in mitochondria and impairs mitochondrial function inducing
a decline in complex IV activity and ATP levels and disruption of mitochondrial membrane
potential [Anandatheerthavarada et al., 2003, L Ferreira et al., 2010].

Deficiency of the interplay between Ca’* signaling and mitochondrial metabolism also
have been seen in the other neurological diseases such as Leigh syndrome. In the recent study
on the patients carrying the mutation in the MT-ATP6 gene for ATP synthase the decrease in
the ATP production, high mitochondrial membrane potential and altered mitochondrial and

cytosolic Ca®t homeostasis have been observed [Lorenz et al., 2017].

The interaction between intracellular Ca?* signaling and cellular energy metabolism is
a complex system since already each subsystem is itself complex. Thus, for dissecting the
crosstalk between Ca’*t signaling and mitochondrial metabolism, we need a mechanistic
representation of the whole system to help us understanding the dynamics of this complex
system as depicted by Figure 1.1. For this purpose, we use mathematical modeling which

we will describe a background information in the next section.
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2.5 Describing Biological Systems by Mathematical
Models

Experiments lead to biological hypotheses about individual cellular processes, but it often
remains unclear if these hypotheses can be combined into a larger coherent picture because
it is often difficult to foresee the global behavior of a complex system from knowledge of
its parts. Mathematical modeling and computer simulations can help us to understand the
internal nature and dynamics of these processes and to arrive at predictions about their future
development as well as the effect of interactions with the environment. A model is an abstract
representation of objects or processes that explains their features. A biochemical reaction
network can be represented by a graphical sketch showing dots for metabolites and arrows
for reactions, the same network could also be described by a system of ordinary differential
equations (ODEs), which allows simulating and predicting the dynamic behavior of that
network. If a model is used for simulations, it needs to be ensured that it faithfully predicts
the system behavior at least those aspects that are supposed to be covered by the model [Klipp
et al., 2016].

2.5.1 General Biochemical Models

Biochemical signaling ODEs are generally made by combination of mass action equations
and Michaelis-Menten approximations for enzyme-catalyzed reactions and other non-linear
equations reflecting the molecular dynamics of the system. In the law of mass action, the rate
of an elementary reaction (a reaction that proceeds through only one transition state, that is
one mechanistic step) is proportional to the product of the concentrations of the participating
molecules:

A+ (B %5 [c] @.1)

Then rate of C production is (concentration/time): k™ [A][B].

In the Michaelis-Menten equations, the model describes the rate of enzymatic reactions
by relating reaction rate to the concentration of a substrate. Its formula is given by:

[Substrate] Lnayme, [Product| (2.2)
ky
[E)+[5] = [ES] = [£][P 23)

where [S] is concentration of free substrate, [E] is concentration of free enzyme and [P] is

the concentration of product. The rate of P production is computed as:

AP ViaslS]
il (2.4)
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where Viyax = ko[E]so; is the maximum rate achieved by the system at saturating substrate
k_1+ky

1

concentration, kj is catalytic constant of enzyme and Ky, = is the substrate concentra-

tion at which the reaction rate is half of the Vijax.

Sometimes several substrates need to bind the enzyme for the enzymatic reaction to take
place. When this is the case, the enzymatic reaction is said to be cooperative.

E] +n[S] ;k:‘ ES] 2 [E][P] (2.5)

where ES represents the enzyme-n-substrates complex and n is called the cooperativity coef-

ficient. Then the first order nonlinear ODE model is obtained by the following Hill equation:

dP m "
D M (2.6)
dt Ky + [S]"

k_1+ky

where Viqx = nky [E];or and Ky = P
1

Periodic behaviors are very important in biology, appearing in diverse areas such as neu-
ral signaling, circadian rythms, calcium signaling, etc. It is possible to simulate periodic
behaviors by linear ODE models of order 2, but they are fragile or non-robust to small per-
turbations in the model and also their oscillation characteristics depend on the initial con-
dition. Thus, biological systems which exhibit periodic behavior are modeled by nonlinear
ODEs which create limit cycles. A limit cycle is an isolated closed trajectory. Isolated means
that neighboring trajectories are not closed; they spiral toward or away from the limit cycle.
Stable limit cycles are robust meaning that: first, if a small perturbation moves the state to
a different initial state away from the cycle, the system will return to the cycle by itself and
second, If the dynamics change a little (e.g., small perturbation), the limit cycle will still
exist, close to the original one. Limit cycles are inherently nonlinear phenomena and they
cannot occur in linear systems, therefore we model calcium oscillation by nonlinear ODEs

that reflect known molecular mechanisms.

2.5.2 Modeling Calcium Oscillations with ODEs

Several models have been proposed for simulating the calcium signal oscillation with ordi-
nary differential equations. In 1990, Goldbeter suggested a minimal model for Ca>* oscil-
lation based on Ca”>*-induced Ca”* release from intracellular stores that demonstrates how
TIP3 molecules activated by external stimulation can develop sustain Ca’* oscillations. In
the Goldbeter model, with opening IP3-sensitive Ca?* channels on the intracellular stores a
certain amount of Ca”" release that in turn triggers Ca®" release from a second Ca”* store
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Figure 2.4. Calcium oscillation in cytosol and ER, simulated by the Goldbeter model.

that is not sensitive to IP3. In this model, two variables are considered, the concentration
of free Ca?T in the cytosol and the Ca?* concentration in the ER/SR, denoted by Z and Y,
respectively:

dzZ

I :V0+V1B—V2—|—V3—|—ka—kZ 2.7)
dy
— =V —Vv;3—ksY 2.8
7 »—V3—ky (2.8)

where v reflects Ca>* leakage from extracellular space into the cytosol, kZ is Ca?* efflux
out of the cell. v{f is Ca®T influx from IP3-sensitive pool that is proportional to the IP3 con-
centration. When the cell receives an external signal, this triggers an increase in [IP3], which
leads to a rise in the saturation function 8 and, subsequently, to an increase in the cytosolic
Ca”* concentration. v, denotes the rate of pumping Ca>" into the ER/SR by SERCA pump
and vj refers to the rate of Ca?* transport from ER/SR into the cytosol.

Z}’l
y" zP
vz =YV, . 2.10
3T M g m ym g, P 4 7p (2.10)

where V,,, and V,,,, are maximum rates of Ca** pumping into and Ca>* releasing from the
intracellular store. K3, Kg, and K4 are threshold constants for pumping, release, and activa-
tion. These equations exhibit nonlinearity and therefor can describe the intracellular Ca*
oscillation. But they don’t consider the stochasticity of IP3Rs channels and the random be-
havior of IP3Rs . The defined parameter values for Ca’>* oscillation in physiological range
are: vo=1 s L k=105 kp=ls71, vi =73 us™ 1V, =65 s,V =500 us™ !, Ko =
1uM, Kg =2 uM, K4 =0.9uM, m =n =2 and p = 4 [Goldbeter et al., 1990].
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2.6 Summary

Ca’" is a universal intracellular messenger that regulates many cellular processes. Because
of its involvement in nearly every aspect of cellular life, Ca®" is under very tight homeostatic
control. Expression of different signaling components and the self-assessment system in the
Ca’* signaling toolkit make this signaling system robust to small perturbations. In this chap-
ter, we provided a background information about the Ca>* signaling toolkit. We described
the role of different Ca>* channels, proteins, ER and mitochondria in Ca?>t homesostasis.
Ca’* dysregulation affects health and functionality of neurons and may cause neurodegener-
ative diseases like Parkinson’s and Alzheimer’s diseases. Ca®" signaling is not independent
of energy metabolism. Mitochondria, the main source of ATP production in the cell works
also as component for buffering and shaping Ca’>* signals. Mitochondria not only act as
local calcium buffers, but also respond to calcium uptake by upregulating the TCA cycle,
thus reacting metabolically to local signaling. Mitochondrial dysfunction also can lead to

neurodegenerative diseases since neurons are highly energy demanding.
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Chapter 3

Material and Methods

This chapter explains our developed model for the interplay between Ca?* signaling and
mitochondrial metabolism. Then we validate our model by performing parameter scan and
comparing the results with the published experimental and modeling results. Section 3.2
provides a background information about HEK293 and C8-D1A cell lines that are used
in our experiments. Section 3.3 explains the setup of experiments, medium composition
and protocols for each experiment. Then the methods of calcium imaging experiments and
measurement of extracellular metabolites are explained. We also describe how intracellular
ADP/ATP ratio is measured. Finally, we explain the used statistics methods for analyzing

experimental results.

3.1 Developed Model for the Crosstalk of Ca’>* Signaling

and Mitochondrial Metabolism

The ER is a major store of calcium inside the cell and in most of the cells oscillatory changes
in free cytosolic calcium concentration result from the periodic release of calcium from ER.
Upon stimulation of GPCRs on the cell membrane, the PLC enzyme is activated. PLC in-
duces formation of IP3 second messenger. Binding IP3 and Ca%t to an IP3Rs channels on
the ER/SR membrane make them open and Ca’* enters the cytosol due to the large concen-
tration gradients between the two compartments. Released cytosolic Ca?" makes a positive
feedback on IP3Rs at low Ca’* concentration leading to propagation of the Ca’* signal in
form of a global Ca?* wave. This mechanism is called Ca>*- induced Ca>* release (CICR).
After performing its signaling functions, the released Ca>* is removed from the cytoplasm
by various pumps and exchangers. Since this process is against the ion concentration gra-
dient, it needs the energy which is stored in ATP. Ca’* is extruded to the outside of the
cell through the PMCA pumps and is pumped back into the ER through the SERCA pumps.
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Hence, ATP which is mainly produced by mitochondria plays a vital role in Ca?>* homeosta-
sis. In most eukaryotic cells, mitochondria play an important role in ATP production and
act as Ca”" stores, both functions of these organelles are tightly connected. Mitochondria
sequester and release Ca>™, thereby affecting the shape, the frequency and the amplitude of
the Ca>* spikes in the cytosol. In turn, increased mitochondrial Ca>* stimulates mitochon-
drial metabolism and allows the coupling of ATP supply with energy demand. The ER and
mitochondria are partners in calcium homeostasis. They not only buffer calcium, but also
increase cell metabolism activity. Any perturbation in ER function or mitochondrial function

leads to calcium dyshomeostasis and will have profound implications for cell function.

Several models have been proposed for modeling Ca®" dynamics, but most of them ne-
glect mitochondria although it is an effective organelle which can shape spatio-temporal
properties of Ca>* signals [Goldbeter et al., 1990, De Young and Keizer, 1992, Li et al.,
1994]. Many do also not consider Ca>* signaling as an energy demanding process and they
don’t take into account the ATP consumption of SERCA and PMCA pumps [Bertram and
Arceo II, 2008, Fall and Keizer, 2001]. Thus, most of the existing Ca?* and mitochondrial

models do not focus on the crosstalk between Ca?* signaling and mitochondrial metabolism.

3.1.1 Model Implementation

Here we extend the previous studies to propose a mathematical model which can simulate the
crosstalk between calcium signaling and mitochondrial metabolism in the electrically non-
excitable cell. Thus we integrate a well-established model of IP3- mediated Ca’* signaling
with a simplified model of mitochondrial Ca>* handling and metabolic function. The model
consists of three compartments: Cytosol (¢), ER (er) and mitochondria (m). With this model,
we are able to address the open questions such as: how mitochondrial carbon inputs and
cytosolic ATP affect Ca?>* dynamics and how the activity of mitochondrial Ca’>* channels,
IP3Rs channels and SERCA pumps change the frequency of Ca®™ signals. Our model is a
simple and is mainly built by combination of previously published kinetic expressions. We
built a new Ca’* signaling model and combined it to the Bertram mitochondrial model which
is a simplified version of Magnus and Keizer model, developed for modeling of oxidative
phosphorylation [Bertram et al., 2006]. Figure 3.1 shows the components and variables

which are defined in the mitochondrial-calcium model.

All fluxes that are considered in the model are shown in Figure 3.2. Concentrations are
described by ordinary differential equations. Since we neglect the spatial scale, thus all fluxes
are averages on the volume of a given intracellular compartment. The model is defined by 7

ordinary differential equations, 16 fluxes, 3 conservation relations and 40 parameters.

Ordinary differential equations:
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Ca2+

Cytosol (c) and ER (er) Mitochondria (m)

Cac,Caer, ATP, Ay, Cap, NADH,,, AT Py,

ATP

Figure 3.1. Illustration of the two model components. Calcium which is the output of the cytosol
and ER component is the input of mitochondrial model component and the by mitochondria produced
ATP is the input of cytosol/ER component.
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Ca*t
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Figure 3.2. Schematic representation of the calcium-mitochondrial metabolism model. Binding an
agonist to GPCRs forms IP3 molecules. Binding IP; and Ca®* to IP3Rs channels increases their open
probability and leads to leaking Ca>* from ER into the cytosol. We considered other Ca>* influxes
from extracellular space through SOCE channel and also Ca®* leakage from extracellular space.
Ca’* also can leak into the cytosol from the ER because of the large Ca’>* concentration gradient.
By increasing cytosolic Ca>* concentration, mitochondria uptake a large amount of Ca’>* which
subsequently leads to activating enzymes in TCA cycle and producing NADH. NADH molecules
loose their electrons during ETC and produce enough force for converting ADP to ATP. Produced
ATP by mitochondria is translocated into the cytosol through ADP/ATP translocator (ANT) and is
partly used by SERCA and PMCA pumps for regulating Ca’>* signals inside the cell.
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e Dynamics of cytosolic Ca** concentration:

dgtac = feyt (Jext +Vim/e (Inex —Imcu) — IsErca + Jretease + Jieak,er — JPMCA) (3.1)
where fy, is the fraction of free cytosolic Ca’tand v, /¢ 18 mitochondria to cytosol
volume ratio. Joyy and Jjeqp o are Ca?* influx from extracellular space and Ca?* leak-
age from ER into the cytosol, respectively. J,,j0q45. denotes to Ca’t releasing from the
ER and Jsgrey is the Ca2t flux into the ER by SERCA pumps. Jpyca is the efflux
of Ca®* across the cell membrane through plasma membrane Ca>*-ATPase pumps.
Since mitochondria act as Ca’* buffer and can shape cytosolic Ca>* signals, Ca* re-
lease form mitochondria into the cytosol through Na*/Ca®* channel (Jycx) and Ca’>*
uptake into the mitochondria through mitochondrial CaZt uniporter channels (Jy;cy)
are considered in the equation of cytosolic Ca’*.

e ER Ca" concentration:
dCa,,
dt

= fervc/er (JSERCA - Jrelease - Jleak,er) (32)

where f,, is the fraction of free Ca’>" in ER compartment. v, Jer 18 cytosolic to ER

volume ratio. ER Ca’>* concentration increases by pumping Ca’* through SERCA

pumps and decreases by releasing Ca>* from IP3Rs and also Ca>* leakage from ER.
e Mitochondrial Ca>* concentration:

dCay,
dt

= fm (Imcu — Incx) (3.3)

where f,, is the fraction of free Ca’* in mitochondrion compartment. Mitochondrial
Ca’" concentration increases by uptaking Ca>* through MCU channels and decreases
by Ca?* efflux through NCX channels.
e Cytosolic ADP concentration:
dADP.
dt

where J4n7 indicates the nucleotide transport flux trough adenine nucleotide translo-

= V) JANT +Inyd pas + 2IPymca + JSERCA (3.4)

cases (ANT) which transport produced mitochondrial ATP into the cytosol and also
move ADP from cytosol into the matrix of mitochondria. Jyyq pes is the basal rate
of ATP consumption by sources of hydrolysis other than SERCA and PMCA pumps
in the cell. SERCA pumps two Ca>* and PMCA pumps one Ca>t per ATP hy-
drolyzed [Clapham, 1995]. In contrast to the most existing models, we considered
the ATP consumption of SERCA and PMCA pumps as one source of ATP hydrolysis
and these expressions link Ca®* signaling to energy metabolism.
e Mitochondrial NADH concentration:

dNADH,,

Fa— Y(JppE —Jo) - (3.5)
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This equation is adapted from [Bertram and Arceo II, 2008]. Jppy represents the
reaction rate for the sum of the dehydrogenases in TCA cycle that is proportional
to the reaction rate of pyruvate dehydrogenase complex (PDH). Pyruvate, the main
product of glycolysis process is rapidly oxidized and decarboxylated by the PDH in
mitochondria. This reaction produces acetyl coenzyme A (acetyl CoA) that enters the
citric acid cycle, where more NADH is produced by additional dehydrogenases. J, is
the rate of oxygen consumption in the electron transport chain (ETC) where NADH
is converted to NAD' and oxygen is consumed. The scaling parameter ¥ = 0.001
converts NADH,, to units of mM.
e Mitochondrial ADP concentration:

dADP,,
dt
ADP (with mM unit) inside mitochondrial increases by the rate of nucleotide trans-

=v(Jant — IR R) (3.6)

porter (J4n7) and decreases by the rate of ATP synthase (Jr, i, ), both in unit [.LM.msfl.
The scaling parameter ¥ = 0.001 converts ADP,, to units of mM. This equation is
adapted from [Bertram and Arceo II, 2008].
e Mitochondrial membrane potential:
dAY
dr
where Jy 1. 1s the proton ejection from the matrix into the outer chamber between in-

= (JH,res —Jt.atp —JANT — JH Jeak — INaCa — 2Jum') /Cnn 3.7

ner and outer mitochondrial membranes which creates positive charge in this chamber
and negative electrical charge in the matrix. Jy 4 is the proton influx thorough the
ATP synthesis and Jy ;04 is the proton leak into the matrix. Mitochondrial N at/Ca*t
exchanger (NCX) that extrude two Ca®* from mitochondrial matrix and import 3 Na*+
in exchange, creates one negative electrical charge in matrix. This equation is taken
from [Bertram and Arceo II, 2008]. C,, represents mitochondrial inner membrane ca-

pacitance divided by Faraday constant. Ay has units of mV.

