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Preface

This is an English translation of my lecture notes Algébre linéaire 2, as taught in the Summer Term
2017 in the academic Bachelor programme at the University of Luxembourg in the tracks mathematics
and physics (with mathematical focus).

These notes have developed over the years. They draw on various sources, most notably on Fischer’s
book Lineare Algebra (Vieweg-Verlag) and lecture notes by B. H. Matzat from the University of
Heidelberg.

I would like to thank Luca and Massimo Notarnicola for taking the time to translate these notes from
French to English, and correcting some errors in the process.

Esch-sur-Alzette, 7 July 2017, Gabor Wiese
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Prerequisites

This course contains a theoretical and a practical part. For the practical part, (almost) all the compu-
tations can be solved by two fundamental operations:

e solving linear systems of equations,
e calculating determinants.

We are going to start the course by two sections of recalls: one about the fundaments of vector spaces
and one about determinants.

Linear algebra can be done over any field, not only over real or complex numbers.

Some of the students may have seen the definition of a field in previous courses. For Computer
Science, finite fields, and especially the field Fo of two elements, are particularly important. Let us
quickly recall the definition of a field.

Definition 0.1. A field K is a set K containing two distinct elements 0, 1 and admitting two maps

+:KxK—K, (a,b)—a+b, “addition”
K xK—K, (a,b)r—~a-b “multiplication”,

such that for all x,y, z € K, the following assertions are satisfied:
e neutral element for the addition:  +0 =2z =0+ x;
e associativity of the addition: (v +y) + z =z + (y + 2);

e cxistence of an inverse for the multiplication: there exists an element called —x such that x +
(—2) =0=(-2) + =

e commutativity of the addition: x +y =y + «.
e neutral element for the multiplication: - 1 =2 =1 a;
e associativity of the multiplication: (- y) -z =x - (y - 2);

e existence of an inverse for the multiplication: if x # 0, there exists an element called v~ = %

suchthatx vt =1=2"1 z;

e commutativity for the multiplication: x -y =y - x.
e ditributivity: (x +y)-z=x-2z+4y- 2
Example 0.2. e Q R, C are fields.
e [fpis a prime number, Z./pZ is a field.
o 7 and N are no fields.

For the following, let K be a field. If this can help you for understanding, you can take X' = R
or K =C.
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1 Recalls: Vector spaces, bases, dimension, homomorphisms
Goals:

e Master the notions of vector space and subspace;

e master the notions of basis and dimension;

e master the notions of linear map ((homo)morphism), of kernel, of image;

e know examples and be able to prove simple properties.

Matrix descriptions and solving linear systems of equations by Gauss’ row reduction algorithm are
assumed known and practiced.

Definition of vector spaces
Definition 1.1. Let V be a set with Oy € V an element, and maps
+y VXV =V, (v1,v2) — v + v9

(called addition) and

v KxV =V, (a,v)—a-v=av

(called scalar multiplication).
We call (V,+v, -v,0v) a K-vector space if

(Al) YVu,v,w €V : (u+y v) +vw =u+y (v +y w),

(A2) Vv eV : 0y +y v =v =v+y Oy,

(A3) VoeVaw eV :iv4+yw=0=w+y v (wewrite —v := w),

(Ad) Yu,v eV :u+yv=0v-+yu,

(for mathematicians: these properties say that (V, +y,0v ) is an abelian group) and
(MS1) Va € K,YNu,v eV :ayv(ut+yv)=a-yvutya-yo,
(MS2) Ya,be K,.NveV :(a+kgb) vv=a-yvv+yb-yu,
(MS3) Ya,be K,.NveV:(a-gb)-vv=a-y (byv),
(MS4) YVoeV :1-yov=nuo.

For clarity, we have written +v,, -y for the addition and the scalar multiplication in V, and + g, ‘i
for the addition and the multiplication in K. In the following, we will not do this any more.



Example 1.2. Let n € N. The canonical K-vector space of dimension n is K", the set of column

vectors of size n with coefficients in K. As you know, we can add two elements of K™ in the following

way:
al b1 a1+b1
a2 ba as+bs
S+l =
an b,

an“‘l’bn
This addition satisfies the following properties:

ai b1 c1 a1 b1 c1
a2 b2 c2 az ba c2
Gn 5 cn Gn 5 e
al 0 al 0 ai
az 0 az 0 a2
al —aq ai—ai 0
az —as az—a2 0
an —an 0

an—an

al b1 a1+by by al

az ba as+ba ) a2
(A4) : + . == . = . + . .

an bn antbn b an

Moreover, we have a scalar multiplication: we multiply an element of K™ by an element r of K as
follows:

al rajy

a9 ras
r- =

Qnp, ran,

The addition and the multiplication are compatible in the following manner:

al Zl al 21 a1 21
a2 a2 as
(MS])VreK,V<:>, :2 eK";r.((:>+ :2 )=T~<:>+r- :2 .
al a1 al
as as a2 a2
(MS2) Vr,s e K,V <: ) e K": (r+s)- <: ) =7r. ( : >—|—3. ( : );
a3 a3 a5
(MS3) Vr,s € K,V <: ) eK"r-(s- ( : )):(r-s)- (: >

a a a>
MsH Y. ek ) ={. |

This shows that K™ is indeed a K -vector space.

The following proposition produces a large number of examples.
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Proposition 1.3. Let E be a set. We introduce the notation
FEK)={f|f:E— Kmap}

for the set of maps from E to K. We denote the map E — K such that all its values are 0 by 0x
(concretly: O : E — K defined by the rule 0x(e) = 0 for all e € E). We define the addition

+7: F(E,K)x F(E,K) = F(E,K), (f.9)— f+rgouVee E: (f+rg)(e):=f(e)+gle)
and the scalar mutliplication

r: K xF(E,K)— F(E,K), (x,f)—x-rfouVec E: (z-rf)le):=x-(f(e)).
Then, (F(E,K),+x,-7,0x) is a K-vector space.
Proof. Exercise. O
Most of the time, we will not write the indices, but only f + g, f - g, etc.
Example 1.4. (a) {f € F(R,R) | f(1) = 0} is a K-vector space.
(b) {f € F(R,R) | £(0) =1} is not a K-vector space.

Lemma 1.5. Let (V,+v, v,0v) be a K-vector space. Then, the following properties are satisfied
forallveVandalla € K:

(a) 0y v=0y,

(b) a-v Oy =0y;

(c) avv=0y=a=0Vov=_0y;
(d) (-1) vv=—v

Proof. ()0-yv=(0+0)-yv=0-yv+0-yv,hence 0y v=_0y.
®ayvO0y=a-v (Ov+0v) =a-y Oy +a-y Oy, hence a -y Oy = Oy.
(c) Assume a-yv = Oy. If @ = 0, the assertion a = 0Vv = Oy is true. Assume therefore a # 0. Then

a~! has a meaning. Consequently,v =1y v = (a"!-a)-yv=a"t-y(a-yv)=a"t-y 0y =0y
by (b).
(d)v+y (—1) vuo=1-yvv+y (—1) VU= (1+(—1)) ‘v v=0-yvv=0yby(a). ]

Instead of (V, +v, v, Oy) we will simply write V.

Vector subspaces

Definition 1.6. Let V be a K-vector space. We say that a non-empty subset W C V is a vector
subspace of V' if
Vwi,weo e WVa € K :a-w;+wy €W.

Notation: W <V,



Example 1.7. e Let V be a K-vector space. The set {0} is a vector subspace of V, called the
zero space, denoted by 0 for simplicity (do not confuse with the element 0).

o LetV=R%>and W = {(3) | a € R} C V. Then, W is a subspace of V.
o LetV=R3and W = {(5);) |a,b€]R} C V. Then, W is a subspace of V.

o Letn,m € Nx>1. We consider the system of linear equations

a1,121 +ai2x2 + -+ a1,T, = by

a2,1%1 + a22x2 + - - 4+ a2 n Ty = ba

Am 121 + Qm2T2 + -+ AmpTn = b
withb;,a;; € Kforl <i<m,1<j<n.
(a) Let S be the set of all solutions of the homogeneous system with x1,x2,...,x, € K, ie.

x1 n
Z2
S = (;)EK”‘ViE{l,Q,...,m}: E ai,ja:j:O
=1

Tn

Then, S is a vector subspace of the standard K -vector space K".

1

T2
(b) Let ( > € K™ be a solution of the system of linear equations, i.e.:

Tn
n
Vi € {1,2,. . .,m} : Zamrj = b;.
j=1

Let S be the vector subspace of K™ defined in (a).

Then, the solutions of the system of linear equations are the set

() () )=t

Here is a general form to obtain and write subspaces.

Definition-Lemma 1.8. Let V' be a K-vector space and E C V' a non-empty subset. We set
m
(E) = {Zaiei |meN,er,...,epm € Eyay,...,am € K}.
i=1

This is a vector subspace of V, said to be generated by FE.

By convention, we set ((}) = 0, the zero subspace.
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Proof. Since (E) is non-empty (since E is non-empty), it suffizes to check the definition of subspace.
Let therefore wq,ws € (E) and a € K. We can write

m m
w, = E a;e; et wo = E bie;
i=1 i=1

fora;,b; € K ande; € E foralli =1,...,m. Thus we have

m
a-wy+wy = Z(aai + b;)es,
i=1

which is indeed an element of (). O

Example 1.9. The set {a . (i) +b- <§> | a,b € R} is a subspace of R3.

Sometimes it is useful to characterize the subspace generated by a set in a more theoretical way. To
do so, we need the following lemma.

Lemma 1.10. Let V be a K-vector space and W; < V subspaces for i € I # (. Then, W :=
Nicr Wi is a vector subspace of V.

Proof. Exercise. O

In contrast, | J;; Wi is not a subspace in general (as you see it in an exercise)!

Example 1.11. How to compute the intersection of two subspaces?

(a) The easiest case is when the two subspaces are given as the solutions of two systems of linear
equations, for example:

1
z2

o V is the subset of ( . > € K" such that )" | a; jx; =0forj=1,...,¢ and
Jf;l
2

o W is the subset 0f< . ) € K" suchthat Y ;" | b pxi =0fork=1,...,m.

In

In this case, the subspace V NW is given as the set of common solutions for all the equalities.

(b) Suppose now that the subspaces are given as subspaces of K™ generated by finite sets of vectors:
Let V = (E) and W = (F') where

e1,1 el,m fi fip
2,1 e2,m " f2,1 J2.p "
E = . R . CK"and F = . ey . C K"
€n,1 €n,m f”’.L,l f’r;,p
Then
e1,i
m e,
VW= { E a;
=1 e'r‘r,,i
e1,1 el,m fi1 fip
e2,1 €2,m fo1 f2,p
Jb1,...,bp € K :aq : + -4 am : —b . — — b, . :O}.

€n,1 €n,m fn,l fn,p



Here is a concrete example: F = {(i) , (g)} CK3and F = {((15) , (%)} C K3. We have
to solve the system

With operations on the rows, we obtain
10-1-2 10-1-2 100 1
ker((ll 00 )):ker((m 12 )):ker(<010—1>),
20-1-1 001 3 001 3

-1
thus we obtain as solution subspace the line generated by (_13 > so the intersection is given by
1

() (= s (e (G- ()

Here is the alternative characterization of the subspace generated by a set

the line

Lemma 1.12. Let V' be a K -vector space and EE C V' a non-empty subset. Then we have the equality
(B) = N W
W <V subspace s.t. ECW

where the right hand side is the intersection of all the subspaces W of V' containing FE.

Proof. To prove the equality of two sets, we have to prove the two inclusions.

> C’: Any subspace W containing F, also contains all the linear combinations of elements of F,
hence W contains (E). Consequently, (E) in the intersection on the right.

> D’: Since (E) belongs to the subspaces in the intersection on the right, it is clear that this intersection
is contained in (E). O

Definition 1.13. Let V be a K-vector space and E C 'V a subset. We say that V' is generated by F
(as vector subspace) if V = (E).
Put another way, this means that any element of V' is written as linear combination of vectors in E.

Definition 1.14. Let V be a K-vector space and W; < V subspaces of V fori € I # (. We set

> wi=(Jwi),

icl el
the subspace of V' generated by all the elements of all the W;’s. We call it the sum of the W;’s, ¢ € I.
IfI ={1,2,...,n}, we can write ) | W; explicitly as

ZWZ‘ = {sz ’ wy € Wi, ...w, € Wn}.
=1 i=1

For a general I, this generalizes as:

ZWi = {sz | (Vi el :w; € WZ) and w; # 0 for only finitely many ¢ € I}.
iel iel

We use the notation Z;G 7 w; to indicate w; # 0 for only finitely many i € 1.
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Example 1.15. How to compute/obtain the sum of two subspaces?

The answer is very easy if the two subspaces are given by generators: If U = (E) and V = (F) are
subspaces of a K -vector space V, then U +V = (EUF).

(The question of giving a basis for the sum is different... see later.)

When are the w; € W; in the writing w = Y ; w; unique?

Definition 1.16. Let V be a K-vector space and W; <V the subspace of V fori € I # ().
We say that the sum W = ., W; is direct if for all i € I we have

win > W;=0.
jel\(i}

Notation for direct sums: @,.; W;.
IfI ={1,...,n}, we sometimes write the elements of a direct sum @;_; W; as w1 ® wa @ - - - & wy,
(where w; € W; for i € I, of course).

Example 1.17. In Example[[.I1l(b), the sum V + W is not direct since the intersection V \W is a
line and thus non-zero.

Proposition 1.18. Let V be a K-vector space, W; < V subspaces of V fori € I # () and W =
> ic1 Wi. Then the following assertions are equivalent:

(i) W=c; Wi,
(ii) forall w € W and all i € I there exists a unique w; € W; such that w = del W;.

Proof. ““(1) = (ii)”: The existence of such w; € W is clear. Let us thus show the uniqueness
/ / ’
w=Y w3
iel iel

with w;, w, € W; for all ¢ € I (remember that the notation S~ indicates that only finitely many w;,
w;, are non-zero). This implies for i € I:

wi—w;: Z /(w;—wj) eW;nN Z Wj:().
jen\{i} jen{i}

Thus, w; — w} = 0, so w; = w), for all ¢ € I, showing uniqueness.
“Gi) = (@) Lett € T and w; € W; N Zje[\{i} W;. Then, w; = Z;el\{i} w; with w; € W; for all
j € 1. We can now write 0 in two ways

0=3"0=—w+ 3w,

icl JeN{i}

Hence, the uniqueness imples —w; = 0. Therefore, we have shown W; N > jel\{i} W; =0. O
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Bases

Definition 1.19. Let V be a K-vector space and E C 'V a subspace.
We say that F is K-linearly independent if

n
VneNVay,...,ap € KVeq,...,e, € E: (Zaie¢:O€V:>a1 =a2:---:an:O)
i=1
(i.e., the only K-linear combination of elements of E representing 0 € V is the one in which all the

coefficients are 0). On the other hand, we say that E is K-linearly dependent.
We call E a K-basis of V if E generates V and E is K -linearly independent.

Example 1.20. How to compute whether two vectors are linearly independent? (Same answer than
almost always:) Solve a system of linear equations.
Let the subspace

e1,1 el,m

€21 €2.m
b ct

€n,1 €n,m

of K™ be given. These vectors are linearly independent if and only if the only solution of the system

€e1,1 €12 ... €l,m 1
e21 €22 ... e2.m (:132 )
€n,1 €n,2 ..« Enm Tm

of linear equations

is zero.
1 0
0 0 0
Example 1.21. Letd € Nsg. Wesetey = | ~ | ,ea=| " |,...,eq= | _ | et
0 0 i
E ={ey,ea,...,eq}. Then:
o E generates K°:
a1
az
az | . . . o d
Any vectorv = | " | is written as K -linear combination: v =" _;_; a;e;.
ag
o Fis K-linearly independent:
If we have a K -linear combination 0 = ch‘l:1 a;e;, then clearly a1 = --- = aq = 0.

o E is thus a K-basis of K since E generates K% and is K -linearly independent. We call it the
canonical basis of K.

The following theorem characterizes bases.

Theorem 1.22. Let V be a K-vector space and E = {ey,ea,...,ep,} C V be a finite subset. Then,
the following assertions are equivalent:

(i) Eis a K-basis.
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(ii) E is a minimal set of generators of V, i.e.: E generates V, but for all e € E, the set E \ {e}

does not generate V.

(iii) E is a maximal K-linearly independent set, i.e.: E is K-linearly independent, but for all e €
V' \ E, the set E U {e} is K-linearly dependent.

(iv) Anyv € V is written as v = Z?:l a;e; with unique ay, . ..,a, € K.

Corollary 1.23. Let V be a K-vector space and E C 'V a finite set generating V. Then, V has
K-basis contained in E.

In the appendix of this section, we will show using Zorn’s Lemma that any vector space has a basis.

Example 1.24. (a) Let V = {(%) | a,b e R}. A basis of V is {(%) , (8)}

0 1
wsav=((3). () (e

4

1

The set E = { (:2)’) , (%) } is a Q-basis of V. Reason:

o The system of linear equations

o (3) o (1) o ()= (1)

has a non-zero solution (for instance a1 = 1, as = 1, a3 = —1). This imples that E/

generates V since we can express the third generator by the two first.

o The system of linear equations

1 2 0
o (3) e (1) = (8)
only has a1 = ag = 0 as solution. Thus E is Q-linearly independent.
(c¢) The R-vector space
V={f:N=>R|3ISCNfiniteVn e N\ S: f(n) =0}

1 ifn=m,
has {e,, | n € N} with e,(m) = 6y (Kronecker delta: 6, , = ) as R-basis.
0 ifn#m.

This is thus a basis with infinitely many elements.
(d) Similarly to the previous example, the R-vector space
V={fR->R|3ISCRfiniteVz € R\ S: f(z) =0}
has {e; | * € R} with ex(y) = 044 as R-basis. This is thus a basis which is not countable.

Example 1.25. How to compute a basis for a vector space generated by a finite set of vectors? (Same
answer than almost always:) Solve a system of linear equations.
Let V be a K-vector space generated by {e,ea,...,en} (assumed all non-zero). We proceed as

follows:



Here
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Add e to the basis.

If es is linearly independent from e (i.e. es is not a scalar multiple of e1), add es to the basis
and in this case e1, es are linearly independent (otherwise, do nothing).

If e3 is linearly independent from the vectors chosen for the basis, add es3 to the basis and in
this case the elements chosen for the basis are linarly independent (otherwise, do nothing).

If ey is linearly independent from the vectors already chosen for the basis, add ey to the basis
and in this case all the chosen elements for the basis are linearly independent (otherwise, do
nothing).

etc. until the last vector.

is a concrete example in R*:

1 1 4 0
o= (B (1) o= (1) == (1)
2 0 2 1
Add eq to the basis.

Add ey to the basis since e is clearly not a multiple of ey (see, for example, the second coeffi-
cient), thus ey et eo are linearly independent.

Are ey, es, e3 linearly independent?We consider the system of linear equations given by the

114
101
013 )~
202

By transformations on the rows, we obtain the matrix

101
013
000 /-
000

. . 1 .. ..
We obtain the solution ( 3 ) So, we do not add es to the basis since ej is linearly dependent
from ey, es.

matrix

Are e1, ea, ey linearly independent? We consider the system of linear equations given by the
( 11 0)
101
010 |-
201
By transformations on the rows, we obtain the matrix
(100)
010
001 |-
000

The corresponding system has no non-zero solution. Therfore ey, ez, e4 are linearly independ-
ent. This is the basis that we looked for.

matrix
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Dimension

Corollary 1.26. Let K be a field and V a K-vector space having a finite K-basis. Then, all the
K-bases of V are finite and have the same cardinality.

This corollary allows us to make a very important definition, that of the dimension of a vector space.
The dimension measures the ’size’ or the 'number of degrees of freedom’ of a vector space.

Definition 1.27. Let K be a field and V a K -vector space. If V has a finite K-basis of cardinality n,
we say that V' is of dimension n. If V' has no finite K-basis, we say that V is of infinite dimension.
Notation: dimg (V).

Example 1.28. (a) The dimension of the standard K -vector space K" is equal to n.

(b) The zero K-vector space ({0}, +, -, 0) is of de dimension 0 (and it is the only one).

(c) The R-vector space F(N,R) is of infinite dimension.

Lemma 1.29. Let K be a field, V a K-vector space of dimension n and W <V a subspace.
(a) dimg (W) < dimg (V).

(b) If dimg (W) = dimg (V), then W = V.

The content of the following proposition is that any K-linearly independent set can be completed to
become a K-basis.

Proposition 1.30 (Basiserginzungssatz). Let V' be a K-vector space of dimension n, EE C 'V a finite
set such that E generates V and {e1,...,e,} CV a subset that is K-linearly independent.
Then r < n and there exist e,41,€r42,...,en, € E such that {ei1, ..., ey} is a K-basis of V.

The proposition can be shown in an abstract manner or in a constructive manner. Assume that
we have elements ey, . . ., e, that are K-linearly independent. If » = n, these elements are a K-basis
by Lemma[I.29] (b) and we are done. Assume therefore that » < n. We now run through the elements
of F until we find e € F such that ey, ..., e,, e are K-linearly independent. Such an element e
has to exist, otherwise the set ¥ would be contained in the subspace generated by eq,...,e,, an
could therefore not generate V. We call e =: e,;; and we have a K-linearly independent set of
cardinality r + 1. It now suffices to continue this process until we arrive at a K -linearly independent
set with n elements, which is automatically a K -basis.

Corollary 1.31. Let V be a K -vector space of finite dimension n and let W <V be a vector subspace.
Then there exists a vector subspace U <V such that V.= U @ V. Moreover, we have the equality
dim(V) = dim(W) + dim(U).

We call U a complement of W in V. Note that this complement is not unique in general.

Proof. We choose a K-basis wi,...,w, of W and we use the proposition to obtain vectors
U, ...,us € Vsuchthatwsy,...,w,,uy,...,us forma K-basisof V. PutU = (uy,. .., us). Clearly,
wehave V =U + W andalsoU NW = 0,s0 V = U & W. The assertion concerning dimensions
follows. O



15

Proposition 1.32. Let V be a K-vector space of finite dimension n. Let B C V be a subset of
cardinality n. Then, the following assertions are equivalent.

(i) Bisa K-basis.
(ii) B is K-linearly independent.
(iii) B generates V.

Proof. For the equivalence between (i) and (ii) it suffices to observe that a K-linearly independent
set of cardinality n is necessarily maximal (thus a K-basis by Theorem [[.22)), since if it was not
maximal, there would be a maximal K -linearly independent set of cardinality strictly larger than n,
thus a K -basis of cardinality different from n which is not possible by Corollary

Similarly, for the equivalence between (i) and (iii) it suffices to observe that a set of cardinality n that
generates V' is necessarily minimal (thus a K -basis by Theorem [[.22)), since if it was not minimal,
there would be a minimal set of cardinality strictly smaller than n that generates V', thus a K -basis of
cardinality different from n. O

Linear maps: homomorphisms of vector spaces

We start with the main idea :
The (homo-)morphisms are maps that respect all the structures.

Definition 1.33. Let V, W be K-vector spaces. A map
p: VW
is called K-linear or (homo-)morphism of K-vector spaces if
Vor,v2 € Vi p(vr +v v2) = @(v1) +w o(v2)

and
VvoeVVae K:playvv)=a-wep).

A bijective homomorphism of K -vector spaces is called an isomorphism. We often denote the iso-
morphisms by a tilda: ¢ : V' =s W. If there exists an isomorphism V. — W, we often simply write
V=w.

Example 1.34. (a) We start by the most important example. Let n € N.

a1 a2 o QAip

a1 a2 0 A2p . , .
Let M = . . ) . be a matrix with n columns, m rows and with coefficients

am,1 Gmz2 **° Ommn

in K (we denote the set of these matrices by Mat,, «,,(K); this is also a K-vector space). It
defines the K -linear map
oy K" — K™, v Mvu
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where Mv is the usual product for matrices. Explicitly,

n
a1 air2 -+ Alnp U1 Eizl a1,4V;
n
a1 G2 -+ A42n V2 21-:1 a2 Vi
om(v) =Mv=| | L . = .
n
Um,1 Om,2 " OGmn Un Zizl Qm,iVs

The K-linearity reads as
Vae KVv,weV :Mo(a-v+w)=a-(Mov)+ Mow.
This equality is very easy to verify (you should have seen it in your Linear Algebra I course).

(b) Leta € R. Then, p : R = R, © — ax is R-linear (this is the special case n = m = 1 of (a) if we
look at the scalar a as a matrix (a)). On the other hand, if 0 #b € R, then R — R, x — ax + b
is not R-linear!

(c) Letn € N. Then, the map ¢ : F(N,R) —» R, f — f(n) is K-linear.

Definition 1.35. Let V., W be K-vector spaces and ¢ : V — W a K-linear map. The kernel of ¢ is
defined as

ker(p) = {v eV | p(v) = 0}.
Proposition 1.36. Let V. W be K-vector spaces and ¢ : V. — W a K-linear map.
(a) Im(p) is a vector subspace of W.
(b) ker(yp) is a vector subspace of V.
(c) @ is surjective if and only if Im(p) = W.
(d)  is injective if and only if ker(p) = 0.
(e) If  is an isomorphism, its inverse is one too (in particular, its inverse is also K -linear).

Definition 1.37. Let M € Mat,,,«n,(K) be a matrix. We call rank of columns of M the dimension of
the vector subspace of K™ generated by the columns of M. We use the notation rk(M).

Similarly, we define the rank of rows of M the dimension of the vector subspace of K™ generated by
the rows of M. More formally, it is the rank of M, the transpose matrix.

We will see towards the end of the course that for any matrix, the rank of columns is equal to the rank
of rows. This explains why we did not mention the word *“ columns” in the notation of the rank.
If opr : K™ — K™ is the K-linear map associated to M, then

rk(M) = dim(Im(par))

since the image of () is precisely the vector space generated by the columns of M.
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Corollary 1.38. (a) Let ¢ : V — X be a K-linear map between two K -vector spaces. We assume
that V has finite dimension. Then,

dim(V) = dim(ker(¢)) + dim(Im(yp)).

(b) Let M € Mat,,xn(K) be a matrix. Then, we have
n = dim(ker(M)) + rk(M).

Proof. (a) Let W = ker(y). We choose a complement U < V such that V' = U & W by Corol-
lary[L31l AsUNW = 0, the map ¢|y : U — X is injective. Moreover, p(V) = (U +W) = ¢(U)
shows that Im(¢y) is equal to ¢(U). Consequently, dim(Im(y)) = dim(¢(U)) = dim(U), thus the
desired equality.

(b) follows directly from (a) by the above considerations. ]

Part (b) is very useful for computing the kernel of a matrix: if we know the rank of M, we deduce the
dimension of the kernel by the formula

dim(ker(M)) = n — rk(M).

GauBf}’ algorithm in terms of matrices

We consider three types of matrices:

Definition 1.39. For 0 # A € Kand 1 < 4,5 < n, i # j, we define the following matrices in
Maty,xn (K), called elementary matrices:

e P ; is equal to the identity id,, except that the i-th and the j-th rows are exchanged (or, equi-

valently, the i-th and the j-th column are exchanged): P; ; = 1

e Si(\) is equal to the identity id,, except that the coefficient (i,1) on the diagonal is \ (instead
1

of 1): Si(\) = o
-

e Qi ;(X) is equal to the identity id,, except that the coefficient (i, j) is A (instead of 0): Q; j(\) =
i
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The elementary matrices have a signification for the operations of matrices.
Lemma 1.40. Let A € K, i,j,n,m € Nxg, i # j and M € Mat, xn, (K).

(a) P; ;M is the matrix obtained from M by exchanging the i-th and the j-th row.
MP, ; is the matrix obtained from M by exchanging the i-th and the j-th coulumn.

(b) S;(A)M is the matrix obtained from M by multiplying the i-th row by \.
M S;(\) is the matrix obtained from M by multiplying the i-th column by \.

(c) Qi j(N)M is the matrix obtained from M by adding X times the j-th row to the i-th row.
MQ; j(X) is the matrix obtained from M by adding X times the i-th column to the j-th column.

Proof. Easy computations. O

Proposition 1.41. Let M € Mat, x,(K) be a matrix and let N € Mat,,xm(K) be the matrix
obtained from M by performing operations on the rows (as in Gauf3’ algorithm).

