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Preface
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Prerequisites

This course contains a theoretical and a practical part. For the practical part, (almost) all the compu-

tations can be solved by two fundamental operations:

• solving linear systems of equations,

• calculating determinants.

We are going to start the course by two sections of recalls: one about the fundaments of vector spaces

and one about determinants.

Linear algebra can be done over any field, not only over real or complex numbers.

Some of the students may have seen the definition of a field in previous courses. For Computer

Science, finite fields, and especially the field F2 of two elements, are particularly important. Let us

quickly recall the definition of a field.

Definition 0.1. A field K is a set K containing two distinct elements 0, 1 and admitting two maps

+ : K ×K → K, (a, b) 7→ a+ b, “addition”

· : K ×K → K, (a, b) 7→ a · b “multiplication”,

such that for all x, y, z ∈ K, the following assertions are satisfied:

• neutral element for the addition: x+ 0 = x = 0 + x;

• associativity of the addition: (x+ y) + z = x+ (y + z);

• existence of an inverse for the multiplication: there exists an element called −x such that x +

(−x) = 0 = (−x) + x;

• commutativity of the addition: x+ y = y + x.

• neutral element for the multiplication: x · 1 = x = 1 · x;

• associativity of the multiplication: (x · y) · z = x · (y · z);

• existence of an inverse for the multiplication: if x 6= 0, there exists an element called x−1 = 1
x

such that x · x−1 = 1 = x−1 · x;

• commutativity for the multiplication: x · y = y · x.

• ditributivity: (x+ y) · z = x · z + y · z.

Example 0.2. • Q, R, C are fields.

• If p is a prime number, Z/pZ is a field.

• Z and N are no fields.

For the following, let K be a field. If this can help you for understanding, you can take K = R
or K = C.
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1 Recalls: Vector spaces, bases, dimension, homomorphisms

Goals:

• Master the notions of vector space and subspace;

• master the notions of basis and dimension;

• master the notions of linear map ((homo)morphism), of kernel, of image;

• know examples and be able to prove simple properties.

Matrix descriptions and solving linear systems of equations by Gauss’ row reduction algorithm are

assumed known and practiced.

Definition of vector spaces

Definition 1.1. Let V be a set with 0V ∈ V an element, and maps

+V : V × V → V, (v1, v2) 7→ v1 + v2

(called addition) and

·V : K × V → V, (a, v) 7→ a · v = av

(called scalar multiplication).

We call (V,+V , ·V , 0V ) a K-vector space if

(A1) ∀u, v, w ∈ V : (u+V v) +V w = u+V (v +V w),

(A2) ∀ v ∈ V : 0V +V v = v = v +V 0V ,

(A3) ∀ v ∈ V ∃w ∈ V : v +V w = 0 = w +V v (we write −v := w),

(A4) ∀u, v ∈ V : u+V v = v +V u,

(for mathematicians: these properties say that (V,+V , 0V ) is an abelian group) and

(MS1) ∀ a ∈ K, ∀u, v ∈ V : a ·V (u+V v) = a ·V u+V a ·V v,

(MS2) ∀ a, b ∈ K, ∀v ∈ V : (a+K b) ·V v = a ·V v +V b ·V v,

(MS3) ∀ a, b ∈ K, ∀v ∈ V : (a ·K b) ·V v = a ·V (b ·V v),

(MS4) ∀ v ∈ V : 1 ·V v = v.

For clarity, we have written +V , ·V for the addition and the scalar multiplication in V , and +K , ·K
for the addition and the multiplication in K. In the following, we will not do this any more.
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Example 1.2. Let n ∈ N. The canonical K-vector space of dimension n is Kn, the set of column

vectors of size n with coefficients inK. As you know, we can add two elements ofKn in the following

way: ( a1
a2
...
an

)
+




b1
b2
...
bn


 =




a1+b1
a2+b2

...
an+bn


 .

This addition satisfies the following properties:

(A1) (

( a1
a2
...
an

)
+




b1
b2
...
bn


) +

( c1
c2
...
cn

)
=

( a1
a2
...
an

)
+ (




b1
b2
...
bn


+

( c1
c2
...
cn

)
).

(A2)

( a1
a2
...
an

)
+

( 0
0
...
0

)
=

( a1
a2
...
an

)
=

( 0
0
...
0

)
+

( a1
a2
...
an

)
.

(A3)

( a1
a2
...
an

)
+




−a1
−a2

...
−an


 =




a1−a1
a2−a2

...
an−an


 =

( 0
0
...
0

)
.

(A4)

( a1
a2
...
an

)
+




b1
b2
...
bn


 =




a1+b1
a2+b2

...
an+bn


 =




b1
b2
...
bn


+

( a1
a2
...
an

)
.

Moreover, we have a scalar multiplication: we multiply an element of Kn by an element r of K as

follows:

r ·




a1
a2
...

an




=




ra1
ra2

...

ran



.

The addition and the multiplication are compatible in the following manner:

(MS1) ∀ r ∈ K, ∀
( a1
a2
...
an

)
,




b1
b2
...
bn


 ∈ Kn: r · (

( a1
a2
...
an

)
+




b1
b2
...
bn


) = r ·

( a1
a2
...
an

)
+ r ·




b1
b2
...
bn


;

(MS2) ∀ r, s ∈ K, ∀
( a1
a2
...
an

)
∈ Kn: (r + s) ·

( a1
a2
...
an

)
= r ·

( a1
a2
...
an

)
+ s ·

( a1
a2
...
an

)
;

(MS3) ∀ r, s ∈ K, ∀
( a1
a2
...
an

)
∈ Kn: r · (s ·

( a1
a2
...
an

)
) = (r · s) ·

( a1
a2
...
an

)
;

(MS4) ∀
( a1
a2
...
an

)
∈ Kn: 1 ·

( a1
a2
...
an

)
=

( a1
a2
...
an

)
.

This shows that Kn is indeed a K-vector space.

The following proposition produces a large number of examples.
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Proposition 1.3. Let E be a set. We introduce the notation

F(E,K) := {f | f : E → K map }

for the set of maps from E to K. We denote the map E → K such that all its values are 0 by 0F
(concretly: 0F : E → K defined by the rule 0F (e) = 0 for all e ∈ E). We define the addition

+F : F(E,K)×F(E,K) → F(E,K), (f, g) 7→ f+F g où ∀e ∈ E : (f+F g)(e) := f(e)+g(e)

and the scalar mutliplication

·F : K ×F(E,K) → F(E,K), (x, f) 7→ x ·F f où ∀e ∈ E : (x ·F f)(e) := x · (f(e)).

Then, (F(E,K),+F , ·F , 0F ) is a K-vector space.

Proof. Exercise.

Most of the time, we will not write the indices, but only f + g, f · g, etc.

Example 1.4. (a) {f ∈ F(R,R) | f(1) = 0} is a K-vector space.

(b) {f ∈ F(R,R) | f(0) = 1} is not a K-vector space.

Lemma 1.5. Let (V,+V , ·V , 0V ) be a K-vector space. Then, the following properties are satisfied

for all v ∈ V and all a ∈ K:

(a) 0 ·V v = 0V ;

(b) a ·V 0V = 0V ;

(c) a ·V v = 0V ⇒ a = 0 ∨ v = 0V ;

(d) (−1) ·V v = −v.

Proof. (a) 0 ·V v = (0 + 0) ·V v = 0 ·V v + 0 ·V v, hence 0 ·V v = 0V .

(b) a ·V 0V = a ·V (0V + 0V ) = a ·V 0V + a ·V 0V , hence a ·V 0V = 0V .

(c) Assume a·V v = 0V . If a = 0, the assertion a = 0∨v = 0V is true. Assume therefore a 6= 0. Then

a−1 has a meaning. Consequently, v = 1 ·V v = (a−1 · a) ·V v = a−1 ·V (a ·V v) = a−1 ·V 0V = 0V
by (b).

(d) v +V (−1) ·V v = 1 ·V v +V (−1) ·V v = (1 + (−1)) ·V v = 0 ·V v = 0V by (a).

Instead of (V,+V , ·V , 0V ) we will simply write V .

Vector subspaces

Definition 1.6. Let V be a K-vector space. We say that a non-empty subset W ⊆ V is a vector

subspace of V if

∀w1, w2 ∈W, ∀a ∈ K : a · w1 + w2 ∈W.

Notation: W ≤ V .
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Example 1.7. • Let V be a K-vector space. The set {0} is a vector subspace of V , called the

zero space, denoted by 0 for simplicity (do not confuse with the element 0).

• Let V = R2 and W = {( a0 ) | a ∈ R} ⊆ V . Then, W is a subspace of V .

• Let V = R3 and W =
{( a

b
2b

)
| a, b ∈ R

}
⊆ V . Then, W is a subspace of V .

• Let n,m ∈ N≥1. We consider the system of linear equations

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2

...

am,1x1 + am,2x2 + · · ·+ am,nxn = bm

with bi, ai,j ∈ K for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(a) Let S be the set of all solutions of the homogeneous system with x1, x2, . . . , xn ∈ K, i.e.

S =





( x1
x2
...
xn

)
∈ Kn | ∀i ∈ {1, 2, . . . ,m} :

n∑

j=1

ai,jxj = 0



 .

Then, S is a vector subspace of the standard K-vector space Kn.

(b) Let

( r1
r2
...
rn

)
∈ Kn be a solution of the system of linear equations, i.e.:

∀i ∈ {1, 2, . . . ,m} :
n∑

j=1

ai,jrj = bi.

Let S be the vector subspace of Kn defined in (a).

Then, the solutions of the system of linear equations are the set

{( r1
r2
...
rn

)
+

( s1
s2
...
sn

)
|
( s1
s2
...
sn

)
∈ S

}
.

Here is a general form to obtain and write subspaces.

Definition-Lemma 1.8. Let V be a K-vector space and E ⊆ V a non-empty subset. We set

〈E〉 := {
m∑

i=1

aiei | m ∈ N, e1, . . . , em ∈ E, a1, . . . , am ∈ K}.

This is a vector subspace of V , said to be generated by E.

By convention, we set 〈∅〉 = 0, the zero subspace.
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Proof. Since 〈E〉 is non-empty (since E is non-empty), it suffizes to check the definition of subspace.

Let therefore w1, w2 ∈ 〈E〉 and a ∈ K. We can write

w1 =
m∑

i=1

aiei et w2 =
m∑

i=1

biei

for ai, bi ∈ K and ei ∈ E for all i = 1, . . . ,m. Thus we have

a · w1 + w2 =
m∑

i=1

(aai + bi)ei,

which is indeed an element of 〈E〉.

Example 1.9. The set
{
a ·
(

1
1
2

)
+ b ·

(
0
0
7

)
| a, b ∈ R

}
is a subspace of R3.

Sometimes it is useful to characterize the subspace generated by a set in a more theoretical way. To

do so, we need the following lemma.

Lemma 1.10. Let V be a K-vector space and Wi ≤ V subspaces for i ∈ I 6= ∅. Then, W :=⋂
i∈IWi is a vector subspace of V .

Proof. Exercise.

In contrast,
⋃
i∈IWi is not a subspace in general (as you see it in an exercise)!

Example 1.11. How to compute the intersection of two subspaces?

(a) The easiest case is when the two subspaces are given as the solutions of two systems of linear

equations, for example:

• V is the subset of

( x1
x2
...
xn

)
∈ Kn such that

∑n
i=1 ai,jxi = 0 for j = 1, . . . , ℓ, and

• W is the subset of

( x1
x2
...
xn

)
∈ Kn such that

∑n
i=1 bi,kxi = 0 for k = 1, . . . ,m.

In this case, the subspace V ∩W is given as the set of common solutions for all the equalities.

(b) Suppose now that the subspaces are given as subspaces of Kn generated by finite sets of vectors:

Let V = 〈E〉 and W = 〈F 〉 where

E =








e1,1
e2,1

...
en,1


 , . . . ,




e1,m
e2,m

...
en,m





 ⊆ Kn and F =








f1,1
f2,1

...
fn,1


 , . . . ,




f1,p
f2,p

...
fn,p





 ⊆ Kn.

Then

V ∩W =
{ m∑

i=1

ai




e1,i
e2,i
...

en,i


 ∣∣

∃ b1, . . . , bp ∈ K : a1




e1,1
e2,1

...
en,1


+ · · ·+ am




e1,m
e2,m

...
en,m


− b1




f1,1
f2,1

...
fn,1


− · · · − bp




f1,p
f2,p

...
fn,p


 = 0

}
.
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Here is a concrete example: E =
{(

1
1
2

)
,
(

0
1
0

)}
⊆ K3 and F =

{(
1
0
1

)
,
(

2
0
1

)}
⊆ K3. We have

to solve the system (
1 0 −1 −2
1 1 0 0
2 0 −1 −1

)( x1
x2
y1
y2

)
= 0.

With operations on the rows, we obtain

ker(
(

1 0 −1 −2
1 1 0 0
2 0 −1 −1

)
) = ker(

(
1 0 −1 −2
0 1 1 2
0 0 1 3

)
) = ker(

(
1 0 0 1
0 1 0 −1
0 0 1 3

)
),

thus we obtain as solution subspace the line generated by

(−1
1
−3
1

)
, so the intersection is given by

the line

〈−1 ·
(

1
1
2

)
+ 1 ·

(
0
1
0

)
〉 = 〈−3 ·

(
1
0
1

)
+ 1 ·

(
2
0
1

)
〉 = 〈

(
1
0
2

)
〉.

Here is the alternative characterization of the subspace generated by a set

Lemma 1.12. Let V be a K-vector space and E ⊆ V a non-empty subset. Then we have the equality

〈E〉 =
⋂

W≤V subspace s.t. E⊆W
W

where the right hand side is the intersection of all the subspaces W of V containing E.

Proof. To prove the equality of two sets, we have to prove the two inclusions.

’ ⊆ ’: Any subspace W containing E, also contains all the linear combinations of elements of E,

hence W contains 〈E〉. Consequently, 〈E〉 in the intersection on the right.

’ ⊇ ’: Since 〈E〉 belongs to the subspaces in the intersection on the right, it is clear that this intersection

is contained in 〈E〉.

Definition 1.13. Let V be a K-vector space and E ⊆ V a subset. We say that V is generated by E

(as vector subspace) if V = 〈E〉.
Put another way, this means that any element of V is written as linear combination of vectors in E.

Definition 1.14. Let V be a K-vector space and Wi ≤ V subspaces of V for i ∈ I 6= ∅. We set

∑

i∈I
Wi := 〈

⋃

i∈I
Wi〉,

the subspace of V generated by all the elements of all the Wi’s. We call it the sum of the Wi’s, i ∈ I .

If I = {1, 2, . . . , n}, we can write
∑n

i=1Wi explicitly as

n∑

i=1

Wi = {
n∑

i=1

wi | w1 ∈W1, . . . wn ∈Wn}.

For a general I , this generalizes as:

∑

i∈I
Wi = {

∑

i∈I
wi |

(
∀ i ∈ I : wi ∈Wi

)
and wi 6= 0 for only finitely many i ∈ I}.

We use the notation
∑′

i∈I wi to indicate wi 6= 0 for only finitely many i ∈ I .
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Example 1.15. How to compute/obtain the sum of two subspaces?

The answer is very easy if the two subspaces are given by generators: If U = 〈E〉 and V = 〈F 〉 are

subspaces of a K-vector space V , then U + V = 〈E ∪ F 〉.
(The question of giving a basis for the sum is different... see later.)

When are the wi ∈Wi in the writing w =
∑′

i∈I wi unique?

Definition 1.16. Let V be a K-vector space and Wi ≤ V the subspace of V for i ∈ I 6= ∅.

We say that the sum W =
∑

i∈IWi is direct if for all i ∈ I we have

Wi ∩
∑

j∈I\{i}
Wj = 0.

Notation for direct sums:
⊕

i∈IWi.

If I = {1, . . . , n}, we sometimes write the elements of a direct sum
⊕n

i=1Wi as w1 ⊕w2 ⊕ · · · ⊕wn
(where wi ∈Wi for i ∈ I , of course).

Example 1.17. In Example 1.11 (b), the sum V +W is not direct since the intersection V ∩W is a

line and thus non-zero.

Proposition 1.18. Let V be a K-vector space, Wi ≤ V subspaces of V for i ∈ I 6= ∅ and W =∑
i∈IWi. Then the following assertions are equivalent:

(i) W =
⊕

i∈IWi ;

(ii) for all w ∈W and all i ∈ I there exists a unique wi ∈Wi such that w =
∑′

i∈I wi.

Proof. “(i) ⇒ (ii)”: The existence of such wi ∈Wi is clear. Let us thus show the uniqueness

w =
∑

i∈I

′
wi =

∑

i∈I

′
w′
i

with wi, w
′
i ∈ Wi for all i ∈ I (remember that the notation

∑′
indicates that only finitely many wi,

w′
i are non-zero). This implies for i ∈ I:

wi − w′
i =

∑

j∈I\{i}

′
(w′

j − wj) ∈Wi ∩
∑

j∈I\{i}
Wj = 0.

Thus, wi − w′
i = 0, so wi = w′

i for all i ∈ I , showing uniqueness.

“(ii) ⇒ (i)”: Let i ∈ I and wi ∈ Wi ∩
∑

j∈I\{i}Wj . Then, wi =
∑′

j∈I\{i}wj with wj ∈ Wj for all

j ∈ I . We can now write 0 in two ways

0 =
∑

i∈I

′
0 = −wi +

∑

j∈I\{i}

′
wj .

Hence, the uniqueness imples −wi = 0. Therefore, we have shown Wi ∩
∑

j∈I\{i}Wj = 0.
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Bases

Definition 1.19. Let V be a K-vector space and E ⊆ V a subspace.

We say that E is K-linearly independent if

∀n ∈ N ∀ a1, . . . , an ∈ K ∀ e1, . . . , en ∈ E :
( n∑

i=1

aiei = 0 ∈ V ⇒ a1 = a2 = · · · = an = 0
)

(i.e., the only K-linear combination of elements of E representing 0 ∈ V is the one in which all the

coefficients are 0). On the other hand, we say that E is K-linearly dependent.

We call E a K-basis of V if E generates V and E is K-linearly independent.

Example 1.20. How to compute whether two vectors are linearly independent? (Same answer than

almost always:) Solve a system of linear equations.

Let the subspace 






e1,1
e2,1

...
en,1


 , . . . ,




e1,m
e2,m

...
en,m







of Kn be given. These vectors are linearly independent if and only if the only solution of the system

of linear equations 


e1,1 e1,2 ... e1,m
e2,1 e2,2 ... e2,m

...
...

. . .
...

en,1 en,2 ... en,m



( x1

x2
...
xm

)
= 0

is zero.

Example 1.21. Let d ∈ N>0. We set e1 =




1
0
0
...
0


 , e2 =




0
1
0
...
0


 , . . . , ed =




0
0
0
...
1


 et

E = {e1, e2, . . . , ed}. Then:

• E generates Kd:

Any vector v =




a1
a2
a3
...
ad


 is written as K-linear combination: v =

∑d
i=1 aiei.

• E is K-linearly independent:

If we have a K-linear combination 0 =
∑d

i=1 aiei, then clearly a1 = · · · = ad = 0.

• E is thus a K-basis of Kd, since E generates Kd and is K-linearly independent. We call it the

canonical basis of Kd.

The following theorem characterizes bases.

Theorem 1.22. Let V be a K-vector space and E = {e1, e2, . . . , en} ⊆ V be a finite subset. Then,

the following assertions are equivalent:

(i) E is a K-basis.
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(ii) E is a minimal set of generators of V , i.e.: E generates V , but for all e ∈ E, the set E \ {e}
does not generate V .

(iii) E is a maximal K-linearly independent set, i.e.: E is K-linearly independent, but for all e ∈
V \ E, the set E ∪ {e} is K-linearly dependent.

(iv) Any v ∈ V is written as v =
∑n

i=1 aiei with unique a1, . . . , an ∈ K.

Corollary 1.23. Let V be a K-vector space and E ⊆ V a finite set generating V . Then, V has

K-basis contained in E.

In the appendix of this section, we will show using Zorn’s Lemma that any vector space has a basis.

Example 1.24. (a) Let V =
{(

a
a
b

)
| a, b ∈ R

}
. A basis of V is

{(
1
1
0

)
,
(

0
0
1

)}
.

(b) Let V = 〈
(

1
2
3

)
,
(

2
3
4

)
,
(

3
5
7

)
〉 ⊆ Q3.

The set E =
{(

1
2
3

)
,
(

2
3
4

)}
is a Q-basis of V . Reason:

• The system of linear equations

a1 ·
(

1
2
3

)
+ a2 ·

(
2
3
4

)
+ a3 ·

(
3
5
7

)
=
(

0
0
0

)

has a non-zero solution (for instance a1 = 1, a2 = 1, a3 = −1). This imples that E

generates V since we can express the third generator by the two first.

• The system of linear equations

a1 ·
(

1
2
3

)
+ a2 ·

(
2
3
4

)
=
(

0
0
0

)

only has a1 = a2 = 0 as solution. Thus E is Q-linearly independent.

(c) The R-vector space

V = {f : N → R | ∃S ⊆ N finite ∀n ∈ N \ S : f(n) = 0}

has {en | n ∈ N} with en(m) = δn,m (Kronecker delta: δn,m =

{
1 if n = m,

0 if n 6= m.
) as R-basis.

This is thus a basis with infinitely many elements.

(d) Similarly to the previous example, the R-vector space

V = {f : R → R | ∃S ⊆ R finite ∀x ∈ R \ S : f(x) = 0}

has {ex | x ∈ R} with ex(y) = δx,y as R-basis. This is thus a basis which is not countable.

Example 1.25. How to compute a basis for a vector space generated by a finite set of vectors? (Same

answer than almost always:) Solve a system of linear equations.

Let V be a K-vector space generated by {e1, e2, . . . , em} (assumed all non-zero). We proceed as

follows:
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• Add e1 to the basis.

• If e2 is linearly independent from e1 (i.e. e2 is not a scalar multiple of e1), add e2 to the basis

and in this case e1, e2 are linearly independent (otherwise, do nothing).

• If e3 is linearly independent from the vectors chosen for the basis, add e3 to the basis and in

this case the elements chosen for the basis are linarly independent (otherwise, do nothing).

• If e4 is linearly independent from the vectors already chosen for the basis, add e4 to the basis

and in this case all the chosen elements for the basis are linearly independent (otherwise, do

nothing).

• etc. until the last vector.

Here is a concrete example in R4:

e1 =

(
1
1
0
2

)
, e2 =

(
1
0
1
0

)
, e3 =

(
4
1
3
2

)
, e4 =

(
0
1
0
1

)
.

• Add e1 to the basis.

• Add e2 to the basis since e2 is clearly not a multiple of e1 (see, for example, the second coeffi-

cient), thus e1 et e2 are linearly independent.

• Are e1, e2, e3 linearly independent?We consider the system of linear equations given by the

matrix (
1 1 4
1 0 1
0 1 3
2 0 2

)
.

By transformations on the rows, we obtain the matrix

(
1 0 1
0 1 3
0 0 0
0 0 0

)
.

We obtain the solution
(

1
3
−1

)
. So, we do not add e3 to the basis since e3 is linearly dependent

from e1, e2.

• Are e1, e2, e4 linearly independent? We consider the system of linear equations given by the

matrix (
1 1 0
1 0 1
0 1 0
2 0 1

)
.

By transformations on the rows, we obtain the matrix

(
1 0 0
0 1 0
0 0 1
0 0 0

)
.

The corresponding system has no non-zero solution. Therfore e1, e2, e4 are linearly independ-

ent. This is the basis that we looked for.



14 1 RECALLS: VECTOR SPACES, BASES, DIMENSION, HOMOMORPHISMS

Dimension

Corollary 1.26. Let K be a field and V a K-vector space having a finite K-basis. Then, all the

K-bases of V are finite and have the same cardinality.

This corollary allows us to make a very important definition, that of the dimension of a vector space.

The dimension measures the ’size’ or the ’number of degrees of freedom’ of a vector space.

Definition 1.27. Let K be a field and V a K-vector space. If V has a finite K-basis of cardinality n,

we say that V is of dimension n. If V has no finite K-basis, we say that V is of infinite dimension.

Notation: dimK(V ).

Example 1.28. (a) The dimension of the standard K-vector space Kn is equal to n.

(b) The zero K-vector space ({0},+, ·, 0) is of de dimension 0 (and it is the only one).

(c) The R-vector space F(N,R) is of infinite dimension.

Lemma 1.29. Let K be a field, V a K-vector space of dimension n and W ≤ V a subspace.

(a) dimK(W ) ≤ dimK(V ).

(b) If dimK(W ) = dimK(V ), then W = V .

The content of the following proposition is that any K-linearly independent set can be completed to

become a K-basis.

Proposition 1.30 (Basisergänzungssatz). Let V be a K-vector space of dimension n, E ⊆ V a finite

set such that E generates V and {e1, . . . , er} ⊂ V a subset that is K-linearly independent.

Then r ≤ n and there exist er+1, er+2, . . . , en ∈ E such that {e1, . . . , en} is a K-basis of V .

The proposition 1.30 can be shown in an abstract manner or in a constructive manner. Assume that

we have elements e1, . . . , er that are K-linearly independent. If r = n, these elements are a K-basis

by Lemma 1.29 (b) and we are done. Assume therefore that r < n. We now run through the elements

of E until we find e ∈ E such that e1, . . . , er, e are K-linearly independent. Such an element e

has to exist, otherwise the set E would be contained in the subspace generated by e1, . . . , er, an

could therefore not generate V . We call e =: er+1 and we have a K-linearly independent set of

cardinality r + 1. It now suffices to continue this process until we arrive at a K-linearly independent

set with n elements, which is automatically a K-basis.

Corollary 1.31. Let V be aK-vector space of finite dimension n and letW ≤ V be a vector subspace.

Then there exists a vector subspace U ≤ V such that V = U ⊕ V . Moreover, we have the equality

dim(V ) = dim(W ) + dim(U).

We call U a complement of W in V . Note that this complement is not unique in general.

Proof. We choose a K-basis w1, . . . , wr of W and we use the proposition 1.30 to obtain vectors

u1, . . . , us ∈ V such thatw1, . . . , wr, u1, . . . , us form aK-basis of V . PutU = 〈u1, . . . , us〉. Clearly,

we have V = U +W and also U ∩W = 0, so V = U ⊕W . The assertion concerning dimensions

follows.
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Proposition 1.32. Let V be a K-vector space of finite dimension n. Let B ⊂ V be a subset of

cardinality n. Then, the following assertions are equivalent.

(i) B is a K-basis.

(ii) B is K-linearly independent.

(iii) B generates V .

Proof. For the equivalence between (i) and (ii) it suffices to observe that a K-linearly independent

set of cardinality n is necessarily maximal (thus a K-basis by Theorem 1.22), since if it was not

maximal, there would be a maximal K-linearly independent set of cardinality strictly larger than n,

thus a K-basis of cardinality different from n which is not possible by Corollary 1.26.

Similarly, for the equivalence between (i) and (iii) it suffices to observe that a set of cardinality n that

generates V is necessarily minimal (thus a K-basis by Theorem 1.22), since if it was not minimal,

there would be a minimal set of cardinality strictly smaller than n that generates V , thus a K-basis of

cardinality different from n.

Linear maps: homomorphisms of vector spaces

We start with the main idea :

The (homo-)morphisms are maps that respect all the structures.

Definition 1.33. Let V,W be K-vector spaces. A map

ϕ : V →W

is called K-linear or (homo-)morphism of K-vector spaces if

∀ v1, v2 ∈ V : ϕ(v1 +V v2) = ϕ(v1) +W ϕ(v2)

and

∀ v ∈ V, ∀a ∈ K : ϕ(a ·V v) = a ·W ϕ(v).

A bijective homomorphism of K-vector spaces is called an isomorphism. We often denote the iso-

morphisms by a tilda: ϕ : V
∼−→ W . If there exists an isomorphism V → W , we often simply write

V ∼=W .

Example 1.34. (a) We start by the most important example. Let n ∈ N.

Let M =




a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n




be a matrix with n columns, m rows and with coefficients

in K (we denote the set of these matrices by Matm×n(K); this is also a K-vector space). It

defines the K-linear map

ϕM : Kn → Km, v 7→Mv
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where Mv is the usual product for matrices. Explicitly,

ϕM (v) =Mv =




a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n







v1
v2
...

vn




=




∑n
i=1 a1,ivi∑n
i=1 a2,ivi

...∑n
i=1 am,ivi



.

The K-linearity reads as

∀ a ∈ K ∀ v, w ∈ V :M ◦ (a · v + w) = a · (M ◦ v) +M ◦ w.

This equality is very easy to verify (you should have seen it in your Linear Algebra 1 course).

(b) Let a ∈ R. Then, ϕ : R → R, x 7→ ax is R-linear (this is the special case n = m = 1 of (a) if we

look at the scalar a as a matrix (a)). On the other hand, if 0 6= b ∈ R, then R → R, x 7→ ax+ b

is not R-linear!

(c) Let n ∈ N. Then, the map ϕ : F(N,R) → R, f 7→ f(n) is K-linear.

Definition 1.35. Let V,W be K-vector spaces and ϕ : V → W a K-linear map. The kernel of ϕ is

defined as

ker(ϕ) = {v ∈ V | ϕ(v) = 0}.

Proposition 1.36. Let V,W be K-vector spaces and ϕ : V →W a K-linear map.

(a) Im(ϕ) is a vector subspace of W .

(b) ker(ϕ) is a vector subspace of V .

(c) ϕ is surjective if and only if Im(ϕ) =W .

(d) ϕ is injective if and only if ker(ϕ) = 0.

(e) If ϕ is an isomorphism, its inverse is one too (in particular, its inverse is also K-linear).

Definition 1.37. Let M ∈ Matm×n(K) be a matrix. We call rank of columns of M the dimension of

the vector subspace of Km generated by the columns of M . We use the notation rk(M).

Similarly, we define the rank of rows of M the dimension of the vector subspace of Kn generated by

the rows of M . More formally, it is the rank of M tr, the transpose matrix.

We will see towards the end of the course that for any matrix, the rank of columns is equal to the rank

of rows. This explains why we did not mention the word “ columns” in the notation of the rank.

If ϕM : Kn → Km is the K-linear map associated to M , then

rk(M) = dim(Im(ϕM ))

since the image of ϕM is precisely the vector space generated by the columns of M .
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Corollary 1.38. (a) Let ϕ : V → X be a K-linear map between two K-vector spaces. We assume

that V has finite dimension. Then,

dim(V ) = dim(ker(ϕ)) + dim(Im(ϕ)).

(b) Let M ∈ Matm×n(K) be a matrix. Then, we have

n = dim(ker(M)) + rk(M).

Proof. (a) Let W = ker(ϕ). We choose a complement U ≤ V such that V = U ⊕W by Corol-

lary 1.31. As U ∩W = 0, the map ϕ|U : U → X is injective. Moreover, ϕ(V ) = ϕ(U+W ) = ϕ(U)

shows that Im(ϕ) is equal to ϕ(U). Consequently, dim(Im(ϕ)) = dim(ϕ(U)) = dim(U), thus the

desired equality.

(b) follows directly from (a) by the above considerations.

Part (b) is very useful for computing the kernel of a matrix: if we know the rank of M , we deduce the

dimension of the kernel by the formula

dim(ker(M)) = n− rk(M).

Gauß’ algorithm in terms of matrices

We consider three types of matrices:

Definition 1.39. For 0 6= λ ∈ K and 1 ≤ i, j ≤ n, i 6= j, we define the following matrices in

Matn×n(K), called elementary matrices:

• Pi,j is equal to the identity idn except that the i-th and the j-th rows are exchanged (or, equi-

valently, the i-th and the j-th column are exchanged): Pi,j =




1
. . .

1
0 1
1
1

1 0
1

. . .
1




.

• Si(λ) is equal to the identity idn except that the coefficient (i, i) on the diagonal is λ (instead

of 1): Si(λ) =




1
. . .

1
λ

1
. . .

1




.

• Qi,j(λ) is equal to the identity idn except that the coefficient (i, j) is λ (instead of 0): Qi,j(λ) =


1
. . .

. . . λ
. . .

1


.
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The elementary matrices have a signification for the operations of matrices.

Lemma 1.40. Let λ ∈ K, i, j, n,m ∈ N>0, i 6= j and M ∈ Matn×m(K).

(a) Pi,jM is the matrix obtained from M by exchanging the i-th and the j-th row.

MPi,j is the matrix obtained from M by exchanging the i-th and the j-th coulumn.

(b) Si(λ)M is the matrix obtained from M by multiplying the i-th row by λ.

MSi(λ) is the matrix obtained from M by multiplying the i-th column by λ.

(c) Qi,j(λ)M is the matrix obtained from M by adding λ times the j-th row to the i-th row.

MQi,j(λ) is the matrix obtained from M by adding λ times the i-th column to the j-th column.

Proof. Easy computations.

Proposition 1.41. Let M ∈ Matn×m(K) be a matrix and let N ∈ Matn×m(K) be the matrix

obtained from M by performing operations on the rows (as in Gauß’ algorithm).

(a) Then there exist matrices C1, . . . , Cr (for some r ∈ N) chosen among the matrices of Defini-

tion 1.39 such that (C1 · · ·Cr) ·M = N .

(b) ker(M) = ker(N) and thus Gauß’ row reduction algorithm can be used in order to compute the

kernel of a matrix.

Proof. (a) By Lemma 1.40 any operation on the rows can be done by left multiplication by one of the

matrices of Definition 1.39.

(b) All the matrices of Definition 1.39 are invertible, thus do not change the kernel.

Similarly to (b), any operation on the columns corresponds to right multiplication by one of the

matrices of Definition 1.39. Thus, if N is a matrix obtained from a matrix M by doing operations

on the columns, there exist matrices C1, . . . , Cr (for some r ∈ N) chosen among the matrices of

Definition 1.39 such that M · (C1 · · ·Cr) = N . Since the matrices Ci are invertible, we also have

im(M) = im(N),

and in particular the rank of M is equal to the rank of N .