In addition to the differential equations related to the calcium and ADP dynamics, we

also considered three conservation equations, taken from [Bertram et al., 2007]:

e Conservation of total mitochondrial nicotinamide adenine dinucleotide:
NAD,, +NADH,, = NAD, ;0 (3.8)
e Conservation of total mitochondrial adenine nucleotides:
ADP,, +ATP,, = Ay sor (3.9
e Conservation of total cytosolic adenine nucleotides:

ADPy, +AT Py = Acsor (3.10)
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Expressions for fluxes: We explained the ODEs and conservation equations and now we
will explain the expression of the fluxes in the ODEs. Equations 3.11 to 3.19 are taken from
Bertram mitochondrial model [Bertram and Arceo 11, 2008] which are the modified and sim-
plified form of expressions of the Magnus and Keizer mitochondrial model in the pancreatic
B-cell [Magnus and Keizer, 1997, Magnus and Keizer, 1998, Magnus and Keizer, 1998].
Equations 3.20 to 3.26 are built in this work based on the molecular dynamics of channels

which are known from experimental observations in previously published literatures.

e Bertram et al. considered the activity of glyceraldehyde 3-phosphate dehydrogenase
(GPDH) as the input of PDH rather than pyruvate concentration since its reaction rate
reflects the flux through the glycolytic pathway. In the equilibrium state the GPDH
reaction rate can be described by an algebraic function of the substrate fructose 1,6-
bisphosphate (FBP) [Bertram et al., 2007]. In our model FBP is considered as the
mitochondrial carbon input instead of pyruvate and is a constant parameter:

Joppr = Keppry/FBP/(1uM) 3.11)

e The pyruvate dehydrogenase flux Jppy is linearly dependent to the flux of GPDH,
which reflect the rate of glycolysis and pyruvate production. Jppy increases by in-

creasing mitchondrial Ca®* concentration and decreasing NAD,,/NADH,, ratio:

JPDH=< P )( £ )JGPDH (3.12)

p>+NADH,,/NAD,, ] \ p3+Cay,

e The oxygen consumption flux (J,) increases with NADH,, concentration since they
are electron carrier molecules and donate their electrons. Increasing mitochondrial
membrane potential (Ay) decreases the J,, since it is more difficult to pump protons

against a large potential:

psNADH,, ) < 1 )
J, = 3.13
<p5 +NADH,, ) \ 1+exp((Ay —ps) /P7) G

® Ju res 1s the flux of proton ejection to the inner mitochondrial space which increases

with NADH,, concentration since NADH oxidation provides driving force for proton
ejection. Jy .5 decreases with increasing Ay, since it is more difficult to pump protons

against a large potential:

psNADH,, 1
Thtres = (3.14)
po+NADH,, ) \ 1 +exp ((Ay — p1o) /p11)

® Jy ap 1s the flux of proton flow into the matrix though the FjFy ATP synthase which

has an increasing sigmoidal dependence on Ay and a weak decreasing dependence on

ATPm, since increasing mitochondrial ATP concentration decreases rate of respiration:

P13 P12
Tt — 3.15
Hatp (Pls +ATPm> (1 +exp((p14a —Ay) /P15)> G4
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® Jy riro 1s the flux of ADP phosphorylation. Because Jy riro is determined by the
proton flux through the F;Fy ATP synthase, its expression is similar to that of Jy 4.
In fact, Jy r1ro is a constant multiple of Jy 4p:

p _ (3.16
HEIED <p13 +ATPm> <1+exp((p14—All/) /PlS)) )

® JH jeak 1s the flux of proton leakage from inner mitochondrial space into the matrix

which is larger for larger values of the electrical potential:

JH 1eak = P17AY + P13 (3.17)

e Jynt 1s the flux of exchanging mitochondrial ATP with cytosolic ADP through ade-
nine nucleotide translocator (ANT). This is a carrier that exchanges one molecule of
mitochondrial ATP*~ and for one molecule of cytosolic ADP3~. It tends to keep the
ATP/ADP ratio in the cytosol equal to that in the mitochondria. FRT = F/RT, where R

is the gas constant, T is the temperature in Kelvin, and F is Faraday’s constant:

RAT,, 0.5FRTA
J = — ] e v (3.18)
ANT = P19 (RATm n p20>

e RAT,, indicates mitochondrial ATP to ADP ratio:

_ATP,
~ ADP,

RAT,, (3.19)
The following equations express Ca>* fluxes in the cytosol, ER and mitochondria and

are made from combination of expressions in published papers:

e Jucu expresses Ca>T uptake by mitochondrial Ca’* uniporter (MCU) which increases
with increasing cytosolic Ca’>" concentration and also with mitochondrial membrane
potential [Gunter et al., 1994]:

Ca?

c e0.00l6A‘P) (3.20)

Jucu = Pucu(p21—=—=—
p3,+Ca?

e Jycy is the Ca?t efflux from and Na™ influx into the mitochondria. The NaT/Ca®*
exchanger exchanges 3 Na©™ with one Ca®" and therefore leads to one inward flow
of positive charge into the mitochondria. In this equation, we did not considered any
dependency on Na™ concentration as we assumed it to be constant. Jycy increases

with increasing Ay and Ca,, and decreases when Ca, is increasing:

Inex = Puex (P23 Can Pis eP7AT) (3.21)
Cam+ paa ) \ p5g+Ca2 '
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® Jsercq 18 the SERCA pump flux which consumes one mole ATP for pumping two moles
Ca®*, since movement against Ca’*t concentration gradient. Jge., increases with in-

creasing cytosolic Ca®* and cytosolic ATP:

Ca? ATP,
S = ” c 3.22
serca = D28 <P%9 + Ca%> <p30 +ATPC> ( :

o Jyolouse is Ca2t releasing flux from ER through IP3R channels. J,¢j.q5 has bell-shape
dependency on cytosolic Ca?t. At low cytosolic Ca?* concentration, J,,/eqse increases
with increasing Ca, because of CICR mechanism which is due to the positive feedback
of Ca®* on the IP3R channels. By further increasing Ca,, calcium has negative feed-
back on the IP3Rs and leads to closing them. Increasing IP3 increases open probability
of IP3Rs:

) 2 4
Ip3 Ca; P34
J, = Ca,—Ca 3.23
release P31 (p%z —f—ip%) (p%3 +Ca%> <p4315 —I—Ca?) ( er c) ( )

® Jymea 1s the flux of Ca?* pump to the extracellular space through plasma membrane
Ca’"- ATPase channels which consume one mole ATP for pumping one mole Ca>*

since they move calcium ions against the concentration gradient:

Ca> AT P?
Jomea = ¢ ¢ 3.24
pmea = P36 <P§7 + Ca%) (P%S +ATP, c2> 529

e J,; is combination of Ca>* leakage from extracellular space into the cytosol and also
Ca’™ entry through store-operated calcium (SOC) channels. Increasing cytosolic Ca>*
concentration decreases the Ca’T leakage flux from extracellular space. Ca’t entry

from SOC channels decreases when Ca?t concentration inside the ER rises:

Jext = Jexl,base — p39Caer — paoCac (3.25)

® Jicaker indicates CaZt leakage from ER into the cytosol which happens because of

large Ca>* concentration gradient between cytosol and ER:
Jleak,er = p41 (Caer - Cac) (3.26)

® Juyapas 18 the basal rate of ATP consumption by sources of hydrolysis other than
SERCA and PMCA pumps in the cell [Bertram et al., 2007]:

Jhyd,base = Khyd,baseATPc (3.27)

The parameter values are presented in Table 3.1. For the equations taken from the
Bertram model, also the parameters and conservation assumptions are kept [Bertram et al.,
2007]. For the developed equations for the Ca>* model (3.20 to 3.26), the parameter values
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p1 = 400 P2=1 p3 = 0.06 uM
ps=0.6 uMms™ ps= 0.1 mM pPe= 177 mV

p7=5mV Pg =7 uMms”’ Po= 0.1 mM

P10 =177 mV p11=5mV P12 = 120 yMms™"

p13= 10 mM P14 =190 mV p15=8.5mV

P16 = 35 uMms” P17 = 0.002 yMms'mV"’ p1s = -0.03 yMms”’

P19 = 35 yMms”’ P20 =2 FRT = 0.037 mV"

P21 = 0.1 yMms™ P22=1uM P23 = 0.3 yMms”

P24 = 0.6 M P25 =1uM P26 = 10 pM

P27 =0.016 mV"' P28 = 0.455 yMms” P29 =1 uM

P30 = 60 uM P31 = 0.02 yMms™’ P32 = 0.5 uM

P33 = 0.9 uyM P34 = 1.3 uM P35 = 1.3 M

P3s = 0.01 yMms™" P37 = 0.7 uM P3s =5 uM

P3g = 3x10° ms™ P40 = 15x10° ms™ P41 = 0.001 ms™

Jextpase = 0.0035 pMms™” for = 0.015 fer = 0.03

Ver = 1 Ve =3 FBP =5 uM

Cm= 1.8 yMmV" fn=0.01 Keppr =5 % 10 pMms™”
NAD 10t = 10 mM Amtor = 15 mM An ot = 3000 M
IP3=0.3 pM Khyd,pase = 0.003 ms™ Pumcu = 1

Pnex = 1 Ve = 0.07

Table 3.1. Parameter values of model

are obtained by performing parameter scan with the goal that variables sweeps in the physi-
ological range with the objective of oscillating Ca>* concentrations and in accordance to the
experimental observation. The full system of equations are solved with the Euler’s method

and are simulated using C++ language.

Figure 3.3 exhibits the Ca>* dynamics in the cytosol, the ER and mitochondria as well
as the dynamics of mitochondrial variables. Mitochondrial Ca®T increases with increas-
ing cytosolic Ca?* concentration due to Jycy flux. Mitochondria sequester cytosolic Ca>*
rapidly when [Ca,.] increases and release it with slower rate indicating the mitochondrial
Ca’" buffering system. Releasing Ca®* from mitochondria continues while cytosolic and
ER Ca’* are still increasing. Therefore, release of mitochondrial Ca’* is responsible for the
increase in the cytosolic Ca®T concentration, which itself allows the replenishment of the

ER. The Ca,, does no reach to its basal level during the time that Ca,. is decreasing. This
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result highlights the effect of mitochondria in stimulating IP;Rs by releasing Ca>* during the
silent phase of cytosolic Ca>* oscillations which is in agreement with publications [Rizzuto
et al., 2012, Wacquier et al., 2016, Ishii et al., 2006]. By increasing the Ca,, more IP3Rs
open leading to decreasing Ca,,. When Ca, reaches to its maximum value, the ER Ca®"
concentration becomes minimal showing that ER is the main Ca** store (see Figure 3.3
A, B). Mitochondrial Ca?>* accumulation dependents on mitochondrial membrane potential
(Ay,,) and mitochondrial metabolic function is, in turn, dependent on mitochondrial Ca?t.
The flux of positive Ca?* into the mitochondria first depolarizes the mitochondrial mem-
brane but then due to the activating PDH and increasing NADH,,, the inner membrane is
hyperpolarized (see Figure 3.3 C, D). By increasing the mitochondrial Ca>* concentration,
respiration and ATP production increases. By releasing mitochondrial Ca>* into the cytosol,
mitochondrial ATP also releases into the cytosol as the cytosolic ATP starts to increase (see
Figure 3.3 E). Cytosolic ATP decreases by increasing ER Ca®T concentration indicating the
ATP consumption of SERCA pumps.

3.1.2 Model Parameter Scan

Figure 3.4 shows how expression level of different Ca®" channels affect frequency of Ca>*
signals. For these simulations, we limited the parameter range to values that model show
Ca’" oscillations.

3.2 Cell Lines

In order to investigate the crosstalk between intracellular calcium oscillation and mitochon-
drial metabolism, we select two cell lines, HEK 293, human embryonic kidney cell line and
C8-D1A, mouse cerebella astrocytic cell line. Both cell types are electrically non-excitable
cells. Thus the main mechanism for intracellular Ca®* oscillation is Ca®" release from in-
tracellular stores and Ca>* uptake by SERCA pumps. We exposed these cell lines to ligands
that activate phospholipase C (PLC) through G protein (heterotrimeric guanine nucleotide-
binding protein)-coupled receptors (GPCRs), thereby stimulating production of IP3 and Ca>*
release from the ER.

3.2.1 Human embryonic Kidney (HEK) 293 cells

HEK 293 cells were generated in 1973 by transformation of cultures of normal human em-
bryonic kidney cells in Alex van der Eb’s laboratory in Leiden (the Netherlands). The human
embryonic kidney cells were obtained from a single apparently healthy fetus legally aborted
under Dutch law. They are called HEK since they originated in human embryonic kidney

cultures, while the number 293 came from Graham’s habit of numbering his experiments.
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Figure 3.3. Calcium dynamics in relation to other variables. (A) mitochondrial Ca®t increases with
increasing cytosolic Ca’>* concentration. (B) ER is an intracellular Ca’* store. Releasing Ca>* from
ER leads to increasing cytosolic Ca?* concentration. (C) mitochondrial Ca?>* stimulate NADH pro-
duction in mitochondria. (D) Increasing Ca%* concentration in mitochondria first depolarizes the
inner membrane and then increasing mitochondrial NADH leads to hyperpolarization of the mem-
brane. (E) Increasing mitochodrial Ca?* enhances respiration and ATP production. (F) The ATP is
consumed by SERCA pump and leads to increasing Ca>* concentration in the ER.
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Figure 3.4. Model parameter scan. Effect of Ca’* fluxes strength on the frequency of Ca’* sig-
nals. (A) Increasing the IP3 concentration increases frequency of Ca’* signals since it rises the open
probability of IP3R channels, which is in agreemet with experiment in [Thurley et al., 2014]. (B)
Increasing Ca®* influx from extracellular space decreases the periods of Ca®* signals which is in
agreement with experiments in [Perez and Sanderson, 2005]. (C) Pycy controls the activity of MCU
channel. Increasing Pycy first decreases and then increases the period of Ca’t signals. Low values of
Pyicu leads to less Ca®* uptake by mitochondria and subsequently less Ca>* release from mitochon-
dria which inhibits the positive effects of Ca?* on IP3;Rs and thus increase periods of Ca>* signals,
in agreement with experiments in [Wacquier et al., 2016]. Period of Ca>* signals also increases in
high values of Pycy. Our interpretation is that increasing Pycy increases the buffer capacity of mi-
tochondria which slows down the ER-cytosol CaZt exchanges. (D) Pycx controls the Ca’t release
from mitochondrial NCX channel. Increasing Pycy decrease periods of Ca?* signals which is due to
releasing more Ca>* from mitochondria and increasing the positive effect of Ca>* on IP3Rs, in agree-
ment with experiments in [Wacquier et al., 2016]. (E) p3¢ indicates the level of PMCA expression.
Increasing Ca>* efflux through PMCA channel leads to increasing period of Ca?" signals in agree-
ment with the prediction of deterministic and stochastic models implemented in [Cao et al., 2014]. (F)
Increasing the level of SERCA pump expression by increasing pog first decreases and then increases
periods of Ca’* signals which is in agreement with the prediction of stochastic model implemented
in [Komin et al., 2015] and also in agreement with experiments done in [Falcke et al., 2003].
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Figure 3.5. C8-D1A astrocytic cell line.

HEK 293 cells are straightforward to grow in culture and to transfect, and so have been

widely used to study gene expression and Ca’" signaling.

3.2.2 C(C8-D1A: Astrocyte type I clone

The C8-D1A type I is a clonal permanent cell line with astrocytic properties that have been
established from explant cultures of 8-day postnatal mouse cerebella after in vitro sponta-
neous transformation, i.e. without the addition of carcinogens or oncogenic viruses. The
C8-DI1A type I has small somata and several short processes [Alliot and Pessac, 1984]. The
cell line is bought from ATCC. Figure 3.5 shows the snapshot of cultured cells.

3.3 Experimental Protocols

We cultured both cell lines, C8-D1A and HEK293 in the Dulbecco’s modified Eagle’s medium
supplemented with D-Glucose (25 mM), L-Glutamine (4 mM), 10% fetal bovine serum and
1% penicillin streptomycin in a humidified atmosphere (95% air, 5% CO,, 37°C).