(a) Then there exist matrices C1,...,C, (for some r € N) chosen among the matrices of Defini-

tion[[.39 such that (C1---C,.) - M = N.

(b) ker(M) = ker(N) and thus Gauf3’ row reduction algorithm can be used in order to compute the
kernel of a matrix.

Proof. (a) By Lemmal[l.40/any operation on the rows can be done by left multiplication by one of the
matrices of Definition[1.39]
(b) All the matrices of Definition are invertible, thus do not change the kernel. ]

Similarly to (b), any operation on the columns corresponds to right multiplication by one of the
matrices of Definition [[.39] Thus, if N is a matrix obtained from a matrix M by doing operations
on the columns, there exist matrices C',...,C, (for some r € N) chosen among the matrices of
Definition [1.39] such that M - (C - - - C,.) = N. Since the matrices C; are invertible, we also have

im(M) = im(N),

and in particular the rank of M is equal to the rank of V.

Often we are interested in knowing a matrix C' such that CM = N where N is obtained from M by
operations on the rows.

In order to obtain this, it suffices to observe that C - id = C', hence applying C' is equivalent to doing
operations on the corresponding rows of the matrix id. In the following example, we see how this is
done in practice.

Example 1.42. Let M = . We write the augmented matrix and do the operations on the

~N &~ =
co Ot N
O O W
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rows as always, but on the whole matrix.

10 01 2 3 1 001 2 3 1 0 01 2 3
010456|——-4100 -3 —6|]—~]-4 1 0O0 -3 —6
0017 89 -7 01 0 -6 -—12 1 =210 0 0
1 0 01 2 3 -5/3 2/3 01 0 -1
—14/3 -1/3 0 0 1 2|(~—| 4/3 -1/3 0 0 1 2
1 -2 1 0 00 1 -2 1 00 O
-5/3 2/3 0
The left half of the final matrix is the matrix C looked for: C = | 4/3 —1/3 0 |. The right half
1 -2 1

is the matrix obtained by the operations on the rows.
We know that we have the following equality (to convince ourselves, we can verify it by a small

computation):
-5/3 2/3 0 1 2 3 1 0 -1
CM=14/3 -1/3 0 4 5 6|=1]01 2
1 -2 1 7 8 9 0 0 O

As application of the Gauf}’s algorithm written in terms of matrices, we obtain that any invertible
square matrix M can be written as product of the matrices of Definition Indeed, that we can
transform M into identity by operations on the rows.

Matrices and representation of linear maps

In Example [[.34] (a) we have seen that matrices give rise to K-linear maps. It is very import-
ant and sometimes called main theorem of linear algebra that the inverse assertion is also true:
after basis choice any K -linear map is given by a matrix.

Notation 1.43. Let V' be a K-vector space and S = {vi,...,v,} a K-basis of V. We recall that
v =1 bjv; with unique by, ..., b, € K, these are the coordinates of v for the basis S. We use the

following notation:

by
b
Vg = . e K™

bn

1

0 1 0

Example 1.44. (a) Letn € Nand e; = ? ,€3 = ? ey Ep =
0 0 i

Thus E = {e1,ea,...,en} is a canonical K-basis of K™. Then, for all v = € K™ we

al
a
a3
have vg =

an
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(b) Let V.=R*and S = {(}), (1)} It is a R-basis of V (since the dimension is 2 and the two
vectors are R-linearly independent). Letv = (3) € V. Then,v =3- (1) + (), sovs = (3).

The following proposition says that any K -vector space of dimension n is isomorphic to K™.

Proposition 1.45. Let V be a K -vector space of finite dimension n with K -basis S = {vy, ..., v, }.
Then, the map ¢ = ()g : V. — K™ given by v — vg is a K-isomorphism.

Proof. Letv,w € V and a € K. We write v and w in coordinates for the basis S: v = > " ; b;v; and
w =7, ¢v;. Thus, we have av + w = ", (ab; + ¢;)v;. Written as vectors we thus find:

b1 c1 abi+cy
bo Cc2 aba+ca
vs= 1| .|, ws=| . and (av + w)g = . ,

bn Cn abn .‘l'Cn

thus the equality (a - v + w)g = a - vg + wg. This shows that the map ¢ is K -linear. We show that it
is bijective.

0
: ),i.e. v € ker(yp). This means thatv = )" | 0-v; = 0.
0

The kernel of ¢ therefore only contains 0, so, ¢ is injective.

Injectivity: Letv € V be such thatvg = (

ai
a2

ai

az
. ) € K" Wesetv := Y ! a; v;. Wehave o(v) = < : ) and the
an
surjectivity is proven.

Surjectivity: Let <

an

O]

Theorem 1.46. Let V. W be two K-vector spaces of finite dimension n and m and o :' V. — W a
K-linear map. Let S = {v1,...,vn} be a K-basis of V and T = {wy, ..., wn} a K-basis of W.
For all 1 < i < n, the vector ¢(v;) belongs to W. We can thus express it as a K -linear combination
of the vectors in the basis T, so:

m
p(vi) =Y ajw;.
=1

We ’gather’ the coefficients a;; in a matrix:

a1 air2 - Aaln
a1 a2 - a2n

Mr.s(p) = S € Mat,xn(K).
a»,;l,1 an.l,2 a7;x,n

Then, for all v € V we have
(p(v))r = Mp.s(p) o vs.

This means that the matrix product Mr s(p) o vg gives the coordinates in basis T of the image (v).
Then, the matrix Mt s(p) describes the K -linear map  in coordinates.

Observe that it is easy to write the matrix M7 g(): the i-th column of M7 s(¢) is (¢(v4))7.
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Proof. We do a very simple matrix computation:

0
a1l ai2 -0 Aip . ai;
a1 a2 -+ Q2n 0 ag;
Mrs@)ow)s=| . . lefi]= = (¢p(v))r,
Gm,1 GGmy2 - GOGmn O Qg

where the 1 is in the 7-th row of the vector. We have thus obtained the result for the vectors v; in the
basis S.
The general assertion follows by linearity: Let v = )" ; b;v;. Then we obtain

Mr,s(p vazS—Zb (Mr,5(¢) © (vi)s)

=1

:sz"( vi))r = Zbl plvi))r = ( Zb vi))r = (e ()7

i=1

This shows the theorem. O

Example 1.47. C has a R-basis B = {1,i}. Let z = x + iy € Cwithz,y € R, thus zp = (y). Let
a=r+1iswithr,s € R. The map

p:C—>C, z—a-z

is R-linear. We describe Mp (). The first column is (a - 1)p = (r +is)p = (%), and the second
columnis (a-i)p = (—s+ir)p = (%), then Mp p(p) = (% 5%).

Definition 1.48. Let us denote by Homy (V, W) the set of all maps ¢ : V- — W which ate K-linear.
In the special case W =V, a K-linear map ¢ : V. — V is also called an endomorphism of V' and
we write

Endg (V) := Homg (V, V).

Corollary 1.49. Let K be a field, VW two K-vector spaces of finite dimension n and m. Let
S ={v1,...,vn} bea K-basis of Vet T = {wn,...,wn} a K-basis of W.
Then, the map

Hompg (V, W) — Maty,xn(K), ¢ — M7 s(p)

is a bijection.

It is important to stress that the bases in the corollary are fixed! The same matrix can express
different linear maps if we change the bases.

Proof. Injectivity: Suppose that M7 g(p) = Mg g(3) for ¢,1 € Hompg (V,W). Then for all
v €V, we have (p(v))r = Mrs

(p) ovsg = My 5(9)) ovg = (1 (v))r. Since the writing in
coordinates is unique, we find ¢(v) = ¢ (v) forallv € V, s0 ¢ = ).
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Surjectivity: Let M € Mat,,x,(K) be a matrix. We define ¢ € Homg (V, W) by

(p(v))r = M ovg

for v € V. Itis clear that ¢ is K-linear. Moreover, we have

Mr5(p) ovs = (p(v))r = M ovg

for all v € V. Taking v = v; such that (v;)g is the vector of which the i-th coordinate is 1 and
the rest is 0, we obtain that the i-th columns of M7 s(¢) and M are the same. This shows that
M = Mr;s(p).

O]

Definition-Lemma 1.50. Let V' be a K-vector space of finite dimension n. Let S1, S5 be two K -bases
of V. We set

052,51 = MS2751 (idV)

and we call it the basis change matrix.
(a) Cs,,s, is a matrix with n columns and n rows.

(b) Forallv e V:
vs, = Cs,.5, 0 Vg, .
In words: the multiplication of the basis change matrices by the vector v expressed in coordinates
for the basis S1, gives the vector v expressed in coordinates for the basis Ss.

(c) Cs,.s, is invertible with inverse C', g,.

It is easy to write the matrix C's, g, : its j-th column consists of the coordinates in basis S5 of the j-th
vector of basis S.

Proof. (a) This is clear.

(b) Csy,8, 0 vs, = Mg, 5, (idv) o vg, = (idv (v))s, = vs,-
(©) 051’52 o 052751 ovg, = 051752 owvg, = vg, forall v € V. This shows that 051,52 o 052751 is
identity. The same reasonning holds with the roles of .51 and S5 inverted. O

Proposition 1.51. Let V, W be K -vector spaces of finite dimension, let S1, S2 be two K-bases of V,
let Ty, Ty be two K -bases of W, and let p € Homp (V, W). Then,

MT2752 (90) = CTz,Tl o MTl,Sl (30) o 031,52'

Proof. CTQ,TI oMT1,S1 (SO) OCSLSQ ovsg, = CTQ,Tl OMT1,51 ((,D)Usl = CTz,T1 © (‘:O(U))Tl = (@(U))Tz'
]

Proposition 1.52. Let V, W, Z be K-vector spaces of finite dimension, let S be a K-basis of V, T a
K-basis of W and U a K -basis of Z. Let ¢ € Homg (V, W) and ¢ € Homg (W, Z). Then,

My,r(¢) o Mr,s(p) = My,s(i o ¢).
In words: the matrix product corresponds to the composition of maps.

Proof. Myr(¢) o Mrs(¢) ovs = Mur(¢) o (p(v)r = (¥(¢(v)))v = Mur(dop)ovs. [
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Appendix: existence of bases

For lack of time, this section will neither be taught, neither be examined.

In the lecture course “Structures mathématiques” we have introduced the sets from an intuitive and
non-rigorous point of view. A strict treatment can only take place in a logic course at a more advanced
stage (such a course is not offered at the UL for the moment — you can consult books for more details).
In set theory, there is an important axiom: the ’axiom of choix’ In set theory one shows *Zorn’s
Lemma’ which says that the axiom of choice is equivalent to the following assertion.

Axiom 1.53 (Zorn’s Lemma). Let S be a non-empty set and < a partial order on SEI We make the
following hypothesis: Any subset T' C S which is totally ordereaﬁ has an upper boundﬂ
Then, S has a maximal element.

To show how to apply Zorn’s Lemma, we prove that ant vector space has a basis. If you have seen
this assertion in your Linear Algebra 1 lecture course, then it was for finite-dimensional vector spaces
because the general case is in fact equivalent to the axiom of choice (an thus to Zorn’s Lemma).

Proposition 1.54. Let K be a field and V' # {0} a K-vector space. Then, V has a K -basis.

Proof. We recall some notions of linear algebra. A finite subset G C V is called K-linearly inde-

pendent if the only linear combination 0 = ) agg with a, € K is that where a, = 0 for all

geG
g € G. More generally, a non-necessarily finite subset G C V' is called K -linearly independent if any
finite subset H C G is K-linearly independent. A subset G C V is called a K -basis if it is K -linearly
independet and generates V'

We want to use Zorn’s Lemmal[1.33] Let
S :={G C V subset | G is K-linearly independent }.

The set S is non-empty since G = {v} is K-linearly independent for all 0 # v € V. The inclusion of
sets C’ defines an order relation on S (it is obvious — see Algebra 1).

We verify that the hypothesis of Zorn’s Lemma is satisfied: Let I" C S be a totally ordered subset. We
have to produce an upper bound E € S for T. We set E := | Jcp G. It is clear that G C E for all
G € T. One has to show that £/ € S, thus that E is K-linearly independent. Let H C E be a subset
of cardinality n. We show by induction on n that there exists G € T" such that H C G. The assertion
is clear for n = 1. Assume it proven for n — 1 and write H = H' LI {h}. There exist G', G € T such

' Axiom of choice: Let X be a set of which the elements are non-empty sets. Then there exists a function f defined
on X which to any M € X associates an element of M. Such a function is called “function of choice”.
2We recall that by definition the three following points are satisfied:

e s<sforallseS.
o Ifs<tandt < sfors,t € S, thens =t.

o Ifs<tandt <wufors,t,u € .5,thens < u.

3T s totally ordered if I" is ordered and for all pair s,¢t € T'we have s < tort < s.

4g € S'is an upper bound for T if t < g forall t € T.

Sm € S is maximal if for all s € S such that m < s we have m = s.

bi.e.: any element v € V writes as v = > jaigiwithn € Nyai,...,an € Ketgy,...,gn € G.
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that H' C G’ (by induction hypothesis because the cardinality of H' isn — 1) and h € G (by the case
n = 1). By the fact that T is totally ordered, we have G C G’ or G’ C G. In both cases we obtain
that H is a subset of G or of G’. Since H is a finite subset of a set which is K-linearly independent,
H is too. Thus, E is K-linearly independent.

Zorn’s Lemma gives us a maximal element B € S. We show that B is a K-basis of V. As element
of S, B is K-linearly independent. One has to show that B generates V. Suppose that this is not
the case and let us take v € V which cannot be written as a K -linear combination of the elements
in B. Then the set G := B U {v} is also K-linearly independent, since any K -linear combination
0=av+>."  abwithneN,a,a1,...,a, € Kandby,...,b, € B witha # 0 would lead to the

contradiction v = Z?:l _;’i b; (note that a = 0 corresponds to a K -linear combination in B which is
K-linearly independent). But, B C G € S contradicts maximality of B. O

2 Recalls: Determinants

Goals:
e Master the definition and the fundamental properties of the determinants;
e be able to compute determinants;

e know examples and be able to prove simple properties.

Definition and first properties

The determinants have been introduced the previous semester. Here we recall them from another
viewpoint: we start from the computation rules. Actually, our first proposition can be used as a
definition; it is Weierstra3’ axiomatic (see the book of Fischer).

In this section we allow that K is a commutative ring (but you can still take K = R or K = C without
loss of information).

mi,1 mi12 0 Min
m2,1 Mm22 -+ M2 n

If M = . . . is a matrix, we denote by m; = (™1 mi2 - min ) its i-th row, i.e.
M1 M2 = Mo

m1
ma

M:< | )
Mn

Proposition 2.1. Let n € N<. The determinant is a map
det : Maty,xn(K) — K, M — det(M)
such that

D1 det is K-linear in each row, that is, forall 1 < i < n, ifm; = r+ Aswith A € K, r =
(rir2 o) and s = (5152 sn), then

mi mi mi mi
mi_1 mi_1 mi_1 mi_1

det | mi =det | r+xs | = det T + A - det s
mMi41 M1 mi4+1 mi41

Mmn Mp, Mmn Mmn



25

D2 det is alternating, that is, if two of the rows of M are equal, then det(M ) = 0.
D3 det is normalized, that is, det(id,,) = 1 where id,, is the identity.
Proof. This has been proven in the course of linear algebra in the previous semester. O

We often use the notation

mi1 mi2 - Min mi1 mi2 - Min

ma 1 m22 - Man mo 1 m22 - M2p
= det

Mnp,1 Mn2 * Mnn Mnp,1 Mn,2 ° Mnn

Proposition 2.2. The following properties are satisfied.
D4 Forall A € K, we have det(X - M) = X" det(M).
D5 Ifa row is equal to 0, then det(M) = 0.
D6 If M is obtained from M by swapping two rows, then det(M) = — det(M).

D7 Let \ € Aandi # j. If M is obtained from M by adding X times the j-th row to the i-th row,
then det(M) = det(M).

Proof. D4 This follows from the linearity (D1).
DS This follows from the linearity (D1).

mi mi
mi m;
D6 Let us say that the i-th and the j-the row are swapped. Thus M = ) and M =
mj m;
Mn mn
mi mi
m; m;
det(M) +det(M) =det [ : | +det
mj mi
Mmn Mn
mi mi mi mi
Rdet | ¢ [ +det| : [ +det| : | +det
m; m; m; mi
Mn mn, mn, mn
mi mi mi
m1+m] mﬁ-mj mz"l'mj
2 det : + det : = det : 2.

Mn Mn Mn
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D7 We have
mi mi mi
mi—i-')\mj m; ”;‘j
det(M) = det : Lget | o | +A-det | : | Zdet(M)+A-0=det(M).
'n:L]- m; T'.LJ'

Proposition 2.3. The following properties are satisfied.

D8 If M is of (upper) triangular form

Al mi2 m13 - Migp
0 X2 ma3 - man
0 0 A3 - M3
)
0 0 0 An

then det(M) = [[i—; i
D9 If M is a bloc matrix ({ B) with square matrices A and C, then det(M) = det(A) - det(C).

Proof. Left to the reader. O

Leibniz’ Formula

Lemma 24. For 1 < i < n, lete; := (0010 0) where the 1 is at the i-th position. Let
eq(
ot
o:{l,....,n} = {1,...,n} be amap. Let M = : . Then
ev:J"(n)
0 if o is not bijective,
det(M) =
sgn(o) if o is bijective (o € Sy,).

Proof. If o is not bijective, then the matrix has twice the same row, thus the determinant is 0. If o is
bijective, then o is a product of transpositions ¢ = 7,.0- - -o7; (see Algebra 1). Thus sgn(o) = (—1)".
Let us start by o = id. In this case the determinant is 1 and thus equal to sgn(c). We continue by
induction and we suppose thus (induction hypothesis) that the result is true for » — 1 transpositions
(with » > 1). Let M’ be the matrix that corresponds to ¢/ = 7,._1 o --- o 7; its determinant is
(—=1)"~! = sgn(o’) by induction hypothesis. The matrix M is obtained from M’ by swapping two

rows, thus det(M) = —det(M’') = —(—1)""1 = (=1)". O
mi,1 mi2 - Min
m21 m22 - M2n

Proposition 2.5 (Leibniz’ Formula). Ler M = : S € Maty,xn(K). Then,
My mne e Mg

det(M) = Y sgn(0) - my (1) - Mao(@) - M o(n)-
ocESH
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Proof. The linearity of rows (D1) gives us

81‘1 eil

n mo n n €iq

_ m3 | ms3
det(M) = E mi i, . = E E my.i,M2 4, .
i1=1 m i1=11ia=1 m

n n

eil
67;2

n n
— E § : €ig
R e m17i1m27i2 . mn,in )

i1=142=1 in=1 .
Cin

= My (1) M2e@) M a(n) - 580(0),
oESH

61'1
€i2

where the last equality results from Lemma 2.4l Note that the determinant of the matrix “s | s
eip,

non-zero only if the ;s are all different; this allows us to identify it with the permutation o (j) = i;.

That the determinant is unique is clear because it is a function of the coefficients of the matrix. O

Corollary 2.6. Let M € Maty,«,,(K). We denote by M'" the transposed matrix. Then, det(M) =
det(M™).

Proof. We use Leibniz’ Formula2.3l Note first that sgn(o) = sgn(o 1) for all o in S,, since sgn is a

-1

homomorphism of groups, 17! = 1 et (—1)~! = —1. Write now

M1,0(1)M2,0(2) " Mno(n) = Mo=1(o(1),0(1)Mo1(0(2)),0(2) * " Mo~ 1(a(n)),0(n)
= Me-1(1),1Me-1(2),2 " " Mo—1(n)n>

where for the last equality we have only written the product in another order since the values
o(1),0(2),...,0(n) run through 1,2, ... n (only in another order).
We thus have

det(M) = Z Sgn(g)ml,a(l)mZU(Q) © M o (n)

U‘ESn
= sgn(o ) Mg-1(1)1Me-1(2)2° * Mg—1(n)
gESy
-1 tr tr tr
= Z sgn(o )ml,afl(l)mzafl(z)"'mn,afl(n)
oc€ESy
_ tr tr tr
= Z Sgn(a)ml,o(l)m2,a(2) T My o(n)
O'ESn
= det(M”),

where we have used the bijection S,, — S,, given by o — o —'; it is thus makes no change if the sum
runs through o € S, or through the inverses. O

Corollary 2.7. The rules D1 to D9 are also true for the columns instead of the rows.

Proof. By taking the transpose of a matrix, the rows become columns, but by Corollary the
determinant does not change. O



28

Laplace expansion

2 RECALLS: DETERMINANTS

mi1 mi2 - Min
mo1 M22 -+ M2n

Definition 2.8. Letn € Nyg and M = . € Maty,xn(K). For1 <i,j < nwe
M1 M2~ Mo

define the matrices

mi 1 mij—1 0 mi 41 mi,n
mi—1,1 =+ Mi—15-1 0mi_1 541  Mi—1n
M, ;= 0 00 1 0 0 € Maty,xn(K)
mit1,1 - Mit1,5—1 0 Mig1 41 = Mipin
Mn,1 Mnj—1 0 Mn,j+1 Mn,n
and
mi 1 mij—1 M1 41 min
! Mi—1,1 =+ Mi—1,5—1 Mi—1,541 = Mi—1n
Mz’,j Mi41,1 = Mi41,5—-1 Ma41,54+1 ° Mit1,n € Matn—1><n—1(K)'
mn,1 Mn,j—1 Mn, j+1 Mn,n

~ . 0
Moreover, let M; ; be the matrix obtained from M by replacing the j-th column by (1]

1 is at the i-th position.

, where the

The determinants det(M; ;) are called the minors of M.

Lemma 2.9. Let n € Nyg and M € Mat,xn(K). Forall 1 < i,j <n, we have

(a) det(M,;J)

(b) det(Mm) = det(Mi’j).

(—1)+3 - det(M}),

Proof. (a) By swapping 7 rows, the row with the zeros is the first one. By swapping j columns, we

obtain the matrix

1 0 0 0

0 mi mij—1  Mij+1 min

Omi—11 =+ My—15-1 Mi—1j4+1 = Mi—1n S Matan(K)
0 mMit1,1 = Mig15—1 Mit1,j41 = Mitln

0 mn Mp,j—1 Mnj+l Mn,n

of which the determinant is det(Mi" j) (because of D9), which proves the result.

(b) Adding —m; j, times the j-th column to the £-th column of Miyj makes the coefficient (7, k) equal
to O for k # ¢ without changing the determinant (Corollary 2.7). O

Proposition 2.10 (Laplace expansion for the rows). Let n € Nsg. Forall 1 < i < n, we have the
equality

n

det(M) =) "(=1)"m; ; det(M] ;)
j=1
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Proof. By the axiom D2 (linearity in the rows), we have

mi
n _— n n o
det(M) = mij| & | = mijdet(Mig) =Y (=1)"my;det(M;]).
j=1 =1 j=1
mMn

Corollary 2.11 (Laplace expansion for the columns). For alln € Nsgand all 1 < j < n, we have

the formula

det(M) :=> " (=1)"m; ; det(M] ).

i=1
Proof. Tt suffices to apply Proposition 2.0 to the transposed matrix and to remember (Corollary 2.6])
that the determinant of the transposed matrix is the same. O

Note that the formulas of Laplace can be written as
n n
det(M) = " mj;det(M;;) = > m;det(M;).
j=1 i=1

Adjoint matrices

Definition 2.12. The adjoint matrix adj(M) = M# = (mféj) of the matrix M € Matyx,(K) is
defined by m; := det(M;;) = (—1)"*9 det(M],).

Proposition 2.13. For all matrix M € Mat,, ., (K ), we have the equality

M# .M =M - M#* = det(M) -id,,.

Proof. Let N = (n; ;) := M - M#. We compute n; ;:

n n
_ i _
nij = mime; =Y det(Mg)my;.
k=1 k=1

If i = j, we find n; ; = det(M) by Laplace’s formula. But we don’t need to use this formula and we
continue in generality by using det(Mj, ;) = det (M, %) by Lemma [2.9] (b). The linearity in the i-th
column shows that 3", det(Mj, ;)my, ; is the determinant of the matrix of which the i-th column is
replaced by the j-th column. If ¢ = j, this matrix is M, so m;; = det(M). If i # j, this determinant
(and thus n; ;) is 0 because two of the columns are equal.

The proof for M# - M is similar. O

Corollary 2.14. Let M € Mat,,x, (K).

(a) If det(M) is invertible in K (for K a field this means det(M) # 0), then M is invertible and the
inverse matrix M~ is equal to WM #,



30 3 EIGENVALUES

(b) If M is invertible, then M~ det(M) = M#.

Proof. Proposition 2. 131 O
We finish this recall by the following fundamental result.

Proposition 2.15. Let M, N € Mat, ., (K).

(a) det(M - N) = det(M) - det(N).

(b) The following assertions are equivalent:

(i) M is invertible;

(ii) det(M) is invertible.
In this case det(M ') = W.

Proposition 2.16. (a) has been shown in the Linear Algebra course.
(b) is obvious by Proposition 2. 13

3 Eigenvalues

Goals:
e Master the definition and fundamental properties of eigenvalues and eigenvectors;
e be able to compute eigenspaces;

e know examples and be able to prove simple properties.

Example 3.1. (a) Consider M = (3} Y) € Matayx2(R). We have:

e (39)(§)=3-(})and
o (32)(})=2-(9)
(b) Consider M = ({ 3) € Mataxa(R). We have:
o (33)(§)=3-(§)forallacR
* (52)(5)= (3%#) =2-(%) < a= —b. Thus forall a € R, we have
(33 (%) =2-(%).
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o Let N € R. Welookat (33)(§) = (2a+b) & (2a+b=XaAN2b=X\b) & (b=
OANA=2Va=0))V ()\ 2Ab=0) < b 0/\()\_2v@_0).
Thus, the only solutions of M (§) = X - (§) with a vector (§) # () are of the form
M(§)=2-(§)witha € R.

e Consider M = ( % §) € Matoxa(R). Welookat ( °;§) (%) = (25, ). Thisvector is equal
toX- (%) ifand only ifb = \-aand a = —\ - b. This gives a = —)\? - a. Thus there is no
A € R with this property if ($) # ().

We will study these phenomena in general. Let K be a commutative (as always) field and V' a K-
vector space. We recall that a K-linear application ¢ : V' — V is also called endomorphism and that
we denote Endg (V') := Homg (V, V).

Definition 3.2. Let V be a K -vector space and ¢ € Endg (V).

e )\ € K is called eigenvalue of ¢ if there exists 0 # v € V such that o(v) = \v (or equivalently:
ker(p — A -idy) # 0).

We set E,(\) := ker(¢ — X -idy). Being the kernel of a K-linear application, E,(\) is a
K -subspace of V. If X is an eigenvalue of ¢, we call E,()) the eigenspace for \.

Any 0 # v € E, () is called eigenvector for the eigenvalue .

We denote Spec(p) = {\ € K | Ais an eigenvalue of p}.

Let M € Mat,,x,,(K). We know that the application

al al
op K — K", <>»—>M(>
an an

is K-linear, thus ¢y € Endg (K™). In this case, we often speak of eigenvalue/eigenvector
of M (instead of pnr). We write Ep(N) := Eg,, ().

Proposition 3.3. The eigenspaces E,(\) and Eyr(\) are vector subspaces.

Proof. This clear since the eigenspaces are defined as kernels of a matrix/linear endomorphism, and
we know that kernels are vector subspaces. O

We reconsider the previous example.

Example 3.4.

(a) Let M = (39) € Mataxo(R).
e Spec(M) ={2,3};
o En(2) =
e En(3)=(

o The matrix M is diagonal and the canonical basis () , () consists in eigenvectors of M.
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(b) Let M = (8 %) € Matgxg(R).

e Spec(M) ={2,3};

o En(2)=((4H))

o En(3)=((g))

e The matrix M is not diagonal, but K* has basis (}) ( 4 ) whose elements are eigenvectors
of M.

o Let us define the matrix whose columns are the above base vectors C' := ((1) 4 ) This
matrix is invertible (since the columns form a basis) and we have

Cc'Mo = (}9),

a diagonal matrix with eigenvalues on the diagonal! Note that we do not need to compute

with matrices, the product of matrices is just a reformulation of the statements seen before.
(¢) Let M = (2, ) € Mataxa(R).
e Spec(M) = {6,9};
o En(6) =((1))
o En(9) = (1))

e The eigenvectors (1), (}) form a basis of K* and thus the matrix C := (1 }) whose
columns are these base vectors is invertible and

CT'MC = (8 8) )
again a diagonal matrix with the eigenvalues on the diagonal!
(d) Let M = (%3) € Matayo(R).

e Spec(M) = {2};
o En(2)={({))

o K2 has no basis consisting of eigenvectors of M, thus we cannot adapt the procedure of the

previous examples in this case.
(e) Let M = ( ° §) € Matayxa(R).

e Spec(M) = 0;

o The matrix M has no eigenvalues in R.

