

On conservative and associative operations on finite chains

55th ISFE

Jimmy Devillet

in collaboration with Miguel Couceiro and Jean-Luc Marichal

University of Luxembourg

Connectedness and Contour Plots

Let X be a nonempty set and let $F: X^2 \rightarrow X$

Definition

- The points $(x, y), (u, v) \in X^2$ are *connected for F* if

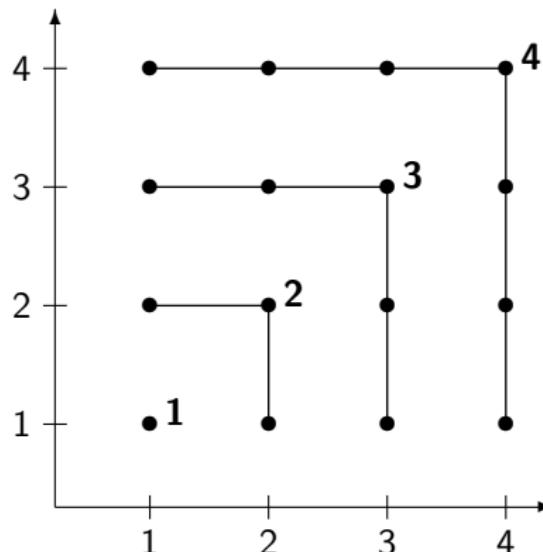
$$F(x, y) = F(u, v)$$

- The point $(x, y) \in X^2$ is *isolated for F* if it is not connected to another point in X^2

Connectedness and Contour Plots

For any integer $n \geq 1$, let $L_n = \{1, \dots, n\}$ endowed with \leq

Example. $F(x, y) = \max\{x, y\}$ on L_4



Graphical interpretation of conservativeness

Definition

$F: X^2 \rightarrow X$ is said to be

- *conservative* if

$$F(x, y) \in \{x, y\}$$

- *reflexive* if

$$F(x, x) = x$$

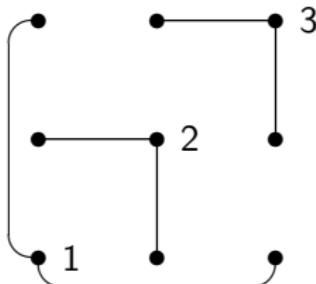
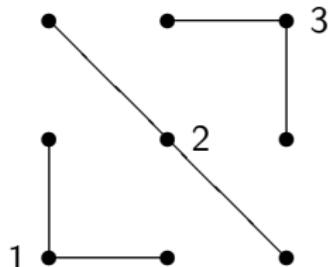
Graphical interpretation of conservativeness

Let $\Delta_X = \{(x, x) \mid x \in X\}$

Proposition

$F: X^2 \rightarrow X$ is conservative iff

- it is reflexive
- every point $(x, y) \notin \Delta_X$ is connected to either (x, x) or (y, y)



Graphical interpretation of the neutral element

Definition. An element $e \in X$ is said to be a *neutral element* of $F: X^2 \rightarrow X$ if

$$F(x, e) = F(e, x) = x$$

Proposition

Assume $F: X^2 \rightarrow X$ is reflexive.

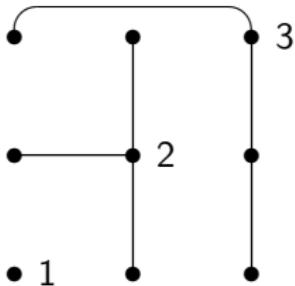
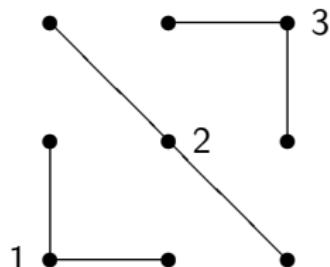
If $(x, y) \in X^2$ is isolated, then it lies on Δ_X , that is, $x = y$

Graphical interpretation of the neutral element

Proposition

Assume $F: X^2 \rightarrow X$ is conservative and let $e \in X$.

Then e is a neutral element iff (e, e) is isolated

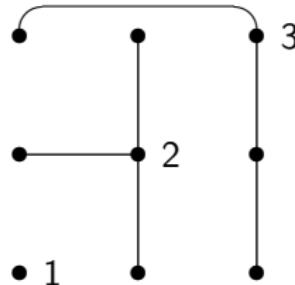
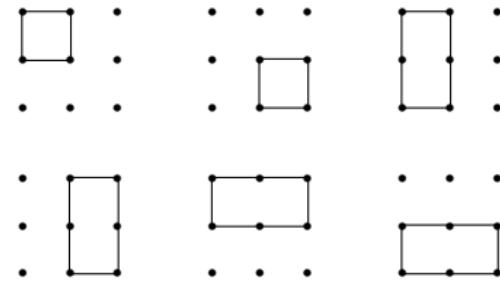


Graphical test for associativity under conservativeness

Proposition

Assume $F: X^2 \rightarrow X$ is conservative. The following assertions are equivalent.

- (i) F is associative
- (ii) For every rectangle in X^2 that has only one vertex on Δ_X , at least two of the remaining vertices are connected

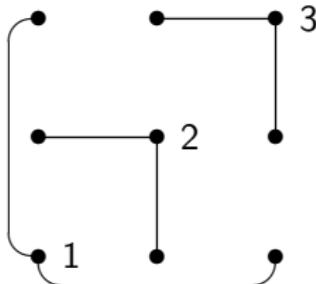


Graphical test for non associativity under conservativeness

Proposition

Assume $F: X^2 \rightarrow X$ is conservative. The following assertions are equivalent.

