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Motivation: IsoGeometric Analysis (IGA)

Tight link between CAD and analysis

The same basis functions, which are used in CAD to
represent the geometry, are used in the IGA as shape
functions to approximation the unknown solution

Geometry is exact at any stage of the solution refinement
process

Better accuracy per DOF in comparison with standard
FEM

Additional advantages, such as higher continuity of splines,
makes IGA applicable for PDEs of higher order
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Disadvantages of IsoGeometric Analysis (IGA)

Gaps can occur when different geometrical pieces are joined

Additional coupling mechanisms are required for
multi-patch geometries

Tensor-product structure of NURBS does not allow local
refinement
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IGA: tight link between CAD and analysis

Standard FEM: CAD model → FEM software → mesh →
analysis → communicate with CAD model to remesh →
analysis →....
IGA: CAD model as an input for analysis

*Image from http://www.itaps.org/tools/services/adaptive-loops.html

http://www.itaps.org/tools/services/adaptive-loops.html
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IGA: NURBS as basis functions:

B-Splines are piecewise polynomials of degree p defined over a
knot vector:

Σ = {ξ0, ξ0, ξ0, ξ0︸ ︷︷ ︸
p + 1 times

, ξ1, ξ2, ...., ξn+p+1, ξn+p+1, ξn+p+1, ξn+p+1︸ ︷︷ ︸
p + 1 times

}

as

Ni,0(ξ) =

{
1, if ξi ≤ ξ ≤ ξi+1

0, otherwise
(1)

Ni,p(ξ) =
ξ − ξi
ξi+1 − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (2)
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NUBRS as basis functions:

Non-Uniform Rational BSplines (NURBS)

Ri,p =
Ni,pwi

n∑
j=1

Nj,pwj

, (3)

where wi are the weights associated with each basis function.
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Example: Σ = {0, 0, 0, 0, 0.6, 0.6, 0.6, 1, 1, 1, 1} with weights {1, 1, 1, 0.75, 1, 1, 1} and degree

p = 3.
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NURBS as basis functions:

In 2D:

Σ = {ξ0, ξ0, ξ0, ξ0, ξ1, ξ2, ...., ξn+p+1, ξn+p+1, ξn+p+1, ξn+p+1}

Π = {η0, η0, η0, η0, η1, η2, ...., ηm+q+1, ηm+q+1, ηm+q+1, ηm+q+1}
Ni,j,p,q(ξ, η) = Ni,p(ξ)Nj,q(η)

Ri,j,p,q(ξ, η) =
Ni,p(ξ)Nj,q(η)wi,j

n∑
k=1

m∑
l=1

Nk,p(ξ)Nl,q(η)wk,l
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NURBS as basis functions

NURBS curve: x(ξ) =
n∑

i=1
CiRi,p(ξ)

set of control points Ci

with associated weights wi

a set of NURBS basis functions Ri,p(ξ)
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NURBS as basis functions

NURBS surface: x(ξ, η) =
n∑

i=1

m∑
j=1

Ci,jRi,j,p,q(ξ, η)

set of control points Ci,j

with associated weights wi,j

a set of NURBS basis functions Ri,j,p,q(ξ, η)
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Knot insertion and degree elevation

Knot insertion consists in adding a knot value k times to knot
vector Σ and updating the corresponding control points and
weights such that the parameterizations given by {Ci, wi, Ri(ξ)}
and {C ′

i , w
′
i, R

′
i,j(ξ)} follow the property:

x(ξ) =

n∑
i=1

CiRi,p(ξ) =

n+k∑
i=1

C
′
iR

′
i,p(ξ)

Degree elevation consists in re-parameterizing the NURBS
curve of degree p by NURBS basis functions of degree p+ t such
that

x(ξ) =

n∑
i=1

CiRi,p(ξ) =

n+t∑
i=1

C
′
iR

′
i,p+t(ξ)

*Knot insertion and degree elevation are the fundamental
operations for h− and p−refinement in IGA, which preserve
geometry exactness.
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What is “I” in the IGA?

