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Abstract

In 1978, Rivest, Adleman and Dertouzos introduced the concept of pri-

vacy homomorphism and asked whether it is possible to perform arbitrary

operations on encrypted ciphertexts. Thirty years later, Gentry gave a

positive answer in his seminal paper at STOC 2009, by proposing an

ingenious approach to construct fully homomorphic encryption (FHE)

schemes. With this approach, one starts with a somewhat homomorphic

encryption (SHE) scheme that can perform only limited number of oper-

ations on ciphertexts (i.e. it can evaluate only low-degree polynomials).

Then, through the so-called bootstrapping step, it is possible to turn this

SHE scheme into an FHE scheme. After Gentry’s work, many SHE and

FHE schemes have been proposed; in total, they can be divided into four

categories, according to the hardness assumptions underlying each SHE

(and hence, FHE) scheme: hard problems on lattices, the approximate

common divisor problem, the (ring) learning with errors problem, and the

NTRU encryption scheme. Even though SHE schemes are less powerful

than FHE schemes, they can already be used in many useful real-world

applications, such as medical and financial applications. It is therefore of

primary concern to understand what level of security these SHE schemes

provide. By default, all the SHE schemes developed so far offer IND-CPA

security - i.e. resistant against a chosen-plaintext attack - but nothing is
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said about their IND-CCA1 security - i.e. secure against an adversary who

is able to perform a non-adaptive chosen-ciphertext attack. Considering

such an adversary is in fact a more realistic scenario.

Gentry emphasized it as a future work to investigate SHE schemes

with IND-CCA1 security, and the task to make some clarity about it

was initiated by Loftus, May, Smart and Vercauteren: at SAC 2011 they

showed how one family of SHE schemes is not IND-CCA1 secure, opening

the doors to an interesting investigation on the IND-CCA1 security of

the existing schemes in the other three families of schemes. In this work

we therefore continue this line of research and show that most existing

somewhat homomorphic encryption schemes are not IND-CCA1 secure. In

fact, we show that these schemes suffer from key recovery attacks (stronger

than a typical IND-CCA1 attack), which allow an adversary to recover the

private keys through a number of decryption oracle queries. The schemes,

that we study in detail and for which we develop key recovery attacks, are

the ones in the three categories mentioned above. Our key recovery attacks

work in such a way that a malicious attacker can recover the private key of

an underlying encryption scheme completely, bit by bit, when he’s allowed

a given number of decryption oracle accesses. As a result, this dissertation

shows that all known SHE schemes fail to provide IND-CCA1 security.

While it is true that IND-CPA security may be enough to construct

cryptographic protocols in presence of semi-honest attackers, key recovery

attacks will pose serious threats for practical usage of SHE and FHE

schemes: if a malicious attacker (or a compromised honest party) submits

manipulated ciphertexts and observes the behavior (side channel leakage)

of the decryptor, then it may be able to recover all plaintexts in the system.

Therefore, it is very desirable to design SHE and FHE with IND-CCA1
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security, or at least design them to prevent key recovery attacks. This

raises the interesting question whether it is possible or not to develop such

IND-CCA1 secure SHE scheme. Up to date, the only positive result in

this direction is a SHE scheme proposed by Loftus et al. at SAC 2011 (in

fact, a modification of an existing SHE scheme and IND-CCA1 insecure).

However, this IND-CCA1 secure SHE scheme makes use of a non standard

knowledge assumption, while it would be more interesting to only rely

on standard assumptions. We propose then a variant of the SHE scheme

proposed by Lopez-Alt, Tromer, and Vaikuntanathan at STOC 2012, which

offers good indicators about its possible IND-CCA1 security.

In the conclusion, we finish our dissertation with some interesting future

directions which could expand from our current work.
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Chapter 1

Introduction

In public-key cryptography, a sender wants to transmit a message through

a public channel to a receiver, and they have to be sure that the communi-

cation is kept hidden from eavesdroppers. The idea was first introduced

by Diffie and Hellman in [29], and the first instantiation was obtained by

Rivest, Shamir and Adleman in the breakthrough paper [70] where the

sender encrypts a message with the receiver’s public key, and the latter

decrypts with his secret key.

In 1978, Rivest, Adleman and Dertouzos [69] wondered whether it is

possible to perform operations on encrypted ciphertexts, by means of what

they defined to be a privacy homomorphism. Homomorphic encryption is

therefore a form of encryption that allows computations to be carried out

on ciphertext, thus generating an encrypted result which, when decrypted,

matches the result of operations performed on the plaintext. Rivest,

Adleman and Dertouzos asked: ”can we do arbitrary computations on data

while it remains encrypted, without ever decrypting it?”. This way, data

can be kept confidential while being processed, which enables useful tasks to

be accomplished with data residing in environments which are not trusted.

This is a hugely valuable capability in a world of heterogeneous networking
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and distributed computation. Although it was immediately recognized

as a very interesting possibility in cryptography, for the next thirty years

no concrete construction was built, and finding a general method for

computing on encrypted data had been a major goal in cryptography

studies ever since. A number of homomorphic encryption schemes has

been developed during the years, but they supported essentially only one

basic operation (addition or multiplication).

Several homomorphic encryption schemes have been developed during

the years, but their homomorphic capabilites were limited to just a single

operation: this is the case, for instance, of the ElGamal cryptosystem

[32]. Other famous examples include the basic RSA cryptosystem [70],

which is homomorphic with respect to multiplication, and the Paillier

cryptosystem [66], which is homomorphic with respect to addition. In all

these cases, the encryption schemes are homomorphic with respect to a

single algebraic operation. While it is true that these simple homomorphic

cryptosystems have a wide range of applications (for example, private

information retrieval or secure voting), being restricted to a single operation

renders them incapable of evaluating more general transformations on

encrypted data. Therefore, the natural question that Rivest, Adleman,

and Dertouzous raised in [69] just after the discovery of RSA in 1978, was

whether there existed an encryption scheme that was fully homomorphic,

namely, homomorphic with respect to both addition and multiplication.

It was only in 2009 that the quest for a first viable fully homomorphic

encryption (FHE) scheme scheme ended, when Craig Gentry settled this

conjecture [37]. It turned out then that privacy homomorphisms encryption

schemes are actually possible to achieve; using modern terminology, we

call them fully homomorphic encryption, or FHE, schemes. He used ideal
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lattices to propose an ingenious approach to construct FHE schemes. These

are encryption systems that permit arbitrarily complex computations on

encrypted data. The development of FHE is a revolutionary advance: it

greatly extends the scope of the computations which can be applied to

process encrypted data homomorphically.

A natural application that we can think of FHE (and SHE, as we

will define later) is outsourcing computation to an untrusted third party,

such as a cloud server. Such a scenario arises when a client does not

have the computational resources to carry out a computation on his own,

and therefore needs to outsource or delegate the computation to a third

party, which is potentially untrustworthy. In an outsourcing computation

example using FHE, the client first encrypts his input using a given FHE

scheme; then he sends the ciphertexts to the cloud, which will perform the

computation homomorphically. Finally, the client receives the response

which is encrypted, but that he can decrypt to learn the result of the

computation. See Figure 1.1.

Fig. 1.1 An application of FHE - Outsourcing computa-
tions to Cloud

An Example: Alice’s Jewelry Store. To understand intuitively how

FHE works, let’s start from an example as explained by Gentry in [36].
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Alice is the owner of a jewelry store, and she gives precious raw materials

(diamonds, gold, silver, etc.) to her workers in order to be assembled into

rings and necklaces. However she does not trust her workers, assuming

that they could steal her jewels if given the chance. Her goal therefore is

to let the workers process the raw material into the desired finished pieces,

but without giving them access to these materials.

That’s how she solves this problems, and at the same time this solution

gives to us the intuition behind FHE schemes. She orders a transparent and

impenetrable glovebox, which is secured by a lock for which only she has

the key. After putting the precious raw materials inside the glovebox, she

locks it and let the workers access to the closed glovebox. Using the gloves,

the workers can manipulate the pieces and craft the desired necklaces and

bracelets inside the box. Now the workers can do this without having the

possibility to directly access, or steal, the precious raw materials since they

are locked inside the impenetrable glovebox. After the work is done, the

workers return the glovebox to Alice, who can then open the box thanks to

her key and get the desired necklace. To sum up, the workers process the

raw materials into the desired piece of art, without having direct access to

these materials.

For the analogy, the non penetrable glovebox, with the raw materials

locked inside, represent an encryption of some initial data m1, . . . , mn,

which can be accessed only with Alice’s given secret decryption key sk.

The gloves represent the homomorphism, or malleability, of the encryption

scheme; they allow the ”raw” data to be manipulated while it is inside the

”encryption box”. The final piece of art (necklace or bracelet) inside the

box represents the encryption Enc(f(m1, . . . , mn)), where f is the desired
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function of the initial data. In this case, the lack of access is represented

by the lack of physical access to the jewels.

Of course this analogy does not faithfully represent some aspects of

homomorphic encryption, but as long as it is not taken too literally, it

gives a good rough idea of how FHE works.

Since Gentry published his idea there has been huge interest in the area,

with regard to improving the schemes, implementing them and applying

them. Several other FHE schemes have been released, improving asymp-

totic efficiency; nevertheless, existing FHE all follow the same blueprint as

the one in Gentry’s original scheme. In short, ciphertexts produced by an

FHE scheme can be operated on in such a way that we obtain a cipher-

text that corresponds to the addition or multiplication of the respective

plaintexts. The ability to algebraically operate over ciphertexts is of great

importance because any algorithm can be transformed into a sequence of

additions and multiplications in Z2. Therefore, such a scheme can evaluate

any algorithm solely with access to the encryption of its input, and such

that the computation returns the encryption of the output. Since Gentry’s

work, many FHE constructions have appeared in the literature. Following

Gentry blueprint for building a FHE scheme, all the subsequent construc-

tions start with a somewhat homomorphic encryption (SHE) scheme that

can perform only limited number of operations on ciphertexts (i.e. it

can evaluate only low-degree polynomials). Then, through the so-called

bootstrapping step, we can turn this SHE scheme into an FHE scheme.

So, a SHE scheme allows a fixed number of multiplications of ciphertexts;

these schemes are building blocks for the FHE schemes and provide much

better efficiency guarantees than their FHE counterparts. Therefore, they

are used already in a number of practical applications, as we will see later
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on in this chapter. Note that researchers have proposed the concept of

leveled FHE schemes (e.g. [12, 44]), which allow third parties to evaluate

any circuits up to a certain depth. Often in the following discussion, we

treat these schemes as SHE.

Back to Alice’s Jewelry Store. In her store, Alice notices that after

a worker uses the gloves for one minute, the gloves stiffen and become

unusable. This defective glovebox can be seen as a SHE scheme. After

a given number of operations on ciphertexts have been done, no more

operations can be performedor the resulting ciphertext would fail to decrypt

to the correct plaintext. As we will see later, the way SHE and FHE

schemes work is by adding noise to ciphertexts. By performing operations

on them, this noise grows. Homomorphic multiplication increases the noise

much more than addition; a SHE scheme can evaluate only low-degree

polynomials over encrypted data, i.e. it can perform only a limited number

of additions and multiplications. Eventually, the noise makes the resulting

ciphertext so noisy that it is not possible to decrypt correctly anymore.

Back to Alice, she really would like to avoid this situation, because

some of her more complicated pieces like necklaces and bracelets may take

up to an hour to be assembled, while the gloves stiffen only after one

minute of usage. She needs to find out a way to use these defective boxes

to get the workers to securely assemble even the most complicated pieces.

She notices that the defective boxes have anyway a interesting property

that might be useful: they have a one-way insertion slot, like the ones we

can see in the post office mail bins. But they are also flexible enough so

that it is possible to put one box inside another through the slot. This

property plays a key role in the solution of this problem, which leads us to

the concept of bootstrappable homomorphic encryption scheme.
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Here is the idea: she gives a worker a glovebox, which we call box

#1, containing all the raw materials. She also gives him several extra

gloveboxes: box #2 which contains (locked inside) the key opening box #1;

box #3 which contains the key opening box #2; and so on. To assemble an

intricate piece, the worker manipulates the materials in box #1 until the

gloves stiffen. Then, he puts box #1 inside box #2, where the latter box

already contains the key opening box #1. Using the gloves for box #2, he

opens box #1 with this key, extracts the (partially) assembled piece, and

then he continues to assemble pieces within box #2 until its gloves stiffen.

In a similar fashion, he then places box #2 inside box #3, and so on he

continues in this way. When the worker finally finishes his work inside box

#n, he gives the box to Alice. Of course, this system is succesfull only

if the worker can open box #i within box #(i + 1), after which he still

has the time to make an extra progress on the assembly, before the gloves

of box #(i + 1) stiffen. So that’s why it is important that the unlocking

operation (and the extra assembly work) takes less than a minute. If she

has enough defective gloveboxes, then it is possible to assemble any piece,

no matter how complicated they are.

In this analogy, the defective gloveboxes represent our SHE scheme,

which can perform additions and multiplications on ciphertexts for a while

until the noise becomes too large and prevents the scheme to continue

making operations on ciphertexts. What we would like to do is use this

SHE scheme to construct a FHE scheme. As before, box #1 with the

precious raw materials inside represents the ciphertexts that encrypt the

initial data. Box #(i + 1) with the key for box i inside represents an

encrypted secret decryption key. Alice understands that there is only

one thing that her workers need to be able to do in less than one minute
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with the gloves, together with performing a small operation on the piece:

unlock box #i within box #(i + 1) and extract the piece. It will turn out

that there is only one function that our scheme (call it E) needs to be

able to handle, with a some room left over to perform one more addition

or multiplication: the decryption function (which is like unlocking the

”encryption box”). If E has this self-referential property of being able to

handle its own decryption function (augmented by a single gate), we say

that it is bootstrappable. As it turns out, if E is bootstrappable, then one

can use E to construct a FHE scheme. We will see more on this in Section

3.2.1.

However, all the proposals have a common drawback: they are not

practical. Initially, the algorithms involved in the constructions, although

having polynomial complexity, had high polynomial degree. Later, the

asymptotic complexity became much better. Indeed, we now have construc-

tions with polylogarithmic overhead per operation, but with terribly high

constants. Although FHE is not practical yet, many constructions have

been proposed recently, achieving a SHE scheme. They allow a limited

depth of operations to be performed. These constructions are indeed very

useful in practice, specially in order to provide security in the scenario of

cloud computing. A SHE scheme is important also in the implementation

of private information retrieval (PIR) protocols, which can be seen as a

building block to the solution for the privacy problem that emerges when

we give our data to the cloud. We will discuss in a moment more in detail

the practical applications of FHE and SHE schemes.

In the cloud computing scenario it is natural to imagine an attacker

having access to a decryption oracle (e.g., the cloud can feed invalid

ciphertexts to a user and monitor their behaviour). It is obvious that
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a homomorphic encryption scheme cannot have security of ciphertexts

under adaptive attacks. Hence, adaptive attacks are already a very serious

concern in this setting. But one could hope that at least the private key

remains secure in the presence of a decryption oracle.

Main Result and Contribution

With this work, we show that most - if not all - the SHE schemes built so

far are not secure even against non-adaptive chosen ciphertext attacks.

In Chapter 4 we will see how all the SHE and FHE schemes can be

divided into four main families, according to the hardness assumptions

they rely on. This categorization is made clear with figure 4.1. As we will

see better in Chapter 5, our Thesis is inspired by the work of [54], whose

authors were the first to observe adaptive key recovery attacks by showing

that one of the above mentioned families is vulnerable to such attacks.

Thanks to such a technique, one can completely determine the secret key

of a given SHE scheme in a CCA1 scenario attack. In this dissertation we

continue this line of work by presenting original and efficient key recovery

attacks for most of the existing SHE schemes (see figure 4.1). This shows

that IND-CCA1 security is hard to achieve in homomorphic encryption.

