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Abstract In this paper we provide two axiomatizations of the class of idempotent
discrete uninorms as conservative binary operations, where an operation is conser-
vative if it always outputs one of its input values. More precisely we first show that
the idempotent discrete uninorms are exactly those operations that are conservative,
symmetric, and nondecreasing in each variable. Then we show that, in this char-
acterization, symmetry can be replaced with both bisymmetry and existence of a
neutral element.

1 Introduction

Aggregation functions defined on linguistic scales (i.e., finite chains) have been in-
tensively investigated for about two decades; see, e.g., [1–4, 6–11, 13, 14]. Among
these functions, discrete fuzzy connectives (such as discrete uninorms) are associa-
tive binary operations that play an important role in fuzzy logic.

This short paper focuses on characterizations of the class of idempotent discrete
uninorms. Recall that a discrete uninorm is a binary operation on a finite chain that
is associative, symmetric, nondecreasing in each variable, and has a neutral element.

A first characterization of the class of idempotent discrete uninorms was given
by De Baets et al. [1, Theorem 3]. This characterization reveals that any idempotent
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discrete uninorm is a combination of the minimum and maximum operations. In
particular, such an operation is conservative in the sense that it always outputs one
of the input values.

The outline of this paper is as follows. After presenting some preliminary results
on conservative operations in Section 2, we show in Section 3 that the idempotent
discrete uninorms are exactly those operations that are conservative, symmetric,
and nondecreasing in each variable. This new characterization is very simple and
requires neither associativity nor the existence of a neutral element. In Section 4 we
provide an alternative characterization of this class in terms of the bisymmetry prop-
erty. More specifically, we show that the idempotent discrete uninorms are exactly
those operations that are conservative, bisymmetric, nondecreasing in each variable,
and have neutral elements.

2 Preliminaries

In this section we present some basic definitions and preliminary results.
Let X be an arbitrary nonempty set and let ∆X = {(x,x) | x ∈ X}.

Definition 1. An operation F :X2 → X is said to be

• idempotent if F(x,x) = x for all x ∈ X .
• conservative if F(x,y) ∈ {x,y} for all x,y ∈ X .
• associative if F(F(x,y),z) = F(x,F(y,z)) for all x,y,z ∈ X .

An element e ∈ X is said to be a neutral element of F (or simply a neutral element)
if F(x,e) = F(e,x) = x for all x ∈ X . In this case we easily show by contradiction
that such a neutral element is unique. The points (x,y) and (u,v) of X2 are said to be
connected for F (or simply connected) if F(x,y) = F(u,v). We observe that “being
connected” is an equivalence relation. The point (x,y) of X2 is said to be isolated
for F (or simply isolated) if it is not connected to another point in X2.

Remark 1. Conservativeness was introduced in Pouzet et al. [12]. This condition is
also called “local internality” in Martı́n et al. [5].

Lemma 1. Let F :X2 → X be an idempotent operation. If the point (x,y) ∈ X2 is
isolated, then it lies on ∆X , that is, x = y.

Remark 2. We observe that idempotency is necessary in Lemma 1. Indeed, consider
the operation F :X2 → X , where X = {a,b}, defined as F(x,y) = a, if (x,y) = (a,b),
and F(x,y) = b, otherwise. Then (a,b) is isolated and a ̸= b. The contour plot of F is
represented in Figure 1. Here and throughout, connected points are joined by edges.
To keep the figures simple we sometimes omit the edges obtained by transitivity.

The following lemma provides an easy test for the existence of a neutral element
of a conservative operation.
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Fig. 1 A non-idempotent operation

Lemma 2. Let F :X2 → X be a conservative operation and let e ∈ X. Then e is a
neutral element if and only if (e,e) is isolated.

Corollary 1. Any isolated point (x,y) of a conservative operation F :X2 → X is
unique and lies on ∆X . Moreover, x = y is a neutral element.

Remark 3. Lemma 2 no longer holds if conservativeness is relaxed into idempo-
tency. Indeed, by simply taking X = {a,b,c} we can easily construct an idempotent
operation with an isolated point on ∆X and no neutral element (see Figure 2). Also,
it is easy to construct an idempotent operation with a neutral element and no isolated
point (see Figure 3). It is also noteworthy that there are idempotent operations with
more than one isolated point (see Figure 4).
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(a,a) (b,a) (c,a)

(a,b) (b,b) (c,b)

(a,c) (b,c) (c,c)

Fig. 2 An operation with no neutral element

3 Main results

We now focus on characterizations of the class of idempotent discrete uninorms.
These operations are defined on finite chains. Without loss of generality we will
only consider the n-element chains Ln = {1, . . . ,n}, n ≥ 1, endowed with the usual
ordering relation ≤.
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Fig. 3 An operation with no isolated point

s s s
s s s
s s s

(a,a) (b,a) (c,a)

(a,b) (b,b) (c,b)

(a,c) (b,c) (c,c)

Fig. 4 An operation with two isolated points

Recall that an operation F :L2
n → Ln is said to be nondecreasing in each variable

if F(x,y)≤ F(x′,y′) whenever x ≤ x′ and y ≤ y′.