Often we are interested in knowing a matrix C such that CM = N where N is obtained from M by

operations on the rows.

In order to obtain this, it suffices to observe that C · id = C, hence applying C is equivalent to doing

operations on the corresponding rows of the matrix id. In the following example, we see how this is

done in practice.

Example 1.42. Let M =



1 2 3

4 5 6

7 8 9


. We write the augmented matrix and do the operations on the
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rows as always, but on the whole matrix.



1 0 0 1 2 3

0 1 0 4 5 6

0 0 1 7 8 9


 7→




1 0 0 1 2 3

−4 1 0 0 −3 −6

−7 0 1 0 −6 −12


 7→




1 0 0 1 2 3

−4 1 0 0 −3 −6

1 −2 1 0 0 0




7→




1 0 0 1 2 3

4/3 −1/3 0 0 1 2

1 −2 1 0 0 0


 7→



−5/3 2/3 0 1 0 −1

4/3 −1/3 0 0 1 2

1 −2 1 0 0 0




The left half of the final matrix is the matrix C looked for: C =



−5/3 2/3 0

4/3 −1/3 0

1 −2 1


. The right half

is the matrix obtained by the operations on the rows.

We know that we have the following equality (to convince ourselves, we can verify it by a small

computation):

CM =



−5/3 2/3 0

4/3 −1/3 0

1 −2 1






1 2 3

4 5 6

7 8 9


 =



1 0 −1

0 1 2

0 0 0


 .

As application of the Gauß’s algorithm written in terms of matrices, we obtain that any invertible

square matrix M can be written as product of the matrices of Definition 1.39. Indeed, that we can

transform M into identity by operations on the rows.

Matrices and representation of linear maps

In Example 1.34 (a) we have seen that matrices give rise to K-linear maps. It is very import-

ant and sometimes called main theorem of linear algebra that the inverse assertion is also true:

after basis choice any K-linear map is given by a matrix.

Notation 1.43. Let V be a K-vector space and S = {v1, . . . , vn} a K-basis of V . We recall that

v =
∑n

i=1 bivi with unique b1, . . . , bn ∈ K; these are the coordinates of v for the basis S. We use the

following notation:

vS =




b1
b2
...
bn


 ∈ Kn.

Example 1.44. (a) Let n ∈ N and e1 =




1
0
0
...
0


 , e2 =




0
1
0
...
0


 , . . . , en =




0
0
0
...
1


.

Thus E = {e1, e2, . . . , en} is a canonical K-basis of Kn. Then, for all v =




a1
a2
a3
...
an


 ∈ Kn we

have vE =




a1
a2
a3
...
an


.
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(b) Let V = R2 and S = {( 11 ) ,
(

1
−1

)
}. It is a R-basis of V (since the dimension is 2 and the two

vectors are R-linearly independent). Let v = ( 42 ) ∈ V . Then, v = 3 · ( 11 ) +
(

1
−1

)
, so vS = ( 31 ).

The following proposition says that any K-vector space of dimension n is isomorphic to Kn.

Proposition 1.45. Let V be a K-vector space of finite dimension n with K-basis S = {v1, . . . , vn}.

Then, the map ϕ = ()S : V → Kn given by v 7→ vS is a K-isomorphism.

Proof. Let v, w ∈ V and a ∈ K. We write v and w in coordinates for the basis S: v =
∑n

i=1 bivi and

w =
∑n

i=1 civi. Thus, we have av + w =
∑n

i=1(abi + ci)vi. Written as vectors we thus find:

vS =




b1
b2
...
bn


 , wS =

( c1
c2
...
cn

)
and (av + w)S =




ab1+c1
ab2+c2

...
abn+cn


 ,

thus the equality (a · v +w)S = a · vS +wS . This shows that the map ϕ is K-linear. We show that it

is bijective.

Injectivity: Let v ∈ V be such that vS =

( 0
0
...
0

)
, i.e. v ∈ ker(ϕ). This means that v =

∑n
i=1 0·vi = 0.

The kernel of ϕ therefore only contains 0, so, ϕ is injective.

Surjectivity: Let

( a1
a2
...
an

)
∈ Kn. We set v :=

∑n
i=1 ai · vi. We have ϕ(v) =

( a1
a2
...
an

)
and the

surjectivity is proven.

Theorem 1.46. Let V,W be two K-vector spaces of finite dimension n and m and ϕ : V → W a

K-linear map. Let S = {v1, . . . , vn} be a K-basis of V and T = {w1, . . . , wm} a K-basis of W .

For all 1 ≤ i ≤ n, the vector ϕ(vi) belongs to W . We can thus express it as a K-linear combination

of the vectors in the basis T , so:

ϕ(vi) =
m∑

j=1

aj,iwj .

We ’gather’ the coefficients aj,i in a matrix:

MT,S(ϕ) :=




a1,1 a1,2 ··· a1,n
a2,1 a2,2 ··· a2,n

...
...

. . .
...

am,1 am,2 ··· am,n


 ∈ Matm×n(K).

Then, for all v ∈ V we have

(ϕ(v))T =MT,S(ϕ) ◦ vS .

This means that the matrix product MT,S(ϕ) ◦ vS gives the coordinates in basis T of the image ϕ(v).

Then, the matrix MT,S(ϕ) describes the K-linear map ϕ in coordinates.

Observe that it is easy to write the matrix MT,S(ϕ): the i-th column of MT,S(ϕ) is (ϕ(vi))T .
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Proof. We do a very simple matrix computation:

MT,S(ϕ) ◦ (vi)S =




a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n




◦




0
...
0
1
0
...
0




=




a1,i
a2,i

...

am,i




= (ϕ(vi))T ,

where the 1 is in the i-th row of the vector. We have thus obtained the result for the vectors vi in the

basis S.

The general assertion follows by linearity: Let v =
∑n

i=1 bivi. Then we obtain

MT,S(ϕ) ◦ (
n∑

i=1

bivi)S =
n∑

i=1

bi ·
(
MT,S(ϕ) ◦ (vi)S

)

=
n∑

i=1

bi · (ϕ(vi))T = (
n∑

i=1

bi · ϕ(vi))T = (ϕ(
n∑

i=1

bi · vi))T = (ϕ(v))T .

This shows the theorem.

Example 1.47. C has a R-basis B = {1, i}. Let z = x+ iy ∈ C with x, y ∈ R, thus zB = ( xy ). Let

a = r + is with r, s ∈ R. The map

ϕ : C → C, z 7→ a · z

is R-linear. We describe MB,B(ϕ). The first column is (a · 1)B = (r + is)B = ( rs ), and the second

column is (a · i)B = (−s+ ir)B = (−sr ), then MB,B(ϕ) = ( r −s
s r ).

Definition 1.48. Let us denote by HomK(V,W ) the set of all maps ϕ : V →W which ate K-linear.

In the special case W = V , a K-linear map ϕ : V → V is also called an endomorphism of V and

we write

EndK(V ) := HomK(V, V ).

Corollary 1.49. Let K be a field, V,W two K-vector spaces of finite dimension n and m. Let

S = {v1, . . . , vn} be a K-basis of V et T = {w1, . . . , wm} a K-basis of W .

Then, the map

HomK(V,W ) → Matm×n(K), ϕ 7→MT,S(ϕ)

is a bijection.

It is important to stress that the bases in the corollary are fixed! The same matrix can express

different linear maps if we change the bases.

Proof. Injectivity: Suppose that MT,S(ϕ) = MT,S(ψ) for ϕ, ψ ∈ HomK(V,W ). Then for all

v ∈ V , we have (ϕ(v))T = MT,S(ϕ) ◦ vS = MT,S(ψ) ◦ vS = (ψ(v))T . Since the writing in

coordinates is unique, we find ϕ(v) = ψ(v) for all v ∈ V , so ϕ = ψ.
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Surjectivity: Let M ∈ Matm×n(K) be a matrix. We define ϕ ∈ HomK(V,W ) by

(ϕ(v))T =M ◦ vS
for v ∈ V . It is clear that ϕ is K-linear. Moreover, we have

MT,S(ϕ) ◦ vS = (ϕ(v))T =M ◦ vS
for all v ∈ V . Taking v = vi such that (vi)S is the vector of which the i-th coordinate is 1 and

the rest is 0, we obtain that the i-th columns of MT,S(ϕ) and M are the same. This shows that

M =MT,S(ϕ).

Definition-Lemma 1.50. Let V be aK-vector space of finite dimension n. Let S1, S2 be twoK-bases

of V . We set

CS2,S1 :=MS2,S1(idV )

and we call it the basis change matrix.

(a) CS2,S1 is a matrix with n columns and n rows.

(b) For all v ∈ V :

vS2 = CS2,S1 ◦ vS1 .

In words: the multiplication of the basis change matrices by the vector v expressed in coordinates

for the basis S1, gives the vector v expressed in coordinates for the basis S2.

(c) CS2,S1 is invertible with inverse CS1,S2 .

It is easy to write the matrix CS2,S1 : its j-th column consists of the coordinates in basis S2 of the j-th

vector of basis S1.

Proof. (a) This is clear.

(b) CS2,S1 ◦ vS1 =MS2,S1(idV ) ◦ vS1 = (idV (v))S2 = vS2 .

(c) CS1,S2 ◦ CS2,S1 ◦ vS1 = CS1,S2 ◦ vS2 = vS1 for all v ∈ V . This shows that CS1,S2 ◦ CS2,S1 is

identity. The same reasonning holds with the roles of S1 and S2 inverted.

Proposition 1.51. Let V,W be K-vector spaces of finite dimension, let S1, S2 be two K-bases of V ,

let T1, T2 be two K-bases of W , and let ϕ ∈ HomK(V,W ). Then,

MT2,S2(ϕ) = CT2,T1 ◦MT1,S1(ϕ) ◦ CS1,S2 .

Proof. CT2,T1 ◦MT1,S1(ϕ)◦CS1,S2 ◦vS2 = CT2,T1 ◦MT1,S1(ϕ)vS1 = CT2,T1 ◦ (ϕ(v))T1 = (ϕ(v))T2 .

Proposition 1.52. Let V,W,Z be K-vector spaces of finite dimension, let S be a K-basis of V , T a

K-basis of W and U a K-basis of Z. Let ϕ ∈ HomK(V,W ) and ψ ∈ HomK(W,Z). Then,

MU,T (ψ) ◦MT,S(ϕ) =MU,S(ψ ◦ ϕ).

In words: the matrix product corresponds to the composition of maps.

Proof. MU,T (ψ) ◦MT,S(ϕ) ◦ vS =MU,T (ψ) ◦ (ϕ(v))T = (ψ(φ(v)))U =MU,T (ψ ◦ ϕ) ◦ vS .
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Appendix: existence of bases

For lack of time, this section will neither be taught, neither be examined.

In the lecture course “Structures mathématiques” we have introduced the sets from an intuitive and

non-rigorous point of view. A strict treatment can only take place in a logic course at a more advanced

stage (such a course is not offered at the UL for the moment – you can consult books for more details).

In set theory, there is an important axiom: the ’axiom of choix’.1 In set theory one shows ’Zorn’s

Lemma’ which says that the axiom of choice is equivalent to the following assertion.

Axiom 1.53 (Zorn’s Lemma). Let S be a non-empty set and ≤ a partial order on S.2 We make the

following hypothesis: Any subset T ⊆ S which is totally ordered3 has an upper bound.4

Then, S has a maximal element.5

To show how to apply Zorn’s Lemma, we prove that ant vector space has a basis. If you have seen

this assertion in your Linear Algebra 1 lecture course, then it was for finite-dimensional vector spaces

because the general case is in fact equivalent to the axiom of choice (an thus to Zorn’s Lemma).

Proposition 1.54. Let K be a field and V 6= {0} a K-vector space. Then, V has a K-basis.

Proof. We recall some notions of linear algebra. A finite subset G ⊆ V is called K-linearly inde-

pendent if the only linear combination 0 =
∑

g∈G agg with ag ∈ K is that where ag = 0 for all

g ∈ G. More generally, a non-necessarily finite subset G ⊆ V is called K-linearly independent if any

finite subsetH ⊆ G isK-linearly independent. A subsetG ⊆ V is called aK-basis if it isK-linearly

independet and generates V .6

We want to use Zorn’s Lemma 1.53. Let

S := {G ⊆ V subset | G is K-linearly independent }.

The set S is non-empty since G = {v} is K-linearly independent for all 0 6= v ∈ V . The inclusion of

sets ’⊆’ defines an order relation on S (it is obvious – see Algebra 1).

We verify that the hypothesis of Zorn’s Lemma is satisfied: Let T ⊆ S be a totally ordered subset. We

have to produce an upper bound E ∈ S for T . We set E :=
⋃
G∈T G. It is clear that G ⊆ E for all

G ∈ T . One has to show that E ∈ S, thus that E is K-linearly independent. Let H ⊆ E be a subset

of cardinality n. We show by induction on n that there exists G ∈ T such that H ⊆ G. The assertion

is clear for n = 1. Assume it proven for n− 1 and write H = H ′ ⊔ {h}. There exist G′, G ∈ T such

1Axiom of choice: Let X be a set of which the elements are non-empty sets. Then there exists a function f defined

on X which to any M ∈ X associates an element of M . Such a function is called “function of choice”.
2We recall that by definition the three following points are satisfied:

• s ≤ s for all s ∈ S.

• If s ≤ t and t ≤ s for s, t ∈ S, then s = t.

• If s ≤ t and t ≤ u for s, t, u ∈ S, then s ≤ u.

3T is totally ordered if T is ordered and for all pair s, t ∈ T we have s ≤ t or t ≤ s.
4g ∈ S is an upper bound for T if t ≤ g for all t ∈ T .
5m ∈ S is maximal if for all s ∈ S such that m ≤ s we have m = s.
6i.e.: any element v ∈ V writes as v =

∑n

i=1 aigi with n ∈ N, a1, . . . , an ∈ K et g1, . . . , gn ∈ G.
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that H ′ ⊆ G′ (by induction hypothesis because the cardinality of H ′ is n− 1) and h ∈ G (by the case

n = 1). By the fact that T is totally ordered, we have G ⊆ G′ or G′ ⊆ G. In both cases we obtain

that H is a subset of G or of G′. Since H is a finite subset of a set which is K-linearly independent,

H is too. Thus, E is K-linearly independent.

Zorn’s Lemma gives us a maximal element B ∈ S. We show that B is a K-basis of V . As element

of S, B is K-linearly independent. One has to show that B generates V . Suppose that this is not

the case and let us take v ∈ V which cannot be written as a K-linear combination of the elements

in B. Then the set G := B ∪ {v} is also K-linearly independent, since any K-linear combination

0 = av+
∑n

i=1 aibi with n ∈ N, a, a1, . . . , an ∈ K and b1, . . . , bn ∈ B with a 6= 0 would lead to the

contradiction v =
∑n

i=1
−ai
a bi (note that a = 0 corresponds to a K-linear combination in B which is

K-linearly independent). But, B ( G ∈ S contradicts maximality of B.

2 Recalls: Determinants

Goals:

• Master the definition and the fundamental properties of the determinants;

• be able to compute determinants;

• know examples and be able to prove simple properties.

Definition and first properties

The determinants have been introduced the previous semester. Here we recall them from another

viewpoint: we start from the computation rules. Actually, our first proposition can be used as a

definition; it is Weierstraß’ axiomatic (see the book of Fischer).

In this section we allow thatK is a commutative ring (but you can still takeK = R orK = C without

loss of information).

If M =




m1,1 m1,2 ··· m1,n
m2,1 m2,2 ··· m2,n

...
...

. . .
...

mn,1 mn,2 ··· mn,n


 is a matrix, we denote by mi = (mi,1 mi,2 ··· mi,n ) its i-th row, i.e.

M =

( m1
m2

...
mn

)
.

Proposition 2.1. Let n ∈ N>0. The determinant is a map

det : Matn×n(K) → K, M 7→ det(M)

such that

D1 det is K-linear in each row, that is, for all 1 ≤ i ≤ n, if mi = r + λs with λ ∈ K, r =

( r1 r2 ··· rn ) and s = ( s1 s2 ··· sn ), then

det




m1

...
mi−1
mi
mi+1

...
mn




= det




m1

...
mi−1

r+λs
mi+1

...
mn




= det




m1

...
mi−1
r

mi+1

...
mn




+ λ · det




m1

...
mi−1
s

mi+1

...
mn



.
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D2 det is alternating, that is, if two of the rows of M are equal, then det(M) = 0.

D3 det is normalized, that is, det(idn) = 1 where idn is the identity.

Proof. This has been proven in the course of linear algebra in the previous semester.

We often use the notation
∣∣∣∣∣∣

m1,1 m1,2 ··· m1,n
m2,1 m2,2 ··· m2,n

...
...

. . .
...

mn,1 mn,2 ··· mn,n

∣∣∣∣∣∣
:= det




m1,1 m1,2 ··· m1,n
m2,1 m2,2 ··· m2,n

...
...

. . .
...

mn,1 mn,2 ··· mn,n


 .

Proposition 2.2. The following properties are satisfied.

D4 For all λ ∈ K, we have det(λ ·M) = λn det(M).

D5 If a row is equal to 0, then det(M) = 0.

D6 If M̃ is obtained from M by swapping two rows, then det(M) = − det(M̃).

D7 Let λ ∈ A and i 6= j. If M̃ is obtained from M by adding λ times the j-th row to the i-th row,

then det(M) = det(M̃).

Proof. D4 This follows from the linearity (D1).

D5 This follows from the linearity (D1).

D6 Let us say that the i-th and the j-the row are swapped. Thus M =




m1

...
mi

...
mj

...
mn




and M̃ =




m1

...
mj

...
mi

...
mn




.

det(M) + det(M̃) = det




m1

...
mi

...
mj

...
mn




+ det




m1

...
mj

...
mi

...
mn




D2
= det




m1

...
mj

...
mj

...
mn




+ det




m1

...
mi

...
mj

...
mn




+ det




m1

...
mj

...
mi

...
mn




+ det




m1

...
mi

...
mi

...
mn




D1
= det




m1

...
mi+mj

...
mj

...
mn




+ det




m1

...
mi+mj

...
mi

...
mn




= det




m1

...
mi+mj

...
mi+mj

...
mn




D2
= 0.
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D7 We have

det(M̃) = det




m1

...
mi+λmj

...
mj

...
mn




D1
= det




m1

...
mi

...
mj

...
mn




+ λ · det




m1

...
mj

...
mj

...
mn




D2
= det(M) + λ · 0 = det(M).

Proposition 2.3. The following properties are satisfied.

D8 If M is of (upper) triangular form




λ1 m1,2 m1,3 ··· m1,n

0 λ2 m2,3 ··· m2,n

0 0 λ3 ··· m3,n

...
...

. . .
. . .

...
0 0 0 ··· λn


 ,

then det(M) =
∏n
i=1 λi.

D9 If M is a bloc matrix
(
A B
0 C

)
with square matrices A and C, then det(M) = det(A) · det(C).

Proof. Left to the reader.

Leibniz’ Formula

Lemma 2.4. For 1 ≤ i ≤ n, let ei := ( 0 ··· 0 1 0 ··· 0 ) where the 1 is at the i-th position. Let

σ : {1, . . . , n} → {1, . . . , n} be a map. Let M =




eσ(1)
eσ(2)

...
eσ(n)


. Then

det(M) =

{
0 if σ is not bijective,

sgn(σ) if σ is bijective (σ ∈ Sn).

Proof. If σ is not bijective, then the matrix has twice the same row, thus the determinant is 0. If σ is

bijective, then σ is a product of transpositions σ = τr ◦· · ·◦τ1 (see Algebra 1). Thus sgn(σ) = (−1)r.

Let us start by σ = id. In this case the determinant is 1 and thus equal to sgn(σ). We continue by

induction and we suppose thus (induction hypothesis) that the result is true for r − 1 transpositions

(with r ≥ 1). Let M ′ be the matrix that corresponds to σ′ = τr−1 ◦ · · · ◦ τ1; its determinant is

(−1)r−1 = sgn(σ′) by induction hypothesis. The matrix M is obtained from M ′ by swapping two

rows, thus det(M) = − det(M ′) = −(−1)r−1 = (−1)r.

Proposition 2.5 (Leibniz’ Formula). Let M =




m1,1 m1,2 ··· m1,n
m2,1 m2,2 ··· m2,n

...
...

. . .
...

mn,1 mn,2 ··· mn,n


 ∈ Matn×n(K). Then,

det(M) =
∑

σ∈Sn

sgn(σ) ·m1,σ(1) ·m2,σ(2) · . . . ·mn,σ(n).
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Proof. The linearity of rows (D1) gives us

det(M) =
n∑

i1=1

m1,i1

∣∣∣∣∣∣

ei1
m2
m3

...
mn

∣∣∣∣∣∣
=

n∑

i1=1

n∑

i2=1

m1,i1m2,i2

∣∣∣∣∣∣∣

ei1
ei2
m3

...
mn

∣∣∣∣∣∣∣

= · · · =
n∑

i1=1

n∑

i2=1

· · ·
n∑

in=1

m1,i1m2,i2 · · ·mn,in

∣∣∣∣∣∣∣

ei1
ei2
ei3
...
ein

∣∣∣∣∣∣∣

=
∑

σ∈Sn

m1,σ(1)m2,σ(2) · · ·mn,σ(n) · sgn(σ),

where the last equality results from Lemma 2.4. Note that the determinant of the matrix




ei1
ei2
ei3
...
ein


 is

non-zero only if the ij’s are all different; this allows us to identify it with the permutation σ(j) = ij .

That the determinant is unique is clear because it is a function of the coefficients of the matrix.

Corollary 2.6. Let M ∈ Matn×n(K). We denote by M tr the transposed matrix. Then, det(M) =

det(M tr).

Proof. We use Leibniz’ Formula 2.5. Note first that sgn(σ) = sgn(σ−1) for all σ in Sn since sgn is a

homomorphism of groups, 1−1 = 1 et (−1)−1 = −1. Write now

m1,σ(1)m2,σ(2) · · ·mn,σ(n) = mσ−1(σ(1)),σ(1)mσ−1(σ(2)),σ(2) · · ·mσ−1(σ(n)),σ(n)

= mσ−1(1),1mσ−1(2),2 · · ·mσ−1(n),n,

where for the last equality we have only written the product in another order since the values

σ(1), σ(2), . . . , σ(n) run through 1, 2, . . . , n (only in another order).

We thus have

det(M) =
∑

σ∈Sn

sgn(σ)m1,σ(1)m2,σ(2) · · ·mn,σ(n)

=
∑

σ∈Sn

sgn(σ−1)mσ−1(1),1mσ−1(2),2 · · ·mσ−1(n),n

=
∑

σ∈Sn

sgn(σ−1)mtr
1,σ−1(1)m

tr
2,σ−1(2) · · ·mtr

n,σ−1(n)

=
∑

σ∈Sn

sgn(σ)mtr
1,σ(1)m

tr
2,σ(2) · · ·mtr

n,σ(n)

= det(M tr),

where we have used the bijection Sn → Sn given by σ 7→ σ−1; it is thus makes no change if the sum

runs through σ ∈ Sn or through the inverses.

Corollary 2.7. The rules D1 to D9 are also true for the columns instead of the rows.

Proof. By taking the transpose of a matrix, the rows become columns, but by Corollary 2.6, the

determinant does not change.
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Laplace expansion

Definition 2.8. Let n ∈ N>0 and M =




m1,1 m1,2 ··· m1,n
m2,1 m2,2 ··· m2,n

...
...

. . .
...

mn,1 mn,2 ··· mn,n


 ∈ Matn×n(K). For 1 ≤ i, j ≤ n we

define the matrices

Mi,j =




m1,1 ··· m1,j−1 0 m1,j+1 ··· m1,n

...
. . .

...
...

...
. . .

...
mi−1,1 ··· mi−1,j−1 0 mi−1,j+1 ··· mi−1,n

0 ··· 0 1 0 ··· 0
mi+1,1 ··· mi+1,j−1 0 mi+1,j+1 ··· mi+1,n

...
. . .

...
...

...
. . .

...
mn,1 ··· mn,j−1 0 mn,j+1 ··· mn,n




∈ Matn×n(K)

and

M ′
i,j =




m1,1 ··· m1,j−1 m1,j+1 ··· m1,n

...
. . .

...
...

. . .
...

mi−1,1 ··· mi−1,j−1 mi−1,j+1 ··· mi−1,n
mi+1,1 ··· mi+1,j−1 mi+1,j+1 ··· mi+1,n

...
. . .

...
...

. . .
...

mn,1 ··· mn,j−1 mn,j+1 ··· mn,n




∈ Matn−1×n−1(K).

Moreover, let M̃i,j be the matrix obtained from M by replacing the j-th column by




0
...
0
1
0
...
0




, where the

1 is at the i-th position.

The determinants det(M ′
i,j) are called the minors of M .

Lemma 2.9. Let n ∈ N>0 and M ∈ Matn×n(K). For all 1 ≤ i, j ≤ n, we have

(a) det(Mi,j) = (−1)i+j · det(M ′
i,j),

(b) det(M̃i,j) = det(Mi,j).

Proof. (a) By swapping i rows, the row with the zeros is the first one. By swapping j columns, we

obtain the matrix



1 0 ··· 0 0 ··· 0
0 m1,1 ··· m1,j−1 m1,j+1 ··· m1,n

...
...

. . .
...

...
. . .

...
0 mi−1,1 ··· mi−1,j−1 mi−1,j+1 ··· mi−1,n

0 mi+1,1 ··· mi+1,j−1 mi+1,j+1 ··· mi+1,n

...
...

. . .
...

...
. . .

...
0 mn,1 ··· mn,j−1 mn,j+1 ··· mn,n




∈ Matn×n(K)

of which the determinant is det(M ′
i,j) (because of D9), which proves the result.

(b) Adding −mi,k times the j-th column to the k-th column of M̃i,j makes the coefficient (i, k) equal

to 0 for k 6= i without changing the determinant (Corollary 2.7).

Proposition 2.10 (Laplace expansion for the rows). Let n ∈ N>0. For all 1 ≤ i ≤ n, we have the

equality

det(M) =
n∑

j=1

(−1)i+jmi,j det(M
′
i,j)
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Proof. By the axiom D2 (linearity in the rows), we have

det(M) =

n∑

j=1

mi,j

∣∣∣∣∣∣∣∣∣∣

m1

...
mi−1
ei

mi+1

...
mn

∣∣∣∣∣∣∣∣∣∣

=

n∑

j=1

mi,j det(Mi,j) =

n∑

j=1

(−1)i+jmi,j det(M
′
i,j).

Corollary 2.11 (Laplace expansion for the columns). For all n ∈ N>0 and all 1 ≤ j ≤ n, we have

the formula

det(M) :=
n∑

i=1

(−1)i+jmi,j det(M
′
i,j).

Proof. It suffices to apply Proposition 2.10 to the transposed matrix and to remember (Corollary 2.6)

that the determinant of the transposed matrix is the same.

Note that the formulas of Laplace can be written as

det(M) =

n∑

j=1

mi,j det(Mi,j) =

n∑

i=1

mi,j det(Mi,j).

Adjoint matrices

Definition 2.12. The adjoint matrix adj(M) = M# = (m#
i,j) of the matrix M ∈ Matn×n(K) is

defined by m#
i,j := det(Mj,i) = (−1)i+j det(M ′

j,i).

Proposition 2.13. For all matrix M ∈ Matn×n(K), we have the equality

M# ·M =M ·M# = det(M) · idn.

Proof. Let N = (ni,j) :=M ·M#. We compute ni,j :

ni,j =

n∑

k=1

m#
i,kmk,j =

n∑

k=1

det(Mk,i)mk,j .

If i = j, we find ni,i = det(M) by Laplace’s formula. But we don’t need to use this formula and we

continue in generality by using det(Mk,i) = det(M̃k,i) by Lemma 2.9 (b). The linearity in the i-th

column shows that
∑n

k=1 det(M̃k,i)mk,j is the determinant of the matrix of which the i-th column is

replaced by the j-th column. If i = j, this matrix is M , so mi,i = det(M). If i 6= j, this determinant

(and thus ni,j) is 0 because two of the columns are equal.

The proof for M# ·M is similar.

Corollary 2.14. Let M ∈ Matn×n(K).

(a) If det(M) is invertible in K (for K a field this means det(M) 6= 0), then M is invertible and the

inverse matrix M−1 is equal to 1
det(M)M

#.
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(b) If M is invertible, then M−1 det(M) =M#.

Proof. Proposition 2.13.

We finish this recall by the following fundamental result.

Proposition 2.15. Let M,N ∈ Matn×n(K).

(a) det(M ·N) = det(M) · det(N).

(b) The following assertions are equivalent:

(i) M is invertible;

(ii) det(M) is invertible.

In this case det(M−1) = 1
det(M) .

Proposition 2.16. (a) has been shown in the Linear Algebra course.

(b) is obvious by Proposition 2.13.

3 Eigenvalues

Goals:

• Master the definition and fundamental properties of eigenvalues and eigenvectors;

• be able to compute eigenspaces;

• know examples and be able to prove simple properties.

Example 3.1. (a) Consider M = ( 3 0
0 2 ) ∈ Mat2×2(R). We have:

• ( 3 0
0 2 ) (

1
0 ) = 3 · ( 10 ) and

• ( 3 0
0 2 ) (

0
1 ) = 2 · ( 01 ).

(b) Consider M = ( 3 1
0 2 ) ∈ Mat2×2(R). We have:

• ( 3 1
0 2 ) (

a
0 ) = 3 · ( a0 ) for all a ∈ R.

• ( 3 1
0 2 ) (

a
b ) =

(
3a+b
2b

)
= 2 · ( ab ) ⇔ a = −b. Thus for all a ∈ R, we have

( 3 1
0 2 ) (

a
−a ) = 2 · ( a

−a ).

(c) Consider M =
(

5 1
−4 10

)
∈ Mat2×2(R). We have:

•
(

5 1
−4 10

)
( 14 ) = 9 ( 14 ) and

•
(

5 1
−4 10

)
( 11 ) = 6 ( 11 ).

(d) Consider M = ( 2 1
0 2 ) ∈ Mat2×2(R). We have:

• ( 2 1
0 2 ) (

a
0 ) = 2 · ( a0 ) for all a ∈ R.
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• Let λ ∈ R. We look at ( 2 1
0 2 ) (

a
b ) =

(
2a+b
2b

)
= λ · ( ab ) ⇔ (2a+ b = λa ∧ 2b = λb) ⇔ (b =

0 ∧ (λ = 2 ∨ a = 0)) ∨ (λ = 2 ∧ b = 0) ⇔ b = 0 ∧ (λ = 2 ∨ a = 0).

Thus, the only solutions of M ( ab ) = λ · ( ab ) with a vector ( ab ) 6= ( 00 ) are of the form

M ( a0 ) = 2 · ( a0 ) with a ∈ R.

• ConsiderM =
(

0 1
−1 0

)
∈ Mat2×2(R). We look at

(
0 1
−1 0

)
( ab ) =

(
b
−a
)
. This vector is equal

to λ · ( ab ) if and only if b = λ · a and a = −λ · b. This gives a = −λ2 · a. Thus there is no

λ ∈ R with this property if ( ab ) 6= ( 00 ).

We will study these phenomena in general. Let K be a commutative (as always) field and V a K-

vector space. We recall that a K-linear application ϕ : V → V is also called endomorphism and that

we denote EndK(V ) := HomK(V, V ).

Definition 3.2. Let V be a K-vector space and ϕ ∈ EndK(V ).

• λ ∈ K is called eigenvalue of ϕ if there exists 0 6= v ∈ V such that ϕ(v) = λv (or equivalently:

ker(ϕ− λ · idV ) 6= 0).

• We set Eϕ(λ) := ker(ϕ − λ · idV ). Being the kernel of a K-linear application, Eϕ(λ) is a

K-subspace of V . If λ is an eigenvalue of ϕ, we call Eϕ(λ) the eigenspace for λ.

• Any 0 6= v ∈ Eϕ(λ) is called eigenvector for the eigenvalue λ.

• We denote Spec(ϕ) = {λ ∈ K | λ is an eigenvalue of ϕ}.

• Let M ∈ Matn×n(K). We know that the application

ϕM : Kn → Kn,

( a1
...
an

)
7→M

( a1
...
an

)

is K-linear, thus ϕM ∈ EndK(Kn). In this case, we often speak of eigenvalue/eigenvector

of M (instead of ϕM ). We write EM (λ) := EϕM
(λ).

Proposition 3.3. The eigenspaces Eϕ(λ) and EM (λ) are vector subspaces.

Proof. This clear since the eigenspaces are defined as kernels of a matrix/linear endomorphism, and

we know that kernels are vector subspaces.

We reconsider the previous example.

Example 3.4.

(a) Let M = ( 3 0
0 2 ) ∈ Mat2×2(R).

• Spec(M) = {2, 3};

• EM (2) = 〈( 01 )〉;
• EM (3) = 〈( 10 )〉.
• The matrix M is diagonal and the canonical basis ( 10 ) , (

0
1 ) consists in eigenvectors of M .
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(b) Let M = ( 3 1
0 2 ) ∈ Mat2×2(R).

• Spec(M) = {2, 3};

• EM (2) = 〈
(

1
−1

)
〉;

• EM (3) = 〈( 10 )〉.
• The matrixM is not diagonal, butK2 has basis ( 10 ) ,

(
1
−1

)
whose elements are eigenvectors

of M .

• Let us define the matrix whose columns are the above base vectors C :=
(
1 1
0 −1

)
. This

matrix is invertible (since the columns form a basis) and we have

C−1MC = ( 3 0
0 2 ) ,

a diagonal matrix with eigenvalues on the diagonal! Note that we do not need to compute

with matrices, the product of matrices is just a reformulation of the statements seen before.

(c) Let M =
(

5 1
−4 10

)
∈ Mat2×2(R).

