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Part	0.	Enrichment	of	the	finite	element	method 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Enrichment

• When	the	standard	finite	element	method	is	unable	to	
efficiently	reproduce	certain	features	of	the	sought	soludon:	

1. Discondnuides	 	 -		 cracks,	material	interfaces	
2. Large	gradients	 	 -		 yield	lines,	shock	waves	
3. Singularides	 	 -		 notches,	cracks,	corners	
4. Boundary	layers	 	 -		 fluid-fluid,	fluid-solid	
5. Oscillatory	behavior	 -		 vibra$ons,	impact	

• The	approximadon	space	can	be	extended	by	introducing	of	an	
a	priori	knowledge	about	the	sought	soludon,	and	thereby:	

1. Rendering	the	mesh	independent	of	any	phenomena	
2. reducing	error	of	the	approximadon	locally	and	globally	
3. improving	convergence	rates



Strong	discon0nui0es	

• The	primal	field	of	the	soludon	is	discondnuous,	e.g.	cracks	
lead	to	strong	discondnuides	in	the	displacement	field.	

Weak	discon0nui0es	

• The	first	derivadve	of	the	soludon	is	discondnuous,	e.g.	
discondnuides	in	the	strain	field	through	a	material	interface.

Classifica0on	of	discon0nui0es



Global	enrichment	

• The	enrichment	is	employed	on	the	global	level,	over	the	en0re	domain.		
• Useful	for	problems	that	can	be	considered	as	globally	non-smooth	e.g.	

high-frequency	soludons	(Helmholtz	equadon)	

Local	enrichment	

• This	enrichment	scheme	is	adopted	locally,	over	a	local	subdomain.	
• Useful	for	problems	that	only	involve	locally	non-smooth	phenomena,	e.g.	

soludons	with	discondnuides.	

Classifica0on	of	enrichments



Extrinsic	enrichment	
• Associated	with	addidonal		degrees	of	freedom	and	addidonal	shape	

funcdons	to	augment	the	standard	approximadon	basis.	

1. Extended	finite	element	method	(XFEM)		 -	Moës	et	al.		 (1999)	
2. Generalised	finite	element	method	(GFEM)		-	Strouboulis	et	al.		 (2000a)	
3. Enriched	element	free	Galerkin	 	 -	Ventura	et	al.		 (2002)			
4. 	hp	–	clouds	(Meshless/Hybrid)	 	 -	Duarte	and	Oden		 (1996)	

Intrinsic	enrichment		
• Not	accompanied	by	addidonal	degrees	of	freedom.	Instead,	some	standard	

funcdons	are	replaced	with	special	(problem	specific)	funcdons.	

1. Enriched	moving	least	squares	(Meshless)	 -	Fleming	et	al.		 (1997)	
2. Enriched	weight	funcdon	(Meshless)	 	 -	Duflot	et	al.	 (2004b)	
3. Intrinsic	parddon	of	unity	methods	 		 -	Fries,	Belytschko	 (2006)	
4. Elements	with	embedded	discondnuides	 	 	

	

Classifica0on	of	enrichments



Singular	elements	(Barsoum,	1974)

	

regular	nodesquarter	nodes

crack	surfaces



	

Par00on	of	unity	finite	element	method	(PUFEM)



	

Par00on	of	unity	finite	element	method	(PUFEM)



	

Par00on	of	unity	finite	element	method	(PUFEM)



	

standard	FE PU	enriched

Par00on	of	unity	finite	element	method	(PUFEM)



Par00on	of	unity	finite	element	method	(PUFEM)



The	Generalised	Finite	Element	Method	(GFEM)

References:	
• Melenk		 										 (1995)	
• Melenk	and	Babuška			 (1996)	
• Strouboulis	et	al.										 (2000)

	



The	Extended	Finite	Element	Method	(XFEM)

References:	
• Belytschko	and	Black	 (1999)	
• Moës	et.	al.	 		 (1999)	
• Dolbow	 									 (1999)

XFEM	

• Associated	with	local	discondnuous	PU	enrichment	e.g.:	

a. propagadon	of	cracks	
b. evoludon	of	dislocadons	
c. phase	boundaries	

• Both	GFEM	and	XFEM	are	essendally	idendcal	in	their	
applicadon,	i.e.	extrinsic	PU	enrichment