- (i) F is not associative
- (ii) There exists a rectangle in X^2 with only one vertex on Δ_X and whose three remaining vertices are pairwise disconnected

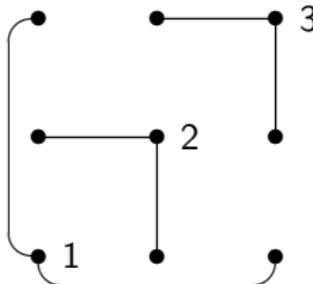
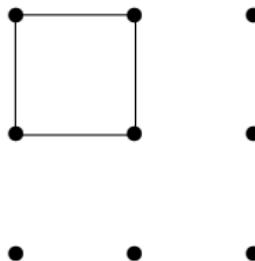


Graphical test for non associativity under conservativeness

Proposition

Assume $F: X^2 \rightarrow X$ is conservative. The following assertions are equivalent.

- (i) F is not associative
- (ii) There exists a rectangle in X^2 with only one vertex on Δ_X and whose three remaining vertices are pairwise disconnected



A class of associative operations

Recall that $L_n = \{1, \dots, n\}$, with the usual ordering \leq

We are interested in the class of operations $F: L_n^2 \rightarrow L_n$ that

- have a neutral element $e \in L_n$

and are

- reflexive
- associative
- symmetric
- nondecreasing in each variable

A first characterization

Theorem (De Baets et al., 2009)

$F: L_n^2 \rightarrow L_n$ with neutral element $e \in L_n$ is reflexive, associative, symmetric, and nondecreasing iff there exists a nonincreasing map $g: [1, e] \rightarrow [e, n]$, with $g(e) = e$, such that

$$F(x, y) = \begin{cases} \min\{x, y\}, & \text{if } y \leq \bar{g}(x) \text{ and } x \leq \bar{g}(1), \\ \max\{x, y\}, & \text{otherwise,} \end{cases}$$

where $\bar{g}: L_n \rightarrow L_n$ is defined by

$$\bar{g}(x) = \begin{cases} g(x), & \text{if } x \leq e, \\ \max\{z \in [1, e] \mid g(z) \geq x\}, & \text{if } e \leq x \leq g(1), \\ 1, & \text{if } x > g(1) \end{cases}$$

A second characterization

Theorem

Assume $F: L_n^2 \rightarrow L_n$ is symmetric and nondecreasing.

Then F is conservative iff it is reflexive, associative and has a neutral element $e \in L_n$

Corollary

There are exactly 2^{n-1} conservative, symmetric, and non-decreasing operations on L_n

Single-peaked linear orderings

Definition. (Black, 1948) A linear ordering \preceq on L_n is said to be *single-peaked* (w.r.t. the ordering \leq) if for any $a, b, c \in L_n$ such that $a < b < c$ we have $b \prec a$ or $b \prec c$

Example. The ordering \preceq on

$$L_4 = \{1 < 2 < 3 < 4\}$$

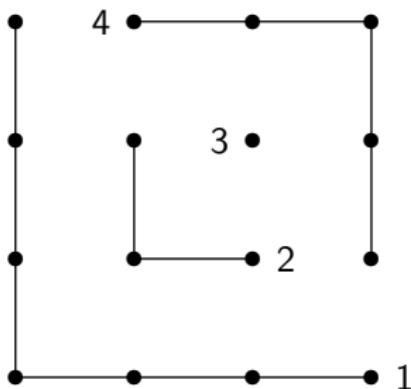
defined by

$$3 \prec 2 \prec 4 \prec 1$$

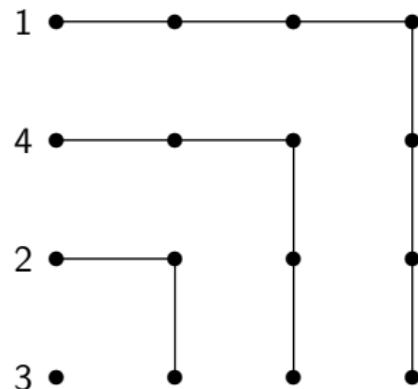
is single-peaked w.r.t. \leq

Note : There are exactly 2^{n-1} single-peaked linear orderings on L_n .

Single-peaked linear orderings



1 < **2** < **3** < **4**



3 ⤵ **2** ⤵ **4** ⤵ **1**

A third characterization

Theorem

Let $F: L_n^2 \rightarrow L_n$. The following assertions are equivalent.

- F is reflexive, associative, symmetric, nondecreasing, and has a neutral element $e \in L_n$
- F is conservative, symmetric, and nondecreasing
- there exists a single-peaked linear ordering \preceq on L_n such that

$$F = \max_{\preceq}$$

Selected references

- B. De Baets, J. Fodor, D. Ruiz-Aguilera, and J. Torrens. Idempotent uninorms on finite ordinal scales. *Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems*, 17(1):1–14, 2009.
- S. Berg and T. Perlinger. Single-peaked compatible preference profiles: some combinatorial results. *Social Choice and Welfare* 27(1):89–102, 2006.
- D. Black. On the rationale of group decision-making. *J Polit Economy*, 56(1):23–34, 1948
- D. Black. *The theory of committees and elections*. Kluwer Academic Publishers, Dordrecht, 1987.
- M. Couceiro, J. Devillet, and J.-L. Marichal. Characterizations of idempotent discrete uninorms. Submitted for revision. arXiv:1701.07253
- E. Czogała and J. Drewniak. Associative monotonic operations in fuzzy set theory. *Fuzzy Sets and Systems*, 12(3):249–269, 1984.