CAD model

(surface for 2d or volume for 3d) Knot vectors and control points:

0.5 1
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η
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What is “I” in the IGA?

on each element: global assembly:

x =
Ne∑
n=1

Ce
iNi(ξ, η)

u =
Ne∑
n=1

U e
i Ni(ξ, η) KU = f

KeU e = f e
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What is “I” in the IGA?

refinement: on each element:

x =
Ne∑
n=1

Ce
iNi(ξ, η)

u =
Ne∑
n=1

U e
i Ni(ξ, η)

0.5 1
ξ

0.5
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η

KeU e = f e
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What is “I” in the IGA?

Isogeometric means that the same shape functions are used on
each element to represent the geometrical variables x and the
field u:

x =

Ne∑
n=1

Ce
iNi(ξ, η)

u =

Ne∑
n=1

U e
i Ni(ξ, η)
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What is the difference between “iso-geometric” and
“iso-parametric”?

In the standard FEM iso-parametric elements are used to
approximate both, the field and the computational domain,
while in the IGA, refinement does not improve geometry
parameterization (it remains exact and equivalent to the
original model at each refinement stage), therefore geometry
refinement is redundant.
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Are NURBS always the best choice to approximate the
solution?

Rational functions

No local refinement
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What can we improve?

Keep the exact representation of the geometry

Choose more suitable approximation for the field
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Patch test: will it pass or fail?

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

 

 

 

Laplace eqn:
∆u = 0, in Ω
u|∂Ω(x, y) = 1 + x+ y.

Elasticity eqn:
σij,j = 0, in Ω
ti = σ0ni at r = 1, 2,
u2 = 0, t1 = 0 at θ = 0,
u1 = 0, t2 = 0 at θ = π/2,
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Patch test: will it pass or fail?

Quarter annulus parameterizations:
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Q0 A1 C1

Σ = [0, 0, 1, 1] Σ = [0, 0, 2/3, 1, 1] Σ = [0, 0, 2/3, 1]
Π = [0, 0, 0, 1, 1, 1] Π = [0, 0, 0, 1/8, 1, 1, 1] Π = [0, 0, 0, 1/8, 1, 1, 1]

B1

Σ = [0, 0, 0.17, 1, 1]
Π = [0, 0, 0, 0.81, 1, 1, 1]

D1 (B-Splines)

Σ = [0, 0, 2/3, 1, 1]
Π = [0, 0, 0, 1/8, 1, 1, 1]
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Five types of geometry parametrization

Q0 : the coarsest parameterization (single element)
necessary to represent the geometry,

A1 : uniform parametrization (four elements), obtained by
the refinement of Q0 with knot insertion at 2/3 and 1/8

B1 : uniform parametrization (four elements), obtained by
the refinement of Q0 with knot insertion at 0.17 and 0.81

C1 : non-uniform parametrization (four elements),
obtained from A1 by moving the internal points randomly

Bases A2, B2, C2, are obtained by elevating degree in both
directions by 1 of A1, B1, and C1, respectively.

D1 (B-Splines): uniform parametrization (four elements),
obtained from A1 by setting all the weights to 1

Bases D0 and D2 are obtained from D1 by reducing and
elevating (respectively) degrees in both directions.
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T `
Gi,Sj

Laplace Eq. Elasticity Eq.