GFEM/XFEM

Formula0on	for	crack	growth:

singular	dp	
enrichment

discondnuous	
enrichment

standard	part

Enriched nodes 
     - discontinuous 
     - singular
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I M A M  Extended finite element method (XFEM) 

classical enriched

Heaviside function
Asymptotic fields

http://www.researcherid.com/rid/A-1858-2009
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I M A M  Selec0on	of	enriched	nodes

enriched

Heaviside function 

Asymptotic fields

Standard FEM mesh

ENRICHED NODES

Tip

Interior
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Part	I.	Some	recent	advances	in	enriched	FEM 

 

 

1



M A M 
Institute of Mechanics  
& Advanced MaterialsI

19

Handling	discon0nui0es	in	isogeometric	
formula0ons 

with	Nguyen	Vinh	Phu,	Marie	Curie	Fellow 

 

  1



PUM	enriched	methods	

Discon0nui0es	modeling	

• IGA:	link	to	CAD	and	
accurate	stress	fields	

•XFEM:	no	remeshing
20

Mesh	conforming	methods	

• IGA:	link	to	CAD	and	
accurate	stress	fields	

•Apps:	delaminadon



PUM	enriched	methods	(XIGA)	

1. E.	De	Luycker,	D.	J.	Benson,	T.	Belytschko,	Y.	Bazilevs,	and	M.	C.	Hsu.	X-FEM	in	
isogeometric	analysis	for	linear	fracture	mechanics.	IJNME,	87(6):541–565,	
2011.		

2. S.	S.	Ghorashi,	N.	Valizadeh,	and	S.	Mohammadi.	Extended	isogeometric	
analysis	for	simuladon	of	stadonary	and	propagadng	cracks.	IJNME,	89(9):
1069–1101,	2012.		

3. D.	J.	Benson,	Y.	Bazilevs,	E.	De	Luycker,	M.-C.	Hsu,	M.	ScoT,	T.	J.	R.	Hughes,	and	
T.	Belytschko.	A	generalized	finite	element	formuladon	for	arbitrary	basis	
funcdons:	From	isogeometric	analysis	to	XFEM.	IJNME,	83(6):765–785,	2010.		

4. A.	Tambat	and	G.	Subbarayan.	Isogeometric	enriched	field	approximadons.	
CMAME,	245–246:1	–	21,	2012.	
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NURBS	basis	funcdons enrichment	funcdons



Delamina0on	analysis	with	cohesive	elements	(standard	approach)

Z

⌦
�u · bd⌦+

Z

�t

�u · t̄d�t =

Z

⌦
�✏ : �(u)d⌦+

Z

�d

�JuK · tc([[u]])d�d

• No link to CAD
• Long preprocessing
• Refined meshes 



Isogeometric	cohesive	elements

1. C.	V.	Verhoosel,	M.	A.	ScoT,	R.	de	Borst,	and	T.	J.	R.	Hughes.	An	isogeometric	
approach	to	cohesive	zone	modeling.	IJNME,	87(15):336–360,	2011.		

2. V.P.	Nguyen,	P.	Kerfriden,	S.	Bordas.	Isogeometric	cohesive	elements	for	two	
and	three	dimensional	composite	delaminadon	analysis,	2013,	Arxiv.

Knot	inser0on

quadratic basis



Isogeometric	cohesive	elements:	advantages

•	Direct	link	to	CAD	
•	Exact	geometry	
•	Fast/straighsorward	generadon	  
				of	interface	elements	
•	Accurate	stress	field	
•	Computadonally	cheaper

•	2D	Mixed	mode	bending	test	(MMB)		
•	2	x	70	quardc-linear	B-spline	elements	
•	Run	dme	on	a	laptop	4GBi7:	6	s	
•	Energy	arc-length	control	

V.	P.	Nguyen	and	H.	Nguyen-Xuan.	High-order	B-splines	based	finite	elements	for	delaminadon		
analysis	of	laminated	composites.		Composite	Structures,	102:261–275,	2013.	



Isogeometric	cohesive	elements:	2D	example

•Exact	geometry	by	NURBS	+	direct	link	to	CAD	
• It	is	straighsorward	to	vary	
				(1)	the	number	of	plies	and	
				(2)	#	of	interface	elements:	
•	Suitable	for	parameter	studies/design		
•	Solver:	energy-based	arc-length	method	(Guderrez,	2007)	
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Isogeometric	cohesive	elements:	2D	example

27



Isogeometric	cohesive	elements:	3D	example	with	shells

•Rotadon	free	B-splines	shell	elements	(Kiendl	et	al.	CMAME)	
•	Two	shells,	one	for	each	lamina	
•	Bivariate	B-splines	cohesive	interface	elements	in	between	



Isogeometric	cohesive	elements:	3D	examples

•	cohesive	elements	for	3D	
meshes	the	same	as	2D	
•	large	deformadons	



Isogeometric	cohesive	elements

•	singly	curved	thick-wall	laminates	
•	geometry/displacements:	NURBS	
•	trivariate	NURBS	from	NURBS	surface(*)	
•	cohesive	surface	interface	elements

(*)V. P. Nguyen, P. Kerfriden, S.P.A. Bordas, and T. Rabczuk. An integrated design-analysis 
framework for three dimensional composite panels. Computer Aided Design, 2013. submitted.