3.3.1 Maedia Used for Experiments

We prepared a medium for growing and starving cells. This medium was composed of

Dulbecco’s Modified Eagle Medium (DMEM), no glucose, no glutamine, no phenol red plus
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2 mM glucose, 4 mM L-glutamine, 10% fetal bovine serum and 1% penicillin streptomycin.

‘We call this medium "starvation medium" in the rest of this thesis.

We also prepared a medium for a growing cells in a non-starvation condition. This
medium is like starvation medium but it contains 25 mM glucose instead of 2 mM glucose.
We call this medium "non-starvation medium" in the rest of this thesis. Cells were plated in
22 mm round glass coverslips coated with 0.01% poly-L-lysine and were grown with 1ml
of prepared medium during three days in the humidified incubator gassed with 95% air, 5%
CO,, 37°C.

For all experiments, we prepared a "basic medium" containing DMEM, no glucose, no
glutamine, no phenol red supplemented with 10% fetal bovine serum and 1% penicillin
streptomycin. Then based on the experiment protocol, different amount of the glucose or

glutamine were added to the basic medium.

3.3.2 Single-Cell Imaging of Calcium in C8-D1A cells

Experiment I: In this experiment, cells (around 1x10° cells/well) were starved in poly-L-
lysine-coated cover-slips for three days with starvation medium. Then they were washed
with phosphate buffered saline (PBS) and new medium was added to the cells at different
time points.

Cells were loaded with 1 ml of two different media: 1) high glucose medium that was
composed of basic medium and glucose (25 mM) and glutamine (4 mM); 2) no glucose
medium that was composed of basic medium and glutamine (4 mM). Then cells loaded with
250 ul of Fluo-4 Direct from Thermofisher for 30 min in incubator and then immediately
transferred to an imaging chamber at 37°C. Cells were imaged with inverted Nikon fluores-
cence microscope using excitation at 490 to 510 nm ( ET500/20x filter from Chroma) were
collected at 3-s intervals and with LED light source. The exposure time is set to 80 ms.
During imaging cells are exposed to 80 uM of ATP from Sigma-Aldrich (A1852-1VL), an

agonist for stimulating purinergic receptors.

Experiment I1: This experiment is performed like experiment I, but cells are loaded with
1 ml of medium composed of basic medium plus 1 mM glucose. During imaging cells are

stimulated with different concentrations of ATP.

Experiment I1I: This experiment is performed like experiment I, but cells are loaded with
1 ml of medium composed of basic medium plus 1 mM L-glutamine. During imaging cells

are stimulated with different concentrations of ATP.
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Experiment IV: This experiment is performed like experiment I, but cells are loaded with 1

ml of medium composed of basic medium plus 5 mM glucose and 4 mM L-glutamine.

3.3.3 Single-Cell Imaging of Calcium in HEK293 cells

HEK?293 cells (around 1x10° cells/well) were plated in poly-L-lysine-coated cover-slips
for three days with non-starvation medium. Then they are washed with phosphate buffered
saline (PBS) and 1 ml of new medium composed of basic medium plus 5 mM glucose and 4
mM is added to cells. Then cells are imaged like Experiment I. During imaging cells are ex-
posed to different concentrations of carbachol (CCh), an agonist of muscarinic acetylcholine
receptors.

3.3.4 Measuring Extracellular Metabolites

For all experiments described in Sections 3.3.2 and 3.3.3, we also measured the extracellu-
lar metabolic flux. Cells are loaded with new medium as described and then C8-D1A are
exposed to different concentrations of ATP and HEK293 are exposed with different con-
centration of carbochol. Then cells are incubated for 1 hour and also different time points
as indicated. The medium of each well was filtered and 150 ul of it were loaded in 96-
well plate and used for measuring the remaining metabolites, glucose, glutamine, lactate and

glutamate.

Measurement of the metabolites inside the medium is done by the YSI 2900 Series ma-
chine. In the YSI 2900, for measuring the amount of glucose, the enzyme glucose oxidase is
immobilized in the enzyme membrane. This is a direct reading of glucose in solution at the
enzyme sensor: Glucose + O, — HyO, + D-Glucono-y-Lactone.

For measuring the amount of glutamate, the enzyme L-Glutamate Oxidase is immobi-
lized in the YSI Glutamate Membrane. This is a direct reading of L-glutamate in solution at
the enzyme sensor: Glutamate + O, — H;O; + a-Ketoglutarate + NHs.

For measurement the amount of glutamine, two enzymes are co-immobilized in the
YSI in Glutamine Membrane: Glutaminase and Glutamate Oxidase. Through the follow-
ing chain of reactions the amount of hydrogen peroxide liberated is directly proportional to
the amount of glutamine: L-Glutamine— L-Glutamate + NH3; L-Glutamate + O —H,0,
+ a-Ketoglutarate + NH3.

For measurement the amount of lactate in solution, the enzyme L-Lactate Oxidase is

immobilized in the enzyme membrane: L-Lactate + O, —H;0O; + Pyruvate.

In the all reactions the amount of produced H,O; is proportional to the concentration of
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substrates. In the next step, YSI performs another electrochemical reaction which is com-
mon to all YSI enzyme sensors: HyO, —2H™ + O, + 2e~. The electron flow is measured
by a platinium electrode which is proportional to the concentration of the substrate. Then
the absolute amount of glucose, glutamine, lactate and glutamate in the solution is calculated
through plotting standard curve for each metabolite. The amount of glucose/glutamine con-
sumption was determined by subtracting glucose in control medium (medium without cells)
from glucose/glutamine in the plating medium. The amount of lactate/glutamate secretion
is calculated by subtracting lactate/glutamate in the plating medium from lactate/glutamate
concentration in control medium. The concentration of metabolites were normalized to the

cell number.

3.3.5 ADP/ATP Ratio Measurement

Around 1x10% of C8-D1A cells were plated in 96-well plate for 3 days in 100 ul of star-
vation medium. We starved our cells to be sure that they uptake glucose from the new
medium. Subsequently, cells were washed with PBS. The high glucose medium and low
glucose medium were added to the cells and then the amount of ADP/ATP ratio is measured
in different time points by the ADP/ATP ratio assay kit from abcam. This assay is based
on the bioluminescent detection of the ADP and ATP levels in the sample. In this assay,
luciferase catalyzes the conversion of ATP and luciferin to light, which in turn can be mea-
sured using a luminometer. ADP level is measured by its conversion to ATP (by adding ADP
converting enzyme) that is subsequently detected using the same reaction. The assay can be
fully automatic for high throughput and is highly sensitive.

In another experiment, cells were seeded in the same condition but the medium is changed
with DMEM, no glucose, no glutamine, no phenol red plus 5 mM glucose, 4 mM glutamine,
10% fetal bovine serum and 1% penicillin streptomycin. Then cells are exposed to different
concentration of carbochol (CCh) for one hour and ADP/ATP ratio was measured.

3.3.6 Statistics

For comparing the average period of Ca®™ signals (7,y), data is representative for more than
100 cells and Ty, is the average of ISIs in the Ca®" signals that have more than 12 Ca>*
spikes. For analyzing extracellular metabolic flux 3 or more independent experiments are
presented. For measuring ADP/ATP ratio, the data represent measurements of 5 replicates
for each condition. The bar plots are represented as mean+ SEM. We used unpaired t test for
comparing two different groups and for comparing more than 2 groups of data we used one-
way ANOVA. Statistical analyses were done using GraphPad Prism software. The P values
are shown by the following symbols: ’ns’ P > 0.05, * P < 0.05, ** P < 0.01, *** P < 0.001.
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3.4 Summary

In this chapter, we developed a new model for IP3-induced Ca®* oscillations and coupled it
to simplified mitochondrial model developed by Bertram in order to simulate the interplay
between Ca’" signaling and mitochondrial metabolism. Equations 3.11 to 3.19 are taken
from Bertram mitochondrial model [Bertram and Arceo II, 2008] while equations 3.20 to
3.26 are our contributions for developing a new model for IP3-induced Ca>* oscillations.
By coupling Ca>* model to the mitochondrial model, we could investigate the dependency
of Ca®* dynamics to the mitochondrial metabolism and vice versa. Then we validate our
model by investigating the effect of different parameters on the frequency of Ca®* signals and
showed that our deterministic model can reproduce the main experimental features. Then we
described the cell lines and the protocols which were used in our experiments. We explained

how Ca?" imaging and the flux of metabolites were measured.
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Results

The crosstalk between Ca>* signaling and mitochondrial metabolism is known since 1959
when Krebs discovered that Ca>* regulates metabolism by activating phosphorylase ki-
nase [Krebs et al., 1959]. In 1961, Vasington and Murphy [Vasington and Murphy, 1961]
and Deluca and Engstrom [DeLuca and Engstrom, 1961] discovered that isolated kidney
mitochondria could accumulate large amounts of Ca®T in an energy driven process. Upon
increasing cytosolic Ca>* concentration mitochondria sequester large amount of Ca’* result-
ing in lower cytoplasmic Ca?* levels. Mitochondria are active participants in cellular Ca>*
signaling, whose unique role is determined by their ability to rapidly accumulate and then
release large quantities of Ca>* [Babcock et al., 1997]. Subsequently in the 1960s and 70s,
Ca’" at physiological concentrations was found to regulate dehydrogenase enzymes: FAD-
glycerol phosphate dehydrogenase, which is located on the cytoplasmic surface of the inner
membrane of mitochondria, pyruvate dehydrogenase, NAD-isocitrate dehydrogenase and
oxoglutarate dehydrogenase, all found in the matrix of mitochondria [Denton, 2009, Grif-
fiths and Rutter, 2009]. Hence, the known interaction between calcium signaling and mito-
chondrial metabolism is that calcium regulates TCA cycle enzymes for ATP production and
the ATP which is mainly produced by mitochondria is used by calcium pumps for calcium

homeostasis (see Figure 4.1).

Understanding the role of ATP in Ca’>* homeostasis and also the role of Ca>* in mi-
tochondrial metabolism is important since impaired Ca>* homeostasis and mitochondrial
ATP production is now thought to contribute to several neurodegenerative diseases. As de-
tailed in Section 2.4, it has been shown that the impaired interaction between Ca’* signaling
and mitochondrial metabolism is the potential reason for selective vulnerability of dopamine
neurons in the substantia nigra pars compacta (SNc) [Chan et al., 2009, Surmeier et al.,
2010]. These neurons express Ca,1.3 Ca®T channels that enable Ca>*t to enter the cyto-

plasm during pacemaking, leading to elevated intracellular Ca®>* concentrations. Ca>* entry
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Ca2+

Calcium Signaling Mitochondrial Metabolism

ATP

Figure 4.1. Components and interactions in the calcium-mitochondrial system.

through plasma membrane Ca, 1.3 Ca2* channels during pacemaking is either pumped back
across the plasma membrane or rapidly sequestered in the ER or mitochondria. Both pro-
cesses require energy stored in the form of ATP. The metabolic demand created by these
ATP-dependent steps in Ca>™ homeostasis should increase oxidative phosphorylation in mi-
tochondria and the production of damaging ROS. ROS are capable of damaging ER proteins,
elevating the concentration of misfolded proteins. Mitochondrial Ca’>T overload could fur-
ther compromise their ability to generate ATP, leading to a functionally important drop in
cytosolic ATP levels. Such a drop would compromise ER proteins and promote the forma-
tion of protein aggregates such as lwey bodies [Chan et al., 2009].

There is a lot known about the Ca>t signaling and mitochondrial metabolism, but the
goal of this work is having a systematic understanding of the interaction between Ca™ sig-
naling and mitochondrial metabolism without focusing too much on the functionality of
each subsystem. We want to quantitatively answer the questions like how intracellular ATP
affect calcium homeostasis and how different profiles of calcium signals affect mitochondrial

metabolism and ATP production.

This chapter we first describes the model implications. We show the robustness of our
model with respect to ATP perturbation. Then we illustrate the effect of mitochondrial carbon
inputs on the profile of Ca?* signals and intracellular ATP. In the Section 4.2, we will show
the experimental results. Section 4.2.1 provides an overview of the astrocytic Ca®* signaling
and energy metabolism. In section 4.2.3, we explore the impact of glucose availability on the
intracellular ATP and Ca”* signals and show how glutamine uptake rate is affected. Sections
4.2.5 and 4.2.6 describe the effect of extracellular stimuli on the period of Ca’* signals
and glucose and glutamine uptake rates. Finally, we investigate the metabolic decoding of
intracellular Ca®* signals in our cell lines and also explore the effect of IP3-mediated Ca’*
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signaling on the mitochondrial ATP production.

4.1 Model Implications

4.1.1 ATP-Dependent Model versus ATP-Independent Model

The proposed model in Section 3.1 considers SERCA and PMCA pumps as the sources of
ATP consumption and therefore couples Ca>* signaling and ATP dynamics. We name this
model ATP-dependent model. Most of the existing models neglect the ATP consumption of
SERCA and PMCAs pumps. We developed a similar model that does not take into account
the ATP hydrolysis of SERCA and PMCAs pumps and called it ATP-independent model. In
the ATP-independent model the expression of SERCA and PMCA pumps and the equation
of ADP, have the following form:

Ca?

Jserea = P28~ (4.1)
serca p%g —|—Ca%

Ca?
J = — 4.2
pmca = P36 p%7 —|—Cag ( )

dADP,

T = VAT + iy pas- (4.3)

All other equations and expressions and also parameters of the ATP-independent model
are similar to the ATP-dependent model. The only parameter which takes different value in
the ATP-independent model is py9 that is set to 0.2 to ensure a similar oscillation behavior.
Figure 4.2 shows the dynamics of cytosolic and mitochondrial Ca>* and ATP in the ATP-
dependent model and ATP-independent model. The dynamics of Ca,., Ca,, and ATP,, are
similar in both models but ATP, shows different behavior (see Figure 4.2 A, C). In contrast to
ATP-dependent model, ATP, barely changes by varying Ca, in the ATP-independent model.
As Figure 4.2 B and D show, by decreasing ATP,, Ca, increases indicating lower rates of
SERCA and PMCA pumps for removing Ca>* from cytoplasm that results in rising Ca,.
Thus the ATP-dependent model shows more coupling between cytosolic ATP and calcium.
By establishing the crosstalk between calcium and ATP, we can investigate the effect of ATP

on the Ca?* homeostasis.

ATP-dependent model is more robust to the intracellular ATP perturbation: In order to in-
vestigate the effect of ATP dependency of SERCA and PMCA pumps on the Ca>* homeosta-
sis, we increased the rate of ATP consumption by increasing Jyyq pase as the step function. As

shown in Figure 4.3, increasing the rate of ATP hydrolysis increases the frequency of Ca®"

63



Chapter 4. Results

— ATPc (mM)
A — Ca,, (M) B
_ 67 1.5 — Cag (uM) 1.0m
g 5 — AP, (M)
% o g
S 4 10 3 <
E 3 Sos
© 35 =
s 2 0.5 g £
! Lo, £
E & =z
of =
'E 5 0.0 T T 1
0 T T 0.0 0.0 0.5 1.0 1.5
25 26 27 28 Normalized Ca_
Time (min)
— ATPc (mM)
— Ca, (uM)
~ 61 2.5 m 1.0+
2 £ — ca(um O
& 20 =  — ATPm (mM) &
S 4 £ <
2 - 3
© o N 0.54
s > T
= 1.0
E 21 3 E
E % 5
£ 0.5 5 =
5 £
< T T T 0.0 0.0 r . )
25.0 25.5 26.0 26.5 27.0 0.0 0.5 1.0 1.5
Time (min) Normalized Ca_

Figure 4.2. Calcium and ATP dynamics in ATP-dependent model (A, B) versus ATP-independent
model (C, D). In B and D, the ATP,. and Ca. concentrations are normalized between O and one in
order to show their variability with respect to each other.

signals and decreases the amplitude of the spikes in the ATP-dependent model while it does
not affect the Ca’* signaling profile in the ATP-independent model. In the ATP-dependent
model, increasing J4yq pase 1€ads to around 26% reduction of cytosolic ATP while it leads to
47% reduction in cytosolic ATP in ATP-independent model. These results indicate that ATP-
dependent model is more robust to the cytosolic ATP perturbation. Meaning that increasing
the rate of ATP consumption cause less dropping in the average of cytosolic ATP. It also
shows the crosstalk between Ca>" signaling and cytosolic ATP in the ATP-dependent model
since changing the ATP level affects Ca>* signaling profile and subsequently the cytosolic
calcium affects the profile of cytosolic ATP.