• Spec(M) = {6, 9};

• EM (6) = 〈( 11 )〉;
• EM (9) = 〈( 14 )〉;
• The eigenvectors ( 11 ) , (

1
4 ) form a basis of K2 and thus the matrix C := ( 1 1

1 4 ) whose

columns are these base vectors is invertible and

C−1MC = ( 6 0
0 9 ) ,

again a diagonal matrix with the eigenvalues on the diagonal!

(d) Let M = ( 2 1
0 2 ) ∈ Mat2×2(R).

• Spec(M) = {2};

• EM (2) = 〈( 10 )〉;
• K2 has no basis consisting of eigenvectors of M , thus we cannot adapt the procedure of the

previous examples in this case.

(e) Let M =
(

0 1
−1 0

)
∈ Mat2×2(R).

• Spec(M) = ∅;

• The matrix M has no eigenvalues in R.

Example 3.5. Let K = R and V = C∞(R) be the R-vector space of smooth functions f : R → R.

Let D : V → V be the derivation f 7→ Df = df
dx = f ′. It is an R-linear application, whence

D ∈ EndR(V ).

Let us consider fr(x) = exp(rx) with r ∈ R. From Analysis, we know that D(fr) = r · exp(rx) =
r · fr. Thus (x 7→ exp(rx)) ∈ V is an eigenvector for the eigenvalue r.

We thus find Spec(D) = R.
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In some examples we have met matrices M such that there is an invertible matrix C with the property

that C−1MC is a diagonal matrix. But we have also seen examples where we could not find such a

matrix C.

Definition 3.6. (a) A matrixM is said to be diagonalizable if there exists an invertible matrix C such

that C−1MC is diagonal.

(b) Let V be a K-vector space and ϕ ∈ EndK(V ). We say that ϕ is diagonalizable if V admits a

K-basis consisting of eigenvectors of ϕ.

This definition precisely expresses the idea of diagonalization mentioned before, as the following

lemma tells us. Its proof indicates how to find the matrix C (which is not unique, in general).

Lemma 3.7. Let V be a K-vector space and let ϕ ∈ EndK(V ) and Spec(ϕ) = {λ1, . . . , λr}. The

following statements are equivalent:

(i) ϕ is diagonalizable.

(ii) There is a basis S of V such that

MS,S(ϕ) =




λ1 0 0 0 0 0 0 0 0 0

0
. . . 0 0 0 0 0 0 0 0 0

0 0 λ1 0 0 0 0 0 0 0 0
0 0 0 λ2 0 0 0 0 0 0 0

0 0 0 0
. . . 0 0 0 0 0 0

0 0 0 0 0 λ2 0 0 0 0 0

0 0 0 0 0 0
. . . 0 0 0 0

0 0 0 0 0 0 0
. . . 0 0 0

0 0 0 0 0 0 0 0 λr 0 0

0 0 0 0 0 0 0 0 0
. . . 0

0 0 0 0 0 0 0 0 0 0 λr




.

Proof. “(i) ⇒ (ii)”: By definition, there exists a K-basis of V consisting of eigenvectors. We sort

them according to the eigenvalues:

S = {v1,1, . . . , v1,e1 , v2,1, . . . , v2,e2 , . . . , . . . , . . . , vr,1, . . . , vr,er}

where for all 1 ≤ i ≤ r the vectors vi,1, . . . , vi,ei are eigenvectors for the eigenvalue λi. The form of

the matrix MS,S(ϕ) is clear.

“(ii) ⇒ (i)”: The basis S consists of eigenvectors, hence ϕ is diagonalizable by definition.

Proposition 3.8. Let M ∈ Matn×n(K) and ϕM be the K-linear application Kn → Kn given by( a1
...
an

)
7→M

( a1
...
an

)
. The following statements are equivalent.

(i) ϕM is diagonalizable.

(ii) There exists C ∈ Matn×n(K) invertible such that C−1MC is a diagonal matrix; thus M is

diagonalizable.
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Proof. “(i) ⇒ (ii)”: Let S be the K-basis of Kn which exists in view of diagonalizability of ϕM . It

suffices to take C to be the matrix whose columns are the elements of basis S.

“(ii) ⇒ (i)”: Let ei be the i-th standard vector. It is an eigenvector for the matrix C−1MC, say with

eigenvalue λi. The equality C−1MCei = λi ·ei givesMCei = λi ·Cei, i.e. Cei is an eigenvector for

the matrix M of same eigenvalue. But, Cei is nothing but the i-th column of C. Thus, the columns

of C form a basis of Kn consisting of eigenvectors.

The question that we are now interested in, is the following: how can we decide whether ϕ (or M ) is

diagonalizable and, if this is the case, how can we find the matrix C? In fact, it is useful to consider

two “sub-questions” individually:

• How can we compute Spec(ϕ)?

• For λ ∈ Spec(ϕ), how can we compute the eigenspace Eϕ(λ)?

We will answer the first question in the following section. For the moment, we consider the second

question. Let us start by EM (λ). This is EM (λ) = ker(M −λ · idn). This computation is done using

Gauss’ reduction.

Example 3.9. (a) For the matrix M =
(

5 1
−4 10

)
∈ Mat2×2(R) and the eigenvalue 9 we have to

compute the kernel of
(

5 1
−4 10

)
− 9 · ( 1 0

0 1 ) =
(−4 1
−4 1

)
. Recall that in order to compute the kernel

of a matrix, one is only allowed to do operations on the rows (and not on the columns since these

mix the variables). We thus have

ker(
(−4 1
−4 1

)
) = ker(

(−4 1
0 0

)
) = 〈( 14 )〉.

For the eigenvalue 6 we do a similar computation:

ker(
(

5 1
−4 10

)
− 6 · ( 1 0

0 1 )) = ker(
(−1 1
−4 4

)
) = ker(

(−1 1
0 0

)
) = 〈( 11 )〉.

(b) The matrix M =
(

2 1 1
3 2 3
−3 −1 −2

)
∈ Mat3×3(R) has eigenvalues −1, 1, 2.

For the eigenvalue 1, we compute the kernel

ker
( ( 2 1 1

3 2 3
−3 −1 −2

)
− 1 ·

(
1 0 0
0 1 0
0 0 1

) )
= ker

( ( 1 1 1
3 1 3
−3 −1 −3

) )

= ker
( ( 1 1 1

0 −2 0
0 0 0

) )
= ker

( ( 1 0 1
0 1 0
0 0 0

) )
= 〈
(

1
0
−1

)
〉

For the eigenvalue −1, we compute the kernel

ker
( ( 2 1 1

3 2 3
−3 −1 −2

)
+ 1 ·

(
1 0 0
0 1 0
0 0 1

) )
= ker

( ( 3 1 1
3 3 3
−3 −1 −1

) )

= ker
( ( 3 1 1

0 2 2
0 0 0

) )
= ker

( ( 1 0 0
0 1 1
0 0 0

) )
= 〈
(

0
1
−1

)
〉

For the eigenvalue 2, we compute the kernel

ker
( ( 2 1 1

3 2 3
−3 −1 −2

)
− 2 ·

(
1 0 0
0 1 0
0 0 1

) )
= ker

( ( 0 1 1
3 0 3
−3 −1 −4

) )
= ker

( ( 1 0 1
0 1 1
0 0 0

) )
= 〈

(
1
1
−1

)
〉

We write these vectors in the matrix C =
(

1 0 1
0 1 1
−1 −1 −1

)
in order to have

C−1 ·M · C =
(

1 0 0
0 −1 0
0 0 2

)
.
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This explains how to find the eigenspaces in examples. If one wishes to compute the eigenspace

Eϕ(λ) = ker(ϕ− λ · idV ) in a more abstract way, one has to choose a K-basis S of V and represent

ϕ by the matrix M = MS,S(ϕ). In the basis S, Eϕ(λ) is the kernel ker(M − λ · idn), and we have

already seen how to compute this one.

Let us finally give a more abstract, but useful reformulation of the diagonalizablility. We first need a

preliminary.

Lemma 3.10. Let V be a K-vector space and let ϕ ∈ EndK(V ) and λ1, . . . , λr ∈ K be two by two

distinct. Then,
∑r

i=1Eϕ(λi) =
⊕r

i=1Eϕ(λi).

Proof. We proceed by induction on r ≥ 1. The case r = 1 is trivial. We assume the result true

for r − 1 ≥ 1 and we show it for r. We have to show that for all 1 ≤ i ≤ r we have

0 = Eϕ(λi) ∩
r∑

j=1,j 6=i
Eϕ(λj) = Eϕ(λi) ∩

r⊕

j=1,j 6=i
Eϕ(λj),

where the second equality follows from the induction hypothesis (the sum has r − 1 factors). Let

v ∈ Eϕ(λi) ∩
⊕r

j=1,j 6=iEϕ(λj). Then, v =
∑r

j=1,j 6=i vj with vj ∈ Eϕ(λj). We have

ϕ(v) = λi · v =

r∑

j=1,j 6=i
λi · vj = ϕ(

r∑

j=1,j 6=i
vj) =

r∑

j=1,j 6=i
ϕ(vj) =

r∑

j=1,j 6=i
λj · vj ,

thus

0 =
r∑

j=1,j 6=i
(λj − λi) · vj .

Since the sum is direct and λj − λi 6= 0 for all i 6= j, we conclude that vj = 0 for all 1 ≤ j ≤ r,

j 6= i, so that v = 0.

Proposition 3.11. Let ϕ ∈ EndK(V ). The following statements are equivalent:

(i) ϕ is diagonalizable.

(ii) V =
⊕

λ∈Spec(ϕ)Eϕ(λ).

Proof. “(i) ⇒ (ii)”: We have the inclusion
∑

λ∈Spec(ϕ)Eϕ(λ) ⊆ V . By Lemma 3.10, the sum is

direct, therefore we have the inclusion
⊕

λ∈Spec(ϕ)Eϕ(λ) ⊆ V . Since ϕ is diagonalizable, there

exists aK-basis of V consisting of eigenvectors for ϕ. Thus, any element of this basis already belongs

to
⊕

λ∈Spec(ϕ)Eϕ(λ), whence the equality
⊕

λ∈Spec(ϕ)Eϕ(λ) = V .

“(ii) ⇒ (i)”: For all λ ∈ Spec(ϕ) let Sλ be a K-basis of the eigenspace Eϕ(λ). Thus S =⋃
λ∈Spec(ϕ) Sλ is a K-basis of V consisting of eigenvectors, showing that ϕ is diagonalizable.

4 Excursion: euclidean division and gcd of polynomials

Goals:

• Master the euclidean division and Euclide’s algorithm;
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• be able to compute the euclidean division, the gcd and a Bezout identity using Euclide’s al-

gorithm.

We assume that notions of polynomials are known from highschool or other lecture courses. We

denote by K[X] the set of all polynomials with coefficients in K, where X denotes the variable. A

polynomial can hence be written as finite sum
∑d

i=0 aiX
i with a0, . . . , ad ∈ K. We can of course

choose any other symbol for the variable, e.g. x, T , ✷; in this case, we write
∑d

i=0 aix
i,
∑d

i=0 aiT
i,∑d

i=0 ai✷
i, K[x], K[T ], K[✷], etc.

The degree of a polynomial f will be denoted deg(f) with the convention deg(0) = −∞. Recall that

for any f, g ∈ K[X] we have deg(fg) = deg(f)+deg(g) and deg(f + g) ≤ max{deg(f), deg(g)}.

Definition 4.1. A polynomial f =
∑d

i=0 aiX
i of degree d is called unitary if ad = 1.

A polynomial f ∈ K[X] of degree ≥ 1 is called irreducible if it cannot be written as product f = gh

with g, h ∈ K[X] of degree ≥ 1.

It is a fact that the only irreducible polynomials in C[X] are the polynomials of degree 1. (One

says that C is algebraically closed.) Any irreducible polynomial in R[X] is either of degree 1 (and

trivially, any polynomial of degree 1 is irreducible), or of degree 2 (there exist irreducible polynomials

of degree 2, such as X2 + 1, but also reducible polynomials, such as X2 − 1 = (X − 1)(X + 1);

more precisely, a polynomial of degree 2 is irreducible if and only if its discriminant is negative).

Definition 4.2. A polynomial f ∈ K[X] is called divisor of a polynomial g ∈ K[X] if there exists

q ∈ K[X] such that g = qf . We use the notation notation f | g.

If f divides g, we clearly have deg(f) ≤ deg(g).

For everything that will be done on polynomials in this lecture course, the euclidean division plays a

central role. We now prove its existence.

Theorem 4.3 (Euclidean division). Let g =
∑d

i=0 biX
i ∈ K[X] be a polynomial of degree d ≥ 0.

Then, for any polynomial f ∈ K[X] there exist unique polynomials q, r ∈ K[X] such that

f = qg + r and deg(r) < d.

We call r the rest of the division.

Proof. Let f(X) =
∑n

i=0 aiX
i ∈ K[X] of degree n.

Existence: We prove the existence by induction on n. If n < d, we set q = 0 and r = f and we are

done. Let us therefore assume n ≥ d and that the existence is already known for all polynomials of

degree strictly smaller than n. We set

f1(X) := f(X)− an · b−1
d Xn−dg(X).

This is a polynomial of degree at most n−1 since we annihilated the coefficient in front ofXn. Then,

by induction hypothesis, there are q1, r1 ∈ K[X] such that f1 = q1g + r1 and deg(r1) < d. Thus

f(X) = f1(X) + anb
−1
d g(X)Xn−d = q(X)g(X) + r1(X)

where q(X) := q1(X) + anb
−1
d Xn−d and we have shown the existence.
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Uniqueness: Assume that f = qg + r = q1g + r1 with q, q1, r, r1 ∈ K[X] and deg(r), deg(r1) < d.

Then g(q − q1) = r1 − r. If q = q1, then r = r1 and we are done. If q 6= q1, then deg(q − q1) ≥ 0

and we find deg(r1− r) = deg(g(q− q1)) ≥ deg(g) = d. This is a contradiction, thus q 6= q1 cannot

appear.

In the exercises, you will do euclidean divisions.

Corollary 4.4. Let f ∈ K[X] be a polynomial of degree deg(f) ≥ 1 and let a ∈ K. Then, the

following statements are equivalent:

(i) f(a) = 0

(ii) (X − a) | f

Proof. (i) ⇒ (ii): Assume that f(a) = 0 and compute the euclidean division of f(X) by X − a:

f(X) = q(X)(X − a) + r

for r ∈ K (a polynomial of degree < 1). Evaluating this equality in a, gives 0 = f(a) = q(a)(a −
a) + r = r, and thus the rest is zero.

(ii) ⇒ (i): Assume that X − a divides f(X). Then we have f(X) = q(X) · (X − a) for some

polynomial q ∈ K[X]. Evaluating this in a gives f(a) = q(a) · (a− a) = 0.

Proposition 4.5. Let f, g ∈ K[X] be two polynomials such that f 6= 0. Then there exists a unique

unitary polynomial d ∈ K[X], called greatest common divisor gcd(f, g), such that

• d | f and d | g (common divisor) and

• for all e ∈ K[X] we have ((e | f and e | g) ⇒ e | d) (greatest in the sense that any other

common divisor divides d).

Moreover, there exist polynomials a, b ∈ K[X] such that we have a Bezout relation

d = af + bg.

Proof. We show that Euclide’s algorithm gives the result.

• Preparation: We set {
f0 = f, f1 = g if deg(f) ≥ deg(g),

f0 = g, f1 = f otherwise.

We also set B0 = ( 1 0
0 1 ).

• If f1 = 0, we stop and set d := f0.

If f1 6= 0, we do the euclidean division

f0 = f1q1 + f2 where q1, f2 ∈ K[X] such that(f2 = 0 or deg(f2) < deg(f1)).

We set A1 :=
(−q1 1

1 0

)
, B1 := A1B0.

We have
(
f2
f1

)
= A1

(
f1
f0

)
= B1

(
f1
f0

)
.
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• If f2 = 0, we stop and we set d := f1.

If f2 6= 0, we do the euclidean division

f1 = f2q2 + f3 where q2, f3 ∈ A such that (f3 = 0 or deg(f3) < deg(f2)).

We set A2 :=
(−q2 1

1 0

)
, B2 := A2B1.

We have
(
f3
f2

)
= A2

(
f2
f1

)
= B2

(
f1
f0

)
.

• If f3 = 0, we stop and set d := f2.

If f3 6= 0, we do the euclidean division

f2 = f3q3 + f4 where q3, f4 ∈ A such that (f4 = 0 or deg(f4) < deg(f3)).

We set A3 :=
(−q3 1

1 0

)
, B3 := A3B2.

We have
(
f4
f3

)
= A3

(
f3
f2

)
= B3

(
f1
f0

)
.

• · · ·

• If fn = 0, we stop and set d := fn−1.

If fn 6= 0, we do the euclidean division

fn−1 = fnqn + fn+1 where qn, fn+1 ∈ A such that (fn+1 = 0 or deg(fn+1) < deg(fn)).

We set An :=
(−qn 1

1 0

)
, Bn := AnBn−1.

We have
(
fn+1

fn

)
= An

(
fn
fn−1

)
= Bn

(
f1
f0

)
.

• · · ·

It is clear that the above algorithm (it is Euclide’s algorithm!) stops since

deg(fn) < deg(fn−1) < · · · < deg(f2) < deg(f1)

are natural numbers and −∞.

Let us assume that the algorithm stops with fn = 0. Then, d = fn−1. By construction we have:
(

fn
fn−1

)
=
(
0
d

)
= Bn−1

(
f1
f0

)
= ( α β

r s )
(
f1
f0

)
=
(
αf1+βf0
rf1+sf0

)
,

showing

d = rf1 + sf0. (4.1)

Note that the determinant of Ai is −1 for all i, hence det(Bn−1) = (−1)n−1. Thus the matrix

C := (−1)n−1
(
s −β
−r α

)
is the inverse of Bn−1. Therefore

(
f1
f0

)
= CBn−1

(
f1
f0

)
= C

(
0
d

)
=
(

d(−1)nβ

d(−1)n−1α

)
,

showing d | f1 and d | f0. This shows that d is a common divisor of f0 and f1. If e is any common

divisor of f0 and f1, then by Equation (4.1) e divisdes d. Finally, one divides d, r, s by the leading

coefficient of d to make d unitary.

If we have d1, d2 unitary gcds, then d1 divides d2 and d2 divides d1. As both are unitary, it follows

that d1 = d2, proving the uniqueness.
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In the exercises, you will train to compute the gcd of two polynomials. We do not require to use

matrices in order to find Bezout’s relation; it will simply suffice to “ go up” through the equalities in

order to get it.

5 Characteristic polynmial

Goals:

• Master the definition of characteristic polynomial;

• know its meaning for the computation of eigenvalues;

• be able to compute characteristic polynomials;

• know examples and be able to prove simple properties.

In Section 3 we have seen how to compute the eigenspace for a given eigenvalue. Here we will answer

the question: How to find the eigenvalues?

Let us start with the main idea. Let λ ∈ K and M a square matrix. Recall

EM (λ) = ker(λ · id−M).

We have the following equivalences:

(i) λ is an eigenvalue for M .

(ii) EM (λ) 6= 0.

(iii) The matrix λ · id−M is not invertible.

(iv) det(λ · id−M) = 0.

The main idea is to consider λ as a variable X . Then the determinant of X · id − M becomes a

polynomial in K[X]. It is the characteristic polynomial. By the above equivalences, its roots are

precisely the eigenvalues of M .

Definition 5.1. • Let M ∈ Matn×n(K) be a matrix. The characteristic polynomial of M is

defined by

charpolyM (X) := det
(
X · idn −M

)
∈ K[X].

• Let V be a K-vector space of finite dimension and ϕ ∈ EndK(V ) and S a K-basis of V . The

characteristic polynomial of ϕ is defined by

charpolyϕ(X) := charpolyMS,S(ϕ)(X).

Remark 5.2. Information for ‘experts’: Note that the definition of characteristic polynomials uses

the determinants in the ring K[X]. That is the reason why we presented the determinants in a more

general way in the recall. Alternatively, one can also work in the field of rational functions over K,

i.e. the field whose elements are fractions of polynomials with coefficients in K.
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Lemma 5.3. Let M ∈ Matn×n(K).

(a) charpolyM (X) is a unitary polynomial of degree n.

(b) charpolyM (X) is conjugation invariant, i.e., for all N ∈ GLn(K) we have the equality

charpolyM (X) = charpolyN−1MN (X).

Proof. (a) This is proved by induction on n. The case n = 1 is clear because the matrix is (X−m1,1),

hence its determinant is X −m1,1.

For the induction step, recall the notation M ′
i,j for the matrix obtained by M when deleting the i-th

row and the j-th column. Assume the result is proved for n− 1. By Laplace expansion, we have

charpolyM (X) = (X −m1,1) charpolyM ′

1,1
(X)−

n∑

i=2

(−1)imi,1 · det
(
X · id−M

)′
i,1
.

By hypothesis induction, charpolyM1,1
(X) is a unitary polynomial of degree n − 1, hence (X −

m1,1) charpolyM1,1
(X) is unitary of degree n. In the matrix

(
X · id−M

)′
i,1

with i 6= 1, the variable

X only appears n− 2 times. Thus in the characteristic polynomial, it can only appear to the n− 2-th

power at most. Consequently, charpolyM (X) is unitary.

(b) We use the multiplicativity of the determinant for the ring K[X] (Proposition 2.15).

charpolyN−1MN (X) = det(X · idn −N−1MN) = det(N−1(X · idn −M)N)

= det(N)−1 det(X · idn −M) det(N) = det(X · idn −M) = charpolyM (X).

Corollary 5.4. Let V be a K-vector space of finite dimension n.

(a) charpolyϕ(X) is a unitary polynomial of degree n.

(b) charpolyϕ(X) is independent from the choice of the basis of V which appears in its definition.

Proof. (a) Lemma 5.3 (a).

(b) Let S and T be two basis of V . The statement follows from Lemma 5.3 (b) and the equality

MT,T (ϕ) = C−1
S,T ◦MS,S(ϕ) ◦ CS,T .

We reconsider the examples of Section 3.

Example 5.5. (a) Let M =

(
3 0

0 2

)
∈ Mat2×2(R). We find

charpolyM (X) = (X − 3)(X − 2).

(It is important to know the factorization in irreducible polynomials of the characteristic polyno-

mial. Thus it is useless to write it as X2 − 5X + 6.)

(b) Let M =

(
3 1

0 2

)
∈ Mat2×2(R). We find once again

charpolyM (X) = (X − 3)(X − 2).
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(c) Let M =

(
5 1

−4 10

)
∈ Mat2×2(R). We find

charpolyM (X) = (X − 5)(X − 10) + 4 = (X − 6)(X − 9).

Note that in order to simplify the computation, Lemma 5.3 (b) allows us to use the conjugate

matrix

(
1 1

1 4

)−1(
5 1

−4 10

)(
1 1

1 4

)
=

(
6 0

0 9

)
for the computation of the characteristic

polynomial, thus one can immediately write the factorization in linear factors (in general, this

will not be possible).

(d) Let M =

(
2 1

0 2

)
∈ Mat2×2(R). We find

charpolyM (X) = (X − 2)2,

a polynomial with a double root.

(e) Let M =

(
0 1

−1 0

)
∈ Mat2×2(R). We find

charpolyM (X) = X2 + 1,

a polynomial that does not factor in linear factors in R[X].

(f) LetM =
(

2 1 1
3 2 3
−3 −1 −2

)
∈ Mat3×3(R). For the characteristic polynomial, we compute the determ-

inant
∣∣∣∣
X−2 −1 −1
−3 X−2 −3
3 1 X+2

∣∣∣∣ = (X − 2) ·
∣∣X−2 −3

1 X+2

∣∣+ 3 ·
∣∣−1 −1

1 X+2

∣∣+ 3 ·
∣∣ −1 −1
X−2 −3

∣∣

= (X − 2)
(
(X − 2)(X + 2) + 3

)
+ 3 ·

(
− (X + 2) + 1

)
+ 3 ·

(
3 + (X − 2)

)

= (X − 2)(X2 − 1) = (X − 2)(X − 1)(X + 1)

Proposition 5.6. (a) For M ∈ Matn×n(K) we have

Spec(M) = {a ∈ K | charpolyM (a) = 0} = {a ∈ K | (X − a) | charpolyM (X)}.

(b) For ϕ ∈ EndK(V ) with a K-vector space V of finite dimension, we have

Spec(ϕ) = {a ∈ K | charpolyϕ(a) = 0} = {a ∈ K | (X − a) | charpolyϕ(X)}.

Proof. It suffices to prove (a). The first equality follows from (with a ∈ K):

a ∈ Spec(M) ⇔ ker(a · idn −M) 6= 0 ⇔ det(a · idn −M)︸ ︷︷ ︸
=charpolyM (a)

= 0 ⇔ charpolyM (a) = 0.

The second equality is just the fact that a ∈ K is a root of a polynomial f if and only if (X − a)|f
(Corollary 4.4).
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We have thus identified the eigenvalues with the roots of the characteristic polynomial. This answers

our question in the beginning: In order to compute the eigenvalues of a matrix, compute its char-

acteristic polynomial and find its roots.

But the characteristic polynomial has another important property that was discovered by Cayley and

Hamilton. We first need to introduce some terminology.

Definition 5.7. (a) Let M ∈ Matn×n(K) be a matrix. If f(X) =
∑d

i=0 aiX
i ∈ K[X] is a polyno-

mial, then we set f(M) :=
∑d

i=0 aiM
i ∈ Matn×n(K). Note: M0 = idn.

(b) Let ϕ ∈ EndK(V ) be an endomorphism of a K-vector space V . If f(X) =
∑d

i=0 aiX
i ∈ K[X]

is a polynomial, then we set f(ϕ) :=
∑d

i=0 aiϕ
i, which is still an endomorphism in EndK(V ).

Be careful: ϕi = ϕ ◦ ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
i times

et ϕ0 = idV .

Definition-Lemma 5.8 (For mathematicians only). (a) The application “evaluation”

evM : K[X] → Matn×n(K), f(X) 7→ f(M)

is a ring homomorphism (even a homomorphism of K-algebras).

(b) The application “evaluation”

evϕ : K[X] → EndK(V ), f(X) 7→ f(ϕ)

is a ring homomorphism (even a homomorphism of K-algebras).

Proof. Easy computations.

Theorem 5.9 (Cayley-Hamilton). Let M ∈ Matn×n(K). Then,

charpolyM (M) = 0n ∈ Matn×n(K).

Proof. The trick is to use adjoint matrices. In Matn×n(K[X]) we have

(X · idn −M)# · (X · idn −M) = det(X · idn −M) · idn def
= charpolyM (X) · idn. (5.2)

The idea of the proof is very simple: if one replaces X by M in (5.2), one obtains 0, since on the left

hand side we have the factor (M ·idn−M) =M−M = 0. The problem is that in Matn×n(K[X]),X

appears in the coefficients of the matrices, and we are certainly not allowed to replace a coefficient of a

matrix by a matrix. What we do is to write a matrix whose coefficients are polynomials as polynomial

whose coefficients are matrices:



∑d
k=0 a1,1,kX

k · · · ∑d
k=0 a1,n,kX

k

...
. . .

...∑d
k=0 an,1,kX

k · · · ∑d
k=0 an,n,kX

k


 =

d∑

k=0



a1,1,k · · · a1,n,k

...
. . .

...

an,1,k · · · an,n,k


 ·Xk · idn.

Having this done, one would have to show that the evaluation of this polynomial with matrix-coeffi-

cients in a matrix gives rise to a ring homomorphism. Unfortunately, the matrix ring is not commutat-

ive, hence the developed theory does not apply. The proof that we give avoids this problem by doing

a comparison of the coefficients instead of an evaluation, but is based on the same idea.
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The definition of adjoint matrix shows that the largest power of X that can appear in a coefficient of

the matrix (X · idn−M)# is n−1. As indicated above, we can hence write this matrix as polynomial

of degree n− 1 with coefficients in Matn×n(K):

(X · idn −M)# =
n−1∑

i=0

BiX
i with Bi ∈ Matn×n(K).

We write charpolyM (X) =
∑n

i=0 aiX
i (où an = 1) and consider Equation (5.2) in Matn×n(K):

charpolyM (X) · idn =
n∑

i=0

ai · idn ·Xi =
( n−1∑

i=0

BiX
i
)
(X · idn −M)

=
n−1∑

i=0

(BiX
i+1 −BiMXi) = −B0M +

n−1∑

i=1

(Bi−1 −BiM)Xi +Bn−1X
n.

We compare the coefficients (still matrices!) to obtain

a0 · idn = −B0M, ai · idn = Bi−1 −BiM for 1 ≤ i ≤ n− 1 and Bn−1 = idn.

This comparision of coefficients allows us to continue with our calculations in Matn×n(K) in order

to obtain charpolyM (M) = 0n as follows:

charpolyM (M) · idn =
n∑

i=0

ai ·M i = −B0M +
n−1∑

i=1

(Bi−1 −BiM)M i +Bn−1M
n

= −B0M +B0M −B1M
2 +B1M

2 −B2M
3 +B2M

3 − · · · −Bn−1M
n +Bn−1M

n = 0n.

The theorem of Cayley-Hamilton is still true if one replaces the matrix M by an endomorphism ϕ ∈
EndK(V ).

Theorem 5.10 (Cayley-Hamilton for endomorphisms). Let V be aK-vector space of finite dimension

and ϕ ∈ EndK(ϕ). Then, charpolyϕ(ϕ) = 0 ∈ EndK(V ).

Proof. By definition we have, charpolyϕ(X) = charpolyMS,S(ϕ)(X) and by Theorem 5.9

0 = charpolyMS,S(ϕ)(MS,S(ϕ)) =MS,S(charpolyMS,S(ϕ)(ϕ)) =MS,S(charpolyϕ(ϕ)),

thus charpolyϕ(ϕ) = 0. This computation is based on MS,S(ϕ
i) =

(
MS,S(ϕ)

)i
(see exercises)

6 Minimal polynomial

Goals:

• Master the definition of minimal polynomial;

• know its meaning for the computation of eigenvalues;
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• know how to compute minimal polynomials;

• know examples and be able to prove simple properties.

Beside the characteristic polynomial, we will also introduce the minimal polynomial.

Definition-Lemma 6.1. Let M ∈ Matn×n(K) be a matrix.

(a) There exists a unique unitary polynomial mipoM (X) ∈ K[X] of minimal degree with the prop-

erty mipoM (M) = 0n. This polynomial is called the minimal polynomial of M .

(b) Any polynomial f ∈ K[X] with the property f(M) = 0n is a multiple of mipoM (X).

(c) For any invertible matrix N ∈ Matn×n(K), we have mipoN−1MN (X) = mipoM (X).

(d) Let ϕ ∈ EndK(V ) for a K-vector space V of finite dimension with K-basis S. We set

mipoϕ(X) := mipoMS,S(ϕ)(X)

and call it minimal polynomial of ϕ. This polynomial is independent from the choice of the

basis S.

Proof. (a,b) By Theorem of Cayley-Hamilton 5.9 there exists a polynomial 0 6= f ∈ K[X] that

annihilates M . Let us now consider the set of such polynomials

E = {f ∈ K[X] | f 6= 0 and f(M) = 0}.

We choose unitary g ∈ E of minimal degree among the elements of E.

We will use the euclidean division to show the uniqueness and (b). Let f ∈ E. We thus have

q, r ∈ K[X] such that r = 0 or deg(r) < deg(g) and

f = qg + r,

which implies

0 = f(M) = q(M)g(M) + r(M) = q(M) · 0 + r(M) = r(M).

Consequently, let r = 0, let r ∈ E. This last possibility is excluded as the degree of r is strictly

smaller that the degree of g which is minimal. The fact that r = 0 means f = qg, thus any other

polynomial of E is a multiple of g. This also implies the uniqueness: if f has the same degree than g

and is also unitary, then f = g.

(c) It suffices to note (N−1MN)i = N−1M iN , hence for all f ∈ K[X]

f(N−1MN) = N−1f(M)N = 0n ⇔ f(M) = 0n.

(d) The independence of the basis choice is a consequence of (c) and the equality MT,T (ϕ) = C−1
S,T ◦

MS,S(ϕ) ◦ CS,T for any other basis T .

Proposition 6.2. Let V be aK-vector space of finite dimension and ϕ ∈ EndK(V ). Then, Spec(ϕ) =

{a ∈ K | (X − a) | mipoϕ(X)} = {a ∈ K | mipoϕ(a) = 0}.
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Clearly, the same statement holds for matrices M ∈ Matn×n(K). Compare this proposition to Pro-

position 5.6.

Proof. The second equality is clear (same argument as in the proof of Proposition 5.6). To see the

first equality, first assume that (X − a) ∤ mipoϕ(X). From this we deduce that the gcd of (X − a)

and mipoϕ(X) is 1, which allows us (by Euclide/Bézout algorithm) to find b, c ∈ K[X] such that

1 = b(X)(X − a) + c(X)mipoϕ(X). Let now v ∈ V t.q. ϕ(v) = av. We have

v = idV v = b(ϕ)(ϕ(v)− av) + c(ϕ)mipoϕ(ϕ)v = 0 + 0 = 0,

hence a 6∈ Spec(ϕ).

Assume now that (X − a) | mipoϕ(X) which allows us to write mipoϕ(X) = (X − a)g(X) for

some g ∈ K[X]. Since the degree of g is strictly smaller than the degree of mipoϕ(X), there has to

be a v ∈ V such that w := g(ϕ)v 6= 0 (otherwise, the minimal polynomial mipoϕ(X) would be a

divisor of g(X) which is impossible). We thus have

(ϕ− a)w = mipoϕ(ϕ)v = 0,

hence a ∈ Spec(ϕ).

It is useful to observe that Propositions 5.6 and 6.2 state that charpolyϕ(X) and mipoϕ(X) have the

same factors of degree 1. Moreover, the characteristic polynomial charpolyϕ(X) is always a multiple

of the minimal polynomial mipoϕ(X), by the theorem of Cayley-Hamilton, as we will now see.