T0
Q0,A1

1.3815e-15 3.0871e-14

T0
Q0,A2

5.2147e-15 1.7986e-14

T0
Q0,C1

0.0182 0.0050

T0
Q0,C2

0.0023 0.0012

T1
A1,A1

1.0023e-15 1.1675e-14

T1
A1,A2

4.3958e-14 1.2547e-14

T1
A2,A1

1.4059e-15 1.5525e-15

T2
B1,A1

1.4755e-15 2.9941e-15

T2
B1,A2

2.1639e-15 1.2118e-14

T2
B2,A1

1.0144e-15 5.4590e-15

T3
C1,C1

1.1061e-15 1.6439e-14

T3
C1,C2

1.8263e-15 2.8737e-15

T3
C2,C1

1.2062e-15 5.6517e-14

T4
C1,A1

0.0203 0.0085

T4
C1,A2

0.0016 0.0009

T4
C2,A1

0.0203 0.0085

T5
A1,D1

0.0188 0.0214

T5
A1,D2

0.0121 0.0039

T5
A1,D0

0.5418 0.1411

Table 1: Results of various patch tests, denoted by T . Superscript `
denotes the test case, Gi denotes the bases for the geometry, and Sj

denotes the bases for the solution approximation
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Conclusion from the patch test studies

Any of the following combination of bases, which are equal up
to operations of knot insertion or degree elevation, pass the
patch test

Geometry by Q0, together with Ai or Bi for the solution

Geometry by Ai and solution by Aj

Geometry by Bi and solution by Aj

Geometry by Ci and solution by Cj

Patch test for

A mixture of Ci with either of Q0, Ai or Bi fails because Ci can
not be obtained from these bases (only internal points randomly
moved)
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Convergence studies
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Laplace eqn:
∆u = 0, in Ω
u|∂Ω(x, y) = r−3 cos 3θ.

Elasticity eqn:
σij,j = 0, in Ω
ti = σ1ni at r = 1,
ti = σ2ni at r = 2,
u2 = 0, t1 = 0 at θ = 0,
u1 = 0, t2 = 0 at θ = π/2,
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Numerical examples: Example 1 - Laplace

Convergence studies for various combinations of bases

For exact representation of the geometry, all combinations of
bases, including those which fail the patch test, deliver the
optimal convergence

1.00e-07

1.00e-06

1.00e-05

1.00e-04

1.00e-03

1.00e-02

1.00e-01

0.01 0.1 1 10

1

2

1

3

lo
g
(||
e|
| L

2
(Ω

))

log(h)

(Q0, A1)
(A1, A1)
(A2, A1)
(B1, A1)
(B2, A1)
(Q0, A2)
(A1, A2)
(B1, A2) 1.00e-07

1.00e-06

1.00e-05

1.00e-04

1.00e-03

1.00e-02

1.00e-01

0.01 0.1 1 10

1

2

1

3

lo
g
(||
e|
| L

2
(Ω

))

log(h)

(Q0, C1)
(C1, C1)
(C2, C1)
(C1, A1)
(C2, A1)
(Q0, C2)
(C1, C2)
(C1, A2) 1.00e-07

1.00e-06

1.00e-05

1.00e-04

1.00e-03

1.00e-02

1.00e-01

1.00e+00

0.01 0.1 1 10

1

2

1

3

lo
g
(||
e|
| L

2
(Ω

))

log(h)

(A1, D0)
(A1, D1)
(A1, A1)
(A1, D2)
(A1, A2)



Motivation/Theoretical background Patch tests Numerical examples Conclusions Future work

Numerical examples: Example 1 - Elasticity

Convergence studies for various combinations of bases

For exact representation of the geometry, all combinations of
bases, including those which fail the patch test, deliver the
optimal convergence
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Conclusion:

Together with the given (exact) geometry parametrization at
the coarsest level, the convergence rate is entirely defined by the
solution basis, and does not depend on the further refinement of
the geometry parametrization:

For a given geometry parameterization, the degree of the
solution basis can be increased or decreased without
changing the degree of the geometry (from iso-geometric to
super-geometric and sub-geometric elements)

For solution approximation, using same degree B-Splines or
NURBS yields almost identical results



Motivation/Theoretical background Patch tests Numerical examples Conclusions Future work