Definition 2 (see, e.g., [1]). A discrete uninorm on Ln is an operation U :L2
n → Ln

that is associative, symmetric, nondecreasing in each variable, and has a neutral
element.

A characterization of the class of idempotent discrete uninorms is given in the
following theorem. Although this characterization is somewhat intricate, it shows,
together with Lemma 3 below, that any idempotent discrete uninorm is conservative.

Theorem 1 (see [1, Theorem 3]). An operation F :L2
n → Ln with a neutral element

1 < e < n is an idempotent discrete uninorm if and only if there exists a nonincreas-
ing map g: [1,e] → [e,n] (nonincreasing means that g(x) ≥ g(y) whenever x ≤ y),
with g(e) = e, such that

F(x,y) =

{
min{x,y}, if y ≤ g(x) and x ≤ g(1),
max{x,y}, otherwise,

where g:Ln → Ln is defined by

g(x) =

g(x), if x ≤ e,
max{z ∈ [1,e] | g(z)≥ x}, if e ≤ x ≤ g(1),
1, if x > g(1).

We now show that the idempotent discrete uninorms are exactly those operations
that are conservative, symmetric, and nondecreasing in each variable (see Theo-
rem 2).

First consider the following lemma, which actually holds on arbitrary, not neces-
sarily finite, chains.

Lemma 3. If F :L2
n → Ln is idempotent, nondecreasing in each variable, and has a

neutral element e ∈ Ln, then F |[1,e]2 = min and F |[e,n]2 = max.

Proposition 1. If F :L2
n → Ln is conservative, symmetric, and nondecreasing in each

variable, then it is associative and it has a neutral element.
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For n = 2 and n = 3, the possible operations F :L2
n → Ln that are conservative,

symmetric, and nondecreasing in each variable have contour plots depicted in Fig-
ures 5 and 6, respectively.
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Fig. 5 Possible operations when n = 2
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Fig. 6 Possible operations when n = 3

Remark 4.(a) The existence of a neutral element in Proposition 1 is no longer guar-
anteed if the chain is not finite. For instance, the real operation F : [0,1]2 → [0,1]
defined by F(x,y) = min{x,y}, if x,y ∈ [0, 1

2 )
2, and F(x,y) = max{x,y}, other-

wise, is conservative, symmetric, and nondecreasing in each variable, but it does
not have a neutral element.
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(b) We observe that conservativeness cannot be relaxed into idempotency in Propo-
sition 1. For instance the operation F :L2

3 → L3 whose contour plot is depicted in
Figure 2 is idempotent, symmetric, and nondecreasing in each variable, but one
can show that it is not associative and it has no neutral element.

(c) We also observe that each of the conditions of Proposition 1 is necessary. Indeed,
we give in Figure 7 an operation that is conservative and symmetric but that is
not nondecreasing in each variable. We also give in Figure 8 an operation that
is conservative and nondecreasing in each variable but not symmetric. Finally,
we give in Figure 9 an operation that is symmetric and nondecreasing in each
variable but not conservative. None of these three operations is associative and
none has a neutral element.
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Fig. 7 An operation that fails to be nondecreasing in each variable
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Fig. 8 An operation that fails to be symmetric
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Fig. 9 An operation that fails to be conservative

Theorem 2. An operation F :L2
n → Ln is conservative, symmetric, and nondecreas-

ing in each variable if and only if it is an idempotent discrete uninorm. Moreover,
there are exactly 2n−1 such operations.

Remark 5. Theorem 2 enables us to provide a graphical characterization of the idem-
potent discrete uninorms in terms of their contour plots. Indeed, denoting by L an
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arbitrary n-element chain, we observe that the restriction F |L′ of any idempotent
discrete uninorm F :L2 → L to any subchain L′ obtained by removing one of the
endpoints of L is also an idempotent discrete uninorm. Moreover, the operation F
(or equivalently its contour plot) can be retrieved from F |L′ by connecting all the
points of L2 \L′ 2. It follows that all the idempotent discrete uninorms can be con-
structed recursively in terms of their contour plots.

4 Bisymmetric operations

In this section we provide a characterization of the class of idempotent discrete
uninorms in terms of the bisymmetry (or mediality) property.

Definition 3. An operation F :X2 → X is said to be bisymmetric if

F(F(x,y),F(u,v)) = F(F(x,u),F(y,v))

for all x,y,u,v ∈ X .

Proposition 2. Let F :X2 → X be a conservative operation that has a neutral ele-
ment. Then F is bisymmetric if and only if it is associative and symmetric.

Combining Proposition 2 with Theorem 2, we can easily derive the following
alternative characterization of idempotent discrete uninorms.

Theorem 3. An operation F :L2
n → Ln is conservative, bisymmetric, nondecreasing

in each variable, and has a neutral element if and only if it is an idempotent discrete
uninorm.
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