Corollary 6.3. Let M ∈ Matn×n(K). Then, the minimal polynomial mipoM (X) is a divisor of the

characteristic polynomial charpolyM (X). We also have the same statement for ϕ ∈ EndK(V ).

Proof. By the Theorem of Cayley-Hamilton 5.9 charpolyM (M) = 0n, so we have that mipoM (X)

divides charpolyM (X) by Lemma 6.1.

Example 6.4. Here are key examples to understand the difference between minimal and characteristic

polynomial:

• The following three matrices have the same characteristic polynomial, (X − 1)2:

M1 := ( 1 0
0 1 ) , M2 := ( 1 1

0 1 ) , M3 := ( 1 691
0 1 ) .

The minimal polynomial of M1 is X − 1. Since M2 − 1 · id2 = ( 0 1
0 0 ) 6= 02 and M3 − 1 · id2 =

( 0 691
0 0 ) 6= 02, the minimal polynomial is (X−1)2 in both cases. Note that we used the fact that

the only non-constant normalized divisors of (X − 1)2 are X − 1 and (X − 1)2, therefore the

minimal polynomial has to be one of them.

• The same arguments give the minimal polynomials of the following matrices (but, note that

there is one more possibility ):

M4 :=
(

1 0 0
0 1 0
0 0 1

)
,M5 :=

(
1 1 0
0 1 0
0 0 1

)
,M6 :=

(
1 1 0
0 1 1
0 0 1

)
.
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Example 6.5. Let us treat a more complicated example. Let

M =

( 4 3 −3 7
7 0 −3 7
6 −1 −2 6
−1 −4 4 −4

)
.

There are (at least) two ways to proceed:

(I) Compute the characteristic polynomial and deduce the minimal polynomial .

A computation shows:

charpolyM (X) = X4 + 2X3 − 11X2 − 12X + 36 = (X + 3)2 · (X − 2)2.

We know that the linear factors in the minimal polynomial are the same as in the characteristic

one. We thus know that

mipoM (X) = (X + 3)a · (X − 2)b

for 1 ≤ a, b ≤ 2.

We compute the minima polynomial trying out the possibilities.

• We start with the possibility of the lowest degree:

M−3 :=M + 3 · id =

( 7 3 −3 7
7 3 −3 7
6 −1 1 6
−1 −4 4 −1

)
, M2 :=M − 2 · id =

( 2 3 −3 7
7 −2 −3 7
6 −1 −4 6
−1 −4 4 −6

)

and we compute

M−3 ·M2 =

( 10 −10 10 10
10 −10 10 10
5 −5 5 5
−5 5 −5 −5

)
6= 0.

Thus (X − 3)(X + 2) is not the minimal polynomial.

• We increase the powers, one by one

We compute

M2
−3 ·M2 =

( 50 −50 50 50
50 −50 50 50
25 −25 25 25
−25 25 −25 −25

)
6= 0.

Thus the minimal polynomial is not (X − 3)2(X + 2).

We continue and compute

M−3 ·M2
2 =

(
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
.

We thus finished and found that

mipoM (X) = (X + 3) · (X − 2)2 = X3 −X2 − 8X + 12.

(II) If one does not know the characteristic polynomial and if one does not want to compute it,

one can proceed differently. This will lead us to the standard answer: In order to compute the

minimal polynomial, we have to solve systems of linear equations.

We proceed by induction on the (potentiel) degree d of the minimal polynomial.

d = 1 If the degree is 1, the matrix would be scalar. This is obviously not the case.
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d = 2 We compute

M2 =

( 12 −13 13 3
3 −4 13 3
−1 −4 13 −1
−4 9 −9 5

)
.

Now, we have to consider the system of linear equations:

0 = a2M
2 + a1M + a0 =

a2 ·
( 12 −13 13 3

3 −4 13 3
−1 −4 13 −1
−4 9 −9 5

)
+ a1 ·

( 4 3 −3 7
7 0 −3 7
6 −1 −2 6
−1 −4 4 −4

)
+ a0 ·

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
.

These are 16 linear equations. In practice, one can write the coefficients in a big matrix.

The first row contains the coefficients (1, 1) of the three matrices, the second row contains

the coefficients (1, 2), etc., until row 16 which contains the coefficients (4, 4):




12 4 1
−13 3 0
13 −3 0
3 7 0
3 7 0
−4 0 1
13 −3 0
3 7 0
−1 6 0
−4 −1 0
13 −2 1
−1 6 0
−4 −1 0
9 −4 0
−9 4 0
5 −4 1




.

We find that this system does not have a non-zero solution since the rank of the matrix is 3.

d = 3 We compute

M3 =

( 32 11 −11 59
59 −16 −11 59
47 −12 −15 47
−12 −23 23 −39

)
.

Now, we have to consider the system of linear equations:

0 = a3M
3 + a2M

2 + a1M + a0 =

a3 ·
( 32 11 −11 59

59 −16 −11 59
47 −12 −15 47
−12 −23 23 −39

)
+a2 ·

( 12 −13 13 3
3 −4 13 3
−1 −4 13 −1
−4 9 −9 5

)
+a1 ·

( 4 3 −3 7
7 0 −3 7
6 −1 −2 6
−1 −4 4 −4

)
+a0 ·

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
.

These are 16 equations. We write the matrix with the coefficients (note that it suffices

to add the first column). We also provide a generator of the kernel (obtained by Gauß’

algorithm (in general)):




32 12 4 1
11 −13 3 0
−11 13 −3 0
59 3 7 0
59 3 7 0
−16 −4 0 1
−11 13 −3 0
59 3 7 0
47 −1 6 0
−12 −4 −1 0
−15 13 −2 1
47 −1 6 0
−12 −4 −1 0
−23 9 −4 0
23 −9 4 0
−39 5 −4 1




·
(

1
−1
−8
12

)
=




0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0




.

We see that the result is the polynomial X3 −X2 − 8X + 12, the same as in (I).
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7 Diagonalization and spectral decompostion

Goals:

• Know and master the spectral decomposition;

• be able to decide whether a matrix/endomorphism is diagonalizable; if so, be able to compute

the diagonal form and a matrix of basis change;

• be able to compute the spectral decompostion of a matrix/endomorphism;

• know examples and be able to prove simple properties.

A diagonal form is certainly the simplest form that one can wish a matrix to have. But we already saw

that matrices do not have this form in general. The spectral decompostion and the Jordan form are

simple forms that one can always obtain. In the most advantageous cases, these forms are diagonal.

Let V be a K-vector space (of dimension n) and ϕ ∈ EndK(V ) be an endomorphism. We first do a

fundamental, but simple, observation concerning block matrices.

Lemma 7.1. (a) Let W ≤ V be a subspace such that ϕ(W ) ⊆ (W ). Let S1 be a basis of W that we

extend to a basis S of V . Then,

MS,S(ϕ) =

(
M1 ???

0 ???

)

with M1 =MS1,S1(ϕ|W ).

(b) Let V =W1⊕W2 be such that ϕ(Wi) ⊆Wi for i = 1, 2. Let Si be a K-basis of Wi for i = 1, 2;

hence, S = S1 ∪ S2 is a K-basis of V . Then,

MS,S(ϕ) =

(
M1 0

0 M2

)

with M1 =MS1,S1(ϕ|W1) and M2 =MS2,S2(ϕ|W2).

Proof. It suffices to apply the rules to write the matrix MS,S(ϕ).

We will continue by a lemma.

Lemma 7.2. Let ϕ ∈ EndK(V ).

(a) Let f ∈ K[X] and W := ker(f(ϕ)). Then, W is a subspace of V that is stable under ϕ, i.e. for

all w ∈ W we have ϕ(w) ∈ W . This allows us to restrict ϕ à W ; we will denote the restricted

map by ϕ|W :W →W .

(b) Let f, g ∈ K[X] be two coprime polynomials, i.e.: gcd(f(X), g(X)) = 1. Then,

ker(f(ϕ) · g(ϕ))︸ ︷︷ ︸
=:W

= ker(f(ϕ))︸ ︷︷ ︸
=:W1

⊕ ker(g(ϕ))︸ ︷︷ ︸
=:W2

.
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Before the proof, a brief word about the notation: f(ϕ) is a K-linear application V → V , then one

can apply it to a vector v ∈ V . Our notation for this is: f(ϕ)(v) or f(ϕ)v. Note the different roles

of the two pairs of parenthesis in the first expression. One could also write (f(ϕ))(v), but I find this

notation a bit cumbersome.

Proof. (a) The kernel of any K-linear application is a subspace. Write f(X) =
∑d

i=0 aiX
i. Let then

w ∈W , i.e. f(ϕ)w =
∑d

i=0 aiϕ
i(w) = 0. We compute

f(ϕ)(ϕ(w)) =
d∑

i=0

aiϕ
i(ϕ(w)) =

d∑

i=0

aiϕ
i+1(w) = ϕ

( d∑

i=0

aiϕ
i(w)

)
= ϕ(0) = 0.

(b) It is clear that W1 ⊆W and W2 ⊆W , whence W1 +W2 ⊆W . We have to prove that

• W1 ∩W2 = 0 (the zero K-vector space) and

• W1 +W2 =W .

Since K[X] is a euclidean ring, we can use Euclide’s algorithm (Bézout) to obtain two other polyno-

mials a, b ∈ K[X] such that 1 = a(X)f(X) + b(X)g(X). First consider w ∈W1 ∩W2. Then

w = idV (w) = a(ϕ)f(ϕ)w + b(ϕ)g(ϕ)w = 0 + 0 = 0,

which proves the first point. For the second, let w ∈W . The equation that we used reads

w = w2 + w1 with w2 := a(ϕ)f(ϕ)w and w1 := b(ϕ)g(ϕ)w.

But, we have

f(ϕ)(w1) = b(ϕ)f(ϕ)g(ϕ)w = b(ϕ)0 = 0 ⇒ w1 ∈W1

and

g(ϕ)(w2) = a(ϕ)f(ϕ)g(ϕ)w = a(ϕ)0 = 0 ⇒ w2 ∈W2,

which concludes the proof.

Theorem 7.3 (Spectral decomposition). Let ϕ ∈ EndK(V ) be an endomorphism with minimal poly-

nomial mipoϕ(X) = fe11 (X) · fe22 (X) · . . . · ferr (X) where the polynomials fi(X) are irreducible

(they are therefore prime elements in the principal ring K[X]) and coprime, i.e. gcd(fi, fj) = 1 for

all 1 ≤ i < j ≤ n (if one chooses the fi’s monic, then the condition is equivalent to saying that the

polynomials are all distinct). Set Wi := ker(feii (ϕ)). Then the following statements hold.

(a) V =
⊕r

i=1Wi.

(b) If one chooses a basis Si of the subspace Wi for 1 ≤ i ≤ r, then S = S1 ∪ S2 ∪ · · · ∪ Sr is a

basis of W for which we have:

MS,S(ϕ) =




M1 0 0 . . . 0

0 M2 0 . . . 0
...

. . .
. . .

...

0 . . . 0 Mr−1 0

0 . . . 0 0 Mr




with Mi :=MSi,Si
(ϕ|Wi

) for 1 ≤ i ≤ r.
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Proof. (a) follows from Lemma 7.2 (b) by induction.

(b) is clear: Write the matrix with these rules in order to obtain this form. Note that the blocks outside

the diagonal are zero since ϕ(Wi) ⊆Wi.

The most important case is when fi(X) = X − ai with ai 6= aj for i 6= j (which implies that the

fi are irreducible and distinct). The spectral decomposition is in fact only a (decisive!) step towards

Jordan reduction. In the next proposition we will also see its importance for diagonalization. For the

moment we illustrate the effect of the spectral decomposition by an example. Before this, it can be

useful to recall how one applies the results for linear applications ϕ to matrices.

Remark 7.4. Let M ∈ Matn×n(K). One can apply the spectral decompostion to M as follwos. For

the canonical basis B := (




1
0
0
...
0
0


 ,




0
1
0
...
0
0


 , . . . ,




0
0
0
...
0
1


) the matrix M describes a K-linear applica-

tion ϕ = ϕM and one has M =MB,B(ϕ).

The spectral decomposition gives us a basis S. Let C := MB,S(id) be the matrix of basis change

between S and the canonical basis. Then, we have

MS,S(ϕ) = C−1MC.

To be still concreter, let us recall how to write the matrix C. If S = (v1, . . . , vn) and the vecors vi are

given in coordinates for the standard basis, then the i-th column of C is just the vector vi.

Then, the spectral decomposition can be used to compute a similar matrix (by definition, two matrices

A,B are similar if one is the conjugate of the other: there exists an invertible matrix C such that

B = C−1AC) à M having the nice form of the theorem.

Example 7.5. (a) Let M :=



1 2 3

0 1 4

0 0 5


 with coefficients in R. The characteristic polynomial is

(X − 1)2(X − 5). It is clear that ker(M − 5 · id3) is of dimension 1; i.e. 5 is an eigenvalue of

multiplicity 1 (by definition: its eigenspace is of dimension 1). Without computation, it is clear

that dimker((M − id3)
2) = 3− 1 = 2.

Theorem 7.3 implies the existence of a matrix C such that

C−1 ·M · C =



1 x 0

0 1 0

0 0 5




for some x ∈ R that needs to be determined.

In fact, one easily sees that x 6= 0, since in this case, the minimal polynomial would be (X −
1)(X − 5) which is false (also see Proposition 7.7).

Let us compute such a matrix C. For this, we have to compute a basis of the kernel of the matrix

(M − id3)
2 =



0 2 3

0 0 4

0 0 4






0 2 3

0 0 4

0 0 4


 =



0 0 20

0 0 16

0 0 16


 .
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We can thus simply take



1

0

0


 ,



0

1

0


.

We also have to compute the kernel of the matrix

M − 5 · id3 =



−4 2 3

0 −4 4

0 0 0


 .

To compute this kernel, we add 1
2 times the second row to the first one and obtain



−4 0 5

0 −4 4

0 0 0


.

The kernel is thus generated by the vector



5

4

4


.

The desired matrix C is therefore



1 0 5

0 1 4

0 0 4


. To convince ourselves of the exactness of the

computation, we verify it

C−1MC =



1 0 −5/4

0 1 −1

0 0 1/4






1 2 3

0 1 4

0 0 5






1 0 5

0 1 4

0 0 4


 =



1 2 0

0 1 0

0 0 5


 .

The theorem on Jordan reduction will tell us (later) that we can choose another matrix C such

that the 2 appearing in the matrix is replaced by a 1.

(b) Let M :=




2 −1 3

−2 1 −4

1 1 0


 with coefficients in R. Firstly we compute its characteristic polyno-

mial:

charpolyM (X) = det(



X − 2 1 −3

2 X − 1 4

−1 −1 X


)

= (X−2)(X−1)X−4+6−3(X−1)+4(X−2)−2X = X3−3X2+X−3 = (X−3)(X2+1).

For this computation we used Sarrus’ rule. To obtain the factorization, we can try small integers

to find a zero (here 3). The other factor X2 + 1 comes from the division of X3 − 3X2 +X − 3

by (X − 3). Note that X2 + 1 is irreducible in R[X] (but not in C[X]).

Let us start with the computation of

EM (3) = ker(M − 3 · idn) = ker(



−1 −1 3

−2 −2 −4

1 1 −3


).
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Now one would have to do operations on the rows to obtain the echelon form of the matrix in order

to deduce the kernel. But we are lucky, we can just ‘see’ a vector in the kernel, namely




1

−1

0


.

This vector then generates EM (3) (the dimension cannot be 2 since in this case (X − 3)2 would

be a divisor of the characteristic polynomial).

Let us now compute

ker(M2 +M0) = ker(




10 0 10

−10 −0 −10

0 0 0


).

This kernel is clearly of dimension 2 generated by




1

0

−1


 ,



0

1

0


.

Thus we can write the desired matrix: C =




1 1 0

−1 0 1

0 −1 0


.

We verify our computation:

C−1MC =



1 0 1

0 0 −1

1 1 1







2 −1 3

−2 1 −4

1 1 0







1 1 0

−1 0 1

0 −1 0


 =



3 0 0

0 −1 −1

0 2 1


 .

Before giving another characterization of the diagonalizability we recall easy properties of diagonal

matrices in a lemma.

Lemma 7.6. Let D ∈ Matn×n(K) be a diagonal matrix with λ1, λ2, . . . , λn on the diagonal.

(a) Spec(D) = {λi | i = 1, . . . , n}.

Note that #Spec(D) < n if and only if there exist 1 ≤ i < j ≤ n such that λi = λj .

(b) mipoD(X) =
∏
λ∈Spec(D)(X − λ).

Proof. These statements are clear.

The form of the minimal polynomial in the lemma, allows us to give another characterization of the

diagonalizability:

Proposition 7.7. Let V be K-vector space of finite dimension and ϕ ∈ EndK(V ). The following

statements are equivalent:

(i) ϕ is diagonalizable.

(ii) mipoϕ(X) =
∏
a∈Spec(ϕ)(X − a).

The same statements are also true for matrices M ∈ Matn×n(K).
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Proof. We write Spec(ϕ) = {a1, . . . , ar}.

“(i) ⇒ (ii)”: We choose a basis S such that M :=MS,S(ϕ) is diagonal (see Proposition 3.11). A very

easy computation shows that
∏r
i=1(M − ai) = 0n. Then, mipoϕ(X) is a divisor of

∏r
i=1(X − ai).

But Proposition 6.2 shows that for all i one has (X − ai) | mipoϕ(X). Therefore, mipoϕ(X) =∏r
i=1(X − ai) (the two polynomials are unitary).

“(ii) ⇒ (i)”: We apply the spectral decomposition 7.3 and it suffices to note that the matrices Mi are

diagonal since Wi = Eϕ(ai) is the eigenspace for the eigenvalue ai.

Example 7.8. Consider the matrix M :=



1 0 2

0 1 3

0 0 4


 with coefficients in R. Its minimal polynomial

is (X − 1)(X − 4), thus, it is diagonalizable.

(To obtain the minimal polynomial it suffices to see that the eigenspace for the eigenvalue 1 is of

dimension 2.)

8 Jordan reduction

Goals:

• Know and master the Jordan reduction;

• be able to decide on different possibilities for the Jordan reduction knowing the minimal and

characteristic polynomial;

• be able to compute Jordan’s reduction of a matrix/endomorphism as well as of a basis change

if the characteristic polynomial factorizes into linear factors;

• know examples and be able to prove simple properties.

In Proposition 3.11 we have seen that diagonalizable matrices are similar to diagonal matrices. The

advantage of a diagonal matrix for computations is evident. Unfortunately, not all matrices are diag-

onalizable. Our goal is now to choose a basis S of V in such a way that MS,S(ϕ) has a “simple, nice

and elegant” form and is close to be diagonal.

We also saw that the spectral decomposition 7.3 gives us a diagonal form “in blocks”. Our goal for

Jordan’s reduction will be to make these blocks have the simplest possible form.

We present Jordan’s reduction (the Jordan normal form) from an algorithmic point of view. The

proofs can be shortened a bit if one works without coordinates, but in this case, the computation of

the reduction is not clear.

For the sequel, let V be a K-vector space of dimension n and ϕ ∈ EndK(V ) an endomorphism.

Definition 8.1. Let v ∈ V . We set

〈v〉ϕ := 〈ϕi(v) | i ∈ N〉,

the subspace of V generated by v, ϕ(v), ϕ2(v), . . . .

Remark 8.2. The following statements are clear and will be used without being mentioned explicitely.
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(a) 〈v〉ϕ is stable under ϕ, i.e., ϕ(〈v〉ϕ) ⊆ 〈v〉ϕ.

(b) If W ⊆ V is a vector subspace that is stable under ϕ and if v ∈W , then 〈v〉ϕ ⊆W .

Lemma 8.3. The minimal polynomial of the matrix in Matn×n(K)




a 1 0 0 . . . 0

0 a 1 0 . . . 0

0 0
. . .

. . .
. . .

...
...

...
. . .

. . . 1 0

0 0 . . . 0 a 1

0 0 . . . 0 0 a




is equal to (X − a)n.

Proof. Exercise.

This matrix appears very naturally, as we will now see.

Lemma 8.4. Let a ∈ K, e ∈ N>0 and v ∈ V such that

(ϕ− a · id)e(v) = 0 and (ϕ− a · id)e−1(v) 6= 0.

We set:

ve := v,

ve−1 := (ϕ− a · id)(v),
. . .

v2 := (ϕ− a · id)e−2(v),

v1 := (ϕ− a · id)e−1(v).

(a) We have:

ϕ(v1) = av1,

ϕ(v2) = v1 + av2,

ϕ(v3) = v2 + av3,

. . . ,

ϕ(ve) = ve−1 + ave.

(b) 〈v〉ϕ = 〈v1, . . . , ve〉, the subspace of V generated by v1, . . . , ve.

(c) The minimal polynomial of ϕ acting on 〈v〉ϕ is equal to (X − a)e.

(d) The vectors v1, . . . , ve are K-linearly independent and consequently form a basis S of 〈v〉ϕ.
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(e) MS,S(ϕ|〈v〉ϕ) =




a 1 0 0 . . . 0

0 a 1 0 . . . 0

0 0
. . .

. . .
. . .

...
...

...
. . .

. . . 1 0

0 0 . . . 0 a 1

0 0 . . . 0 0 a




.

Proof. (a) This is a very easy computation:

(ϕ− a · id)v1 = (ϕ− a · id)ev = 0 ⇒ϕ(v1) = av1.

(ϕ− a · id)v2 = v1 ⇒ϕ(v2) = v1 + av2.

. . .

(ϕ− a · id)ve = ve−1 ⇒ϕ(ve) = ve−1 + ave.

(b) The equations in (a) show that 〈v1, . . . , ve〉 is stable under ϕ. As v = ve ∈ 〈v〉ϕ, we obtain the

inclusion 〈v〉ϕ ⊆ 〈v1, . . . , ve〉. The inverse inclusion can be seen by definition:

ve−i = (ϕ− a · id)i(v) =
i∑

k=0

(
i
k

)
(−a)i−kϕk(v). (8.3)

(c) The polynomial (X − a)e annihilates v and thus 〈v〉ϕ. As (X − a)e−1 does not annihilate v, the

minimal polynomial of ϕ|〈v〉ϕ is (X − a)e.

(d) Assume that we have a non-trivial linear combination of the form

0 =

j∑

i=0

αive−i

for αj 6= 0 and 0 ≤ j ≤ e− 1. By Equation (8.3), we obtain

0 =

j∑

i=0

αi

i∑

k=0

(
i
k

)
(−a)i−kϕk(v) =

j−1∑

k=0

( j∑

i=k

αi
(
i
k

)
(−a)i−k

)
ϕk(v) + αjϕ

j(v).

We thus have a non-zero polynomial of degree j ≤ e − 1 that annihilates v and thus 〈v〉ϕ. This is a

contradiction with (c).

(e) Part (a) precisely gives the information to write the matrix.

We will now specify what we mean by “the Jordan form”.

Definition 8.5. A matrix M ∈ Matn×n(K) is said to have “the Jordan form” if M is diagonal in

blocks and each block has the form of Lemma 8.4(e).

More precisely, M has the Jordan form if

M =




M1 0 0 . . . 0

0 M2 0 . . . 0
...

. . .
. . .

...

0 . . . 0 Mr−1 0

0 . . . 0 0 Mr
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(diagonal matrix in blocks), where, for all 1 ≤ i ≤ r,

Mi =




ai 1 0 0 . . . 0

0 ai 1 0 . . . 0

0 0
. . .

. . .
. . .

...
...

...
. . .

. . . 1 0

0 0 . . . 0 ai 1

0 0 . . . 0 0 ai




.

(We do not ask that the ai’s are two-by-two distinct here. But we can bring together the blocks having

the same ai; this will be the case in Theorem 8.8.)

The procedure to find an invertible matrix C such that C−1MC has the Jordan form is called Jordan

reduction. We also call Jordan reduction the procedure (to present) to find a basis S such thatMS,S(ϕ)

has the Jordan form (for an endomorphism ϕ). It may also happen that we call the obtained matrix

Jordan reduction of M or of ϕ.

Example 8.6. We reconsider the matrices of Example 6.4.

• The matrices M1 := ( 1 0
0 1 ), M2 := ( 1 1

0 1 ) have the Jordan form, but not M3 := ( 1 691
0 1 ) (its

Jordan reduction is M2).

• The matrices

M4 :=



1 0 0

0 1 0

0 0 1


 ,M5 :=



1 1 0

0 1 0

0 0 1


 ,M6 :=



1 1 0

0 1 1

0 0 1




also have the Jordan form.

• The/one Jordan reduction of the matrix



1 2 0

0 1 0

0 0 5


 obtained in Example 7.5(a) by the spectral

decomposition is



1 1 0

0 1 0

0 0 5


 (explained later).

Be careful: with our definitions, there exist matrices that do not have a Jordan reduction (except if one

works over C, but not over R); we can weaken the requirements to have a Jordan reduction for any

matrix; we will not continue this in this lecture course for time reasons. In the exercises, you will see

some steps to the general case.

We now present the algorithm of Jordan’s reduction. For this we set:

• ϕa := ϕ− a · id,

• Vi = ker(ϕia)
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For the moment, we make the hypothesis

mipoϕ(X) = (X − a)e.

From this we obtain

V = Ve ⊃ Ve−1 ⊃ Ve−2 ⊃ · · · ⊃ V1 = Eϕ(a) ⊃ V0 = 0.

Before giving the general algorithm, we look at the special cases dim(V ) ≤ 4.

• dim(V ) = 1: In this case, we have e = 1. Let 0 6= v ∈ V be any non-zero vector S = {v}.

Then MS,S(ϕ) =
(
a
)

is the wished Jordan reduction.

• dim(V ) = 2: We distinguish two cases:

(I) e = 1. In this case, MS,S(ϕ) =

(
a 0

0 a

)
is scalar for any basis S of V because V is the

eigenspace of ϕ for the eigenvalue a.

(II) e = 2. In this case, we can choose any vector v ∈ V2 \ V1. If we take S = {ϕa(v), v},

then MS,S(ϕ) =

(
a 1

0 a

)
.

• dim(V ) = 3: We distinguish three cases:

(I) e = 1. In this case, MS,S(ϕ) =



a 0 0

0 a 0

0 0 a


 is scalar for any basis S of V because V is

equal to the eigenspace of ϕ for the eigenvalue a.

(II) e = 2. In this case, there must be two Jordan blocks. We choose any vector v ∈ V2 \ V1.

Then, we take any vector w ∈ V1 \ 〈ϕa(v)〉 = V \ 〈ϕa(v), v〉. Finally, we set S =

{ϕa(v), v, w} to obtain MS,S(ϕ) =



a 1 0

0 a 0

0 0 a


.

(III) e = 3. In this case, we can choose any vector v ∈ V3\V2. If we let S = {ϕ2
a(v), ϕa(v), v},

then MS,S(ϕ) =



a 1 0

0 a 1

0 0 a


.

• dim(V ) = 4: We distinguish four cases:

(I) e = 1. In this case, MS,S(ϕ) =




a 0 0 0

0 a 0 0

0 0 a 0

0 0 0 a


 is scalar for any basis S of V because V

is equal to the eigenspace of ϕ for the eigenvalue a.



58 8 JORDAN REDUCTION

(II) e = 2. In this case, there are two possibilities:

(a) There are three Jordan blocks. Thus one of them is of size 2, the two others of

size 1. We choose any vector v ∈ V2 \ V1. Then, we take any vector w1 ∈ V1 \
〈ϕa(v)〉 = V \〈ϕa(v), v〉. After that, we choose any vector w2 ∈ V1 \〈ϕa(v), w1〉 =
V \ 〈ϕa(v), v, w1〉. Finally, we set S = {ϕa(v), v, w1, w2} to obtain MS,S(ϕ) =


a 1 0 0

0 a 0 0

0 0 a 0

0 0 0 a


.

(b) There are two Jordan blocks. Both are of size 2. We choose any vector v ∈ V2 \ V1.

Then, we choose any vector w ∈ V2 \ 〈v〉. Finally, we set S = {ϕa(v), v, ϕa(w), w}

to obtain MS,S(ϕ) =




a 1 0 0

0 a 0 0

0 0 a 1

0 0 0 a


.

(III) e = 3. There are two block of Jordan, one of size 3, the other of size 1. In this

case, we can choose any vector v ∈ V3 \ V2. Then, we take any vector w ∈ V1 \
〈ϕ2

a(v)〉 = V \ 〈ϕ2
a(v), ϕa(v), v〉. If we take S = {ϕ2

a(v), ϕa(v), v, w}, then MS,S(ϕ) =


a 1 0 0

0 a 1 0

0 0 a 0

0 0 0 a


.

(IV) e = 4. There is only one Jordan block. In this case, we can choose any vector v ∈ V4 \V3.

If we take S = {ϕ3
a(v), ϕ

2
a(v), ϕa(v), v}, then MS,S(ϕ) =




a 1 0 0

0 a 1 0

0 0 a 1

0 0 0 a


.

Let us now come to the general algorithm, by keeping the above introduced notation. We can imagine

the vector space V as being in a rectangular box:

Ve \ Ve−1 � �

Ve−1 \ Ve−2 � � �

Ve−2 \ Ve−3 � � � �

...

V2 \ V1 � � � � �

V1 � � � � � � � �

Each black block represents a non-zero vector, and the set of all the vectors in the diagram is linearly

independent. In the algorithm, we want to order the rectangular box. For the moment, we put the

black blocks in an arbitrary way to indicate that we do not yet have many information about its

vectors (there is no deep meaning in the image). The fact that there are two blocks in the first row

means that dimVe − dimVe−1 = 2, etc. We can observe that the number of blocks does not decrease

when moving from the top to the bottom.
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(1.) We choose a vector x1 ∈ Ve \ Ve−1. Then we have the non-zero vectors ϕa(x1) ∈ Ve−1,

ϕ2
a(x1) ∈ Ve−2, and more generally, ϕia(x1) ∈ Ve−i pour i = 0, . . . , e − 1. We modify the

image:

Ve \ Ve−1 x1 �

Ve−1 \ Ve−2 ϕa(x1) � �

Ve−2 \ Ve−3 ϕ2
a(x1) � � �

...

V2 \ V1 ϕe−2
a (x1) � � � �

V1 ϕe−1
a (x1) � � � � � � �

The first column hence contains a basis of 〈x1〉ϕ.

If 〈x1〉ϕ = V (if no black block remains), we are done. Otherwise, we continue.

(2.) Now we compute the integer k such that 〈x1〉ϕ + Vk = V , but 〈x1〉ϕ + Vk−1 6= V . In our

example, k = e.

We choose a vector x2 in Vk \ (〈x1〉ϕ+Vk−1). We thus have the non-zero vectors ϕia(x2) ∈ Vk−i
for i = 0, . . . , k − 1. We change the image:

Ve \ Ve−1 x1 x2
Ve−1 \ Ve−2 ϕa(x1) ϕa(x2) �

Ve−2 \ Ve−3 ϕ2
a(x1) ϕ2

a(x2) � �

...

V2 \ V1 ϕe−2
a (x1) ϕe−2

a (x2) � � �

V1 ϕe−1
a (x1) ϕe−1

a (x2) � � � � � �

The second column hence contains a basis of 〈x2〉ϕ. Lemma 8.7 tells us that the sum 〈x1〉ϕ +

〈x2〉ϕ is direct.

If 〈x1〉ϕ ⊕ 〈x2〉ϕ = V (if no black block relains), we are done. Otherwise, we continue.

(3.) Now we compute the integer k such that 〈x1〉ϕ⊕〈x2〉ϕ+Vk = V , but 〈x1〉ϕ⊕〈x2〉ϕ+Vk−1 6= V .

In our example, k = e− 1.

We choose a vector x3 in Vk \ (〈x1〉ϕ ⊕ 〈x2〉ϕ + Vk−1). We thus have the non-zero vectors

ϕia(x3) ∈ Vk−i for i = 0, . . . , k − 1. We change the image:

Ve \ Ve−1 x1 x2
Ve−1 \ Ve−2 ϕa(x1) ϕa(x2) x3
Ve−2 \ Ve−3 ϕ2

a(x1) ϕ2
a(x2) ϕa(x3) �

...

V2 \ V1 ϕe−2
a (x1) ϕe−2

a (x2) ϕe−3
a (x3) � �

V1 ϕe−1
a (x1) ϕe−1

a (x2) ϕe−2
a (x3) � � � � �

The third column thus contains a basis of 〈x3〉ϕ. Lemma 8.7 tells us that the sum 〈x1〉ϕ⊕〈x2〉ϕ+
〈x3〉ϕ is direct.
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If 〈x1〉ϕ ⊕ 〈x2〉ϕ ⊕ 〈x3〉ϕ = V (if no black block relains), we are done. Otherwise, we continue.

(...) We continue like this until no black block remains. In our example, we obtain the image:

Ve \ Ve−1 x1 x2
Ve−1 \ Ve−2 ϕa(x1) ϕa(x2) x3
Ve−2 \ Ve−3 ϕ2

a(x1) ϕ2
a(x2) ϕa(x3) x4

...

V2 \ V1 ϕe−2
a (x1) ϕe−2

a (x2) ϕe−3
a (x3) ϕe−4

a (x4) x5
V1 ϕe−1

a (x1) ϕe−1
a (x2) ϕe−2

a (x3) ϕe−3
a (x4) ϕa(x5) x6 x7 x8

Each column contains a basis of 〈xi〉ϕ and corresponds to a block. More precisely, we put the vectors

that are contained in a box into a basis S, beginning in the left-bottom corner, then we go up through

the first colums, then we start at the bottom of the second column and goes up, then the third column

from bottom to top, etc. Then,MS,S(ϕ) will be a block matrix. Each block has a on the main diagonal

and 1 on the diagonal above the main diagonal. Each column corresponds to a block, and the size of

the block is given by the height of the column. In our example, we thus have 8 blocks, two of size e,

one of size e− 1, one of size e− 2, one of size 2 and three of size 1.