It is important to have a clear idea of what level of security is offered

by the known SHE schemes; in fact, adaptive key recovery attacks on

homomorphic encryption seem to be realistic in certain scenarios, so they

are potentially a serious problem in practice. The only homomorphic

encryption scheme known to resist such attacks is the a variation of a

known scheme presented by Loftus et al. [54]; however, the authors make

use of a non-standard lattice assumption, which makes this SHE scheme

not a very good candidate for a IND-CCA1 secure scheme.
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We are going to see in the next chapter a few practical applications of

FHE and SHE.



Chapter 2

Practical Applications of SHE and FHE

Even though SHE schemes are less powerful than FHE schemes, they

find already many useful interesting real-world applications, ranging from

medical to financial applications [61]. Currently homomorphic encryption

is rather slow, but it can be used already for several practical uses. Concrete

practical applications and concrete useful functions can be computed, and

most of them only require a limited number of multiplications of ciphertexts

(and a normally very large number of additions of ciphertexts). For these

applications, it is often enough to consider an implementation of a SHE

scheme.

2.1 Applications that are Feasible Today

Among the applications that we can consider by using the technology that

we have nowadays, medical applications are the most interesting. As it is

well explained in [61], consider a cloud service which manages electronic

medical records, and a scenario where the medical data of a patient is

continuously uploaded to a service provider in an encrypted form. The

cloud service constantly collect important health information (like for
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example blood pressure, heart rate, weight and blood sugar). In this case,

the user is the data owner, and therefore the data is encrypted under his

public key and only him - the user - can decrypt. The service provider

computes on the encrypted data, runs some statistics thanks to which it

can predict the likelihood of certain medical conditions that can occur, or

simply just keep track of the user’s health. Obviously, the main benefit

for the user’s perspective is to allow real-time health analysis based on

readings from various sources without having to disclose this data to any

one source. Also we have to keep in mind that, since the volume of the

data involved is generally large, it is better for the user not to store and

manage all this data locally on a given device, but instead to use cloud

storage and computation.

A scenario like the above one requires computing simple statistical

functions (i.e. mean, standard deviation, logistical regressions, etc.) that

are typically used for prediction of likelihoods of certain outcomes. For these

functions, it is enough to only consider a SHE scheme which computes many

additions and a small number of multiplications on ciphertexts: for example,

averages require no multiplications, standard deviation requires only one

multiplication, and logistical regression requires a few multiplications. For

a concrete instantiation of such an application, we can mention the actual

implementation [50] by Lauter at Eurocrypt 2015, where she described of

a heart attack prediction by Microsoft.

Among other interesting applications, one can consider consumer pri-

vacy in advertising, data mining, financial privacy, and forensic image

recognition. See [61] and [4] for further details.
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2.2 Constructions that use FHE and SHE

Schemes as Building Blocks

Homomorphic encryption schemes can be used to construct cryptographic

tools such as the following.

• Zero Knowledge Proofs: As shown by Gentry in [36], we can

use homomorphic encryption in order to build non-interactive zero

knowledge (NIZK) proofs of small size. Suppose that a user would

like to prove knowledge of a satisfying assignment of bits b1, . . . , bt

for a given boolean circuit C. The NIZK proof is as follow: generate

a public key, encrypt the bi’s, and homomorphically evaluate C on

these encryptions. A standard NIZK proof is attached to prove that

every ciphertext encrypts either 0 or 1, and that the output of the

evaluation encrypts 1.

• Delegation of Computation: Besides outsourcing data, another

important aspect of cloud computing is given by outsourcing compu-

tation. Consider the scenario in which a user want to delegate the

computation of a function f to a server. The user, however, does

not exclude the possibility that the server may be malicious, or just

not working properly. In other words, the user may not trust the

result of the server’s computation. The user demands to have a proof

that the computation was done correctly and verifying this proof

should also be significantly more efficient than the user doing the

computation. Chung et al. [21] used FHE to design schemes for

delegating computation. One example for the delegation of compu-

tation is message authenticators. Consider a user who outsources
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computation on a data set and wants to check that the return value

is really the correct result. The tag should be independent of the

size of the original data set, and only verifiable for the holder of the

private key. Gennaro and Wichs propose such a scheme in [35] based

on a FHE scheme. However, it only supports a bounded number of

verification queries.

• Multiparty Computation: Multiparty computation requires in-

teraction between participants. Damgard et al. [28] provide a

description of how a SHE scheme can be used to construct offline

multiplication during the computations. The players use the SHE

scheme in a preprocessing phase, but return to the much more ef-

ficient techniques of multiparty computation in the computation

phase.

• Signatures: Gorbunov et al. [46] presented a construction of lev-

elled fully homomorphic signature schemes. The scheme can evaluate

arbitrary circuits with maximal depth d over signed data and ho-

momorphically produce a short signature which can be verified by

anybody using the public verification key. The user uploads the

signed data x, then the server runs some function g over the data

which yields y = g(x). Additionally, the server publishes the sig-

nature σg,y to verify the computation. This work also introduces

the notion of homomorphic trapdoor functions (HTDF), one of the

building blocks for the signature construction. HTDF themselves are

based on the small integer solution (SIS) problem.
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2.2.1 Implementations of FHE schemes

Some of the FHE schemes have already been implemented. Among them

we find:

• HElib: it is a software library implementing the [12] scheme, with

optimizations to run homomorphic evaluation faster (i.e., the Smart-

Vercauteren ciphertext packing techniques [72], and the Gentry-

Halevi-Smart optimizations [43]). See https://github.com/shaih/

HElib.

• ”Stanford FHE”: it is a working implementation of the scale-invariant

leveled homomorphic encryption system in [11]. See https://crypto.

stanford.edu/people/dwu4/fhe-project.html.

• Implementation of [75] FHE scheme over the integers. Implementa-

tion is describer in [24]. See https://github.com/coron/fhe.

• Implementation SEAL of the scheme in [9]. The implementation by

Microsoft Research is described in [62].

2.3 Impact of Key Recovery Attacks

For all these reasons, it is important to have a clear idea of what security

level is offered by the known SHE schemes, and in particular to understand

whether a given SHE scheme is secure against key recovery attacks. As we

mentioned, in theory IND-CPA security may be enough for us to construct

cryptographic protocols, in particular if we assume semi-honest attackers.

However, key recovery attacks will pose serious threat for practical usage

of SHE schemes if an attacker becomes malicious (or, an honest party is

https://github.com/shaih/HElib
https://github.com/shaih/HElib
https://crypto.stanford.edu/people/dwu4/fhe-project.html
https://crypto.stanford.edu/people/dwu4/fhe-project.html
https://github.com/coron/fhe
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compromised) and submits manipulated ciphertexts to observe the behavior

of the decryptor. We illustrate this point by presenting an ”attack” against

the LWE-based single-server private information retrieval (PIR) protocol

in [15].

The PIR protocol is very simple: the client has a long-term key tuple

for a SHE scheme and a secret key sk for a symmetric encryption scheme;

a PIR query is an encrypted index under sk; a PIR response is a ciphertext

under the SHE public key, generated by the server (who is given the

ciphertext of sk under the SHE public key) by homomorphically evaluating

the encrypted index and the database; the client obtains the desired bit

by decrypting the ciphertext using the SHE private key.

Clearly, if the server is malicious, then it can mount a key recovery

attack by manipulating the responses and monitoring the client’s behavior.

With the SHE private key, the server can recover all the private information

of the client. In order to prevent the attack, the client can require the

server to prove all computations are done properly. However, this might

make the server’s computational complexity very heavy and make the

protocol less efficient than others.

As we just saw, we can consider cloud among the most straightforward

applications. As more and more data is outsourced into cloud storage, often

unencrypted, considerable trust is required in the cloud storage providers.1

1The Cloud Security Alliance lists data breach as the top threat to cloud security
[47]. Encrypting the data with conventional encryption avoids the problem. However,
now the user cannot operate on the data and must download the data to perform the
computations locally. With FHE the cloud can perform computations on behalf of the
user and return only the encrypted result.
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2.4 Structure of the Thesis

In Chapter 3 we introduce the notation and the standard definitions that

we will use throughout our dissertation; in particular we will cover the

definitions of homomorphic encryption (both fully and somewhat), as well

as security definitions. Then, in Chapter 4 we present the literature review

focused on the hardness assumptions underlying the known SHE and FHE

schemes; we will also describe the original construction of the lattice-based

FHE scheme given by Gentry in [37], as well as some optimization and

modifications. Then we will continue on Chapter 5 by describing the

main results of our contributions, i.e. key-recovery attacks against all the

schemes in categories (2), (3) and (4) (see Figure 4.1). As we will see, all

the SHE schemes developed so far have been shown to be vulnerable against

key-recovery attacks, with the exception of one scheme proposed in [54].

This SHE, however, makes use of a non standard knowledge assumption.

More in particular, in Chapter 5 we continue the line of work of [54, 76]

to present key recovery attacks for the schemes [15, 14, 44, 11]. Our attacks

can also be applied to the SHE scheme in [12]. We also develop a new

key recovery attack against the SHE scheme in [75], and our attack is

more efficient and conceptually simpler than that from [76]. Our results

essentially show that the SHE schemes underlying the FHE schemes in

category (2) and (3) in the figure 4.1 are not IND-CCA1 secure. Previous

analysis had not paid much attention to the NTRU-based SHE schemes

(to be defined in Section 4.1.6), i.e. the schemes in category (4) in 4.1.

Two representative schemes in this line are those by Lopez-Alt, Tromer

and Vaikuntanathan [55] and Bos et al. [9]. We have proposed efficient

key recovery attacks against these two NTRU-based SHE schemes. This
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shows that the SHE schemes underlying the FHE schemes in category (4)

in the figure 4.1 are not IND-CCA1 secure.

It would be interesting to obtain one IND-CCA1 secure SHE scheme,

and in Chapter 6 we show how our variant of the [55] scheme offer good

indications that it is IND-CCA1 secure. More in particular, we will consider

the SHE scheme from [55] - for which we develop an efficient key recovery

attack in Chapter 5 - and we tweak its decryption step in two ways, leading

to scenarios (2) and (3) as explained in that chapter. We successfully show

a key-recovery attack for scenario (2); however, scenario (3) seems to resist

any attempt to show a key-recovery attack. We will show that our usual

strategy for key-recovery attacks does not lead to a successful attack, and

our variation of the [55] SHE scheme seems therefore to be the a good

candidate for being IND-CCA1 secure.

In Chapter 7 we conclude our work and suggest interesting future works

and directions.



Chapter 3

Notation and Standard Definitions

3.1 Preliminaries

Let N be the set of natural numbers, Z the ring of integers, Q the field

of rational numbers, and Fq a finite field with q elements, where q is a

power of a prime p. In particular, we will consider often Fp = Z/pZ = Zp.

If r ∈ Zq, we indicate as r−1 its inverse in Zq, i.e. that value such that

r−1 · r = 1 mod q. For integers a, q ∈ Z sometimes we use notation

[a]q := a mod q. For a given integer n and a ring R, we indicateMn(R) as

the ring of square n×n matrices with entries in R. For a ring R and a (two-

sided) ideal I of R, we consider the quotient ring R/I. For given vectors

v := (v1, . . . , vn), w := (w1, . . . , wn) ∈ Rn, we let ||v|| :=
√

v2
1 + · · ·+ v2

n

be the Euclidean norm of its coefficients, ||v||∞ := max{|v1|, . . . , |vn|} be

its maximum norm, and we indicate with < v, w >:= ∑
i viwi the dot

product of v, w. For a given rational number x ∈ Q, we let ⌊x⌉, ⌊x⌋ and

⌈x⌉ be respectively the rounding function, the floor function and the ceiling

function. For a given integer n ∈ N, ⌊n + 1/2⌉ = n + 1. To indicate that

an element a is chosen uniformly at random from a set A we use notation
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a
$← A. For a set A, we let its cardinality be |A|. We consider also the

standard basis {ei}n
i=1 of Rn, where the coefficients of ei are all 0 except

for the i-th coefficient, which is 1. We denote the map that reduces an

integer x modulo q and uniquely represents the result by an element in

the interval (−q/2, q/2] by [·]q. Therefore, we will consider the ring Zq as

Zq := {−
⌊

q
2

⌋
,−

⌊
q
2

⌋
+ 1, . . . ,

⌊
q
2

⌋
}. We extend this map to polynomials in

Z[X] and thus also to elements of R by applying it to their coefficients

separately; given a polynomial a(x) ∈ R, we define the map

[·]q : R→ R, a(x) =
n−1∑
i=0

aix
i 7→

n−1∑
i=0

[ai]qxi

Let f, g be two functions defined on some subset of R. We write

f(x) ∈ O(g(x)) (resp. f(x) ∈ Ω(g(x))) if, informally, |f(x)| ≤ g(x) · k

(resp. |f(x)| ≥ g(x) · k), for some positive k. We write f(x) = Õ(g(x)) if

f(x) = O(g(x)logkg(x)) for some k. We write f(x) ∈ ω(g(x)) if |f(x)| ≥

k ·|g(x)|, for every fixed positive number k. Finally, we have f(x) ∈ Θ(g(x))

if g(x) · k1 ≤ f(x) ≤ g(x) · k2 for some positive k1, k2.

We also recall some terminology from circuit theory. The depth of a

circuit is the maximum distance from an input gate to an output gate; the

i-th level of a circuit consists of all gates with depth i; the size of a circuit

is the number of gates it contains.

Unless otherwise specified, λ will always denote the security parameter

of the encryption schemes. In the asymmetric schemes we are going to

discuss, the secret key will be denoted as sk, and the public key will be pk.
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3.2 Homomorphic Encryption

The following definitions are adapted from [37]. We only assume bit-by-

bit public-key encryption, i.e. we only consider encryption schemes that

are homomorphic with respect to boolean circuits consisting of gates for

addition and multiplication mod 2. Extensions to bigger plaintext spaces

and symmetric-key setting are straightforward; we skip the details.

Definition 1 (Homomorphic Encryption). A public key homomorphic en-

cryption (HE) scheme is a set E = (KeyGenE , EncryptE , DecryptE , EvaluateE)

of four algorithms, all of which must run in polynomial time. When the

context is clear, we will often omit the index E .

KeyGen(λ) = (sk, pk)

• input: λ

• output: sk; pk

Encrypt(pk, m) = c

• input: pk and plaintext

m ∈ F2

• output: ciphertext c

Decrypt(sk, c) = m′

• input: sk and ciphertext

c

• output: m′ ∈ F2

Evaluate(pk, C, (c1, . . . , cr)) = ce

• input: pk, a circuit C, ci-

phertexts c1, . . . , cr, with

ci = Encrypt(pk, mi)

• output: ciphertext ce

All these steps must be efficient - that is, the computational complexity

of all of these algorithms must be polynomial in security parameter λ and

the size of C.
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Definition 2 (Correct Homomorphic Decryption). The public key ho-

momorphic encryption scheme E = (KeyGen, Encrypt, Decrypt, Evaluate) is

correct for a given t-input circuit C if, for any key-pair (sk, pk) output

by KeyGen(λ), any t plaintext bits m1, . . . , mt, and any ciphertexts c =

(c1, . . . , ct) with ci ← EncryptE(pk, mi), Decrypt(sk, Evaluate(pk, C, c)) =

C(m1, . . . , mt) holds.

Definition 3. The scheme E = (KeyGen, Encrypt, Decrypt, Evaluate) is

homomorphic for a class C of circuits if it is correct for all circuits C ∈ C.

We say that E is a fully homomorphic encryption (FHE) scheme if it is

correct for all boolean circuits.

