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Connectedness and Contour Plots

Let X be a nonempty set and let F: X2 — X
Definition
@ The points (x,y), (u,v) € X2 are connected for F if
F(x,y) = F(u,v)

e The point (x,y) € X2 is isolated for F if it is not connected to
another point in X2



Connectedness and Contour Plots

For any integer n > 1, let L, = {1, ..., n} endowed with <

Example. F(x,y) = max{x,y} on L4




Graphical interpretation of conservativeness

Definition
F: X2 = X is said to be
@ conservative if
F(x,y) € {x,y}

@ idempotent if
F(x,x)
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Graphical interpretation of conservativeness

Let Ax = {(x,x) | x € X}

Proposition

F: X2 — X is conservative iff
@ it is idempotent

@ every point (x,y) ¢ Ax is connected to either (x,x) or (y,y)




Graphical interpretation of the neutral element

Definition. An element e € X is said to be a neutral element of
F: X2 Xif

Proposition

Assume F: X? — X is idempotent.
If (x,y) € X? is isolated, then it lies on Ax, that is, x = y




Graphical interpretation of the neutral element

Proposition

Assume F: X? — X is conservative and let e € X.
Then e is a neutral element iff (e, e) is isolated
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Graphical test for associativity under conservativeness

Proposition

Assume F: X2 — X is conservative. The following assertions are
equivalent.

(i) F is associative

(i) For every rectangle in X2 that has only one vertex on Ay, at
least two of the remaining vertices are connected
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Graphical test for non associativity under conservativeness

Proposition

Assume F: X2 — X is conservative. The following assertions are
equivalent.

(i) F is not associative

(i) There exists a rectangle in X2 with only one vertex on Ax
and whose three remaining vertices are pairwise disconnected

V.




Graphical test for non associativity under conservativeness

Proposition

Assume F: X2 — X is conservative. The following assertions are
equivalent.

(i) F is not associative

(i) There exists a rectangle in X2 with only one vertex on Ax
and whose three remaining vertices are pairwise disconnected

V.




Discrete uninorms

Recall that L, = {1, ..., n}, with the usual ordering <
Definition. A discrete uninorm is an operation F: [2 — L, that

@ has a neutral element e € L,
and is

@ associative
@ symmetric

@ nondecreasing in each variable

We are interested in idempotent discrete uninorms



A first characterization of idempotent discrete uninorms

Theorem (De Baets et al., 2009)

F: L2 — L, is an idempotent discrete uninorm with neutral element
e € L, iff there exists a nonincreasing map g: [1,e] — [e, n], with
g(e) = e, such that

Flx.y) min{x,y}, ify <g(x)and x <g(1),
X, y) =
Y max{x,y}, otherwise,

where g: L, — L, is defined by

g(x), if x<e,
g(x) = (max{ze[l,e]|g(z) > x}, ife<x=<g(l),
1, if x > g(1)




A second characterization of idempotent discrete uninorms

F: L,2, — L, is an idempotent discrete uninorm iff it is conservative,
symmetric, and nondecreasing

There are exactly 271 idempotent discrete uninorms on L, I




Single-peaked linear orderings

Definition. (Black, 1948) A linear ordering < on L, is said to be
single-peaked (w.r.t. the ordering <) if for any a, b, c € L, such
thata< b< cwehave b<aorb<c

Example. The ordering < on
Ly ={1<2<3<4}

defined by
3<2<4<1

is single-peaked w.r.t. <

Note : There are exactly 271 single-peaked linear orderings on L,,.



Single-peaked linear orderings

1 <2 <3 < 4 3 <2 <4 <1



A third characterization of idempotent discrete uninorms

F: 12 — L, is an idempotent discrete uninorm iff there exists a
single-peaked linear ordering < on L, such that

F = max<




Thank you for your attention!
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