In the algorithm, we have

Vk \ (〈x1〉ϕ ⊕ · · · ⊕ 〈xr〉ϕ + Vk−1) = Vk \ (〈ϕa(x1)d1 , . . . , ϕa(xr)dr〉+ Vk−1)

where for i = 1, . . . , r, the integer di is the unique integer such that ϕdia (xi) ∈ Vk \Vk−1. This means

that by bloc, it is necessary (and sufficient) to “avoid” one single vector. The equality above follows

from the fact that 〈x1〉ϕ⊕ · · · ⊕ 〈xr〉ϕ is direct and from the fact that the vectors x, ϕa(x), . . . , ϕ
d
a(x)

are linearly independent if d is strictly smaller than the degree of the minimal polynomial of a overK.

In order to justify the algorithm, we still need to prove the following lemma.

Lemma 8.7. Let L = 〈x1〉ϕ ⊕ 〈x2〉ϕ ⊕ · · · ⊕ 〈xi〉ϕ constructed in the previous algorithm. By the

algorithm, we have in particular

dimK〈x1〉ϕ ≥ dimK〈x2〉ϕ ≥ · · · ≥ dimK〈xi〉ϕ.

(The dimension is here equal to the height of the corresponding column.)

Let k be the integer such that L+ Vk = V and L+ Vk−1 6= V . We have Vk 6⊆ L+ Vk−1.

By the algorithm, we also have k ≤ dimK〈xi〉ϕ.

If y ∈ Vk \ (L+ Vk−1) is any vector, then the sum

L+ 〈y〉ϕ = 〈x1〉ϕ ⊕ 〈x2〉ϕ ⊕ . . .⊕ 〈xi〉ϕ ⊕ 〈y〉ϕ

is direct.

Proof. If Vk ⊆ L+ Vk−1, then Vk + L = Vk−1 + L (as Vk−1 ⊆ Vk). This implies the first statement:

Vk 6⊆ L+ Vk−1.
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Let us now show that the sum L+ 〈y〉ϕ is direct, i.e., L ∩ 〈y〉ϕ = 0. Let w ∈ L ∩ 〈y〉ϕ. We suppose

w 6= 0. Let j be the maximum such that w ∈ Vk−j . We have 0 ≤ j ≤ k − 1. Consequently, we can

write w =
∑k−1−j

q=0 cqϕ
q+j
a (y) for cq ∈ K with c0 6= 0. Hence

w = ϕja
(
c0y +

k−j−1∑

q=1

cqϕ
q
a(y)

)
.

By construction of L, we can write

w = ϕja(ℓ)

for ℓ ∈ L. This is the case since L ∩ Vk−j is generated by ϕema (xm) for 1 ≤ m ≤ i and j ≤ em =

dimK〈xm〉ϕ − (k − j).

Thus we obtain

0 = ϕja
(
c0y − ℓ+

k−j−1∑

q=1

cqϕ
q
a(y)

)
.

This implies

z := c0y − ℓ+

k−j−1∑

q=1

cqϕ
q
a(y) ∈ Vj ⊆ Vk−1.

Using that
∑k−j−1

q=1 cqϕ
q
a(y) ∈ Vk−1, we finally obtain

y =
1

c0
ℓ+

1

c0
z +

1

c0

k−j−1∑

q=1

cqϕ
q
a(y) ∈ L+ Vk−1,

a contradiction. Therefore w = 0.

Combining the spectral decomposition with the algorithm above, we finally obtain the theorem about

Jordan’s reduction.

Theorem 8.8 (Jordan’s reduction). Assume that the minimal polynomial of ϕ is equal to

mipoϕ(X) =
r∏

i=1

(X − ai)
ei

with different ai ∈ K and ei > 0 (this is always the case if K is “algebraically closed” (see Al-

gebra 3), e.g. K = C).

Then, ϕ has a Jordan reduction.

We can precisely describe the Jordan reduction, as follows. Computing Vi := ker
(
(ϕ − ai · id)ei

)
,

we obtain the spectral decomposition (see Theorem 7.3), i.e.:

V =
r⊕

i=1

Vi and ϕ(Vi) ⊆ Vi for all 1 ≤ i ≤ r.

For all 1 ≤ i ≤ r, we apply the above algorithm to construct xi,1, . . . , xi,si ∈ Vi such that

Vi = 〈xi,1〉ϕ ⊕ · · · ⊕ 〈xi,si〉ϕ et ϕ(〈xi,j〉ϕ) ⊆ 〈xi,j〉ϕ.
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Let ei,j the minimal positive integer such that (ϕ − ai · id)ei,j (xi,j) = 0 for all 1 ≤ i ≤ r and

1 ≤ j ≤ si.

For each space 〈xi,j〉ϕ we choose the basis Si,j as in Lemma 8.4. We put

S := S1,1 ∪ S1,2 ∪ · · · ∪ S1,s1 ∪ S2,1 ∪ S2,2 ∪ · · · ∪ S2,s2 ∪ . . . . . . · · · ∪ Sr,sr .

Then, S is a K-basis of V such that

MS,S(ϕ) =




M1 0 0 . . . 0

0 M2 0 . . . 0
...

. . .
. . .

...

0 . . . 0 Mr−1 0

0 . . . 0 0 Mr




(diagonal block matrix), where, for all 1 ≤ i ≤ r,

Mi =




Ni,1 0 0 . . . 0

0 Ni,2 0 . . . 0

...
. . .

. . .
...

0 . . . 0 Ni,si−1 0

0 . . . 0 0 Ni,si




(diagonal block matrix), where, for all 1 ≤ j ≤ si,

Ni,j =




ai 1 0 0 . . . 0

0 ai 1 0 . . . 0

0 0
. . .

. . .
. . .

...
...

...
. . .

. . . 1 0

0 0 . . . 0 ai 1

0 0 . . . 0 0 ai




,

which is of size ei,j . The Ni,j’s are called the Jordan blocks (for the eigenvalue ai).



63

Remark 8.9. Explicitely, the basis S is the following:

(ϕ− a1 · id)e1,1−1(x1,1), (ϕ− a1 · id)e1,1−2(x1,1), . . . (ϕ− a1 · id)(x1,1), x1,1,

(ϕ− a1 · id)e1,2−1(x1,2), (ϕ− a1 · id)e1,2−2(x1,2), . . . (ϕ− a1 · id)(x1,2), x1,2,
...

...
...

...
...

(ϕ− a1 · id)e1,s1−1(x1,s1), (ϕ− a1 · id)e1,s1−2(x1,s1), . . . (ϕ− a1 · id)(x1,s1), x1,s1 ,

(ϕ− a2 · id)e2,1−1(x2,1), (ϕ− a2 · id)e2,1−2(x2,1), . . . (ϕ− a2 · id)(x2,1), x2,1,

(ϕ− a2 · id)e2,2−1(x2,2), (ϕ− a2 · id)e2,2−2(x2,2), . . . (ϕ− a2 · id)(x2,2), x2,2,
...

...
...

...
...

(ϕ− a2 · id)e2,s2−1(x2,s2), (ϕ− a2 · id)e2,s2−2(x2,s2), . . . (ϕ− a2 · id)(x2,s2), x2,s2 ,

(ϕ− a3 · id)e3,1−1(x3,1), (ϕ− a3 · id)e3,1−2(x3,1), . . . (ϕ− a3 · id)(x3,1), x3,1,
...

...
...

...
...

...
...

...
...

...

(ϕ− ar · id)er,sr−1(xr,sr), (ϕ− ar · id)er,sr−2(xr,sr), . . . (ϕ− ar · id)(xr,sr), xr,sr

.

Note that the Jordan reduction is not unique in general (we can for instance permute the blocks).

Thus, to be precise, we would rather speak of a Jordan reduction, which we will sometimes do. If S

is a basis such that MS,S(ϕ) has the form of the theorem, we will say that MS,S(ϕ) is the/a Jordan

reduction or that it has the/a Jordan form.

To apply Theorem 8.8 to matrices, take a look (once again) at Remark 7.4.

Example 8.10. (a) The/a Jordan reduction of the matrix



1 2 0

0 1 0

0 0 5


 obtained by the spectral de-

composition in Example 7.5(a) is



1 1 0

0 1 0

0 0 5


 for the following reason.

The matrix satisfies the hypothesis of Theorem 8.8, thus it has a Jordan reduction. As it is not diag-

onalizable, there can only be one block with 1 on the diagonal, but the characteristic polynomial

shows that 1 has to appear twice on the diagonal. Therefore, there is no other possibility.

(b) Consider the matrix M :=




1 1 0

−1 3 0

−1 1 2


 with coefficients in R.

A computation shows that charpolyM (X) = (X − 2)3. Then, r = 1 in the notations of The-

orem 8.8 and, hence, the Jordan reduction has to be among the following three matrices:



2 0 0

0 2 0

0 0 2


 ,



2 1 0

0 2 0

0 0 2


 ,



2 1 0

0 2 1

0 0 2


 .
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We easily find that mipoM (X) = (X − 2)2. From this we can already deduce that the Jordan

reduction is



2 1 0

0 2 0

0 0 2


.

The question becomes unpleasant if one asks to compute a matrix C such that C−1MC =

2 1 0

0 2 0

0 0 2


. But this is not so hard. We follow the algorithm on Jordan’s reduction:

• We have M − 2id3 =



−1 1 0

−1 1 0

−1 1 0


.

• Then, ker(M − 2id3) = 〈



0

0

1


 ,



1

1

0


〉.

• We have that mipoM (X) = (X − 2)2 (which is easily verified: (M − 2 · id3)2 = 03).

According to the algorithm, we choose

x1 ∈ ker((M − 2id3)
2) \ ker(M − 2id3) = R3 \ 〈



0

0

1


 ,



1

1

0


〉,

for instance x1 =



1

0

0


.

• We start writing our basis S. The first vector of the basis is, according to the algorithm,

v1 := (M − 2id3)x1 =



−1 1 0

−1 1 0

−1 1 0






1

0

0


 =



−1

−1

−1




and the second one is just v2 := x1.

• In the second step, we have to choose a vector

y ∈ ker(M − 2id3) \ 〈v1, v2〉 = 〈



0

0

1


 ,



1

1

0


〉 \ 〈



−1

−1

−1


 ,



1

0

0


〉.

We choose y =



0

0

1


 and we immediately set v3 = y.

• It suffices to write the vectors v1, v2, v3 as columns of a matrix:

C :=



−1 1 0

−1 0 0

−1 0 1


 .
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Theorem 8.8 tells us that

C−1MC =



0 −1 0

1 −1 0

0 −1 1







1 1 0

−1 3 0

−1 1 2






−1 1 0

−1 0 0

−1 0 1


 =



2 1 0

0 2 0

0 0 2


 ,

which can be verified.

Remark 8.11. In some examples and exercises you saw/see that the knowledge of the minimal poly-

nomial already gives us many information about the Jordan reduction.

More precisely, if a is an eigenvalue of ϕ and (X − a)e is the biggest power of X − a dividing the

minimal polynomial mipoϕ(X), then the size of the largest Jordan block with a on the diagonal is e.

In general, we do not obtain the entire Jordan reduction following this method; if, for instance, (X −
a)e+2 is the biggest power ofX−a dividing charpolyϕ(X), then, we have two possibilities: (1) there

are two Jordan blocks for the eigenvalue a of size e and 2; or (2) there are three Jordan blocks for a

of size e, 1 and 1.

Example 8.12. We do an example. Let

M =




−2 −1 −5 −3 6 −4

−1 2 −1 −1 1 0

2 1 4 2 −2 1

4 2 4 6 −5 2

0 1 −1 1 3 −1

1 −1 1 0 −1 5




.

Its characteristic polynomial is

charpolyM (X) = X6 − 18X5 + 135X4 − 540X3 + 1215X2 − 1458X + 729 = (X − 3)6.

Let us first compute

M3 :=M + 3id =




−5 −1 −5 −3 6 −4

−1 −1 −1 −1 1 0

2 1 1 2 −2 1

4 2 4 3 −5 2

0 1 −1 1 0 −1

1 −1 1 0 −1 2




,

then

M2
3 =




0 5 −1 3 −2 −5

0 0 0 0 0 0

0 −1 1 −1 0 1

0 −3 1 −2 1 3

0 1 1 0 −1 −1

0 −2 0 −1 1 2




, M3
3 =




0 3 3 0 −3 −3

0 0 0 0 0 0

0 −1 −1 0 1 1

0 −2 −2 0 2 2

0 0 0 0 0 0

0 −1 −1 0 1 1




, M4
3 = 0.
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We thus have

mipoM (X) = (X − 3)4

and

V4 = ker(M4
3 ) = R6 ) V3 ) V2 ) V1 = EM (3) ) 0.

We first compute

V3 = ker(M3
3 ) = ker




0 1 1 0 −1 −1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




= 〈




1

0

0

0

0

0




,




0

0

0

1

0

0




,




0

1

−1

0

0

0




,




0

0

0

0

1

−1




,




0

1

0

0

1

0




〉.

In fact, it is not necessary for the algorithm to give an entire basis of V3, it suffices to find a vector

that does not belong to the kernel. It is very easy. We will take x1 =




0
1
0
0
0
0


 and we compute

x1 =




0
1
0
0
0
0


 ,M3x1 =




−1
−1
1
2
1
−1


 ,M2

3x1 =




5
0
−1
−3
1
−2


 ,M3

3x1 =




3
0
−1
−2
0
−1


 .

We thus already have a Jordan block of size 4. Thus there is either a block of size 2, or two blocks of

size 1. We now compute

V2 = ker(M2

3
) = ker




0 1 1 0 −1 −1

0 0 −6 3 3 0

0 0 2 −1 −1 0

0 0 4 −2 −2 0

0 0 2 −1 −1 0

0 0 0 0 0 0




= ker




0 1 1 0 −1 −1

0 0 1 −1/2 −1/2 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




= ker




0 1 0 1/2 −1/2 −1

0 0 1 −1/2 −1/2 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




= 〈




1

0

0

0

0

0




,




0

1

0

0

0

1




,




0

1/2

1/2

0

1

0




,




0

−1/2

1/2

1

0

0




〉.
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Finally, we compute the eigenspace for the eigenvalue 3:

V1 = ker(M3) = ker




−5 −1 −5 −3 6 −4

−1 −1 −1 −1 1 0

2 1 1 2 −2 1

4 2 4 3 −5 2

0 1 −1 1 0 −1

1 −1 1 0 −1 2




= ker




1 −1 1 0 −1 2

0 1 −1 1 0 −1

0 −6 0 −3 1 6

0 −2 0 −1 0 2

0 3 −1 2 0 −3

0 6 0 3 −1 −6




= ker




1 0 0 1 −1 1

0 1 −1 1 0 −1

0 0 −6 3 1 0

0 0 −2 1 0 0

0 0 2 −1 0 0

0 0 6 −3 −1 0




= ker




1 0 0 1 −1 1

0 1 −1 1 0 −1

0 0 1 −1/2 0 0

0 0 −6 3 1 0

0 0 2 −1 0 0

0 0 0 0 0 0




= ker




1 0 0 1 −1 1

0 1 0 1/2 0 −1

0 0 1 −1/2 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0




= ker




1 0 0 1 0 1

0 1 0 1/2 0 −1

0 0 1 −1/2 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0




= 〈




−1

1

0

0

0

1




,




−1

−1/2

1/2

1

0

0




〉.

Thus there are 2 eigenvectors, hence two blocks in total. Thus the second block is of size 2. We have

to find a vector in V2 which is not in V1 + 〈x1,M3x1,M
2
3x1,M

3
3x1〉, thus an element of

〈




1

0

0

0

0

0




,




0

1

0

0

0

1




,




0

1/2

1/2

0

1

0




,




0

−1/2

1/2

1

0

0




〉 \ 〈




−1

1

0

0

0

1




,




−1

−1/2

1/2

1

0

0




,




0

1

0

0

0

0




,




−1

−1

1

2

1

−1




,




5

0

−1

−3

1

−2




,




3

0

−1

−2

0

−1




〉.

To find such an element, we test if the vectors (one by one) of the basis of V2 are linearly independent

form the space on the right. We are lucky that it already works out for x2 :=




1
0
0
0
0
0


 (as one can see

from a standard computation). We thus calculate

x2 =




1

0

0

0

0

0




, M3x2 =




−5

−1

2

4

0

1




.
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We can now write the matrix

C :=




3 5 −1 0 −5 1

0 0 −1 1 −1 0

−1 −1 1 0 2 0

−2 −3 2 0 4 0

0 1 1 0 0 0

−1 −2 −1 0 1 0




and a computation verifies

C−1MC =




3 1 0 0 0 0

0 3 1 0 0 0

0 0 3 1 0 0

0 0 0 3 0 0

0 0 0 0 3 1

0 0 0 0 0 3




.

Remark 8.13. Here are some remarks that are easy to prove and can sometimes be useful for com-

putations. Suppose mipoM (X) = (X − a)e.

(a) The size of the largest Jordan block is e.

(b) Each Jordan block contains an eigenspace of dimension 1 for the eigenvalue a.

(c) The number of Jordan blocks is equal to the dimension of the eigenspace for the eigenvalue a.

9 Hermitian spaces

Goals:

• Know the definitions of euclidian and hermitian spaces;

• know fundamental properties of euclidian and hermitian spaces;

• be able to compute orthonormal basis using the method of Gram-Schmidt;

• know examples and be able to prove simple properties.

We will start by a motivation of some of the topics that will follow.

Let M ∈ Matn×n(K) be a matrix. Consider the map:

〈 , 〉M : Kn ×Kn → K, 〈
( a1
a2
...
an

)
,




b1
b2
...
bn


〉M := (a1 a2 · · · an)M




b1
b2
...
bn


 .

We thus have the equality

〈x, y〉M = xtrMy.
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If M is the identity, then we do not write the index M and

〈
( a1
a2
...
an

)
,




b1
b2
...
bn


〉 = (a1 a2 · · · an)




b1
b2
...
bn


 =

n∑

i=1

aibi.

This is the well-known canonical scalar product. This gives moreover (if K = R)

〈
( a1
a2
...
an

)
,

( a1
a2
...
an

)
〉 = a21 + a22 + · · ·+ a2n > 0

for all

( a1
a2
...
an

)
6= 0.

Let us treat another example: M = ( 1 2
3 4 ). Then

〈( a1a2 ) ,
(
b1
b2

)
〉M = (a1 a2) ( 1 2

3 4 )
(
b1
b2

)
= a1b1 + 2a1b2 + 3a2b1 + 4a2b2.

In general, we immediately observe the following properties:

(a) Linearity in the first variable: For all y ∈ Kn, the map

〈·, y〉M : Kn → K, x 7→ 〈x, y〉M

is K-linear, i.e., for all x1, x2 ∈ Kn and all a ∈ K, we have

〈x1 + ax2, y〉M = 〈x1, y〉M + a〈x2, y〉M .

(b) Linearity in the second variable: For all x ∈ Kn, the map

〈x, ·〉M : Kn → K, y 7→ 〈x, y〉M

is K-linear, i.e. for all y1, y2 ∈ Kn and all a ∈ K, we have

〈x, y1 + ay2〉M = 〈x, y1〉M + a〈x, y2〉M .

Question: When do we have that 〈 , 〉M is symmetric, i.e., 〈x, y〉M = 〈y, x〉M for all x, y ∈ Kn?

To see the answer to this question, choose x = ei as the i-th canonical vector and y = ej . Then

〈ei, ej〉M = etri Mej = ei(j-th column of M) = i-th coeff. of (j-th column of M ) = mi,j .

Hence, 〈ei, ej〉M = 〈ej , ei〉M implies mi,j = mj,i for all 1 ≤ i, j ≤ n, in other words, M is

symmetric M =M tr.

Conversely, let us start from a symmetric matrix M =M tr. We do a small, but elegant computation:

〈x, y〉M = xtrMy = (xtrMy)tr = ytrM tr(xtr)tr = ytrMx = 〈y, x〉M ,

where we used that xtrMy is a matrix of size 1, hence equal to its transpose, as well as the following

lemma:
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Lemma 9.1. Let M ∈ Matn,m(K) and N ∈ Matm,ℓ(K) be matrices. Then

(M ·N)tr = N tr ·M tr.

Proof. Exercise.

We thus obtained the equivalence:

〈 , 〉M is symmetric ⇐⇒M is symmetric: M =M tr.

Question: For K = R, when do we have 〈x, x〉M ≥ 0 for all x ∈ Rn?

We have seen that it is the case if M is the identity and 〈 , 〉 is hence the canonical scalar product. We

will come back to this question later.

For the moment, let us move toK = C. We denote z = x− iy the complex conjugate z = x+ iy ∈ C
with x = Re(z) and y = Im(z).

For complex numbers, it is not true that
∑n

i=1 z
2
i is greater than or equal to 0, in fact, this is even not a

question that one may ask since z2i is in general not a real number, hence asking if it is greater than zero

is meaningless. On the other hand, the absolute value zizi = |zi|2 is always real and non-negative.

Thus it is useful to change the definition in the case K = C:

〈 , 〉M : Cn × Cn → C, 〈x, y〉M := xtrMy

where y is the vector obtained when applying complex conjugation on all coefficients. Note that the

definition is the same as the one given before if K = R since complex conjugation does not have an

effect on real numbers.

With M being the identity, this gives

〈
( a1
a2
...
an

)
,




b1
b2
...
bn


〉 = (a1 a2 · · · an)




b1
b2
...
bn


 =

n∑

i=1

aibi.

This is once more the well-known canonical scalar product. Moreover, we obtain

〈
( a1
a2
...
an

)
,

( a1
a2
...
an

)
〉 = |a1|2 + |a2|2 + · · ·+ |an|2 > 0

for all

( a1
a2
...
an

)
6= 0.

Let us look the following properties:

(a) Linearity in the first variable: Unchanged!

(b) Sesqui-linearity in the second variable: For all x ∈ Cn, the application

〈x, ·〉M : Kn → K, y 7→ 〈x, y〉M

is sesqui-linear, i.e., for all y1, y2 ∈ Kn and all a ∈ K, we have

〈x, y1 + ay2〉M = 〈x, y1〉M + a〈x, y2〉M .
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By the same computations as above, we obtain the equivalence:

〈x, y〉M = 〈y, x〉M for all x, y ∈ Cn ⇐⇒M =M tr.

A matrix M such that M =M tr is called hermitian.

For the sequel of this section we set K = R or K = C.

Definition 9.2. Let V be a K-vector space. An application

〈·, ·〉 : V × V → K, (v, w) 7→ 〈v, w〉

is called hermitian form if for all v, v1, v2, w, w1, w2 ∈ V and for all a, b ∈ K we have

• 〈av1 + v2, w〉 = a〈v1, w〉+ 〈v2, w〉 (linearity in the first variable),

• 〈v, bw1 + w2〉 = b〈v, w1〉+ 〈v, w2〉 (sesqui-linearity in the second variable) and

• 〈v, w〉 = 〈w, v〉.

A hermitian form 〈·, ·〉 is said to be positive if

• ∀ v ∈ V : 〈v, v〉 ≥ 0. (Note that 〈v, v〉 = 〈v, v〉, whence 〈v, v〉 ∈ R.)

It is said to be positive definite if

• ∀ 0 6= v ∈ V : 〈v, v〉 > 0.

A hermitian positive definite form is also called a scalar product.

We call hermitian space any tuple (V, 〈·, ·〉) where 〈·, ·〉 is a positive definite hermitian form.

Note that the second item in the definition is redundant because we have

〈v, bw1 + w2〉 = 〈bw1 + w2, v〉 = b〈w1, v〉+ 〈w2, v〉 = b 〈w1, v〉+ 〈w2, v〉 = b〈v, w1〉+ 〈v, w2〉.

Remark 9.3. Note that for K = R the last two conditions of the definition of a hermitian form read

• 〈v, bw1 + w2〉 = b〈v, w1〉+ 〈v, w2〉 (linearity in the second variable) and

• ∀ v ∈ V ∀w ∈W : 〈v, w〉 = 〈w, v〉.

We refer this to as a bilinear symmetric form.

In the literature, if K = R, one rather uses the name euclidian space instead of hermitian space

(which is often reserved for K = C). Here, to simplify the terminology, we will always speak of

hermitian spaces, even if K = R.

We have already seen the canonical scalar products for Rn and Cn. Similar definitions can also be

made in spaces of functions (of finite dimension):

Example 9.4. (a) The canonical scalar product 〈 , 〉M for M the identity is indeed a scalar product

if K = R or K = C.
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(b) Let C = {f : [0, 1] → R | f is continuoud } be the set of all continuous functions from [0, 1] to R.

It is an R-vector space for + and · defined pointwise. The application

〈·, ·〉 : C × C → R, 〈f, g〉 =
∫ 1

0
f(x)g(x)dx

is a hermitian positive definite form.

(c) Let C = {f : [0, 1] → C | f is continuous } be the set of all continuous functions from [0, 1] to C.

It is a C-vector space for + and · defined pointwise. The application

〈·, ·〉 : C × C → C, 〈f, g〉 =
∫ 1

0
f(x)g(x)dx

is a hermitian positive definite form.

Definition 9.5. Let (V, 〈·, ·〉) be a hermitian K-space.

We say that v, w ∈ V are orthogonal v ⊥ w if 〈v, w〉 = 0. Note: v ⊥ w ⇔ w ⊥ v.

LetW ≤ V be a subspace. We say that v ∈ V and W are orthogonal v ⊥W if v ⊥ w for all w ∈W .

Note: v ⊥W ⇔W ⊥ v (with evident defintions).

Let U ≤ V be another subspace. We say that U and W are orthogonal U ⊥ W if U ⊥ w for all

w ∈W . Note: U ⊥W ⇔W ⊥ U .

The orthogonal complement of W is defined as

W⊥ = {v ∈ V | v ⊥W}.

The norm (“length”) of v ∈ V is defined as |v| :=
√
〈v, v〉 and |v − w| is said to be the distance

between v and w.

Proposition 9.6. Let (V, 〈·, ·〉) be a hermitian K-space.

(a) For all v ∈ V we have |v| ≥ 0 and |v| = 0 ⇔ v = 0.

(b) For all v ∈ V and all a ∈ K we have: |a · v|︸ ︷︷ ︸
|·| in V

= |a|︸︷︷︸
|·| in K

· |v|︸︷︷︸
|·| in V

.

(c) For all v, w ∈ V we have |〈v, w〉|︸ ︷︷ ︸
|·| in K

≤ |v|︸︷︷︸
|·| in V

· |w|︸︷︷︸
|·| in V

(Cauchy-Schwarz inequality ).

(d) For all v, w ∈ V we have |v + w|︸ ︷︷ ︸
|·| in V

≤ |v|︸︷︷︸
|·| in V

+ |w|︸︷︷︸
|·| in V

(triangular inequality).

Proof. (a) Defintion.

(b) |a · v|2 = 〈a · v, a · v〉 = a · a · 〈v, v〉 = |a|2 · |v|2.

(c) 1st case: w = 0. Then, 〈v, w〉 = 〈v, 0 · w〉 = 0〈v, w〉 = 0, whence |〈v, w〉| = 0 = |v| · |w|.
2nd case: w 6= 0. Let c := 〈v,w〉

|w|2 . Then

0 ≤ |w|2 · 〈v − c · w, v − c · w〉
= |w|2 · 〈v, v〉 − |w|2 · c · 〈w, v〉 − |w|2 · c · 〈v, w〉+ |w|2 · c · c · 〈w,w〉
= |w|2 · |v|2 − 〈v, w〉 · 〈w, v〉︸ ︷︷ ︸

=|〈v,w〉|

−〈v, w〉 · 〈v, w〉+ 〈v, w〉 · 〈v, w〉︸ ︷︷ ︸
=0

.
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(d)

|v + w|2 = 〈v + w, v + w〉
= 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉
= |v|2 + |w|2 + 〈v, w〉+ 〈v, w〉
= |v|2 + |w|2 + 2 · Re(〈v, w〉)
≤ |v|2 + |w|2 + 2 · |〈v, w〉|
≤ |v|2 + |w|2 + 2 · |v| · |w|
= (|v|+ |w|)2.

Proposition 9.7 (Pythagoras). If v ⊥ w, then |v + w|2 = |v|2 + |w|2.

Proof. |v + w|2 = 〈v + w, v + w〉 = 〈v, v〉+ 〈w,w〉 = |v|2 + |w|2.

Note that any hermitian positive definite form is non-degenerate: if 〈v, w〉 = 0 for all w ∈W , then in

particular 〈v, v〉 = |v|2 = 0, whence v = 0. The same argument also shows that w = 0 si 〈v, w〉 = 0

for all v ∈ V .

Definition 9.8. Let (V, 〈·, ·〉) be a hermitian K-space and S = {si | i ∈ I} (with I a set, e.g.,

S = {s1, . . . , sn} if I = {1, 2, . . . , n}).

We say that S is an orthogonal system if

• 〈si, si〉 > 0 for all i ∈ I and

• 〈si, sj〉 = 0 for all i, j ∈ I , i 6= j.

We say that S is an orthonormal system if 〈si, sj〉 = δi,j pour tout i, j ∈ I .

If S is a basis of V which is an orthogonal/orthonormal system, we speak of an orthogonal/orthonor-

mal basis.

Example 9.9. The canonical basis of Rn (or of Cn) is an orthonormal basis for the canonical scalar

product of Example 9.4.

Proposition 9.10 (Gram-Schmidt Orthonormalization). Let (V, 〈·, ·〉) be a hermitian K-space and

s1, s2, . . . , sn ∈ V K-linearly independent vectors.

The method of Gram-Schmidt (see proof) computes the vectors t1, t2, . . . , tn ∈ V such that

• 〈ti, tj〉 = δi,j for all 1 ≤ i, j ≤ n and

• 〈s1, s2, . . . , sr〉 = 〈t1, t2, . . . , tr〉 for all 1 ≤ r ≤ n (the subspaces of V generated by

s1, s2, . . . , sr and by t1, t2, . . . , tr are equal).

Proof. We present the method of Gram-Schmidt.

It is an induction on r = 1, 2, . . . , n; hence there are n steps.

r = 1. t1 :=
s1
|s1| .
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r ⇒ r + 1. By induction hypothesis we already have t1, . . . , tr such that 〈ti, tj〉 = δi,j for all 1 ≤
i, j ≤ r and 〈s1, s2, . . . , sr〉 = 〈t1, t2, . . . , tr〉.
We have to find tr+1. First we define

wr+1 := sr+1 −
r∑

i=1

〈sr+1, ti〉ti.

This vector satisfies for all 1 ≤ j ≤ r

〈wr+1, tj〉 = 〈sr+1 −
r∑

i=1

〈sr+1, ti〉ti, tj〉

= 〈sr+1, tj〉 −
r∑

i=1

〈〈sr+1, ti〉ti, tj〉

= 〈sr+1, tj〉 − 〈〈sr+1, tj〉tj , tj〉
= 〈sr+1, tj〉 − 〈sr+1, tj〉 · 〈tj , tj〉
= 0

Since 〈s1, s2, . . . , sr〉 = 〈t1, t2, . . . , tr〉, we havewr+1 6∈ 〈t1, t2, . . . , tr〉, hence, in particular,wr+1 6=
0. This allows us to define

tr+1 :=
wr+1

|wr+1|
.

This vector clearly satisfies 〈tr+1, ti〉 = δr+1,i for all 1 ≤ i ≤ r + 1 and 〈s1, s2, . . . , sr, sr+1〉 =

〈t1, t2, . . . , tr, tr+1〉.

Example 9.11. We apply the method of Gram-Schmidt to the following vectors:

s1 =




1
1
0
1
0
1


 , s2 =




1
3
−2
3
−2
5


 , s3 =




−1
5
2
−3
−6
3




on R6 with the canonical scalar product.

(1) Let us compute the length of s1:

|s1| =
√
4 = 2.

Thus

t1 =
1

2
s1 =




1/2
1/2
0

1/2
0

1/2


 .

(2) Let us now compute

〈s2, t1〉 = 〈




1
3
−2
3
−2
5


 ,




1/2
1/2
0

1/2
0

1/2


〉 = 6.
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Thus

w2 := s2 − 〈s2, t1〉t1 =




1
3
−2
3
−2
5


− 6




1/2
1/2
0

1/2
0

1/2


 =




−2
0
−2
0
−2
2


 .

The length of w2 is

|w2| =
√
16 = 4.

Thus

t2 =
1

4
w2 =




−1/2
0

−1/2
0

−1/2
1/2


 .

(3) Now compute

〈s3, t1〉 = 〈




−1
5
2
−3
−6
3


 ,




1/2
1/2
0

1/2
0

1/2


〉 = 2

and

〈s3, t2〉 = 〈




−1
5
2
−3
−6
3


 ,




−1/2
0

−1/2
0

−1/2
1/2


〉 = 4.

Thus

w3 := s3 − 〈s3, t1〉t1 − 〈s3, t2〉t2 =




−1
5
2
−3
−6
3


− 2




1/2
1/2
0

1/2
0

1/2


− 4




−1/2
0

−1/2
0

−1/2
1/2


 =




0
4
4
−4
−4
0


 .

The length of w3 is

|w3| =
√
64 = 8.

Thus

t3 =
1

8
w3 =




0
1/2
1/2
−1/2
−1/2
0


 .

Corollary 9.12. Let (V, 〈·, ·〉) be a hermitian K-space of finite dimension (or even countable). Then,

V has an orthonormal K-basis.

Proof. Direct consequence of Gram-Schmidt 9.10.

Corollary 9.13. Let (V, 〈·, ·〉) be a hermitianK-space andW ≤ V be a subspace of finite dimension.

Let s1, . . . , sn ∈ W be an orthonormal K-basis of W (which exists in view of Corollary 9.12). We

define

πW : V →W, v 7→
n∑

i=1

〈v, si〉si.