Informally, a homomorphic encryption scheme that can perform only a

limited number of operations is called a somewhat homomorphic encryption

(SHE) scheme. We will make this point more clear now. The way known

FHE schemes work is by adding some noise ciphertexts and, by performing

operations on them, this noise grows. Therefore it is often convenient to

work with homomorphic encryption schemes that can perform only a limited

number of operations; as we have seen in Chapter 1, these are informally

called somewhat homomorphic encyption (SHE) schemes. We remark that

homomorphic multiplication increases the noise significantly more than

addition; SHE schemes can evaluate only low-degree polynomials over

encrypted data, i.e. they can perform only a limited number of additions

and multiplications. Eventually, the noise makes the resulting ciphertext

so noisy that it is not possible to decrypt correctly anymore.

A family of schemes {E (L) : L ∈ Z+} is leveled fully homomorphic

if they all use the same decryption circuit, E (L) is homomorphic for all

circuits of depth at most L (that use some specified set of gates), and the

computational complexity of E (L)’s algorithms is polynomial (the same
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polynomial for all L) in λ, L and (in the case of EvaluateE(L)) the size of

the circuit C.

As defined above, FHE can be obtained from any secure encryption

scheme by an algorithm Evaluate that attaches a description of the circuit C

to the ciphertext tuple, and a Decrypt procedure that first decrypts all the

ciphertexts and then evaluates C on the corresponding plaintext bits. Two

properties of homomorphic encryption, circuit-privacy and compactness,

avoid this solution.

Definition 4. The scheme E = (KeyGen, Encrypt, Decrypt, Evaluate) is

compact if there exists a fixed polynomial bound b(λ) so that for any

key-pair (sk, pk) output by KeyGen(λ), any circuit C and any sequence of

ciphertext c = (c1, . . . , ct) that was generated with respect to pk, the size of

the ciphertext Evaluate(pk, C, c) is not more than b(λ) bits (independently

of the size of C).

Moreover, we want that a FHE scheme is efficient also in the evaluation

step, i.e. the complexity of Evaluate must depend only polynomially on the

security parameter. Therefore, two extra requirements must be satisfied in

order to have a FHE scheme:

• Decrypting ce (the ciphertext output by EvaluateE) must take the

same amount of computation as decrypting c (a ciphertext output

by EncryptE). Moreover, we require that ce has the same size as c

(compact ciphertext requirement).

The size of ce, as well as the time needed to decrypt it are completely

independent of f , the evaluation function. Also the complexities of

DecryptE , KeyGenE and EncryptE , are polynomial in λ.
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• The EvaluateE step must be efficient, as follows (see [38]). Let Sf be

the size of a boolean circuit that computes f . Then EvaluateE is said

to be efficient if there is a polynomial g such that, for any function f

that is represented by a circuit of size Sf , EvaluateE(pk, f, c1 . . . , ct)

has complexity at most Sf · g(λ).

3.2.1 From SHE to FHE

All FHE schemes today follow the same blueprint of the scheme developed

by Gentry in 2009 [37]. Let E = (KeyGen, Encrypt, Decrypt, Evaluate) be

an homomorphic encryption scheme. For a given λ, a secret key sk and

two ciphertexts c1, c2, the set of augmented decryption circuits consists of

the following two circuits:

Cadd(sk, c1, c2) := Decrypt(sk, c1) + Decrypt(sk, c2) mod 2

Cmult(sk, c1, c2) := Decrypt(sk, c1) · Decrypt(sk, c2) mod 2

We denote this set by DE(λ) := (Cadd, Cmult). Now, for every value of the

security parameter λ let CE(λ) be a set of circuits with respect to which E

is correct. We say that E is bootstrappable if DE(λ) ⊆ CE(λ) holds for every

λ. In other words, a SHE scheme is bootstrappable if it can evaluate DE(λ);

that is, it is able to evaluate its own decryption function plus an additional

operation. This means the decryption function of the SHE scheme can be

expressed as polynomial of degree low enough to be handled within the

homomorphic capacity of the SHE scheme, with enough capacity left over

to evaluate a NAND gate.

Gentry’s blueprint comes in three points.

1. We build a SHE scheme.
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2. If the SHE is already bootstrappable, go to point (3). Otherwise,

we make it bootstrappable by squashing the decryption circuit of

the SHE scheme: we transform the scheme into one with the same

homomorphic capacity but a decryption circuit that is simple enough

to allow bootstrapping. Gentry showed a way to do this by adding

a ’hint’ about the secret key to the evaluation key: a sparse set of

values, a (secret) subset of which sums up to the secret key.

3. To obtain a FHE, there exists a bootstrapping theorem which states

that given a bootstrappable SHE scheme, one can transform it into

a leveled FHE scheme. Moreover, if the bootstrappable scheme is

semantically secure, then also the leveled FHE is. See [37] for further

details.

Furthermore, if the scheme satisfies circular security (which allow

to safely encrypt the leveled FHE secret key under its own public

key) - we obtain a pure (and not just leveled) FHE scheme. Boot-

strapping “refreshes” a ciphertext by running the decryption function

on it homomorphically, using an encrypted secret key (given in the

evaluation key; it is the hint generated in the squashing step). This

re-encryption process produces a new, more compact and less noisy

encryption of the original plaintext; this way, the ciphertext can be

evaluated in more additions and multiplications without making the

noise grow too much.

We remark that the squashing step introduces a new hardness assumption,

and therefore one might want to avoid this. It turns out that the squashing

step is not necessary, and indeed in [15, 39] the authors are able to avoid
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it. It is also possible to obtain a leveled FHE without the bootstrapping

step, see [12].

3.3 Security Definitions

We now define the main security notions used in the cryptographic schemes.

There exist several security definitions, but for FHE schemes normally one

is concerned mainly with IND-CPA and IND-CCA1 security. We do not

focus on IND-CCA2 security since it cannot be satisfied by FHE schemes.

We cover also key-recovery attacks.

The security of a public-key encryption scheme in terms of indistin-

guishability is normally presented as a game between a challenger and an

adversary A = (A1,A2). The scheme is considered secure if no adversary

can win the game with significantly greater probability than an adversary

who must guess randomly. The game runs in two stages:

• (pk, sk)← KeyGen(1λ)

• (m0, m1)← A(·)
1 (pk) /* Stage 1 */

• b← {0, 1}

• c∗ ← Encrypt(mb, pk)

• b′ ← A(·)
2 (c∗) /* Stage 2 */

The adversary is said to win the game if b = b′, with the advantage of the

adversary winning the game being defined by

AdvIND-atk
A,E,λ = |Pr(b = b′)− 1/2|
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A scheme is said to be IND-atk secure if no polynomial time adversary

A can win the above game with non-negligible advantage in the security

parameter λ. The precise security notion one obtains depends on the oracle

access one gives the adversary in its different stages:

• If A has access to no oracles in either stage then atk=CPA (indistin-

guishability under chosen plaintext attack)

• If A has access to a decryption oracle in stage one then atk=CCA1

(indistinguishability under non-adaptive chosen ciphertext attack)

• If A has access to a decryption oracle in both stages then atk=CCA2,

often now denoted simply CCA (indistinguishability under adaptive

chosen ciphertext attack)

• If A has access to a ciphertext validity oracle in both stages, which

on input of a ciphertext determines whether it would output ⊥ or

not on decryption, then atk=CVA.

We have

IND-CCA2⇒ IND-CCA1⇒ IND-CPA

According to the definition, in order to show that a scheme is not

IND-CCA1 secure, we only need to show that an adversary can guess the

bit b with a non-negligible advantage given access to the decryption oracle

in Stage 1. Formally, in a key recovery attack, an adversary can output the

private key given access to the decryption oracle in Stage 1. In comparison,

a key recovery attack is stronger than a typical IND-CCA1 attack, and

can result in more serious vulnerabilities in practice.

A key recovery attack allows an attacker to recover the private key

of an underlying encryption scheme when given a number of decryption
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oracle accesses. In the literature, all SHE schemes have been developed

with the aim of being IND-CPA secure (resistant against a chosen-plaintext

attack). In [37], Gentry emphasized it as a future work to investigate

SHE schemes with IND-CCA1 security (i.e. secure against a non-adaptive

chosen-ciphertext attack). Up to now, the only scheme proven IND-

CCA1 secure is that by Loftus et al. [54], but it relies on some non-

standard knowledge assumptions (see [54], for details). Most works in this

direction focus on devising attacks against existing SHE schemes. Our

main contribution is to show that most existing SHE schemes suffer from

key recovery attacks, which allow an attacker to recover the private key

of an underlying encryption scheme when given a number of decryption

oracle accesses. It is clear that a key recovery attack is stronger than a

typical attack against IND-CCA1 security. At this moment, we have the

following results:

• No malleable cryptosystem (in particular, no SHE and FHE scheme)

can be IND-CCA2 secure. The reason is straightforward, based on

the fact that the adversary is allowed to manipulate the challenged

ciphertext, submit it to the decryption oracle in an IND-CCA2 attack,

and recover the plaintext.

• It is still unknown if there exists a FHE scheme which satisfy IND-

CCA1 security. However, we can already say that, if such a FHE

scheme exists, it cannot follow Gentry’s blueprint: any FHE scheme

that adopts Gentry’s bootstrapping technique cannot be CCA-1

secure, because the bootstrapping technique requires one to publish

the encryption of the secret keys: the private key is encrypted and
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the adversary is able to submit the ciphertext to the decryption

oracle.

• Loftus et al. [54] showed that Gentry’s SHE scheme [37] is not

IND-CCA1 secure and presented an IND-CCA1 attack against the

variation proposed in [40]. They also showed that the same attack

applies to the other variant by Smart and Vercauteren [71]. In fact,

the attacks are both key recovery attacks. Moreover, they modified

the SHE in [71] and proved its IND-CCA1 security based on a new

assumption.

In theory, IND-CPA security may be enough for us to construct cryp-

tographic protocols, in particular if we assume semi-honest attackers.

However, key recovery attacks will pose serious threat for practical usage

of SHE and FHE. If a malicious attacker submits manipulated ciphertexts

and observes the behavior (side channel leakage) of the decryptor, then it

may be able to recover all plaintexts in the system. Therefore, it is very

desirable to design SHE and FHE with IND-CCA1 security, or at least to

avoid key recovery attacks.

It is interesting to consider also security in the context of Plaintext

Awareness, introduced by Bellare and Rogaway [6] in the random oracle

model, and later refined into the security notions PA-0, PA-1 and PA-2

by Bellare and Palacio [5]. Intuitively a scheme is said to be PA if the

only way an adversary is able to create a valid ciphertext is by applying

encryption to a public key and a valid message. In [5] it is proven that if a

scheme is PA-1 (resp. PA-2) and at the same time IND-CPA, then it is

actually secure against IND-CCA1 (resp. IND-CCA2) attacks. Plaintext

awareness can be also explained intuitively by considering that if the
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adversary knows the plaintext underlying each ciphertext it produces, then

he has no need for a decryption oracle. Therefore, PA and IND-CPA must

imply IND-CCA1.

The advantage of the results of [5] is that we work in the standard

model to prove security of a scheme; however, this comes with the price

that we need to make a strong assumption to prove a scheme is PA-1

or PA-2. The assumption required is a so-called knowledge assumption.

For example, in the context of encryption schemes supporting a single

homomorphic operation, the authors of [5] show that the Cramer-Shoup

Lite scheme [25] and an ElGamal variant introduced by Damgard [27] are

both PA-1, and hence IND-CCA1, assuming the standard DDH (to obtain

IND-CPA security) and a Diffie-Hellman knowledge assumption (to obtain

PA-1 security). (Informally, the Diffie-Hellman knowledge assumption

is the assumption that an algorithm can only output a Diffie-Hellman

tuple if the algorithm ”knows” the discrete logarithm of one-tuple member

with respect to another.) See [5] for details, or e.g. [54] for a high-level

explanation. In [54], the authors follow work from [5] in order to show

that a variation of the Smart-Vercauteren SHE scheme [71] achieves PA1

security, therefore showing that the scheme achieves PA1 + CPA ⇒ CCA1

security. We will come back to this in a later section.

3.3.1 Circuit Privacy

An important requirement for a FHE scheme is that EncryptE and EvaluateE
have the same output distribution (computationally indistinguishable).

This is called circuit privacy: roughly, this means that the ciphertext

output of EvaluateE reveals nothing about the circuit C that it evaluates
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beyond the output value of that circuit, even for someone who knows the

secret key.

Definition 5. A homomorphic encryption scheme E is circuit-private for

given circuits in CE if, for any pair of keys (sk, pk) output by KeyGenE(λ),

any circuit C ∈ CE , and any fixed ciphertexts c1, . . . , ct that are in the

image of EncryptE for plaintexts m1, . . . , mt the following distributions are

computationally indistinguishable:

EncryptE(pk, C(m1, . . . , mt)) ≈ EvaluateE(pk, C, (c1, . . . , ct))

3.3.2 Circular Security: A Special Case of KDM Se-

curity.

Circular security is required in order to obtain FHE from SHE. It is a

special case of the more general notion of key dependent message (KDM)

security. Informally, an encryption scheme is KDM secure if an adversary

cannot distinguish the encryption of a key-dependent message from an

encryption of 0. Let n > 0 be an integer and let F be a finite set of

functions F := {f : Sn → M} For each function f ∈ F we require

that |f(z)| is the same for all inputs z ∈ Sn (i.e. the output length is

independent of the input).

KDM security is defined with respect to F using the following game

that takes place between a challenger and an adversary A [8]. For an

integer n > 0 and a security parameter λ the game proceeds as follows.

• The challenger chooses a random bit b
$← {0, 1}. It generates

(pk1, sk1), . . . , (pkn, skn) by running KeyGen n times, and sends the

vector (pk1, . . . , pkn) to A
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• The adversary repeatedly issues queries where each query is of the

form (i, f) with 1 ≤ i ≤ n and f ∈ C. The challenger responds by

setting

y ← f(sk1, . . . , skn) ∈M and c
$←


Encrypt(pki, y) if b = 0

Encrypt(pki, 0|y|) if b = 1

and sends c to A

• Finally, the adversary outputs a bit b′ ∈ {0, 1}

We say that A is a F -KDM adversary and that A wins the game if b = b′.

Define A′s advantage as

AdvKDM(n)

A,E,λ := |Pr(b = b′)− 1/2|



Chapter 4

General Introduction to Existing SHE

and FHE Schemes

As we mentioned, the SHE schemes (and by extension, the FHE schemes)

can be categorized into four main families of schemes, according to the

hardness assumptions they rely on (see Figure 4.1). In this chapter we are

going to investigate in more detail these hardness assumptions. We also

describe somehow informally in Section 4.2 the idea behind the original

FHE scheme [37], and the variation made by [71, 40].

After Gentry’s work, many SHE and FHE schemes have been proposed.

Based on the underlying hardness assumptions, these schemes can be

categorized and divided in four categories, as follows.1

(1) The first category starts with Gentry [36, 37]. A number of variations,

optimizations and implementations appear in [71, 40]. The security

of these schemes are based on hard problems on lattices, more

specifically on ideal lattices. These are the initial schemes, that still
1It is worth mentioning that Nuida [65] proposed a new framework for noise-free FHE,

based on finite non-commutative groups. This is completely different from everything
appeared in literature so far, since the ciphertext in all known schemes carry some noise.
Nevertheless, a secure instantiation has yet to be found.
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depend on the hard lattice problems, like the Sparse Subset Sum

Problem (SSSP).

(2) The second category starts with van Dijk et al. [75]. More variants,

implementation and optimizations appear in [23, 24, 20]. The security

of these schemes rely on the approximate greatest common divisor

(AGCD) problem and some variants. These schemes are based on

integers, and they are the simplest to understand.