Example 3.5. Let K = R and V' = C*°(R) be the R-vector space of smooth functions f : R — R.
Let D : 'V — V be the derivation f — Df = % = f'. It is an R-linear application, whence
D e EndR(V).

Let us consider f,(x) = exp(rz) with r € R. From Analysis, we know that D(f,) = r - exp(rz) =
- fr. Thus (x — exp(rz)) € V is an eigenvector for the eigenvalue r.

We thus find Spec(D) = R.
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In some examples we have met matrices M such that there is an invertible matrix C' with the property
that C~*MC is a diagonal matrix. But we have also seen examples where we could not find such a
matrix C.

Definition 3.6. (a) A matrix M is said to be diagonalizable if there exists an invertible matrix C such
that C~'MC is diagonal.

(b) Let V be a K-vector space and ¢ € Endi (V). We say that ¢ is diagonalizable if V' admits a
K-basis consisting of eigenvectors of .

This definition precisely expresses the idea of diagonalization mentioned before, as the following
lemma tells us. Its proof indicates how to find the matrix C' (which is not unique, in general).

Lemma 3.7. Let V be a K-vector space and let ¢ € Endg (V') and Spec(p) = {A1,...,\r}. The
following statements are equivalent:

(i) @ is diagonalizable.

(ii) There is a basis S of V such that

A1 00 0 OO O0OTO0OO0OTO O

coo
O.
> o
o
coo
[evNenYan]

o
[en]
o
[e=]
[e=]
oo
o
[e=]
o
[e=]

MS,S(SO): OODOD)\Q‘ 0 0 0 O

o
o
=
o
=
o
oo
o
3
o
=

Proof. “(i) = (i1)”: By definition, there exists a K -basis of V' consisting of eigenvectors. We sort
them according to the eigenvalues:

S = {ULl""71)176177}2,17"'77}2,827"'7"'7'"7UT717"'7UT,67~}

where for all 1 < 7 < r the vectors v; 1, ..., v; ¢, are eigenvectors for the eigenvalue A;. The form of
the matrix Mg s(y) is clear.
“(i1) = (1)”: The basis S consists of eigenvectors, hence ¢ is diagonalizable by definition. O

Proposition 3.8. Ler M € Mat,, «,(K) and @ be the K-linear application K™ — K" given by
al al
< : > — M ( : ) The following statements are equivalent.

an Qn

(i) wu is diagonalizable.

(ii) There exists C € Mat,x,(K) invertible such that C~'MC is a diagonal matrix; thus M is
diagonalizable.
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Proof. “(i) = (ii)”: Let .S be the K-basis of K™ which exists in view of diagonalizability of . It
suffices to take C' to be the matrix whose columns are the elements of basis S.

“(i1) = (i)”: Let e; be the ¢-th standard vector. It is an eigenvector for the matrix C' “Mmc, say with
eigenvalue )\;. The equality C~MCe; =\ -¢; gives M Ce; = \; - Cey, i.e. Ce; is an eigenvector for
the matrix M of same eigenvalue. But, C'e; is nothing but the i-th column of C'. Thus, the columns
of C form a basis of K™ consisting of eigenvectors. O

The question that we are now interested in, is the following: how can we decide whether ¢ (or M) is
diagonalizable and, if this is the case, how can we find the matrix C'? In fact, it is useful to consider
two “sub-questions” individually:

e How can we compute Spec(p)?

e For \ € Spec(¢p), how can we compute the eigenspace F,(\)?

We will answer the first question in the following section. For the moment, we consider the second
question. Let us start by Eps(\). This is Eps(N\) = ker(M — A -id,,). This computation is done using
Gauss’ reduction.

Example 3.9. (a) For the matrix M = ( ;) € Matayx2(R) and the eigenvalue 9 we have to
1
0

compute the kernel of ( 5, {,) —9-(39) = (:i %) Recall that in order to compute the kernel

of a matrix, one is only allowed to do operations on the rows (and not on the columns since these
mix the variables). We thus have

ker((Z31)) = ker((5'g)) = (1))

For the eigenvalue 6 we do a similar computation:

ker(( 5 10) —6-(§9)) =ker((Zi 1)) = ker(( ' 5)) = ((1))-

(b) The matrix M = (_33 _%1 _%) € Mats«3(R) has eigenvalues —1,1, 2.
For the eigenvalue 1, we compute the kernel
er((3 3 3) -1 (139)) =ker (51 4))
-3 -1 -2 001 -3 -1 —
—ker ((1)—12(1)) —ker((
000

For the eigenvalue —1, we compute the kernel

ker((_%_%_%)‘i‘l‘(ég?)):ker((iié))
:ker((

cor
oo
cor
NG
S—
Il
—
—
| o
AN
~
~

QoW
o=
o=
SN——
~—
|
o
@

]
—~
/N
oo
oo

For the eigenvalue 2, we compute the kernel

(3,4 3) 2 (131)) = (44 3)) = v

OO
oo

We write these vectors in the matrix C = ( 0 1

1
C‘I-M-C’:(
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This explains how to find the eigenspaces in examples. If one wishes to compute the eigenspace
E,(\) = ker(¢ — A -idy ) in a more abstract way, one has to choose a K -basis .S of V' and represent
¢ by the matrix M = Mg s(p). In the basis S, E()) is the kernel ker(AM — X - id,), and we have
already seen how to compute this one.

Let us finally give a more abstract, but useful reformulation of the diagonalizablility. We first need a
preliminary.

Lemma 3.10. Let V be a K-vector space and let ¢ € Endi (V') and M1, ..., . € K be two by two
distinct. Then, Y ;| E,(\i) = @_; Ex(N\).

Proof. We proceed by induction on » > 1. The case » = 1 is trivial. We assume the result true
for » — 1 > 1 and we show it for . We have to show that for all 1 < ¢ < r we have

0=E,\M)N > E,(\)=E,)Nn @ Ex(\),
J=1,j#1 j=1,j#i

where the second equality follows from the induction hypothesis (the sum has » — 1 factors). Let
v € Ep(N) ND)_y s Ep(Aj)- Then, v =370, ., v withv; € Ey();). We have

T T T T
p)=Aiv= 3 Nev=el D w)= Y el)= 3 Ny
J=1j#i J=1,j#i J=1j#i J=1j#1
thus
T
0= Z ()\j_>\i)'vj-
j=1#i
Since the sum is direct and \; — A\; # 0 for all ¢ # j, we conclude that v; = 0 forall 1 < j < r,
j # 1, sothatv = 0. O

Proposition 3.11. Let ¢ € Endg (V). The following statements are equivalent:
(i) @ is diagonalizable.

(”) V= @)\GSpec(cp) EGD()‘>

Proof. “(i) = (ii)”: We have the inclusion ) AESpec() E,(A\) € V. By Lemma[3.10, the sum is
direct, therefore we have the inclusion @ ,cgpec(p) Ep(A) € V. Since ¢ is diagonalizable, there
exists a K -basis of V' consisting of eigenvectors for ¢. Thus, any element of this basis already belongs

t0 D \espec(s) Eie(A), whence the equality B cgpec() Eo(A) = V.
“(ii) = (1)”: For all A € Spec(y) let Sy be a K-basis of the eigenspace £, (). Thus S =

U AeSpec(y) S is a K-basis of V' consisting of eigenvectors, showing that  is diagonalizable. O
4 Excursion: euclidean division and gcd of polynomials

Goals:

e Master the euclidean division and Euclide’s algorithm;
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e be able to compute the euclidean division, the gcd and a Bezout identity using Euclide’s al-
gorithm.

We assume that notions of polynomials are known from highschool or other lecture courses. We
denote by K [X] the set of all polynomials with coefficients in K, where X denotes the variable. A
polynomial can hence be written as finite sum Z?:o a; X" with ag, ...,aq € K. We can of course
choose any other symbol for the variable, e.g. x, T', O; in this case, we write Z?:o a; T, Z?:o a; %,
S a0 Kz], K[T), K[O), etc.

The degree of a polynomial f will be denoted deg( f) with the convention deg(0) = —oo. Recall that
forany f, g € K[X] we have deg(fg) = deg(f) + deg(g) and deg(f + ¢g) < max{deg(f), deg(g)}.

Definition 4.1. A polynomial f = Z;jzo a; X" of degree d is called unitary if ag = 1.
A polynomial f € K[X] of degree > 1 is called irreducible if it cannot be written as product f = gh
with g, h € K[X] of degree > 1.

It is a fact that the only irreducible polynomials in C[X] are the polynomials of degree 1. (One
says that C is algebraically closed.) Any irreducible polynomial in R[X] is either of degree 1 (and
trivially, any polynomial of degree 1 is irreducible), or of degree 2 (there exist irreducible polynomials
of degree 2, such as X2 + 1, but also reducible polynomials, such as X? — 1 = (X — 1)(X + 1);
more precisely, a polynomial of degree 2 is irreducible if and only if its discriminant is negative).

Definition 4.2. A polynomial f € K[X] is called divisor of a polynomial g € K[X] if there exists
q € K[X] such that g = qf. We use the notation notation f | g.

If f divides g, we clearly have deg(f) < deg(g).
For everything that will be done on polynomials in this lecture course, the euclidean division plays a
central role. We now prove its existence.

Theorem 4.3 (Euclidean division). Let g = Z;‘i:o b; X' € K[X] be a polynomial of degree d > 0.
Then, for any polynomial f € K|[X] there exist unique polynomials q,r € K[X] such that

f=qg+r and deg(r) <d.

We call r the rest of the division.

Proof. Let f(X) =1 ,a; X’ € K[X] of degree n.

Existence: We prove the existence by induction on n. If n < d, we set ¢ = 0 and r = f and we are
done. Let us therefore assume n > d and that the existence is already known for all polynomials of
degree strictly smaller than n. We set

AX) = f(X) —an - b X" g(X).

This is a polynomial of degree at most n — 1 since we annihilated the coefficient in front of X". Then,
by induction hypothesis, there are ¢;, 71 € K|[X] such that f; = g1g + r1 and deg(r1) < d. Thus

F(X) = [1(X) + anby ' g(X) X" = g(X)g(X) +r1(X)

where ¢(X) = ¢1(X) + anbng”_d and we have shown the existence.
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Uniqueness: Assume that f = gg+r = q19 + 1 with ¢, ¢1, 7,7 € K[X] and deg(r),deg(r1) < d.
Then g(q — q1) = r1 — 7. If ¢ = ¢, then r = 71 and we are done. If ¢ # q;, then deg(q — ¢1) > 0
and we find deg(ry —r) = deg(g(q — q1)) > deg(g) = d. This is a contradiction, thus ¢ # ¢; cannot
appear. O

In the exercises, you will do euclidean divisions.

Corollary 4.4. Let f € K[X]| be a polynomial of degree deg(f) > 1 and let a € K. Then, the
following statements are equivalent:

(i) f(a)=0
(i) (X —a)|f
Proof. (i) = (ii): Assume that f(a) = 0 and compute the euclidean division of f(X) by X — a:
f(X)=q(X)(X —a)+r

for r € K (a polynomial of degree < 1). Evaluating this equality in a, gives 0 = f(a) = q(a)(a —
a) + r = r, and thus the rest is zero.

(ii) = (i): Assume that X — a divides f(X). Then we have f(X) = ¢(X) - (X — a) for some
polynomial ¢ € K[X]. Evaluating this in a gives f(a) = ¢(a) - (a —a) = 0. O

Proposition 4.5. Let f,g € K[X| be two polynomials such that f # 0. Then there exists a unique
unitary polynomial d € K[X], called greatest common divisor ged(f, g), such that

e d| fandd | g (common divisor) and

o forall e € K[X] we have ((e| fande| g) = e | d) (greatest in the sense that any other
common divisor divides d).

Moreover, there exist polynomials a,b € K[X] such that we have a Bezout relation
d=af + bg.
Proof. We show that Euclide’s algorithm gives the result.

e Preparation: We set

fo=1f, fi=g if deg(f) > deg(yg),
fo=g9, fi=f otherwise.

We also set By = (§9).

o If f1 =0, we stop and set d := fj.
If f1 # 0, we do the euclidean division

fo= fiq1 + fo where ¢q, fo € K[X] such that(f2 =0or deg(fg) < deg(fl)).

We set Ay := (—1(]1 (1)), B; = A1 By.

We have (%’) = A (;(1)) =B (j%)
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o If fo =0, we stop and we set d := f;.
If fo # 0, we do the euclidean division

fi = faqo + f3 where g2, f3 € A such that (f3 = 0 or deg(f3) < deg(f2))-

We set As := (_1‘72 (1)), By := Ay B;.

We have (}E) = Ay (]{j) = By (;(1))

o If f3 =0, we stop and set d := fs.
If f3 # 0, we do the euclidean division

fo = fsqs + fa  where g3, fs € A such that (fy = 0 or deg(fs) < deg(f3)).

We set Az := (_1(]3 (1)), Bs := A3Bs.

We have (}2) = Aj (J’jz) = B3 (;é)

o If f, =0, we stop and set d := f,,_1.
If f,, # 0, we do the euclidean division

Fot = fotn + fos1 Where gn, far1 € A such that (i1 = 0 or deg(fni1) < deg(f)-

We set 4,, .= (TI" (1)), B, = A, B,_1.

fn _ fn _ f
We have ( le) =A, (fn—l) =B, (f(1)>

It is clear that the above algorithm (it is Euclide’s algorithm!) stops since

deg(fn) < deg(fn-1) <--- <deg(f2) < deg(f1)

are natural numbers and —oo.
Let us assume that the algorithm stops with f,, = 0. Then, d = f,_;. By construction we have:

fn _ _ _ _ +8
()= =B (B) =D (f) = (520,

d=rf1+ sfo. 4.1)

Note that the determinant of A; is —1 for all 4, hence det(B,_1) = (—1)""!. Thus the matrix
C:= (-1t (” _(f) is the inverse of B,,_;. Therefore

.
) = ) = _( d=1)"p
(fé) = CBn (fé) =C(q) = (d(_m—la) ’
showing d | f1 and d | fy. This shows that d is a common divisor of fp and f;. If e is any common

divisor of fp and f1, then by Equation (@.I)) e divisdes d. Finally, one divides d, r, s by the leading
coefficient of d to make d unitary.

showing

If we have d1, do unitary gcds, then d; divides do and ds divides d;. As both are unitary, it follows
that d; = dy, proving the uniqueness. O
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In the exercises, you will train to compute the gcd of two polynomials. We do not require to use
matrices in order to find Bezout’s relation; it will simply suffice to ““ go up” through the equalities in
order to get it.

S Characteristic polynmial

Goals:
e Master the definition of characteristic polynomial;
e know its meaning for the computation of eigenvalues;
e be able to compute characteristic polynomials;
e know examples and be able to prove simple properties.

In Section 3] we have seen how to compute the eigenspace for a given eigenvalue. Here we will answer
the question: How to find the eigenvalues?
Let us start with the main idea. Let A € K and M a square matrix. Recall

Ey(M\) =ker(A-id — M).
We have the following equivalences:
(1) Ais an eigenvalue for M.
(i) Ear(A) # 0.
(iii) The matrix A - id — M is not invertible.
(iv) det(A-id — M) = 0.

The main idea is to consider A as a variable X. Then the determinant of X - id — M becomes a
polynomial in K [X]. It is the characteristic polynomial. By the above equivalences, its roots are
precisely the eigenvalues of M.

Definition 5.1. o Let M € Maty,xn(K) be a matrix. The characteristic polynomial of M is
defined by
charpoly ;(X) := det (X -id, — M) € K[X].

e Let V be a K-vector space of finite dimension and ¢ € Endi (V') and S a K-basis of V. The
characteristic polynomial of ¢ is defined by

charpoly,, (X):= ChaYPOIYM&S(w) (X).

Remark 5.2. Information for ‘experts’: Note that the definition of characteristic polynomials uses
the determinants in the ring K[X]. That is the reason why we presented the determinants in a more
general way in the recall. Alternatively, one can also work in the field of rational functions over K,
i.e. the field whose elements are fractions of polynomials with coefficients in K.
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Lemma 5.3. Let M € Mat, xp(K).

(a) charpoly ,,;(X) is a unitary polynomial of degree n.

(b) charpoly ,,(X) is conjugation invariant, i.e., for all N € GL,,(K) we have the equality
charpoly ,(X) = charpoly x—1 3,5 (X).

Proof. (a) This is proved by induction on n. The case n = 1 is clear because the matrix is (X —my 1),
hence its determinant is X — my ;.

For the induction step, recall the notation MZ’ ; for the matrix obtained by M when deleting the i-th
row and the j-th column. Assume the result is proved for n — 1. By Laplace expansion, we have

n
charpoly;(X) = (X —m1,1) CharpolyM{’l(X) - Z(—l)’mi’l ~det (X -id — ]\4);1
i=2
By hypothesis induction, charpoly,,, , (X) is a unitary polynomial of degree n — 1, hence (X —
mq,1) charpoly ;| (X) is unitary of degree n. In the matrix (X -id — M); | with i # 1, the variable
X only appears n. — 2 times. Thus in the characteristic polynomial, it can only appear to the n — 2-th

power at most. Consequently, charpoly,,(X) is unitary.
(b) We use the multiplicativity of the determinant for the ring K[X| (Proposition 2.15)).

charpoly y—1 5 (X) = det(X -id, — N"'MN) = det(N (X -id, — M)N)
= det(N)"tdet(X -id,, — M) det(N) = det(X - id,, — M) = charpoly,(X).
O
Corollary 5.4. Let V be a K-vector space of finite dimension n.
(a) charpoly,(X) is a unitary polynomial of degree n.
(b) charpoly,, (X) is independent from the choice of the basis of V' which appears in its definition.

Proof. (a) Lemmal[3.3](a).
(b) Let S and T be two basis of V. The statement follows from Lemma [5.3] (b) and the equality
Mrz(p) = Cgip o Mg,s(¢) o Csr. O

We reconsider the examples of Section 3
30
Example 5.5. (a) Let M = 0 2 € Matayo(R). We find

charpoly ;(X) = (X — 3)(X — 2).

(It is important to know the factorization in irreducible polynomials of the characteristic polyno-
mial. Thus it is useless to write it as X* —5X + 6.)

3 1
(b) Let M = (0 2) € Mataya(R). We find once again

charpoly;(X) = (X — 3)(X — 2).
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5 1

(c) Let M = (_4 10

) € Matayo(R). We find

charpoly ;(X) = (X — 5)(X — 10) + 4 = (X — 6)(X —9).

Note that in order to simplify the computation, Lemma [5.3] (b) allows us to use the conjugate

-1
11 5 1 11 6 0
. _ h . he ch ..
matrix (1 4) (_4 10) (1 4) (O 9) for the computation of the characteristic

polynomial, thus one can immediately write the factorization in linear factors (in general, this
will not be possible).

(d) Let M = ((2) ;) € Matayo(R). We find

charpoly ;(X) = (X — 2)?,

a polynomial with a double root.

(e) Let M = <_01

1
0) € Matgxg(R). We find

charpoly;(X) = X2 +1,
a polynomial that does not factor in linear factors in R[X].

2 1 1
(f) Let M = ( _33 2 _32> € Matsy3(R). For the characteristic polynomial, we compute the determ-
inant

=(X-2)- X1_2X_f2‘+3‘ 3lfj2‘+3'});}2:§

=(X-2)((X=2)(X+2)+3)+3- (- (X+2)+1)+3-(3+ (X —2))
=(X-2)(X?-1)=(X-2)(X -1)(X +1)

Proposition 5.6. (a) For M € Mat,,»,(K) we have
Spec(M) = {a € K | charpoly,;(a) =0} ={a € K| (X —a) | charpoly,,(X)}.
(b) For ¢ € Endg (V') with a K-vector space V' of finite dimension, we have
Spec(¢) = {a € K | charpoly,(a) =0} ={a € K| (X —a) | charpoly,(X)}.
Proof. 1t suffices to prove (a). The first equality follows from (with a € K):

a € Spec(M) < ker(a-id,, — M) # 0 < det(a - id,, — M) = 0 & charpoly,,(a) = 0.

=charpoly ,;(a)

The second equality is just the fact that a € K is a root of a polynomial f if and only if (X — a)|f
(Corollary 4.4)). d
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We have thus identified the eigenvalues with the roots of the characteristic polynomial. This answers
our question in the beginning: In order to compute the eigenvalues of a matrix, compute its char-
acteristic polynomial and find its roots.

But the characteristic polynomial has another important property that was discovered by Cayley and
Hamilton. We first need to introduce some terminology.

Definition 5.7. (a) Let M € Mat,, «n(K) be a matrix. If f(X) = Z?:o a; X' € K[X] is a polyno-
mial, then we set f(M) = Z?:o a;M? € Mat,xn,(K). Note: M° = id,,.

(b) Let ¢ € Endg (V') be an endomorphism of a K -vector space V. If f(X) = Zg:o a; X' € K[X]
is a polynomial, then we set f(p) = Z?:o a; ', which is still an endomorphism in End (V).
Be careful: ¢' = popo---o¢et’ =idy.
% times

Definition-Lemma 5.8 (For mathematicians only). (a) The application “evaluation”
evy : K[X] = Matyun(K), f(X)— f(M)
is a ring homomorphism (even a homomorphism of K -algebras).
(b) The application “evaluation”
evy : K[X] = Endg(V), f(X)— f(p)
is a ring homomorphism (even a homomorphism of K -algebras).

Proof. Easy computations. O
Theorem 5.9 (Cayley-Hamilton). Let M € Mat,,x,,(K). Then,
charpoly (M) = 0,, € Mat, xn(K).
Proof. The trick is to use adjoint matrices. In Mat,, ., (K [X]) we have
(X -id, — M)# - (X -id, — M) = det(X -id,, — M) - id, & charpoly, (X) -idn.  (5.2)

The idea of the proof is very simple: if one replaces X by M in (3.2)), one obtains 0, since on the left
hand side we have the factor (M -id,,— M) = M — M = 0. The problem is that in Mat,, x, (K[X]), X
appears in the coefficients of the matrices, and we are certainly not allowed to replace a coefficient of a
matrix by a matrix. What we do is to write a matrix whose coefficients are polynomials as polynomial
whose coefficients are matrices:

d k d k
Doh0 @11 kXY e Y 0k X da [k 0 Qlak

=>1 ¢+ |- XPid,

d k d k k=0
Zk:U an717kX T Ek:() an7n7kX anvluk e a’?’L,TL,k

Having this done, one would have to show that the evaluation of this polynomial with matrix-coeffi-
cients in a matrix gives rise to a ring homomorphism. Unfortunately, the matrix ring is not commutat-
ive, hence the developed theory does not apply. The proof that we give avoids this problem by doing
a comparison of the coefficients instead of an evaluation, but is based on the same idea.
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The definition of adjoint matrix shows that the largest power of X that can appear in a coefficient of
the matrix (X -id,, — M)# is n— 1. As indicated above, we can hence write this matrix as polynomial
of degree n — 1 with coefficients in Mat,, ., (K):

n—1
(X -id,, — M)* = ZBZ»Xi with  B; € Mat,x,(K).
i=0

We write charpoly;,(X) = Y7, a; X" (ol a, = 1) and consider Equation (3.2)) in Mat,, x,, (K):

n n—1
charpoly,,;(X) -id,, = Zai id, - X' = (ZBiXi)(X -id,, — M)
=0

i=0
n—1 ' ' n—1 '
=Y (B, X" — B,MX") = —ByM + Z(BZ-_1 —BM)X'+ B, 1 X"
1=0 =1

We compare the coefficients (still matrices!) to obtain
ap - ldn = —BQM, a; - ldn = Bi—l — BZM for 1 < ) <n-— 1 and Bn—l = ldn

This comparision of coefficients allows us to continue with our calculations in Mat,,«,, (K) in order
to obtain charpoly ,,(M) = 0,, as follows:

n n—1
charpoly (M) -id, = Y "a;- M = —=BoM + Y (Bi-1 — BiM)M' + B, M"
=0 =1
= —ByM + BoM — B{M? + B{M? — ByM?3 + BoM? — .- — B, _1M" + B,_{M" = 0,.

O]

The theorem of Cayley-Hamilton is still true if one replaces the matrix M by an endomorphism ¢ €
Endg (V).

Theorem 5.10 (Cayley-Hamilton for endomorphisms). Let V' be a K -vector space of finite dimension
and ¢ € Endk (¢). Then, charpoly,,(¢) =0 € Endg (V).

Proof. By definition we have, charpoly,,(X) = charpoly (. (X) and by Theorem[5.9)
0 = charpoly yz, () (Ms,s(p)) = Ms,s(charpoly g () (¢)) = Ms,s(charpoly,(¢)),

thus charpoly, () = 0. This computation is based on Mg s(p") = (ngg(gp))i (see exercises) [

6 Minimal polynomial

Goals:
e Master the definition of minimal polynomial;

e know its meaning for the computation of eigenvalues;
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e know how to compute minimal polynomials;

e know examples and be able to prove simple properties.
Beside the characteristic polynomial, we will also introduce the minimal polynomial.
Definition-Lemma 6.1. Ler M € Mat,,x,(K) be a matrix.

(a) There exists a unique unitary polynomial mipo,,;(X) € K[X| of minimal degree with the prop-
erty mipo,; (M) = 0,,. This polynomial is called the minimal polynomial of M.

(b) Any polynomial f € K[X] with the property f(M) = 0,, is a multiple of mipo,,;(X).

(c) For any invertible matrix N € Maty,x,(K), we have mipo -1,y (X) = mipoy,(X).

(d) Let ¢ € End (V) for a K-vector space V' of finite dimension with K -basis S. We set
mipo,, (X) := mipoyy () (X)

and call it minimal polynomial of . This polynomial is independent from the choice of the
basis S.

Proof. (a,b) By Theorem of Cayley-Hamilton there exists a polynomial 0 # f € K[X] that
annihilates M. Let us now consider the set of such polynomials

E={feK[X]|f#O0and f(M) = 0}.

We choose unitary g € F of minimal degree among the elements of F.
We will use the euclidean division to show the uniqueness and (b). Let f € FE. We thus have
q,r € K[X] such that r = 0 or deg(r) < deg(g) and

f=a9+,
which implies
0= f(M) =q(M)g(M) +r(M) = q(M) -0+ r(M) =r(M).

Consequently, let » = 0, let » € E. This last possibility is excluded as the degree of r is strictly
smaller that the degree of g which is minimal. The fact that » = 0 means f = qg, thus any other
polynomial of E is a multiple of g. This also implies the uniqueness: if f has the same degree than g
and is also unitary, then f = g.

(c) It suffices to note (N 1M N)* = N~ M*N, hence for all f € K[X]

f(N'MN) = N"'f(M)N = 0, & f(M) = 0.

(d) The independence of the basis choice is a consequence of (c) and the equality M r(p) = Cg%ﬂ o
Mg s(¢) o Cgr for any other basis T'. ]

Proposition 6.2. Let V' be a K -vector space of finite dimension and p € Endg (V). Then, Spec(p) =
{ae K| (X—a)| mipo¢(X)} ={a€e K | mipo,(a) = 0}.
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Clearly, the same statement holds for matrices M € Mat,,x, (/). Compare this proposition to Pro-
position

Proof. The second equality is clear (same argument as in the proof of Proposition [3.6). To see the
first equality, first assume that (X — @) { mipo,,(X). From this we deduce that the ged of (X — a)
and mipo,,(X) is 1, which allows us (by Euclide/Bézout algorithm) to find b,c € K[X] such that
1 =b(X)(X —a) + ¢(X) mipo,(X). Letnow v € V t.q. ¢(v) = av. We have

v =idyv = b(¢)(¢(v) — av) + ¢(p) mipo,(¢)v = 0+ 0 = 0,

hence a ¢ Spec(y).

