Nitsche's method for patch coupling

in isogeometric analysis

Qingyuan HU ${ }^{D U T, U L}$, Supervisor: Stéphane BORDAS UL

DUT Dalian University of Technology
P.R. China
UL University of Luxembourg
Luxembourg

June 6, 2017

UNIVERSITÉ DU LUXEMBOURG European Research Councill

Why do we need patch coupling

- Model complex structures

Figure: Connecting rod [V.P.Nguyen et.al. 2013]

Figure: Intersecting tubular shell [Y.Guo et.al. 2017]

Why do we need patch coupling

- Model complex structures

■ Assign various materials to sub-structures

Figure: iPHONE 6S
[www.visualcapitalist.com]

Figure: Seat frames [aeplus.com]

Why do we need patch coupling

- Model complex structures
- Assign various materials to sub-structures
- Calculate using suitable elements (dimensions)

Figure: Mixed-dimensional coupling [Y.Guo and M.Ruess 2015]

Reissner-Mindlin for sharp corners.

Figure: Simulation of metal forming [D.J.Benson et.al. 2012]

Why do we need patch coupling

- Model complex structures
- Assign various materials to sub-structures
- Choose reasonable element types (dimensions)
- Discrete model into elements of sufficient numbers

Figure: A truck door, left: commercial software results [Marco Brino 2015]

Figure: Saint Venant's Principle [V.P.Nguyen et.al. 2014]

Why do we need patch coupling: from FEM to IGA

- IGA use NURBS (non-uniform rational B-spline) instead of polynomials

Figure: Lagrange basis functions in FEM

Figure: NURBS basis functions in IGA

■ Non-interpolatory control points

Figure: Meshes and nodes in FEM

Figure: Control meshes and control points in IGA

Figure: NURBS curve

Stitching two fabrics together

Figure: Stitching fabrics [bigbgsd.blogspot.com]

Where there are displacement gaps, there should be some kind of forces to prevent the two fabrics from separation, and additional work to be done to stitching them together.

Analogy

Figure: Stitching fabrics

Figure: Patch coupling

Constraints and additional work

Constraints on interface Γ_{C}

$$
\begin{array}{ll}
u_{1}=u_{2} & \text { on } \Gamma_{C} \\
F_{1}=F_{2} & \text { on } \Gamma_{C} \tag{1b}
\end{array}
$$

Define jump and average operators

$$
\begin{align*}
& \llbracket u \rrbracket:=u_{1}-u_{2} \\
& \langle F\rangle:=\frac{1}{2}\left(F_{1}+F_{2}\right) \tag{2}
\end{align*}
$$

Additional work to be done

$$
\begin{equation*}
W_{a d d}=\langle F\rangle \llbracket u \rrbracket \tag{3}
\end{equation*}
$$

Figure: Patch coupling

Problem setup

$$
\begin{align*}
\boldsymbol{u}_{1} & =\boldsymbol{u}_{2} & & \text { on } \Gamma_{C} \tag{4a}\\
\boldsymbol{\sigma}_{1} \cdot \boldsymbol{N}_{1} & =-\boldsymbol{\sigma}_{2} \cdot \boldsymbol{N}_{2} & & \text { on } \Gamma_{C} \tag{4b}
\end{align*}
$$

Figure: Couple two patches
The jump and average operators are defined as

$$
\begin{align*}
\llbracket \boldsymbol{u} \rrbracket & :=\boldsymbol{u}_{1}-\boldsymbol{u}_{2} \\
\langle\boldsymbol{\sigma} \boldsymbol{N}\rangle & :=\frac{1}{2}\left(\sigma_{1} \boldsymbol{N}+\boldsymbol{\sigma}_{2} \boldsymbol{N}\right) \tag{5}
\end{align*}
$$

here \boldsymbol{N} is chosen to be \boldsymbol{N}_{1}.

Different from fabrics stretching

- Instead of scalar u, use vector \boldsymbol{u} for generalized cases, e.g. $\boldsymbol{u}=(u, v)^{\mathrm{T}}$ in 2D

■ Instead of forces F, use traction $\boldsymbol{\sigma}(\boldsymbol{u}) \boldsymbol{N}$, where the stress comes from displacement field

$$
\begin{equation*}
\sigma(u)=D \varepsilon(u)=D \nabla u \tag{6}
\end{equation*}
$$

and \boldsymbol{N} is the transformation matrix to collect area contribution.

Figure: $\boldsymbol{u}, \boldsymbol{n}$ and $\boldsymbol{\sigma}$

Nitsche formulation

Start from the classical weak form

$$
\begin{equation*}
a(\boldsymbol{u}, \boldsymbol{w})=L(\boldsymbol{w}) \tag{7}
\end{equation*}
$$

and introduce Nitsche contribution into the weak form

$$
\begin{equation*}
a(\boldsymbol{u}, \boldsymbol{w})-\int_{\Gamma_{C}}\langle\boldsymbol{\sigma}(\boldsymbol{u}) \boldsymbol{N}\rangle \llbracket \boldsymbol{w} \rrbracket \mathrm{d} \Gamma-\int_{\Gamma_{C}} \llbracket \boldsymbol{u} \rrbracket\langle\boldsymbol{\sigma}(\boldsymbol{w}) \boldsymbol{N}\rangle \mathrm{d} \Gamma+\alpha \int_{\Gamma_{C}} \llbracket \boldsymbol{u} \rrbracket \llbracket \boldsymbol{w} \rrbracket \mathrm{~d} \Gamma=L(\boldsymbol{w}) \tag{8}
\end{equation*}
$$