(3) The third category starts with Brakerski and Vaikuntanathan [15,

14]. More variants appear in [61, 12, 42, 11, 44]. The security of

these schemes are based on the learning with errors (LWE) and

on the ring-learning with errors (RLWE) problems. These schemes

bring new concepts and allow better constructions in practice. We

have also asymptotically better constructions that are based on the

approximate eigenvector method [44, 16].

(4) The fourth category of schemes is based on the NTRU encryption

scheme [48]. In [55] it is shown how to obtain a homomorphic

encryption scheme in a multi-user setting, introducing the notion of

multi-key homomorphic encryption where it is possible to compute

any function on plaintexts encrypted under multiple public keys.

The multi-key FHE of [55] is based on the NTRU scheme [48] and

on ideas introduced in [12]. NTRU-based schemes permit to obtain

ciphertexts that correspond to just one ring element, simplifying

previous schemes. NTRU-based SHE offers the possibility of encoding

integers in a natural way, that can be used to solve practical problems

such as statistical applications [51, 10].

See Fig. 4.1 for a graphical visualization of the main families.
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4.1 Hardness Assumptions

Before going any further, we list the hardness assumptions that rely on

the homomorphic schemes that we are going to discuss in the next section.

(See figure 4.1.)

4.1.1 Approximate Greatest Common Divisor (AGCD)

This hardness assumption is found in the family of schemes started by van

Dijk, Gentry, Halevi and Vaikuntanathan (the DGHV10 scheme [75]). For

a specific (η-bit) odd positive integer p, and an integer ρ (the size of the

noise), consider the following distribution over γ-bit integers:

Dγ,ρ(p) = {choose q
$← Z∩[0, 2γ/p), r

$← Z∩(−2ρ, 2ρ) : output x = pq+r}

Definition 6 ((ρ, η, γ)-approximate GCD). Given polynomially many

samples from Dγ,ρ(p) for a randomly chosen η-bit odd integer p, output p.



36 General Introduction to Existing SHE and FHE Schemes

Here the goal is to recover a secret number p (typically a large prime

number), given polynomially many near-multiples x0, . . . , xm of p, that

is, each integer xi is of the hidden form xi = pqi + ri where each qi is

a very large integer and each ri is a very small integer. The hardness

of approximate integer common divisors problems, was introduced in

2001 by Howgrave-Graham. Several lattice-based approaches have been

developed in order to solve the approximate GCD problem. All attacks

are very inefficient if we choose the parameters wisely; namely whenever

#bits(qi)≫ #bits(p)2.

In [23], the authors use a partial version of this problem (PACD): here,

the setting is exactly the same, except that x0 is chosen as an exact multiple

of p, namely x0 = pq0 where q0 is a very large integer chosen such that no

non-trivial factor of x0 can be found efficiently: for instance, they select q0

as a rough number, i.e. without any small prime factor. More precisely, let

p be a η-bit prime integer, and let q0 a be a random square-free 2λ-rough

integer in [0, 2γ/p). Consider

D′ρ(p, q0) = {q $← Z∩[0, q0), r
$← Z∩(−2ρ, 2ρ) : output x = pq+r} ⊆ Dγ,ρ(p)

Definition 7 (Error-free (ρ, η, γ)-approximate GCD). Given x0 := q0 · p

and polynomially many samples from D′ρ(p, q0), output p.

The version in [23] was used to build a more efficient variant of the

DGHV10 FHE scheme. In [17], Y. Chen and P.Q. Nguyen presented a new

PACD algorithm whose running time is 2ρ/2 polynomial-time operations,

which is essentially the square root of that of GCD exhaustive search

(which at the time was the best attack available). This directly leads to a

new GACD algorithm running in 23ρ/2 polynomial-time operations, and
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allowed them to experimentally break the FHE challenges proposed in

[23].2

4.1.2 Lattice-Based Assumptions

Lattice-based primitives are interesting because:

• their security can be based on

worst-case hardness assump-

tions;

• they appear to remain secure

even against quantum comput-

ers;

• they can be quite efficient;

• for FHE no other crypto-

graphic assumption is known

to suffice.

Lattice problems are in general easy to solve if the algorithm is provided

with a “good” basis (see definition later). Lattice reduction algorithms aim,

given a basis for a lattice, to output a new basis consisting of relatively

short, nearly orthogonal vectors. The LLL algorithm [52] was an early

efficient algorithm for this problem which could output an almost reduced

lattice basis in polynomial time. In the late 1990s, several new results

on the hardness of lattice problems were obtained; e.g. Ajtai [1] found a
2The AGCD problem was first studied by Howgrave-Graham [49]. In that paper, as

well as in [75], several possible lattice attacks on this problem were listed, including using
orthogonal lattices and the so-called Coppersmith’s method. Further cryptanalytic
work was done by [17, 22, 24] and, more recently, by J. Ding and C. Tao in [30]: here
the authors propose a new algorithm for solving the general approximate common
divisors (GACD) problems, which is based on lattice reduction algorithms on certain
special lattices and linear equation solving algorithms over integers. They propose an
algorithm which can solve the problem with some special parameters in polynomial
time.

However, for general parameters the AGCD problem and its variants are still believed
to be hard. See [33] for a survey on the topic and a comparison on the known lattice
algorithms for the AGCD problem.
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surprising worst-case/average-case connection for certain lattice problems.

In particular, two lattice-based public-key cryptosystems were published:

the Ajtai-Dwork cryptosystem (AD) [2] and the Goldreich-Goldwasser-

Halevi cryptosystem (GGH) [45]:

AD: It is provably secure unless a worst-case lattice problem (a variant of

the SVP, see later) can be solved in probabilistic polynomial time.

GGH: It relies on the CVP (see later).

There is no proven worst-case/average-case property for the GGH, but it

is more practical than AD: given the security parameter λ, key-size and

encryption times are O(λ2) and O(λ4) for GGH and AD respectively.

Nguyen showed in [63] that the GGH cryptosystem is insecure: any

ciphertext reveals information on the plaintext, and decrypting ciphertexts

can be reduced to a particular CVP, easier than the general one. He was

able to solve four out of five numerical challenges proposed by the authors

of [45]; they also proposed a modified secure scheme, but impractical.

We start by recalling some notions from lattice theory. For more details

see, for instance, [64]. A lattice of Rn is a discrete subgroup of (Rn, +).

Let b1, . . . , bm be arbitrary vectors in Rm. Denote by L(b1, . . . , bm) the

set of all integral linear combinations of the bi’s: Λ := L(b1, . . . , bm) =

{∑m
i=1 nibi : ni ∈ Z}. Λ is a lattice if bi ∈ Qn, ∀i or bi ∈ Rn are linearly

independent. When Λ = L(b1, . . . , bm) is a lattice, we say that Λ is

spanned by the bi’s, and that the bi’s are generators. When the bi’s are

further linearly independent, we say that (b1, . . . , bm) is a basis of the

lattice Λ. In practice, we will usually restrict to integral lattices, so that

the underlying matrices are integral matrices. The dimension or rank of a

lattice Λ in Rn, denoted by dim(Λ), is the dimension d of its linear span
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denoted by span(Λ). The lattice is said to be full-rank when d = n: in the

following, we will consider only full-rank lattices (dimension n). It can be

shown that |det(Bi)| is constant for all basis Bi of Λ, and we call it the

determinant det(Λ) of Λ. To a basis B of a lattice Λ it can be associated

the half-open parallelepiped

P(B) = {
n∑

i=1
xibi : xi ∈ [−1/2, 1/2)}

P(B) is called the fundamental parallelepiped associated to B. Moreover,

every element of Rn/Λ has a unique representative in P(B). We have that

vol(P(B)) =det(Λ).

In lattice problems it is particular important a specific basis of a lattice,

the so called Hermite normal form (HNF) basis. Every full-rank lattice

has a unique HNF basis: a non-singular square matrix H = (hi,j) with

integer entries is in HNF if

• H is lower triangular: hi,j = 0 for all i < j

• its diagonal entries, are positive: hi,i > 0 for all i,

• in a given column, the entries below the diagonal are non-negative

and less than the diagonal: for j > i, hi,i > hj,i ≥ 0.

Given any basis B of Λ, one can compute HNF(Λ) efficiently via

Gaussian elimination. Given a specific basis B of a lattice Λ, in lattice

problems often one is asked to reduce a vector c ∈ Rn modulo this basis;

we denote it with c mod B. It is the unique vector c′ ∈ P(B) such that

c− c′ ∈ Λ. Given c and B, c′ mod B can be computed efficiently as

c− ⌊c ·B−1⌉ ·B = [c ·B−1] ·B
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In lattice problems, shortest vectors are of central importance. The

length of the shortest nonzero vector in a lattice Λ is denoted λ1(Λ).

Generalizing, one can define the successive minima: for any lattice Λ and

integer k ≤ rank(Λ), let λk(Λ) be the smallest r > 0 such that Λ contains

at least k linearly independent vectors of length bounded by r.

Ideal Lattices

Gentry’s SHE scheme is a scheme over ideal lattices. Let f(x) be an integer

monic irreducible polynomial of degree n, e.g. f(x) = xn + 1, where n

is a power of 2. Let R be the ring of integer polynomials modulo f(x),

R
def= Z[x]/(f(x)).

Each element of R is a polynomial of degree at most n− 1, therefore it

can be associated to a coefficient vector in Zn: each element of R can be

viewed as being both a polynomial and a vector. For v(x), we let ||v|| be

the Euclidean norm of its coefficient vector.

Let I be an ideal of R, a subset of R that is closed under addition

and multiplication by elements of R. Since I is additively closed, the

coefficient vectors associated to elements of I form a lattice. I is called

an ideal lattice: it is both an algebraic ideal and a lattice. Ideals have

additive structure as lattices, but they also have multiplicative structure.

The product IJ of two ideals I and J is the additive closure of the set

{v × w : v ∈ I, w ∈ J}, where ’×’ is ring multiplication.The principal

ideal (v) generated by v ∈ R corresponds to the lattice generated by the

vectors {vi
def= v× xi mod f(x) : i ∈ [0, n− 1]}; this is called the rotation

basis of the ideal lattice (v).

Let K be a field containing the ring R; e.g. K = Q[x]/(f(x)). The

inverse of an ideal I ⊆ R is I−1 = {w ∈ K : ∀v ∈ I, v × w ∈ R}. The
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inverse of a principal ideal (v) is given by (v−1), where the inverse v−1 is

taken in the field K.

Lattice Problems

The main problem in lattice theory is related to short vectors. We introduce

here a few fundamental problems; for more lattice problems, see [58].

• Shortest Vector Problem (SVP): Given a basis B ∈ Zm×n, find

a non-zero lattice vector Bx (with x ∈ Zn\{0}) such that ||Bx|| ≤

||By|| for any other y ∈ Zn\{0}.

• Approximate SVP: Given a lattice basis B find a non-zero lattice

vector of length at most γ · λ1(L(B)). The exact version of the

problem is obtained setting the approximation factor to γ = 1, and

asking for a vector of length λ1(L(B)).

• GapSVPβ : This problem consists of differentiating between the

instances of SVP in which the answer is at most 1 or larger than β,

where β can be a fixed function of n, the number of vectors. Given a

basis for the lattice, the algorithm must decide whether λ1(L(B)) ≤ 1

or λ1(L(B)) > β.

• Closest Vector Problem (CVP): Find a closest lattice point to

a given point in the ambient space. See [58] for a more detailed

description and variations.

• Bounded distance decoding problem (BDDP): Given a basis

B of lattice Λ, a vector c very close to some lattice point of Λ, the

aim is to find the closest point to c in Λ. In the promise problem
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γ-BDDP, we have a parameter γ > 1 and the promise that

dist(Λ, c) def= minv∈Λ{||c− v||} ≤ det(Λ)1/n/γ

(BDDP is often defined with respect to λ1 rather than with respect

to det(Λ)1/n.)

• Small Principal Ideal Problem (SPIP): Given a principal ideal

in either Hermite Normal Form or its two element representation

(see Section 4.2.4), of finding a ’small’ generator for it. If the SPIP is

sufficiently hard, that would thwart a key recovery attack, wherein

an adversary who knows the public key tries to find the secret key.

• Polynomial Coset Problem (PCP): [71] The problem of distin-

guishing between a random element of Z/dZ and an element of the

form f(r) mod d, where f(x) ∈ Z[x] is random (and unknown) with

small coefficients and r is the common root of F (x) and v(x) mod d

(in the notation of Section 4.2.4).

• Sparse Subset-Sum Problem (SSSP): Gentry, Smart-Vercauteren

and Gentry-Halevi bootstrap their SHE schemes into FHE schemes

using a re-encryption algorithm. Making this cryptographically se-

cure requires an additional security assumption, namely the difficulty

of a decisional version of the SSSP, i.e., it should be difficult to

distinguish between random subsets of Z/dZ and those that have

sparse subsets that sum to 0. Here, bootstrapping augments the

public key with a hint about the secret key, namely, with a large set

of vectors that has a very sparse subset that sums to the secret key.
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4.1.3 The Learning with Errors (LWE) problem

All recent lattice-based cryptographic schemes are based on one of two

natural average-case problems that have worst-case hardness guarantees:

the short integer solution (SIS) problem (which we are not going to discuss

here; see [1]) and the learning with errors (LWE) problem.

The LWE problem was first proposed by Regev in [68], and can be

described as follows. Consider a vector s ∈ Zn
q , and a probability distribu-

tion χ on Zq, let As,χ be the distribution obtained by choosing a vector

a $← Zn
q uniformly at random and a noise term e ← χ, and outputting

(a, < a, s > +e) ∈ Zn
q × Zq.

Definition 8 (LWE Problem). For an integer q = q(n) and an error

distribution χ = χ(n) over Zq, the learning with errors problem LWEn,m,q,χ

is defined as follows: given m independent samples from As,χ (for some

s ∈ Zn
q ), output s with noticeable probability.

The (average-case) decision variant of the LWE problem, denoted

DLWEn,m,q,χ, is to distinguish (with non-negligible advantage) m sam-

ples chosen according to As,χ (for uniformly random s $← Zn
q ), from m

samples chosen according to the uniform distribution over Zn
q × Zq. We

denote by DLWEn,q,χ the variant where the adversary gets oracle access to

As,χ, and is not a-priori bounded in the number of samples.

For cryptographic applications, one is primarily interested in the average

case decision problem DLWE, where s $← Zn
q . There are known quantum

[68] and classical [67] reductions between DLWEn,m,q,χ and approximating

short vector problems in lattices. See also [13] for further details.

We only note here that the best known algorithms for these problems

run in time nearly exponential in the dimension n [3, 60]. More generally,
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the best algorithms that approximate these problems to within a factor of

2k run in time 2
∼
O(n/k).

4.1.4 The Ring-Learning with Errors (RLWE) prob-

lem

Let R be a ring. Intuitively, the Ring-LWE Problem is to find s, given

polynomially many (ai, bi) ∈ R× R with bi = ais + ei where the ai’s are

uniformly random in R, s is random in R, and the ei’s are ’small’ in R. In

the decisional version of Ring-LWE, one needs to distinguish such ordered

pairs (ai, bi) from uniformly random (ai, ui) ∈ R×R.

For our purposes, we describe a variant of the ring learning with errors

assumption of Lyubaskevsky, Peikert and Regev [56], called polynomial

LWE (or, PLWE). This is the hardness assumption used in [14]. Breaking

the PLWE assumption leads to an algorithm to solve worst-case ideal

lattice problems.

Definition 9 (The PLWE Assumption - Hermite Normal Form). For all

k ∈ N, let f(x) = fk(x) ∈ Z[x] be a polynomial of degree n = n(k), let

q = q(k) ∈ Z be a prime integer, let the ring R := Z[x]/ < f(x) > and

Rq := R/qR, and let χ denote a distribution over the ring R.