Assume now that (X — a) | mipo,(X) which allows us to write mipo,(X) = (X — a)g(X) for
some g € K[X]. Since the degree of g is strictly smaller than the degree of mipo,,(X), there has to
be av € V such that w := g(p)v # 0 (otherwise, the minimal polynomial mipo,,(X') would be a
divisor of g(X') which is impossible). We thus have

(¢ — a)w = mipo,(p)v =0,
hence a € Spec(yp). O

It is useful to observe that Propositions [5.6land [6.2] state that charpoly,,(X) and mipo,,(X) have the
same factors of degree 1. Moreover, the characteristic polynomial Charpoly¢(X ) is always a multiple
of the minimal polynomial mipo,, (X), by the theorem of Cayley-Hamilton, as we will now see.

Corollary 6.3. Let M € Mat,,«,(K). Then, the minimal polynomial mipo,,(X) is a divisor of the
characteristic polynomial charpoly ,;(X). We also have the same statement for ¢ € Endg (V).

Proof. By the Theorem of Cayley-Hamilton [5.9] charpoly,,(M) = 0,, so we have that mipo,,(X)
divides charpoly,,(X) by Lemmal6.1 O

Example 6.4. Here are key examples to understand the difference between minimal and characteristic
polynomial:

e The following three matrices have the same characteristic polynomial, (X — 1)2:
M= (51), Ma=(p1), Mz=(3%").

The minimal polynomial of My is X — 1. Since My —1-idy = (§3) # 02 and M3 — 1-idy =
(9691 £ 0q, the minimal polynomial is (X — 1)? in both cases. Note that we used the fact that
the only non-constant normalized divisors of (X — 1)? are X — 1 and (X — 1)?, therefore the
minimal polynomial has to be one of them.

o The same arguments give the minimal polynomials of the following matrices (but, note that
there is one more possibility ):
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Example 6.5. Let us treat a more complicated example. Let
70 a1
M = < 6 —1-2 6 ) :
—1-4 4 —4

There are (at least) two ways to proceed:

(I) Compute the characteristic polynomial and deduce the minimal polynomial .

A computation shows:
charpoly;(X) = X* +2X3 — 11X?% — 12X 4+ 36 = (X + 3)% - (X — 2)°.

We know that the linear factors in the minimal polynomial are the same as in the characteristic
one. We thus know that

mipoy,(X) = (X +3)° - (X —2)"
forl <a,b<2.

We compute the minima polynomial trying out the possibilities.

o We start with the possibility of the lowest degree:
7 3 -37

M_3:=M+3-id= < LA g), My:=M—2-id = ( [
-1 -4 4 —1

and we compute
10 —10 10 10
M_5- My = <150 ~10 10 15()) £ 0.
Thus (X — 3)(X + 2) is not the minimal polynomial.

o We increase the powers, one by one
We compute
> 50 50 50 50
MZ5 - My = < 25 —25 25 25 > 7# 0.
—25 25 —25 —25
Thus the minimal polynomial is not (X — 3)*(X + 2).

We continue and compute

M_3-M22:<

[elev]enlen]
[elevlenlen]
[e]elelen]

).

mipoy, (X) = (X +3)- (X —2)? = X3 - X? —8X +12.

[e]elel]

We thus finished and found that

(II) If one does not know the characteristic polynomial and if one does not want to compute it,
one can proceed differently. This will lead us to the standard answer: In order to compute the
minimal polynomial, we have to solve systems of linear equations.

We proceed by induction on the (potentiel) degree d of the minimal polynomial.

d =1 Ifthe degree is 1, the matrix would be scalar. This is obviously not the case.



d =2 We compute

12 —13

47

13 3

3 —4
-1 -4
—4 9

13 3
13 -1
-9 5

= ( ).

Now, we have to consider the system of linear equations:

OZ(ZQM2+(Z1M—|—CL0:

12 —13 13 3 4 3 =37 1000

(3 —413 3 (7 0 37 (o100
az (—1 —4 13—1>+a1 <6—1—26>+a0 (0010)-

49 295 14 4 —4 0001

These are 16 linear equations. In practice, one can write the coefficients in a big matrix.
The first row contains the coefficients (1, 1) of the three matrices, the second row contains
the coefficients (1,2), etc., until row 16 which contains the coefficients (4,4):

12 4 1
—13 3 0
13 =30
3 70
3 70
-4 01
13 =30
3 70
-1 6 0
—4 —-10
13 =21
-1 6 0
—4 -10
9 —40
-9 40
5 —41

We find that this system does not have a non-zero solution since the rank of the matrix is 3.

We compute
32 11 —11 59
3_( 59 —16 —11 59
M —<47 —12 —15 47)-
—12 —23 23 —39

Now, we have to consider the system of linear equations:

0:a3M3+agM2—|—alM—|—a0:

32 11 —-11 59 12 —13 13 3 4 3 -3 7 1000

50 —16 —11 59 3 —4 13 3 70 -3 7 0100
a3-< 47 —12 —15 47 >+‘12‘<—1 4 13 _1>+a1-< 6 —1-2 6 >+a0'<0010>-

12 —23 23 —39 49 95 “1-4 4 -4 0001

These are 16 equations. We write the matrix with the coefficients (note that it suffices
to add the first column). We also provide a generator of the kernel (obtained by Gauf;’
algorithm (in general)):

32 12 4 1

11 —13 3 0 0
—11 13 -30 8
50 3 70 0
50 3 70 0
—16 -4 0 1 0
—11 13 —30 1 0
50 3 70 1Y _ 1o
47 -1 6 0 \ s | — 0
—12 -4 —-10 12 0
—15 13 -21 0
47 -1 6 0 0
—-12 -4 —-10 0
—23 9 —40 8
23 —9 4 0 0
-39 5 —41

We see that the result is the polynomial X3 — X? — 8X + 12, the same as in (I).
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7 Diagonalization and spectral decompostion

Goals:
e Know and master the spectral decomposition;

e be able to decide whether a matrix/endomorphism is diagonalizable; if so, be able to compute
the diagonal form and a matrix of basis change;

e be able to compute the spectral decompostion of a matrix/endomorphism;
e know examples and be able to prove simple properties.

A diagonal form is certainly the simplest form that one can wish a matrix to have. But we already saw
that matrices do not have this form in general. The spectral decompostion and the Jordan form are
simple forms that one can always obtain. In the most advantageous cases, these forms are diagonal.
Let V be a K-vector space (of dimension n) and ¢ € Endg (V') be an endomorphism. We first do a
fundamental, but simple, observation concerning block matrices.

Lemma 7.1. (a) Let W <V be a subspace such that p(W') C (W). Let S1 be a basis of W that we
extend to a basis S of V. Then,

st (2] )

with My = Mg, s, (¢|w)-

(b) Let V.= W1 @& Wy be such that o(W;) C W; fori = 1,2. Let S; be a K-basis of W; fori = 1,2;
hence, S = 51 U Sy is a K-basis of V. Then,

oo~ (F £2)

with My = Mg, s, (¢lw,) and My = Mg, s, (0|w,).

Proof. 1t suffices to apply the rules to write the matrix Mg (). Ol
We will continue by a lemma.
Lemma 7.2. Let ¢ € Endg (V).

(a) Let f € K[ X|and W := ker(f(¢)). Then, W is a subspace of V that is stable under o, i.e. for
all w € W we have (w) € W. This allows us to restrict ¢ a W; we will denote the restricted
map by olw : W — W.

(b) Let f,g € K|[X] be two coprime polynomials, i.e.: gcd(f(X), g(X)) = 1. Then,

ker(f(¢) - () = ker(f(p)) S ker(g(y)) .
:‘:a/ =W =:Wao
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Before the proof, a brief word about the notation: f(¢) is a K-linear application V' — V/, then one
can apply it to a vector v € V. Our notation for this is: f(¢)(v) or f(¢)v. Note the different roles
of the two pairs of parenthesis in the first expression. One could also write (f(¢))(v), but I find this
notation a bit cumbersome.

Proof. (a) The kernel of any K -linear application is a subspace. Write f(X) = Zg:o a; X"’. Let then
weW,ie f(p)w=% a;¢ (w) = 0. We compute

d d d
F@)(pw) = aig (p(w)) = aip™(w) = (D aip (w)) = (0) =0.
i=0 i=0 =0

(b) It is clear that W; C W and Wy C W, whence W7 + Wy C W. We have to prove that

o W1 N Wy = 0 (the zero K-vector space) and

o Wi +Wo=W.
Since K[X] is a euclidean ring, we can use Euclide’s algorithm (Bézout) to obtain two other polyno-
mials a,b € K[X] suchthat 1 = a(X)f(X) + b(X)g(X). First consider w € W7 N Wy. Then

w =idy(w) = a(p)f(p)w + blp)g(p)w =0+ 0 =0,
which proves the first point. For the second, let w € W. The equation that we used reads
w = wy + wy with we = a(y) f(p)w and wy := b(y)g(p)w.

But, we have

f(@)(w1) =b(p) f(p)g(p)w = b(p)0 =0 = wy € Wy
and

g(p)(w2) = alp) f(p)g(p)w = a(p)0 = 0 = we € Wy,

which concludes the proof. O

Theorem 7.3 (Spectral decomposition). Let ¢ € Endg (V') be an endomorphism with minimal poly-
nomial mipo,(X) = fi*(X) - f3*(X) - ... - fi(X) where the polynomials f;(X) are irreducible
(they are therefore prime elements in the principal ring K[X]) and coprime, i.e. gcd(f;, f;) = 1 for
all 1 <1 < 5 < n (if one chooses the f;’s monic, then the condition is equivalent to saying that the
polynomials are all distinct). Set W := ker(f;*()). Then the following statements hold.

(a) V = @::1 Wi.

(b) If one chooses a basis S; of the subspace W; for 1 < i < r,then S = 51 US;U---US,isa
basis of W for which we have:

M| [ o J[ o] ... [ o]
0 M, 0 . [ o]

o] .. (] (o] (o
f o] ... [o]] o M,

with M; := Mg, s,(¢lw,) for 1 <i <.

Mss(p) =
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Proof. (a) follows from Lemmal[Z.2] (b) by induction.
(b) is clear: Write the matrix with these rules in order to obtain this form. Note that the blocks outside
the diagonal are zero since o(W;) C W;. O

The most important case is when f;(X) = X — a; with a; # a; for i # j (which implies that the
fi are irreducible and distinct). The spectral decomposition is in fact only a (decisive!) step towards
Jordan reduction. In the next proposition we will also see its importance for diagonalization. For the
moment we illustrate the effect of the spectral decomposition by an example. Before this, it can be
useful to recall how one applies the results for linear applications ¢ to matrices.

Remark 7.4. Let M € Mat,,«,(K). One can apply the spectral decompostion to M as follwos. For

1 0 0
0 1 0
. . O 0 0 . . . .
the canonical basis B == (| . |, | . |,.-..,| . |) the matrix M describes a K -linear applica-
0 0 0
0 0 1

tion ¢ = @ and one has M = Mp ().
The spectral decomposition gives us a basis S. Let C' := Mp g(id) be the matrix of basis change
between S and the canonical basis. Then, we have

Msjs(tp) =Cc'MmcC.

To be still concreter, let us recall how to write the matrix C. If S = (v1, .. ., vy,) and the vecors v; are
given in coordinates for the standard basis, then the i-th column of C' is just the vector v;.

Then, the spectral decomposition can be used to compute a similar matrix (by definition, two matrices
A, B are similar if one is the conjugate of the other: there exists an invertible matrix C' such that
B = C~'AC) a M having the nice form of the theorem.

1 2 3
Example 7.5. (a) Let M .= | 0 1 4 | with coefficients in R. The characteristic polynomial is
0 0 5

(X —1)%(X — 5). Itis clear that ker(M — 5 - id3) is of dimension 1; i.e. 5 is an eigenvalue of
multiplicity 1 (by definition: its eigenspace is of dimension 1). Without computation, it is clear
that dimker((M — id3)?) =3 — 1 = 2.

Theorem implies the existence of a matrix C' such that

1
ct.m-c=1|o0
0

S = 8
o O

for some x € R that needs to be determined.

In fact, one easily sees that x # 0, since in this case, the minimal polynomial would be (X —
1)(X — b) which is false (also see Proposition[7.7).

Let us compute such a matrix C'. For this, we have to compute a basis of the kernel of the matrix

023\ /023 00 20
(M —id3)*>=10 0 4|0 0 4|=]0 0 16
00 4)\0 0 4 00 16
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1 0
We can thus simply take | 0 | , | 1
0 0

We also have to compute the kernel of the matrix

-4 2 3
M—-5-idg=| 0 -4 4
0 0 O
-4 0 5
To compute this kernel, we add%times the second row to the first one and obtain | 0 —4 4
0 0 O
5
The kernel is thus generated by the vector | 4 |.
4
1 0 5
The desired matrix C' is therefore | 0 1 4 |. To convince ourselves of the exactness of the
0 0 4
computation, we verify it
1 0 —5/4 1 2 3 1 05 1 20
c'MC=101 -1 01 4[]0 1 4f=f0 10
0 0 1/4 0 0 5 0 0 4 0 0 5

The theorem on Jordan reduction will tell us (later) that we can choose another matrix C such
that the 2 appearing in the matrix is replaced by a 1.

2 -1 3
Let M := | —2 1 —4 | with coefficients in R. Firstly we compute its characteristic polyno-
1 1 0
mial:
X -2 1 -3
charpoly 5, (X) = det( 2 X-1 41)

-1 -1 X
= (X—2)(X—1)X —4+6—3(X —1)+4(X —2)—2X = X3 —3X%24 X -3 = (X—3)(X2+1).
For this computation we used Sarrus’ rule. To obtain the factorization, we can try small integers

to find a zero (here 3). The other factor X? + 1 comes from the division of X® —3X? + X — 3
by (X — 3). Note that X? + 1 is irreducible in R[X] (but not in C[X]).

Let us start with the computation of
-1 -1 3
En(3) =ker(M —3-id,) =ker(| -2 -2 —4]).
1 1 -3
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Now one would have to do operations on the rows to obtain the echelon form of the matrix in order
1
to deduce the kernel. But we are lucky, we can just ‘see’ a vector in the kernel, namely | —1
0
This vector then generates Ey;(3) (the dimension cannot be 2 since in this case (X — 3)? would
be a divisor of the characteristic polynomial).

Let us now compute

10 0 10
ker(M? + M°) =ker([ =10 —0 —10|).
0 0 0
1
This kernel is clearly of dimension 2 generatedby | 0 |, |1
-1
1 1 0
Thus we can write the desired matrix: C = | -1 0 1
0 -1 0
We verify our computation:
1 0 1 2 -1 3 1 1 0 3 0 O
c'Mc=100 —-1|[-2 1 —4||-1 0 1|=]0 -1 -1
11 1 11 0 0 -1 0 0o 2 1

Before giving another characterization of the diagonalizability we recall easy properties of diagonal
matrices in a lemma.

Lemma 7.6. Let D € Mat,,x,,(K) be a diagonal matrix with A1, \a, . .., A, on the diagonal.
(a) Spec(D) ={\;i|i=1,...,n}
Note that # Spec(D) < n if and only if there exist 1 < i < j < n such that \; = \;.
(b) mlpOD(X) = H)\ESpec(D) (X - >\)
Proof. These statements are clear. ]

The form of the minimal polynomial in the lemma, allows us to give another characterization of the
diagonalizability:

Proposition 7.7. Let V' be K-vector space of finite dimension and ¢ € Endg (V). The following
statements are equivalent:

(i)  is diagonalizable.
(ii) mipo,(X) = T egpec(p) (X — a).

The same statements are also true for matrices M € Maty, xp, (K).
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Proof. We write Spec(¢) = {a1,...,a,}.

“(i) = (i1)”: We choose a basis S such that M := Mg g(¢) is diagonal (see Proposition[3.11). A very
easy computation shows that [[;_, (M — a;) = 0. Then, mipo,,(X) is a divisor of [[;_; (X — a;).
But Proposition shows that for all i one has (X — a;) | mipo,(X). Therefore, mipo,(X) =
[T;_, (X — a;) (the two polynomials are unitary).

“(iil) = (i)”: We apply the spectral decomposition [Z.3] and it suffices to note that the matrices M; are
diagonal since W; = E,(a;) is the eigenspace for the eigenvalue a;. O

with coefficients in R. Its minimal polynomial

o = O
- W N

1
Example 7.8. Consider the matrix M = | 0
0

is (X — 1)(X — 4), thus, it is diagonalizable.
(To obtain the minimal polynomial it suffices to see that the eigenspace for the eigenvalue 1 is of
dimension 2.)

8 Jordan reduction

Goals:
e Know and master the Jordan reduction;

e be able to decide on different possibilities for the Jordan reduction knowing the minimal and
characteristic polynomial;

e be able to compute Jordan’s reduction of a matrix/endomorphism as well as of a basis change
if the characteristic polynomial factorizes into linear factors;

e know examples and be able to prove simple properties.

In Proposition 3.11] we have seen that diagonalizable matrices are similar to diagonal matrices. The
advantage of a diagonal matrix for computations is evident. Unfortunately, not all matrices are diag-
onalizable. Our goal is now to choose a basis S of V' in such a way that Mg s(¢) has a “simple, nice
and elegant” form and is close to be diagonal.

We also saw that the spectral decomposition gives us a diagonal form “in blocks”. Our goal for
Jordan’s reduction will be to make these blocks have the simplest possible form.

We present Jordan’s reduction (the Jordan normal form) from an algorithmic point of view. The
proofs can be shortened a bit if one works without coordinates, but in this case, the computation of
the reduction is not clear.

For the sequel, let V' be a K -vector space of dimension n and ¢ € Endg (V') an endomorphism.

Definition 8.1. Letv € V. We set
(v)g = (¥'(v) | i €N),
the subspace of V generated by v, p(v), ¢*(v), . . ..

Remark 8.2. The following statements are clear and will be used without being mentioned explicitely.
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(a) (v)y is stable under @, i.e., p((v)y) C (V)g.
(b) If W C V is a vector subspace that is stable under  and if v € W, then <v>¢, CW.

Lemma 8.3. The minimal polynomial of the matrix in Mat,, »,, (K)

a 1 0 0 ... 0
0 a 1 0 ... 0
0 0 :
: 0
0 0 0 a 1
0 0 0 0 a
is equal to (X — a)™.
Proof. Exercise. [

This matrix appears very naturally, as we will now see.

Lemma 84. Leta € K, e € Nyg and v € V such that

(p—a-id)°(w) =0 and (¢ —a-id)* " (v) #0.

We set:
Ve 1= 0,
Ve—1 1= (¢ — a-id)(v),
vy = (p — a-id)*(v),
v1 = (p —a-id)* (w).
(a) We have:

p(v1) = avy,
(V) = v1 + ave,
p(vs) = v2 + avs,
O(Ve) = Ve—1 + ave.
(b) (v)p = (v1,...,e), the subspace of V generated by v1, . .. , ve.

(c) The minimal polynomial of  acting on (v),, is equal to (X — a)®.

(d) The vectors vy, . ..,v. are K-linearly independent and consequently form a basis S of (v).
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a 0 O 0
0 a 1 0 0
0 0

(e) Mss(¢lwy,) =
0O 0 ... 0 a
0O 0 ... 0 0 a

Proof. (a) This is a very easy computation:

(p—a-id)v; = (¢ —a-id)v =0 =p(v1) = avy.

(p—a-id)vy = vy =p(v2) = v1 + ave.

(p—a-id)ve = ve_1 =p(Ve) = Ve—1 + ave.
(b) The equations in (a) show that (vy,...,v.) is stable under p. As v = v, € (v),, we obtain the
inclusion (v), C (v1,...,v.). The inverse inclusion can be seen by definition:

veei = (p—a-id) () = 37 (1) (~a) F k(). (8.3)

k=0
(c) The polynomial (X — a)° annihilates v and thus (v),. As (X — a)°~! does not annihilate v, the
minimal polynomial of @], is (X — a)®.
(d) Assume that we have a non-trivial linear combination of the form

J
0= E QiVe—j
i=0

fora; # 0and 0 < j < e — 1. By Equation (8.3)), we obtain

J i j—1
0=> iy (i) (=a)Fe* ) => (D ai () (—a)F)"(v) + aj’ (v).
i=0 k=0 k=0 i=k

We thus have a non-zero polynomial of degree j < e — 1 that annihilates v and thus (v),. This is a
contradiction with (c).
(e) Part (a) precisely gives the information to write the matrix. O]

We will now specify what we mean by “the Jordan form”.

Definition 8.5. A matrix M € Mat,, «,(K) is said to have “the Jordan form” if M is diagonal in
blocks and each block has the form of Lemmal8.4(e).
More precisely, M has the Jordan form if

My | [0 ][ 0 . [0 ]

0 M, . [ o]

M= :
Lo | .. M, 0
o | .. 0 M,

o

e}

)
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(diagonal matrix in blocks), where, forall 1 <1 <r,

a; 1 0 0 ... 0

0 a; 1 0 ... 0
=70

: : . . 1

0 0 ... 0 0 ua

(We do not ask that the a;’s are two-by-two distinct here. But we can bring together the blocks having
the same a;; this will be the case in Theorem )

The procedure to find an invertible matrix C such that C~'MC' has the Jordan form is called Jordan
reduction. We also call Jordan reduction the procedure (to present) to find a basis S such that Mg ()
has the Jordan form (for an endomorphism ). It may also happen that we call the obtained matrix
Jordan reduction of M or of .

Example 8.6. We reconsider the matrices of Example

o The matrices My := (}9), My := ({ }) have the Jordan form, but not M3 := (} 1) (its
Jordan reduction is M>).

o The matrices

1 00 110 110
My:=10 1 0] ,Ms:=10 1 0], Mg:=1]0 1 1
0 01 0 0 1 0 01
also have the Jordan form.
1 20
e The/one Jordan reduction of the matrix | 0 1 0 | obtained in Example[/. X a) by the spectral
0 0 5
110
decompositionis | 0 1 0| (explained later).
0 0 5

Be careful: with our definitions, there exist matrices that do not have a Jordan reduction (except if one
works over C, but not over R); we can weaken the requirements to have a Jordan reduction for any
matrix; we will not continue this in this lecture course for time reasons. In the exercises, you will see
some steps to the general case.

We now present the algorithm of Jordan’s reduction. For this we set:
® Y, =9 —a-id,

o V= ker(g})
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For the moment, we make the hypothesis
mipo,,(X) = (X —a)".
From this we obtain
V=VedVe1DVeoD---DVi=E,(a)DVy=0.
Before giving the general algorithm, we look at the special cases dim (V') < 4.

e dim (V) = 1: In this case, we have e = 1. Let 0 # v € V be any non-zero vector S = {v}.
Then Mg s(¢) = (a) is the wished Jordan reduction.

o dim(V) = 2: We distinguish two cases:

0
(I) e = 1. In this case, Mg s(p) = g ) is scalar for any basis S of V' because V is the
a

eigenspace of ¢ for the eigenvalue a.

(Il) e = 2. In this case, we can choose any vector v € V2 \ V1. If we take S = {4 (v), v},

a 1
then MS,S(SD): (O CL).

e dim (V) = 3: We distinguish three cases:
a 0 0
(I) e = 1. In this case, Mgs(p) = | 0 a 0] is scalar for any basis S of V' because V' is

0 0 a

equal to the eigenspace of ¢ for the eigenvalue a.

(I) e = 2. In this case, there must be two Jordan blocks. We choose any vector v € V5 \ V;.
Then, we take any vector w € Vi \ (pq(v)) = V \ (pa(v),v). Finally, we set S =

a 1 0
{%(U),v,w} to obtain MS,S(@) =10 a 0
0 0 a
(Ill) e = 3. In this case, we can choose any vector v € V3\Va. If we let S = {¢2(v), pq(v), v},
a 1 0
then Mgs(p) = |0 a 1
0 0 a

e dim(V) = 4: We distinguish four cases:

a 0 0 O
) 0 a 0 0. .
(I) e = 1. In this case, Mg s(p) = 0 0 0 is scalar for any basis S of V' because V'
a
0 0 0 a

is equal to the eigenspace of ¢ for the eigenvalue a.
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(II) e = 2. In this case, there are two possibilities:

(a) There are three Jordan blocks. Thus one of them is of size 2, the two others of
size 1. We choose any vector v € Vo \ V5. Then, we take any vector w; € Vj \
(pa(v)) = V' \ (pa(v),v). After that, we choose any vector wa € Vi \ (¢4 (v), w1) =
V\ (pa(v),v,wy). Finally, we set S = {@q(v), v, w1, w2} to obtain Mg s(p) =

1 00

a 0 O

0 a O
0 a

(b) There are two Jordan blocks. Both are of size 2. We choose any vector v € V5 \ V.
Then, we choose any vector w € V5 \ (v). Finally, we set S = {¢4(v), v, pq(w), w}

o O O 2

a 1 0 0
0 a 0O
to obtain M =
O ootain 575(()0) 00 a 1
00 0 a
(III) e = 3. There are two block of Jordan, one of size 3, the other of size 1. In this

case, we can choose any vector v € V3 \ V,. Then, we take any vector w € Vj \
(0a()) = V\ (pa(v), pa(v), v). If we take S = {3 (v), pa(v), v, w}, then Ms 5(p) =

a 1 0 0
0 a1l 0
0 0 a O
0 00 a
(IV) e = 4. There is only one Jordan block. In this case, we can choose any vector v € V \ V3.
a 1 0 0
0 a1 0
If we take S = {p3(v), 95 (v), pa(v), 0}, then Mss(0) = | - o
0 00 a

Let us now come to the general algorithm, by keeping the above introduced notation. We can imagine
the vector space V' as being in a rectangular box:

Ve\Veer | [ ]
Vee1 \ Vea HE BN
Veo\ Ve | B C I
Va\ Wi E N E N m
Vil B B B B 0 B R

Each black block represents a non-zero vector, and the set of all the vectors in the diagram is linearly
independent. In the algorithm, we want to order the rectangular box. For the moment, we put the
black blocks in an arbitrary way to indicate that we do not yet have many information about its
vectors (there is no deep meaning in the image). The fact that there are two blocks in the first row
means that dim V., — dim V._; = 2, etc. We can observe that the number of blocks does not decrease

when moving from the top to the bottom.
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(1.) We choose a vector 1 € V, \ Ve_1. Then we have the non-zero vectors p,(z1) € Ve_1,

2)

3

©2(z1) € Ve_o, and more generally, ¢! (z1) € Ve_; pouri = 0,...,e — 1. We modify the
image:

Ve \ Ve T1 |
Vee1 \ Veea || @alz1) I

Ve—a \ Vs ©2(11) H H B

e\ Vi || g5 72(z1) W L u
Villec(z;) @ @ @ @ B H B

The first column hence contains a basis of (x1).

If (x1), = V (if no black block remains), we are done. Otherwise, we continue.

Now we compute the integer k& such that (x1), + Vi, = V, but (x1), + Vi—1 # V. In our
example, k = e.

We choose a vector 22 in Vi, \ ({(21)y + Vi—1). We thus have the non-zero vectors ¢’ (z2) € Vi_;
fori =0,...,k — 1. We change the image:

Ve \ Vet x1 T2
Vee1 \ Ve—2 || @a(z1) Ya(r2) W
Veo\Ves | wa(z1)  ¢a(z2) W u
Vo\ Wi || w5 %(z1) @5 % (w2) C n
Vi|est@) o (zg) @ @B B B B N

The second column hence contains a basis of (x2),. Lemma B.7ltells us that the sum (x1), +
(xa),, is direct.

If (x1), ® (z2), = V (if no black block relains), we are done. Otherwise, we continue.
Now we compute the integer & such that (1), ® (z2),+ Vi = V, but (1), ® (x2) o+ Vi—1 # V.
In our example, k = e — 1.

We choose a vector 3 in Vi, \ ((z1)y, @ (v2), + Vi—1). We thus have the non-zero vectors
¢t (z3) € Vy_i fori =0,...,k — 1. We change the image:

Ve \ Ve 1 o
Vee1 \ Ve—a || @al21) ©Ya(z2) T3
Veeo \ Vees || @2(z1) ©2(22) ¢a(r3) u
Vo \ Vi || 06 2(x1) @ 2(x2) i (x3) n u
Vil weMa1) i Hae) i ixz) WoH O H O H OH

The third column thus contains a basis of (x3),. Lemmal[8.7ltells us that the sum (x1), ® (z2),+
(w3), is direct.
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If (1), @ (x2), @ (x3), = V (if no black block relains), we are done. Otherwise, we continue.