This application is called the orthogonal projection on W .
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(a) πW is K-linear and satisfies πW ◦ πW = πW .

(b) V =W ⊕W⊥.

(c) For all v ∈ V , we have

|πW (v)|2 =
n∑

i=1

|〈v, si〉|2 ≤ |v|2.

This is Bessel’s inequality.

(d) For all v ∈ V , πW (v) can be characterized as the unique w ∈ W such that |v − w| is minimal.

The application πW is therefore independent from the choice of the basis.

Proof. (a) Simple computations.

(b) Let v ∈ V . We write v = πW (v) + (v − πW (v)). We clearly have πW (v) ∈W . Let us show that

v − πW (v) ∈W⊥; for this it suffices to prove that 〈v − πW (v), sj〉 = 0 for all 1 ≤ j ≤ n:

〈v−πW (v), sj〉 = 〈v, sj〉−〈
n∑

i=1

〈v, si〉si, sj〉 = 〈v, sj〉−
n∑

i=1

〈v, si〉 · 〈si, sj〉 = 〈v, sj〉−〈v, sj〉 = 0.

This gives us V = W +W⊥, thus it suffices to show that the sum is direct. Let w ∈ W ∩W⊥. In

particular, w ⊥ w, i.e., 〈w,w〉 = |w|2 = 0, whence w = 0.

(c) We have just seen that πW (v) ⊥ (v − πW (v)), hence by Pythagoras 9.7 we have

|v|2 = |πW (v)|2 + |v − πW (v)|2,

whence |πW (v)|2 ≤ |v|2. This already proves the inequality. Let us now prove the equality:

|πW (v)|2 = 〈πW (v), πW (v)〉 =
n∑

j=1

n∑

k=1

〈v, sj〉〈v, sk〉〈sj , sk〉 =
n∑

j=1

|〈v, sj〉|2.

(d) We use again Pythagoras 9.7 to obtain for w ∈W

|v − w|2 = | (v − πW (v))︸ ︷︷ ︸
∈W⊥

+(πW (v)− w)︸ ︷︷ ︸
∈W

|2 = |v − πW (v)|2︸ ︷︷ ︸
indépendant de w

+|πW (v)− w|2.

Thus |v − w| is minimal if and only if |πW (v)− w| = 0, i.e. if and only if w = πW (v).

10 Normal, adjoint, self-adjoint operators and isometries

Goals:

• Master the concepts of normal, adjoint and self-adjoint operators;

• master the notion of isometry and the notions of unitary and orthogonal matrix;

• know the fundamental properties of normal and self-adjoint operators and of isometries;
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• be able to decide whether these notions are satisfied;

• know examples and be able to prove simple properties.

We continue with K ∈ {R,C}. In this section, we are interested in the question when in a hermitian

space, a linear application is “ compatible” with the scalar product; more precisely, we would like to

compare

〈Mv,w〉, 〈Mv,Mw〉, 〈v,Mw〉, and 〈v, w〉

where M is a matrix and v, w are vectors.

This will lead us to symmetric, hermitian, orthogonal, unitary matrices and isometries. We will prove

later that any symmetric matrix with real coefficients is diagonalizable, and generalizations of this.

We make/recall the following definitions:

Definition 10.1. (a) Let M ∈ Matn×n(C). The matrix Mad :=M
tr
=M tr is called adjoint matrix.

Note that Mad =M tr if M ∈ Matn×n(R).

(b) We call symmetric matrix or self-adjoint matrix any matrix M ∈ Matn×n(R) such that Mad =

M tr =M .

(c) We call hermitian matrix or self-adjoint matrix any matrixM ∈ Matn×n(C) such thatMad =M .

Note that M is self-adjoint if and only if M tr =M . Note also that a symmetric matrix is nothing

but a hermitian matrix with real coefficients.

(d) We call orthogonal matrix or isometry any matrix M ∈ Matn×n(R) such that

MadM =M trM = id.

(e) We call unitary matrix or isometry any matrix M ∈ Matn×n(C) such that MadM = id. Note

that M is unitary if and only if M trM = id. Note also that an orthogonal matrix is nothing but

a unitary matrix with real coefficients.

Definition 10.2. We define the following matrix groups where the multiplication law is the composi-

tion of matrices:

(a) GLn(K) = {M ∈ Matn×n(K) | det(M) 6= 0}, the general linear group over K,

(b) SLn(K) = {M ∈ Matn×n(K) | det(M) = 1}, the special linear group over K,

(c) On = {M ∈ GLn(R) |M trM = id}, the orthogonal group;

(d) SOn = {M ∈ SLn(R) |M trM = id}, the special orthogonal group,

(e) Un = {M ∈ GLn(C) |M trM = id}, the unitary group,

(f) SUn = {M ∈ SLn(C) |M trM = id}, the special unitary group.

Note that these are indeed groups as simple calculations show; for instance for (e), one has

(MN)tr(MN) = N trM trM N = 1 si M trM = 1 and N trN = 1.

Lemma 10.3. Let M ∈ Matn×n(K) be a square matrix.
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(a) The following statements are equivalent:

(i) M is self-adjoint.

(ii) For all v, w ∈ Kn we have: vtrM trw = vtrMw.

Note that in terms of scalar product, this statement can be rewritten as follows:

〈Mv,w〉 = 〈v,Mw〉.

(b) The following statements are equivalent:

(i) M is an isometry.

(ii) For all v, w ∈ Kn we have: vtrM trMw = vtrw.

Note that in terms of scalar product, this statement can be rewritten as follows:

〈Mv,Mw〉 = 〈v, w〉.

Proof. We have proved part (a) in the beginning of section 9. The proof of part (b) is obtained using

exactly the same arguments. More precisely, it is immediate in view of the formula etri Mej = mi,j

for any square matrix M = (mi,j).

It is very easy to provide examples of symmetric or hermitian matrices (choose arbitrary real coeffi-

cients on the diagonal, write arbitrary real coefficients (or complew, depending on the situation) in the

part below the main diagonal, fill the part above the main diagonal with the corresponding values).

Lemma 10.4. Let M ∈ Matn×n(K) be a square matrix. The following statements are equivalent:

(i) M is an isometry (i.e. unitary or orthogonal);

(ii) the columns of M form an orthonormal basis of Kn (for the canonical scalar product);

(iii) the rows of M form an orthonormal basis of Kn (for the canonical scalar product).

Proof. By the definition of the multiplication of two matrices, statement (ii) is precisely the equality

M trM = id, hence (i). Statement (iii) is statement (ii) for the matrix M tr. Thus the equivalence

between (iii) and (i) is the same as the equivalence

MadM = id ⇔M−1 =M
tr ⇔MM tr = id.

Lemma 10.5. We have

O2 = {
(

cos(α) − sin(α)
sin(α) cos(α)

)
∈ GL2(R) | 0 ≤ α < 2π} ∪ {

(
cos(α) sin(α)
sin(α) − cos(α)

)
∈ GL2(R) | 0 ≤ α < 2π}.

Proof. First note that the M =
(

cos(α) − sin(α)
sin(α) cos(α)

)
is orthogonal:

M trM =
(

cos(α) sin(α)
− sin(α) cos(α)

)(
cos(α) − sin(α)
sin(α) cos(α)

)
=
(

cos2(α)+sin2(α) 0

0 cos2(α)+sin2(α)

)
= ( 1 0

0 1 ) .

The computation for the matrix
(

cos(α) sin(α)
sin(α) − cos(α)

)
is similar.
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Let now M =
(
a b
c d

)
be an orthogonal matrix, i.e.

M trM = ( a cb d )
(
a b
c d

)
=
(
a2+c2 ab+cd
ab+cd b2+d2

)
= ( 1 0

0 1 ) .

From the equalities a2 + c2 = 1 and b2 + d2 = 1, we obtain 0 ≤ α, β < 2π such that

a = cos(α), c = sin(α), d = cos(β), b = sin(β).

The equality ab+ cd = 0 hence gives

0 = cos(α) sin(β) + sin(α) cos(β) = sin(α+ β).

From this we conclude

α+ β = mπ

for some m ∈ Z. If m is even, we find:

cos(β) = cos(mπ − α) = cos(mπ) cos(α) + sin(mπ) sin(α) = cos(α)

and

sin(β) = sin(mπ − α) = sin(mπ) cos(α)− cos(mπ) sin(α) = − sin(α)

which gives (
a b
c d

)
=
(

cos(α) − sin(α)
sin(α) cos(α)

)
.

If m is odd, we find:

cos(β) = cos(m− α) = cos(mπ) cos(α) + sin(mπ) sin(α) = − cos(α)

and

sin(β) = sin(m− α) = sin(mπ) cos(α)− cos(mπ) sin(α) = + sin(α)

which gives (
a b
c d

)
=
(

cos(α) sin(α)
sin(α) − cos(α)

)
,

as desired.

We now change the view point: in stead of matrices, we consider linear applications between hermitian

spaces.

Proposition 10.6. Let V and W be two hermitian K-spaces of dimensions n and m and let ϕ : V →
W be a K-linear application.

(a) There exists a unique K-linear application ϕad :W → V such that for all v ∈ V and all w ∈W

〈ϕ(v), w〉 = 〈v, ϕad(w)〉.

Note that the scalar product on the left is the one from W , and the scalar product on the right is

the one from V .

The application ϕad is called the adjoint of ϕ.
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(b) Let S be an orthonormal K-basis of V and T be an orthonormal K-basis of W . Then

MS,T (ϕ
ad) =MT,S(ϕ)tr

(the matrix obtained from the transpose by complex conjugation). Thus MS,T (ϕ
ad) is the adjoint

matrix of MT,S(ϕ).

Proof. Let S = s1, . . . , sn and T = t1, . . . , tm be the two orthonormal basis. Let

MT,S(ϕ) = (ai,j)1≤i≤m,1≤j≤n,

i.e. ϕ(si) =
∑m

k=1 ak,itk. We will take (b) as definition of ϕad: it is the K-linear application

represented by MT,S(ϕ)tr. Concertely, we have ϕad(tj) =
∑n

k=1 aj,ksk.

We first verify:

〈ϕ(si), tj〉 = 〈
m∑

k=1

ak,itk, tj〉 =
m∑

k=1

ak,i〈tk, tj〉 = aj,i

〈si, ϕad(tj)〉 = 〈si,
m∑

k=1

aj,ksk〉 =
m∑

k=1

aj,k〈si, sk〉 = aj,i

We can now obtain (a) by linearity: let v =
∑n

i=1 bisi and w =
∑m

j=1 cjtj ; we have

〈ϕ(v), w〉 = 〈ϕ(
n∑

i=1

bisi),
m∑

j=1

cjtj〉

= 〈
n∑

i=1

biϕ(si),
m∑

j=1

cjtj〉

=
n∑

i=1

bi

m∑

j=1

cj〈ϕ(si), tj〉

=
n∑

i=1

bi

m∑

j=1

cj〈si, ϕad(tj)〉

= 〈
n∑

i=1

bisi,
m∑

j=1

cjϕ
ad(tj)〉

= 〈
n∑

i=1

bisi, ϕ
ad(

m∑

j=1

cjtj)〉

= 〈v, ϕad(w)〉.

For the uniqueness of ϕad, write ϕad(tj) =
∑n

k=1 dk,jsk, and compute

aj,i = 〈ϕ(si), tj〉 = 〈si, ϕad(tj)〉 = 〈si,
n∑

k=1

dk,jsk〉 =
n∑

k=1

dk,j〈si, sk〉 = di,j .

We thus obtain di,j = aj,i, the uniqueness.
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Note that if K = R, the adjoint of a matirx M is the transpose.

Proposition 10.7. Let U, V,W be hermitian K-spcaes of finite dimensions and U
ϕ,ψ−−→ V

η−→ W be

K-linear applications. Then:

(a) idadV = idV ,

(b) (ϕ+ ψ)ad = ϕad + ψad,

(c) ∀x ∈ K : (xϕ)ad = xϕad,

(d) (η ◦ ϕ)ad = ϕad ◦ ηad and

(e) (ϕad)ad = ϕ.

The same statements hold for matrices.

Proof. The statements for matrices are easily verified. The only point where one needs to be careful

is (M ◦N)tr = N tr ◦M tr, it is Lemma 9.1.

Definition 10.8. Let V be a hermitian K-space of finite dimension and let ϕ : V → V be a K-

endomorphism.

We say that ϕ is self-adjoint if ϕ = ϕad.

In view of Proposition 10.6, we thus have

ϕ is self-adjoint ⇔MS,S(ϕ) is self-adjoint,

for an orthonormal basis S of V .

For the proof of the next proposition, we need a small lemma.

Lemma 10.9. Let (V, 〈, 〉) be a hermitian space. Then, if v ⊥ V for v ∈ V , then v = 0.

Proof. If v ⊥ V , we have in particular, v ⊥ v, whence 0 = 〈v, v〉 = |v|2 which implies v = 0.

Proposition 10.10. Let V be a hermitian K-space of finite dimension and let ϕ : V → V be a

K-endomorphism.

(a) The following statements are equivalent.

(i) ϕ is self-adjoint (ϕ = ϕad).

(ii) 〈v, w〉ϕ := 〈ϕ(v), w〉 for v ∈ V and w ∈ V is a hermitian form.

(b) If ϕ is self-adjoint then: ϕ = 0 ⇔ ∀ v ∈ V : 〈v, v〉ϕ = 0.

Proof. (a) It is always true (even if ϕ is not self-adjoint) that 〈·, ·〉ϕ is linear in the first variable and

sesquilinear in the second. One therefore has to check the third property in the definition of hermitian

forms 9.2. Let v, w ∈ V . First we do the computation

〈v, w〉ϕ = 〈ϕ(v), w〉 = 〈v, ϕad(w)〉 = 〈ϕad(w), v〉 = 〈w, v〉ϕad .
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We thus have

∀ v, w ∈ V : 〈v, w〉ϕ = 〈w, v〉ϕ
⇔∀ v, w ∈ V : 〈ϕad(w), v〉 = 〈ϕ(w), v〉
⇔∀ v, w ∈ V : 〈(ϕad − ϕ)(w), v〉 = 0

⇔∀w ∈ V : (ϕad − ϕ)(w) ⊥ V = 0

⇔∀w ∈ V : (ϕad − ϕ)(w) = 0

⇔ϕad = ϕ

by Lemma 10.9.

(b) If ϕ = 0, it follows trivially that

〈v, v〉ϕ = 〈ϕ(v), v〉 = 〈0, v〉 = 0.

Suppose now that 〈v, v〉ϕ = 0 for all v ∈ V . Let v, w ∈ V and a ∈ K. We compute

0 = 〈v + aw, v + aw〉ϕ
= 〈ϕ(v + aw), v + aw〉
= 〈ϕ(v), v〉︸ ︷︷ ︸

=0

+〈ϕ(v), aw〉+ 〈ϕ(aw), v〉+ 〈ϕ(aw), aw〉︸ ︷︷ ︸
=0

= a〈ϕ(v), w〉+ a〈ϕ(w), v〉
= a〈ϕ(v), w〉+ a〈w,ϕ(v)〉
= a〈ϕ(v), w〉+ a〈ϕ(v), w〉
= 2 · Re(a〈ϕ(v), w〉).

With a = 1, we obtain 0 = Re(〈ϕ(v), w〉), and with a = iwe find 0 = Im(〈ϕ(v), w〉). Consequently,

we have for all v, w ∈ V

0 = 〈ϕ(v), w〉.
For all v ∈ V , we thus find ϕ(v) ⊥ V , whence the desired result ϕ(v) = 0 by Lemma 10.9.

If one applies the previous proposition with ϕM for a square matrix M , we find back the result of the

discussion in the beginning if section 9. Then:

(a) M =Mad ⇔M is self-adjoint ⇔ (v, w) 7→ vtrAw is a hermitian form.

(b) If M is self-adjoint, then: M = 0 ⇔ ∀ v ∈ Kn : vtrMv = 0.

We now introduce the applications that preserve lengths: the “ isometries”.

Definition 10.11. Let V be a hermitian space. We call isometry any ϕ ∈ EndK(V ) such that for all

v ∈ V

|ϕ(v)| = |v|.

Lemma 10.12. Let V be a hermitian space and let ϕ ∈ EndK(V ). The following statements are

equivalent:



83

(i) ϕ is an isometry.

(ii) ϕad ◦ ϕ = idV (in particular, ϕ is an isomorphism).

(iii) For all v, w ∈W : 〈ϕ(v), ϕ(w)〉 = 〈v, w〉.

Proof. “(i) ⇒ (ii)”: We have for all v ∈ V :

〈v, v〉 = 〈ϕ(v), ϕ(v)〉 = 〈v, ϕad(ϕ(v))〉,

hence

〈v, (ϕad ◦ ϕ− idV )(v)〉 = 0 et, alors, 〈(ϕad ◦ ϕ− idV )(v), v〉 = 0.

Note that ϕad ◦ ϕ − idV is self-adjoint, thus Proposition 10.10(b) implies that ϕad ◦ ϕ − idV = 0,

whence ϕad ◦ ϕ− idV .

“(ii) ⇒ (iii)”: Let v, w ∈ V , then

〈ϕ(v), ϕ(w)〉 = 〈v, ϕad(ϕ(w))〉 = 〈v, w〉.

“(iii) ⇒ (i)”: Let v ∈ V . Then,

|ϕ(v)|2 = 〈ϕ(v), ϕ(v)〉 = 〈v, v〉 = |v|2.

By this lemma, we have

ϕ is an isometry ⇔MS,S(ϕ) is an isometry (i.e. orthogonal or unitary)

for an orthonormal basis S of V .

Until now we always considered two types of endomorphisms/matrices: self-adjoint and isometries.

We would like to treat some of their properties in parallel. We thus look for a common generalization.

Normal operators are such a generalization. We first give the definition in a “ metric”way

Definition 10.13. Let V be a hermitian space. We call normal operator any ϕ ∈ EndK(V ) such that

for all v ∈ V

|ϕ(v)| = |ϕad(v)|.

Example 10.14. (a) If ϕ is self-adjoint, we have ϕad = ϕ, whence, ϕ is normal.

(b) If ϕ is an isometry, we have that ϕ is an isometry and ϕad = ϕ−1. As |ϕ(v)| = |v| for all v ∈ V ,

in particular also for ϕ−1(v), we find |ϕad(v)| = |ϕ−1(v)| = |v|, whence, ϕ is normal.

Proposition 10.15. Let V be a hermitian space and let ϕ ∈ EndK(V ). The following statements are

equivalent:

(i) ϕ is normal.

(ii) ϕad ◦ ϕ = ϕ ◦ ϕad.
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Proof. First we compute

|ϕ(v)|2 − |ϕad(v)|2 = 〈ϕ(v), ϕ(v)〉 − 〈ϕad(v), ϕad(v)〉
= 〈ϕ(v), (ϕad)ad(v)〉 − 〈ϕad(v), ϕad(v)〉
= 〈ϕad ◦ ϕ(v), v〉 − 〈ϕ ◦ ϕad(v), v〉
= 〈(ϕad ◦ ϕ− ϕ ◦ ϕad)(v), v〉.

Note that ϕ ◦ ϕad − ϕad ◦ ϕ is self-adjoint. Consequently, (Propositon 10.10(b)) we have

(
∀ v ∈ V : |ϕ(v)|2 = |ϕad(v)|2

)
⇔ ϕad ◦ ϕ = ϕ ◦ ϕad.

In terms of matrices, we thus have:

ϕ is normal ⇐⇒M
tr
M =MM

tr définition⇐⇒ M is normal

where M =MS,S(ϕ) for an orthonormal basis S of V .

Lemma 10.16. Let V be a hermitian space and let ϕ ∈ EndK(V ) be normal. Let a ∈ Spec(ϕ) be

an eigenvalue of ϕ.

(a) Eϕ(a) = Eϕad(a).

(b) If ϕ is self-adjoint, then a ∈ R.

(c) If ϕ is an isometry, then |a| = 1

Proof. (a) We first prove that ker(ϕ) = ker(ϕad) for any normal operator. Let v ∈ V , then,

v ∈ ker(ϕ) ⇔ ϕ(v) = 0 ⇔ |ϕ(v)| = 0
déf. normalité⇔ |ϕad(v)| = 0 ⇔ ϕad(v) = 0 ⇔ v ∈ ker(ϕad).

Now put ψ := ϕ− a · idV . This is also a normal operator:

ψ◦ψad = (ϕ−a·idV )◦(ϕ−a·idV )ad = (ϕ−a·idV )◦(ϕad−a·idV ) = ϕ◦ϕad−a·ϕad−a·ϕ+a·a·idV
= ϕad ◦ ϕ− a · ϕad − a · ϕ+ a · a · idV = (ϕ− a · idV )ad ◦ (ϕ− a · idV ) = ψad ◦ ψ.

The previous computation gives us

Eϕ(a) = ker(ϕ− a · idV ) = ker(ψ) = ker(ψad) = ker(ϕad − a · idV ) = Eϕad(a).

(b) For all v ∈ Eϕ(a) we have v ∈ Eϕ(a), hence a · v = ϕ(v) = ϕad(v) = a · v, that is, a = a and

consequently a ∈ R.

(c) For all v ∈ Eϕ(a) we have v = ϕ−1(ϕ(v)) = ϕ−1(a · v) = a · ϕ−1(v) = a · a · v = |a|2 · v,

whence |a|2 = 1.

Example 10.17. This example gives us an idea of the spectral theorem.

(a) Firstly we continue the analysis of O2 of Lemma 10.5.
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(1) Let M =
(

cos(α) − sin(α)
sin(α) cos(α)

)
. Its characteristic polynomial is

(X − cos(α))2 + sin2(α) = X2 − 2 cos(α)X + 1

whose discriminant is 4 cos2(α)−4 ≤ 0 with equality if and only if | cos(α)| = 1, if and only

if α ∈ πZ.

Consequently, if α 6∈ πZ, then M has no eigenvalue and is therefore not diagonalizable. This

is also geometrically clear since M represents the rotation by angle α that does not fix any

vector unless the angle is a multiple of π.

If α is an even multiple of π, then M = id. If α is an odd multiple of π, then M = −id.

(2) Let M =
(

cos(α) sin(α)
sin(α) − cos(α)

)
. Its characteristic polynomial is

X2 − cos2(α)− sin2(α) = X2 − 1 = (X − 1)(X + 1).

The matirx M is thus diagonalizable with eigenvalues −1 and 1. An eigenvector for the

eigenvalue 1 is given by
(

cos(α/2)
sin(α/2)

)
and the vector

(
sin(α/2)

− cos(α/2)

)
is an eigenvector for the

eigenvalue −1.

Geometrically, it is a reflexion by one axis (eigenvector for eigenvalue 1).

(b) Let M ∈ Mat3×3(R) be an orthogonal matrix. Its characteristic polynomial is monic of degree 3

and has therefore a real root λ1. By Lemma 10.16, this root is either 1 or −1. There is thus an

eigenvector v1 for the eigenvalue λ1. We can normalize it such that |v1| = 1.

By Gram-Schmidt, we can find vectors v2, v3 such that v1, v2, v3 form an orthonormal basis of R3.

Moreover, since M is an isometry, for i = 1, 2, we have

0 = 〈vi, v1〉 = 〈Mvi,Mv1〉 = λ1〈Mvi, v1〉.

This means that M sends the subspace W ≤ R3 generated by v2, v3 into itself.

If one writes the vectors v1, v2, v3 as columns in a matrixC (which is orthogonal!), we thus obtain

CtrMC =



λ1 0 0

0 a b

0 c d


 .

The matrix A :=
(
a b
c d

)
is orthogonal and belongs to O2.

If det(A) = det(M)/λ1 = 1, we have that A =
(

cos(α) − sin(α)
sin(α) cos(α)

)
for some 0 ≤ α < 2π. If

det(A) = −1, we can find a basis w2, w3 of W consisting of normalized eigenvectors: |wi| = 1

for i = 2, 3 for the eigenvalues 1,−1. Consequently, v1, w2, w3 is an orthonormal basis of R3. If

D is the (orthogonal!) matrix whose columns are these vectors, we finally have

DtrMD =



λ1 0 0

0 1 0

0 0 −1




for λ2 ∈ {1,−1}.
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11 Spectral Theorem

Goals:

• Know the spectral theorems;

• be able to compute the diagonalization of normal complex matrices, adjoint matrices;

• be able to compute the normal form of orthonormal matrices;

• know examples and be able to prove simple properties.

Let V be a hermitian space and let U,W ≤ V be two vector subspaces. We write U ⊥©W for U +W

if the sum is direct (U ⊕W ) and the two subspaces are orthogonal (U ⊥W ).

Lemma 11.1. Let V be a hermitian space and ϕ ∈ EndK(V ) normal. Then, for all distinct

a1, . . . , an ∈ Spec(ϕ), we have

Eϕ(a1) + Eϕ(a2) + · · ·+ Eϕ(an) = Eϕ(a1) ⊥©Eϕ(a2) ⊥©· · · ⊥©Eϕ(an).

Proof. In Lemma 3.10 wa have already seen that the sum of eigenspaces is direct. Let 0 6= v ∈ Eϕ(ai)

and 0 6= w ∈ Eϕ(aj) with i 6= j (i.e. w ∈ Eϕad(aj) by Lemma 10.16). We have

〈ϕ(v), w〉 = 〈aiv, w〉 = ai〈v, w〉,

but also

〈ϕ(v), w〉 = 〈v, ϕad(w)〉 = 〈v, ajw〉 = aj〈v, w〉,
whence 〈v, w〉 = 0.

We first prove the spectral theorem for normal operators with complex coefficients. The reason for

this is that in this case we have the following theorem.

Theorem 11.2 (Fundamental Theorem of Algebra). Any polynomial f ∈ C[X] of degree ≥ 1 has a

zero.

Proof. Analysis Course.

Corollary 11.3. Let 0 ( W ⊆ V be a subvectorspace and ϕ : V → V a K-linear map such that

ϕ(W ) ⊆ W . Then there exist 0 6= w ∈ W and a ∈ K such that ϕ(w) = aw. Moreover, any

eigenvalue of the restriction of ϕ|W to W is also an eigenvalue of ϕ.

Proof. Let f = carϕ|W ∈ C[X] be the characteristic polynomial of the restriction of ϕ to W . As

W 6= 0, one has deg(f) ≥ 1. Moreover, f divides carϕ (this suffices, for instance, by Lemma 7.1 (a)

and the rueles for the determinants of block matrices). This shows already that the spectrum of ϕ|W
is contained in the spectrum of ϕ. Moreover, by the fundamental theorem of algebra 11.2, the polyno-

mial f has a zero a ∈ C. Hence there exists a non-zero eigenvector w ∈W for the eigenvalue a.

Theorem 11.4 (Spectral Theorem for normal operators). Let V be a hermitian C-space of finite di-

mension and ϕ ∈ EndK(V ). The following statements are equivalent:
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(i) ϕ is normal.

(ii) V =⊥©a∈Spec(ϕ)Eϕ(a) (in particular, ϕ is diagonalizable).

(iii) V has an orthonormal basis consisting of eigenvectors for ϕ.

Proof. “(i) ⇒ (ii)”: We have already seen that W :=
⊕

a∈Spec(ϕ)Eϕ(a) is a subspace of V and

we know that the sum is orthogonal by Lemma 11.1. Corollary 9.13(b) yields the existence of on

orthogonal complement V =W ⊕W⊥. The aim is to show W⊥ = 0.

Lemma 10.16 implies that W =
⊕

a∈Spec(ϕ)Eϕad(a), whence ϕad(W ) ⊆ W . Let now v ∈ W⊥.

Then for all w ∈W ,

〈ϕ(v), w〉 = 〈v, ϕad(w)〉 = 0,

showing that ϕ(v) ∈ W⊥. Hence we can restrict ϕ to W⊥. Let f = charpolyϕ|
W⊥

∈ C[X]

be a characteristic polynomial. Assume that W⊥ 6= 0, so that deg(f) ≥ 1. By the Fundamental

Theorem of Algebra 11.2, this polynomial has a zero z ∈ C. Since charpolyϕ|
W⊥

| charpolyϕ, we

find z ∈ Spec(ϕ), whence W⊥ ∩W 6= 0, leading to a contradiction. Therefore, W⊥ = 0, as desired.

“(ii) ⇒ (iii)”: It suffices to choose an orthonormal basis of each Eϕ(a) and take the union; we will

then automatically have an orthonormal basis of V because the eigenspaces are orthogonal.

“(iii) ⇒ (i)”: Let S = s1, . . . , sn be an orthonormal basis of V consisting of eigenvectors. Let ai be

the eigenvalue associated to si (we do not require that the ai’s are two by two distinct). Thus we have

ϕ(si) = ai · si. Let 1 ≤ j ≤ n. We have

〈sj , ϕad(si)− aisi〉 = 〈sj , ϕad(si)〉 − 〈sj , aisi〉 = 〈ϕ(sj), si〉 − ai〈sj , si〉 = (aj − ai)〈sj , si〉 = 0.

Therefore (ϕad(si)− aisi) ⊥ V , whence ϕad(si) = ai · si by Lemma 10.9. The computation

ϕ(ϕad(si)) = ϕ(ai · si) = ai · ϕ(si) = ai · ai · si
ϕad(ϕ(si)) = ϕad(ai · si) = ai · ϕad(si) = ai · ai · si,

implies ϕ ◦ ϕad = ϕad ◦ ϕ, the normality of ϕ.

Let us now provide the translation in terms of matrices of the spectral theorem 11.4.

Corollary 11.5. Let M ∈ Matn×n(C) be a matrix. Then the following statements are equivalent:

(i) M is normal, i.e. M
tr ·M =M ·M tr

.

(ii) There exists a unitary matrix C ∈ Matn×n(C) such that C
tr ·M · C is a diagonal matrix.

Proof. “(i) ⇒ (ii)”: Let ϕ = ϕM be the endomorphism of Cn such thatMS,S(ϕ) =M where S is the

canonical basis (which is orthonormal for the canonical scalar product!). By Proposition 10.6 we have

M
tr
=MS,S(ϕ

ad). Therefore the hypothesis thatM is normal translates the fact that ϕ is normal. We

use Theorem 11.4 to obtain an orthonormal basis T of eigenvectors. Thus C−1
S,T ·MS,S(ϕ) · CS,T =

MT,T (ϕ) is a diagonal matrix. Recall now that the columns of C := CS,T are the vectors of basis T .

Since T is orthonormal for the canonical scalar product, we have C · Ctr
= idn and the statement is

proven.
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“(ii) ⇒ (i)”: Let C
tr ·M · C = diag(a1, . . . , an), be the diagonal matrix having a1, . . . , an on the

diagonal. First notice that

(C
tr ·MC)

tr

= C
tr ·M tr · C = diag(a1, . . . , an).

Since diagonal matrices commute, we find

(C
tr ·MC)

tr

· (Ctr ·MC) = C
tr ·M tr · C · Ctr ·MC = C

tr ·M tr ·MC

= (C
tr ·MC) · (Ctr ·MC)

tr

= C
tr ·M · C · Ctr

M
tr · C = C

tr ·M ·M tr · C,

thus M
tr ·M =M ·M tr

.

Let us now look at the case K = R.

Lemma 11.6. Let M ∈ Matn×n(R) be a matrix which we consider on C.

(a) For all µ ∈ C and all v ∈ Cn we have the equivalence: v ∈ EM (µ) ⇐⇒ v ∈ EM (µ).

(b) For µ ∈ C we have the equivalence: µ ∈ Spec(M) ⇐⇒ µ ∈ Spec(M).

(c) For µ ∈ R, the eigenspace EM (µ) ⊆ Cn has a basis in Rn.

(d) Let µ ∈ Spec(M) such that µ ∈ C \ R and let v ∈ EM (µ) such that |v| = 1.

Set x := 1√
2
(v + v), y := 1

i
√
2
(v − v) ∈ EM (µ)⊕ EM (µ).

Then |x| = 1, |y| = 1, x ⊥ y, Mx = Re(µ) · x − Im(µ) · y and My = Re(µ) · y + Im(µ) · x.

Hence, M acts on 〈x, y〉 by the matrix
(

Re(µ) Im(µ)
− Im(µ) Re(µ)

)
for the basis {x, y}.

Proof. (a) We observe: Mv = µ · v ⇐⇒ Mv = Mv = µ · v = µ · v which implies the result. (b) is

a direct consequence of (a).

(c) It suffices to show that EM (µ) admits a system of generators in Rn. Let v1, . . . , vr ∈ Cn be

a C-basis of EM (µ). Set xj = Re(vj) = 1
2(vj + vj) and yj = Im(vj) = 1

2i(vj − vj) for j =

1, . . . , r. These vectors belong to EM (µ) since so does vj for all j. Since vj = xj + iyj , the vectors

x1, . . . , xr, y1, . . . , yr generate EM (µ).

(d) First observe that v ⊥ v since EM (µ) ⊥ EM (µ) as µ 6= µ. We have

|x|2 = 〈x, x〉 = (
1√
2
)2〈v + v, v + v〉 = 1

2

(
〈v, v〉+ 〈v, v〉+ 〈v, v〉+ 〈v, v〉

)
= 1.

The calculation of |y| is similar:

|y|2 = 〈y, y〉 = (
1√
2
)2〈v − v, v − v〉 = 1

2

(
〈v, v〉+ 〈v, v〉 − 〈v, v〉 − 〈v, v〉

)
= 1.

We also have:

〈x, y〉 = i

2
〈v + v, v − v〉 = i

2

(
〈v, v〉 − 〈v, v〉+ 〈v, v〉 − 〈v, v〉

)
= 0.
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Let us now compute the action of M :

Mx =
1√
2
(Mv +Mv) =

1√
2
(µv + µv) =

1

2
√
2

(
(µ+ µ)(v + v) + (µ− µ)(v − v)

)

=
1

2
(µ+ µ)x− 1

2i
(µ− µ)y = Re(µ) · x− Im(µ) · y

My =
1

i
√
2
(Mv −Mv) =

1√
2i
(µv − µv) =

1

2i
√
2

(
(µ+ µ)(v − v) + (µ− µ)(v + v)

)

=
1

2
(µ+ µ)y +

1

2i
(µ− µ)x = Re(µ) · y + Im(µ) · x.