4.1.2 TImpact of Mitochondrial Substrates on Ca>" Signaling

Ca’* signaling is an energy demanding process. ATP which is mainly produced by mito-
chondria, is partly consumed by SERCA and PMCA pumps to extrude Ca?>* into ER or
extracellular space in order to keep the cytosolic Ca>* concentration at ~100 nM (see Fig-
ure 4.4). The question is: what happens for calcium regulation if cytosolic ATP drops? In
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Figure 4.3. Changing the cytosolic Ca>* and ATP with respect to varying the rate of ATP hydrolysis
in the cell. Increasing cytosolic ATP consumption affect the profile of Ca®* signals in ATP-dependent
model.

order to see the impact of cytosolic ATP on the Ca?> homeostasis, we simulate the calcium-
mitochondrial system behavior while decreasing the mitchondrial carbon inputs. Figure 4.5
C and E shows the profile of cytosolic calcium and ATP while decreasing the level of FBP
as the exponential function. As described before, FBP is considered as mitochondrial car-
bon input instead of pyruvate and is constant parameter. Decreasing mitochondrial carbon
inputs leads to increasing frequency of calcium signals. Our interpretation of this result
is that decreasing mitochondrial substrates cause decreasing mitochondrial NADH produc-
tion and also decreasing mitochondrial membrane potential which subsequently decreases
mitochondrial ATP production. This results in decreasing cytosolic ATP and decreasing
Ca®" pump into the ER through the SERCA pumps. Therefore mitochondria are exposed
to large amount of Ca>* which leads to mitochondrial Ca>* overload. Increasing mitochon-
drial Ca®" leads to increasing mitochondrial NCX activity and therefore rises the positive
feedback effect of Ca>* on the IP3Rs channels which ends up with increasing frequency of
Ca’" signals. Frequently opening IP3 channels and slow calcium removal mechanism lead
to an increase in the cytosolic and mitochondrial calcium concentration. Although decreased
mitochondrial membrane potential should decrease Ca?" entry into mitochondria through

the MCU channels, but due to the high cytosolic Ca>* concentration even the small values
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Figure 4.4. Ca’>" homeostasis is an energy demanding process. ATPase pumps push Ca>* uphill
into the ER (via SERCA pumps) or out of the cell (via PMCA) to maintain low cytoplasmic Ca’*
concentration.

of mitochondrial membrane potential leads to a large Ca>* input into the mitochondria and
leads to mitochondrial Ca®* overload. Figure 4.5 shows the dynamics of mitochondrial Ca>*
fluxes, membrane potential, NADH, ATP and other Ca®" fluxes with respect to decreasing
mitchondrial FBP input. In Sections 4.2.6 and 4.2.8, we will show that increasing the fre-
quency of Ca®>* signals upon decreasing mitochondrial carbon substrates is a mechanism for

compensating the reduced amount of ATP production.

In another simulation, we performed parameter scan for the different values of FBP while
increasing IP3 concentration and Ca®* influx through MCU channel into the mitochondria
in order to test if decreasing FBP values leads to increasing frequency of Ca”* signals in
different profiles of Ca>* signals. Increasing IP3 concentration increases the frequency of
Ca" oscillations and increasing MCU value increases mitochondrial Ca®>* concentration.
Figure 4.6 shows that decreasing mitochondrial substrates leads to increasing frequency of
Ca’™ signals independent of the rate of Ca>* entry into the mitochondria. We also measured
the average cytosolic ATP, mitochondrial Ca?>* and periods of Ca>* signals for two different
values of FBP concentration while changing the level of IP3 . As Figure 4.7 shows low
concentration of FBP decreases cytosolic ATP. The reduced ATP level in the cell leads to
lower SERCA pump activity, causing an increase in Ca?" levels in the cytosol. Increasing
cytosolic Ca’T concentration cause increasing mitochondrial Ca>* concentration. It also has
positive feedback on the IP3Rs which leads to decreasing the periods of Ca’* signals. Figure

4.7 also indicates that different values of IP3 lead to the same results.
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Figure 4.5. Dynamics of calcium and ATP fluxes in cytosol and mitochondria while decreasing FBP

exponentially.
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Based on these simulations, we make the following hypothesis: decreasing mitochon-
drial substrates leads to decreasing cytosolic ATP and increasing frequency of Ca’* signals.
In order to test the proposed hypothesis, we used the astrocytic mouse cell line C8-DIA.
Astrocytes are electrically non-excitable cells and their main mechanism for Ca?* oscil-
lation is TP3-mediated Ca>* signaling which is compatible with our mathematical model.
Before going through the experiments for examining the proposed hypothesis, we give first
an overview of the astrocytic calcium-energy metabolism system that will support our un-
derstanding of the experimental results.

4.2 Experimental Results

4.2.1 Astrocytic Calcium-Energy Metabolism System

Astrocytes are a sub-type of glia and electrically non-excitable cells in the central nervous
system that have been implicated in controlling the dynamics of neural networks. Astrocytes
exhibit calcium excitability. Their excitation which is chemically induced can be revealed
by imaging assays of Ca’* transients [Volterra and Meldolesi, 2005]. Astrocyte Ca>* exci-
tation can occur spontaneously by Ca®T releasing from internal stores when IP3R receptors
are activated or it can be induced by chemical signals like neurotransmitters (e.g. gluta-
mate and purins) from neurons or neighboring astrocytes which is of crucial importance
because it indicates the existence of neuron-to-astrocyte and astrocyte-to-astrocyte commu-
nication [Sofroniew and Vinters, 2010]. Astrocytes play direct roles in synaptic transmis-
sion through release of synaptically active molecules including glutamate, purines (ATP and
adenosine), GABA and D-serine. Astrocytes express a wide variety of functional neurotrans-
mitter receptors. They express metabotropic and purinergic receptors which are G proteins
and stimulate phospholipase C and IP3 formation, which increases the intracellular Ca’*
concentration through the release of Ca?>* from IP3 receptors on the ER. Astrocytic Ca®™
waves are mediated primarily by release of ATP and activation of purine receptors. Stud-
ies have shown that ATP is released from single cell and then diffuses to neighboring cells
which leads to increasing intracellular Ca>* level in response to P2Y-receptor activation but
the Ca®" wave is not further amplified by release of additional ATP [Nedergaard et al., 2003].

Astrocytes have processes that on the one hand contact blood vessels and on the other
hand contact neural axons and synapses. So they are well positioned to take up glucose
from the blood vessel and provide energy substrates to neurons. Astrocytes exhibit a high
glycolytic rate. A large portion of the glucose entering the glycolytic pathway in astro-
cytes is released as lactate in the extracellular space and neuron can efficiently use lactate
as an energy substrate. Astrocytes are well-characterized in rapid removal of neurotransmit-

ters released into the synaptic cleft. Astrocytes uptake glutamate by the astrocyte-specific
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sodium-dependent high-affinity glutamate transporters GLT-1 and glutamate aspartate trans-
porter (GLAST). A large portion of released glutamate from the neurons at the synapse is
taken up by astrocytes together with 3 sodium ions and in turn astrocytes release glutamine to
be taken up into neurons. This cycle is called glutamate-glutamine cycle. Removing sodium
ions from astrocytes is performed by Nat/K™ ATPase which triggers glucose uptake from
the blood vessel through the glucose transporter GLUT1 [Bélanger et al., 2011]. Glutamate
uptake by astrocytes stimulates aerobic glycolysis and lactate production. Astrocytes store
glycogen which then can be converted into glucose either for the cell’s own use or for the
export to neurons in the form of lactate. Figure 4.8 shows the schematic representation of

the calcium-energy metabolism system in astrocytes.

4.2.2 Astrocytes Nutrients Utilization

As described in Section 4.1.2, we want to experimentally investigate how reduced mitochon-
drial carbon inputs impact Ca>* signaling. In our experiments, we changed the glucose con-
centration since pyruvate derived from glucose is the main mitochondrial substrate. In order
to have more precise experiments for characterizing the effect of mitochondrial substrates
on the Ca®" signaling, we decided to first starve our cells during 72 h before performing
treatment to ensure that cells are lacking substantially glucose and will take up the newly

provided sources.

To test at which glucose concentration astrocytes are starved, we prepared six media con-
taining different concentrations of glucose and grew 0.1 x 10° cells in each well of a 12-well
plate for 3 days. Then we measured the amount of glucose and glutamine uptake as well as
the amount of lactate and glutamate secretion. As Figure 4.9 A and B show, cells which
have access to lower level of glucose consume less glucose, but more glutamine. In all con-
ditions, the amount of produced lactate is high and even in low glucose media astrocytes are
able to keep up the lactate production. This indicates the cellular astrocyte role to providing
lactate to neurons. This result further indicates the activation of the glutaminolysis pathway
in cells which have access to low amount of glucose, where glutamine is oxidized in the

mitochondria and converted to pyruvate via malic enzymes.

4.2.3 Frequency of Ca’>* Spikes is High in the Cells with no Glucose
Accessibility

In Section 4.1.2, we hypothesized by model simulations that decreasing mitochondrial car-
bon input leads to decreasing cytosolic ATP and increasing frequency of Ca>" signals. In
this section we will show experimentally that this hypothesis is true in the C8-D1A astro-

cytic cell line. For this purpose, we measured the cytosolic ADP/ATP ratio of the cells
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Figure 4.8. Schematic representation of astrocytic calcium-energy metabolism system. Glucose
which is taken up from the blood vessel is either converted into glycogen or pyruvate. Pyruvate may
enter into mitochondria and TCA cycle or converted into lactate. Glutamate is co-transported with
Na™, resulting in an increase in the intra-astrocytic concentration of Na™, leading to an activation of
the astrocyte Na*/K"-ATPase. Activation of the Na™/K"-ATPase stimulates glycolysis and lactate
production. Lactate, once released by astrocytes, can be taken up by neurons and serves them as an
adequate energy substrate. Following glutamate uptake by astrocytes, it is converted to glutamine by
the action of glutamine synthetase and shuttled to neurons, where it is converted back to glutamate by
glutaminases. Astrocytes release ATP to the extracellular space. Releasing ATP from astrocytes leads
to propagating Ca>* waves in neighboring cells since they express purine receptors. Astrocytes also
can release glutamate upon increasing intracellular Ca’>* concentration which has variety of actions on
neurons [Innocenti et al., 2000, Rossi et al., 2007]. Astrocytes express metabotropic receptors which
stimulate phospholipase C and IP; formation. Binding IP3 to IP3 receptors on the ER membrane open
them and leads to elevation of intracellular Ca®* concentration. Ca?* after performing its functions is
removed back into the ER through SERCA pumps or extruded to extracellular space through PMCA
pumps. GPCRs: G protein-coupled receptors, PLC: phospholipase C, MCU: mitochondrial Ca’**
uniporter, NCX: Nat/Ca>* exchanger, ANT: adenine nucleotide translocase, GLU: glutamate.
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Figure 4.9. Glucose and glutamine uptake, and lactate and glutamate secretion in media containing
different amount of glucose. Cells which are in low glucose medium take up more glutamine to
compensate partially the lack of glucose.

that have been for 30 min and 90 min in medium with no glucose and medium containing
25 mM glucose. After 30 min there was no difference in the ADP/ATP ratio between cells
in two different media. However, the level of ADP/ATP ratio increased significantly after 90
min in the cells with no glucose medium (see Figure 4.10 A). Thus, removing glucose from
the medium and decreasing mitochondrial carbon input decreases intracellular ATP after 90
min. To explore the effect of intracellular ATP on the calcium signaling, we performed Ca>*
imaging as described in Section 3.3.2 Experiment I. Calcium imaging was done 1 h and 2 h
after changing medium with no gluocse and 25 mM glucose medium. Computing the period
of Ca®* signals by getting the average of interspike intervals revealed that periods of Ca’*
signals of the cells which were in no glucose medium are significantly smaller than cells in
25 mM glucose (See figure 4.10 B, C). These results indicate that decreasing mitochondrial
carbon inputs, decrease intracellular ATP and increase frequency of Ca’>* signals which is in
agreement with the model prediction.
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Figure 4.10. Effect of glucose availability on the intracellular ATP and period of Ca’* signals. (A)
The ADP/ATP ratio increases in cells inside no glucose medium after 1:30 hour. (B, C) Cells in no
glucose medium show lower period of Ca’>* oscillations after 1 hour and 2 hours of changing the
medium. These graphs indicate that glucose deprivation leads to increasing ADP/ATP ratio and rises
the frequency of Ca>* signals.

4.2.4 Glutamine Uptake Rate is High in the Cells with no Glucose
Accessibility

It is known that pyruvate dehydrogenase complex (PDH), NAD-isocitrate dehydrogenase
(ICDH) and a-ketoglutarate/oxaglutarate dehydrogenase (KGDH) are activated by calcium
ions [Denton et al., 1980, Denton, 2009]. PDH is activated by a Ca?*- stimulated pyru-
vate dehydrogenase phosphatase (PDP) and inactivated by a Ca’>"- independent kinase. The
activity of the PDH can directly be inhibited by increasing the concentrations of acetylCoA/-
CoA, NADH/NAD™ and ATP/ADP ratios. ICDH and KGDH are two other enzymes that
are allosterically regulated by Ca’* and their sensitivity to Ca®* is increased by increas-
ing the ADP/ATP ratio. The activation of these enzymes is important in stimulation of the
respiratory chain and increasing ATP supply under condition of increased ATP demands
in mammalian cells [Denton, 2009]. In addition, the activity of glutamate dehydrogenase
(GLDH) increases by rising the ADP/ATP ratio level (see Figure 4.11).

Measuring glutamine uptake rate of cells in no glucose medium and cells in 25 mM glu-
cose (described in Section 3.3.4, Experiment I) shows that cells in no glucose medium have
higher glutamine uptake rate after 4 h and 8 h of incubation (see Figure 4.12 A). We also
showed that cells in no glucose medium have higher frequency of Ca®>* spikes (Figure 4.10
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Figure 4.11. Schematic representation of the effect of Ca>* and ADP/ATP ratio on the TCA cycle
enzymes. (A) Calcium ions activates pyruvate dehydrogenase (PDH), NAD-isocitrate (ICDH) and
oxaglutarate dehydrogenases (KGDH). The sensitivity of these enzymes to the Ca>* increases by in-
creasing the ADP/ATP concentration. Also the activity of glutamate dehydrogenase (GLDH) elevates
by increasing the ADP/ATP ratio.
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Figure 4.12. Effect of glucose deprivation on the ADP/ATP ratio and glutamine uptake rate. (A) Cells
in no glucose medium have higher rate of glutamine uptake after 4 hours and 8 hours of incubation.
(B) Cells in no glucose medium have higher ADP/ATP ratio compare to cells in 25 mM glucose. High
ADP/ATP ratio leads to increasing glutamine uptake rate in cells in no glucose medium.
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Figure 4.13. Period of Ca>t spikes evoked by stimulation of GPCRs. (A) C8-DIA cells are in
the medium containing 1 mM glucose. Increasing ATP concentration, increases frequency of Ca’*
spikes. (B) C8-D1A cells are in the medium containing 1 mM glutamine. Increasing ATP concentra-
tion, increases frequency of Ca’" spikes. (C) HEK293 cells are in medium containing 5 mM glucose
and 4 mM glutamine. Increasing CCh concentration increases frequency of Ca®* signals.

B and C) and higher level of ADP/ATP ratio (Figure 4.12 B). Since glutamine is the substrate
of KGDH enzyme and this enzyme is activated by Ca>* and high ADP/ATP ratio (see Fig-
ure 4.11), we speculate that KGDH enzyme activity and subsequently glutamine uptake rate
are regulated by the frequency of Ca’* spikes. In other words, high ADP/ATP ratio leads
to increasing frequency of Ca’* signals (Figure 4.10) and subsequently high frequency of
Ca’" signals leading to increasing glutamine uptake rates in order to refill the TCA cycle
and increase mitochondrial respiration. To test this hypothesis, we exposed cells with differ-
ent concentrations of ATP, an agonist for stimulating GPCRs and releasing Ca>* from IP3R

receptors, and then performed Ca?* imaging which is described in the next section.

4.2.5 Stimulation of GPCRs Increases Frequency of Ca’>* Spikes

To explore the effect of Ca?* frequency on the glutamine uptake rate, we first performed
Ca’" imaging of individual cells while exposing them to ligands that activate phospholi-
pase C through GPCRs, thereby stimulating production of IP3 and Ca’* release from ER.
We imaged C8-D1A astrocytic cell line and HEK293 while exposing them to ATP and car-
bochol (CCh), respectively. As Figure 4.13 shows increasing the concentration of ATP and
CCh lead to increasing frequencies of Ca’>* spikes. Therefore we used these agonists in our
other experiments to increase the frequency of Ca>*t spikes. Ca>t imaging experiments are
done according to the descriptions in Section 3.3.2 experiment Il and III, and in the section
3.3.3.
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4.2.6 Stimulation of GPCRs Increases Glucose and Glutamine Uptake
Rate

As shown in the previous section, increasing the concentration of extracellular stimuli leads
to increasing frequencies of Ca®" signals. Therefore, to explore the effect of Ca’™ frequen-
cies on the glutamine uptake rate, we exposed C8-D1A cells with different concentration of
ATP. As Figure 4.14 A shows increasing ATP concentration leads to increasing glutamine
uptake rates. We also measured the glucose uptake rate upon stimulation of GPCRs. The
results show that increasing ATP and CCh concentration and as the result increasing fre-
quencies of Ca®* spikes lead to rising glucose uptake rate in C8-D1A (Figure 4.14 B, C) and
HEK293 (Figure 4.14 D, E) in non-starved and starved cells, respectively.