Numerical examples: Example 2 - Laplace

Convergence studies for various combinations of bases

Exact representation of the geometry by N1,4, various bases for
the solution approximation, iso/super/sub-geometric, deliver
optimal convergence (governed by the minimum degree), second
order for first five choices, and third order for last two choices.
B represents B-splines.

u(x, y) = ln((x+0.1)2+(y+0.1)2)
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Numerical examples: Example 3 - Elasticity

Convergence studies for various combinations of bases

Exact representation of the geometry by N2,2, various bases for
the solution approximation, iso/super-geometric, deliver optimal
convergence (governed by the minimum degree), third order for
first three choices, and fourth order for last three choices. Ñ are
NURBS with weights of two inner points changed.
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Numerical examples: Example 4 - Elasticity 3D

Convergence studies for various combinations of bases

Same observation as in Example 2 and 3. Optimal convergence
governed by the minimum degree, second order for first three
choices, and third order for last two choices
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Numerical examples: NURBS + PHT splines

Main properties of PHT-splines:

Polynomial splines of degree p = 3 defined over T-meshes:

Global refinement (tensor-product mesh) vs local refinement (T-mesh)

C1 continuity across the elements
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Numerical examples: NURBS + PHT splines

Laplace equation in the quarter annulus with the solution
exhibiting a high peak:
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u(x, y) = (r − 1)(r − 2)θ(θ − π/2) exp(−100(r cos θ − 1)2)
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Numerical examples: NURBS + PHT splines

IGA with cubic NURBS (for the geometry as well as
numerical solution). Note that, a quadratic NURBS is
sufficient for this geometry, however, to have a fair
comparison with the remaining studies, we elevate the
degree while maintaining the exact geometry
representation.

IGA with cubic PHT-splines (for the geometry as well as
the numerical solution). Note that, in this case, the
computational geometry is only approximate (not exact as
in IGA with cubic NURBS).

GIFT with cubic B-splines for the numerical solution, and
quadratic NURBS for exact geometry representation.

GIFT with cubic PHT-splines for the numerical solution,
and quadratic NURBS for exact geometry representation.



Motivation/Theoretical background Patch tests Numerical examples Conclusions Future work

Adaptive refinement with PHT splines:
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Adaptive refinement with PHT splines:
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Numerical examples: NURBS + PHT splines
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Comparison between IGA with cubic PHT-spline field and
GIFT with cubic PHT-spline field:

The advantage of the exact geometry representation in the
latter case over an approximate geometry in the former
case is very minor in the given example, but in realistic
industrial problems with complex domains, this advantage
will become more pronounced.

Use of GIFT concept eliminates the need to communicate
with the original CAD model at each step of the solution
refinement process, and the approximation of the
boundaries.

Use of GIFT concept also eliminates the need to refine the
original coarse geometry, as well as to store and process the
refined data, which can lead to significant computational
savings for big problems.
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Conclusions

It is possible to retain the advantages of IGA but decouple
the geometry and the field approximation

Standard patch tests may not always pass, yet the
convergence rates are optimal as long as the geometry is
exactly represented by the geometry basis

With geometry exactly represented by NURBS, using same
degree B-splines or NURBS for the approximation of the
solution field yields almost identical results

With geometry exactly represented by NURBS, using PHT
splines for the approximation of the solution gives
additional advantage of local adaptive refinement
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On-going and future work

Proof of concept for other problems of mechanics. Static
and dynamic problems of plates - Felipe Contreras

Error measures for adaptive refinement with PHT splines -
Maximiliano Pérez

IGA for coupled problems of diffusion induced stresses in
Li-Ion batteries - Iván Canales

eXtended IGA and GIFT with PHT splines for fracture
modeling - Javier Videla

Collocation with GIFT - Edgardo Olate

IGA with PHT splines and GIFT in the framework of the
boundary element method for fracture modeling -
DAAD application for visiting Prof. Timon Rabczuk’s
group at University of Weimar, Germany
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