Note

- Two Nitsche terms are introduced to keep the stiffness matrix symmetric

■ Additional stabilisation parameter α to guarantee coercive (positive definite)

- Boundary integrations are performed along slave boundary
- The Nitsche contributions are made by work-conjugate pairs: for membrane element they are displacement and traction force, for thin bending plate they are rotation and bending moment

Penalty and Lagrange multiplier

Penalty method:

$$
\begin{equation*}
a(\boldsymbol{u}, \boldsymbol{w})+\frac{\alpha}{2} \int_{\Gamma_{C}} \llbracket \boldsymbol{u} \rrbracket \llbracket \boldsymbol{w} \rrbracket \mathrm{~d} \Gamma=L(\boldsymbol{w}) \tag{9}
\end{equation*}
$$

where α is the penalty parameter.
Lagrange multiplier method:

$$
\begin{equation*}
a(\boldsymbol{u}, \boldsymbol{w})+\int_{\Gamma_{C}} \boldsymbol{\lambda} \llbracket \boldsymbol{w} \rrbracket \mathrm{~d} \Gamma+\int_{\Gamma_{C}} \delta \boldsymbol{\lambda} \llbracket \boldsymbol{u} \rrbracket \mathrm{~d} \Gamma=L(\boldsymbol{w}) \tag{10}
\end{equation*}
$$

where $\boldsymbol{\lambda}$ is the vector of Lagrange multiplier.

Methods	Pros	Cons
Penalty	No increased DOFs Easy and straightforward	Depends on penalty parameter sometimes ill-conditioned
Lagrange multiplier	λ means traction Stable when satisfies LBB	Increase DOFs Not positive define
Nitsche	No increased DOFs Positive define, robust	Not parameter-free Involve constitutive equation

How do they work

Penalty method:

$$
\begin{equation*}
a(\boldsymbol{u}, \boldsymbol{w})+\frac{\alpha}{2} \int_{\Gamma_{C}} \llbracket \boldsymbol{u} \rrbracket \llbracket \boldsymbol{w} \rrbracket \mathrm{~d} \Gamma=L(\boldsymbol{w}) \tag{11}
\end{equation*}
$$

Lagrange multiplier method:

$$
\begin{equation*}
a(\boldsymbol{u}, \boldsymbol{w})+\int_{\Gamma_{C}} \boldsymbol{\lambda} \llbracket \boldsymbol{w} \rrbracket \mathrm{~d} \Gamma+\int_{\Gamma_{C}} \delta \boldsymbol{\lambda} \llbracket \boldsymbol{u} \rrbracket \mathrm{~d} \Gamma=L(\boldsymbol{w}) \tag{12}
\end{equation*}
$$

Nitsche's method:

$$
\begin{equation*}
a(\boldsymbol{u}, \boldsymbol{w})-\int_{\Gamma_{C}}\langle\boldsymbol{\sigma}(\boldsymbol{u}) \boldsymbol{N}\rangle \llbracket \boldsymbol{w} \rrbracket \mathrm{d} \Gamma-\int_{\Gamma_{C}} \llbracket \boldsymbol{u} \rrbracket\langle\boldsymbol{\sigma}(\boldsymbol{w}) \boldsymbol{N}\rangle \mathrm{d} \Gamma+\alpha \int_{\Gamma_{C}} \llbracket \boldsymbol{u} \rrbracket \llbracket \boldsymbol{w} \rrbracket \mathrm{~d} \Gamma=L(\boldsymbol{w}) \tag{13}
\end{equation*}
$$

Figure: α is spring stiffness

Slave boundary to perform boundary integration

■ Choose slave boundary that has more elements

- Choose slave boundary that has shorter edge

Figure: 2D
[V.P.Nguyen et.al. 2013]

Figure: 3D
[V.P.Nguyen et.al. 2013]

Stiffness matrix illustration

1 Calculate stiffness matrix for slave and master $\boldsymbol{K}=\sum \boldsymbol{K}_{s}+\sum \boldsymbol{K}_{m}$
[2 Calculate Nitsche contribution along coupled boundary $\boldsymbol{K}+=\sum \boldsymbol{K}_{N}$

Stabilisation parameter α

1 Solve generalized eigenvalues $\boldsymbol{\lambda}$ along coupled boundary $\boldsymbol{K}_{N} \boldsymbol{u}_{c}=\lambda \boldsymbol{K} \boldsymbol{u}_{c}$
$2 \alpha=2 \max (\lambda)$ ref A.Apostolatos et.al. IJNME. 2013

Bending plate

Figure: Bending plate

Vibration square plate

Figure: Square plate

Figure: Meshes

Vibration square plate

Clamped plate and errors [X.Du et.al. 2015]

Connecting rod [V.P.Nguyen et.al. 2014]

Intersecting tubular shell [Y.Guo et.al. 2017]