The polynomial LWE assumption PLWEf,q,χ states that for any l =poly(k)

it holds that

{(ai, ai · s + ei)}i∈[l]
c≈ {(ai, ui)}i∈[l]

where s is sampled from the noise distribution χ, ai are uniform in Rq,

the ”error polynomials” ei are sampled from the error distribution χ, and

finally, the ring elements ui are uniformly random over Rq.
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Notice that the PLWE assumption is defined as a decisional assumption.

One could also define the search assumption which requires an adversary

to find s ∈ Rq, given any polynomial number of samples (ai, ai · s + ei).

The search and decisional assumptions are equivalent for some range of

parameters, as shown in [56].

4.1.5 The General Learning with Errors (GLWE) Prob-

lem

For completeness, following [12] we report here the GLWE Problem. The

LWE and the RLWE problems are syntactically identical, aside from using

different rings (Z versus a polynomial ring) and different vector dimensions

over those rings (n = poly(λ) for LWE, but n is constant - namely, 1 - in

the RLWE case). A General Learning with Errors (GLWE) Problem is

introduced to simplify discussion and describe a single GLWE- based FHE

scheme, rather than presenting essentially the same scheme twice, once for

each of the two concrete instantiations. (This will be used in the scheme

[12].)

Definition 10 (GLWE). For security parameter λ, let n = n(λ) be an

integer dimension, let f(x) = xd + 1 where d = d(λ) is a power of 2, let

q = q(λ) ≥ 2 be a prime integer, let R = Z[x] = (f(x)) and Rq = R/qR,

and let χ = χ(λ) be a distribution over R. The GLWEn,f,q,χ problem is to

distinguish the following two distributions:

• one samples (ai, bi) uniformly from Rn+1
q .

• one first draws s← Rn
q uniformly and then samples (ai, bi) ∈ Rn+1

q by

sampling ai ← Rn
q uniformly, ei ← χ, and setting bi =< ai, s > +ei.
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The GLWEn,f,q,χ assumption is that the GLWEn,f,q,χ problem is infeasible.

LWE is simply GLWE instantiated with d = 1. RLWE is GLWE instan-

tiated with n = 1. Interestingly, as far as we know, instances of GLWE

between these extremes have not been explored. One would suspect that

GLWE is hard for any (n, d) such that n · d = Ω(λ log (q/B)), where B

is a bound (with overwhelming probability) on the length of elements

output by χ. For fixed n · d, perhaps GLWE gradually becomes harder as

n increases (if it is true that general lattice problems are harder than ideal

lattice problems), whereas increasing d is probably often preferable for

efficiency.

The GLWE assumption implies that the distribution {(ai, < ai, s >

+t ·ei)} is computational indistinguishable from uniform for any t relatively

prime to q. This fact is convenient for encryption, where, for example,

a message m may be encrypted as (a, < a, s > +2e + m), and this

fact can be used to argue that the second component of this message is

indistinguishable from random.

4.1.6 NTRU

NTRU is a patented and open source public-key cryptosystem that uses

lattice-based cryptography to encrypt and decrypt data. It consists of two

algorithms: NTRUEncrypt, which is used for encryption, and NTRUSign,

which is used for digital signatures. Unlike other popular public-key

cryptosystems, it is resistant to attacks using Shor’s algorithm and its

performance has been shown to be significantly better.

The first version of the system, which was called NTRU, was developed

in 1996 by J. Hoffstein, J. Pipher, and J.H. Silverman [48]. That same
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year, the developers of NTRU joined with D. Lieman and founded the

NTRU Cryptosystems, Inc., and were given a patent on the cryptosystem.

In 2013, D. Stehle and R. Steinfeld created [74] a provably secure version

of NTRU [48] which is being studied by a post quantum crypto group

chartered by the European Commission. We describe here this version

from [74].

For a security parameter λ, the scheme is parametrized by the following

quantities:

• an integer n = n(λ),

• a prime number q = q(λ),

• a degree-n polynomial φ(x) = φλ(x),

• a B(λ)-bounded error distribution χ = χ(λ) over the ring R
def=

Z[x]/(φ(x)).

The parameters n, q, φ(x) and χ are public and we assume that given

λ, there are polynomial-time algorithms that output n, q and φ(x), and

sample from the error distribution χ. The message space is M = {0, 1},

and all operations on ciphertexts are carried out in the ring Rq (i.e. modulo

q and φ(x)). The algorithms of the encryption schemes are as follows.

• Keygen(λ): Sample polynomials f ′, g ← χ and set f := 2f ′ + 1 so

that f ≡ 1 mod 2. If f is not invertible in Rq, resample f ′. Set

pk := h = 2gf−1 ∈ Rq, sk := f ∈ R

• Enc(pk, m): Sample polynomials s, e← χ. Output the ciphertext

c := hs + 2e + m ∈ Rq
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where all operations are done modulo q and φ(x).

• Dec(sk, c) : Let µ = fc ∈ Rq. Output m′ := µ mod 2.

It is easily seen that this scheme is correct as long as there is no wrap-around

modulo q. To decrypt a ciphertext c, we compute in Rq:

fc = fhs + 2fe + fm = 2gs + 2fe + fm

If there is no wrap-around modulo q then

fc mod 2 = 2gs + 2fe + fm mod 2 = fm mod 2 = m

One possible setting which ensures that there is no wrap-around modulo

q is to set φ(x) = xn + 1. To see why this helps, notice that since the

coefficients of g, s, f, e are all bounded by 2B + 1 (the coefficients of g, s

and e are bounded by B and that of f is bounded by 2B + 1). We can

say that the coefficients of gs (mod xn + 1) and fe (mod xn + 1) are

both bounded by n(2B + 1)2. Thus, the coefficients of fc are bounded

by 4n(2B + 1)2 + B < 36nB2 < q/2. In other words, as long as we set

q > 72nB2, a fresh ciphertext generated by Enc is guaranteed to decrypt

correctly. From here on, we refer to µ = fc ∈ Rq as the error in a

ciphertext c.

For more details and for the security analysis of this scheme, we refer

to [74] or [55].

Remark 1. D. Bernstein, T. Lange et al. released in 2016 NTRU Prime

[7] which adds defenses against potential attacks to NTRU by eliminating

some worrisome algebraic structure. At equivalent cryptographic strength,

we know that NTRU performs costly operations on the private key much
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faster than RSA does. The time of performing an RSA private operation

increases as the cube of the key size, whereas that of an NTRU operation

increases in a quadratic way.3

4.2 Lattice Based FHE Schemes

Following exposition in [40], we are going now to describe shortly Gentry’s

original scheme [37], and then we will proceed describing a few variations

made by Smart-Vercauteren [71] and Gentry-Halevi [40].

4.2.1 First Approach: Lattice-based Cryptosystems

We start by describing a typical construction for a lattice-based encryption

scheme, the GGH lattice-based cryptosystem [45] in the improved version of

Micciancio [57]; Gentry’s scheme is based on the same idea. Given a lattice

Λ, the secret and public keys are a ”good” and a ”bad” base (respectively)

of Λ. Namely, a good basis Bsk consists of short, ”nearly orthogonal”

vectors, while the public key is the HNF of Λ, Bpk
def= HNF(L(Bsk)). (See

Figure 4.2.)
3There are other reasons for considering NTRU cryptography as a good candidate

for post-quantum cryptography. Unlike RSA and Elliptic Curve Cryptography, NTRU
is not known to be vulnerable to quantum computer based attacks. The National
Institute of Standards and Technology wrote in a 2009 survey that among the viable
alternatives for both public key encryption and signatures that are not vulnerable to
Shor’s Algorithm, the NTRU family of cryptographic algorithms appears to be the most
practical. The European Union’s PQCRYPTO project (Horizon 2020 ICT-645622) is
evaluating the provably secure Stehle–Steinfeld version of NTRU (not original NTRU
algorithm itself) as a potential European standard. However the Stehle-Steinfeld version
[74] of NTRU is significantly less efficient than the original scheme.
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Fig. 4.2 Good and bad bases

A ciphertext in a GGH-type cryptosystem is a vector c close to the

lattice L(Bpk), and plaintext message is embedded in the distance from c

to the closest lattice vector. To encrypt a message m, the sender chooses

a short error vector e that encodes m, and then computes the ciphertext

as c← e mod Bpk. To decrypt, one recovers e with e← c mod Bsk, and

then recovers m from e.

The idea behind the correctness is that the fundamental parallelepiped

P(Bsk) related to the secret key is a “full rounded shape” parallelepiped

that contains a sphere of radius bigger than ||e||, so that e is the point inside

P(Bsk) that equals c modulo Λ. On the other hand, the parallelepiped

P(Bpk) related to the public key is very skewed, and does not contain a

sphere of large radius, making it useless for solving BDDP.

4.2.2 Gentry’s Scheme

We are going to present the scheme at a high level; see the original paper

[37] for details. Gentry’s SHE scheme can be seen as a GGH-type scheme

over ideal lattices. The public key consists of a bad basis Bpk of an ideal

lattice J , along with some basis BI of a “small” ideal I (which is used to
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embed messages into the error vectors). For example, the small ideal I

can be taken to be I = (2), the set of vectors with all even coefficients.

A ciphertext in Gentry’s scheme is a vector close to a J-point, with

the message being embedded in the distance to the nearest lattice point.

More specifically, the plaintext space is {0, 1}, which is embedded in

R/I = {0, 1}n by encoding 0 as 0n and 1 as 0n−11. For an encoded bit

m ∈ {0, 1}n we set e = 2r + m for a random small vector r, and then

output the ciphertext c← e mod Bpk.

The secret key in Gentry’s scheme (that plays the role of the ’good

basis’ of J) is just a short vector w ∈ J−1. Decryption involves computing

the fractional part [w× c]. Since c = j + e for some j ∈ J , then w× c =

w × j + w × e. But w × j is in R and thus an integer vector, so w × c

and w× e have the same fractional part, [w× c] = [w× e]. If w and e

are short enough - in particular, if we have the guarantee that all of the

coefficients of w× e have magnitude less than 1/2 - then [w× e] equals

w× e exactly. From w× e, the decryptor can multiply by w−1 to recover

e, and then recover m← e mod 2. The actual decryption procedure from

[37] is slightly different, however. Specifically, w is ”tweaked” so that

decryption can be implemented as m← c− [w× c] mod 2 (when I = (2)).

4.2.3 Gentry’s Fully Homomorphic Scheme

The scheme is SHE: given two ciphertexts c1 = j1 + e1 and c2 = j2 + e2,

their sum is j3 + e3 where j3 = j1 + j2 ∈ J and e3 = e1 + e2 is small.

Similarly, their product is j4 +e4 where j4 = j1× (j2 +e2)+e1× j2 ∈ J and

e4 = e1 × e2 is still small. Gentry’s SHE scheme can evaluate low-degree

polynomials but not more. Once the degree (or the number of terms)

is too large, the error vector e grows beyond the decryption capability
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of the private key. Gentry solved this problem using bootstrapping: in

[37] he showed that a scheme that can homomorphically evaluate its own

decryption circuit plus one additional operation, can be transformed into

a fully-homomorphic encryption. In more details, fix two ciphertexts c1, c2

and consider the functions

DAddc1,c2(sk) def= Decsk(c1) + Decsk(c2)

DMulc1,c2(sk) def= Decsk(c1)×Decsk(c2)

We said earlier that a SHE scheme is bootstrappable if it is capable of

homomorphically evaluating the functions DAddc1,c2 and DMulc1,c2 for any

two ciphertexts c1, c2. Given a bootstrappable scheme that is also circular

secure, it can be transformed into a fully-homomorphic scheme by adding

to the public key an encryption of the secret key, c∗ ← Encpk(sk). Then

given any two ciphertexts c1, c2, the addition/multiplication of these two

ciphertexts can be computed by homomorphically evaluating the functions

DAddc1,c2(c∗) or DMulc1,c2(c∗).

This SHE scheme is not bootstrappable. Gentry showed how to squash

the decryption circuit, transforming the original SHE scheme E into a

scheme E∗ that can correctly evaluate any circuit that E can, but where

the complexity of E∗’s decryption circuit is much less than E’s. In the

original SHE scheme E, the secret key is a vector w. In the new scheme

E∗, the public key includes an additional ’hint’ about w - namely, a big

set of vectors S = {xi : i = 1, 2, . . . , S} that have a hidden sparse subset

T that adds up to w. The secret key of E∗ is the characteristic vector of

the sparse subset T , which is denoted σ =< σ1, σ2, . . . , σS >.
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Whereas decryption in the original scheme involved computing m←

c− [w× c] mod 2, in the new scheme the ciphertext c is ’post-processed’

by computing the products yi = xi × c for all of the vectors xi ∈ S. The

decryption in the new scheme can be done by computing c− [∑j σjyj ] mod

2, and this computation can be expressed as a polynomial in the σi’s of

degree roughly the size of the sparse subset T . With appropriate setting

of the parameters, the subset T can be made small enough to get a

bootstrappable scheme.

4.2.4 Variations of Gentry’s Scheme

We describe now two variations on Gentry’s SHE schemes. These are

• Smart and Vercauteren in [71]

• Gentry and Halevi in [40]

The [71] scheme has smaller message expansion and key size than Gentry’s

original scheme. The authors implemented the SHE scheme, but were not

able to implement the bootstrapping functionality. The authors of [40]

improved the scheme with, among others, a better key-generation method

for SHE scheme which reduces the asymptotic complexity from Õ(n5/2) to

Õ(n3/2) when working with dimension-n lattices (and practically reducing

the time from many hours/days to a few seconds/minutes). This allowed

them to implement all aspects of the scheme, including the bootstrapping

functionality.
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4.2.5 [SV10] and [GH11b] Variations

To simplify the presentation we present the two versions as schemes that

encrypt elements in the message space F2 = {0, 1}. Let also, for a positive

value t and integer N ,

B∞,N(t) :=
{

N−1∑
i=0

aix
i : −t ≤ ai ≤ t, ai ∈ Z

}
= {a(x) ∈ Z[x] s.t. ||a(x)||∞ ≤ t}

We will consider parameters (N, η, µ). Typically, N = 2n for some dimen-

sion n, η = 2
√

N and µ small integer, for instance µ = 1 (or in any case

µ ≤
√

N).
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SV Scheme

KeyGen(1λ)

• choose a monic ir-

reducible polynomial

F (x) ∈ Z[x] of degree

N

• repeat:

– S(x) $← B∞,N(η/2)

– v(x)← 1 + 2 · S(x)

– d← resultant(v(x), F (x))

• until d is prime. Let

p := d.

• D(x) ←gcd(v(x), F (x))

over Fp[x]

• let r ∈ Fp denote the

unique root of D(x)

• compute w(x) =∑N−1
i=0 wix

i ∈ Z[x] s.t.

w(x)·v(x) = p mod F (x)

• B ← w0 mod 2p

• pk← (p, r, µ)

• sk← (p, B)

Encrypt(m, pk)

• u(x) $← B∞,N(µ/2)

• a(x)← m + 2 · u(x)

• c← [a(r)]p

Decrypt(c, sk)

• m← (c− ⌊c ·B/p⌉) mod

2
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GH Scheme

KeyGen(1λ)

• choose a monic ir-

reducible polynomial

F (x) := xN + 1 ∈ Z[x]

• repeat:

– pick v(x) =∑N−1
i=0 vix

i $←

B∞,N(η/2)

– consider the matrix

V generated by v(x)

as given in (4.1)

– let d =det(V ) =

Resultant(v(x), F (x))

• until v(x) is a good gen-

erating polynomial. (We

consider v(x) to be good

if HNF(V ) has the same

form as in (4.2). It was

observed by N. Smart

that this happens if d is

odd and square-free.)