(...) We continue like this until no black block remains. In our example, we obtain the image:

Ve \ Vet 1 T2
Ve—1 \ Ve—a || @a(z1) Ya(2) T3

Veeo \ Vees || @2(z1) @2 (22) va(T3) T4

Vo\ VL || 057%(z1) @5 2(w2) @53 (x3) @i Mas) s
Vil 5 (@) i (@e) @S (ws) ¢S (z4)  pa(ws) we w7 s

Each column contains a basis of (x;), and corresponds to a block. More precisely, we put the vectors
that are contained in a box into a basis .5, beginning in the left-bottom corner, then we go up through
the first colums, then we start at the bottom of the second column and goes up, then the third column
from bottom to top, etc. Then, Mg s(¢) will be a block matrix. Each block has a on the main diagonal
and 1 on the diagonal above the main diagonal. Each column corresponds to a block, and the size of
the block is given by the height of the column. In our example, we thus have 8 blocks, two of size e,
one of size e — 1, one of size e — 2, one of size 2 and three of size 1.

In the algorithm, we have

Vi\ ((z1)p @ -+ @ (@) + Vie1) = Vi \ ((@al(z1) ™, - ., al(ar)?) + Vie1)

where fori = 1,...,r, the integer d; is the unique integer such that % (x;) € V4 \ Vj_1. This means
that by bloc, it is necessary (and sufficient) to “avoid” one single vector. The equality above follows
from the fact that (x1), & - - & (), is direct and from the fact that the vectors z, ¢q (), . . ., % ()
are linearly independent if d is strictly smaller than the degree of the minimal polynomial of a over K.

In order to justify the algorithm, we still need to prove the following lemma.

Lemma 8.7. Let L = (x1), ® (T2), @ -+ ® (x4), constructed in the previous algorithm. By the
algorithm, we have in particular

dimK<:1:1><p 2 dimK<x2>@ Z e Z dlmK<$Z)¢

(The dimension is here equal to the height of the corresponding column.)

Let k be the integer suchthat L+ Vi, =V and L+ Vi_1 £ V. We have Vi, € L + V1.
By the algorithm, we also have k < dim g (x;)..

Ify € Vi \ (L + V1) is any vector, then the sum

L+ () =(21)p ®(T2)p @ ... ® (Ti)p D (Y)y
is direct.

Proof. fV,, CL+ Vi _q,thenVy, + L =V, 1+ L (as Vi_1 C V). This implies the first statement:
Vi & L+ Vi_;.



61

Let us now show that the sum L + (y), is direct, i.e., L N (y), = 0. Let w € L N (y),. We suppose
w # 0. Let j be the maximum such that w € Vj,_;. We have 0 < j < k — 1. Consequently, we can
write w = 37077 ¢,08M (y) for ¢, € K with ¢y # 0. Hence

q=0
k—j—1
w=@l(coy+ D cgpl(y)).
q=1
By construction of L, we can write
w = @} (¢)

for ¢ € L. This is the case since L N V},_; is generated by @5 (xy,) for 1 < m < iand j < e, =
dimg (Xm)e — (k — 7).
Thus we obtain

k—j—1
0=ol(coy—L+ Y cqpl(y)).
q=1
This implies
k—j—1
zi=coy— L+ D cqpl(y) € Vi C Vi,
q=1

Using that Z]q:{ 1 egpl(y) € Vi1, we finally obtain

k—j—1
1 J

1 1
=t — 4y) € L+ Vi_y,
y= bt it q; cqpl(y) € L+ Vi

a contradiction. Therefore w = 0. O

Combining the spectral decomposition with the algorithm above, we finally obtain the theorem about
Jordan’s reduction.

Theorem 8.8 (Jordan’s reduction). Assume that the minimal polynomial of p is equal to

r

mipo,,(X) = H(X —a;)"
i=1

with different a; € K and e; > 0 (this is always the case if K is “algebraically closed” (see Al-
gebra 3), e.g. K = C).

Then, © has a Jordan reduction.

We can precisely describe the Jordan reduction, as follows. Computing V; := ker ((gp —a; - id)ei),
we obtain the spectral decomposition (see Theorem[Z.3), i.e.:

.
V=PV, and ¢(V;)CViforalll <i<r.
=1

Forall 1 < i < r, we apply the above algorithm to construct x; 1, . .., x;s, € V; such that

Vi=(Ti1)p ® @ (Tis;)p €t o((Tij)p) C(Tij)e
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Let e; ; the minimal positive integer such that (¢ — a; - id)%(x; ;) = 0 forall 1 < i < r and
1<j<si

For each space (x; j), we choose the basis S; ;j as in LemmalS.4 We put

S = 51,1 U 5172 U---u 51731 U 5271 U 5272 U---u SQ,SQ U...... RN Sr7sr.

Then, S is a K-basis of V such that

My Lo | [0 ]

Mss(p) =

0
(0]
0]

o | .. 0 | [Nisi—1

a; 1 0 0 ... O
0 a; 1 0 e 0
N= |0 . ,
o1
0 0 0 a; 1
0 O 0 0 a

which is of size e; j. The N; ;’s are called the Jordan blocks (for the eigenvalue a;).
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Remark 8.9. Explicitely, the basis S is the following:

(o —ap-id) 1 Yz q), (o —ap-id) 17 2(21y), ... (p—ay-id)(z11), 11,
(o —ap-id)2 Yz 9), (@ —ay-id)272(219), ... (p—ay-id)(z12), 12,
(‘P —ap- id)el’sl_l(xl,sl)v (SO —ar- id>el’51 _2(331,81)7 ce (30 —ar- id)($1,81)> T1,s15
(p —ag-id)>1 7 H(221),  (p—az-id)*1 (221), ... (p—ag-id)(z21), w21,
((p — a9 - id)62’271<$272), ((p —as - id)627272($2,2), R (QO —ay - id) (1’272), 2,2,
(90 —az- id)e2’8271(l‘2,82)’ (90 —az- id)62,32 72(562,52)7 s (90 —az- id) (‘%‘2752), L2595
((p —as - id)e&l_l(l‘g’l), ((p —as - id)e3*1_2(l‘3’1), .. ((,0 —as - ld) (16371), 31,
(o —ar- id)er’sr_l(%",sr% (o —ar- id)er’s"_2(xr,sT)’ v (p—ap-id)(2rs,),  Trs,

Note that the Jordan reduction is not unique in general (we can for instance permute the blocks).
Thus, to be precise, we would rather speak of a Jordan reduction, which we will sometimes do. If S
is a basis such that Mg () has the form of the theorem, we will say that Mg s(y) is the/a Jordan
reduction or that it has the/a Jordan form.

To apply Theorem [8.8]to matrices, take a look (once again) at Remark [7.4

1 20
Example 8.10. (a) The/a Jordan reduction of the matrix | 0 1 0 | obtained by the spectral de-
0 0 5
1 10
composition in Example[Z3a)is | 0 1 0 | for the following reason.
0 0 5

The matrix satisfies the hypothesis of Theorem[8.8| thus it has a Jordan reduction. As it is not diag-
onalizable, there can only be one block with 1 on the diagonal, but the characteristic polynomial
shows that 1 has to appear twice on the diagonal. Therefore, there is no other possibility.

1 10
(b) Consider the matrix M := | —1 3 0 | with coefficients in R.
-1 1 2

A computation shows that charpoly,;(X) = (X — 2)3. Then, v = 1 in the notations of The-
orem[8.8 and, hence, the Jordan reduction has to be among the following three matrices:

O O N
O N O
N O O
O O N

1
2
0

OO
S O N
S NN =
N = O
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We easily find that mipo,,(X) = (X — 2)2. From this we can already deduce that the Jordan

2 10
reductionis [0 2 0
0 0 2
The question becomes unpleasant if one asks to compute a matrix C such that C~'MC =
2 10
0 2 0 |. But this is not so hard. We follow the algorithm on Jordan’s reduction:
0 0 2
-1 1 0
o Wehave M —2idg=| -1 1 0
-1 10
0 1
o Then, ker(M —2id3) = (| 0], 1]).
1 0

e We have that mipo,,(X) = (X — 2)? (which is easily verified: (M — 2 -id3)? = 03).
According to the algorithm, we choose

0 1
z1 € ker((M — 2id3)?) \ ker(M — 2id3) =R3\ (| o |, |1 ]),
1 0

1
for instance x1 = | 0
0
o We start writing our basis S. The first vector of the basis is, according to the algorithm,
-1 1 1 -1
V1 = (M — 21d3)$1 = -1 1 0 0 == -1
-1 1 0 -1
and the second one is just vy 1= x7.
o [n the second step, we have to choose a vector
0 1 -1 1
yEker(M—Qidg)\(vl,v2>:< 0,11 >\< —-11,10 >
1 0 -1 0
0
We choose y = | 0 | and we immediately set v = y.
1

o [t suffices to write the vectors vi, v, vs as columns of a matrix:

-1 1 0
C=]1-1 00
-1 0 1



Theorem tells us that

0 -1 0 1 10\ /=110 2 10
c'mMc=11 -1 0||-1 30]|l-100|=]020],
0 -1 1/ \-112/\=-10 1 00 2

which can be verified.
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Remark 8.11. In some examples and exercises you saw/see that the knowledge of the minimal poly-

nomial already gives us many information about the Jordan reduction.

More precisely, if a is an eigenvalue of ¢ and (X — a)¢ is the biggest power of X — a dividing the

minimal polynomial mipo, (X)), then the size of the largest Jordan block with a on the diagonal is e.

In general, we do not obtain the entire Jordan reduction following this method; if, for instance, (X —

a)¢*? is the biggest power of X — a dividing Charpolyw(X), then, we have two possibilities: (1) there

are two Jordan blocks for the eigenvalue a of size e and 2; or (2) there are three Jordan blocks for a

of size e, 1 and 1.
Example 8.12. We do an example. Let

-2 -1 -5 -3 6 -4

-1 2 -1 -1 1

M= 2 1 4 2 =2 1
4 2 4 6 -5 2
0 1 -1 1 3 -1
1 -1 1 0 -1 5

Its characteristic polynomial is
charpoly;(X) = X% — 18X5 + 135X — 540X3 4+ 1215X? — 1458X + 729 = (X — 3)5.

Let us first compute

2 1 1 2 -2 1
M; = M + 3id =
3 +ol 4 2 4 3 -5 2|’
0 1 -1 1 0 -1
1 -1 1 0 -1 2
then
0 5 -1 3 -2 -5 0 3 3 0 -3 -3
0 0 0 0 0 O 0 0 0 0 0 0
-1 1 -1 1 -1 -1 1 1
M2 = 0 , M= 0 0 . Mi=0

0 -3 1 -2 1 3 0 -2 -2 0 2 2
0 1 1 0 -1 -1 00 0 0 0 0
0 -2 0 -1 1 2 0 -1 -1 0 1 1
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We thus have

mipoy, (X) = (X — 3)°"

and

Vi =ker(M3) =R° 2 V3 2 V5 2 Vi = En(3) 2 0.

We first compute

0110 -1 -1 1 0 0 0 0
0000 O O 0 0 1 0 1
ngker(Mg’) ~ ker 0000 O O .y 0 ’ 0 ’ -1 7 0 7 0 ).
0000 O O 0 1 0 0 0
0000 O O 0 0 0 1 1
0000 O O 0 0 0 -1 0

In fact, it is not necessary for the algorithm to give an entire basis of V3, it suffices to find a vector

0
1
that does not belong to the kernel. It is very easy. We will take x1 = 8 and we compute

0
0

0 —1 5 3

) T 2 % 3 %

Ir = 8 ,Mgd}l = % ;ngl = —3 ,M3l‘1 = _9

0 1 1 0

0 ~1 -2 -1

We thus already have a Jordan block of size 4. Thus there is either a block of size 2, or two blocks of
size 1. We now compute

01 1 0 -1 -1 011 0 -1 -1
00 -6 3 3 0 00 1 —-1/2 —1/2 0
00 2 -1 -1 0 000 0 0 0
_ 2\ _
Vo=ker(Mg) =ker | o o 5 o o |TE g 0 0 o 0 0
00 2 -1 -1 0 000 0 0 0
00 0 0 0 0 000 0 0 0
010 1/2 -1/2 -1 1\ /o 0 0
00 1 —1/2 —1/2 0 ol 1] [1/2] | =172
000 0 0 0 o o] |12 1/2
:k =
“fo oo o 0 0 Qol- o]l o || 1 |
000 0 0 0 ol [o 1 0
000 0 0 0 o/ \1 0 0
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Finally, we compute the eigenspace for the eigenvalue 3:

5 -1 -5 -3 6 -4 1 -1 1 12
1 -1 -1 -1 1 0 0 1 -1 1 0 -1
2 1 1 2 -2 0 -6 0 -3 1 6
Vimker(Mg) =ker | oy 5 5 skl o 0 Z1 o0 2
0 1 -1 1 0 -1 0 3 -1 2 0 -3
1 -1 1 0 -1 2 0 6 0 3 —1 —6
10 0 1 -1 1 10 0 1 -1 1
01 -1 1 0 -1 01 -1 1 0 -1
Ckee00 =6 3 1 0| foo 1 —12 0 0
00 -2 1 0 0 00 -6 3 1 0
00 2 -1 0 0 00 2 -1 0 0
00 6 -3 —1 0 00 0 0 0 0
100 1 -1 1 100 1 0 1 1 _1
010 1/2 0 -1 010 1/2 0 -1 1 ~1/2
001 —-1/2 0 0 001 —1/2 0 0 0 1/2
—k —k _
“MTooo o 1 o “Tooo o 1 0 Qoll 1 |
000 0 0 0 000 0 0 0 0 0
000 0 0 0 000 0 0 0 1 0

Thus there are 2 eigenvectors, hence two blocks in total. Thus the second block is of size 2. We have
to find a vector in Vo which is not in Vi + (x1, M3z, Mgle, M§$1> thus an element of

1\ /0 0 0 ~1 ~1 0\ /-1 5 3

ol (1| [1/2] [-1/2 1 —1/2| 1] [ -1 0 0

ol [of [1/2 1/2 0 1/2 0 1 -1 | -1
ol 1ol ol + "ol 1 [lol]2]| |32

0] |0 1 0 0 0 0 1 1 0

0o/ \1 0 0 1 0 0o/ \-1/ \-2/ \-1

To find such an element, we test if the vectors (one by one) of the basis of V5 are linearly independent

form the space on the right. We are lucky that it already works out for o = (as one can see

[e]lelelelelig

from a standard computation). We thus calculate

o =

O O O O o
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We can now write the matrix

3 5 -1 0 =51

O 0 -1 1 -1 0

-1 -1 1 0 2 0
“=129 3 2 0 4 0
0 1 1 0 0 0

-1 -2 -1 0 1 0

and a computation verifies
310000
031000
1

CLMC — 0 0 3 00
000 3 00
000031

000 O0O0 3

Remark 8.13. Here are some remarks that are easy to prove and can sometimes be useful for com-
putations. Suppose mipo,,;(X) = (X — a)°.

(a) The size of the largest Jordan block is e.
(b) Each Jordan block contains an eigenspace of dimension 1 for the eigenvalue a.

(c) The number of Jordan blocks is equal to the dimension of the eigenspace for the eigenvalue a.

9 Hermitian spaces
Goals:
o Know the definitions of euclidian and hermitian spaces;
e know fundamental properties of euclidian and hermitian spaces;
e be able to compute orthonormal basis using the method of Gram-Schmidt;
e know examples and be able to prove simple properties.

We will start by a motivation of some of the topics that will follow.
Let M € Mat,,«,(K) be a matrix. Consider the map:

b b

. ax bo B by
<,>j\/[.K x K —>K, < . s . >M.—(a1 ay - CLn)M .
an b bn

We thus have the equality
(z,y)p = 2" My.
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If M is the identity, then we do not write the index M and
al b1 by n
a2 b2 [
<<:>, P =(aaz - oan) | :Zaibi-
an b b i=1

This is the well-known canonical scalar product. This gives moreover (if K = R)

al al
a2 @2 2, 2 2
<< . >7< . >>:a1+a2+"‘+an>0
an an
al
az
for all ( . > # 0.
an

Let us treat another example: M = (1 2). Then

<(Z§),(Z;)>M = (a1 a2)(3%) (2;) = a1by + 2a1bz + 3azby + 4agbs.

In general, we immediately observe the following properties:

(a) Linearity in the first variable: For all y € K™, the map
<’7y>M:Kn_>K7 $’—><§E,y>M
is K-linear, i.e., forall 1,25 € K™ and all « € K, we have

(x1 + azxo,y)pr = (x1,y) M + alx2, y) -
(b) Linearity in the second variable: For all x € K™, the map
(x, Y K" = K, y—{(x,y)m
is K-linear, i.e. for all y;,yo € K™ and all ¢ € K, we have

(z,y1 +ay2) v = (x,y1)m + alz,y2) mr-

Question: When do we have that ( , )y is symmetric, i.e., (z,y)rp = (y,x)p forall x,y € K™?
To see the answer to this question, choose & = e; as the i-th canonical vector and y = e;. Then

(eiyejynr = ef* Me; = e;(j-th column of M) = i-th coeff. of (j-th column of M) = m; ;.

Hence, (e;,ej)m = (ej,e;)m implies m; j = mj,; forall 1 < 4,5 < n, in other words, M is
symmetric M = M,
Conversely, let us start from a symmetric matrix M = M. We do a small, but elegant computation:

(@, y)nr = 2" My = («" My)" =y M" (&) = y" Ma = (y, x)u,

where we used that 2" M is a matrix of size 1, hence equal to its transpose, as well as the following
lemma:
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Lemma 9.1. Let M € Mat,, ,,(K) and N € Mat,, ¢(K) be matrices. Then
(M . N)tr — Ntr . Mtr.
Proof. Exercise. O

We thus obtained the equivalence:
(', )as is symmetric <= M is symmetric: M = M™.

Question: For K = R, when do we have (z, ) > 0 for all z € R™?

We have seen that it is the case if M is the identity and ( , ) is hence the canonical scalar product. We

will come back to this question later.

For the moment, let us move to K = C. We denote Z = x — iy the complex conjugate z = z+iy € C

with z = Re(z) and y = Im(2).

For complex numbers, it is not true that > ;" ; 22-2 is greater than or equal to 0, in fact, this is even not a
2

question that one may ask since z;* is in general not a real number, hence asking if it is greater than zero

i
is meaningless. On the other hand, the absolute value z;Z; = |2;|? is always real and non-negative.

Thus it is useful to change the definition in the case K = C:
(I :C"xC" = C, (x,y)r:=z"My

where ¥ is the vector obtained when applying complex conjugation on all coefficients. Note that the
definition is the same as the one given before if K = R since complex conjugation does not have an
effect on real numbers.

With M being the identity, this gives

ay b1 by "

a2 b2 b _
<< . ) ’ : > = (CLl az --- an) . = Zazbl

an b o i=1

This is once more the well-known canonical scalar product. Moreover, we obtain

a1 al
2 2 2 2 2
<< : )( : >>=|a1\ +lag” 4+ +lan[” >0
an an
al
az
for all < . ) # 0.

Let us look the following properties:
(a) Linearity in the first variable: Unchanged!
(b) Sesqui-linearity in the second variable: For all z € C", the application
(x, v : K" > K, y—(x,y)m
is sesqui-linear, i.e., for all y;,y2 € K™ and all @ € K, we have

(T, 91 + ay2) v = (T, y1) M + alz, y2) 11



By the same computations as above, we obtain the equivalence:
(x,y)pr = (y,x)p forall z,y € C" <= M = M*r.

A matrix M such that M = M?*™ is called hermitian.
For the sequel of this section we set X' = R or K = C.

Definition 9.2. Let V be a K-vector space. An application
(,):VxV =K, (v,w)— (v,w)
is called hermitian form if for all v, vy, ve, w, w1, we € V and for all a,b € K we have
e (av1 + vo,w) = a(vy, w) + (ve, w) (linearity in the first variable),

o (v, bwy + ws) = b{v,w1) + (v, ws) (sesqui-linearity in the second variable) and

o (v,w) = (w,v).
A hermitian form (-, -) is said to be positive if

e Yu eV (v,v)>0. (Note that (v,v) = (v,v), whence (v,v) € R.)
It is said to be positive definite if

e VO£ veV:(v,v)>0.

A hermitian positive definite form is also called a scalar product.
We call hermitian space any tuple (V, (-,-)) where (-, -) is a positive definite hermitian form.

Note that the second item in the definition is redundant because we have
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(v, bwy + wa) = (bwy + w2, v) = blwy,v) + (wa,v) = b {(w,v) + (w2, v) = blv,w1) + (v, ws).

Remark 9.3. Note that for K = R the last two conditions of the definition of a hermitian form read

o (v,bwy + wa) = b(v, w1) + (v, w2) (linearity in the second variable) and
e VoeVVweW: (v,w) = (w,v).

We refer this to as a bilinear symmetric form.

In the literature, if K = R, one rather uses the name euclidian space instead of hermitian space

(which is often reserved for K = C). Here, to simplify the terminology, we will always speak of

hermitian spaces, even if K = R.

We have already seen the canonical scalar products for R™ and C”. Similar definitions can also be

made in spaces of functions (of finite dimension):

Example 9.4. (a) The canonical scalar product { , )y for M the identity is indeed a scalar product

if K=RorK=C.
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(b) LetC = {f :]0,1] — R | f is continuoud } be the set of all continuous functions from [0, 1] to R.
It is an R-vector space for + and - defined pointwise. The application

1
() CxCoR (fg) = [ S
is a hermitian positive definite form.

(c) LetC = {f : [0,1] — C | f is continuous } be the set of all continuous functions from [0,1] to C.
It is a C-vector space for + and - defined pointwise. The application

1 —_—
() CxCsT () = [ S
is a hermitian positive definite form.

Definition 9.5. Let (V, (-, -)) be a hermitian K -space.

We say that v,w € V are orthogonal v L w if (v,w) = 0. Note: v L w < w L v.

Let W <V be a subspace. We say thatv € V and W are orthogonal v L W ifv L w forallw € W.
Note: v L W < W 1 v (with evident defintions).

Let U <V be another subspace. We say that U and W are orthogonal U L W if U L w for all
weW.Note: U LW & W LU.

The orthogonal complement of W is defined as

Wt={veV|vlW}
The norm (“length”) of v € V is defined as |v| := \/(v,v) and |v — w| is said to be the distance
between v and w.
Proposition 9.6. Let (V, (-, -)) be a hermitian K -space.

(a) Forallv € V we have |v| > 0and |v]| =0 < v =0.

(b) Forallv € V andall a € K we have: |a-v| = la| - |v| .
—_ —~—
|-|in V [|in K |-]inV
(¢) Forallv,w € V we have |(v,w)| < |v| - |w| (Cauchy-Schwarz inequality ).
—— ~~ —~~
|| in K [-/inV |-]inV
(d) Forallv,w € V we have |[v+w| < |v| 4+ |w| (triangular inequality).
—_—— ~~ —~~
|-]in V/ []inV  |-|inV
Proof. (a) Defintion.
®)|a-v>={(a-v,a-v)=a-a-(v,v) = |a]?|v|.
(c) 1st case: w = 0. Then, (v, w) = (v,0 - w) = 0(v,w) = 0, whence |(v,w)| =0 = |v]| - |w|.

2nd case: w # 0. Let ¢ := ‘%% Then

w]?

0<|w? (v—rc-w,v—c-w)

= wl? - (v, 0) = [w? - ¢ (w,v) — w2 (v, w) + w|* - c-T (w,w)

= ’w‘Q ’ ‘UP - <v,w> ’ (w,v> - (v,w) ’ <U7w> + <v,w> ’ (v,w> :

=|(w:w)| =0
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(d)

lv+w|* = (v+w,v +w)
= (v,v) + (v,w) + (w, v) + (w, w)
= [v]? + |w]? + (v, ) + {v,w)
= [v]* + |w|* + 2 - Re({v, w))
< o + [w]® + 2 [{v, w)|
< [of* + [wl® + 2+ o] - [w]

— (Jol + ]
O
Proposition 9.7 (Pythagoras). Ifv L w, then |v + w|? = |v|? + |w|?.
Proof. v+ w|* = (v +w,v+w) = (v,v) + (w,w) = |[v]? + |w|?. O

Note that any hermitian positive definite form is non-degenerate: if (v, w) = 0 for all w € W, then in
particular (v, v) = |v|? = 0, whence v = 0. The same argument also shows that w = 0 si (v, w) = 0
forallv e V.

Definition 9.8. Ler (V,(-,-)) be a hermitian K-space and S = {s; | i € I} (with I a set, e.g.,
S={s1,...,sn}if I ={1,2,...,n})
We say that S is an orthogonal system if

o (s;,5;) > 0forallie I and
e (si,sj) =0foralli,jel, i#j.

We say that S is an orthonormal system if (s;, s;) = d; j pour tout i, j € I.
If S is a basis of V which is an orthogonal/orthonormal system, we speak of an orthogonal/orthonor-
mal basis.

Example 9.9. The canonical basis of R™ (or of C™) is an orthonormal basis for the canonical scalar
product of Example

Proposition 9.10 (Gram-Schmidt Orthonormalization). Let (V, (-,-)) be a hermitian K-space and
81,82, - ..,8n, € V K-linearly independent vectors.
The method of Gram-Schmidt (see proof) computes the vectors t1,ta, ..., t, € V such that

b <ti7tj> =0;jforalll <1i,j <nand

o (S1,89,...,8) = (t1,ta,...,t,) forall 1 < r < n(the subspaces of V generated by
S1,89,...,8r and by t1,to, ..., t,. are equal).

Proof. We present the method of Gram-Schmidt.
Itis an induction on = 1, 2, ..., n; hence there are n steps.

. S
Tzl.tl —‘?h
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r = r + 1. By induction hypothesis we already have ¢1, ..., ¢, such that (t;,t;) = J; ; forall 1 <
i,7 <rand (s1,82,...,8) = (t1,t2,...,t).
We have to find ¢,.41. First we define

r

Wr41 = Sppl — Z<3T+1;ti>ti~
i=1

This vector satisfies forall 1 < 57 < r

T

(Wry1,t5) = (Sp41 — Z<5r+17ti>tiatj>
=1
I8

= {srr1,t) = D _{(sran, ti)tis )

=1
= (Sp41,t5) — ((Sr41, )5, 15)

= (Sr41,t5) — (Sr41,t5) - (5, 1))
-0

Since (s1, 82, ..., 87) = (t1,ta,...,t,), wehave w1 & (t1,12,...,t,), hence, in particular, w, 1 #
0. This allows us to define
Wr41
t7~+1 = .
‘wr—‘rl‘
This vector clearly satisfies (t,41,%;) = 041, forall 1 < i < r+1and (s1,82,...,5,S41) =
(t1,to, .. ety O

Example 9.11. We apply the method of Gram-Schmidt to the following vectors:

1 -1
1 5, :
51 = ? y 82 = 3 y 83 = -3
0 -2 —6
1 5 3
on RS with the canonical scalar product.
(1) Let us compute the length of si:
’81‘ = \/ZI = 2.
Thus
1/2
1 1/2
tl = =81 = 102
2 )
1/2
(2) Let us now compute
1 1/2
3 1/2
-2
<327t1> = < 32 9 1(/)2 > = 6

0
5 1/2



Thus

1 1/2 —2
32 1/2 0
wo = g — (S2,t1)t] = 3 —6 1(/)2 = 62
9 0 _9
5 1/2 2
The length of wo is
’w2’ == \/ﬁ = 4.
Thus
~1/2
0
1 _
to = —wg = B/Q
—1/2
1/2
(3) Now compute
1 1/2
5 1/2
<S3’t1> = < —2% ’ 192 > =2
- 0
3 1/2
and
1 —-1/2
3 U
(ss,t2)=(| Z|,| ¢ |) =4
—6 —-1/2
3 1/2
Thus
_ 1/2 —1/2
5 12 0 g
wg = 83 — (83,t1)t1 — (s3,t2)ta = _23 -2 1(/)2 —4 70/ = _44
—6 0 -1/2 —4
3 1/2 1/2 0
The length of ws is
|w3| = \/6>4 = 8.
Thus
192
1 1/2
ty = W= | —1/2
—1/2
0

Corollary 9.12. Let (V, (-, -)) be a hermitian K -space of finite dimension (or even countable). Then,

V' has an orthonormal K -basis.