Corollary 11.7. Let M ∈ Matn×n(R) be a normal matrix, i.e. M tr ·M =M ·M tr.

Let λ1, . . . , λr, µ1, . . . , µs, µ1, . . . , µs for n = r + 2s and λ1, . . . , λr ∈ R and µ1, . . . , µs ∈ C \ R
be the diagonal coefficients of the matrix of Corollary 11.5. We set αi = Re(µi) and βi = Im(µi) for

1 ≤ i ≤ s.

Then, there exists an orthogonal matrix C ∈ Matn×n(R) such that

Ctr ·M · C =




λ1 0 0 0 0 0 0 0 0 0

0 λ2 0 0 0 0 0 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

0 . . . 0 λr 0 0 0 0 0 0

0 . . . . . . 0 α1 β1 0 0 0 0

0 . . . . . . 0 −β1 α1 0 0 0 0

0 . . . . . . 0 0 0
. . .

. . . 0 0

0 . . . . . . 0 0 0
. . .

. . . 0 0

0 . . . . . . 0 0 0 0 0 αs βs
0 . . . . . . 0 0 0 0 0 −βs αs




.

Proof. In view of Corollary 11.5 and Lemma 11.6, we have an orthonormal basis

w1, w2, . . . , wr, v1, v1, v2, v2, . . . vs, vs

of Cn consisting of eigenvectors for the eigenvalues

λ1, λ2, . . . , λr, µ1, µ1, µ2, µ2, . . . , µs, µs

where n = r + 2s and the property wi ∈ Rn for 1 ≤ i ≤ r is satisfied. As in the lemma, set

xj =
1√
2
(vj + vj) et yj =

1
i
√
2
(vj − vj).

Then, w1, w2, . . . , wr, x1, y1, x2, y2, . . . , xs, ys form an orthonormal basis of Rn. If this orthonormal

basis is written in the columns of C (which is then orthogonal), then C−1MC has the desired form.

This follows from the computations in Lemma 11.6.

Remark 11.8. Let M ∈ Matn×n(K) for K ∈ {R,C}. To compute the matrix C of corollaries 11.5

and 11.7, we can use the techniques that we already studied. We proceed as follows:
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(1) Compute the characteristic polynomial.

(2) Compute the eigenvalues in C (as roots of the characteristic polynomial).

(3) If M ∈ Matn×n(C), for all a ∈ Spec(M), compute a C-basis of EM (a).

(4) If M ∈ Matn×n(R), for all a ∈ Spec(M) real, compute an R-basis of EM (a), and for all

a ∈ Spec(M) not real, compute a C-basis of EM (a).

(5) Using Gram-Schmidt, compute an orthonormal basis of EM (a) (on R if the original basis is on

R) for all a ∈ Spec(M).

Note that if a ∈ C \ R and M ∈ Matn×n(R), then we obtain an orthonormal basis of EM (a) by

applying complex conjugation to the orthonormal basis of EM (a).

(6) If M ∈ Matn×n(C), write the vectors of the orthonormal bases as columns of the matrix C.

(7) If M ∈ Matn×n(R), arrange the eigenvalues of M (seen as matrix with complex coefficients) as

follows: first the real eigenvalues λ1, . . . , λr, then µ1, . . . , µs, µ1, . . . , µs ∈ C \ R.

For each vector v of the orthonormal basis of a proper spaceEM (µi) for all i = 1, . . . , s, compute

the vectors x, y as in Corollary 11.7 and obtain an orthonormal basis with real coefficients of

EM (µi)⊕ EM (µi).

Write the vectors of the real orthonormal basis of EM (λi) for i = 1, . . . , r and of EM (µi) ⊕
EM (µi) as columns of the matrix C.

Example 11.9. Let us treat a concrete example for a symmetric matrix. Let

M =




14 38 −40

38 71 20

−40 20 5


 .

Its characteristic polynomial is (X + 45)(X − 45)(X − 90).

Let us compute the eigenspaces:

EM (−45) = ker




59 38 −40

38 116 20

−40 20 50


 = 〈




2

−1

2


〉,

EM (45) = ker



−31 38 −40

38 26 20

−40 20 −40


 = 〈




4

−2

−5


〉

and

EM (90) = ker



−76 38 −40

38 −19 20

−40 20 −85


 = 〈



1

2

0


〉.
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These vectors are already orthogonal by Lemma 11.1. One can easily verify it. Thus, it suffices to

normalize them and to write them as columns of a matrix:

C =




2
3

4
3
√
5

1√
5

−1
3

−2
3
√
5

2√
5

2
3

−
√
5

3 0


 .

By construction, C is orthogonal, which can also be checked by a direct computation. We obtain by

construction (to check by computation):

CtrMC =



−45 0 0

0 45 0

0 0 90


 .

We can now state a stronger result if ϕ is self-adjoint.

Corollary 11.10. LetK ∈ {R,C}. LetM ∈ Matn×n(K) be a matrix. Then the following statements

are equivalent:

(i) M is self-adjoint (symmetric/hermitian).

(ii) There exists an isometry (unitary/orthogonal matrix) C ∈ Matn×n(K) such that C
tr ·M ·C =

diag(a1, . . . , an) with a1, . . . , an ∈ R.

Proof. “(i) ⇒ (ii)”: SinceM is self-adjoint, it is normal. We can thus apply Corollary 11.7. Moreover,

we obtain r = n and s = 0 in the notation of the corollary, since Spec(M) ⊂ R by Lemma 10.16.

“(ii) ⇒ (i)”: Let C
tr ·M · C = diag(a1, . . . , an), the diagonal matrix with a1, . . . , an ∈ R on the

diagonal. Taking the adjoint on both sides, we have C
tr ·M · C = C

tr ·M tr · C since the diagonal

matrix is invariant. Therefore, M =M
tr

.

Corollary 11.11. Let K ∈ {R,C}. Let V be a hermitian K-space of finite dimension and ϕ ∈
EndK(V ). Then the following statements are equivalent:

(i) ϕ is self-adjoint.

(ii) V =⊥©a∈Spec(ϕ)Eϕ(a) (in particular, ϕ is diagonalizable) and Spec(ϕ) ⊂ R.

(iii) V has an orthonormal basis consisting of eigenvectors for the real eigenvalues of ϕ.

Proof. We will deduce this theorem from Corollary 11.10. For this, let S be an orthonormal basis

of V . Then, ϕ is normal/self-adjoint if and only if M := MS,S(ϕ) is normal/self-adjoint (this comes

from Proposition 10.6).

“(i) ⇒ (ii)”: It suffices to apply Corollary 11.10 to the matrix M .

“(ii) ⇒ (iii)”: It suffices once again to choose an orthonormal basis in each eigenspace.

“(iii) ⇒ (i)”: Let T be the orthonormal basis in the hypothesis. Let C be the matrix whose columns

are the vectors of the basis T . Then, C
tr · MS,S(ϕ) · C is diagonal with real coefficients, hence

Corollary 11.10 tells us that MS,S(ϕ) is self-adjoint, then ϕ l’est aussi.
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Corollary 11.12. (a) Let M ∈ Matn×n(C) be an isometry. Then there exists a unitary matrix C ∈
Matn×n(C) such that C

tr
MC is diagonal and all the coefficients on the diagonal have absolute

value 1.

(b) Let M ∈ Matn×n(R) be an isometry. Then there exists an orthogonal matrix C ∈ Matn×n(R)
such that

Ctr ·M · C =




λ1 0 0 0 0 0 0 0 0 0

0 λ2 0 0 0 0 0 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

0 . . . 0 λr 0 0 0 0 0 0

0 . . . . . . 0 cos(α1) sin(α1) 0 0 0 0

0 . . . . . . 0 − sin(α1) cos(α1) 0 0 0 0

0 . . . . . . 0 0 0
. . .

. . . 0 0

0 . . . . . . 0 0 0
. . .

. . . 0 0

0 . . . . . . 0 0 0 0 0 cos(αs) sin(αs)

0 . . . . . . 0 0 0 0 0 − sin(αs) cos(αs)




where λ1, . . . , λr ∈ {−1, 1}.

Proof. (a) This is an immediate consequence of Corollary 11.5 and of Lemma 10.16.

(b) This follows from Corollary 11.7 and from Lemma 10.16 since for z ∈ C with absolute value 1

we have Re(z) = cos(α) and Im(z) = sin(α) if one writes z = exp(iα).

Part (b) is a generalization of Example 10.17.

Corollary 11.13. Let K ∈ {R,C}. Let V be a hermitian K-space of finite dimension and let ϕ ∈
EndK(V ) be an isometry.

(a) If K = C, then there exists an orthonormal C-basis S of V such that MS,S(ϕ) is diagonal and

all the coefficients on the diagonal have absolute value 1.

(b) If K = R, then there exists an orthonormal C-basis S of V such that MS,S(ϕ) is as in part (b) of

Corollary 11.12.

Proof. Its the translation of Corollary 11.12 in the case of endomorphisms.

Definition 11.14. (a) Let V be a hermitian K-space of finite dimension and let ϕ ∈ EndK(V )

autoadjoint. One says that ϕ is positive (positive definite) if the hermitian form 〈, 〉ϕ of Pro-

position 10.10 is positive (positive definite).

(b) Let M ∈ Matn×n(K) be an autoadjoint (symmetric (if K = R) or hermitian (if K = C)) matrix.

One says thatM is positive (positive definite) if the hermitian form 〈v, w〉M := vtrMw is positive

(positive definite).

Lemma 11.15. Let V be a hermitian K-space of finite dimension with orthonormal basis S and let

ϕ ∈ EndK(V ) be self-adjoint. Then:
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(a) ϕ is positive (positive definite) ⇐⇒MS,S(ϕ) is positive (positive definite).

(b) ϕ is positive ⇐⇒ Spec(ϕ) ⊆ R≥0.

(c) ϕ is positive definite ⇐⇒ Spec(ϕ) ⊆ R>0.

Proof. Exercise.

Lemma 11.16. Let M ∈ Matn×n(K) be a positive and self-adjoint matrix (symmetric (if K = R) or

hermitian (if K = C)). Then there exists a positive matrix N ∈ Matn×n(K) such that N2 = M and

NM =MN . Moreover, M is positive definite if and only if N is.

Proof. Exercise.

Theorem 11.17 (Décomposition polaire). Let V be a hermitian K-space of finite dimension and let

ϕ ∈ EndK(V ) be an isomorphism (i.e. an invertible endomorphism).

Then there exists a unique autoadjoint and positive ψ ∈ EndK(V ) and a unique isomerty χ ∈
EndK(V ) such that ϕ = χ ◦ ψ.

Proof. Existence: By one of the exercises, ϕad is also an isomorphism. Define the isomorphism

θ := ϕad ◦ ϕ. It is self-adjoint:

θad = (ϕad ◦ ϕ)ad = ϕad ◦ (ϕad)ad = ϕad ◦ ϕ = θ,

hence Spec(θ) ⊆ R by Lemma 10.16. Let us now show that it is positive definite:

〈v, v〉θ = 〈θ(v), v〉 = 〈ϕad(ϕ(v)), v〉 = 〈ϕ(v), ϕ(v)〉 = |ϕ(v)|2 > 0

for all 0 6= v ∈ V . Therefore, by Lemma 11.16 there exists positive definite ψ ∈ EndK(V ) such that

ψ2 = θ. Put χ := ϕ ◦ ψ−1. To finish the proof of existence it suffices to prove that χ is an isomerty:

χ−1 = ψ ◦ ϕ−1 = ψ−1 ◦ ψ2 ◦ ϕ−1 = ψ−1 ◦ θ ◦ ϕ−1

= ψ−1 ◦ ϕad ◦ ϕ ◦ ϕ−1 = ψ−1 ◦ ϕad = (ϕ ◦ ψ−1)ad = χad

where we used (ψ−1)ad = (ψad)−1 = ψ−1 as ψ is self-adjoint.

Uniqueness: Assume that ϕ = χ1 ◦ ψ1 = χ2 ◦ ψ2 for isometries χ1, χ2 and self-adjoint positive

definite isomorphisms ψ1, ψ2. We obtain

χ−1
2 ◦ χ1 = ψ2 ◦ ψ−1

1 =: β.

On the left hand side we have an isometry and on the right hand side a self-adjoint positive definite

endomorphism. Thus there exists an orthonormal basis S such that MS,S(β) is diagonal, and the

coefficients on the diagonal are positive reals (since β is positive self-adjoint) and of absolute value 1

(since β is an isometry). It is therefore the identity, β = id, whence χ1 = χ2 et ψ1 = ψ2.
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12 Quadrics

Goals:

• Be able to do simultaneous operations on rows and columns;

• know the link with elementary matrices;

• be able to compute a diagonal matrix using simultaneous operations on rows and columns;

• know the definition of quadrics;

• know the definition of equivalence of quadrics;

• know the classification of quadrics;

• be able to compute the type in the classification for a given quadric;

• know examples and be able to prove simple properties.

The first goal is to obtain a diagonal matrix by simultaneous operations on rows and columns of a

given matrix (be careful: this does not coincide with the diagonaloization in the previous sections)

After, we will apply the results for the classification of ’quadrics’.

Simultanoeus operations on rows and columns

We go back to the study of elementary operations (Gauß algorithm) on rows and columns (see Defini-

tion 1.39 and the following), except that we now do simultaneous operations on the rows and columns,

i.e. any operation that is done on the rows has to be done on the columns too. For instance, if we add

the third row to the fifth, then we also have to add the third column to the fifth column. The advant-

age is that a symmetric matrix will stay symmetric. Along with Lemma 1.40, we have the following

lemma.

Lemma 12.1. Let λ ∈ K, i, j, n ∈ N>0, i 6= j and M ∈ Matn×n(K).

(a) P tr
i,jMPi,j is the matrix that is obtained from M by interchanging the i-th row with j-th row and

the i-th column with the j-th column.

(b) Si(λ)
trMSi(λ) is the matrix that is obtained from M by multiplying the i-th row and the i-th

column by λ. In particular, the coefficient at (i, i) is multiplied by λ2.

(c) Qi,j(λ)
trMQi,j(λ) is the matrix that is obtained from M by adding λ times the i-th row to the

j-th row, and λ times the i-th column to the j-th column.

Proof. Il suffices to use Lemma 1.40.

Example 12.2. Let M =



1 2 3

2 4 5

3 5 6


. It is a symmetric matrix. We write the augmented matrix and

we do the operations on the rows and columns (only on the right half). We need the left half only
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if we want a real matrix C such that CMCtr (Be careful: in the above considerations, we had the

transpose at the left, here it is at the right) coincides with the matrix obtained by transforming the

rows and columns simultaneously.



1 0 0 1 2 3

0 1 0 2 4 5

0 0 1 3 5 6


 7→




1 0 0 1 2 3

−2 1 0 0 0 −1

0 0 1 3 5 6


 7→




1 0 0 1 0 3

−2 1 0 0 0 −1

0 0 1 3 −1 6




7→




1 0 0 1 0 3

−2 1 0 0 0 −1

−3 0 1 0 −1 −3


 7→




1 0 0 1 0 0

−2 1 0 0 0 −1

−3 0 1 0 −1 −3




7→




1 0 0 1 0 0

−3 0 1 0 −1 −3

−2 1 0 0 0 −1


 7→




1 0 0 1 0 0

−3 0 1 0 −3 −1

−2 1 0 0 −1 0




7→




1 0 0 1 0 0

−3 0 1 0 −3 −1

−1 1 −1/3 0 0 1/3


 7→




1 0 0 1 0 0

−3 0 1 0 −3 0

−1 1 −1/3 0 0 1/3




7→




1 0 0 1 0 0

−
√
3 0 1/

√
3 0 −

√
3 0

−
√
3

√
3 −1/

√
3 0 0 1/

√
3


 7→




1 0 0 1 0 0

−
√
3 0 1/

√
3 0 −1 0

−
√
3

√
3 −1/

√
3 0 0 1




Note that the −1 in the middle of the right half cannot be transformed into 1 since one can only mul-

tiply/divide by squares. Let C be the left half of the final matrix: C =




1 0 0

−
√
3 0 1/

√
3

−
√
3

√
3 −1/

√
3


. The

right half is the matrix obtained by simultaneous operations on the rows and columns. By Lemma 12.1,

we have the following equality (to convince yourself, you can verify it by a short computaion):

CMCtr =



1 0 0

0 −1 0

0 0 1


 .

Writing D = Ctr, we have the transpose at the left: DtrMD =



1 0 0

0 −1 0

0 0 1


.

We will now generalize what we have seen in the example.

Proposition 12.3. Let K be a field such that 1 + 1 6= 0 and let M ∈ Matn×n(K) be a symmetric

matrix. Then there is a matrix C ∈ GLn(K) such that CtrMC is a diagonal matrix.

Proof. The proof is done by induction on n. The case n = 1 is trivial (there is nothing to do). Assume

the proposition is proven for matrices of size n− 1.
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Let M =




m1,1 m1,2 . . . m1,n

m2,1 m2,2 . . . m2,n
...

...
. . .

...

mn,1 mn,2 . . . mn,n




. If M is the zero matrix, there is nothing to do. Let us

therefore suppose that M is non-zero. We will use simultaneous operations on the rows and columns.

We proceed in two steps.

(1) Transform the matrix so that m1,1 6= 0.

Case 1: there exists i such that mi,i 6= 0: In this case, we interchange the i-th and the first row and

the i-th and the first column.

Case 2: mi,i = 0 for all i = 1, . . . , n: Since M is not the zero matrix, there is i 6= j such that

mi,j 6= 0. We add the i-th to the j-th row and the i-th to the j-th column. This givesmi,j+mj,i =

2mi,j at position (j, j) and we are thus back to Case 1.

(2) By (1), we have m1,1 6= 0. For all i = 2, . . . , n, we add −m1,i/m1,1 times the first row to the i-th

row and −m1,i/m1,1 times the first column to the i-th column.

We obtain a matrix of the form




m1,1 0 . . . 0

0 m2,2 . . . m2,n
...

...
. . .

...

0 mn,2 . . . mn,n




.

The induction hypothesis applied to the remaining block of size n− 1 finishes the proof.

Corollary 12.4. The rank of a matrix is invariant under simultaneous operations on the rows and

columns.

Proof. Assume that N is obtained from M by simultaneous operations on the rows and columns. By

Proposition 12.3 we have CtrMC = N for an invertible matrix C. Since Ctr is also invertible (for

instance, since 0 6= det(C) = det(Ctr)), we have rk(N) = rk(CtrMC) = dim(im(CtrMC)) =

dim(im(CtrM)) = dim(Ctr(im(M)) = dim(im(M)) = rk(M).

Quadrics

In the whole section, let K be a field such that 1 + 1 6= 0, for instance K = R or K = C. First

recall that K[X1, X2, . . . , Xn] denotes the ring of polynomials in variables X1, X2, . . . , Xn with

coefficients in K. An element of K[X1, X2, . . . , Xn] is of the form

d1∑

i1=0

d2∑

i2=0

. . .

dn∑

in=0

ai1,i2,...,inX
i1
1 X

i2
2 . . . Xin

n .

In the sequel, we will only consider quadratic polynomials.

Definition 12.5. We call quadratic polynomial (in n variables and with coefficients inK) any element

of K[X1, X2, . . . , Xn] of the form

q(X1, X2, . . . , Xn) =
∑

1≤i≤j≤n
ai,jXiXj +

n∑

i=1

a0,iXi + a0,0.
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Example 12.6. (a) Let n = 1. Let X be the variable. Any quadratic polynomial is of the form

a1,1X
2 + a0,1X + a0,0 = a2X

2 + a1X + a0

where we relabelled the coefficients in a standard way.

(b) Let n = 2. Let X,Y be the variables. Any quadratic polynomial is of the form

a1,1X
2 + a1,2XY + a2,2Y

2 + a0,1X + a0,2Y + a0,0.

In particular, we have the following example:

(1) X2

a2
+ Y 2

b2
− 1

(2) X2

a2
− Y 2

b2
− 1

(3) X2

a2
− Y

Lemma 12.7. Let n ∈ N and letA ∈ Mat(n+1)×(n+1)(K) be a symmetric matrix. Its coefficients will

be called ai,j for 0 ≤ i, j ≤ n (note that the numeration starts at 0!). Let X̃ be the vector containing

the variables preceded by 1:

A =




a0,0 a0,1 . . . a0,n
a0,1 a1,1 . . . a1,n

...
...

. . .
...

a0,n a1,n . . . an,n



, X̃ =




1

X1
...

Xn



.

Then the polynomial

qA(X1, . . . , Xn) = X̃trAX̃ = 2
∑

1≤i<j≤n
ai,jXiXj +

n∑

i=1

ai,iX
2
i + 2

n∑

i=1

a0,iXi + a0,0

is quadratic and any quadratic polynomial arises from a unique symmetric matrix A by this formula.

Proof. Clear.

As in the preceding lemma, for x =

( x1
...
xn

)
∈ Kn, we denote x̃ =




1
x1
...
xn


, the vector x preceded

by 1.

Definition 12.8. We call quadric (in dimension n) any set

QA := QA(K) := {x ∈ Kn | x̃trAx̃ = 0} = {x ∈ Kn | qA(x) = 0}

where A is a symmetric matrix Mat(n+1)×(n+1)(K).

Example 12.9. Consider n = 2.

(1) Let A =



−1 0 0

0 1
a2

0

0 0 1
b2


. We have QA = {x ∈ R2 | X2

a2
+ Y 2

b2
− 1 = 0}. Geometrically, it

defines an ellipse.
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(2) Let A =



−1 0 0

0 1
a2

0

0 0 −1
b2


. We have QA = {x ∈ R2 | X2

a2
− Y 2

b2
− 1 = 0}. Geometrically, it

defines a hyperbola.

(3) Let A =




0 0 −1
2

0 1
a2

0
−1
2 0 0


. We have QA = {x ∈ R2 | X2

a2
− Y = 0}. Geometrically, it defines a

parabola.

We also define an augmented matrix: let C = (ci,j) ∈ Matn×n(K) be a matrix and y ∈ Kn a vector.

We set:

C̃y =




1 0 . . . 0

y1 c1,1 . . . c1,n
...

...
. . .

...

yn cn,1 . . . cn,n



.

Lemma 12.10. Let A ∈ Mat(n+1)×(n+1)(K) be a symmetric matrix and QA the associated quadric.

Let ϕ : Kn → Kn be an affinity, i.e. an application of the form

ϕ(v) = Bv +By

where B ∈ GLn(K) and y ∈ Kn. Let C̃ := ˜(B−1)−y =




1 0 . . . 0

−y1 c1,1 . . . c1,n
...

...
. . .

...

−yn cn,1 . . . cn,n




.

Then ϕ(QA) = QC̃trAC̃ . The image of a quadric by an affinity is therefore also a quadric.

Proof. The claim follows from the equality

C̃ϕ̃(x) = C̃ ˜(Bx+By) = ˜(−y + x+ y) = x̃.

We therefore obtain the equality

x̃trAx̃ = (C̃ϕ̃(x))trA(C̃ϕ̃(x)) = ϕ̃(x)
tr(
C̃trAC̃

)
ϕ̃(x),

hence x ∈ QA ⇔ ϕ(x) ∈ QC̃trAC̃ . Thus the result follows.

Definition 12.11. Let q1(X1, . . . , Xn) et q2(X1, . . . , Xn) be quadratic polynomials arising from the

symmetric matrices A,B ∈ Mat(n+1)×(n+1)(K), i.e. q1 = qA, q2 = qB .

We say that q1(X1, . . . , Xn) et q2(X1, . . . , Xn) are equivalent if there exists C ∈ GLn(K), y ∈ Kn

and 0 6= x ∈ K such that C̃y
tr
AC̃y = xB.

Thus, by Lemma 12.10 we have that if qA(X1, . . . , Xn) and qB(X1, . . . , Xn) are equivalent, then

there exists an affinity ϕ : Kn → Kn such that ϕ(QA) = QB , namely ϕ(v) = C−1v + C−1y with

the notation of the previous definition.

Our next goal is to characterize the quadrics up to equivalence. For this, we need the following

definition.
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Definition 12.12. We call system of representatives of K× modulo squares any set R ∈ K \ {0}
verifying that for all x ∈ K× there is a unique r ∈ R and y ∈ K such that x = r · y2.

Example 12.13. (a) If K = C, then R = {1} is a system of representatives of C× modulo squares.

Indeed, any element of C is a square.

(b) If K = R, then R = {−1, 1} is a system of representatives of R× modulo squares. Indeed, any

positive element of R is a square, and any negative element is minus a square.

(c) We call squarefree any integer m ∈ Z that is not divisible by any square of a prime number. Let

R = {m ∈ Z | m is squarefree }.

If K = Q, then R is a system of representatives Q× modulo squares. Indeed, one can write

a

b
= ab

1

b2
= m

(q
b

)2

where ab = mq2 for squarefree m ∈ Z. Moreover, if m = m′ ( r
s

)2
and m,m′ are squarefree,

then m′ | m; similarly, m | m′; since m and m′ have the same sign, we obtain m = m′, proving

uniqueness.

In the theorem of the classification of quadrics, we will use the following notations: For n ∈ N, the

coefficients of the symmetric matrices A ∈ Mat(n+1)×(n+1)(K) will be labelled as follows:

A =




a0,0 a0,1 . . . a0,n
a0,1 a1,1 . . . a1,n

...
...

. . .
...

a0,n a1,n . . . an,n



.

Let An denote the block of size n× n of A in the bottom-right corner:

An =



a1,1 . . . a1,n

...
. . .

...

a1,n . . . an,n


 .

In view of the definition the equivalence of two quadratic polynomials (and the equivalence of two

quadrics), we have the right to apply the following operations:

• Add the i-th row (i ≥ 2) to any other row (be careful: not valid for i = 1).

• Swap the i-th and the j-th row for i, j ≥ 2 (be careful: not valid if i = 1 or j = 1).

• Multiply the i-the row by a non-zero scalar (be careful: not valid for i = 1).

• Multiply the whole matrix by a non-zero scalar.

Lemma 12.14. Let A ∈ Mat(n+1)×(n+1)(K) be symmetric, C ∈ GLn(K) and y ∈ Kn. Then

(
C̃y

tr
AC̃y

)
n
= CtrAnC.

In particular, the rank of An is equal to the rank of
(
C̃y

tr
AC̃y

)
n

. Thus, the rank of An is invariant

under equivalence of quadratic polynomials.
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Proof. The facts that the first column of C̃y
tr

is the vector

( 1
0
...
0

)
and that the first row of C̃y is the

vector ( 1 0 ... 0 ) show the result.

Theorem 12.15 (Classification of quadrics). Let R be a system of representatives ofK× modulo

squares. Let qA(X1, . . . , Xn) be the quadratic polynomial associated to the symmetric matrix A ∈
Mat(n+1)×(n+1)(K). Let r be the rank of the matrix An.

We have the three following cases:

(I) If rk(A) = r, then there exist a2, a3, . . . , ar ∈ R such that qA(X1, . . . , Xn) is equivalent to

X2
1 + a2X

2
2 + a3X

2
3 + · · ·+ arX

2
r .

(II) If rk(A) = r + 1, then there exist a1, a2, . . . , ar ∈ R such that qA(X1, . . . , Xn) is equivalent

to a1X
2
1 + a2X

2
2 + · · ·+ arX

2
r + 1.

(III) If rk(A) = r+ 2, then r ≤ n− 1 and there exist a1, a2, . . . , ar ∈ R such that qA(X1, . . . , Xn)

is equivalent to a1X
2
1 + a2X

2
2 + · · ·+ arX

2
r + 2Xr+1.

Proof. In order to obtain these special forms, we are allowed to only use these simultaneous operations

on the rows and columns that correspond to the matrices C̃y with C being one of the matrices of

Definition 1.39 and y ∈ Kn any vector.

We proceed in more steps:

(1) In view of Lemma 12.14, Proposition 12.3 shows that using matrices C̃0, the matrix A can be

transformed into

B =




b0,0 b0,1 . . . b0,r b0,r+1 . . . b0,n
b0,1 b1,1 0 0 0 . . . 0

... 0
. . . 0 0

. . . 0

b0,r 0 . . . br,r 0 . . . 0

b0,r+1 0 . . . 0 0 . . . 0
...

...
...

...
. . .

...

b0,n 0 . . . 0 0 . . . 0




for bi,i 6= 0 for 1 ≤ i ≤ r in such a way that qA and qB are equivalent.

(2) Note that adding the i-the row (for i > 1) to the first corresponds to the matrix ĩdei−1

tr
where

ei−1 is the i− 1-th canonical vector. We can thus transform our matrix to obtain

B =




b0,0 0 . . . 0 b0,r+1 . . . b0,n
0 b1,1 0 0 0 . . . 0
... 0

. . . 0 0
. . . 0

0 0 . . . br,r 0 . . . 0

b0,r+1 0 . . . 0 0 . . . 0
...

...
...

...
. . .

...

b0,n 0 . . . 0 0 . . . 0




.
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(3) It is here where case distinctions have to be made.

(I) Assume b0,0 = b0,r+1 = b0,r+2 = · · · = b0,n = 0. In this case the rank of B (which is

equal to the rank of A) is equal tor. We could furthermore divide by b1,1 (because of the

element 0 6= x ∈ K in the definition of equivalence) to obtain

B =




0 0 . . . . . . 0 0 . . . 0

0 1 0 . . . 0 0 . . . 0
... 0 b2,2

. . .
... 0

. . . 0

0 0 0
. . . 0 0 . . . 0

0 0 . . . 0 br,r 0 . . . 0

0 0 . . . . . . 0 0 . . . 0
...

...
. . .

. . .
...

...
. . .

...

0 0 . . . 0 0 0 . . . 0




.

Finally, multiplying the i-th column and the i-th row for 2 ≤ i ≤ r by a suitable element a

in K (that is, multiplying bi,i by a2) we can choose bi,i in R. Now, qB is precisely of the

form (I) in the statement.

(II) Assume b0,r+1 = b0,r+2 = · · · = b0,n = 0, but b0,0 6= 0. In this case, the rank of B (which

is equal to the rank of A) is equal to r + 1. After division by b0,0, we obtain

B =




1 0 . . . . . . 0 0 . . . 0

0 b1,1 0 . . . 0 0 . . . 0
... 0 b2,2

. . .
... 0

. . . 0

0 0 0
. . . 0 0 . . . 0

0 0 . . . 0 br,r 0 . . . 0

0 0 . . . . . . 0 0 . . . 0
...

...
. . .

. . .
...

...
. . .

...

0 0 . . . 0 0 0 . . . 0




.

As in (I), we can achieve bi,i ∈ R for 1 ≤ i ≤ r. Now, qB is precisely of the form (II) in

the statement.

(III) Assume there exists r + 1 ≤ i ≤ n such that b0,i 6= 0. Interchanging simultaneously rows

and columns, we can first obtain b0,r+1 6= 0. Dividing the matrix by b0,r+1, we can thus put

this coefficient to be 1. Adding −b0,j times the (r+1)-th row to the j-th for r+2 ≤ j ≤ n

(which corresponds to the matrix ˜(Qr,j−1)0
tr

) we manage to annihilate b0,j for those j. We
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thus have the matrix

B =




0 0 . . . 0 0 1 0 . . . 0

0 b1,1 0 0 0 0 . . . . . . 0
... 0 b2,2 0 . . . 0

. . .
. . . 0

0 0 0
. . . 0 0 0 . . . 0

0 0 0 0 br,r 0 0 . . . 0

1 0 0 . . . 0 0 0 . . . 0

0 0 . . . . . . 0 0 0 . . . 0
...

...
. . .

. . .
...

... 0
. . .

...

0 0 . . . . . . 0 0 0 . . . 0




.

We see that the rank of B is equal to r + 2. As in (I) and (II), we can achieve bi,i ∈ R for

1 ≤ i ≤ r. Now, qB est precisely of the form (III) in the statement.

This finishes the proof.

Corollary 12.16. Let K = C. Let q(X1, . . . , Xn) ∈ C[X1, . . . , Xn] be a non-zero quadratic polyno-

mial. Then it is equivalent to a unique polynomial among the 3n− 1 polynomials listed below:

(I) X2
1 + · · ·+X2

r for 1 ≤ r ≤ n;

(II) X2
1 + · · ·+X2

r + 1 for 1 ≤ r ≤ n;

(III) X2
1 + · · ·+X2

r + 2Xr+1 for 1 ≤ r ≤ n− 1.

Proof. We know that R = {1} is a system of representatives of C× modulo squares. Hence The-

orem 12.15 implies that q is equivalent to one of the listed polynomials. The uniqueness follows

from the fact that in this case, the rank together with the type ((I), (II), (III)) is enough to uniquely

characterize the polynomial.

Our next goal is an explicit classification of real quadrics. For this, we have to show the following

theorem of Sylvester. First, we need a lemma.

Lemma 12.17. LetA ∈ Matn×n(R) be a symmetric matrix and let 〈v, w〉A := 〈Av,w〉 the symmetric

form defined by A on Rn.

(a) There exist subspaces V+, V−, V0 ≤ Rn such that

• Rn = V+ ⊥©V− ⊥©V0,

• for all 0 6= v ∈ V+, we have 〈v, v〉A > 0,

• for all 0 6= v ∈ V−, we have 〈v, v〉A < 0 et

• for all 0 6= v ∈ V0, we have 〈v, v〉A = 0.

(b) If V+, V−, V0 are subspaces having the properties in (a), then

• dimV+ is the number of positive eigenvalues of A,
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• dimV− is the number of negative eigenvalues of A et

• dimV0 is the number of 0 eigenvalues of A.

We have to count the eigenvalues with multiplicity, i.e. the number of times the eigenvalue appears

on the diagonal after diagonalization.