Non-matching	interface	elements	for	delaminadon	and	contact

31



Non-matching	interface	elements	for	delaminadon	and	contact
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Non-matching	interface	elements	for	delaminadon	and	contact
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Weak	form
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The interface elements are of zero thickness.



2D	uniaxial	tension	test
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3D	uniaxial	tension
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2D	peeling	test
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2D	peeling	test
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2D	peeling	test
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2D	peeling	test	F(D)	curves
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2D	peeling	test	-	role	of	integradon
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3D	peeling	test

43



Fibre-reinforced	composite	-	debonding
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Non-matching	interfaces

45



Fibre-debonding	

46



Conclusions

‣ Incompadble/non-matching	elements	
‣ Small	strain	interfacial	fracture	
- No	need	for	conforming	meshes	along	the	interface	
- non-matching	interface	
- no	high-dummy	sdffness	
- fewer	elements	(up	to	twice	as	fast)	
- Newton-Cotes	integradon	leads	to	premature	failure

47



Third	medium	contact	formuladon,	Wriggers

A	finite	element	method	for	contact	using	a	third	medium	P.	Wriggers	·	J.	Schröder	·	A.	Schwarz	
Comput	Mech	(2013)	52:837–847		

48



Gap	funcdon

49



Contacts	as	interfaces

50



•Nitsche	coupling	-	NURBS-NURBS

Future	work:	model	selecdon	(condnuum,	plate,	beam,	shell?)

51

Model	selec0on		
•	Model	with	shells	
•	Idendfy	“hot	spots”	-	dual		
•	Couple	with	condnuum		
•	Coarse-grain	
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Extended	finite	element	method	with	smooth	
nodal	stress	for	linear	elas0c	crack	growth 

with	Xuan	Peng,	PhD	student 

 

  1



Double-interpola0on	finite	element	method	(DFEM)

ØThe	construc0on	of	DFEM	in	1D

Provide												at	
each	node	

The	first	stage	of	
interpoladon:	tradidonal	FEM

Discredzadon

The	second	stage	of	
interpoladon:	reproducing	

from	previous	result

																										are	Hermidan	basis	funcdons
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Double-interpola0on	finite	element	method	(DFEM)

For	node	I, the	
support	elements	

are:	 

ØCalcula0on	of	average	nodal	deriva0ves

Weight	funcdon	of					:

Element	length	 

In	element	2,	we	use	linear	
Lagrange	interpoladon: 
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Double-interpola0on	finite	element	method	(DFEM)

The							can	be	further	rewriTen	as:

Subsdtudng								and							into	the	second	stage	of	interpoladon	
leads	to:
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Shape	funcdon	of	
DFEM	1D	

Derivadve	of	Shape	
funcdon



57

Double-interpola0on	finite	element	method	(DFEM)

Same	procedure	for	2D	triangular	elements

First	stage	of	interpoladon	(tradidonal	FEM):	

Second	stage	of	interpoladon	:	

																																																														are	the	basis	funcdons	
with	regard	to		
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Double-interpola0on	finite	element	method	(DFEM)

Calcula0on	of	Nodal	deriva0ves:
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Double-interpola0on	finite	element	method	(DFEM)

Calcula0on	of	weights:

The	weight	of	triangle	i	in	support	
domain	of	I	is:
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Double-interpola0on	finite	element	method	(DFEM)

The	basis	func0ons	are	given	as	(node	I):

Area	of	triangle

																																are	funcdons	w.r.t
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Double-interpola0on	finite	element	method	(DFEM)

Shape	func0ons
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The	enriched	DFEM	for	crack	simula0on

DFEM	shape	funcdon
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Numerical	example	of	1D	bar

E:	Young’s	Modulus 

A:	Area	of	cross	secdon 

L:Length

Problem	definidon: Analydcal	soludons:

Displacement(L2)	and	energy(H1)	norm Rela0ve	error	of	stress	distribu0on



64

Numerical	example	of	Can0lever	beam

Analydcal	soludons
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Numerical	example	of	Can0lever	beam