Proof. Direct consequence of Gram-Schmidt[9.10]

Corollary 9.13. Let (V, (-, -)) be a hermitian K -space and W < 'V be a subspace of finite dimension.
Let s1,...,8, € W be an orthonormal K -basis of W (which exists in view of Corollary[9.12)). We

define
n
mw:V =W, v Z(v,si>si.
i=1
This application is called the orthogonal projection on W.
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(a) myw is K-linear and satisfies Ty o Ty = Ty .
(b)) V=WaoW

(c) Forallv € V, we have

n

[mw ()2 =D 1w, ) < [of.

i=1

This is Bessel’s inequality.

(d) Forallv € V, my (v) can be characterized as the unique w € W such that |v — w| is minimal.
The application vy is therefore independent from the choice of the basis.

Proof. (a) Simple computations.
(b) Let v € V. We write v = my (v) + (v — 7 (v)). We clearly have myy (v) € W. Let us show that
v — my (v) € W for this it suffices to prove that (v — my (v), s;) = 0 forall 1 < j < n:

n n

(v —mw(v),85) = (0,55) = (O (v, 8)80,85) = (v,85) = Y _ (v, 80) - (s, 85) = (v,8;) = (v, 55) = 0.

i=1 i=1

This gives us V = W + W, thus it suffices to show that the sum is direct. Let w € W N W=, In
particular, w | w, i.e., (w,w) = |w|* = 0, whence w = 0.
(c) We have just seen that 7y (v) L (v — 7y (v)), hence by Pythagoras[0.7] we have

[0 = |mw (v) | + o — 7w (),

whence |7y (v)|? < |v|?. This already proves the inequality. Let us now prove the equality:

n

M:

|mw (v)]2 = (7w (v) (v, 5;) (v, sx) (55, 5k) Z] (v, 85)]

j=1 k=1

(d) We use again Pythagoras[9.7]to obtain for w € W

v = wf? = | (v—mw () + (T (v) = w) |* = [v = 7w (V)]? +mw (v) — w].
—_————

6?/[/1- ew indépendant de w
Thus |v — w| is minimal if and only if |7y (v) — w| = 0, i.e. if and only if w = 7y (v). O

10 Normal, adjoint, self-adjoint operators and isometries
Goals:

e Master the concepts of normal, adjoint and self-adjoint operators;

e master the notion of isometry and the notions of unitary and orthogonal matrix;

e know the fundamental properties of normal and self-adjoint operators and of isometries;
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e be able to decide whether these notions are satisfied;
e know examples and be able to prove simple properties.

We continue with K € {R, C}. In this section, we are interested in the question when in a hermitian
space, a linear application is “ compatible” with the scalar product; more precisely, we would like to
compare

(Mv,w),(Mv, Mw), (v, Mw), and (v, w)

where M is a matrix and v, w are vectors.

This will lead us to symmetric, hermitian, orthogonal, unitary matrices and isometries. We will prove
later that any symmetric matrix with real coefficients is diagonalizable, and generalizations of this.
We make/recall the following definitions:

Definition 10.1. (a) Let M € Maty, xy,(C). The matrix M ad . A" = M is called adjoint matrix.
Note that M = M™ if M € Mat,xn(R).

(b) We call symmetric matrix or self-adjoint matrix any matrix M € Mat,, ., (R) such that M ad —
M"™ = M.

(c) We call hermitian matrix or self-adjoint matrix any matrix M € Mat,, x, (C) such that M ad — \f,
Note that M is self-adjoint if and only if M™ = M. Note also that a symmetric matrix is nothing
but a hermitian matrix with real coefficients.

(d) We call orthogonal matrix or isometry any matrix M € Mat,, ., (R) such that
MM = MM = id.

(e) We call unitary matrix or isometry any matrix M € Mat,, «,,(C) such that M ad \r — id. Note
that M is unitary if and only if M™ M = id. Note also that an orthogonal matrix is nothing but
a unitary matrix with real coefficients.

Definition 10.2. We define the following matrix groups where the multiplication law is the composi-
tion of matrices:

(a) GL,(K) ={M € Maty,x,(K) | det(M) # 0}, the general linear group over K,
(b) SL,(K) ={M € Matyxn(K) | det(M) = 1}, the special linear group over K,
(c) Op ={M € GL,(R) | M*"M = id}, the orthogonal group;

(d) SO, = {M € SL,(R) | MM = id}, the special orthogonal group,

(e) Uy, ={M € GL,(C) | M**M = id}, the unitary group,

(f) SU,, = {M € SL,(C) | M™M = id}, the special unitary group.

Note that these are indeed groups as simple calculations show; for instance for (e), one has
(MN)*(MN) = N"M"M N =1si M"M = 1and N¥N = 1.

Lemma 10.3. Ler M € Mat,, «,,(K) be a square matrix.
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(a) The following statements are equivalent:

(i) M is self-adjoint.

(ii) For all v,w € K™ we have: v"" M"w = v'* Mw.
Note that in terms of scalar product, this statement can be rewritten as follows:
(Mv,w) = (v, Mw).

(b) The following statements are equivalent:

(i) M is an isometry.
(ii) For all v,w € K™ we have: v"" M Mw = v""w.
Note that in terms of scalar product, this statement can be rewritten as follows:

(Mv, Mw) = (v, w).

Proof. We have proved part (a) in the beginning of section@Ql The proof of part (b) is obtained using
exactly the same arguments. More precisely, it is immediate in view of the formula ef*Me; = m; ;
for any square matrix M = (m; ;). O

It is very easy to provide examples of symmetric or hermitian matrices (choose arbitrary real coeffi-
cients on the diagonal, write arbitrary real coefficients (or complew, depending on the situation) in the
part below the main diagonal, fill the part above the main diagonal with the corresponding values).

Lemma 10.4. Ler M € Mat,, x,,(K) be a square matrix. The following statements are equivalent:
(i) M is an isometry (i.e. unitary or orthogonal);
(ii) the columns of M form an orthonormal basis of K™ (for the canonical scalar product);

(iii) the rows of M form an orthonormal basis of K™ (for the canonical scalar product).

Proof. By the definition of the multiplication of two matrices, statement (ii) is precisely the equality
M™M = id, hence (i). Statement (iii) is statement (ii) for the matrix M®. Thus the equivalence
between (iii) and (i) is the same as the equivalence

MMV —id e M~ =" o MM™ =id.

Lemma 10.5. We have

Oy = {(cos((a)) —sin(a)) c GLQ(R) ‘ 0<a< 27T} U {(cos((oc) sin(a) ) c GLQ(R) 10<a< 27T}.

sin(a) cos(a) sin(a) — cos(a)

Proof. First note that the M = (COS(O‘) ~sin(a) ) is orthogonal:

sin(a) cos(a)

MEM = ( cos(a) sin(a)) (Cos(a) 7sin(a)) _ (COSQ(a)JrsinZ(a) 0 ) _ ((1)

0
—sin(a) cos(a) sin(a) cos(a) 0 cos?(a)+sin? () 1) ’

cos(a) sin(a)

The computation for the matrix ( :
sin(a) — cos(«

) ) 18 similar.
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Let now M = (CC” Z) be an orthogonal matrix, i.e.

2 2
MM = (59) (eh) = (iaittd) = (0D,

From the equalities a® 4+ ¢ = 1 and b? + d? = 1, we obtain 0 < a, 3 < 27 such that
a = cos(a), c = sin(a),d = cos(f),b = sin(B).

The equality ab 4 c¢d = 0 hence gives
0 = cos(a) sin(B) + sin(a) cos(B) = sin(a + B).

From this we conclude
a+p=mnr

for some m € Z. If m is even, we find:
cos(f) = cos(mm — a) = cos(mm) cos(a) + sin(mm) sin(a) = cos(«)
and
sin(f8) = sin(mm — «) = sin(mm) cos(a)) — cos(mm) sin(a) = — sin(«)
which gives
ab) _ [ cos(a) —sin(a)
(c d) - (sin(a) cos(a) ) :
If m is odd, we find:
cos(f) = cos(m — a) = cos(mm) cos(a) + sin(mm) sin(a) = — cos(av)
and
sin(B) = sin(m — «) = sin(mn) cos(a) — cos(mm) sin(a) = + sin(a)
which gives
ab) _ [ cos(e) sin(a)
( c d) - (sin(a) fcos(a)) )
as desired. O

We now change the view point: in stead of matrices, we consider linear applications between hermitian
spaces.

Proposition 10.6. Let V and W be two hermitian K -spaces of dimensions n and m and let ¢ : V —
W be a K-linear application.

(a) There exists a unique K -linear application ¢ : W — V such that for allv € V and allw € W

(p(v), w) = (v, (w)).

Note that the scalar product on the left is the one from W, and the scalar product on the right is
the one from'V.

The application o™ is called the adjoint of .



80 10  NORMAL, ADJOINT, SELF-ADJOINT OPERATORS AND ISOMETRIES

(b) Let S be an orthonormal K-basis of V and T be an orthonormal K -basis of W. Then

Msr(¢™) = Mrs(p)

(the matrix obtained from the transpose by complex conjugation). Thus M S,T(gpad) is the adjoint
matrix of M7 s(p).

Proof. LetS =s1,...,8pand T =tq,...,t, be the two orthonormal basis. Let

Mr s(¢) = (aij)1<i<m,1<j<n,

ie. @(s;) = ZZ”ZI ayitr. We will take (b) as definition of cpad: it is the K-linear application
represented by Mr (i)t Concertely, we have ¢ (¢;) = > 7_, @ sk
We first verify:

Zak itk b E ak,i(tk, L = j
m m
<3u E as;, ksk Zajk Szask = Q5
k=1

We can now obtain (a) by linearity: letv = > | b;s; and w = > "

(( Zb Si),
sz‘P Sz
- sz ZFj@O(SZ) 13
i=1  j=1
= Z@Z@@MP

i=1 =1

Z bisi, ZCJSD (t;))

7j=1

= <Z bisi, 0" (> cit;))
i-1

j=1
= (v, " (w)).

For the uniqueness of ¢4, write 24(t;) = >"7_, di jsk, and compute

=1 cjtj; we have

Ms

cjtj)
J=1

nMs

aji = (p(si), tj) = (si, " (i, de k) = Y dij(si,sk) = dij.
k=1

We thus obtain d; ; = @; ;, the uniqueness. O
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Note that if K = R, the adjoint of a matirx M is the transpose.

Proposition 10.7. Let U, V, W be hermitian K-spcaes of finite dimensions and U % V5 W obe

K-linear applications. Then:

(a) id¥ =idy,

(b) (p+ )t =™+,

(c) Vo € K : (wp)* =Tp™,

(d) (now)*! = ¢ o and

(e) ()™ = o.

The same statements hold for matrices.

Proof. The statements for matrices are easily verified. The only point where one needs to be careful
is (M o N)' = N" o M"Y, itis Lemma[@.1l O

Definition 10.8. Let V be a hermitian K-space of finite dimension and let ¢ : 'V — V be a K-
endomorphism.
We say that ¢ is self-adjoint if o = 4,

In view of Proposition [10.6] we thus have
¢ is self-adjoint < Mg () is self-adjoint,

for an orthonormal basis .S of V.
For the proof of the next proposition, we need a small lemma.

Lemma 10.9. Let (V, (,)) be a hermitian space. Then, ifv L 'V forv € V, thenv = 0.
Proof. If v 1.V, we have in particular, v | v, whence 0 = (v, v) = |v|? which implies v = 0. O

Proposition 10.10. Let V' be a hermitian K-space of finite dimension and let ¢ : V. — V be a
K-endomorphism.

(a) The following statements are equivalent.

(i) @ is self-adjoint (p = ™).

(ii) (v,w), = (p(v),w) forv € V and w € V is a hermitian form.
(b) If ¢ is self-adjoint then: ¢ =0 < Yv € V: (v,v), =0.

Proof. (a) It is always true (even if ¢ is not self-adjoint) that (-, ) is linear in the first variable and
sesquilinear in the second. One therefore has to check the third property in the definition of hermitian
forms Let v,w € V. First we do the computation

(v, w)p = {p(v), w) = (v, p*d(w)) = (P*(w), v) = (W, V) gaa.



82 10  NORMAL, ADJOINT, SELF-ADJOINT OPERATORS AND ISOMETRIES

We thus have

Vo,we V:(v,w), = (w,v),
aVo,w eV (e*(w),v) = (p(w),v)
evVo,w eV : (™ —p)(w),v) =0
eYweV:(p™—p
eYweV: (g™ —p
se*l=gp

by Lemma
(b) If p = 0, it follows trivially that

(v,v)p = (p(v),v) = (0,v) = 0.
Suppose now that (v,v), = 0forallv € V. Letv,w € V and a € K. We compute

0= (v+aw,v+ aw),

=a{p(v),w) + al{p(w),v)
=a(p(v),w) + a(w, ¢(v))
= a(p(v), w) + af

With ¢ = 1, we obtain 0 = Re((p(v), w)), and with a = ¢ we find 0 = Im({p(v), w)). Consequently,
we have for all v, w € V

0= (p(v),w).
For all v € V, we thus find p(v) L V, whence the desired result ¢(v) = 0 by Lemma[10.91 O

If one applies the previous proposition with s for a square matrix M, we find back the result of the
discussion in the beginning if section[9l Then:

(@) M = M < M is self-adjoint < (v, w) — v'" Aw is a hermitian form.
(b) If M is self-adjoint, then: M =0 < Vv € K" : v"Mov = 0.
We now introduce the applications that preserve lengths: the * isometries”.

Definition 10.11. Let V' be a hermitian space. We call isometry any ¢ € End g (V') such that for all
veV

[p(v)] = [ol.

Lemma 10.12. Let V be a hermitian space and let ¢ € Endg (V). The following statements are
equivalent:
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(i)  is an isometry.
(ii) goad o @ = idy (in particular, @ is an isomorphism).
(iii) Forallv,w € W: (p(v), p(w)) = (v, w).

Proof. ““(i) = (i1)”: We have for allv € V:

(v,0) = (p(v),0(v)) = (v,*(p(v))),

hence

ad

(v, (" 0 o —idy)(v)) = Oet, alors, (™ 0 p —idy)(v),v) = 0.

Note that *d o  — idy is self-adjoint, thus Proposition [0.10(b) implies that ©*d o p — idy = 0,
whence ¢ 0 p — idy .
“@i1) = (ii1)”: Let v, w € V, then

(p(v), p(w)) = (v, (p(w))) = (v, w).
“@ii) = (1)”: Letv € V. Then,

lo(v)|* = {p(v), p(v)) = (v,v) = o],

By this lemma, we have
¢ is an isometry < Mg s(¢) is an isometry (i.e. orthogonal or unitary)

for an orthonormal basis .S of V.

Until now we always considered two types of endomorphisms/matrices: self-adjoint and isometries.
We would like to treat some of their properties in parallel. We thus look for a common generalization.
Normal operators are such a generalization. We first give the definition in a *“ metric”’way

Definition 10.13. Let V' be a hermitian space. We call normal operator any ¢ € Endg (V') such that
forallveV

lo(v)] = | (v)]-
Example 10.14. (a) If o is self-adjoint, we have ©®\ = @, whence, © is normal.

(b) If  is an isometry, we have that @ is an isometry and ¢* = 1. As |p(v)| = |v| forallv € V,

in particular also for o' (v), we find |©*(v)| = |~ (v)| = |v|, whence,  is normal.

Proposition 10.15. Let V' be a hermitian space and let p € Endg (V). The following statements are
equivalent:

(i) @ is normal.

(ii) ¢*d o = o
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Proof. First we compute

o) = [* () * = (p(v), 0(v)) — (¢*}(v), " (v))
= (p(v), (£ (v)) = (" (v), ¢ (v))

(¢! 0 p(v),v) — (p o P (v),v)
(™ 0 —po*)(v),0).

Note that ¢ o p®d — 24 o 1 is self-adjoint. Consequently, (Propositon [[0.10(b)) we have
poyp ¥ ¥ J q y P

(Vo e Vi lp@)]? = [¢™(@)?) & ¢* o p = pop™

In terms of matrices, we thus have:

—tr deﬁnmon

 is normal <= MM = MM M is normal

where M = Mg 5(¢) for an orthonormal basis S of V.

Lemma 10.16. Let V be a hermitian space and let ¢ € Endg (V') be normal. Let a € Spec(p) be
an eigenvalue of .

(a) Ey(a) = E (@)

(b) If ¢ is self-adjoint, then a € R.
(c) If ¢ is an isometry, then |a| = 1
Proof. (a) We first prove that ker(¢) = ker(p®®) for any normal operator. Let v € V/, then,

’ —0 déf. n<o:r>malité |<,0ad

v eker(p) € pv) =0< |p(v) (v)] =0 ™ (v) =0 < v € ker(p™).

Now put ¢ := ¢ — a - idy. This is also a normal operator:
Yo = (p—a-idy)o(p—a-idy ) = (p—a-idy)o(p*—a-idy) = o —a-0™—a-p+a-a-idy
=¢*op—a-¢ —a-p+a-a-idy =(p—a-idy)* o (p—a-idy) =¢* o).
The previous computation gives us

E,(a) = ker(p — a-idy) = ker(¢)) = ker(¢™1) = ker(¢p™ — @ -idy) = E aa(@).

(b) For all v € E,(a) we have v € E,(a), hence a - v = ¢(v) = ¢*d(v) =@ - v, thatis, a = @ and
consequently a € R.

(c) For all v € E,(a) we have v = o 1 (p(v)) = ¢ Ha-v) =a- ¢ t(v)=a-a-v = |a* v
whence |al? = 1. O

Example 10.17. This example gives us an idea of the spectral theorem.

(a) Firstly we continue the analysis of Os of Lemmall0.5]



85

(1) Let M = (Cos(a) —sin(e) ) Its characteristic polynomial is

sin(a) cos(a)
(X — cos(a))? +sin*(a) = X? — 2cos(a) X + 1

whose discriminant is 4 cos®(a)) — 4 < 0 with equality if and only if | cos(a)| = 1, if and only
ifa € 7.

Consequently, if o« & 77, then M has no eigenvalue and is therefore not diagonalizable. This
is also geometrically clear since M represents the rotation by angle « that does not fix any
vector unless the angle is a multiple of .

If a is an even multiple of m, then M = id. If « is an odd multiple of , then M = —id.
(2) Let M = (COS(O‘) sin(a) > Its characteristic polynomial is

sin(a) — cos(a)

X2 —cos?(a) —sin®(a) = X2 - 1= (X —1)(X +1).

The matirx M is thus diagonalizable with eigenvalues —1 and 1. An eigenvector for the
eigenvalue 1 is given by 5

Cos(a/2)) and the vector ( sin(a/2) ) is an eigenvector for the

sin(a/2) —cos(a/2)

eigenvalue —1.

Geometrically, it is a reflexion by one axis (eigenvector for eigenvalue 1).

(b) Let M € Matsy3(R) be an orthogonal matrix. Its characteristic polynomial is monic of degree 3
and has therefore a real root \1. By Lemma[[0.16] this root is either 1 or —1. There is thus an
eigenvector vy for the eigenvalue \i. We can normalize it such that |vy| = 1.

By Gram-Schmidt, we can find vectors va, v3 such that vy, va, v3 form an orthonormal basis of R3.
Moreover, since M is an isometry, for i = 1,2, we have

0= <Ui, 7)1> = <MU¢, MU1> = /\1 <M1)i, 2}1>.
This means that M sends the subspace W < R3 generated by vs, v3 into itself.
If one writes the vectors vy, ve, v3 as columns in a matrix C (which is orthogonal!), we thus obtain

A1
CYMC =

QL o O

0
a
c

0
0
The matrix A := (‘; Z) is orthogonal and belongs to O.

If det(A) = det(M)/A1 = 1, we have that A = (;)s((z)) ;slslzio)‘w for some 0 < o < 2m. If
det(A) = —1, we can find a basis wy, w3 of W consisting of normalized eigenvectors: |w;| = 1
fori = 2,3 for the eigenvalues 1, —1. Consequently, vy, ws, ws is an orthonormal basis of R3. If

D is the (orthogonal!) matrix whose columns are these vectors, we finally have

M 0O 0
DYMD=|0 1 0
0 -1

for Xp € {1,—1}.
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11 Spectral Theorem

Goals:
o Know the spectral theorems;
e be able to compute the diagonalization of normal complex matrices, adjoint matrices;
e be able to compute the normal form of orthonormal matrices;
e know examples and be able to prove simple properties.

Let V be a hermitian space and let U, W < V be two vector subspaces. We write U QW for U + W
if the sum is direct (U & W) and the two subspaces are orthogonal (U L W).

Lemma 11.1. Let V be a hermitian space and ¢ € Endg (V') normal. Then, for all distinct
ai,...,an € Spec(p), we have

E¢(a1) + Ew(QQ) +oot Ew(an) = Ev(al) @Ew(@) D--- @Ew(an)~

Proof. In Lemma[3.10lwa have already seen that the sum of eigenspaces is direct. Let 0 # v € E(a;)
and 0 # w € Ey(aj) withi # j (i.e. w € Eaa(a;) by Lemma[l0.16). We have

(p(v), w) = (@iv,w) = ai(v, w),

but also
<g0(v),w> = <Ua (pad(w» = <Uva7jw> = aj<v,w>,

whence (v, w) = 0. O

We first prove the spectral theorem for normal operators with complex coefficients. The reason for
this is that in this case we have the following theorem.

Theorem 11.2 (Fundamental Theorem of Algebra). Any polynomial f € C[X] of degree > 1 has a
zero.

Proof. Analysis Course. O

Corollary 11.3. Let 0 C W C V be a subvectorspace and ¢ : V. — V a K-linear map such that
(W) C W. Then there exist 0 # w € W and a € K such that o(w) = aw. Moreover, any
eigenvalue of the restriction of p|w to W is also an eigenvalue of .

Proof. Let f = car,, € C[X] be the characteristic polynomial of the restriction of ¢ to . As
W # 0, one has deg(f) > 1. Moreover, f divides car,, (this suffices, for instance, by Lemma [Z.1] (a)
and the rueles for the determinants of block matrices). This shows already that the spectrum of o[y
is contained in the spectrum of . Moreover, by the fundamental theorem of algebra[I1.2] the polyno-
mial f has a zero a € C. Hence there exists a non-zero eigenvector w € W for the eigenvalue a. [

Theorem 11.4 (Spectral Theorem for normal operators). Let V' be a hermitian C-space of finite di-
mension and ¢ € Endg (V). The following statements are equivalent:
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(i) @ is normal.
(ii) V =Qaespec(p) By (a) (in particular, ¢ is diagonalizable).
(iii) 'V has an orthonormal basis consisting of eigenvectors for .

Proof. “(i) = (ii)”: We have already seen that W := @aespecw) E,(a) is a subspace of V' and
we know that the sum is orthogonal by Lemma [[1.11 Corollary 0.13(b) yields the existence of on
orthogonal complement V = W @ W+. The aim is to show W+ = 0.
Lemma [10.16] implies that W = D cspec(y) £ (@), whence (W) C W. Letnow v € W+,
Then for all w € W,

(p(v),w) = (v, g™ (w)) =0,
showing that ¢(v) € W+. Hence we can restrict  to W=+. Let f = charpolyy € C[X]
be a characteristic polynomial. Assume that W+ # 0, so that deg(f) > 1. By the Fundamental
Theorem of Algebra[I1.2] this polynomial has a zero z € C. Since Charpoly¢|w | |charpoly,,, we
find z € Spec(y), whence W+ N # 0, leading to a contradiction. Therefore, W= = 0, as desired.
“(il) = (ii1)”: It suffices to choose an orthonormal basis of each E¢(a) and take the union; we will
then automatically have an orthonormal basis of V' because the eigenspaces are orthogonal.
“(iii) = (i)”: Let S = sy, ..., s, be an orthonormal basis of V' consisting of eigenvectors. Let a; be
the eigenvalue associated to s; (we do not require that the a;’s are two by two distinct). Thus we have
©(s;) = a; - s;. Let 1 < j < n. We have

(57,0™ (s0) = @isi) = (55,9™ (1)) = (55, @sa) = {p(s;), 80) — ailsy, s1) = (aj — ai)(sj, ) = 0.
Therefore (0™ (s;) — @;s;) L V, whence ¢®(s;) = @; - s; by Lemma[I0.9l The computation
0(0 (i) = (@i - 5:) = @i - p(si) =
U p(si) = ¢
implies ¢ o *d = ™ o ¢, the normality of . O
Let us now provide the translation in terms of matrices of the spectral theorem [11.4l
Corollary 11.5. Let M € Mat,, «,,(C) be a matrix. Then the following statements are equivalent:
(i) M is normal, i.e. MM =M-M"
(ii) There exists a unitary matrix C' € Mat,, xn, (C) such that C" M- Cisa diagonal matrix.

Proof. “(i) = (ii)”: Let ¢ = ¢ be the endomorphism of C" such that Mg () = M where S is the
canonical basis (which is orthonormal for the canonical scalar product!). By Proposition[10.6lwe have
M =M 5.5 (™). Therefore the hypothesis that M is normal translates the fact that ¢ is normal. We
use Theorem [[1.4] to obtain an orthonormal basis 7" of eigenvectors. Thus C§7 }, -Mgs(p)-Csr =
Mr () is a diagonal matrix. Recall now that the columns of C' := Cg 7 are the vectors of basis T".
Since T is orthonormal for the canonical scalar product, we have C' - c" = id,, and the statement is
proven.
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“@1) = (1)”: Let C" . M-C = diag(ai,...,a,), be the diagonal matrix having ai, ..., a, on the
diagonal. First notice that

— _tr — J—
(C".-MC) =C"-M".C = diag(a, . .. ,an).
Since diagonal matrices commute, we find

—tr tr —tr —tr ——=tr —tr —tr ——=tr
(c*-MmMC) -(C"-MC)=C"-M"-C-C"-MC=C"-M"-MC
tr

=" - MmMC)-(C"-MC) =C" - M-Cc.C"MT.c=C"-M-M"-C,
thus M- M = M - M. O
Let us now look at the case K = R.
Lemma 11.6. Ler M € Mat,,x,,(R) be a matrix which we consider on C.
(a) Forall ;v € Cand all v € C™ we have the equivalence: v € Ey(pn) <= v € Eyp(f).
(b) For pn € C we have the equivalence: p € Spec(M) <= i € Spec(M).
(c) For pu € R, the eigenspace En(p) C C™ has a basis in R™.

(d) Let jv € Spec(M) such that ;v € C\ R and let v € Ep(p) such that |v| = 1.

Set x := %(v +),y:= 2=(v—0) € Epr(1) © Epn ().

V2
Then |x| =1, |yl =1, Ly, Mz = Re(u) - — Im(u) - y and My = Re(p) -y + Im(p) - .

. R I .
Hence, M acts on (z,y) by the matrix (_Ii(f&) ;283 ) for the basis {z,y}.

Proof. (a) We observe: Mv = - v <= Muv = M7v = i~ v = i - v which implies the result. (b) is
a direct consequence of (a).

(c) It suffices to show that F;(u) admits a system of generators in R™. Let vy,...,v, € C" be
a C-basis of Ep(p). Set z; = Re(v;) = £(v; + ;) and y; = Im(v;) = £(v; — v;) for j =
1,...,r. These vectors belong to E/ () since so does Tj; for all j. Since v; = x; + iy;, the vectors

TlyeeoyTpyYly-- ., Yp generate Eps(p).
(d) First observe that v L v since Ens(p) L Ear(f) as p # . We have

1
’x‘z = <£L‘,£B> = (7)2<U +v,v +@> = §(<U7U> + <575> + <U,W> + (57’U>) =1
The calculation of |y| is similar:
Y = () = (S2)2 0 —,0—7) =
V2
We also have:

(2,1) = %@ +T0—T) = %(@,m @, + (B,0) — (0,7)) = 0.
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Let us now compute the action of M:

Ma = 2= (Mo -+ MD) = —=(uv+70) = == (( + Do+ 7) + (= 1) (v = 7))
= S0 ) — o~ )y = Re() - — () -y

My = z\lﬁ(MU — M) = jéiuw ) = %bi(wwxv —T) + (u— )0 +7))
= %(M+ﬁ)y+%(ﬂ—ﬁ)$:RG(M)'y+Im(M) "z

Corollary 11.7. Let M € Mat,,«,(R) be a normal matrix, i.e. M** - M = M - M,

Let Ay .. Ay fldye ey fbsy iy -y s forn =1 +2sand \y,...,\r € Rand py,...,us € C\R
be the diagonal coefficients of the matrix of Corollary[[1.3 We set a; = Re(u;) and B; = Im(u;) for
1< <s.