4.2.7 Metabolic Decoding of Ca>" Signals in Astrocytes and HEK293

We showed that increasing the concentration of extracellular stimuli increases frequency of
Ca’" spikes and also it leads to rising glucose and glutamine uptake rates. Putting together
the results of Ca>* imaging and metabolic flux analysis reveals that there is a well-defined
relation between periods of Ca®t signals and metabolic activity. To explore the relation
between periods of Ca?* signals and metabolite fluxes, we combined the plots of the periods
of Ca?" signals with the plots of the glucose and glutamine fluxes (Figure 4.15 C, F). The
results indicate that glucose and glutamine fluxes decreases by increasing period of Ca%*
signals. In order to characterize the relation between metabolic flux and periods of Ca’"
signals, we measured periods and glucose fluxes of C8-D1A and HEK?293 cells in 5 different
concentrations of extracellular stimuli. The results reveals a sigmoidal like relation between

glucose flux and period of Ca®* signals (see Figure 4.16 C and F).

4.2.8 Effect of Ca>" on Regulation of ATP Production

We showed that stimulating cells with extracellular stimuli increases the frequency of Ca>*
signals and also rises the glucose and glutamine uptake rate. To explore the consequences
of these changes on the cellular ATP level, we measured the ADP/ATP ratio of C8-D1A
cells while stimulating them with different concentrations of carbochol. In this experiment
we stimulated cells with CCh instead of ATP because we wanted to prevent the possible
mixture of ATP as the agonist with the intracellular ATP. The results show that increasing
the concentration of CCh leads to decreasing ADP/ATP ratio. Thus, stimulating cells with
extracellular agonist leads to increasing ATP supply (see Figure 4.17). The reason can be
increasing frequency of Ca®* signals and elevating the metabolite uptake rate as the result
of increasing the concentration of extracellular stimuli which can lead to activating TCA

enzymes through the stimulating Ca>*-sensitive enzymes.
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Figure 4.14. Glutamine and glucose uptake rate over stimulation of GPCRs in C8-D1A and HEK293
cells. Glucose and glutamine upatke rate increase by increasing the concentration of extracellular
stimuli in the not starved and starved cells. (A) C8-D1A cells are starved and then medium is ex-
changed with medium containing 4 mM glutamine. Increasing the concentration of agonist increases
glutamine uptake rate. (B) C8-D1A cells are not starved and the exchanged medium contains 5 mM
glucose. Increasing ATP concentration elevates glucose uptake rate. (C) C8-D1A cells are starved and
then medium is exchanged with medium containing 5 mM glucose and 4 mM glutamine. Increasing
ATP concentration rises glucose uptake rate. (D) HEK293 cells are not starved and the medium is ex-
changed with the medium containing 5 mM glucose. Increasing CCh concentration increases glucose
uptake rate. (E) HEK293 cells are starved and then medium is exchanged with medium containing
5 mM glucose. Increasing CCh concentration elevates glucose uptake rate.
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Figure 4.15. Glucose and glutamine uptake rates decrease with increasing periods of Ca>* signals in
C8-D1A cells. (A, B) Cells are starved and then medium is exchanged with medium containing 1 mM
glucose. Calcium imaging experiment shows increasing ATP concentration leads to faster frequency
of Ca’" spikes. Measuring the glucose uptake rate shows that increasing ATP concentration leads
to increasing glucose uptake rate. (C) Combining the A and B plots indicates that glucose uptake
rate decreases with increasing periods of Ca’" signals. (D, E) Cells are starved and then medium
is exchanged with medium containing 1 mM glutamine. Stimulating cells with ATP indicates that
increasing ATP concentration increases frequency of Ca®* spikes and also elevates glutamine uptake
rate. (F) Combining the plots D and E reveals that glutamine uptake rate decreases with increasing
periods of Ca?™" signals.

4.3 Simulation of PINK1 Deficiency Using

Ca?t-mitochondrial Model

Mutations in PTEN-induced putative kinase 1 (PINK1) are a cause of early onset Parkinson’s
disease (PD). Loss of PINK1 function causes dysregulation of mitochondrial calcium home-
ostasis, resulting in mitochondrial dysfunction and neuronal cell death. In our recent paper,
we reported that inactivation of the mitochondrial calcium uniporter (MCU), located in the
inner mitochondrial membrane, prevents dopaminergic neuronal cell loss in pinkl mutant

zebrafish via rescue of mitochondrial respiratory chain function [Soman et al., 2016].

PINK1 loss of function is associated with reduction in glucose uptake through the plasma
membrane in human and mouse neurons. Reduced substrate delivery causes the impair-

ment of respiration and reduced mitochondrial membrane potential in cells that lack PINKI.
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Figure 4.16. Metabolic decoding of Ca®* signals in astrocytes and HEK293 cells. Increasing the
concentration of extracellular agonist increase frequency of Ca’* spikes and elevates glucose uptake
rate in astrocytes (A, B) and in HEK293 (D, E) cells. The C and F plots reveal a sigmoidal relation
between glucose flux and periods of Ca®* signals.
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Figure 4.17. Increasing ATP supply upon stimulation of GPCRs.
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Figure 4.18. Effect of PINKI1 deficiency on the zebrafish larvae DA neural cells and the rescue
mechanism. A) Mitochondrial complex I activity is restored in 5 dpf (days post fertilized) pink1~/~
following mcu k/d (** P = 0.0071). The scale on the y axis reflects % of complex I activity compared
to wt controls. B) Dopaminergic (DA) neuronal cell count in wt, wt MCU (wt microinjected with
morpholino (MO) against mcu), pink1 -/-, pink1 -/~ MCU (pink1 -/ microinjected with MO against
mcu) zebrafish larvae at 3 dpf. DA neuronal cell count is reduced in pinklf/ ~ (* P=0.012) but
completely rescued after MCU inactivation (** P = 0.0085). The scale on the y axis reflects % of DA
neurons compared to wt controls [Soman et al., 2016].

PINK 1 deficiency is also linked to dysfunction of mitochondrial Na™/Ca?* exchanger which
leads to mitochondrial Ca?T accumulation and increased ROS production [Gandhi et al.,
2009]. In our paper, we reported specific transcriptional upregulation of micul in pinklf/ -
zebrafish larvae. MICU1 is a subunit of MCU complex which has stimulatory effect on the
MCU activity. At the large cytosolic Ca>* concentration, MICUT is activated and leads to
rapid mitochondrial Ca®>" accumulation [Patron et al., 2014]. We experimentally showed that
PINK1 deficiency leads to a marked decrease in the activity of complex I in the mitochondria
and also reduce the Dopaminergic (DA) neuronal cell count in the zebrafish larvae [Soman
et al., 2016]. We further showed that down regulation of MCU leads to restoring the activity
of mitochondrial complex I and increase the number of DA neuronal cell (see Figure 4.18)

To simulate the PINK 1 deficiency effect by our described Ca?* - mitochondrial metabolism
model, we increased the flux through the MCU by 10% and decreased the flux rate of the
Nat/Ca?" exchanger by 10% as well as the glucose uptake rate by 30%. These values were
estimated by scanning the model parameters in the physiological range in order to reproduce
the experimental results. While the resulting cytosolic Ca** dynamic is hardly modified
compared to wt condition (upper panel Figure 4.19B), the mitochondrial Ca®* concentration
(Ca;,;) and oxygen flux (J,) exhibit a significant difference (middle panel Figure 4.19B). In
particular, the amplitude of J, that describes the oxygen consumption rate and is therefore a
measure of respiration activity, decreases dramatically due to mitochondrial Ca>* overload.
This effect can be compensated in the model by decreasing MCU activity by 14% preventing
mitochondrial Ca>* overload and restoring respiration (lower panel Figure 4.19B).
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Figure 4.19. A) Scheme of the rate equation model and the considered effect of PINK1 deletion.
The effect of PINK1 deficiency on glucose uptake and mitochondrial Ca>* handling is indicated in
pink color. B) Dynamic modeling results of mitochondrial Ca>* concentrations and resulting oxygen
flux (J,) for wr, pink1~/~ and pink1~/~ + MCU down regulation conditions. Compared to the wt
scenario (top panel), pinkl~/~ leads to mitochondrial Ca®* overload and subsequently to smaller
J, amplitudes indicating decreased respiration (middle panel). This effect could be compensated by
down regulation of MCU reestablishing mitochondrial Ca?™ homeostasis and mitochondrial activity
(bottom panel). C) Respiration activity for the different conditions. The oxygen consumption rate
as an indicator for respiratory activity exhibit a similar pattern to the dopaminergic neuronal survival
and complex I activity (see Figure 4.18) D) Intensive parameter scans have shown the stability of the
compensatory effect of MCU down regulation compared to wt conditions (Pycy = 1) on respiration
measured by oxygen consumption.
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The different scenarios are summarized in Figure 4.19 C with respect to the oxygen con-
sumption rate corresponding to respiratory activity. The described flux modifications lead
to a very similar picture as in the experimentally determined neuronal survival. Since neu-
ronal survival will not depend linearly on respiration activity, we performed comprehensive
model parameter scans to test the stability of our results. Figure 4.19 D exhibits a parameter
scan with respect to MCU activity (Pycy) and fructose-bisphosphate (FBP) concentration
that indicates the glucose uptake rate. The obtained dependency of respiration on Py;cy and
FBP as well as similar results from additional parameter scans demonstrate that the mech-
anistic modeling supporting the experimental findings do not depend on specific parameter

combinations but are robust for a wide physiological parameter range.

4.4 CaSiAn: Calcium Signaling Analysis Software

Discriminating Ca®" signals requires quantifying the kinetics of calcium ions on the basis
of spike descriptors such as amplitude, spike width and frequency of Ca>* spikes. Measure-
ment of spike descriptors in the first step requires finding peaks/nadirs of each Ca®* spike.
However, accurate detection of peaks/nadirs of Ca’>* signals is a challenging task. First be-
cause of the variability of spikes in terms of amplitude and interspike intervals in the Ca’*
signals. Second, because of the noisy observations that happen due to the imaging method
such as photon shot noise, background fluorescence and typically low temporal resolution.
Third, because of the possible existing artifacts in the signals like signal baseline variations
or unwanted peaks in the signal occurring by floating particles that are created during imag-
ing. The Ca>* signal artifacts are mainly created due to the issues of imaging method like
fluorophore leaking, photobleaching and phototoxicity [Grienberger and Konnerth, 2012].

To address these issues, we developed the CaSiAn (Calcium Signaling Analysis) tool,
an open source software implemented with java language that provides a full-fledged user
interface allowing biologists to easily analyze a large amount of Ca’T signals, tune peak
detection parameters for each signal, examine detected peaks/nadirs of Ca?* signals and
access the quantified descriptors of Ca>* spikes in the form of an excel or text file. Figure
4.20 shows the graphical user interface of CaSiAn software.

Figure 4.21 shows the steps which users should perform in CaSiAn in order to analyze
the Ca®* signals. Ca>" signals are determined by averaging or getting the median of pixel
intensities in the regions of interest from a sequence of fluorescence images captured during
a period of time. After performing Ca’t imaging, Ca>* signals should be extracted from
regions of interest and then be loaded in CaSiAn software. In CaSiAn, user can determine
the part of signal that is interesting to analyze. The user can define the signal peaks/nadirs

by setting just one parameter namely the Peak threshold parameter. This parameter defines
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Figure 4.20. Graphical user interface of CaSiAn software

as the percentage of maximum amplitude that occurs in the signal. The complete algorithm

for finding peak/nadir of signals is described in appendix Section A.1. The user can also

remove the signal baseline and normalize the signal intensities by fitting different curves to

the signal baseline (see appendix Section A.2).

By finding the signal peak/nadir, CaSiAn extracts the features of Ca’*t signals auto-

matically (algorithms are described in the appendix Section A.3). These features are (see

Figure 4.21 D):

e Interspike intervals (ISI): the time between two consecutive peaks.

e Average of ISIs (7,y) and standard deviation of ISIs (o).

e Spike amplitude (AMP): the magnitude of the difference between spike’s extreme in-

tensities.

e Spike width (SW): the duration of the spike when the Ca’" channels are highly acti-
vated and the intracellular Ca?>* concentration is higher than the base level of cellular

Ca’* concentration. CaSiAn identifies the Ca’>* spike width as the duration of spike

at 20% of the spike amplitude.

e Time to peak (TTP): the time difference between the peak time and the nadir time of

the spike.
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Figure 4.21. Workflow of CaSiAn. A) Time course data extracted from fluorescence images are
loaded into CaSiAn. B) Preprocessing allows for defining different analysis periods, normalisation
and background removal by several non-linear fitting methods for each individual signal. C) In the
resulting data, peaks and nadirs are automatically detected by threshold parameters interactively ad-
justable in the GUI. Misclassified peaks and nadirs can be interactively added or removed leading to
identification of individual ISIs. D) Based on the processed time courses, CaSiAn determines signal
properties like ISI, amplitude, spike width and more. E) After automated processing of all signals,
CaSiAn offers to plot the o — T, relation where each dot correspond to an individual signal. This
relation can be further analyzed in an interactive manner. F) Finally, all processed signals including
ISI detection can be saved in a single pdf file and determined signal characteristics can be exported
as csv or excel files for further analysis.

e Effective area under spike (AUS): the surface above the horizontal line Intensity = T Hgy
and the spike function, where THgy is the threshold of spike width. CaSiAn estimates
AUS using trapezoidal method.

o Ca?t increasing rate (IR) and CaZt decreasing rate (DR): the slope of upward edge of
each spike defines the IR and the slope of downward edge of each spike defines the DR.
CaSiAn also measures the increasing rate and the decreasing rate of the whole Ca’*
signal by averaging the IRs and the DRs of all spikes in the Ca>* signal, respectively.

e CaSiAn also measures: mean of intensities, standard deviation of intensities, signal-
to-noise ratio, average of the peak values and average of the nadir values of each Ca>*
signal.

After extracting the features of Ca>* signals, the user is able to see the 6-T,y plot for
the all signals and filter for signals with specific number of peaks. CaSiAn fits a linear line
to the points in the 0-T,, plot and shows the slope (&) of the fitted line to the user. The
o indicates the signal coefficient of variation and were shown to be cell type and pathway
specific [Skupin and Falcke, 2010, Thurley et al., 2014]. Smaller slope shows the higher
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signal-to-noise ratio and longer recovery periods in the Ca?" signals.

In this thesis, we analyzed the Ca®>* signals of all experiments using CaSiAn software
and compared the T,, of Ca’" signals in different experiments. CaSiAn is an open source
or, more specifically, free software. It is implemented by object-oriented approach with java
language in the Netbeans IDE. It contains 25 classes and roughly 13K lines. CaSiAn uses
Jfreechart library (http://www. jfree.org/jfreechart/) to display different plots. The
functionalities of CaSiAn have been tested with around 100 case studies. Running CaSiAn
requires installing Java Runtime Environment (JRE) version 1.8.0. We have tested CaSiAn
on Mac, Windows XP, 7 and Server 64-bit version. CaSiAn is available for download at
(http://r3lab.uni.lu/web/casa/).

CaSiAn is a user-friendly tool that quantifies Ca®* signal descriptors fast and precisely.
The tool enables biologists to easily visualize and explore a large amount of signals, re-
move the background intensities and normalize signals, detect and examine signal peaks and
nadirs, look into the ISIs distributions and access the quantified descriptors of Ca>* signals.
Quantifying Ca®* spike features helps biologist to asses the effect of a treatment on the shape
of Ca®* signals and more importantly, helps them to highlight the potential pathways and

intracellular processes that may cause to a typical signal profile.

4.5 Summary

This chapter presented the main results of the thesis where we started from computational
model predictions and subsequently validated them by experiments. Careful analysis of the
experimental data has then led to new experimental finding on a potential metabolic control

mechanism.

First, we showed that the ATP-dependent model is more robust compare to ATP-independent
model in case of cellular ATP perturbation. We showed by model that decreasing the mito-
chondrial substrate leads to decreasing average cellular ATP level and increasing frequency
of Ca’* signals. The model predictions were approved experimentally since cells in the no
glucose medium exhibit higher ADP/ATP ratio and higher frequency of Ca>* signals. We
showed that high frequency of Ca?* signals in the cells with no access to glucose is a mech-
anism for compensating reduced ATP production by refilling TCA cycle with glutamine.
Measuring the glucose and glutamine uptake rates while stimulating GPCRs showed a well-
defined relation between stimulus intensity and metabolite uptake rate. We could show a
sigmoidal relation between glucose uptake rate and periods of Ca>* signals which indicates
the metabolic decoding relation of cytosolic Ca>* signals. We also showed the application
of our developed Ca>*- mitochondrial model in simulating PINK1 deficiency. At the end,
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we described our developed software for analyzing intracellular Ca>* signals.
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Discussion

The present thesis applied a systems biology approach to the crosstalk between Ca’* sig-
naling and mitochondrial metabolism. We started from literature based knowledge and de-
veloped a usable model for the crosstalk between IP3- mediated Ca>* signaling and mito-
chondrial metabolism. The goal was to integrate the model of mitochondria established by
Bertram and coworkers with a well-established model of IP3- mediated Ca’* signaling in
order to investigate the interaction between Ca?" signaling and mitochondrial metabolism
[Bertram et al., 2006]. With the combined model we could show: 1) mitochondrial Cat
oscillation follow the same pattern as cytosolic Ca>" oscillation, 2) increasing mitochondrial
Ca’" concentration following elevating cytosolic Ca>* concentration leads to increasing mi-
tochondrial ATP production and 3) decreasing mitochondrial substrates change the profile of
Ca’" signals and results in increasing frequency of Ca®" spikes which is in agreement with

experiments.