• let r be the unique com-

mon root of F (x) and

v(x) modulo d

• compute the polynomial

w(x) = ∑N−1
i=0 wix

i ∈

Z[x] such that w(x) ·

v(x) = d mod F (x)

• sk ← w, where w is one

of odd coefficients of w(x)

• pk← {r, d, µ}

Encrypt(m, pk, µ)

• generate a random

noise vector u :=

(u0, u1, . . . , uN−1), where

ui ≤ µ

• set a := 2u + m · e1

• let a = (a0, a1, . . . , aN−1)

• let a(x) := ∑N−1
i=0 aix

i

• let the ciphertext be the

integer c := [a(r)]d =

[m + 2∑N−1
i=1 uir

i]d

Decrypt(c, sk)

• m← [c · w]d mod 2
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For a vector v := (v0, . . . , vN−1), consider the matrix

V :=



v0 v1 · · · vN−1

−vN−1 v0 · · · vN−2

· · ·

−v1 −v2 · · · v0


∈MN(Z) (4.1)

Also, for d the unique common root of F (x) and v(x), letting ri = ri mod d,

the HNF of the ideal lattice J = (v) is

B = HNF(J) :=



d 0 0 · · · 0

−r1 1 0 · · · 0
... ... ... . . . ...

−rN−1 0 0 · · · 1


∈MN(Z) (4.2)

We remark that in [39], Gentry and Halevi build a bootstrappable

SHE by replacing the SSSP hardness assumption with the decision Diffie-

Hellman. Therefore, they achieve a leveled FHE scheme without the

squashing step; moreover, exactly as in Gentry’s blueprint, a pure FHE is

achieved by assuming circular security.

The authors of [71] also show how to obtain a FHE scheme from their

SHE scheme. See the original paper for further details.

Security

Gama and Nguyen performed several experiments with lattices in dimen-

sions 100-400 [34]. They concluded that for those dimensions it is feasible

to solve γ-BDDP when γ > 1.01n ≈ 2n/70. The best algorithms for solving

the γ-BDDP in n-dimensional lattices take time exponential in n/log γ:
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currently known algorithms can solve dimension-n γ-BDDP in time 2k up

to γ = 2
µn

k/log k , where µ is a parameter that depends on the exact details

of the algorithm. (Extrapolating from the Gama-Nguyen experiments,

µ ∈ [0.1, 0.2].)

The primary known attacks on FHE schemes are variants of the LLL

lattice basis reduction algorithm [52]. The security of almost all currently

known schemes is based on the presumed difficulty of some lattice problem,

such as finding an approximately shortest (non-zero) vector in a high

dimensional lattice.

As we saw, a number of FHE schemes use ideal lattices rather than

arbitrary lattices. Since these are very special lattices, it might turn out to

be the case that lattice attacks are easier for ideal lattices than for generic

lattices. This is an open question. At the moment, special attacks that

work better for ideal lattices than for general lattices are not yet known.

The security of these schemes is based on the simultaneous difficulty of

problems like SPIP, PCP, or SSSP.



Chapter 5

Key-Recovery Attacks against Existing

SHE Schemes

We present in this chapter the main contribution of our dissertation. In

Chapter 4 we learned under which hardness assumptions we divide the

known SHE schemes, and in Chapter 1 we saw what can be the impact

of a key-recovery attack on a SHE scheme that can be used in a real-case

scenario. We therefore describe here our key-recovery attacks.

Definition 11. Consider a scenario in which an attacker is attempting

a non-adaptive chosen-ciphertext attack to a given SHE scheme. We say

that we can perform a successful key-recovery attack if we can completely

determine all the bits of the secret key sk.

5.1 Related Work

Our starting point is the work of [54], whose authors were the first to

observe key recovery attacks by showing that the SHE schemes falling in

the category (1) in Figure 4.1is vulnerable to such attacks.
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5.1.1 Initial Attempt

In 2011, Loftus, May, Smart and Vercauteren [54] showed that the basic

Gentry scheme [37] is not IND-CCA1; indeed a lunchtime attack allows

one to recover the secret key. They then showed that a minor modification

to the variant of the SHE scheme [71] of Smart and Vercauteren will allow

one to achieve IND-CCA1, indeed PA-1, in the standard model assuming

a lattice based knowledge assumption.

We informally present the attack; for the details of the attack, see [54].

The decryption algorithm is m← [c · w]d mod 2. This decryption will be

valid as long as c · w/d ≤ 1/2. Therefore, for a certain key set (w, d), the

maximum value c′ allowed is a fixed integer. The adversary picks several

different ’ciphertexts’, and pass them to the decryption oracle to check if

they can be decrypted correctly. Eventually, the attacker will recover the

threshold c′ which is the maximum integer that can be decrypted correctly.

Then it is easy for the attacker to recover w, the secret key.

Recovering the secret key will require O(log d) calls to the oracle. The

attack is highly efficient in practice and recovers keys in a matter of seconds

for all parameter sizes in [40].

To stop this attack, in [54] the authors proposed a ciphertext check

procedure. The ciphertext that is to be decrypted, will be disassembled

into the generating polynomial a(x). Recall that a(x) = m + 2u(x), hence,

for valid ciphertexts, ||a(x)||∞ is bounded by a certain threshold smaller

than T - where T > 1
4 ||a(x)||∞ - while for invalid ’ciphertexts’ (i.e., integers

picked by attacker), the corresponding a(x) can have arbitrary coefficients.

Therefore, in the latter case, an error ⊥ is generated, and the decryption
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stops. For the details of the ciphertext-checking SHE (ccSHE) scheme, see

[54, p. 8].

The authors show that the ccSHE scheme is PA-1 secure assuming a

particular lattice knowledge assumption (see [54]). This is the only IND-

CCA1 secure SHE scheme known so far; but it makes use of a non-standard

lattice knowledge assumption.

5.1.2 Follow-Up Work

Zhang, Plantard and Susilo showed [76] an IND-CCA1 attack against the

SHE scheme [75], therefore showing that family in (2) is not IND-CCA1

secure. Given O(λ2) decryption oracle queries, an attacker can recover the

private key. Let η be the bit-length of the secret key p, O(λ2) = 3(η + 3) in

the best case. We will describe a more efficient and conceptually simpler

key recovery attack. Our attack is optimal in the sense that it recovers

directly the secret key with at most η oracle queries.

Loftus, May, Smart, and Vercauteren showed in [54] that the schemes in

the family (1) in Figure 4.1 are not IND-CCA1 secure. With our work, we

show that the remaining families (2), (3) and (4) are also not IND-CCA1

secure.

Recently, Galbraith et al. [53] explore a new approach to achieving

security against adaptive attacks, which does not rely on a notion of ”valid

ciphertexts” (see also Remark 2). The idea is to generate a ”one-time”

private key every time the decryption algorithm is run, so that even if

an attacker can learn some bits of the one-time private key from each

decryption query, this does not allow them to compute a valid private key.

They show an implementation of their idea on the [44] SHE scheme.
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5.2 Framework of Key Recovery Attacks

This is the general framework of how our key-recovery attacks work. First

of all, notice that most of the SHE schemes considered work by encrypting

only one bit at a time; therefore, also the decryption will reveal in general

only one bit. We can therefore see that for every ciphertext submitted

to the decryption oracle, this will return us the corresponding plaintext

bit. Now, the idea is that we are not necessarily forced to submit to

the decryption oracle a correctly-generated ciphertext; without proper

ciphertext-validity check (see Remark 2), we can actually submit to the

decryption oracle any value picked from the ciphertext domain (namely,

if C ⊆ C is the set of all possible ciphertexts, we can choose and submit

to the decryption oracle any value c′ ∈ C). The decryption oracle will

compute and return the value d = Decrypt(sk, c′) ∈M , for a known set of

’plaintexts’ M . The key idea here is that, whatever value c′ ∈ C we are

submitting to the decryption oracle, it will return a value d ∈M (normally

a single bit) which is a function of the secret key sk. Therefore the idea

is to submit to the decryption oracle specifically-chosen ’ciphertexts’ in

order to obtain, after every single query, a different bit of the secret key

sk. By studying how the decryption step works we can repeat and vary

our queries and finally recover completely all the bits of the secret key.

Remark 2. One can argue that it is enough to provide the decryption

step in a SHE scheme with an extra ”ciphertext-validity check” in order

to thwart this specifically-chosen ciphertext approach. However, it can

be seen that implementing such an extra check is not easy task. After

attacking the SHE schemes as we will see in this chapter, we tried to device

extra validity checks but we also found out that we can always modify
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slightly our attacks in order to prevent these extra checks to take effect.

The only exception is given by a modification of the [55] SHE scheme

which we developed, and that so far seems to resist key-recovery attacks.

This gives us good indicator that our variation of the SHE scheme [55] is

actually resistant to key-recovery attacks, even though further investigation

is needed. We will come back to this topic in Chapter 6.

Often in the following discussion we will say that our key-attacks are

optimal. Let’s explain what do we mean with this. Let u be the number

of bits revealed by the decryption oracle after each query, and let N be

the number of bits of the secret key sk. Then, assuming that the bits of

the secret key can be considered - at least from the attacker’s perspective -

uniformally chosen at random, the minimum number of decryption queries

to perform in order to obtain all the bits of the secret key is vmin := N/u.

Definition 12. Consider a SHE scheme for which we have devised a key-

recovery attack. Let v be the number of oracle decryption queries that we

have to perform in order to fully recover the secret key. We say that our

key-recovery attack is optimal for this SHE scheme if v = vmin.

It is often the case that u = 1 and therefore v = N or v ≈ N .

Remark 3. We can also notice that one does not need to recover completely

all the bits of the secret key; if our task is to beat the IND-CCA1 security,

then it may be enough to recover only a given number of bit of sk in order

to have a working CCA1 attack. (Which, we remember, is weaker than a

key-recovery attack.) Precisely, for a given SHE scheme consider the secret

key sk = s. Let N = #bits(s). Let 0 ≤ n ≤ N the number of bits of s

that we have learned through a given number of oracle decryption queries.

Then obviously we have that
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• if n = 0 we have no information whatsoever about s, and therefore

can cannot beat CCA1 security;

• if n = N then we have completely recovered s, and in particular we

can beat CCA1 security;

The interesting situation is when 0 < n < N . There is a value t := f(s) ∈ N

which is function of s such that

• if n < t then we cannot beat CCA1 security;

• if n > t then we can beat CCA1 security;

This is material for an interesting future work. We will come back on this

topic in Section 7.1.

5.2.1 The Framework of Key-Recovery Attacks

According to the given SHE scheme to attack, we have devised two main

approaches:

• for SHE schemes like [75, 11, 55, 9], we recover sk by gradually

reducing (halving) the key space

• for SHE schemes like [15, 14, 12, 44], we recover sk bit-by-bit, from

least to most significant bit

As we already mentioned, in general our attacks are optimal, in the sense

of definition 12.

In this chapter we will describe all the Key-Recovery attacks that we

have developed against the SHE schemes in categories (2), (3) and (4) as

in Figure 4.1; more precisely against the SHE schemes [75, 15, 14, 12, 11,

44, 55, 9].
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5.3 Key Recovery Attack against the DGHV10

Scheme

In [76], Zhang, Plantard and Susilo presented a key recovery attack against

the SHE scheme [75]. Given O(λ2) decryption oracle queries, an attacker

can recover the private key. Let η be the bit-length of the secret key p,

O(λ2) = 3(η + 3) in the best case.

In this section, we describe a more efficient and conceptually simpler key

recovery attack. Our attack is optimal in the sense that it recovers directly

the secret key with at most η oracle queries. Note that the decryption

oracle outputs one bit at a time.

5.3.1 The DGHV10 SHE Scheme

We start by presenting the (asymmetric) SHE scheme as presented in [75].

For this SHE scheme - as well for the ones we will describe subsequently -

we will omit the evaluation step; for a complete description of the scheme,

see the original papers. The FHE scheme from [75] is perhaps the simplest

and easiest to understand since it relies only on simple arithmetics.The

message space isM = Z2. The scheme is parametrized by γ (bit-length of

the integers in the public key), η (bit-length of the secret key), ρ (bit-length

of the noise), and τ (the number of integers in the public key). We also

consider a secondary noise parameter ρ′ = ρ + ω(logλ). For a specific

(η-bit) odd positive integer p, consider the following distribution over γ-bit

integers:

Dγ,ρ(p) = {choose q
$← Z∩[0, 2γ/p), r

$← Z∩(−2ρ, 2ρ) : output x = pq+r}
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The algorithms of the DGHV10 SHE scheme are defined as follows:

KeyGen(λ)

• sk: odd η-bit integer

p
$← (2Z + 1) ∩ [2η−1, 2η).

• sample xi
$← Dγ,ρ(p) for i = 0, . . . , τ

• relabel so that x0 is the largest

• restart unless x0 odd, rp(x0) even (rp(x) = x − ⌊x/p⌉ · p ∈

(−p/2, p/2])

• pk = (x0, x1, . . . , xτ ).

Encrypt(pk, m ∈M)

• choose a random subset S ⊆ {1, 2, . . . , τ}

• choose a random integer r in (−2ρ′
, 2ρ′)

• output c = [m + 2r + 2∑i∈S xi]x0

Decrypt(sk, c)

• output m′ = (c mod p) mod 2

5.3.2 The New Key Recovery Attack

Since η = #bits(p), we immediately obtain odd lower and upper bounds

lp and up, respectively, for p:

lp = 2η−1 + 1 ≤ p ≤ up = 2η − 1

Notice explicitly that p can only assume the odd values 2η−1 + 1, 2η−1 +

3, . . . , 2η − 3, 2η − 1. In particular, between 2η−1 and 2η there are 2η−2
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candidate values for p. We can also argue that between lp and up there

are (up− lp)/2 = 2η−2− 1 even integers. Let H(lp,up) = {0, 1, . . . , 2η−2− 2},

these integers can be denoted as lp + 2h + 1 for h ∈ H(lp,up).

Now, the idea of the key-recovery attack is as follows: consider the

‘ciphertext’ c = lp + 2h + 1 for a given h ∈ H(lp,up). Submit c to the

decryption oracle OD; we will obtain a bit b← OD(c) = (c mod p) mod 2.

There are two cases to distinguish:

b = 0 ‘Decryption is correct’ (since c is even); hence p > c, i.e. p ≥

lp + 2h + 2.

Update lp ← lp + 2h + 2.

b = 1 ‘Decryption is not correct’; hence p < c, i.e. p ≤ lp + 2h.

Update up ← lp + 2h.

Next, we repeat the decryption query with the updated values for lp, up

and with another even ‘ciphertext’ c ∈ [lp + 1, up − 1], and we stop when

up = lp. In particular, for efficiency we always choose c as the even integer

in the middle of the interval [lp +1, up−1]. It is easy to see that this attack

leads to a full recovery of the secret key p with at most log(2η−2 − 2) ≈ η

oracle queries.

5.3.3 Algorithmic Description

Formally, the attack can be described by Algorithm 1. It takes as input

an integer η ∈ N and outputs the secret integer p. Let

OD(c) = Decrypt(c, sk) = (c mod p) mod 2 (decryption oracle)

⌊x⌋o = max{n ∈ N s.t. n is odd and n ≤ x}
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Algorithm 1 Key Recovery Attack
input: η

lp ← 2η−1 + 1

up ← 2η − 1

while up ̸= lp do

h← (up − lp)/2 {h ∈ N is the number of even values in [lp, up]}

c← lp + ⌊h⌋o
if OD(c) = 0 then

lp ← lp + ⌊h⌋o + 1

end if

if OD(c) = 1 then

up ← lp + ⌊h⌋o − 1

end if

end while

return up

5.4 Key Recovery Attack against the BV11b

Scheme

In this section, we describe a key recovery attack against the SHE scheme

from [15].