Then, there exists an orthogonal matrix C' € Mat,, x, (R) such that

A 0 0 O O O 0 0o 0 0

0 % 0 0 0 0 0 0 0 0

0 0O A 0 0 0 0 0 0

N 0 0 a, Bi 0 0 0 0
CH-M-C=1 0 -8, a4 0 0 0 0
0 0 0 0 0 0

0 0 0 0 . . 0 0

0 0 0 0 0 0 a5 B

0 0 0 0 0 0 —B as

Proof. In view of Corollary[l11.5land Lemmall 1.6) we have an orthonormal basis
wiy, w2, ... ,wr,Ul,Fl, U27@7 B ‘/U87U78
of C" consisting of eigenvectors for the eigenvalues

A].))\Q)’"’A'rwul’m?l'l’Q?@?"'?HS?m

where n = r + 2s and the property w; € R™ for 1 < ¢ < r is satisfied. As in the lemma, set
T = %(’l}j +7;5) ety; = %(Uj — Tj).

Then, wy, ws, ..., w,, X1, Y1, X2,Y2, - .., Ts, Ys form an orthonormal basis of R™. If this orthonormal
basis is written in the columns of C' (which is then orthogonal), then C' ~1MC has the desired form.
This follows from the computations in Lemma [IT.6l O

Remark 11.8. Let M € Maty,x,(K) for K € {R,C}. To compute the matrix C' of corollaries
and[[1.71 we can use the techniques that we already studied. We proceed as follows:
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(1) Compute the characteristic polynomial.
(2) Compute the eigenvalues in C (as roots of the characteristic polynomial).
(3) If M € Mat,,,,(C), for all a € Spec(M), compute a C-basis of Eyr(a).

(4) If M € Mat,xn(R), for all a € Spec(M) real, compute an R-basis of Ey(a), and for all
a € Spec(M) not real, compute a C-basis of Epr(a).

(5) Using Gram-Schmidt, compute an orthonormal basis of Eyr(a) (on R if the original basis is on
R) for all a € Spec(M).
Note that if a € C\ R and M € Mat,,«,,(R), then we obtain an orthonormal basis of Ey;(a) by
applying complex conjugation to the orthonormal basis of Eyy(a).

(6) If M € Mat,,x,,(C), write the vectors of the orthonormal bases as columns of the matrix C.

(7) If M € Mat, «n(R), arrange the eigenvalues of M (seen as matrix with complex coefficients) as
follows: first the real eigenvalues \1, . .., Ay, then p1, ..., s, i1, ..., s € C\ R

For each vector v of the orthonormal basis of a proper space Eyy(u;) foralli = 1, ..., s, compute
the vectors x,y as in Corollary [[1.7 and obtain an orthonormal basis with real coefficients of
En (i) @ En ().

Write the vectors of the real orthonormal basis of Enf(\;) for i = 1,...,1r and of Epf(u;) &
En (1) as columns of the matrix C.

Example 11.9. Ler us treat a concrete example for a symmetric matrix. Let

14 38 —40
M=13 71 20
—40 20 5

Its characteristic polynomial is (X + 45)(X — 45)(X — 90).
Let us compute the eigenspaces:

59 38 —40 2
Ep(—45) =ker | 38 116 20 | =([-1]),

—40 20 50 2

—31 38 —40 4
Eyv(45)=ker | 38 26 20 | =([-2])

—40 20 -—40 -5

and

—-76 38 —40 1
Ey(90) =ker | 38 —19 20 | =(|2]).

—40 20 -85 0
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These vectors are already orthogonal by Lemma One can easily verify it. Thus, it suffices to
normalize them and to write them as columns of a matrix:

2 4 1
3 3/5 V5

O—|=t = 2
3 3v5 Vb
2 =6
3 3

By construction, C' is orthogonal, which can also be checked by a direct computation. We obtain by
construction (to check by computation):

—45 0 0
CY"MC=1| 0 45 0
0 0 90

We can now state a stronger result if ¢ is self-adjoint.

Corollary 11.10. Let K € {R,C}. Let M € Maty,x,(K) be a matrix. Then the following statements
are equivalent:

(i) M is self-adjoint (symmetric/hermitian).

(ii) There exists an isometry (unitary/orthogonal matrix) C' € Mat,,wn,(K) such that c".M-C=
diag(ay,...,an) withay,...,a, € R

Proof. “(i) = (ii)”: Since M is self-adjoint, it is normal. We can thus apply Corollary[I1.7 Moreover,

we obtain 7 = n and s = 0 in the notation of the corollary, since Spec(M) C R by Lemma[I0.16l

“@i) = (1)”: Let c" M.C= diag(ay,...,a,), the diagonal matrix with a1, ...,a, € R on the

diagonal. Taking the adjoint on both sides, we have C" - M-C=C" M"C since the diagonal
. . ——Ftr

matrix is invariant. Therefore, M = M . L]

Corollary 11.11. Ler K € {R,C}. Let V be a hermitian K-space of finite dimension and ¢ €
Endg (V). Then the following statements are equivalent:

(i) @ is self-adjoint.
(ii) V =Qaespec(p) Ep(a) (in particular; ¢ is diagonalizable) and Spec(p) C R.
(iii) 'V has an orthonormal basis consisting of eigenvectors for the real eigenvalues of .

Proof. We will deduce this theorem from Corollary For this, let .S be an orthonormal basis
of V. Then, ¢ is normal/self-adjoint if and only if M := Mg s(y) is normal/self-adjoint (this comes
from Proposition [10.6).

“(i) = (ii)”: It suffices to apply Corollary TT.10/to the matrix M.

“(i1) = (111)”: It suffices once again to choose an orthonormal basis in each eigenspace.

“(iii) = (1)”: Let T be the orthonormal basis in the hypothesis. Let C' be the matrix whose columns
are the vectors of the basis 7". Then, . Mg s(¢) - C is diagonal with real coefficients, hence
Corollary tells us that Mg s(¢) is self-adjoint, then ¢ I’est aussi. O
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Corollary 11.12. (a) Let M € Mat,,x,(C) be an isometry. Then there exists a unitary matrix C €
Maty, xn (C) such that C"MC is diagonal and all the coefficients on the diagonal have absolute
value 1.

(b) Let M € Mat,xn,(R) be an isometry. Then there exists an orthogonal matrix C' € Mat,,x (R)

such that
A 0 0 0 0 0 0 0 0 0
0 X 0 O 0 0 0 0 0 0
0 0 A 0 0 0 0 0 0
oA O 0 0 co§(a1) sinfa;) 0 0O 0 0
0 0 —sin(aq) cos(a;) 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 cos(as) sin(ag)
0 0 0 0 0 0 —sin(as) cos(as)

where Ay, ..., A\, € {—1,1}.

Proof. (a) This is an immediate consequence of Corollary [11.5and of Lemma[10.16l
(b) This follows from Corollary [[1.7] and from Lemma [[0.16] since for z € C with absolute value 1
we have Re(z) = cos(«) and Im(z) = sin(«) if one writes z = exp(i«). O

Part (b) is a generalization of Example [10.171

Corollary 11.13. Let K € {R,C}. Let V be a hermitian K -space of finite dimension and let ¢ €
Endg (V') be an isometry.

(a) If K = C, then there exists an orthonormal C-basis S of V' such that Mg s() is diagonal and
all the coefficients on the diagonal have absolute value 1.

(b) If K = R, then there exists an orthonormal C-basis S of V such that Mg s(¢) is as in part (b) of
Corollary L1 12

Proof. 1ts the translation of Corollary[11.12]in the case of endomorphisms. O

Definition 11.14. (a) Let V be a hermitian K-space of finite dimension and let ¢ € Endg (V)
autoadjoint. One says that ¢ is positive (positive definite) if the hermitian form (,), of Pro-
position is positive (positive definite).

(b) Let M € Mat,, xn(K) be an autoadjoint (symmetric (if K = R) or hermitian (if K = C)) matrix.
One says that M is positive (positive definite) if the hermitian form (v, w) p; := v Mw is positive
(positive definite).

Lemma 11.15. Let V be a hermitian K-space of finite dimension with orthonormal basis S and let
¢ € Endg (V) be self-adjoint. Then:
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(a) ¢ is positive (positive definite) <= Mg s(p) is positive (positive definite).
(b) @ is positive <= Spec(p) C R>o.
(¢) @ is positive definite <= Spec(p) C R<g.

Proof. Exercise. ]

Lemma 11.16. Let M € Mat,,x,,(K) be a positive and self-adjoint matrix (symmetric (if K = R) or
hermitian (if K = C)). Then there exists a positive matrix N € Mat,, «,(K) such that N? = M and
NM = MN. Moreover, M is positive definite if and only if N is.

Proof. Exercise. 0

Theorem 11.17 (Décomposition polaire). Let V' be a hermitian K-space of finite dimension and let
¢ € Endg (V') be an isomorphism (i.e. an invertible endomorphism).

Then there exists a unique autoadjoint and positive 1p € Endg (V) and a unique isomerty x €
Endg (V') such that ¢ = x o 1.

Proof. Existence: By one of the exercises, ¢*? is also an isomorphism. Define the isomorphism
6 := ¢* o . It is self-adjoint:

ad ) ad ad

= (p* 0 )™ = I o (1)

1= pop =49,
hence Spec(f) C R by Lemmal[l0.16l Let us now show that it is positive definite:

(v,0)9 = (0(0),v) = (™ (p(v)),v) = (p(v), p(v)) = | (v)[* > 0

for all 0 # v € V. Therefore, by Lemma[I1.16l there exists positive definite ) € Endg (V') such that
1% = 0. Put x := ¢ o 9p~L. To finish the proof of existence it suffices to prove that y is an isomerty:

X_lzwogp_l:w_lo¢2o<p_lij)_1090(’0_1
:wilo(padogpogpil :wflogoad: ((powfl)adzxad

where we used (¢ ~1)2d = (13d)~1 = )=1 as 1) is self-adjoint.
Uniqueness: Assume that ¢ = x1 0 1 = X2 o ¥y for isometries X1, x2 and self-adjoint positive
definite isomorphisms 1, 1)2. We obtain

Xz ox1 =109t = 4.

On the left hand side we have an isometry and on the right hand side a self-adjoint positive definite
endomorphism. Thus there exists an orthonormal basis S such that Mg g(f3) is diagonal, and the
coefficients on the diagonal are positive reals (since 3 is positive self-adjoint) and of absolute value 1
(since [ is an isometry). It is therefore the identity, 5 = id, whence x1 = x2 et ¥1 = 1o. O
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12 Quadrics

Goals:
e Be able to do simultaneous operations on rows and columns;
e know the link with elementary matrices;
e be able to compute a diagonal matrix using simultaneous operations on rows and columns;
e know the definition of quadrics;
e know the definition of equivalence of quadrics;
e know the classification of quadrics;
e be able to compute the type in the classification for a given quadric;
e know examples and be able to prove simple properties.

The first goal is to obtain a diagonal matrix by simultaneous operations on rows and columns of a
given matrix (be careful: this does not coincide with the diagonaloization in the previous sections)
After, we will apply the results for the classification of *quadrics’.

Simultanoeus operations on rows and columns

We go back to the study of elementary operations (Gauf} algorithm) on rows and columns (see Defini-
tion[I.39and the following), except that we now do simultaneous operations on the rows and columns,
i.e. any operation that is done on the rows has to be done on the columns too. For instance, if we add
the third row to the fifth, then we also have to add the third column to the fifth column. The advant-
age is that a symmetric matrix will stay symmetric. Along with Lemma [[.40] we have the following
lemma.

Lemma 12.1. Let A € K, i,j,n € Nug, i # j and M € Mat, x,(K).

(a) Pij P; ; is the matrix that is obtained from M by interchanging the i-th row with j-th row and

the i-th column with the j-th column.

(b) S;(\)"MS;()) is the matrix that is obtained from M by multiplying the i-th row and the i-th
column by ). In particular, the coefficient at (i,1) is multiplied by \2.

(c) Qij(N)"MQ; j(N\) is the matrix that is obtained from M by adding X times the i-th row to the
j-th row, and X\ times the i-th column to the j-th column.

Proof. 11 suffices to use Lemma [1.40) O

1
Example 12.2. Let M = | 2
3

(G2 BTSN V)

3
5 |. It is a symmetric matrix. We write the augmented matrix and
6

we do the operations on the rows and columns (only on the right half). We need the left half only
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if we want a real matrix C such that CMCY™ (Be careful: in the above considerations, we had the
transpose at the left, here it is at the right) coincides with the matrix obtained by transforming the

rows and columns simultaneously.

10 01 2 3 1 0012 3 1 001 0 3
0102 45]—-|-21000 —-1|—~]-2100 0 -1
0 01 356 0 01 3 5 6 0 01 3 -1 6
1 001 0 3 1 001 0 O
-2 100 0 -1]~[[-2100 0 -1
-3 010 -1 -3 -3 010 -1 -3
1 001 0 O 1 001 0 O
-3 010 -1 -3|—~[[-3010 -3 -1
-2 1 00 0 -1 -2 1 00 -1 0
1 0 0 1 0 0 1 0 0 1 0 0
= -3 0 1 0 -3 -1]—|[-30 1 0 -3 0
-11 -1/3 0 0 1/3 -11 -1/3 0 0 1/3
1 0 0 1 0 0 1 0 0 1 0 0
-3 0 1/V3 0 —/3 0 |—=|[-3 0 1//3 0 -1 0
V3 V3 —1/¥/3 0 0 1/V3 —V3 V3 —-1/v/3 0 0 1
Note that the —1 in the middle of the right half cannot be transformed into 1 since one can only mul-
1 0 0
tiply/divide by squares. Let C be the left half of the final matrix: C = | —/3 0 1/v/3 |. The
V3 V3 —1/V3

right half is the matrix obtained by simultaneous operations on the rows and columns. By Lemmal[l2.])
we have the following equality (to convince yourself, you can verify it by a short computaion):

1 0 0

CMC" =10 —1 0

0 0 1
1 0 0
Writing D = C', we have the transpose at the left: DYMD = [0 —1 0
0 0 1

We will now generalize what we have seen in the example.

Proposition 12.3. Let K be a field such that 1 + 1 # 0 and let M € Mat,, xn(K) be a symmetric
matrix. Then there is a matrix C' € GLy,(K) such that C** M C is a diagonal matrix.

Proof. The proof is done by induction on n. The case n = 1 is trivial (there is nothing to do). Assume
the proposition is proven for matrices of size n — 1.
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mi1 Mmi2 ... Min
m2>1 m272 ce m27n . . . .

Let M = . . ) . . If M is the zero matrix, there is nothing to do. Let us
mml mng e mnm

therefore suppose that M is non-zero. We will use simultaneous operations on the rows and columns.
We proceed in two steps.

(1) Transform the matrix so that mq 1 # 0.

Case 1: there exists ¢ such that m; ; # 0: In this case, we interchange the ¢-th and the first row and

the i-th and the first column.

Case 2: m;; = Oforalli =1,...,n: Since M is not the zero matrix, there is ¢ # j such that
m; j # 0. We add the i-th to the j-th row and the ¢-th to the j-th column. This gives m; j +m;; =
2m, ; at position (j, j) and we are thus back to Case 1.

(2) By (1), we have m; ; # 0. Foralli = 2,...,n, we add —mj ;/m; ; times the first row to the i-th
row and —m; ;/m; 1 times the first column to the i-th column.

min 0 e 0
. . 0 mao2 ... M2n
We obtain a matrix of the form
0 mMmp2 ... Mpy
The induction hypothesis applied to the remaining block of size n — 1 finishes the proof. O

Corollary 12.4. The rank of a matrix is invariant under simultaneous operations on the rows and
columns.

Proof. Assume that N is obtained from M by simultaneous operations on the rows and columns. By
Proposition [[2.3] we have C* MC' = N for an invertible matrix C. Since C'*" is also invertible (for
instance, since 0 # det(C) = det(C™)), we have rk(N) = rk(C*"MC) = dim(im(C*"MC)) =
dim(im(C*" M)) = dim(C*" (im(M)) = dim(im(M)) = rk(M). O

Quadrics

In the whole section, let K be a field such that 1 + 1 # 0, for instance K = R or K = C. First
recall that K[X1, Xo,...,X,] denotes the ring of polynomials in variables X, Xo,..., X,, with
coefficients in K. An element of K[X;, Xs, ..., X,] is of the form

di  do dn

o .oyl oyl i
E E E @iy ig,in X1 XKoo - Xy

i1=0i2=0  in=0
In the sequel, we will only consider quadratic polynomials.

Definition 12.5. We call quadratic polynomial (in n variables and with coefficients in K') any element
of K[X1,Xo,...,X,] of the form

n
q(X1, XQ, . ,Xn) = Z ai,jXZ-Xj + Z CL()J'XZ' + CL0,0.

1<i<j<n i=1
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Example 12.6. (a) Let n = 1. Let X be the variable. Any quadratic polynomial is of the form
a11X? + app X + app = a2 X? + a1 X + ag
where we relabelled the coefficients in a standard way.
(b) Letn = 2. Let X, Y be the variables. Any quadratic polynomial is of the form
a1,1X2 +a12XY + a272Y2 + ag1X + ap2Y + app.
In particular, we have the following example:
(1) + 3 =
(2) %% -3 -1
(3) X2

Lemma 12.7. Letn € Nand let A € Mat (;,41)x (n41) (K) be a symmetric matrix. Its coefficients will
be called a; j for 0 < i, j < n (note that the numeration starts at 0!). Let X be the vector containing
the variables preceded by 1:

apo ao,1 --- Qon 1

apl a1 ... QA1p - X1
A= , X =

g Alp --- Onn X,

Then the polynomial

n n
qA(Xl, - ,Xn) = X"AX =2 Z ai’inXj + Z amXiQ + 2 Z ao,iXZ' + ap,0
1<i<j<n i=1 i=1

is quadratic and any quadratic polynomial arises from a unique symmetric matrix A by this formula.

Proof. Clear. O

1
z1

: ) € K", we denote £ = .| » the vector x preceded

Tn

1
As in the preceding lemma, for x = <
Tn
by 1.
Definition 12.8. We call quadric (in dimension n) any set
Qa:=Qa(K):={xc K" |i"Az =0} = {x € K" | qa(z) = 0}

where A is a symmetric matrix Mat ,, , 1) (n+1) ().

Example 12.9. Consider n = 2.

-1 0 0
(1) Let A= | 0 & 0| WehaveQa = {z € R? | %22 + %22 — 1 = 0}. Geometrically, it
0 0 4

f=nt

defines an ellipse.
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-1 0 O
(2) Let A= | 0 a% 0 |. Wehave Qs = {z € R? | if—; - 1;—22 — 1 = 0}. Geometrically, it
0 0
defines a hyperbola.
0o o0
(3) Let A=1 0 a% 0 |. We have Q4 = {z € R? | );—22 —Y = 0}. Geometrically, it defines a
S0 0

2
parabola.

We also define an augmented matrix: let C' = (¢; ;) € Mat,x, (/') be a matrix and y € K™ a vector.
We set:

1 0 0
—~ Y cC11 Cln
Cy = )

Yn Cpa1 ... Cpn

Lemma 12.10. Let A € Mat(;,41)x(n41) (K) be a symmetric matrix and Q 4 the associated quadric.
Let ¢ : K™ — K™ be an affinity, i.e. an application of the form

¢(v) = Bv+ By

1 o ... 0

~ el —Y1 6171 e Cl7
where B € GLy,(K) andy € K". Let C := (B~!)_, = "
—Yn Cp1 ... Cpn

Then (Qa) = Qpuw pi- The image of a quadric by an affinity is therefore also a quadric.

Proof. The claim follows from the equality

C‘g(}/):(f’(Bx—i—By) =(—y+zx+y) =2
We therefore obtain the equality
~—— ~ T — ——1tr -~ ~
7AT = (Cop(x))" A(Cp(2)) = p(z) (CTAC)p(x),
hence 2 € Q4 < ©(x) € Qzu 4. Thus the result follows. O

Definition 12.11. Let g1 (X1, ..., X,,) et ¢2(X1, . .., X,) be quadratic polynomials arising from the
symmetric matrices A, B € Mat (1 1)x (n41)(K), i.e. ¢1 = qa, @2 = qB.

We say that q1(X1, ..., X,) et ¢2(X1,. .., X,,) are equivalent if there exists C € GL,(K), y € K™
and 0 # x € K such that @VytrAa’vy =zB.

Thus, by Lemma we have that if ga(X1,...,X,) and ¢g(Xy,...,X,) are equivalent, then
there exists an affinity ¢ : K™ — K™ such that ¢(Q4) = Qp, namely p(v) = C~1v + C~1y with
the notation of the previous definition.

Our next goal is to characterize the quadrics up to equivalence. For this, we need the following
definition.
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Definition 12.12. We call system of representatives of K * modulo squares any set R € K \ {0}
verifying that for all x € K* there is a unique r € R andy € K such that x = r - y>.

Example 12.13. (a) If K = C, then R = {1} is a system of representatives of C* modulo squares.
Indeed, any element of C is a square.

(b) If K = R, then R = {—1,1} is a system of representatives of R* modulo squares. Indeed, any
positive element of R is a square, and any negative element is minus a square.

(c) We call squarefree any integer m € 7 that is not divisible by any square of a prime number. Let
R = {m € Z | m is squarefree }.
If K = Q, then R is a system of representatives Q> modulo squares. Indeed, one can write

-3

. 2
where ab = mq? for squarefree m € 7. Moreover, if m = m’ (g) and m, m’ are squarefree,
then m’ | m; similarly, m | m’; since m and m’ have the same sign, we obtain m = m’, proving
uniqueness.

In the theorem of the classification of quadrics, we will use the following notations: For n € N, the
coefficients of the symmetric matrices A € Mat (1 1) (n+1)(K) will be labelled as follows:

a070 ao,l e ao,n

ap1 4ai1 ... Qin
A=

ag,n Aln --- Apn

Let A,, denote the block of size n x n of A in the bottom-right corner:

ain ... A1n

A, =
ain .-+ Qnn

In view of the definition the equivalence of two quadratic polynomials (and the equivalence of two
quadrics), we have the right to apply the following operations:

e Add the i-th row (¢ > 2) to any other row (be careful: not valid for i = 1).
e Swap the ¢-th and the j-th row for ¢, 7 > 2 (be careful: not validif: = 1 or j = 1).
e Multiply the i-the row by a non-zero scalar (be careful: not valid for 7 = 1).
e Multiply the whole matrix by a non-zero scalar.
Lemma 12.14. Let A € Mat(, 1 1)x (n+1)(K) be symmetric, C € GL,,(K) and y € K". Then
(C,"AG,) =" A,C.

—~ 1 —
In particular, the rank of A,, is equal to the rank of (C'y 1rACy)n. Thus, the rank of A,, is invariant
under equivalence of quadratic polynomials.
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1
0 _

: > and that the first row of Cj, is the
0

vector (10 ... 0) show the result. O

~t
Proof. The facts that the first column of C), " is the vector (

Theorem 12.15 (Classification of quadrics). Let R be a system of representatives of K* modulo
squares. Let qo(X1,...,X,) be the quadratic polynomial associated to the symmetric matrix A €
Mat 41y x (n4-1) (K). Let 1 be the rank of the matrix A.

We have the three following cases:

(I) If tk(A) = r, then there exist a,as,...,a, € R such that qo(X1,...,X,) is equivalent to
X2+ as X3 +asX3+-+a. X2

(1) If rk(A) = r + 1, then there exist a1, az,...,a, € R such that ga(X1,...,X,) is equivalent
1o Xi+as X3+ +a, X2+ 1

(II) Iftk(A) = r + 2, then r < n — 1 and there exist a1, as, ... ,a, € R such that q(X1,...,X,)
is equivalent to ale2 + a2X22 + -4 aTXf 42X, 41.

Proof. In order to obtain these special forms, we are allowed to only use these simultaneous operations
on the rows and columns that correspond to the matrices 6’; with C being one of the matrices of
Definition[1.39and y € K™ any vector.

We proceed in more steps:

(1) In view of Lemma [12.14] Proposition [12.3] shows that using matrices CN'O, the matrix A can be
transformed into

boo box ... bor bory1 ... bon

bop b1p 0 O 0 0

: o . 0 0 .0

B=| by, 0 ...b, 0 .. 0
bossi O ... 0 0 0

bow O ... 0 0 ... 0

for b; ; # 0 for 1 < ¢ < rinsuch a way that ¢4 and ¢p are equivalent.

—~—tr
(2) Note that adding the i-the row (for z > 1) to the first corresponds to the matrix id., , where

e;—1 18 the ¢ — 1-th canonical vector. We can thus transform our matrix to obtain

bo,0 0 ... 0 bort1 bo,n

0 by 0 0 0 0

: 0 .0 0 0

B=| 0 0 ... b, 0 0
bO,r+1 0 0 0

bO,n 0 0 0 O
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(3) Itis here where case distinctions have to be made.

@

¢y

(I1D)

Assume boog = bor41 = boyry2 = -+ = bg,, = 0. In this case the rank of B (which is
equal to the rank of A) is equal tor. We could furthermore divide by b1 (because of the
element 0 # = € K in the definition of equivalence) to obtain

0 0 .0 0 ... 0
01 0 ... 0 0 ...0
0 boo 0 . 0
B_|00 o0 0 0 ... 0
0 0 0 by 0 ... 0

0 0 0 0 ... 0
0 0 0 0 0 0

Finally, multiplying the i-th column and the i-th row for 2 < ¢ < r by a suitable element a
in K (that is, multiplying b; ; by a®) we can choose b;; in R. Now, gp is precisely of the
form (I) in the statement.

Assume by 41 = boyry2 = -+ = bo = 0, but by o # 0. In this case, the rank of B (which
is equal to the rank of A) is equal to » + 1. After division by b o, we obtain

1 0 0 0 ...0
0 by 0 0 0 ...0

0 by 0 0

g_l0 0o o 0 0 ...0
0 0 0 by O ... 0

0 0 0 0 ...0

0 0 0 0 0 0

As in (I), we can achieve b; ; € R for 1 <7 < r. Now, gp is precisely of the form (II) in
the statement.

Assume there exists 7 + 1 < ¢ < n such that by; # 0. Interchanging simultaneously rows

and columns, we can first obtain by 1 7 0. Dividing the matrix by by ,11, we can thus put

this coefficient to be 1. Adding —by ; times the (r 4 1)-th row to the j-thforr+2 < j <n
tr

(which corresponds to the matrix (@), j—1)o ) wWe manage to annihilate by ; for those j. We
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thus have the matrix

00 ... 0 0 1 0 0
0 b;u 0 0 0 0 0

0 bag O 0 0

0 0 0 0 0 0 0
B=1o 0 0 0 b, 0 0 0
1 0 0 0 0 0 0

0 0 0 0 0 0

0 0 ... ... 0 0 0 0

We see that the rank of B is equal to 7 4 2. As in (I) and (II), we can achieve b; ; € R for
1 < ¢ < r. Now, ¢p est precisely of the form (III) in the statement.

This finishes the proof. ]

Corollary 12.16. Let K = C. Let q(X1,...,Xy) € C[X1,..., X,] be a non-zero quadratic polyno-
mial. Then it is equivalent to a unique polynomial among the 3n — 1 polynomials listed below:

(D) X?+---+ X2 for1<r<mn;
() X3+ +X2+1for1<r<n;
() X2+ 4+ X2 42X, 1 for1 <r<n-1

Proof. We know that R = {1} is a system of representatives of C* modulo squares. Hence The-
orem implies that ¢ is equivalent to one of the listed polynomials. The uniqueness follows
from the fact that in this case, the rank together with the type ((I), (I), (III)) is enough to uniquely
characterize the polynomial. O

Our next goal is an explicit classification of real quadrics. For this, we have to show the following
theorem of Sylvester. First, we need a lemma.

Lemma 12.17. Let A € Mat,x,,(R) be a symmetric matrix and let (v, w) o := (Av, w) the symmetric
form defined by A on R™.