Mode-I crack results: 

a) explicit crack (FEM); 

b) only Heaviside enrichment; 

c) full enrichment
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Numerical	example	of	crack	propaga0on

crack
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Numerical	example	of	crack	propaga0on



68

Conclusions

üSuperconvergence in elasticity problems 

üHigher accuracy than XFEM in fracture problems 

üConsistent with XFEM in terms of crack evolution 

üSmooth nodal stress without post-processing
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Stabilised	 
generalised/extended	FEM	

with	Daniel	Paladim,	Marie	Curie	Fellow
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Problem:	In	XFEM/GFEM,	the	enrichment	funcdon	is	not	correctly	
reproduced	in	the	elements	that		have	enriched	and	non-enriched	
nodes	(blending).	

Stable	generalized	FEM

Enriched	node

Interface
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Solu0on:	Corrected-XFEM	by	Fries	(2008).	Corrected	XFEM,	
subsdtutes	f(x)	by	R(x)f(x),	where	R(x)	is	the	ramp	funcdon.	A	
condnuous	funcdon	whose	value	is	1	in	the	enriched	elements,	0	in	
the	non-enriched	elements	and	it	varies	condnuously	between	0	and	
1.	

Stable	generalized	FEM

Non-enriched	nodes

Enriched	nodes

Ramp	funcdon
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More	solu0ons	

•Suppressing	blending	elements	by	coupling	enriched	and	standard	
regions.	Laborde	et	al.	(2005)	Gracie	et	al(2008)	

•Hierarchical	shape	funcdons	in	blending	elements.	Chessa	et	al	
(2003)	Tarancón	et	al.	(2009)	

•Assumed	strain	blending	elements.	Chessa	et	al.	(2003)	Gracie	et	al.

Stable	generalized	FEM
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Another	solu0on:	Stable	GFEM	by	Babuška	and	Banerjee	(2012).	

In	SGFEM,	the	enrichment	funcdon	f(x)	is	subsdtuted	by	the	following	
funcdon	f(x)-ΣNi(x)f(xi).	It	is	to	say	f	minus	its	nodal	interpoladon.	

In	the	case	that	f(x)=|φ(x)|,	where	φ	is	the	level	set	of	the	interface	
we	are	trying	to	represent,	we	obtain	the	funcdon	introduced	by	
Moës	in		2003.

Stable	generalized	FEM
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Problem:	The	sdffness	matrix	of	GFEM/XFEM	could	be	ill-
condidoned.	This	is	usually	the	case	when	the	interface	is	very	close	
to	a	node.		

Stable	generalized	FEM

•Ill-condidoning	reduces	the	accuracy	when	direct	solvers	are	used	
(due	to	round-off	errors).	

•In	iteradve	solvers,	more	iteradons	are	required	to	bring	the	error	
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Solu0on:	A	precondidoner.	Menk	and	Bordas	(2011)	proposed	a	
precondidoner	for	GFEM/XFEM.		

Stable	generalized	FEM

•Very	robust	to	interfaces	passing	close	to	nodes.	
•Can	be	parallelized.	
•Not	very	easy	to	implement.	Tuning	is	needed.
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Basic	idea	The	domain	is	divided	only	for	the	enriched	DOFs.

Stable	generalized	FEM
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Another	solu0on	

•SGFEM,	if	2	assump$ons	hold,	a	s$ffness	matrix	with	condi$on	a	
number	similar	to	FEM	is	generated	

•Node	clustering	

Stable	generalized	FEM
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One	1-D	bimaterial	bar.	The	exact	soludon	is	in	the	finite	domain	

Stable	Generalised	FEM
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Circular	inclusion

Stable	Generalised	FEM
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Infinite	plate	with	crack	in	tension.	Displacements	prescribed	along	

Stable	Generalised	FEM
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Edge	crack	in	tension

Stable	Generalised	FEM
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Work	in	progress	

Development	of	3D	examples	

•Spherical	inclusion	

•Several	spherical	inclusions	

•Cracks	in	3D

Stable	Generalised	FEM
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All	those	examples	were	implemented	within	Diffpack.	Diffpack	is	a	
commercial	so�ware	library	used	for	the	development	numerical	
so�ware,	with	main	emphasis	on	numerical	soludons	of	pardal	
differendal	equadons.	It	was	developed	in	C++	following	the	object	
oriented	paradigm.	

The	library	is	mostly	oriented	to	the	implementadon	of	the	finite	
element	method,	however	it	has	tools	for	other	methods,	such	as	

Stable	generalized	FEM
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