5.4.1 The BV11b SHE Scheme

The message space is M = Z2. Let f be a polynomial in λ, i.e. f(λ) =

poly(λ). Consider n = f(λ) ∈ N and let ϵ ∈ (0, 1) ∩ R. Assume an odd

integer q ∈ N such that q ∈ [2nϵ
, 2 · 2nϵ), and an integer m ≥ nlog q + 2λ.
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Let χ be a noise distribution over Zq (it produces small samples, all of

magnitude not greater than n). Finally, let L ∈ N be an upper bound on

the maximal multiplicative depth that the scheme can homomorphically

evaluate, say L ≈ ϵlog n.

KeyGen(λ)

• pick s0, . . . , sL
$← Zn

q

• pick a matrix A
$← Zm×n

q

• pick a vector e← χm

• compute b = As0 + 2e

• sk = sL

• pk = (A, b)

Encrypt(pk, µ ∈M)

• pick r $← {0, 1}m

• set v = ATr ∈ Zn
q

• set w = bTr + µ ∈ Zq

• ciphertext c = ((v, w), l).

Decrypt(sk, c = ((v, w), L))

µ = (w− < v, sL > mod q) mod 2

Notice that the vectors s1, . . . , sL−1 are used in order to compute

the evaluation key, which we omit here. We remark that during the

homomorphic evaluation, the scheme generates ciphertexts of the form

c = ((v, w), l), where the tag l indicates the multiplicative level at which

the ciphertext has been generated (fresh ciphertexts are tagged with l = 0).

Note that it always holds that l ≤ L due to the bound on the multiplicative

depth, and that the output of the homomorphic evaluation of the entire

circuit is expected to have l = L. As described in [15], the SHE scheme is

only required to decrypt ciphertexts that are output by the evaluation step

(which we omit here), and those will always have level tag L. Therefore,

we always expect a ciphertext of the form c = ((v, w), L) and decryption

is correct.
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Apparently, we cannot decrypt level l ciphertexts c = ((v, w), l), for

1 ≤ l < L, since we are only allowed to decrypt level L ciphertexts.

However, we can compute L− l fresh encryptions of 1, namely c1, . . . , cL−l.

Then, we compute c∗ = Evaluate(pk, MUL, c, c1, . . . , cL−l) based on the

homomorphic property, where MUL is the multiplication circuit. The

resulting ciphertext c∗ will encrypt the same message as c does, and with

a tag level L. In particular, we can decrypt fresh ciphertexts.

5.4.2 Our Key Recovery Attack

We are going to recover the secret key sL ∈ Zn
q component-wise, and bit

by bit. For ease of notation, we will write s instead of sL. More precisely,

we write s = (s1, . . . , sn) ∈ Zn
q . For every 1 ≤ j ≤ n, we have sj ∈ Zq

and therefore sj can be written with a maximum number N of bits, where

N = ⌊log2(q − 1)⌋+ 1. We are going to recover the i-th bit of sj, for all

1 ≤ i ≤ N and for all 1 ≤ j ≤ n.

Intuitively, our attack works as follows. We start by finding the first

bit of sj for every 1 ≤ j ≤ n; then we will recover the second bit of sj for

every 1 ≤ j ≤ n; and we stop until we reach the N -th bit. In order to do

so, we have to choose a ‘ciphertext’ c to be submitted to the decryption

oracle. Instead of submitting c = (v, w) for honestly-generated v ∈ Zn
q

and w ∈ Zq, we submit c∗ = (x, y) for some specifically-picked x ∈ Zn
q and

y ∈ Zq. We omit to write the level tag since we can always obtain a level

tag L from any l ≤ L.

For any 1 ≤ j ≤ n, let (sj)2 := aj,Naj,N−1 · · · aj,1 be the binary repre-

sentation of sj (bits ordered from most significant to least significant). We

have aj,i ∈ {0, 1}, for all 1 ≤ i ≤ N .
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Recovering aj,1

We have to choose x ∈ Zn
q and y ∈ Zq in such a way that y− < x, s >

mod q = sj. To do so, pick y = 0 and x = (0, . . . , 0,−1, 0, . . . , 0)

(where -1 is in position j). Then, we have 0 − (−1)sj mod q =

sj mod q = sj . As a result, by modding out with 2, this will return

the last bit aj,1 of sj.

Recovering aj,2

Now that we know the last bit aj,1 of sj, we want to obtain s
(1)
j :=

(sj − aj,1)/2 ∈ Zq whose bit decomposition is the same as the bit

decomposition of sj, but with the last bit removed from it. Then,

modding out by 2, we will get the desired bit. This translates

to the following condition: find x ∈ Zn
q and y ∈ Zq such that

y− < x, s > mod q = (sj − aj,1)/2. Let x = (0, . . . , 0, xj, 0, . . . , 0)

(with xj in j-th position). We have to find y and xj such that

2y − sj(2xj + 1) = −aj,1 mod q. Clearly, the solution is given

by xj = −2−1 mod q and y = −2−1aj,1 mod q. By querying the

decryption oracle with the ‘ciphertext’ c∗ := (x, y), we obtain the

second-to-last bit aj,2 of sj.

Recovering aj,m, for 1 ≤m ≤ N

Based on the above two cases, we generalize the procedure. Suppose

we have found all bits aj,i, for 1 ≤ i ≤ m− 1. In order to recover the

bit aj,m, we choose x := (0, . . . , 0, xj, 0, . . . , 0) ∈ Zn
q and y ∈ Zq as

follows: xj = −(2m−1)−1 mod q and y = −(2m−1)−1(∑m−1
i=1 2i−1aj,i).



72 Key-Recovery Attacks against Existing SHE Schemes

5.4.3 Algorithmic Description and Efficiency Analy-

sis

We denote the decryption oracle OD(c) := Decrypt(sk, c). The ciphertext c

is of the form c = (x, y) (the level tag is omitted), with x ∈ Zn
q , y ∈ Zq. For

ease of notation, we have also considered the standard vectors e1, . . . , en ∈

Zn
q : for every i = 1, . . . , n, ei is the 0-vector except in position i, where it

has value 1, i.e. ei = (ei,1, . . . , ei,n) = (0, . . . , 0, 1, 0, . . . , 0), ei,i = 1, ei,j =

0 for j ̸= i. Formally, the attack from Section 5.4.2 can be described by

Algorithm 2. It takes as input the integers n, q and returns the secret key

vector s = (s1, . . . , sn) ∈ Zn
q .

Algorithm 2 Key Recovery Attack
input: n, q ∈ N
N ← ⌊log2(q − 1)⌋+1
for j = 1 to n do

for m = 1 to N do
xj ← −(2m−1)−1 mod q
x← xj · ej

y ← xj ·
∑m−1

i=1 2i−1aj,i mod q {if m = 1, y ← 0}
aj,m ← OD(x, y)

end for
sj ←

∑N
m=1 2m−1aj,m

end for
s← (s1, . . . , sn)
return s

The secret key vector s = sL ∈ Zn
q has n coefficients sj, and each one

of them has length of at most N bits. Now, n = f(λ) for a polynomial

function f(λ) = poly(λ), and N = ⌊log2(q − 1)⌋ + 1. We have that

q ∈ [2nϵ
, 2nϵ+1), with ϵ ∈ (0, 1) ∩ R a constant, and

⌊log2(q−1)⌋+ 1 < ⌊log22nϵ+1⌋+ 1 = ⌊nϵ + 1⌋+ 1 = ⌊f(λ)ϵ + 1⌋+ 1 = g(λ)
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where g(λ) = poly(λ)ϵ. Therefore, the total number of queries we must

perform to recover s is n×N < f(λ) · g(λ) = poly(λ)ϵ+1. Since each query

to the decryption oracle reveals one bit of s, our attack is optimal and

ends in polynomial time.

5.5 Key Recovery Attack against the BV11a

Scheme

In this section, we describe a key recovery attack against the symmetric-key

SHE scheme from [14]. The attack also applies to the asymmetric-key SHE

scheme.

5.5.1 The BV11a SHE Scheme

Consider primes q = poly(λ) ∈ N, t = poly(λ) ∈ Z∗q. Let n = poly(λ) ∈ N

and consider a polynomial f(x) ∈ Z[x] with deg(f) = n + 1. The message

space isM = Rt = Z[x]/(f(x)). Namely, a message is encoded as a degree

n polynomial with coefficients in Zt. Let χ be an error distribution over the

ring Rq := Zq[x]/(f(x)) and let D ∈ N, which is related to the maximal

degree of homomorphism allowed (and to the maximal ciphertext length).

Parameters n, f, q, χ are public.

Keygen(λ)

• sample s← χ

• s = (1, s, s2, . . . , sD) ∈ RD+1
q

• sk = s
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Encrypt(sk, µ ∈M)

• sample a
$← Rq and e← χ

• compute (a, b := as + te) ∈ R2
q

• compute c0 := b + µ ∈ Rq, c1 := −a

• output c = (c0, c1) ∈ R2
q

Decrypt(sk, c = (c0, . . . , cD) ∈ RD+1
q )

µ = (< c, s > modq) mod t

We remark that while the encryption algorithm only generates cipher-

texts c ∈ R2
q , homomorphic operations (as described in the evaluation

algorithm which we omit here) might add more elements to the cipher-

text. Thus, the most generic form of a decryptable ciphertext in this

scheme is c = (c0, . . . , cd) ∈ Rd+1
q , for d ≤ D. Notice that ‘padding with

zeros’ does not affect the ciphertext. Namely, (c0, . . . , cd) ∈ Rd+1
q and

(c0, . . . , cd, 0, . . . , 0) ∈ RD+1
q encrypt the same message µ ∈ Rt.

5.5.2 Our Key Recovery Attack

We can write s = s0 + s1x + · · · + snxn ∈ Zq[x]/(f(x)) with coefficients

sj ∈ Zq, ∀0 ≤ j ≤ n. We will recover each coefficient sj separately. Now,

each sj has at most N := ⌊log2(q − 1)⌋+ 1 bits; therefore #bits(s) ≤ (n +

1)×N = (n+1)×(⌊log2(q−1)⌋+1) and each query to the oracle decryption

will reveal a polynomial µ(x) = µ0 + µ1x + · · ·+ µnxn ∈ Zt[x]/(f(x)); we

have #bits(µ) ≤ (n + 1) × (⌊log2(t − 1)⌋ + 1). Therefore, the minimum
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number of oracle queries needed is given by
⌈

#(bits(s))
#(bits revealed by an oracle query)

⌉

=
⌈

(n + 1)× (⌊log2(q − 1)⌋+ 1)
(n + 1)× (⌊log2(t− 1)⌋+ 1)

⌉
=
⌈
⌊log2(q − 1)⌋+ 1
⌊log2(t− 1)⌋+ 1

⌉

We are going to query the decryption oracle with ‘ciphertexts’ of the form

c∗i := (hi, yi, 0, . . . , 0) ∈ RD+1
q for some hi, yi ∈ Rq. We will describe in

detail our attack in the case t = 2. An easy generalization for t ≥ 2 is

discussed later.

An easy case: t = 2.

We expect to query the decryption oracle at least ⌊log2(q − 1)⌋+ 1 times

and recover sj, for all 0 ≤ j ≤ n, bit by bit. Let N = #bits(sj) =

⌊log2(q − 1)⌋ + 1, ∀0 ≤ j ≤ n; and let (sj)2 = aj,Naj,N−1 · · · aj,1 be the

binary representation of sj, ∀0 ≤ j ≤ n (i.e., aj,i ∈ {0, 1},∀1 ≤ i ≤ N and

bits ordered most significant to least significant). For ease of notation, we

write c∗ = (h, y) instead of c∗ = (h, y, 0, . . . , 0).

Recovering aj,1, for all 0 ≤ j ≤ n

For a submitted ’ciphertext’ c∗ = (h, y), decryption works as follows:

< c∗, s > mod2 = h + ys mod 2. We choose h = ∑n
j=0 0xj = 0 ∈ Rq

and y = 1 +∑n
j=1 0xj = 1 ∈ Rq. The decryption oracle outputs

s mod 2 = (s0 mod 2) + (s1 mod 2)x + · · ·+ (sn mod 2)xn

= a0,1 + a1,1x + · · ·+ an,1x
n

Therefore, we obtain the last bits aj,1 for all 1 ≤ j ≤ n, which are n

bits of s.
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Recovering aj,2, ∀0 ≤ j ≤ n

With aj,1 for all 0 ≤ j ≤ n, we are going to recover aj,2, ∀0 ≤ j ≤ n,

as follows. We want to obtain

s(1) := s− (a0,1 + a1,1x + · · ·+ an,1x
n)

2

= s
(1)
0 + s

(1)
1 x + · · ·+ s(1)

n xn ∈ Zq[x]
(f(x))

for which the bit decomposition of the coefficients s
(1)
j is the same

as the bit decomposition of sj, but with the last bit removed from

it, for all 0 ≤ j ≤ n. Then, by modding out with 2, we will

get the desired bits. This translates to the following condition:

find c∗ = (h, y) = (h, y, 0, . . . , 0) ∈ RD+1
q such that < c∗, s >=

s(1) := s−(a0,1+a1,1x+···+an,1xn)
2 , from which we obtain 2h + s(2y− 1) =

−(a0,1 + a1,1x + · · ·+ an,1x
n). A solution is given by y = 2−1 ∈ Rq

and h = −2−1(a0,1 + a1,1x + · · ·+ an,1x
n) ∈ Rq. Then, by modding

out with 2 the ‘decrypted ciphertext’ µ =< c∗, s >, we recover the

second-to-last bits aj,2, for all 0 ≤ j ≤ n.

Recovering aj,m, for 1 ≤ m ≤ N , 0 ≤ j ≤ n

Suppose we have found all bits aj,i, ∀1 ≤ i ≤ m − 1 and ∀0 ≤

j ≤ n. We want to recover aj,m, ∀0 ≤ j ≤ n. By a recursive

argument, we find that we have to submit a ’ciphertext’ c∗ = (h, y)

such that y = (2m−1)−1 ∈ Rq and h = −(2m−1)−1
(∑n

j=0 djx
j
)

with

dj = ∑m−1
i=1 2i−1aj,i.

This concludes the attack for the case t = 2. Efficiency-wise, the total

number of oracle queries is N = ⌊log2(q − 1)⌋+ 1, which is optimal.



5.5 Key Recovery Attack against the BV11a Scheme 77

The general case: t ≥ 2.

We consider now the general case in which t ≥ 2 is a prime number in

Z∗q. We want to find s = s0 + s1x + · · ·+ snxn ∈ Zq[x]/(f(x)) and expect

to query the decryption oracle
⌈
⌊log2(q−1)⌋+1
⌊log2(t−1)⌋+1

⌉
times. With each query to

the decryption oracle, we are going to recover M = ⌊log2(t − 1)⌋ + 1

bits of sj, ∀0 ≤ j ≤ n. The idea is that we are going to recover sj, for

all 0 ≤ j ≤ n. In its representation in base t, sj can be represented

with N figures aj,i ∈ {0, 1, . . . , t − 1}: (sj)t = aj,Naj,N−1 · · · aj,1 where

N = ⌊logt(q − 1)⌋+ 1; each aj,i is bounded by t− 1, which explains the

value M = ⌊log2(t− 1)⌋+ 1.

Recovering aj,1, ∀0 ≤ j ≤ n

For a submitted ‘ciphertext’ c∗ = (h, y) = (h, y, 0, . . . , 0) ∈ RD+1
q ,

decryption works as follows: < c∗, s > modt = x + ys mod t. We

choose h = 0 ∈ Rq and y = 1 ∈ Rq. Then, the decryption oracle

outputs

s mod t = (s0 mod t) + (s1 mod t)x + · · ·+ (sn mod t)xn

= a0,1 + a1,1x + · · ·+ an,1x
n

as we wanted.