Our developed Ca?*- mitochondrial model is a periodic, complex and highly non-linear
system. It is possible to simulate periodic behaviors by linear ODE models of order 2, but
they are fragile or non-robust to small perturbations in the model and also their oscillation
characteristics depend on the initial condition. Thus, biological systems which exhibit pe-
riodic behavior are modeled by non-linear ODEs, which create limit cycles. In our model,
the Ca’* oscillation behavior is modeled based on known biological mechanism which is
periodic Ca>* releasing from IP3Rs and Ca?* removing to ER through the SERCA pumps.
Also the corresponding flux equations given in Section 3.1.1 reflect the known molecular
mechanisms and include non-linearities. The parameter values of this non-linear model are
identified by performing parameter scans in the way that system variables oscillate in phys-
iological range and the results of the model simulations are in agreement with the captured

experimental observations.

However, the current model (like every model) is a simplified and abstract model, which
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does not consider all details like the stochastic properties of IP3Rs or the glycolysis pathway.
In the presented model, the Ca>* oscillation does not arise from hierarchical structure of
IP3Rs clusters and the random behavior of IP3Rs, which have been observed experimentally
and theoretically as the mechanism of Ca®" spiking in the cells [Skupin and Falcke, 2009].
Our model considers three compartments: ER, cytosol and mitochondria and assumes that all
fluxes are averages on the volume of a given intracellular compartment. Therefore our ODE
model neglects the spatial scale of the fluxes, which can limit it for solving problems that
can be investigated only in models that consider spatial scale. One of the relevant examples
is the effect of SERCA expression on the amplitude and spike width of Ca®* signals that we
investigated in [Komin et al., 2015]. As we discussed there, the special model could show the
exponential decay of amplitude and spike width in dependence of SERCA pump strength,
which were in agreement with experiments while the rate equation model failed to show the

experimental observations.

However, we showed that our proposed deterministic model can reproduce the experi-
mental results about Ca>* frequency dependency, which shows the same predictive power
as the stochastic models [Cao et al., 2014, Fall and Keizer, 2001]. Therefore, to obtain qual-
itative predictions of how oscillation frequency depends on parameters, the proposed ODE
model is sufficient. We also showed that considering the ATP dependency of SERCA and
PMCA pumps enhances the coupling of the cytosolic Ca®T signals with the mitochondrial
ATP production and also creates more robust ATP signaling profile if a perturbation occurs

in the system.

We showed by modeling that decreasing cytosolic ATP levels lead to increasing fre-
quency of Ca>* signals (Figure 4.7) and this result was validated also experimentally (see
Figure 4.10). This result may show a frequency encoding mechanism of the intracellular
ATP level. Since mitochondria exhibit a similar temporal Ca>* profile as cytosolic Ca>* os-
cillation, the frequency encoded information can be transferred into mitochondria and be de-
coded in the mitochondrial matrix through the Ca>*- regulated dehydrogenases. It is shown
that the activity of mitochondrial dehydrogenases increases in response to increasing mito-
chondrial Ca®* concentration in the steady state [Denton et al., 1980]. Pyruvate dehydro-
genase complex (PDH) is one of the key enzymes in oxidation of pyruvate by the TCA cy-
cle. PDH is activated by a Ca>*-stimulated pyruvate dehydrogenase phosphatase (PDP) and
inactivated by a Ca?*-independent kinase. NAD-isocitrate dehydrogenase (ICDH) and «-
ketoglutarate/oxoglutarate dehydrogenase (KGDH) are two other enzymes that are allosteri-
cally regulated by Ca>* and their sensitivity to Ca>" is lowered by increasing the ATP/ADP
ratio. Activation of dehydrogenases occurs at relatively low calcium concentrations (less
than 20 uM). Calcium, in high concentrations (greater than 100 uM), however, inhibits o-
KGDH [Lai and Cooper, 1986], ICDH [Bulos et al., 1984] and PDH [Rex Sheu et al., 1985].
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This effect could significantly contribute to the damaging effects of high calcium concentra-

tion in neurons under pathological conditions [Tretter and Adam-Vizi, 2005].

Exposing cells to extracellular stimuli like hormones and neurotransmitters changes the
cytosolic Ca®* concentration. Depending on the stimuli lead to involvement of different
Ca" channels and Ca®* binding proteins, a specific Ca>* signal is induced. The process of
building up a unique signal that can be associated with a specific stimulus is called informa-
tion encoding [Smedler and Uhlén, 2014]. We showed by modeling and experimentally that
increasing the concentration of extracellular stimuli leads to increasing frequency of Ca>*
spikes (Figure 4.13). It has been shown that despite variability in the frequency of Ca®*
spikes between cells, changes in extracellular stimulus intensity are encoded by fold changes
in the average stochastic period of the interspike intervals (T,y - T;,in). The following equa-
tion shows the relation between stimulus intensity and 7,y, which indicates an exponential
dependence between the stimulus concentration and periods of Ca** signals [Thurley et al.,
2014]:

Tav = e—y([stm]—[slm,-ef]) (Tav,ref - Tmin) + Tmin (51)

where [stm] is the concentration of stimulus, Ty is the period of Ca®* signals upon stimula-
tion with [stm], Ty, is the sum of the spike duration and refractory period of Tiy, Tay, e re-
flects the average ISI measured at a reference stimulus concentration [stm,. | and y describes
the sensitivity of the stochastic period of Ty to [stm|. Therefore the signal transduction can

occur through frequency modulation of Ca>* signals.

The decoding of Ca®* signals is typically performed by enzymes that have multiple Ca>*
binding residues and can regulate differentially its total phosphorylation, thereby activat-
ing distinct cellular programs [Smedler and Uhlén, 2014]. A study on single hepatocytes
has shown that mitochondrial Ca>* oscillations stimulate and controls Ca>*-sensitive mito-
chondrial enzymes [Hajndczky et al., 1995]. In this study, hepatocytes were stimulated by
vasopressin and then the cytosolic Ca?* , the concentration of NADH and FADH, were mon-
itored by fluorescence imaging. Studies in cat brain [Jobsis et al., 1971], brain slices [Lipton,
1973] and cardiomyocytes [Eng et al., 1989] all showed Ca>* dependent changes in mito-

chondrial function in response to physiological stimulation.

This thesis showed experimentally that stimulating GPCRs by extracellular agonists
leads to increasing glucose and glutamine uptake rates (Figure 4.14). We can explain these
observations by two potential mechanisms: 1) released Ca>* from IP3Rs is taken up by mic-
ochondria leading to activation of PDH and KGDH enzymes and consumption of glucose
and glutamine substrates. This may result in more glucose and glutamine uptake from the
medium by the cell in order to refill the TCA cycle. 2) It has been shown that the produced
ROS as the result of elevated Ca%" concentration in the mitochondrial matrix (which cause
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activating TCA enzymes and ETC) leads to up-regulation of GLUT protein expression and
increases glucose uptake [Liemburg-Apers et al., 2015]. Thus, it is possible that ROS triggers
glucose uptake and couples Ca>* signaling to energy metabolism.

We also showed a sigmoidal relation between the frequency of Ca®™ signals and glucose
flux in HEK293 and astrocytes (Figure 5.1 B and C). The results obtained in 1980 using
rat heart mitochondria [Denton et al., 1980] showed that increasing extramitochondrial cal-
cium ion concentrations in the physiological range increase the activity of both PDH and
KGDH within mitochondria (Figure 5.1 A). Since glucose and glutamine are the substrates
of PDH and KGDH enzymes and there is correlation between substrate availability and the
enzyme activity, based on Figure 5.1, we speculate that the activity of PDH and KGDH are
regulated by frequency of Ca>* spikes. The regulation of the Ca>* - sensitive mitochondrial
dehydrogenases by the frequency of Ca”* signals also has been shown by the Hajnoczky et
al. study [Hajnéczky et al., 1995]. In this study, they conclude that the activity of Ca’>* -
sensitive mitochondrial enzymes can be regulated over a broad range by the frequency of
the oscillating Ca>* signals and by contrast, the maintained high Ca?>" concentration cannot
sustain the activation of the mitochondrial enzymes. We also simulated the relation between
frequency of Ca®* spikes and the average flux of PDH enzyme with our Ca®* - mitochon-
drial model (Figure 5.1 E). This figure shows that the found sigmoidal decoding relation is a

promising result that should be followed up to establish a new integrator of Ca>* spikes.

Regulation of rate limiting enzymes of the TCA cycle by the frequency of Ca>* signals
reveals that Ca>* acts like a mediator which first reliably encodes information content of
extracellular stimuli and second transfer this information into mitochondria, which are then

decoded by TCA cycle enzymes.

Astrocytes are the most abundant cell type in the brain. They exhibit a large number
of GPCRs linked to Ca?* mobilization from internal store which can be activated in situ
by application of agonists and also by neurotransmitters released from presynaptic termi-
nals [Agulhon et al., 2008]. Increasing astrocytic Ca’" concentration evoked by neuro-
transmitters demonstrates the existence of neuron-to-astrocyte communication through the
Ca’" elevations. Neurons release glutamate and GABA in response to electrical activation
and the released neurotransmitters cause increasing Ca’>* concentration in astrocytes [Porter
and McCarthy, 1996, Kang et al., 1998]. A study on the isolated rat retina showed that
neuron-to-glia signaling in the retina is mediated by ATP release from neurons and activa-
tion of glial purinergic receptors [Newman, 2005]. Astrocytes to neuron signaling has also
been observed. Increasing astrocytic Ca®t concentration results in the release of gliotrans-
mitters, primarily glutamate, and modulation of the electrical excitability of neighboring
neurons [Newman, 2003a, Fellin and Carmignoto, 2004]. In both culture and brain-slice
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Figure 5.1. Metabolic decoding of Ca®>* signals. (A) The activity of PDH and KGDH increases
in the coupled rat heart mitochondria in response to increasing mitochondrial Ca?* concentration.
The results of these experiments are fully described in [Denton et al., 1980, Denton, 2009]. (B, C)
The glucose flux increases by increasing frequency of Ca?* signals in C8-D1A and HEK293 cells.
There is a sigmoidal relation between the glucose uptake rate and frequency of Ca>* signals. (D)
The glucose and glutamine flux over frequency of Ca®" signals are combined in one graph. This
graph also reveals a sigmoidal relation between glucose and glutamine fluxes and frequency of Ca>*
signals. (E) The model simulation of the relation between frequency of Ca’>* spikes and the average
flux of PDH enzyme. Although the model cannot exhibit the complete shape of sigmoidal relation,

but we can see increasing the activity of PDH enzyme for the frequencies higher than 0.5 min—".

91



Chapter 5. Discussion

preparations, increases in Ca®* concentration result in a release of glutamate from astro-
cytes [Newman, 2003b]. Ca?" excitability in astrocytes is a key element in the information

exchange between astrocytes and neurons.

In relevance to astrocyte-to-neuron communication, the observed metabolic decoding of
Ca’" spikes in our experiments may be a way for transferring information between astro-
cytes and neurons. We showed that glucose and glutamine uptake rate increases in response
to exposing astrocytes to extracellular stimuli. Neurons can stimulate Ca>* signaling in as-
trocytes by releasing neurotransmitters. Thus neurons can increase glucose and glutamine
uptake rates by releasing neurotransmitters and stimulating Ca>* signals in neighboring as-
trocytes. The up taken glucose or glutamine may be converted to lactate and deliver back to

neurons as energy substrates or may be metabolized in the TCA cycle of astrocytes.

Astrocytes take up glucose while they take up released glutamate at the synapse together
with 3 Na™ ions. Extruding Na™t by the action of the Na*/K™ ATPase, consumes ATP, that
triggers glucose uptake from the circulation through the glucose transporter [Anderson and
Swanson, 2000]. Released glutamate from neurons at the synapse also stimulate Ca* sig-
naling in astrocytes and from our experiments, stimulating Ca>* signaling may be additional
reason for increasing glucose uptake while astrocytes are exposed to large concentration of

glutamate.

In our experiments, we observed that stimulation of C8-D1A astrocytic cells with extra-
cellular ATP evokes an intercellular Ca>* wave which propagates between glial cells. These
waves could occur by diffusion of IP3 through gap junctions between astrocytes which are
close to each other or could happen by release of ATP and results in Ca>* wave among

distant cells.

As an another application of the systems biology approach in solving biological problems
we showed the efficiency of our developed in silico model in predicting experimental results
of PINKI1 deficiency (see Section 4.3). In the model, we decreased the parameter values of
the mitochondrial Na*t/Ca2* exchanger flux (Jycx) and the mitochondrial carbon input (FBP
concentration) and increased the flux of mitochondrial Ca®* uniporter (Jycy) as the result
of PINK1 deficiency. Then the model simulation showed decreased mitochondrial respira-
tion which was in agreement with experiments on the zebrafish larvae DA neural cells. We
could also show by modeling that down regulation of MCU channel restore mitochondrial

respiration which was again in agreement with experiments.

This dissertation showed that compromised cellular metabolism modifies the profile of
Ca’" signals and Ca®* spikes, which in turn can change the metabolic profile in electrically
non-excitable cells, HEK293 and astrocytes. Thus, the stability of the crosstalk between
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Ca’* signaling and energy metabolism in essential for the proper cellular function. Distur-
bance of this interplay causes Ca’>" dyshomeostasis and energy metabolism dysregulation

which may lead to cell death.
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Chapter 6

Conclusion and Future Perspectives

6.1 Conclusion

Cells communicate with each other and to the environment through sending and receiv-
ing signals. Cells receive messages through the receptors on the cellular plasma membrane
which then are transferred to the cellular processes through the second messengers. Ca®* is a
versatile second messenger that regulate many diverse cellular processes. On the other hand,
signaling and information processing consume energy. This energy is mostly provided by the
mitochondria. Thus, Ca®* signaling and energy metabolism interact in order to orchestrate
the chemical reactions sustaining life. Since Ca®" signaling and mitochondrial metabolism
are itself a complex system, their combination is even a bigger and more complex system,
therefore its understanding needs a mechanistic approach that can tackle this complexity. In
this thesis, we studied the crosstalk between Ca®" signaling and mitochondrial metabolism
using a systems biology approach. For this purpose, we combined mathematical modeling
with Ca?T imaging and metabolic flux analysis. The developed in silico model integrated
a well-established model of IP3-mediated Ca®" signaling with a simplified model of mi-
tochondrial Ca>* handling and metabolic function. The incorporation of mitochondria in
the Ca®* signaling model results in more robust system in case of perturbation of the in-
tracellular ATP level. This model showed that decreasing mitochondrial substrates leads to
decrease the intracellular ATP level and mitochondrial Ca>* overload as well as increasing
frequency of intracellular Ca’* spikes. These results were confirmed experimentally by per-
forming Ca’" imaging and measuring the frequency of Ca’* signals in the starved cells.
Further, we quantified glucose and glutamine uptake rates for distinct stimulated Ca®" sig-
nals. The analysis showed a well defined relation between the frequency of Ca>* spikes and
glucose/glutamine uptake rate. These results indicate that the information content of intra-
cellular ATP level as well as the extracellular agonist are encoded in the frequency of Ca®"
spikes which then are transferred into energy metabolism system. These data are decoded
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by the energy metabolism through increasing glucose/glutamine uptake rate or may be trans-
ferred into moitochondria leading to activating Ca®*-sensitive mitochondrial enzymes and
increasing ATP production. We also showed that exposing astrocytes to extarcellular stimuli
leads to an increase the in the frequency of Ca’* signals and a corresponding increase in the
the intracellular ATP level. Thus, dysregulation of the crosstalk between Ca>* signaling and
energy metabolism may disturb the information transferring mechanism and lead to dysreg-
ulation of Ca’* signaling, energy metabolism and cellular ATP level. We also showed that
Ca’" dyshomeostasis and decreasing glucose uptake rate resulted from PINK1 deficiency
disturb mitochondrial respiration and ATP production in the DA neurons in zerbrafish larvae
and lead to loss of DA neurons. We could explain with our Ca?*-mitochondrial model that
down regulation of MCU channel restores Ca>* regulation and mitochondrial respiration
which was in agreement with experiments. Further, to quantify Ca>* signals, we developed
a user-friendly software for analyzing and extracting features of Ca®>* signals which could

measure the characteristics of many diverse Ca>* signals fast and precisely.

6.2 Future Perspectives

The successful application of our developed Ca?*-mitochondrial model in the simulating
PINK1 deficiency shows that we are able to generate new knowledge from in silico studies.
Therefore, the current model can be used in simulating the cellular behavior in diseases that
there is impairment of the crosstalk between Ca>* signaling and mitochondrial metabolism.
For example in the Leigh syndrome, defective ATP production and abnormally high mito-
chondrial membrane potential plus altered Ca’* homeostasis have been observed. But the
mechanisms responsible for the disruption of mitochondrial calcium homeostasis is not dis-
covered [Lorenz et al., 2017]. Our model can be used for simulating the cellular behavior

and understanding the underling mechanism of these experimental observations.