Proof. By the spectral theorem, we have an orthonormal basis

v1, . . . , vs, vs+1, . . . , vr, vr+1, . . . , vn

of Rn such that vi for 1 ≤ i ≤ s are eigenvectors for a positive eigenvalue, vi for s + 1 ≤ i ≤ r

are eigenvectors for a negative eigenvalue and vi for s + 1 ≤ i ≤ r are eigenvectors for the 0

eigenvalue. We take V+ to be the subspace generated by v1, . . . , vs and V− the subspace generated by

vs+1, . . . , vr and V0 the subspace generated by vr+1, . . . , vn. It is clear that all the properties of (a)

and (b) are satisfied for these spaces.

Let now V ′
+, V ′

−, V ′
0 be other spaces having the properties of (a). We show that V+ ∩ (V ′

− ⊕ V ′
0) = 0:

if 0 6= v = w− + w0 for w− ∈ V ′
− and w0 ∈ V ′

0 were a vector in the intersection, we would have

〈v, v〉A > 0 on one side and 〈w− + w0, w− + w0〉A = 〈w−, w−〉A + 〈w0, w0〉A ≤ 0 on the other

side. Hence v = 0. This shows that V+ ⊕ V ′
− ⊕ V ′

0 is a subspace of Rn, hence dimV+ ≤ dimV ′
+.

By symmetry, we also have dimV ′
+ ≤ dimV+, and thus equality. The arguments for the two other

equalities are similar.

Theorem 12.18 (Sylvester). LetA ∈ Matn×n(R) be a symmetric matrix and let C ∈ GLn(R). Then,

A and CtrAC have the same number of positive eigenvalues. The same statement holds for negative

eigenvalues.

Proof. We use the notation of Lemma 12.17 for the bilinear form 〈, 〉A. Let us first make the general

computation:

0 < 〈Cv,Cv〉A = 〈ACv,Cv〉 = 〈CtrACv, v〉 = 〈v, v〉CtrAC

for all v, w ∈ Rn. Consider C−1V+. If 0 6= v ∈ C−1V+ (hence Cv ∈ V+), then the above

computation gives 0 < 〈v, v〉CtrAC . Moreover, if w ∈ C−1V+, C
−1V−, C−1V0 are two subspaces

that satisfy the properties in (a) of Lemma 12.17 for the bilinear form 〈, 〉CtrAC . Hence the dimension

of V+ (which is the number of positive eigenvalues ofA) is equal to the number of positive eigenvalues

of CtrAC. The argument for negative eigenvalues is the same.

Corollary 12.19. Let K = R. Let q(X1, . . . , Xn) ∈ R[X1, . . . , Xn] be a non-zero quadratic polyno-

mial. Then it is equivalent to a unique polynomial among the 3n2+5n
2 − 1 polynomials listed below:

(I) X2
1 + · · ·+X2

s −X2
s+1 − · · · −X2

r for 1 ≤ s ≤ r ≤ n;

(II) X2
1 + · · ·+X2

s −X2
s+1 − · · · −X2

r + 1 for 0 ≤ s ≤ r ≤ n, 1 ≤ r;

(III) X2
1 + · · ·+X2

s −X2
s+1 − · · · −X2

r + 2Xr+1 for 0 ≤ s ≤ r ≤ n− 1, 1 ≤ r.
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Proof. We know that R = {−1, 1} is a system of representatives of R× modulo squares. Therefore

Theorem 12.15 implies that q is equivalent to one of the listed polynomials.. The uniqueness follows

from the fact that the difference between the big matrix and the rank of the block of size n in the

bottom-right corner determines the type ((I), (II), (III)). Thus it suffices to know the number of positive

eigenvalues (and negative ones) in view of Sylvester’s Theorem 12.18.

The number of polynomials of type (I) of rank r is equal to r (the sign in front of X1 is always +),

hence there exist 1 + 2 + · · · + n = n(n+1)
2 polynomials of type (I). The number of polynomials

of type (II) of rank r is equal to r + 1 (the sign in front of X1 can be 1 or −1), hence there exist

2+3+ · · ·+(n+1) = (n+1)(n+2)
2 −1 polynomials of type (II). Similarly, the number of polynomials

of type (III) of rank r is equal to r+1, but r is bounded by n− 1, hence there exist 2+3+ · · ·+n =
n(n+1)

2 − 1 polynomials of type (III). We thus obtain

n(n+ 1)

2
+

(n+ 1)(n+ 2)

2
− 1 +

n(n+ 1)

2
− 1 =

3n2 + 5n

2
− 1,

the desired number.

13 Duality

Goals:

• Master the concepts of dual space and dual application;

• know the relation to transpose matrices;

• know the definition and fundamental properties of bilinear forms;

• know the relation to the rank of rows and columns of matrices;

• know examples and be able to prove simple properties.

In this section, we introduce a theory of duality, that is valid for any field K (not only for R and C).

The main results of this section are

• the interpretation of transpose matrices as matrices representing “dual” applications;

• the rank of the columns of a matrix is equal to the rank of the rows; this is sometimes useful for

computations.

We start with the interpretation of transpose matrices as matrices representing dual applications. For

this, we first introduce the dual vector spacel V ∗ of a vector space V .

Lemma 13.1. Let V,W be two K-vector spaces.

(a) The set of K-linear applications

HomK(V,W ) := {f : V →W | f is K-linear }



105

is a K-vector space for the addition

(f + g)(v) := f(v) + g(v) for f, g ∈ HomK(V,W ) and v ∈ V

and the scalar multiplication

(x.f)(v) := x.(f(v)) = f(x.v) for f ∈ HomK(V,W ), x ∈ K and v ∈ V.

(b) Let S be a K-basis of V and f : S → W be an application. Then, there exists a unique

F ∈ HomK(V,W ) such that F |S = f , namely F (
∑

s∈S ass) =
∑

s∈S asf(s).

Proof. Simple computations.

Definition 13.2. Let V be a K-vector space. The K-vector space (see Lemma 13.1(a))

V ∗ := HomK(V,K)

is called the dual space of V .

Proposition 13.3. Let V be a K-vector space of finite dimension n.

(a) Let S = {s1, . . . , sn} be a K-basis of V . For all 1 ≤ i ≤ n, let s∗i be the unique (by Lemma

13.1(b)) element in V ∗ such that for all 1 ≤ j ≤ n we have s∗i (sj) = δi,j =

{
1 if i = j,

0 if i 6= j.

Then, S∗ := {s∗1, . . . , s∗n} is a K-basis of V ∗, called the dual basis.

(b) If V has finite K-dimension, then dimK(V
∗) = dimK(V ).

Proof. (a) Linear independence: Let 0 =
∑n

i=1 ais
∗
i with a1, . . . , an ∈ K. Then, for all 1 ≤ j ≤ n

we have

0 =
n∑

i=1

ais
∗
i (sj) =

n∑

i=1

aiδi,j = aj .

Generating: Let f ∈ V ∗. For 1 ≤ j ≤ n, set aj := f(sj) and g :=
∑n

i=1 ais
∗
i ∈ V ∗. We have

g(sj) =

n∑

i=1

ais
∗
i (sj) = aj = f(sj)

for all 1 ≤ j ≤ n, thus f = g.

(b) The dimension of V is the cardinality of any basis of V . By (a), the dual basis has the same

cardinality as any basis of V , thus the dimension of V ∗ equals the dimension of V .

Definition-Lemma 13.4. Let V,W be two K-vector spaces and ϕ : V →W be a K-linear applica-

tion. Then, the application

ϕ∗ :W ∗ → V ∗, f 7→ ϕ∗(f) = f ◦ ϕ

is K-linear. It is called the dual application of ϕ.
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Proof. Firstly we note that ϕ◦f isK-linear; but, this follows from the fact that the composition of two

linear applications is linear. Let f, g ∈W ∗ and x ∈ K. We conclude the proof by the computation

ϕ∗(x · f + g)(v) = ((x · f + g) ◦ ϕ)(v) = (x · f + g)(ϕ(v))

= xf(ϕ(v)) + g(ϕ(v)) = (xϕ∗(f) + ϕ∗(g))(v).

for any v ∈ V , whence ϕ∗(x · f + g) = xϕ∗(f) + ϕ∗(g).

Proposition 13.5. Let V,W be two K-vector spaces and ϕ : V →W be a K-linear application. Let

moreover S = {s1, . . . , sn} be a K-basis of V and T = {t1, . . . , tm} a K-basis of W . Then,

(
MT,S(ϕ)

)tr
=MS∗,T ∗(ϕ∗).

Thus, the matrix representing ϕ∗ for the dual bases is the transpose of the matrix representing ϕ.

Proof. We write

MT,S(ϕ) =




a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n




and MS∗,T ∗(ϕ∗) =




b1,1 b1,2 · · · b1,m
b2,1 b2,2 · · · b2,m

...
...

. . .
...

bn,1 bn,2 · · · bn,m



.

This means

ϕ(sj) =
m∑

i=1

ai,jti and ϕ∗(t∗k) =
n∑

i=1

bi,ks
∗
i

for all 1 ≤ j ≤ n and 1 ≤ k ≤ m. Thus, on the one hand

(ϕ∗(t∗k))(sj) = t∗k(ϕ(sj)) = t∗k(
m∑

i=1

ai,jti) =
m∑

i=1

ai,jt
∗
k(ti) = ak,j

and on the other hand

(ϕ∗(t∗k))(sj) =
n∑

i=1

bi,ks
∗
i (sj) = bj,k,

whence ak,j = bj,k, as desired.

The dual space gives rise to a natural bilinear form, as we will see in Example 13.8(b); first we make

the necessary definitions.

Definition 13.6. Let V,W be two K-vector spaces. One calls bilinear form any application

〈·, ·〉 : V ×W → K

such that

• ∀ a ∈ K ∀ v1, v2 ∈ V ∀w ∈ W : 〈av1 + v2, w〉 = a〈v1, w〉 + 〈v2, w〉 (linearity in the first

variable) and
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• ∀ b ∈ K ∀ v ∈ V ∀w1, w2 ∈ W : 〈v, bw1 + w2〉 = b〈v, w1〉+ 〈v, w2〉 (linearity in the second

variable).

Let 〈·, ·〉 : V ×W → K be a bilinear form. For a subspace V1 ≤ V , we call

V ⊥
1 := {w ∈W | ∀v ∈ V1 : 〈v, w〉 = 0} ≤W

the orthogonal complement of V1 in W .

For a subspace W1 ≤W , we call

W⊥
1 := {v ∈ V | ∀w ∈W1 : 〈v, w〉 = 0} ≤ V

the orthogonal complement of W1 in V .

We say that the bilinear form is non-degenerate if

• ∀ 0 6= v ∈ V ∃w ∈W : 〈v, w〉 6= 0 and

• ∀ 0 6= w ∈W ∃ v ∈ V : 〈v, w〉 6= 0.

In the sequel, we will write 〈v,W1〉 = 0 for ∀w ∈W1 : 〈v, w〉 = 0 (and vice-versa).

Lemma 13.7. Let V,W be two K-vector spaces and 〈·, ·〉 : V ×W → K be a bilinear form.

(a) For any subspace V1 ≤ V , the orthogonal complement of V1 in W is a subspace of W and for

any subspace W1 ≤W , the orthogonal complement of W1 in V is a subspace of V .

(b) Let W1 ≤W2 ≤W be two subspaces. Then, W⊥
2 ≤W⊥

1 .

Also: V ⊥
2 ≤ V ⊥

1 for any subspaces V1 ≤ V2 ≤ V .

(c) The bilinear form is non-degenerate if and only if W⊥ = 0 and V ⊥ = 0.

Proof. (a) Let V1 ≤ V be a subspace. Let w1, w2 ∈ V ⊥
1 , i.e., 〈v, wi〉 = 0 for i = 1, 2 and all v ∈ V1.

Thus, for all a ∈ K we have the equality

〈v, aw1 + w2〉 = a〈v, w1〉+ 〈v, w2〉 = 0,

whence aw1 + w2 ∈ V ⊥
1 . The argument for W⊥

1 is the same.

(b) Let v ∈ W⊥
2 . By definition 〈v,W2〉 = 0, hence in particular 〈v,W1〉 = 0, i.e. v ∈ W⊥

1 . The

second statement follows by the same argument.

(c) This is another way of writing the definition.

Example 13.8. (a) The application

〈·, ·〉 : Kn ×Kn → K, 〈




a1
a2
...

an



,




b1
b2
...

bn



〉 =

(
a1 a2 . . . an

)




b1
b2
...

bn




=
n∑

i=1

aibi

is bilinear and non-degenerate.
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(b) Let V be a K-vector space of finite dimension. The application

〈·, ·〉 : V ∗ × V → K, 〈f, v〉 := f(v)

is bilinear and non-degenerate.

Let S = {s1, . . . , sn} be a K-basis of V and S∗ the dual basis. Let f =
∑n

i=1 ais
∗
i ∈ V ∗ and

v =
∑n

i=1 bisi ∈ V . Then

〈f, v〉 = 〈
n∑

i=1

ais
∗
i ,

n∑

j=1

bjsj〉 =
n∑

i=1

n∑

j=1

aibj〈s∗i , sj〉 =
n∑

i=1

n∑

j=1

aibjs
∗
i (sj)

=
n∑

i=1

aibi =
(
a1 a2 . . . an

)




b1
b2
...

bn



.

We have found the bilinearity of (a).

Proposition 13.9. Let V,W be two K-vector spaces of finite dimensions and 〈·, ·〉 : V ×W → K be

a non-degenerate bilinear form.

(a) The applications

ϕ : V →W ∗, v 7→ ϕ(v) =: ϕv with ϕv(w) := 〈v, w〉,

and

ψ :W → V ∗, w 7→ ψ(w) =: ψw with ψw(v) := 〈v, w〉

are K-linear isomorphisms.

(b) dimK(V ) = dimK(W ).

Proof. The K-linearity of ϕ and ψ is clear. We show the injectivity of ϕ. For this, let v ∈ ker(ϕ),

i.e., ϕv(w) = 〈v, w〉 = 0 for all w ∈W . The non-degeneracy of the bilinear form implies that v = 0,

which proves the injectivity. From this we deduce dimK(V ) ≤ dimK(W ∗) = dimK(W ).

The same arguments applies to ψ give that ψ is injective and thus dimK(W ) ≤ dimK(V
∗) =

dimK(V ), d’où dimK(V ) = dimK(W ). Consequently, ϕ and ψ are isomorphisms (because the

dimension of the image is equal to the dimension of the target space which are thus equal).

Corollary 13.10. Let V,W be two K-vector spaces of finite dimensions.

(a) Then, the application

ψ : V → (V ∗)∗, v 7→ ψv = evv : V
∗ → K where ψv(f) = evv(f) = f(v) for f ∈ V ∗

is a K-linear isomorphism.
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(b) Let α : V →W be a K-linear application. Then, the diagram

V
α

//

ψ1

��

W

ψ2

��

(V ∗)∗
(α∗)∗

// (W ∗)∗.

is commutative, where ψ1 and ψ2 are the isomorphisms from (a), i.e. ψ2 ◦ α = (α∗)∗ ◦ ψ1.

(c) Let t1, . . . , tn be aK-basis of V ∗. Then, there exists aK-basis s1, . . . , sn of V such that ti(sj) =

δi,j for all 1 ≤ i, j ≤ n.

Proof. (a) The bilinear form V ∗ × V → K, given by 〈f, v〉 7→ f(v) from Example 13.8(b) is non-

degenerate. The application ψ is the ψ of Proposition 13.9.

(b) Let v ∈ V . On the one hand, we have (α∗)∗(ψ1(v)) = (α∗)∗(evv) = evv ◦ α∗ and on the other

hand ψ2(α(v)) = evα(v) with notations from (a). To see that both are equal, let f ∈W ∗. We have

evv(α
∗(f)) = evv(f ◦ α) = f(α(v)) and evα(v)(f) = f(α(v)),

thus the desired equality.

(c) Let t∗1, . . . , t
∗
n ∈ (V ∗)∗ be the dual basis, i.e. t∗j (ti) = δi,j for all 1 ≤ i, j ≤ n. Since ψ from (a)

is an isomorphism, there exist s1, . . . , sn (automatically a K-basis of V because it is the image of

a basis by an isomorphism) such that ψ(sj) = evsj = t∗j , thus t∗j (f) = f(sj) for all f ∈ V ∗. In

particular, we have t∗j (ti) = ti(sj) = δi,j .

Proposition 13.11. Let V,W be two K-vector spaces of finite dimensions and 〈·, ·〉 : V ×W → K a

non-degenerate bilinear form.

(a) Let S = {s1, . . . , sn} be a K-basis of V . Then, there exists a K-basis T = {t1, . . . , tn} of W

such that 〈si, tj〉 = δi,j for all 1 ≤ i, j ≤ n.

(b) For any subspace V1 ≤ V we have (V ⊥
1 )⊥ = V1.

Also: for any subspace W1 ≤W we have (W⊥
1 )⊥ =W1.

(c) For any subspace V1 ≤ V we have dimK(V ⊥
1 ) = dimK(V )− dimK(V1).

Also: for any subspace W1 ≤W we have dimK(W
⊥
1 ) = dimK(W )− dimK(W1).

Proof. (a) We consider the K-isomorphism ϕ : V → W ∗ of Proposition 13.9 and we set fi :=

ϕ(si) = ϕsi for all 1 ≤ i ≤ n. Corollary 13.10 allows us to choose a K-basis t1, . . . , tn of W such

that fi(tj) = δi,j for all 1 ≤ i, j ≤ n. Finally, we have 〈si, tj〉 = ϕsi(tj) = fi(tj) = δi,j , as desired.

(b,c) We choose a K-basis s1, . . . , sd of V1 that we extend to a K-basis

s1, . . . , sd, sd+1, . . . , sn

of V by Proposition 1.30. Using (a), we obtain a K-basis t1, . . . , tn of W such that 〈si, tj〉 = δi,j for

all 1 ≤ i, j ≤ n.
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We first show that V ⊥
1 = 〈td+1, . . . , tn〉. The inclusion “⊇” is clear. Let therefore w =

∑n
i=1 aiti ∈

V ⊥
1 , i.e. 〈V1, w〉 = 0, thus for all 1 ≤ j ≤ d we have

0 = 〈sj , w〉 = 〈sj ,
n∑

i=1

aiti〉 =
n∑

i=1

ai〈sj , ti〉 = aj ,

and therefore w ∈ 〈td+1, . . . , tn〉. Consequently, dimK(V ⊥
1 ) = n− d = dimK(V )− dimK(V1).

The same argument used for V ⊥
1 shows that 〈s1, . . . , sd〉 is a K-basis of (V ⊥

1 )⊥ which is therefore

equal to V1.

Corollary 13.12. Let V,W be two K-vector subspaces and ϕ : V →W a K-linear application. We

have the equalites

(1) im(ϕ)⊥ = ker(ϕ∗) (where ⊥ comes from the natural bilinear form W ∗ ×W → K),

(2) ker(ϕ)⊥ = im(ϕ∗) (where ⊥ comes from the natural bilinear form V ∗ × V → K),

(3) dimK(im(ϕ)) = dimK(im(ϕ∗)) and

(4) dimK(ker(ϕ)) = dimK(ker(ϕ∗)).

Proof. We firstly show (1). Let f ∈W ∗. Then

f ∈ im(ϕ)⊥ ⇔ ∀ v ∈ V : 0 = 〈f, ϕ(v)〉 = f(ϕ(v)) ⇔ f ◦ ϕ = 0 ⇔ f ∈ ker(ϕ∗),

whence (1).

We slightly adapt the arguments in order to obtain (2) as follows. Let v ∈ V . Then

v ∈ im(ϕ∗)⊥ ⇔ ∀ f ∈W ∗ : 0 = 〈ϕ∗(f), v〉 = 〈f ◦ ϕ, v〉 = f(ϕ(v)) = 〈f, ϕ(v)〉
⇔ ϕ(v) ∈W⊥ ⇔ ϕ(v) = 0 ⇔ v ∈ ker(ϕ),

whence im(ϕ∗)⊥ = ker(ϕ). Applying Proposition 13.11 we obtain im(ϕ∗) = ker(ϕ)⊥; this is (2).

By Corollary 1.38, we have dimK(V ) = dimK(im(ϕ))+dimK(ker(ϕ)). Proposition 13.11 gives us

dimK(im(ϕ)) = dimK(V )− dimK(ker(ϕ)) = dimK(ker(ϕ)
⊥) = dimK(im(ϕ∗)),

whence (3). The argument to obtain (4) is similar:

dimK(ker(ϕ)) = dimK(V )− dimK(im(ϕ)) = dimK(im(ϕ)⊥) = dimK(ker(ϕ
∗)),

which achieves the proof.

Definition 13.13. Let M ∈ Matm×n(K) be a matrix.

The rank of columns ofM is defined as the dimension of the subspace ofKm generated by the columns

of M (seen as elements of Km).

The rank of rows of M is defined as the dimension of the subspace of Kn generated by the rows of M

(seen as elements of Kn).
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Corollary 13.14. Let M ∈ Matm×n(K). Then, the rank of columns of M is equal to the rank of

rows of M . We simply talk of the rank de M .

Proof. The rank of M is the dimension of the image of ϕM , the K-linear application Kn → Km

associated to M (which sends v ∈ Kn to Mv ∈ Km). The matrix representing ϕ∗
M for the dual basis

is M tr. Thus the corollary immediately follows from Corollary 13.12 since the rank of columns of

M tr is equal to the rank of rows of M .

Example 13.15. Consider the matrix



3 5 1

1 2 3

4 7 4


. We are interested in its rank (of columns). It is

obvious that the third row is the sum of the two first rows (which are linearly independent). Thus the

rank ofM is 2. It seems more difficult to “see” a non-trivial combination of the columns, but we know

that there is one.

We finish this section with useful properties.

Proposition 13.16. Let V,W be twoK-vector subspaces of finite dimensions and 〈·, ·〉 : V ×W → K

be a non-degenerate bilinear form. Let W1 ≤W and W2 ≤W be subspaces. Then, we have

(a) (W1 ∩W2)
⊥ =W⊥

1 +W⊥
2 and

(b) (W1 +W2)
⊥ =W⊥

1 ∩W⊥
2 .

Also with V in stead of W .

Proof. (a) “⊇”: Since W1 ∩W2 ≤ Wi is a subspace for i = 1, 2, we have W⊥
i ≤ (W1 ∩W2)

⊥, thus

W⊥
1 +W⊥

2 ≤ (W1 ∩W2)
⊥ because (W1 ∩W2)

⊥ is a subspace.

(b) “⊆”: For i = 1, 2 we have Wi ≤ W1 +W2, thus we obtain (W1 +W2)
⊥ ≤ W⊥

i which implies

(W1 +W2)
⊥ ≤W⊥

1 ∩W⊥
2 .

(a) “⊆”: Combining the proven inclusions, we have

W1 ∩W2 = ((W1 ∩W2)
⊥)⊥ ≤ (W⊥

1 +W⊥
2 )⊥ ≤ (W⊥

1 )⊥ ∩ (W⊥
2 )⊥ =W1 ∩W2,

thus we have equality everywhere and, in particular, (W1 ∩W2)
⊥ =W⊥

1 +W⊥
2 .

(b) It suffices to use (a) with W⊥
1 and W⊥

2 in stead of W1 and W2 to obtain (W⊥
1 ∩ W⊥

2 )⊥ =

(W⊥
1 )⊥ + (W⊥

2 )⊥ and thus W⊥
1 ∩W⊥

2 = (W1 +W2)
⊥.

14 Quotients

Goals:

• Know and master the definition of quotient of vector spaces;

• know the isomorphism theorems and other important results;

• be able to compute in quotients of vector spaces;
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• know examples and be able to prove simple properties.

Definition 14.1. Let V be a K-vector space and W ≤ V a subspace.

Any set of the form

v +W = {v + w | w ∈W}
with v ∈ V is called affine subspace.

Two subspaces v1 +W and v2 +W are called parallel. They are thus both parallel to W .

In order to understand the sequel, it is useful to recall the definition of congruences modulo n, i.e. the

set Z/nZ (for n ∈ N≥1), learned in the lecture course Structures mathématiques. To underline the

analogy, we can write V = Z and W = nZ = {nm | m ∈ Z}.

We recall that the set

a+ nZ = {a+mn | m ∈ Z} = {. . . , a− 2n, a− n, a, a+ n, a+ 2n, . . .}

is the equivalence class of a ∈ Z for the equivalence relation defined on Z by

a ∼nZ a
′ ⇔ a ≡ a′ mod n ⇔ n | (a− a′) ⇔ a− a′ ∈ nZ ⇔ a+ nZ = a′ + nZ.

We will essentially do the same definition in the case of vector spaces.

Definition 14.2. Let V be a K-vector space and W ⊆ V a vector subspace. The binary relation on

V given by

v1 ∼W v2
definition⇐⇒ v1 − v2 ∈W

for v1, v2 ∈ V defines an equivalence relation.

The equivalence classes are the affine subspaces of the form

v +W = {v + w | w ∈W}.

The set of these classes is denoted V/W and called the set of classes following W . It is the set of all

the affine subspace that are parallel to W .

Let us also recall the ’modular’ addition, that is the addition of Z/nZ. The sum of a+nZ and b+nZ
is defined as

(a+ nZ) + (b+ nZ) := (a+ b) + nZ.

To see that this sum is well-defined, we make the fundamental observation: let a, a′, b, b′ ∈ Z such

that

a ≡ a′ mod n and b ≡ b′ mod n,

i.e.,

a+ nZ = a′ + nZ and b+ nZ = b′ + nZ

then,

a+ b ≡ a′ + b′ mod n,

i.e.,

(a+ b) + nZ = (a′ + b′) + nZ.



113

The proof is very easy: since n | (a′ − a) and n | (b′ − b), there exist c, d ∈ Z such that a′ = a+ cn

and b′ = b+ dn; thus

a′ + b′ = (a+ cn) + (b+ dn) = (a+ b) + n(c+ d)

so that, n divides (a′ + b′)− (a+ b), whence (a′ + b′) + nZ = (a+ b) + nZ. A small example:

(3 ≡ 13 mod 10 et 6 ≡ −24 mod 10) ⇒ 9 ≡ −11 mod 10.

Here comes the generalization to vector spaces. Note that it does not suffice to define an addition only,

but one also needs to define a scalar multiplication.

Proposition 14.3. Let K be a field, V a K-vector space, W ≤ V a K-vector subspace and V/W the

set of classes following W .

(a) For all v1, v2 ∈ V the class (v1 + v2) +W only depends on the classes v1 +W and v2 +W .

Thus, we can define the application, called addition,

+ : V/W × V/W → V/W, (v1 +W, v2 +W ) 7→ (v1 +W ) + (v2 +W ) := (v1 + v2) +W.

(b) For all a ∈ K and all v ∈ V , the class a.v +W only depends on the class v +W . Thus, we can

define the application, called scalar multiplication,

. : K × V/W → V/W, (a, v +W ) 7→ a.(v +W ) := a.v +W.

(c) (V/W,+, ., 0 +W ) is a K-vector space, called quotient of V by W .

(d) The application

π : V → V/W, v 7→ v +W

is K-linear and surjective with kernel ker(π) =W ; it is called natural projection.

Proof. (a) Assume v1 + W = v′1 + W and v2 + W = v′2 + W . Therefore there exist w1, w2 ∈
W such that v1 = v′1 + w1 and v2 = v′2 + w2. Then v1 + v2 = v′1 + v′2 + (w1 + w2) whence

(v1 + v2)− (v′1 − v′2) ∈W and thus (v1 + v2) +W = (v′1 + v′2) +W .

(b) Assume v + W = v′ + W . Therefore there exists w ∈ W such that v = v′ + w. Then

av = a(v′ + w) = av′ + aw whence av − av′ = aw ∈W and thus av +W = av′ +W .

(c) Standard verfication of the axioms defining a vector space (see Definition 1.1).

(d) Linearity: Let v1, v2 ∈ V and a ∈ K, then π(av1 + v2) = (av1 + v2) +W = a(v1 +W ) + (v2 +

W ) = aπ(v1) + π(v2).

Surjectivity: The class v +W is the image of v under π.

Computation of the kernel: Let v ∈ V . Then v ∈ ker(π) if and only if v +W = 0 +W = W and

this is the case if and only if v ∈W .

Theorem 14.4 (1st isomorphism theorem/Homomorphiesatz). Let K be a field and ϕ : V → Y a

K-linear application. Let W := ker(ϕ) be its kernel.
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(a) For v ∈ V , the image ϕ(v) only depends on the class v +W .

(b) Part (a) allows us to define ϕ(v +W ) := ϕ(v) for v ∈ V . This defines an application

ϕ : V/W → Y, v +W 7→ ϕ(v +W ) := ϕ(v)

which is K-linear and injective. It gives rise to a K-linear isomorphism

ϕ : V/W → im(ϕ).

Proof. (a) Let v, v′ ∈ V such that v +W = v′ +W . Then there exists w ∈W such that v = v′ +w.

We have ϕ(v) = ϕ(v′ + w) = ϕ(v′) + ϕ(w) = ϕ(v′) because ϕ(w) = 0 as w ∈W = ker(ϕ).

(b) Linearity: Let v1, v2 ∈ V and a ∈ K. We have ϕ(a(v1+W )+(v2+W )) = ϕ((av1+v2)+W ) =

ϕ(av1 + v2) = aϕ(v1) + ϕ(v2) = aϕ(v1) + ϕ(v2).

Injectivity: Let v +W ∈ ker(ϕ). Then ϕ(v +W ) = ϕ(v) = 0 whence v ∈ ker(ϕ) = W , thus

v +W = 0 +W . This shows ker(ϕ) = {0 +W}, so that ϕ is injective.

The next proposition is important because it describes the vector subspaces of quotient vector spaces.

Proposition 14.5. Let K be a field, V a K-vector space, W ≤ V a vector subspace, and π : V →
V/W the natural projection.

(a) The application

Φ : {vector subspaces of V/W} −→ {vector subspaces of V containing W},

given by X 7→ π−1(X) is bijective. The inverse Ψ of Φ is Y 7→ π(Y ).

(b) Let X1, X2 ≤ V/W be two vector subspaces. Then

X1 ⊆ X2 ⇔ Φ(X1) ⊆ Φ(X2).

Proof. (a)

• For a subspace X ≤ V/W the preimage Φ(X) = π−1(X) is indeed a vector subspace: let

v1, v2 ∈ V such that v1 ∈ π−1(X) and v2 ∈ π−1(X), then π(v1) = v1 + W ∈ X and

π(v2) = v2 +W ∈ X . Then for a ∈ K, we have aπ(av1 + v2) = π(v1)+ π(v2) ∈ X , whence

av1 + v2 ∈ π−1(X).

Moreover, π−1(W ) ⊇ π−1({0}) = ker(π) =W .

• We know by Proposition 1.36 that the images of the linear applications between vector spaces

are vector subspaces, thus Ψ(Y ) = π(Y ) is a vector subspace of V/W .

• Here is an auxiliary statement :

Let π : V → V ′ be a K-linear homomorphism between vector spaces and Y ≤ V a vector

subspace containing ker(π). Then π−1(π(Y )) = Y .
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We verify this equality:

“⊆”: Let x ∈ π−1(π(Y )), then π(x) ∈ π(Y ), i.e. π(x) = π(y) for some y ∈ Y . Therefore

0 = π(x) − π(y) = π(x − y), thus x − y ∈ ker(π) ⊆ Y , thus x − y = y′ ∈ Y , thus

x = y + y′ ∈ Y .

“⊇”: Let y ∈ Y , then π(y) ∈ π(Y ), and therefore y ∈ π−1(π(Y )).

• Let Y ≤ V be a vector subspace such that W ⊆ Y .

By the auxiliary statement we have: Φ(Ψ(Y )) = π−1(π(Y )) = Y .

• Here is another auxiliary statement:

Let π : V → V ′ be a surjective application (not necessarily between vector spaces) andX ⊆ V ′

a vector subspace. Then X = π(π−1(X)).

We verify this equality.

“⊆”: Let x ∈ X . Since π is surjective, there exists v ∈ V such that π(v) = x. Therefore

v ∈ π−1(X) and x = π(v) ∈ π(π−1(X)).

“⊇”: Let v′ ∈ π(π−1(X)). Then, there exists v ∈ π−1(X) such that v′ = π(v). But, v′ = π(v)

belongs to X since v ∈ π−1(X).

• Let X ≤ V/W be a vector subspace.

By the auxiliary statement we have: Ψ(Φ(X)) = π(π−1(X)) = X .

(b) is clear.

Proposition 14.6 (Second isomorphism theorem). LetK be a field, V aK-vector space andX,W ⊆
V vector subspaces. Then, the K-linear homomorphism

ϕ : X → (X +W )/W, x 7→ x+W,

“induces” (by the isomorphism theorem 14.4) the K-linear isomorphism

ϕ : X/(X ∩W ) → (X +W )/W, x+ (X ∩W ) 7→ x+W.

Proof. The homomorphism ϕ is obviously surjective and its kernel consists of the elements x ∈ X

such that x +W = W , thus x ∈ X ∩W , showing ker(ϕ) = X ∩W . The existence of ϕ hence

follows from a direct application of the isomorphism theorem 14.4.

Proposition 14.7 (Third isomorphism theorem). LetK be a field, V aK-vector space andW1 ⊆W2

two vector subspaces of V . Then, the K-linear homomorphism

ϕ : V/W1 → V/W2, v +W1 7→ v +W2

“induces” (by the isomorphism theorem 14.4) the K-linear isomorphism

ϕ : (V/W1)/(W2/W1) → V/W2, v +W1 + (W2/W1) 7→ v +W2.

Proof. The homomorphism ϕ is obviously surjective and its kernel consists of the elements v+W1 ∈
V/W1 such that v +W2 = W2 which is equivalent to v +W1 ∈ W2/W1. Thus ker(ϕ) = W2/W1.

The existence of ϕ thus follows from a direct application of the isomorphism theorem 14.4.
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