(a) There exist subspaces Vi, V_,Vy < R" such that

« R" =V, OV_ OV,
e forall 0 # v € V4, we have (v,v) 4 > 0,
o forall0 # v € V_, we have (v,v)4 < 0 et
o forall 0 # v € Vy, we have (v,v) 4 = 0.
(b) If Voo, V_ Vi are subspaces having the properties in (a), then

o dim V, is the number of positive eigenvalues of A,
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e dim V_ is the number of negative eigenvalues of A et

o dim V| is the number of O eigenvalues of A.

We have to count the eigenvalues with multiplicity, i.e. the number of times the eigenvalue appears
on the diagonal after diagonalization.

Proof. By the spectral theorem, we have an orthonormal basis

Ul;"'71)877}8-'1-17"'7UT7U7‘+17"'7UTZ

of R”™ such that v; for 1 < ¢ < s are eigenvectors for a positive eigenvalue, v; for s +1 < i < r
are eigenvectors for a negative eigenvalue and v; for s + 1 < ¢ < 7 are eigenvectors for the 0
eigenvalue. We take V, to be the subspace generated by vy, ..., v, and V_ the subspace generated by
Vs+1, - - -, Up and Vj the subspace generated by v,1,...,v,. Itis clear that all the properties of (a)
and (b) are satisfied for these spaces.

Let now V, V/, Vjj be other spaces having the properties of (a). We show that V. N (V. & Vjj) = 0:
if 0 # v = w_ 4+ wp for w_ € V! and wy € Vj were a vector in the intersection, we would have
(v,v)4 > 0 on one side and (w_ + wo, w— + wp)a = (w—_,w_) 4 + (wp,wp)4a < 0 on the other
side. Hence v = 0. This shows that V., @ V! @ Vjj is a subspace of R™, hence dim V; < dim V.
By symmetry, we also have dim V] < dim V., and thus equality. The arguments for the two other
equalities are similar. 0

Theorem 12.18 (Sylvester). Let A € Mat,, «,,(R) be a symmetric matrix and let C € GL,,(R). Then,
A and C" AC have the same number of positive eigenvalues. The same statement holds for negative
eigenvalues.

Proof. We use the notation of Lemma [[2.17] for the bilinear form (, ) 4. Let us first make the general
computation:

0 < (Cv,Cv) s = (ACv,Cv) = (C" ACv,v) = (v,V)cuac

for all v,w € R™ Consider C~'V,. If0 # v € C~'V, (hence Cv € V,), then the above
computation gives 0 < (v, v)ctrgc. Moreover, if w € C1V,, C~1V_, C~1V} are two subspaces
that satisfy the properties in (a) of Lemma[I2.17|for the bilinear form (, ) ot 4. Hence the dimension
of V. (which is the number of positive eigenvalues of A) is equal to the number of positive eigenvalues
of C** AC'. The argument for negative eigenvalues is the same. O

Corollary 12.19. Ler K = R. Let q(X1,...,Xy) € R[X1,..., X,] be a non-zero quadratic polyno-

mial. Then it is equivalent to a unique polynomial among the 3”2%5” — 1 polynomials listed below:
(1) X12+-~-+X52—X52+1—--~—Xff0r1 <s<r<n;
(1) X12+---+X52—X52+1—--~—X3+1f0r0§s§r§n, 1<r;

(I X3+ +X2—-X2, - —X2+2X, 1 for0<s<r<n-11<r
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Proof. We know that R = {—1,1} is a system of representatives of R* modulo squares. Therefore
Theorem implies that g is equivalent to one of the listed polynomials.. The uniqueness follows
from the fact that the difference between the big matrix and the rank of the block of size n in the
bottom-right corner determines the type ((I), (IT), (II)). Thus it suffices to know the number of positive
eigenvalues (and negative ones) in view of Sylvester’s Theorem [12.18]

The number of polynomials of type (I) of rank r is equal to r (the sign in front of X is always +),
hence there exist 1 +2 4 --- +n = ”(#ﬂ) polynomials of type (I). The number of polynomials
of type (II) of rank r is equal to » 4 1 (the sign in front of X; can be 1 or —1), hence there exist
243+---+(n+1) = % — 1 polynomials of type (II). Similarly, the number of polynomials
of typ«)a (III) of rank r is equal to 4 1, but 7 is bounded by n — 1, hence there exist24+3+ .- +n =
n(n+1

——5— — 1 polynomials of type (III). We thus obtain

1 1 2 1 2
n(n + )+(n+ )(n+2) 1+n(n+ )_1:3n +5n

2 2 2 2

L,

the desired number. L]

13 Duality

Goals:

Master the concepts of dual space and dual application;

know the relation to transpose matrices;

know the definition and fundamental properties of bilinear forms;

know the relation to the rank of rows and columns of matrices;
e know examples and be able to prove simple properties.

In this section, we introduce a theory of duality, that is valid for any field K (not only for R and C).
The main results of this section are

e the interpretation of transpose matrices as matrices representing “dual” applications;

e the rank of the columns of a matrix is equal to the rank of the rows; this is sometimes useful for
computations.

We start with the interpretation of transpose matrices as matrices representing dual applications. For
this, we first introduce the dual vector spacel V* of a vector space V.

Lemma 13.1. Let V, W be two K -vector spaces.

(a) The set of K-linear applications

Hompg (V.W) :={f:V — W | fis K-linear }
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is a K-vector space for the addition
(f +9)() := f(v) + g(v) for f,g € Homg (V,W)andv € V
and the scalar multiplication

(z.f)(w) :=2.(f(v)) = f(xw) for f € Homg (V, W), x € K andv € V.

(b) Let S be a K-basis of V and f : S — W be an application. Then, there exists a unique
F € Homg (V, W) such that F|s = f, namely F (3 .qass) = > cqasf(s).

Proof. Simple computations. O

Definition 13.2. Let V be a K-vector space. The K -vector space (see Lemmall3.1(a))
V* := Homg(V, K)
is called the dual space of V.

Proposition 13.3. Let V be a K-vector space of finite dimension n.

(a) Let S = {s1,...,sp} be a K-basis of V. Forall 1 < i < n, let s be the unique (by Lemma
1 ifi=j
[I31Yb)) element in V* such that for all 1 < j < n we have s} (sj) = 8;; = =y
0 ifi# .
Then, S* :={s7,...,s}} is a K-basis of V*, called the dual basis.
(b) If V has finite K-dimension, then dimg (V*) = dimg (V).

Proof. (a) Linear independence: Let 0 = " | a;sf with ai,...,a, € K. Then, foralll1 < j <n
we have

n

n
*
0= E a;s; (Sj) = E CLZ'(SZ'J' = aj.
i=1 =1

Generating: Let f € V*. For1 < j <n,seta; := f(s;) and g := > " | a;s; € V*. We have

g(sj) = _aisi(s;) = a; = f(s;)
=1

forall1 < j < n,thus f =g.
(b) The dimension of V' is the cardinality of any basis of V. By (a), the dual basis has the same
cardinality as any basis of V/, thus the dimension of V* equals the dimension of V. O

Definition-Lemma 13.4. Let V. W be two K-vector spaces and ¢ : V — W be a K-linear applica-
tion. Then, the application

e T WE =V fem ot (f)=foyp

is K-linear. It is called the dual application of .
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Proof. Firstly we note that po f is K -linear; but, this follows from the fact that the composition of two
linear applications is linear. Let f,g € W* and x € K. We conclude the proof by the computation

e (x- f+g)v)=(z-f+g)op)(v)=(z-f+g)(p)
= zf(p(v)) + g(e(v)) = (" (f) + ¢"(9))(v).
for any v € V, whence ¢*(z - f + g) = z¢*(f) + ¢*(9). O

Proposition 13.5. Let V., W be two K-vector spaces and p : V. — W be a K -linear application. Let
moreover S = {s1,...,sy} be a K-basis of Vand T = {t1,...,tm} a K-basis of W. Then,

t
(Mr,s(¢))" = Mg 1-(").
Thus, the matrix representing @* for the dual bases is the transpose of the matrix representing .

Proof. We write

a1 a1z - Qg bii bi2 -+ bim

a1 G2 -+ A2y . bo1 b2o - bom
Mrs(p) = ) ) . ) and Mg= 7+ (¢*) =

Gm,1 Gm,2 *° OGmn bn,l bn,2 T bn,m

This means

m n
p(sj) = Y aijtiand " (6) = D bijs
1=1

i=1
forall1 < j <nand1 <k < m. Thus, on the one hand

whence ay, ; = bj k., as desired. O

The dual space gives rise to a natural bilinear form, as we will see in Example [[3.8(b); first we make
the necessary definitions.

Definition 13.6. Let V, W be two K -vector spaces. One calls bilinear form any application
(,):VxW—=K
such that

e Vac KVu,vg € VVweW: (av; + ve,w) = a(vi,w) + (ve,w) (linearity in the first
variable) and
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e Vbe KVveVVw,wy € W: (v,bw +wa) = b{v,w1) + (v, wa) (linearity in the second
variable).

Let (-,-) : V. x W — K be a bilinear form. For a subspace Vi <V, we call
Vi={weW |WweVi:(vw)=0}<W

the orthogonal complement of V; in W.
For a subspace W1 < W, we call

Wir={veV|VweW; : (v,w)=0}<V

the orthogonal complement of Wi in V.
We say that the bilinear form is non-degenerate if

e VO#veV IweW: (v,w)#0and
e VOAweWIveV: (v,w)#0.
In the sequel, we will write (v, W) = 0 for Vw € Wi : (v, w) = 0 (and vice-versa).

Lemma 13.7. Let V, W be two K -vector spaces and {-,-) : V. x W — K be a bilinear form.

(a) For any subspace Vi <V, the orthogonal complement of V1 in W is a subspace of W and for
any subspace Wy < W, the orthogonal complement of W1 in V' is a subspace of V.

(b) Let Wy < Wo < W be two subspaces. Then, WQJ- < I/Vll
Also: V2L < Vﬁ for any subspaces Vi, < Vo < V.

(c) The bilinear form is non-degenerate if and only if W+ = 0 and V+ = 0.

Proof. (a) Let V1 < V be a subspace. Let wy, wq € VlL, ie., (v,w;) =0fori=1,2andallv € V;.
Thus, for all @ € K we have the equality

(v, awy + we) = a{v,w1) + (v, ws) =0,

whence aw; + wy € Vi*. The argument for Wi* is the same.

(b) Let v € Wi-. By definition (v, W) = 0, hence in particular (v, W;) = 0, i.e. v € Wj-. The
second statement follows by the same argument.

(c) This is another way of writing the definition. ]

Example 13.8. (a) The application

al b1 b1

a9 b2 bg n
<'7'>:KnXKn_>K7 < . I >:<CL1 az ... an) . :Zalbz

: : : i=1

an, by, by,

is bilinear and non-degenerate.
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(b) LetV be a K-vector space of finite dimension. The application
<'a'>:V*XV—>K7 <f,1}> 2:f(’U)

is bilinear and non-degenerate.

Let S = {s1,...,sn} be a K-basis of V and S* the dual basis. Let f = >, a;sf € V* and
v=> 1 ,bis; € V. Then

(fo) = O aist, > bisj) = > > aibj(si,s;) = > > aibjsi(sy)
i=1 j=1

i=1 j=1 i=1 j=1
b1
= g a;b; = (Gl az an) .
i=1 :
by,

We have found the bilinearity of (a).

Proposition 13.9. Let V, W be two K -vector spaces of finite dimensions and {-,-) : V x W — K be
a non-degenerate bilinear form.

(a) The applications
©: V—=W* v o) = g, with p,(w) := (v, w),

and
YW =V w e (w) =: iy, with ¢y, (v) 1= (v, w)

are K -linear isomorphisms.

(b) dlmK<V) = dimK(W).

Proof. The K-linearity of ¢ and v is clear. We show the injectivity of ¢. For this, let v € ker(yp),
i.e., py(w) = (v,w) = 0 for all w € W. The non-degeneracy of the bilinear form implies that v = 0,
which proves the injectivity. From this we deduce dimg (V') < dimg (W*) = dimg (W).

The same arguments applies to ¢ give that ¢ is injective and thus dimg (W) < dimg(V*) =
dimg (V), d’ou dimg (V) = dimg(W). Consequently, ¢ and v are isomorphisms (because the
dimension of the image is equal to the dimension of the target space which are thus equal). 0

Corollary 13.10. Let V, W be two K -vector spaces of finite dimensions.
(a) Then, the application
vV = (VI vy, =evy, : V' — K where ¢, (f) = evy(f) = f(v) for f e V*

is a K-linear isomorphism.
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(b) Let o : V. — W be a K-linear application. Then, the diagram

V = w

1 Y2

. (Ot*)*
(V")

(W)
is commutative, where 11 and 1o are the isomorphisms from (a), i.e. 13 o v = (a*)* 0 1y.

(c) Letty,...,t, bea K-basis of V*. Then, there exists a K-basis s1, ..., s, of V such that t;(s;) =
dijforalll <i,5 < n.

Proof. (a) The bilinear form V* x V' — K, given by (f,v) + f(v) from Example [[3.8(b) is non-
degenerate. The application v is the v of Proposition

(b) Let v € V. On the one hand, we have (a*)*(¢1(v)) = (a*)*(ev,) = ev, o o* and on the other
hand 93 (a(v)) = ev,(,) with notations from (a). To see that both are equal, let f € W*. We have

evy(”(f)) = evo(f o @) = fla(v)) and eva) (f) = fla(v)),

thus the desired equality.
(c) Lett},...,t7 € (V*)* be the dual basis, i.e. t;(ti) = ;j forall 1 <4,j < n. Since ¢ from (a)

is an isomorphism, there exist s, ..., s, (automatically a K-basis of V' because it is the image of
a basis by an isomorphism) such that ¢(s;) = evy, = t], thus ¢;(f) = f(s;) forall f € V*. In
particular, we have t7(t;) = t;(s;) = i ;. O

Proposition 13.11. Let V, W be two K -vector spaces of finite dimensions and {-,-) : V. x W — K a
non-degenerate bilinear form.

(a) Let S = {s1,...,8n} be a K-basis of V. Then, there exists a K-basis T = {t1,...,t,} of W
such that (s;, t;) = 6; j forall1 <i,j <n.
(b) For any subspace Vi <V we have (V{-)*+ = V1.
Also: for any subspace W1 < W we have (Wi-)*+ = W.
(c) For any subspace Vi <V we have dimg (Vi-) = dimg (V) — dimg (V7).
Also: for any subspace W1 < W we have dimy (Wit) = dimg (W) — dim g (W7).
Proof. (a) We consider the K-isomorphism ¢ : V' — W™ of Proposition and we set f; =
©(s;) = s, forall 1 < i < n. Corollary [[3.10/allows us to choose a K-basis t1, ..., t, of W such

that f;(t;) = d; j forall 1 <4, j < n. Finally, we have (s;,t;) = s, (t;) = fi(t;) = 0; ;, as desired.
(b,c) We choose a K-basis s1, ..., sq of V] that we extend to a K -basis

S1y---58d; Sd+15---55n

of V' by Proposition[.30l Using (a), we obtain a K-basis t1, ..., t, of W such that (s;, ;) = J; ; for
all1 <4,5 <n.
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We first show that Vll = (t4+1,-..,tn). The inclusion “2” is clear. Let therefore w = Y | a;t; €
Vﬁ, ie. (Vi,w) =0, thus for all 1 < j < d we have

n n
0= (sj,w) = (s;, Y aits) = Y _ ai(sj,t:) = aj,
=1 i=1

and therefore w € (tqy1,...,t,). Consequently, dims (Vit) = n — d = dimg (V) — dimg (V7).
The same argument used for Vi~ shows that (s1,...,sg) is a K-basis of (Vj-)+ which is therefore
equal to V. O

Corollary 13.12. Let V, W be two K -vector subspaces and ¢ : V — W a K-linear application. We
have the equalites

(1) im(p)* = ker(p*) (where L comes from the natural bilinear form W* x W — K),
(2) ker(p)* = im(p*) (where 1 comes from the natural bilinear form V* x V — K),
(3) dimy (im(g)) = dimye (im(¢*)) and
(4) dimy (ker(i7)) = dimy (ker(i*)).
Proof. We firstly show (1). Let f € W*. Then
feim(p)t ©VoeV:0=(fp) = flp() & for=0%& fcker(p),

whence (1).
We slightly adapt the arguments in order to obtain (2) as follows. Let v € V. Then

veim(p)t SV feW 0= (p"(f),v) = (fop,0) = f((v)) = (f,¢(v))
e o) e Wt e ¢(v) =04 v e ker(p),

whence im(p*)* = ker (). Applying Proposition [3.11] we obtain im(¢*) = ker(y)*; this is (2).
By Corollary we have dimg (V') = dimg (im(¢)) + dimg (ker(¢)). Proposition gives us

dim (im(p)) = dimg (V) — dimg (ker()) = dimp (ker(p) ") = dimg (im(p*)),
whence (3). The argument to obtain (4) is similar:

dimp (ker () = dimg (V) — dimg (im()) = dimg (im() ") = dimg (ker (o)),
which achieves the proof. O

Definition 13.13. Ler M € Mat,, «,,(K) be a matrix.

The rank of columns of M is defined as the dimension of the subspace of K" generated by the columns
of M (seen as elements of K™).

The rank of rows of M is defined as the dimension of the subspace of K™ generated by the rows of M
(seen as elements of K").
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Corollary 13.14. Let M € Mat,,x,(K). Then, the rank of columns of M is equal to the rank of
rows of M. We simply talk of the rank de M.

Proof. The rank of M is the dimension of the image of @)/, the K-linear application K" — K™
associated to M (which sends v € K" to Mv € K™). The matrix representing ¢}, for the dual basis
is M. Thus the corollary immediately follows from Corollary since the rank of columns of
M*™ is equal to the rank of rows of M. O
3 51

1 2 3 |. We are interested in its rank (of columns). It is

4 7 4
obvious that the third row is the sum of the two first rows (which are linearly independent). Thus the

Example 13.15. Consider the matrix

rank of M is 2. It seems more difficult to “see” a non-trivial combination of the columns, but we know
that there is one.

We finish this section with useful properties.

Proposition 13.16. Let V, W be two K -vector subspaces of finite dimensions and (-,-) : VxW — K
be a non-degenerate bilinear form. Let W1 < W and Wy < W be subspaces. Then, we have

(a) (W1 NWo)t = Wit + Wik and
(b) (W1 + Wo)t = Wi n Wi,
Also with V' in stead of W.

Proof. (a) “2”: Since W1 N Wy < W; is a subspace for ¢ = 1,2, we have VVZ-L < (Win WQ)L, thus
Wit + Wit < (W N Wa)* because (W N Wa)* is a subspace.

(b) “C”: For i = 1,2 we have W; < W + W, thus we obtain (W) + Wg)L < Wf which implies
(W1 +W2)J_ < WIJ‘ ﬂWQJ‘.

(a) “C”: Combining the proven inclusions, we have

WiNWa = (W N W)t < (Wit + W)t < (WhHEn (Wh)t = Wy Ny,

thus we have equality everywhere and, in particular, (W; N Ws)+ = WlL + I/VQl
(b) Tt suffices to use (a) with Wi~ and W3- in stead of W; and W5 to obtain (Wi~ N Wih)+ =
(WH)* + (W5H)* and thus Wit n W5t = (W 4+ Wa)t. O

14 Quotients

Goals:
o Know and master the definition of quotient of vector spaces;
e know the isomorphism theorems and other important results;

e be able to compute in quotients of vector spaces;
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e know examples and be able to prove simple properties.

Definition 14.1. Let V be a K-vector space and W <V a subspace.
Any set of the form
v+W={v+w|lweW}

with v € V is called affine subspace.
Two subspaces vi + W and vo + W are called parallel. They are thus both parallel to W.

In order to understand the sequel, it is useful to recall the definition of congruences modulo n, i.e. the
set Z/nZ (for n € N>1), learned in the lecture course Structures mathématiques. To underline the
analogy, we can write V' = Z and W = nZ = {nm | m € Z}.

We recall that the set

a+nZ={a+mn|meZ}={..,a—2n,a—n,a,a+n,a+2n,...}
is the equivalence class of a € Z for the equivalence relation defined on Z by
a~pzad & a=d modn & n|(a—d) & a—d enZ & a+nZ=d+nZ.
We will essentially do the same definition in the case of vector spaces.

Definition 14.2. Let V be a K-vector space and W C V' a vector subspace. The binary relation on
V' given by

definition
V1 ~MW U2 <~ v —vg €W

forvi,ve € V defines an equivalence relation.
The equivalence classes are the affine subspaces of the form

v+W={v+w|weW}

The set of these classes is denoted V /W and called the set of classes following W. It is the set of all
the affine subspace that are parallel to W'.

Let us also recall the “modular’ addition, that is the addition of Z/nZ. The sum of a + nZ and b + nZ
is defined as
(a+nZ)+ (b+nZ):= (a+b)+nZ.

To see that this sum is well-defined, we make the fundamental observation: let a,a’, b, b’ € Z such
that

a=d modn and b=V modn,

i.e.,
a+nZ=d +nZ and b+nZ =00 +nZ
then,
a+b=d +b modn,
1.e.,

(a+0b)+nZ=(d +V)+nZ
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The proof is very easy: since n | (¢’ — a) and n | (b’ — b), there exist ¢,d € Z such that a’ = a + ¢n
and ' = b + dn; thus

a+V=(a+cn)+ (b+dn)=(a+b)+n(c+d)
so that, n divides (a’ + ') — (a + b), whence (¢’ + V') + nZ = (a + b) + nZ. A small example:
(3=13 mod 10 et 6=-24 mod10) = 9=-11 mod 10.

Here comes the generalization to vector spaces. Note that it does not suffice to define an addition only,
but one also needs to define a scalar multiplication.

Proposition 14.3. Let K be a field, V a K -vector space, W <V a K-vector subspace and V /W the
set of classes following W.

(a) Forall vi,ve €V the class (v + v2) + W only depends on the classes vi + W and vo + W.

Thus, we can define the application, called addition,

+:V/WxV/W = V/W, (v1+W,oa+ W) (v1+ W)+ (va+ W) := (v1 + v2) + W.

(b) Foralla € K and all v € V, the class a.v + W only depends on the class v + W. Thus, we can
define the application, called scalar multiplication,

S KxV/W = V/W, (a,v+W)—a.(v+W):=av+ W

(c) (V/W,+,.,04+ W) is a K-vector space, called quotient of V by W.

(d) The application
T VoV/W, veo+W

is K-linear and surjective with kernel ker(mw) = W it is called natural projection.

Proof. (a) Assume v1 + W = v} + W and vo + W = v}, + W. Therefore there exist wi,ws €
W such that v; = v} + wy and vo = v§ + we. Then v1 + va = v} + v + (w1 + w2) whence
(v1 +va) — (V] —vh) € W and thus (v1 +ve) + W = (v] +vh) + W.

(b) Assume v + W = o' + W. Therefore there exists w € W such that v = v’ + w. Then
av = a(v' + w) = av’ + aw whence av — av’ = aw € W and thus av + W = av' + W.

(c) Standard verfication of the axioms defining a vector space (see Definition [L).

(d) Linearity: Let v1,v3 € V and a € K, then 7w(avy + v2) = (avy +v2) + W = a(vy + W) + (ve +
W) = an(v1) + m(v2).

Surjectivity: The class v + W is the image of v under 7.

Computation of the kernel: Let v € V. Then v € ker(w) if and only if v + W = 0+ W = W and
this is the case if and only if v € W. O

Theorem 14.4 (1st isomorphism theorem/Homomorphiesatz). Let K be a field and ¢ : V — Y a
K-linear application. Let W := ker(yp) be its kernel.
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(a) Forv €V, the image p(v) only depends on the class v + W.

(b) Part (a) allows us to define (v + W) := ¢(v) for v € V.. This defines an application
p:V/IW =Y, v+Wre=gv+W):=p)
which is K-linear and injective. It gives rise to a K -linear isomorphism

@ : V/W = im(p).

Proof. (a) Letv,v’ € V such that v + W = v/ + W. Then there exists w € W such that v = v' + w.
We have ¢(v) = p(v' + w) = @(v) + p(w) = ¢(v') because p(w) = 0as w € W = ker(¢p).
(b) Linearity: Let v,v2 € V anda € K. We have @(a(vi+W)+(va+W)) = p((avi +v2)+ W) =

plavy +v) = ap(v1) + p(v2) = ap(v1) +P(v2).
Injectivity: Let v + W € ker(¢). Then @(v + W) = ¢(v) = 0 whence v € ker(p) = W, thus
v+ W = 0+ W. This shows ker(p) = {0 + W}, so that @ is injective. O

The next proposition is important because it describes the vector subspaces of quotient vector spaces.

Proposition 14.5. Let K be a field, V a K-vector space, W < V a vector subspace, and 7w : V —
V /W the natural projection.

(a) The application
® : {vector subspaces of V/W} — {vector subspaces of V' containing W'},
given by X — 7~ 1(X) is bijective. The inverse U of ® is Y + 7(Y).

(b) Let X1, X2 < V/W be two vector subspaces. Then

X1 - XQ ~ (I)(Xl) - (I)(XQ).

Proof. (a)

e For a subspace X < V/W the preimage ®(X) = 7 (X) is indeed a vector subspace: let
vi,v2 € V such that v € 7 1(X) and v2 € 7 1(X), then w(v1) = v1 + W € X and
m(vg) = ve + W € X. Then for a € K, we have arm(avy +v2) = w(v1) + w(v2) € X, whence
avy + vy € 7H(X).

Moreover, 7~ (W) D 71 ({0}) = ker(r) = W.

e We know by Proposition [1.36] that the images of the linear applications between vector spaces
are vector subspaces, thus ¥(Y) = n(Y") is a vector subspace of V/W.
e Here is an auxiliary statement :

Let m : V — V' be a K-linear homomorphism between vector spaces and Y < V a vector
subspace containing ker (7). Then 7~ 1(7(Y)) = Y.
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We verify this equality:
“C”: Letz € 7 1(n(Y)), then w(z) € 7(Y), i.e. m(x) = 7(y) for some y € Y. Therefore
0=mn(z)—7(y) = n(x —y),thusz —y € ker(r) C Y, thusz —y = ¢/ € Y, thus
r=y+y €Y.
“D”: Lety € Y, then 7(y) € 7(Y), and therefore y € 7~ 1(7(Y)).

e LetY <V be a vector subspace such that W C Y.
By the auxiliary statement we have: ®(¥(Y)) = 7~ }(n(Y)) =Y.

e Here is another auxiliary statement:

Let 7 : V — V' be a surjective application (not necessarily between vector spaces) and X C V'
a vector subspace. Then X = 7(7~}(X)).

We verify this equality.

“C”: Let x € X. Since 7 is surjective, there exists v € V such that 7(v) = x. Therefore

ver Y X)and r = 7(v) € m(r~H(X)).

“D”: Letv’ € m(7m~1(X)). Then, there exists v € 7~ 1(X) such that v’ = 7(v). But, v’ = 7(v)

belongs to X since v € 71 (X).

e Let X < V/W be a vector subspace.

By the auxiliary statement we have: ¥(®(X)) = m(7~1(X)) = X.
(b) is clear. ]
Proposition 14.6 (Second isomorphism theorem). Let K be a field, V a K-vector space and X, W C

V vector subspaces. Then, the K -linear homomorphism
p: X = (X+W)/W, z=z+W,
“induces” (by the isomorphism theorem[[4.4) the K -linear isomorphism
X/ (XnNW) = (X+W)/W, 24+ (XNW)—ax+W.

Proof. The homomorphism ¢ is obviously surjective and its kernel consists of the elements x € X
such that z + W = W, thus x € X N W, showing ker(¢) = X N W. The existence of % hence
follows from a direct application of the isomorphism theorem [14.4] O

Proposition 14.7 (Third isomorphism theorem). Let K be a field, V a K-vector space and W1 C Wy
two vector subspaces of V. Then, the K -linear homomorphism

o:V/Wy = V/Wa, v+ Wi v+ Wy
“induces” (by the isomorphism theorem|[[4.4) the K -linear isomorphism
@2(V/W1)/(W2/W1)—>V/W2, U+W1+(W2/W1)'—>U—|—W2.

Proof. The homomorphism ¢ is obviously surjective and its kernel consists of the elements v + W7 €
V /W1 such that v + Wy = Wy which is equivalent to v + Wy € Wy /Wj. Thus ker(p) = Wo/Wi.
The existence of @ thus follows from a direct application of the isomorphism theorem [14.41 O
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