Future work is needed to develop a new model for the crosstalk between Ca>* signaling
and mitochondrial metabolism in electrically excitable cells. In electrically excitable cells,
Ca’" oscillations occur by changing the voltage of the cell membrane and opening voltage-
gated Ca>* channels. Hence excitable cells often have a cytosolic Ca>* oscillator linked to
a plasma membrane potential oscillator, potentially giving rise to highly complex behaviors.
Then the question would be how mitochondrial dynamics change with fast Ca®>* transients
in the excitable cells?

The model can also be extended to include the spatial scale in addition to the time scale.
It is shown that spatial models exhibit more accurate predictions about amplitude and spike
width of Ca®* signals. We also can answer questions related to the spatial scale. For ex-

ample, how the close contact of ER and mitochondria affect Ca>* and ATP dynamics in the
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cytosol as well as mitochondria.

A main finding of this thesis is metabolic decoding relation of intracellular Ca>* signals
(Section 4.2.7). We showed experimentally that there is a sigmoidal relation between fre-
quency of Ca’* signal and glucose/glutamine uptake rate. From the published papers [Den-
ton et al., 1980, Denton, 2009], we speculate the activity of PDH and KGDH enzymes might
be modulated by frequency of Ca>* spikes. Since glucose and glutamine are precursor sub-
strates of PDH and KGDH enzymes, this modulation lead to increasing glucose and glu-
tamine uptake rates. To prove this dependency, there is need to perform more metabolomic
experiments. This experiment should measure the metabolite level of the PDH and KGDH
products (Acetyl-CoA and Succinyl CoA, respectively) while exposing cells with different
concentration of extracellular stimuli in order to change the frequency of Ca>* signals. Fur-
thermore this dependency can be analyzed in the context of relation between information
flow and energy demand.

This work has used a minimal model to investigate the crosstalk and discovered the dy-
namic metabolic decoding relation. While the model is a simple one, it has some limitations.
One limitation is its assumption that Ca®>* oscillations are deterministic and based on a Hopf
bifurcation. This leads to a fixed parameter regime for an oscillatory behavior and limits
the period range of oscillations. As a consequence this model is not able to simulate the
full sigmoidal metabolic decoding relation (Figure 5.1 E). An essential extension would be
a stochastic model [Skupin et al., 2010] that exhibits stochastic spiking with larger periods.
Therefore it might exhibit the whole sigmoidal decoding relation. This would further indi-
cate the essential role of stochasticity in Ca>* signaling. Another extension of model would
be the inclusion of the glucose and glutamine uptake rate based on the enzymes activity.

The developed CaSiAn software is a flexible and general tool that allow studying Ca>*
signaling in a wide range applications. For example the software has been used for analyzing
Ca’* signals in the mouse hippocampal neural cell line, namely HT22. By analyzing and
comparing Ca’* signals in the HT22 control and PIMT (L-isoaspartyl methyltransferase)
gene knockout cells, we could observe lower Ca?* concentration, wider spike width and
lower amplitude in the PIMT knockout. These results highlighted the possible low level of
cytosolic ATP in the PIMT knockout cells. The protein PIMT is a repair enzyme that initiate
the conversion of the isoaspartyl residue (isoAsp), which is a major product of protein dam-
age via asparagine deamidation and aspartate (Asp) isomerization, to normal Asp residues.
PIMT is expressed in almost all cells and tissues, and is particularly highly expressed in
brain. PIMT knockout mice show retardation of growth, perturbed glutamate metabolism,

and usually die at less than 2 months of age from fatal seizures [ Yang et al., 2013].
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The CaSiAn software can also be used as a java library and be coupled to other tools for
creating a pipeline in analyzing Ca’>* signals. For example, it can be coupled to the software
which analyze Ca’* images, segment cells and extract Ca’* signals from fluorescent Ca’*
images. The extracted signals from Ca?* images then can be fed to the functions of CaSiAn

as the input for performing the other analyzing steps.
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Appendix A

CaSiAn: Calcium Signal Analysis
Software

Ca’* signals are determined by averaging or getting the median of pixel intensities in the
regions of interest from a sequence of fluorescence images captured during a period of time.
Therefore each signal is a discrete-time function that can be represented as a set of paired
values sg = {(t, fx),k = 1,..,N} where f is the intensity at time point ¢, k is the frame
number and N is the total number of successive Ca®* images. In this section, first we explain
the algorithm that CaSiAn implements for finding peaks and nadirs of Ca’>* signals. Second,
we describe the CaSiAn methods for removing signal baseline and signal normalization. In
the end, we delineate the signal features and the algorithms that CaSiAn implements for

measuring features.

A.1 Peak and Nadir Detection

The fact of existing noise in the florescence Ca>* images makes the peak detection process
difficult. Although applying smoothing techniques like signal or image filtration may in-
crease signal to noise ratio, but they substantially change the shape and features of Ca>"
spikes [Balkenius et al., 2015, Janicek et al., 2013] that can distort the experimental results.
A common practice for enhancing the performance of the peak detection algorithms in the
noisy data is defining a sliding window with the length of signal period and identifying global
maximum values within the window as signal peaks. But this technique is not applicable to
Ca’" signals since they are non-periodic signals made of interspike intervals with different
lengths.

In CaSiAn tool, we have introduced a new promising constraint-based method for finding

peaks and nadirs of Ca®* signals that simply needs one parameter setting by user. This
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algorithm contains the following steps: (1) Find the local maxima (local peaks) and local
minima (local nadirs) in the signal. (2) Identify the initial list of global peaks by selecting
local peaks that have mean edge magnitude higher than the Peak threshold parameter. The
magnitude of a peak edge is defined as the intensity difference between peak value and its
prior/next nadir. The Peak threshold parameter is determined by the user, as the percentage
of maximum amplitude that occurs in the signal. The maximum amplitude in a signal is
the maximum intensity difference between two consecutive local nadir and local peak. In
summary, the two edges of each local peak are averaged and then the peaks which have the
mean peak edge magnitudes higher than the amplitude threshold are selected as the initial
list of global peaks. (3) Find the final list of signal peaks by filtering the initial list of global
peaks. If two consecutive local peaks specified in step 1 are also identified as two global
peaks in the step 2, then there is the possibility that one of these two peaks be false positive
(see Figure A.1, A/, B/, D/, E’). Because detecting two consecutive local peaks as two
global peaks of the signal is not expected since there are usually some local peaks as noise
between global peaks in the signal. In order to decide about the detection correctness, another
constraint is applied to these peaks which is based on the expected shape of the peak. This
constraint checks whether the height of the shorter edge of the peak is more than fifty percent
of the longer edge height. If even one of the peaks does not meet this condition (see Figure
A.1, B’ and D), then just one peak should be selected as global peak that is the one with
higher intensity value (see Figure A.1, A’ and E'). (4) At the end, identify one nadir for each
peak. Let 1, = (tp,:1pys--51p,)s tp, < 1., be the vector of peak times, where n is the total
number of detected peaks. The nadir of k-th peak is identified as minimum intensity detected

in the [t,, — (tp, —p,_,)/2 . tp,) interval.

Applying the peak and nadir detection algorithm to the Ca>* signals results in a peak
vector p = (py1,p2, ..., pn) indicating the intensity of peaks, a nadir vector d = (dy,d>, ..., dy)
showing the intensity of nadirs and a time vector t;, = (t4,,2p, ,tdy+tpy s -+, 1d,  Lp, ) TEPresenting
the time points that each element of p and d vector happens there, where 15, <1, <t4, .
CaSiAn uses the data of detected peaks and nadirs as the input to the other implemented
signal analysis methods. So the accuracy of this data is important, since they may affect the
results of the rest analysis steps. Although applying this algorithm to the Ca>* signals result
in quite low rate of false positives and true negatives, but still CaSiAn provides an interactive
interface that user can manually remove peaks or nadirs that are wrongly detected or add

peaks or nadirs that are not detected by the proposed algorithm.

100



A.2. Background Removal and Normalization

Figure A.1. Detecting and removing false positive peaks. In the step (2) of peak detection algorithm,
points A/, B/, D/, E’ are detected as potential signal peaks. In the step (3) of algorithm, points B’, D’
are identified as false positives and just points A’ and E’ are detected as signal peaks. Points A, B, C,
D, E and F are local minimums. In the step (4) of algorithm, points A and D are identified as nadirs.

A.2 Background Removal and Normalization

CaSiAn can represent the intensities of Ca?™ signals in two common ways: (1) the ratio
of the relative fluorescence change and the baseline fluorescence (/) and (2) the ratio of

fluorescence intensity and the baseline fluorescence (I').

I(k) = W (A.1)
I'(k) = ;; <(kk>) , (A.2)

where f(k) is the intensity of region of interest at frame k and Fy(k) is the background
intensity at frame k [Waters, 2009]. Function / subtracts the background intensities from
the signal intensities and then normalize the results by dividing them to the background
intensities. Since finding the real background function Fy is not a trivial task, CaSiAn infers

the background florescence £y using following methods:

Constant Baseline. One simple way for estimating baseline is considering constant back-
ground. In this method, Fj is determined by averaging signal intensities during resting state
of the cell:

s 1
Fo=-% f(k), (A.3)
=1
where £ is the index of image frame and # is the frame number of the first response of cell.

Curve Fitting. Curve fitting method provides more precise approximation of the signal
background since it considers fluorophore leaking and photobleaching, i.e., fading the emit-

ted fluorescence during observation [Diaspro et al., 2006]. In the curve fitting method,
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CaSiAn omits the trends from signal baseline by fitting a curve to the data set poi, =
{(tmgs fng )k = 1,..,n} (tm, < tm,,,), Where f,, is the minimum intensity happening in the
area between two consecutive peaks, t,, is the time of occurring minimum intensity and # is
the number of signal ISIs [Mikhailyuk and Razzhivin, 2003, Balkenius et al., 2015]. CaSiAn

implements the following curve fitting techniques for estimating Fq function:

Linear Regression (LR). Regression techniques are able to estimate the parameters of a best-
fit curve to the signal baseline set by minimizing the sum squared error of the signal baseline

and estimated curve. Linear regression infers the signal baseline Fq as a linear function:

Fo(t,f) = Bo+ Pt (A.4)

Polynomial Regression (PR). Polynomial regression assumes that Fj is a nonlinear function.

The inferred function £ takes the form of an mth-degree polynomial:
m
Fo(t,f) = Bo+>_Bit", (A.5)
i=1

CaSiAn implements PR(m = 2, 3, 4) because based on our experiments they can predict
the background curve of the majority of signals while by increasing m the goodness of fit

decreases. The parameters f3; have to be estimated using po,;, data set.

Spike Base Line. This method infers one F for each spike using the line that connects
two consecutive points of po, data set. Let (tu,, fi, ) and (., fim,.,) be two consecutive

points in the po,,;, data set, Fok is inferred as:

Fo(t, f) = Box + Bixt (A.6)

where the slope of Fyy is:

Blk = (fmk_H _fmk)/(tmk_H _tmk) (A7)

Background correction by the curve fitting method lead to the zero value for the minimum
signal intensity. In some signals, subtracting estimated background from the signal intensi-
ties may cause negative values. In this case, CaSiAn computes the minimum of the negative
values and offset all signal intensities by the absolute value of this minimum that result in

zero value for the minimum intensity of signal.

A.3 Feature Extraction

Extracting descriptors of Ca®t spikes are essential for understanding kinetics of calcium
ions and downstream analysis. CaSiAn measures a set of features that characterize dis-

tinguishable signal shapes that helps biologist to have more accurate interpretation of the
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experimental results. CaSiAn is able to measure these features for a large amount of Ca’*
signals fast and precisely. This makes a new door from simple Ca®* signal analysis methods,
like comparing average intensities, to the wide spectrum of sophisticated data analysis tech-
niques that are more effective and meaningful if they are performed on the signal features

instead of large, noisy and redundant signal intensities.

ISI, T,y and o . The Interspike interval (ISI) is the period of Ca®* spikes that is equal to the
time difference between two consecutive peaks in a Ca>* signal. For a signal containing n
peaks, ISI-time = {(isi, tisi,),k = 1,...,(n— 1)} is a set of paired values where isiy = (f5,,, —1p, ).
tisi, = tp, and 1, is the time that k-th peak occurs. Modeling and experimental studies
have shown that Ca®™ signals are made from random sequences of ISIs with not predictable
length. Each ISI has a large stochastic period that leads to forming distribution of ISI val-
ues [Skupin et al., 2008, Thurley et al., 2011]. CaSiAn plots isi values versus t;; values for
each signal indicating the distribution of ISIs over time. It also writes isi values of all signals
in an output file. So user is able to plot the histogram of all isi values for a cell population
that reveals the distribution of spike periods in the experiment. Since different cellular path-
ways may exhibit different distribution of ISIs, this plot is a useful diagram for downstream

analysis [Skupin et al., 2010].

For each CaZ ™t signal, the average of ISI values is called average period (7,y) and the standard
deviation of ISI values is called sigma (o). Assume a vector of signals (sg;,sgs,...,5g;) with
(tav1,tav2s s tay;) and (01, 02, ..., 07), where [ is the total number of signals extracted from a
cell population. Statistical analysis of ISIs has shown the linear relation between #,, ; and 0
(j=1,..,1) where t,, ; and o; values are in the same range indicating the stochastic dynamic
of Ca”* signals [Skupin and Falcke, 2010]. CaSiAn plots the o; values vesus f,, ; values for
a cell population and then fit a linear function A = a7, + B to the t,,; and o} points using
linear regression method. The period of Ca>* spikes (ISIs) is one the information encoding
mechanism of Ca’* signals. Therefore the slope « that shows the ratio of ISI mean (T
) and ISI standard deviation (o ) for a cell population indicates the signal-to-noise ratio or
information content of the period of Ca®™ signals. Several studies have shown that this slope
is pathway specific, robust against cell to cell variability of Ca®T signals and is sensitive
to the global negative feedback inhibitions in the cellular Ca’" signaling pathway [Skupin
et al., 2010, Thurley et al., 2014].

Amplitude (AMP). The spike amplitude (AMP;,) is the magnitude of the difference between
spike’s extreme intensities. While the peak value shows the highest intensity of a spike, the
nadir value may not indicate the lowest intensity of spike (see Figure A.3). Our goal is to find
the spike base level while considering the possible asymmetric shape of the spike. For this

purpose, we define the lowest point of a spike popase = (tpase; Ipase) @s the intersection point
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resulting from crossing two lines, the line L,, that connects the two minimum points located
on the spike edges and the vertical line V), = 1, that goes through peak point of the spike.
The equation of L, line is identified using nadir point (¢;,d) of the spike and the minimum
point (z4,d") occurring after the spike peak.

Let (tp,, p) be the peak point and (%4, dy) be the nadir point of the k-th spike and (ty, , |, di41)
is the nadir of (k+ 1)-th spike. The minimum point occurring after k-th peak, pog,, = (tdl/c ,dy)
is the solution of the following objective function:

Olpog,) = min {f(t)—di} (A.8)

Iy ISty g
subject to: pog,, # local maximum

Function O(poy,, ) finds the minimum intensity difference between each point located in the
(tp; » ta,,,] window and the intensity of k-th nadir point (see Figure A.3). The constraint
of Oy, function indicates that the solution cannot be a local maximum because the local
maximums located between two peaks are considered as noise. After detecting poy,, point,
the equation of the L,,, line is determined as L,,, = axt + by, where the slope a; takes the

following value:

d,—d,
ap = k% (A.9)

td/i — 14,
Therefore the lowest extreme point popgse, = (tbasekvlbasek) of the k-th spike results from
crossing of L, line and V,,, =1, vertical line is equal to (f,,,atp, + by), and the amplitude

of k-th spike is measured as AMP,,, = pi — Ipase, -

Let {AMP,,,,AMP,,,,...,AMP;, } be the set of spike amplitudes of a signal. Then the average of
spike amplitudes AM P, identifies the signal amplitude:

1 n
AMPyg =~ > AMP,, (A.10)
k=1

where n is the total number of spikes in the signal.

Spike Width (SW). The width of a Ca®T spike is the duration of the spike when the Ca®"
channels are highly activated and the intracellular Ca>* concentration is higher than the base
level of cellular Ca2t concentration. CaSiAn identifies the Ca%t spike width (SW;,) as the
duration of spike at 20% of the spike amplitude. Let AMP,, be the amplitude, and I, be the
base level of a spike, then the spike width threshold THgy is:

THsw = 0.2AMP), + Ipase (A.11)
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Figure A.2. Overview of Ca’t spike descriptors. CaSiAn quantifies Ca’>" spikes by computing
following features as illustrated: interspike intervals (ISI), spike amplitude (AMP), spike width (SW),
effective area under spike (AUS), increasing rate (IR), decreasing rate (DR), time to peak (TTP), peak
intensity, nadir intensity and spike width threshold (THgw ). The red triangles are peaks and the green

triangles are the nadirs.
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Figure A.3. Spike amplitude (AMP). The spike amplitude is equivalent to the difference between the
spike peak intensity and the pop,. intensity. The red triangles are the peaks and the green triangles
are the nadirs. The yellow triangle is the minimum point detected after the spike peak. The popgse =
(tpases Ipase) 18 resulted from the intersection of the vertical line that pass through spike peak and the
line that connects the spike nadir and the minimum point detected after the spike peak.
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Figure A.4. Spike width (SW). The spike width of a Ca?* spike is computed as spike duration at
20% of spike amplitude.

The intensity values that are higher than THgy value occur in the effective duration of the
spike (see Figure A.4). In order to measure the width of a spike, we compute the time
difference between two points of the spike that have the intensity values equivalent to the
spike width threshold. Let stsy = (fy,st) be the point where the effective duration of the
spike starts and engy = (f.,,en) be the point where the effective duration of the spike ends.
The spike width value is equal to the difference between fy; and 7,,. The coordinates of the
stsw and engwy points are identified from the intersection of intensity = THgy line and the
spike function. But Ca?* spikes are discrete-time functions that may not contain sample
points with the THgy intensity value. Therefore, for finding the width of a spike, we perform
upsampling, i.e., constructing new data points. For this purpose, we find A = (74, f(¢4)) and
B = (g, f (1)), the two neighbor points on the upward edge, and C = (¢, f(t¢)) and D = (tp, f(tp),
the two neighbor points on the downward edge of the k-th spike, where 74 <1 <1c < 1p,
f(ta) < THsw, < f(t8) and f(tp) < THsw, < f(tc). The search algorithm explores the [t ,7,,]
interval for finding B point, the first sample with the intensity higher than THgy, value, and
explores [ty 74, ] interval for finding D point, the first sample point with the intensity lower
than the THgy, value, where 7,4, is the nadir time, and 7, is the peak time of k-th peak and
t4,, 1s the nadir time of (k+1)-th peak. The point A and point C are identified as the prior
samples of point B and point D, respectively. Then we find the intersection points, stgy and
engw, resulting from meeting the AB and CD lines with the Intensity = T Hgy horizontal line,

respectively. Finally, the spike width is computed as: SW =1t,, —ty (see Figure A.4).

Let {SW;,,,SW;p,,...,SWsp, } be the set of spike widths of a signal, then the average of spike
widths of the signal SWj, specifies the signal spike width:

1 n
SWyg = - > SWip,, (A.12)
k=1

where 7 is the total number of signal spikes.
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Figure A.S. Effective area under spike (AUS). Effective area under spike is equivalent to the surface

between spike function and the spike width threshold line. CaSiAn estimates AUS using trapezoidal
method.

Time To Peak (TTP). Time to peak of a spike (TTP;,) is the time difference between the
peak time and the nadir time of the spike (see Figure A.2). The time to peak of one Ca’*
signal (TTP;g) is computed by averaging the TTP;, of all spikes in the Ca’* signal.

Effective Area Under Spike (AUS). The effective area under a spike (AUS;),) is the surface
above the horizontal line Inrensity = THgy and the spike function, where THgy is the thresh-
old of spike width (see Figure A.5). This area can quantify the cellular calcium concentration
for the effective duration of spike where Ca>" channels are highly activated [Charlton and
Vauquelin, 2010]. The effective area under the spike is a more precise measurement for quan-
tifying the cellular Ca>* concentration compare to the spike amplitude. Because it involves
information of the period that Ca>* concentration is higher than resting level. We approxi-
mate the AUS;, feature by the trapezoidal rule. Let P(¢,1) = {(ts,st), (t1, f1); -, (tms fin), (ten,en) }
be the set of samples that occur in effective duration of spike, where stgyy = (fy,st) and
ensy = (ten,en) are the start and end points of the effective duration of a spike, respectively
and ty; <1 <ty <t,,. The effective area under the spike (AU S;),) is approximated as:

n

1
AUSsp = 53 (et = 1) (er = 1) (A.13)
k=1

where n = m+2 shows the number of points in the P data set.

If {AUS,,,,AUS),,...,AUS;,,} be the set of effective spike areas of a Cat signal, then the

average of spike areas AUS;, is computed as follow:
1 n
AUS;y = — > AUS,,, (A.14)
=1

where 7 is the total number of signal spikes.
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Ca’* Increasing Rate (IR) and Ca’' Decreasing Rate (DR). During the course of a spike,
the fluxes that introduce Ca®* to the cytoplasm (J;,) are counteracted by the fluxes that re-
move CaZt from cytoplasm (J,,;). The resulted net flux leads to increasing or decreasing
Ca" concentration in the cytoplasm. Therefore the cellular Ca®T concentration ([Ca>*]) at
time point (f + 1) is equivalent to: [Ca®t),41 = [Ca*T], + i,
a Ca®* spike shows the period that the net of Ca?* influx is higher than the net of Ca’*
efflux that results in increasing cellular Ca?>* concentration. The downward edge of a Ca*

—Jour,,,- The upward edge of

spike indicates the period that the rate of Ca>* removal fluxes is higher than the rate of Ca’*
releasing fluxes that lead to dropping cellular Ca** concentration to the resting level. In-
creasing cytosolic Ca>* concentration happens as a result of releasing Ca>* from internal
and external sources. Ca’* release from the internal stores ER/SR through the IP; recep-
tors and ryanodine receptors. Ca’* also enters the cell from extracellular space through the
Ca’"- permeant channels like voltage-gated Ca®* channels, Stim/Orai channels and ligand
gated channels [Clapham, 2007]. Cytosolic Ca>* removing happens by four different mech-
anisms: the PMCA and SERCA pumps, the plasma membrane Na*/Ca’>*exchanger and the
mitochondrial uniporter [Berridge et al., 2003].

CaSiAn estimates the rate of increasing cytosolic Ca’* concentration (IR) by computing
the slope of upward edge of each spike. It also approximates the rate of decreasing cytosolic
Ca’* concentration (DR) by computing the slope of downward edge of spike. Let p = (tp,p)
be the peak point and stsy = (#, st) be the start point and engy = (f.,,en) be the end point of
the effective duration of a spike (see Figure A.6). The increasing rate /R, and the decreasing
rate DRy, of Ca’" concentration during one spike is computed as follow:

— St
IR, =2~ (A.15)
tp_tst
p—en
DRSP:|t — , (A.16)
p en

since DRy, takes the negative value, we compute its absolute value.

CaSiAn also measures the increasing rate and the decreasing rate of a Ca>* signal by averag-

ing the increasing rates and the decreasing rates of all spikes in the Ca>* signal, respectively.

Other Features. CaSiAn also measures the following features for each Ca?* signal: mean of
intensities, standard deviation of intensities, signal-to-noise ratio, average of the peak values

and average of the nadir values.
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Figure A.6. Increasing rate (IR) and Decreasing rate (DR). The rate of rising cytosolic Ca’* concen-
tration is equivalent to the slope of upward edge of the spike. The rate of decreasing cytosolic Ca>*

concentration is equivalent to the slope of downward edge of the spike.

. 3. Feature
1. Setu 2.Preprocessin -
P P 9 Extraction
Experiment * signal Feature
[ extraction

setup Preprocessing

’ ! f
: L | |
' Lo : |
]
: creates i : refines : lcomPUtes i E@
5 Bl : )
! i | 1 i
! i ! ! i
: i | 1 i
\ ) | \ !

[}
[}
[}
[}
[}
[}
W
[}
Signals extracted Experiment Sianal : Signal Signal figures
from fluorescence | workspace | lgnals | featurtes |  and extracted

images |G P S features

Figure A.7. An overview of CaSiAn. The three steps of CaSiAn, from loading data to exporting the
quantified signal descriptors are described.

A.4 Tool Overview

Figure A.7 shows an overview of CaSiAn that consists of three steps: (1) Creating and initial-
izing an experiment workspace, i.e., a container for the Ca>* signal inputs and configuration
data (setup), (2) refining the input signals (manipulation), and (3) Computing the character-
istics of Ca?" signals (feature extraction). Below, we discuss the three steps of the process

in Figure A.7.

A4.1 Setup

In the Setup step, the user creates an experiment workspace, which is a structure used to
store the input data, experiment configurations, and store the analysis results. User creates a
workspace for an experiment by doing the following steps: (1) Browse the directory of signal
files (*.xls, *.txt, *.csv, *.dat) of one experiment. (2) Enter the common string among input

file names. (3) Enter the common string among the column header names that contain the
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intensities of Ca%t signals. (4) Enter the number of column that contains the time of CaZt
signals. If the time column contains the frame number of the observed intensities instead of
the real acquisition times, user can enter the time difference between two consecutive images
in the specified input field of CaSiAn. Then CaSiAn computes the time of each sample by
multiplying the frame number and the time difference between two consecutive images. (5)
Identify the names of treatments during the imaging, if there is any one. (6) Load signals in

the CaSiAn by clicking on the "open experiment" button.

A.4.2 Preprocessing

In the Preprocessing step, user identifies the signal regions that aims to analyze, remove the
background from the signal intensities and normalize the signal amplitudes. After the setup
step, CaSiAn visualizes the loaded Ca®* signals and user can go through each signal and
edit the signal length. If there was any treatment during observations, user can divide signals
into the sections and analyze the data of each treatment separately. For the background re-
moval and signal normalization, user should select the appropriate curve for estimating the
background intensities. The proper curve is the one with the best goodness of fit. CaSiAn
provides different curves for fitting to the signal baseline namely, Constant, Linear, Poly-
nomial degree 2, 3, 4 and Spikeline. Figure A.8 shows different curves that are fitted to
the signal baselines as discussed in Section A.2. After choosing the proper curve, user can
subtract the background intensities from the signal intensities by clicking on "Subtract back-

ground" button and also normalize signal intensities by clicking on "Normalize" button.

A.4.3 Feature Extraction

During the Feature Extraction step, CaSiAn finds the peaks and nadirs of Ca>* signals using
the Peak threshold parameter as discussed in section A.1. The user identifies the Peak thresh-
old parameter either for all signals or for each signal separately. Then CaSiAn visualizes the
result of peak and nadir detection process and user is able to examine them. If any peak or
nadir point is not detected or is detected wrongly, user can easily right click on it and add
it to the list of peaks or nadirs or remove it from the list of peaks or nadirs. After finding
peak and nadir of signals, CaSiAn computes all other signal characteristics as described in
section A.3. The user can access to the all computed features in the form of text or excel file

by clicking on the "Export Data and Figures" button.

A.5 Case Study

To show the application of CaSiAn tool for analyzing Ca®" signals, we performed Ca>*
imaging of individual astrocytic cells called C8-D1A while exposing them twice with differ-
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Figure A.8. CaSiAn fits different curves to the signal baseline. The user is able to select a curve
type from a list and CaSiAn finds the best fit-curve to the signal baseline. Then user can remove the
estimated baseline from signal or normalize signal.

ent concentrations of adenosine triphosphate (ATP) molecules. ATP molecules induce Ca>*
releasing from ER by binding to purinergic receptors on the cell membrane, stimulating pro-
duction of IP3 molecules and opening IP3 receptors (IP3Rs) located on the ER membrane.
The main mechanism of Ca>* oscillation in the astrocytes is releasing Ca>* from ER through
IP3Rs and removing back into the ER through SERCA pumps that result in propagating Ca>*
signals regeneratively. The goal of this experiment is answering the question, how successive
stimulations of purinergic receptors change the profile of Ca®* signals in the astrocytes? To
do so, we treated cells twice while imaging: first by 10 uM ATP at image number 30 and
second, by 80 uM ATP at image number 350. After imaging, we extracted Ca>* signals of
250 individual cells by ImageJ software and then analyzed them by CaSiAn tool. In CaSiAn,
we first segmented all signals based on the treatment duration. Then CaSiAn measured the
signal features of each section separately. Figure A.9 shows a snapshot of an analyzed Ca>*
signal in CaSiAn, where the red and blue regions show the duration of 10 uM and 80 uM
ATP treatments, respectively. In order to have sufficient statistical power, we filtered signals
with less than 6 peaks by CaSiAn. As a result, the averages and standard deviations make
more precise inferences about population from samples.

After computing and exporting signal features, we compared the features of 10 uM to the
80 uM ATP treatment by performing statistical analysis on the cell population. The results
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Figure A.9. An analyzed Ca’* signal in CaSiAn. The signal is divided into two sections in CaSiAn,
based on the treatment duration. The red region shows the duration of 10 (uM ) ATP treatment and
the blue region shows the duration of 80 uM ATP treatment. We discarded the first responses of cell
to the stimulation by excluding them from identified regions. The bottom plot shows the variations of
ISIs by time. The x value of each point is equal to the peak time and the y value is equivalent to the
successive interspike interval.

show the second stimulation with 80 uM ATP leads to increasing the average period (73 )
(Figure A.10A), the average amplitude (AMPy,) (Figure A.10B) and the average spike width
(SWy,) (Figure A.10C) significantly.

The wider Ca®* spikes in 80 uM ATP treatment is resulted from slower increasing rate (IRsg)
and slower decreasing rate (DR, ) (see Figure A.10 D, E). Comparing the average area under
the spikes (AUSy,) indicates more transferred Ca’" into the cytosol during 80 (uM ) ATP
treatment (see Figure A.10 F).

Plotting the histogram of individual ISIs of each treatment shows that 80uM ATP stimulation
shifts the ISI distribution curve to the right and increases the mean of distribution (Figure
A.10 G). higher T, plus the smaller slope (&) of o-T,, (Figure A.10H, I) during 80 uM
ATP treatment indicates the slower recovery from negative feedback inhibition processes
in the Ca>* pathway and also less variations in the interspike intervals (ISI). The stronger
negative feedback inhibition lead to larger stochastic interval due to the slower recovery and
decrease the slope of 0-T,, line. Considering the information is encoded in the frequency of

I shows signal-to-noise ratio or signal reliability. It is shown that ¢

Ca’" signals, then o~
does not depend on the IP3Rs cluster properties, but it is determined by the global feedback
inhibition processes in the Ca’>* signaling pathway like, sensitivity of IP3Rs to IP3 and Ca’™,

IP3 metabolism or ER depletion [Skupin and Falcke, 2010, Skupin et al., 2008, Thurley and
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Figure A.10. Statistical analysis of Ca’" signal descriptors. In all plots the statistical tests are
done with unpaired t test in Prism (version 6, GraphPad Software) where P < 0.05 = *, P <0.01 =
**, P <0.001 =** and P < 0.0001 = ****,

Falcke, 2011].
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Publications in peer-reviewed journals

e Soman, S., Keatinge,M., Moein, M., DaCosta, M., Mortiboys, H., Skupin, A., ...
and Bandmann, O. Inhibition of the mitochondrial calcium uniporter (MCU) rescues
dopaminergic neurons in pinkl_/ ~ zebrafish. " Movement Disorders 31 (2016): S209.

e Komin, N., Moein, M., Ellisman, M. H., Skupin, A. Multiscale Modeling Indicates
That Temperature Dependent [Ca?T] Spiking in Astrocytes Is Quantitatively Consis-
tent with Modulated SERCA Activity, Neural plasticity, 2015.

Manuscripts planned to be submitted for publication in peer-reviewed journals

e Moein, M., Skupin, A. CaSiAn: A tool for Analyzing Ca?" Signals. To be submitted
to Bioanformatics.
e Moein, M., Skupin, A. Dissecting the Crosstalk Between Ca®* Signaling and Mito-

chondrial Metabolism.
Project presentations

e Dissecting the crosstalk between intracellular Ca®* signaling and mitochondrial metabolism.
In the Max Delbrueck Center for Molecular Medicine (MDC), Berlin, Germany.

Poster presentation

e Moein, M., Skupin, A. Metabolic Decoding of Calcium Signaling in Astrocytes. The
37 International Parkinson Disease Symposium, 2016, Luxembourg.

e Moein, M., Fouquier d’Herouel, A., Skupin, A. A systematic approach to the crosstalk
between calcium signaling and mitochondrial dynamics. The 5" edition of Targeting
Mitochondria, 2014, Berlin.

e Moein, M., Fouquier d’Herouel, A., Skupin, A. A systematic approach to the crosstalk
between calcium signaling and mitochondrial dynamics. The 2"¢ International Parkin-
son Disease Symposium, 2014, Luxembourg.

Poster contributions

e Komin, N., Moein, M., Ellisman, M., Skupin, A. Multiscalse astrocyte-neuron interac-
tion in brain energy metabolism. The 2"¢ International Parkinson Disease Symposium,
2014, Luxembourg.

e Komin, N., Moein, M., Ellisman, M., Skupin, A. Multiscalse astrocyte-neuron inter-
action in brain energy metabolism. The 8" Annual Salk Institute, Foundation IPSEN
and Nature Symposium on Biological Complexity- Genes and Physiology, 2014, San
Diego, USA.
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e Komin, N., Moein, M., Ellisman, M., Skupin, A. Multiscalse astrocyte-neuron in-
teraction in brain energy metabolism. The 2" International Systems Biomedicine

symposium, 2013, Luxembourg.
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