Recovering aj,m, ∀1 ≤ m ≤ N , ∀0 ≤ j ≤ n

Suppose we know aj,i, ∀1 ≤ i ≤ m − 1, ∀0 ≤ j ≤ n. We want to

recover aj,m, for all 0 ≤ j ≤ n. To do so, we submit to the decryption

oracle a ‘ciphertext’ c∗ = (h, y) such that y = (tm−1)−1 ∈ Rq, h =

−(tm−1)−1
(∑n

j=0 djx
j
)

, dj = ∑m−1
i=1 ti−1aj,i. It is straightforward to

verify that it works and we skip the details here.
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5.5.3 Algorithmic Description

Formally, the attack from Section 5.5.2 can be described by Algorithm 3. It

takes as input integers q, t, n, D ∈ N and a polynomial f(x) ∈ Z[x] of degree

n. It outputs the secret key vector s = (1, s, s2, . . . , sD) ∈ RD+1
q , where

Rq := Zq[x]/(f(x)). Let OD(c) := Decrypt(sk, c) be the decryption oracle,

where c ∈ RD+1
q . For given h, y ∈ Rq, let OD(h, y) := OD((h, y, 0, . . . , 0)).

Algorithm 3 Key Recovery Attack
input: q, t, n, D ∈ N; f(x) ∈ Z[x]
N ← ⌊logt(q − 1)⌋+ 1
for m = 1 to N do

y ← (tm−1)−1 in Rq

h← −y ·∑m−1
i=1 ti−1ri in Rq {if m = 1, h← 0}

rm ← OD(h, y)
end for
s← ∑N

i=1 ti−1ri

s← (1, s, s2, . . . , sD) ∈ RD+1
q

return s

5.6 Key Recovery Attack against the BGV12

Scheme

The SHE scheme from [12] is closely related to the SHE schemes from

[14, 15]. This implies that the attacks from Section 5.5.2 and 5.4.2 can be

directly applied against the SHE scheme from [12].

We first remark that the LWE and RLWE problems are syntactically

equivalent. They only use different rings (Z for LWE, and a polynomial

ring Z[x]/(xd + 1) for RLWE), as well as different vector dimensions over
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these rings (n = poly(λ) for LWE, n = 1 for RLWE). For this reason and

to simplify the presentation, the authors of [12] introduced the general

learning with errors (GLWE) problem, which is a generalized version of

LWE and RLWE.

Definition 13 (GLWE problem). For security parameter λ, let n = n(λ)

be an integer dimension, let f(x) = xd + 1 where d = d(λ) is a power of 2,

let q = q(λ) ≥ 2 be a prime integer, let R = Z[x] = (f(x)) and Rq = R/qR,

and let χ = χ(λ) be a distribution over R. The GLWEn,f,q,χ problem is to

distinguish the following two distributions:

• one samples (ai, bi) uniformly from Rn+1
q .

• one first draws s← Rn
q uniformly and then samples (ai, bi) ∈ Rn+1

q by

sampling ai ← Rn
q uniformly, ei ← χ, and setting bi =< ai, s > +ei.

The GLWEn,f,q,χ assumption is that the GLWEn,f,q,χ problem is infeasible.

LWE is GLWE when d = 1, and RLWE is GLWE when n = 1. Let’s

review the GLWE-based encryption scheme.

Setup(λ):

• use bit b ∈ {0, 1} to determine whether we are setting parame-

ters for a LWE-based scheme (d = 1) or a RLWE-based scheme

(n = 1).

• choose µ-bit modulus q and d, n, N, χ (all polynomials in λ, µ, b)

in order to have a GLWE-based scheme with 2λ security against

known attacks.

• Let R = Z[x]/(xd + 1)

• Let params = (q, d, n, N, χ).
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SecretKeyGen(params):

• choose s′ ← χn.

• set sk = s← (1, s′[1], . . . , s′[n]) ∈ Rn+1
q .

PublicKeyGen(params, sk) :

• input: params and sk = s = (1, s) with s[0] = 1 and s′ ∈ Rn
q .

• generate matrix A′ $← RN×n
q

• generate a vector e← χN

• set b← A′s′ + 2e.

• set A to be the (n + 1)-column matrix consisting of b followed

by the n columns of −A′. (Remark: A · s = 2e.)

• set pk = A.

Enc(params, pk, m): • input: message m ∈ R2

• set m← (m, 0, . . . , 0) ∈ Rn+1
q

• sample r← RN
2

• output ciphertext c←m + AT r ∈ Rn+1
q .

Dec(params, sk, c): Output m← (< c, s > modq) mod 2.

The SHE scheme from [12] uses the above GLWE-based encryption scheme

as the main building block, and we only need to show attacks against the

latter. Depending on which instantiation is chosen (either LWE or RLWE),

we can apply one of the key recovery attacks against [15, 14] to the basic

GLWE-based encryption scheme.
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• If b = 0, then d = 1, R = Z[x]/(x + 1) ∼= Z, and

c := m + ATr = m + (b | −A′T)r =

m + bTr

−A′Tr



which can be written as c =
(

w
−v

)
∈ Zn+1

q . For decryption we have

m := (< c, s > modq) mod 2

= (m + bTr+ < −A′Tr, s > modq) mod 2

which is (w− < v, sL > modq) mod 2. The secret key can be re-

covered by directly applying the key recovery attack from Section

5.4.2.

• If b = 1, then n = 1, R = Z[x]/(xd + 1). The scheme is slightly

different from the BV11a SHE scheme just for the encryption part,

but the setup, the key generation and the decryption steps are the

same. Therefore, our key recovery attack can be applied. Precisely, to

recover the secret polynomial s := s(x) = s0 + s1x + · · ·+ sd−1x
d−1 ∈

Z[x]/(xd + 1), one could directly use our key recovery attack from

Section 5.5.2 with the following settings: D ← 1, n← d− 1, t← 2.

5.7 Key Recovery Attack against the Bra12

SHE Scheme

In this section, we describe a key recovery attack against the SHE scheme

from [11]. The scheme uses, as a building block, Regev’s [68] public-key

encryption scheme. It is then enough to show a key recovery attack on
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Regev’s scheme since the full [11] can be attacked exactly as the basic

Regev’s encryption scheme (the only differences between the two schemes

are in the evaluation step which is missing in Regev’s scheme).

Let’s first recall Regev’s encryption scheme. In this scheme, let n := λ

be the security parameter.

5.7.1 The Bra12 SHE Scheme (Regev’s Encryption

Scheme)

Let q be a prime number and let χ = χ(n) be a distribution ensemble over

Z. The message space is M = {0, 1}. As claimed in [68], choosing q such

that n2 ≤ q ≤ 2n2 is enough for security (in particular, q = poly(n); for

other parameters settings, see [68]).

SecretKeyGen(n) : • Sample s := (s1, . . . , sn) $← Zn
q

• Output sk = s

PublicKeyGen(s): • Let N := (n + 1) · (log q + O(1))

• Sample A $← ZN×n
q

• Sample e← χN

• Compute b := A · s + e mod q

• Define P := [b| −A] ∈ ZN×(n+1)
q

• Output pk = P

Encrypt(pk, m ∈ {0, 1}): • Sample r ∈ {0, 1}N

• Let m := (m, 0, . . . , 0) ∈ {0, 1}n+1

c := PT · r + ⌊q/2⌋ ·m ∈ Zn+1
q
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Decrypt(sk, c):

m :=
⌊

2
q
· (< c, (1, s) > modq)

⌉
mod 2

5.7.2 Our Key Recovery Attack

Recall that we defined the rounding function ⌊·⌉ such that ⌊m + 1/2⌉ :=

m + 1 for every m ∈ N. The following attack works also, with trivial

modifications, in case we define ⌊m + 1/2⌉ := m. In this section, for a

given ciphertext c we use notation D(c) instead of Decrypt(sk, c).

We will start by describing how to recover s1. An easy generalization

will allow to recover sj, ∀j = 1, 2, . . . , n. We are going to submit to the

decryption oracle ’ciphertexts’ of the form c = (c1, c2, . . . , cn+1) ∈ Zn+1
q . It

holds

< c, (1, s) > modq = c1 + c2s1 + c3s2 + · · ·+ cn+1sn mod q

Choose c = (0, 1, 0, . . . , 0), i.e. c2 = 1 and ci = 0, for i = 1, . . . , n + 1 and

i ̸= 2. Then < c, (1, s) > modq = s1 mod q = s1. (Recall that sj ≤ q − 1,

∀j = 1, 2, . . . , n.) Then

D(c) =
⌊

2
q

s1

⌉
mod 2

Now, since 0 ≤ s1 < q, we have 0 ≤ 2
q
s1 < 2

q
q = 2. Let u =

⌊
2
q
s1
⌉
; then we

have u ∈ {0, 1, 2}. In particular, it is easy to see that

• u = 0⇔ 0 ≤ s1 < q
4

• u = 1⇔ q
4 ≤ s1 < 3q

4

• u = 2⇔ 3q
4 ≤ s1 ≤ q − 1
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Remember that q is prime, so in particular q
4 , 3q

4 /∈ N. Since D(c) =

u mod 2, we have

• D(c) = 1⇔ q
4 < s1 < 3q

4

• D(c) = 0⇔ 0 ≤ s1 < q
4 or 3q

4 < s1 ≤ q − 1

Having these considerations in mind, we recover s1 like follows.

Recovering s1.

Select c = (0, 1, 0, . . . , 0) ∈ Zn+1
q , i.e. c2 = 1 and ci = 0, ∀i = 1, . . . , n + 1,

i ̸= 2. Submit c to the decryption oracle. We have two case to consider.

Case 1: D(c) = 1. Then we know that

q

4 < s1 <
3q

4 (5.1)

Now select c = (1, 1, 0, . . . , 0) ∈ Zn+1
q . Then < c, (1, s) >= 1 +

s1 mod q. There are two cases to consider:

1.1 if D(c) = 0, then it must be

3q

4 < 1 + s1 (5.2)

Conditions 5.1 and 5.2 together imply that s1 is the biggest

integer smaller than 3q
4 , i.e. s1 = ⌊3q

4 ⌋.

1.2 if D(c) = 1, then we still have

q

4 < 1 + s1 <
3q

4 (5.3)

We then select c = (2, 1, 0, . . . , 0) ∈ Zn+1
q and submit it to the

decryption oracle. Similarly as above, we have < c, (1, s) >=

2 + s1 mod q. Again, there are two cases to consider:
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1.2.1 if D(c) = 0, then it must be

3q

4 < 2 + s1 (5.4)

Conditions 5.3 and 5.4 together imply that 1 + s1 = ⌊3q
4 ⌋,

i.e. s1 = ⌊3q
4 ⌋ − 1.

1.2.2 if D(c) = 1, then we still have

q

4 < 2 + s1 <
3q

4

We keep reasoning this way, submitting to the decryption oracle

’ciphertexts’ ci = (c1,i, 1, 0, . . . , 0) ∈ Zn+1
q , for increasing values c1,i =

1, 2, 3, . . . until we obtain D(ci) = 0. Then we will have

s1 = ⌊3q

4 ⌋ − c1,i + 1

We notice that, in the worst case, i.e. when s1 = ⌈ q
4⌉, we have

to query the decryption oracle at most M1 := ⌈3q
4 ⌉ − ⌈

q
4⌉ times.

Therefore, in the worst case the total number of oracle queries is

T1 := 1 + M1 = 1 + ⌈3q

4 ⌉ − ⌈
q

4⌉ ≈
q

2

Case 2: D(c) = 0. Then we know that s1 is such that

(2.1) 0 ≤ s1 < q
4 or

(2.2) 3q
4 < s1 ≤ q − 1

We use techniques as before, but we have to be more careful since

now we have to understand in which case we are among (2.1) or (2.2).
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As before, we select c = (1, 1, 0, . . . , 0) ∈ Zn+1
q . Then < c, (1, s) >=

1 + s1 mod q.

The idea is similar to case 1: we keep submitting to the decryption

oracle ’ciphertexts’ ci = (c1,i, 1, 0, . . . , 0) ∈ Zn+1
q , for increasing values

c1,i = 1, 2, 3, . . ., until D(ci) = 1. When we will receive D(ci) = 1,

we will know that s1 + c1,i > q
4 . The exact value c1,i will tell us in

which of the cases (2.1) or (2.2) we were at the beginning. In fact,

• in case (2.1) we will get D(ci) = 1 after a number of oracle

queries M ′
2 such that

1 ≤M ′
2 ≤

⌈
q

4

⌉

where M ′
2 = 1 when s1 =

⌊
q
4

⌋
and M ′

2 =
⌈

q
4

⌉
when s1 = 0.

• in case (2.2) the number M ′′
2 of oracle queries needed in order

to obtain D(ci) = 1 is such that

1 +
⌈

q

4

⌉
≤M ′′

2 ≤ q −
⌈3q

4

⌉
+
⌈

q

4

⌉

where M ′′
2 = 1 +

⌈
q
4

⌉
when s1 = q − 1 and M ′′

2 = q −
⌈

3q
4

⌉
+
⌈

q
4

⌉
when s1 =

⌈
3q
4

⌉
.

Therefore, consider the first value c1,i such that D(ci) = 1.

• if 1 ≤ c1,i ≤
⌈

q
4

⌉
, we are in case (2.1) and

s1 =
⌊

q

4

⌋
− c1,i + 1
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• if 1 +
⌈

q
4

⌉
≤ c1,i ≤ q −

⌈
3q
4

⌉
+
⌈

q
4

⌉
we are in case (2.2) and

s1 = q − c1,i +
⌈

q

4

⌉

We notice that, in the worst case (i.e., when s1 =
⌈

3q
4

⌉
) we need to

query the decryption oracle M0 := q −
⌈

3q
4

⌉
+
⌈

q
4

⌉
times. (Notice

that M0 = q −M1.) Therefore, in case 2, in the worst case the total

number of oracle queries is

T2 := 1 + M0 = 1 + q −
⌈3q

4

⌉
+
⌈

q

4

⌉
≈ q

2

So in both cases 1 and 2, the total number of oracle queries needed to

recover s1 is ≈ q
2 .

Remark 4. We can provide an exact simpler formula for T1 and T2. Recall

that q ≥ 2 is prime; we can reasonably assume q odd. Then one can check

that

• if q ≡ 1 mod 4

M1 = q − 1
2 , M0 = q + 1

2 , T1 = q + 1
2 , T2 = q + 3

2

• if q ≡ 3 mod 4

M1 = q + 1
2 , M0 = q − 1

2 , T1 = q + 3
2 , T2 = q + 1

2

In particular, the total number Ttot of oracle queries needed to recover s1

is Ttot ≤ q+3
2 .
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An optimization. We could optimize the previous algorithm like

follows. Let b := D(c) ∈ {0, 1}, where c = (0, 1, 0, . . . , 0) ∈ Zn+1
q . Our

previous strategy was to submit ’ciphertexts’ ci := (c1,i, 1, 0, . . . , 0) ∈ Zn+1
q

for increasing values c1,i = i, for i = 1, 2, . . . , Mb.

We modify our strategy and choose the first value c1,1 in the middle

of the interval [1, Mb]. Then, if D(c1) = 1 + b mod 2 we choose c1,2 in the

middle of the interval [1, c1,1]; otherwise, if D(c1) = b mod 2, we choose

c1,2 in the middle of the interval [c1,1 + 1, Mb]. Keep reasoning this way,

we will obtain s1 in ⌊log2(Mb) + 1⌋ ≈ log2(q/2) oracle queries.

Recovering sj, for j = 1, . . . , n.

Similarly, and more in general, we can recover sj, for j = 1, 2, . . . , n. In

this case, the ’ciphertext’ to submit is c = (c1, c2, . . . , cn+1) ∈ Zn+1
q with

ck =



0 if k = 1 and it is the first query to the decryption oracle

c1,i if k = 1 and it is not the first query, 1 ≤ c1,i ≤Mb

1 if k = j + 1

0 if k /∈ {1, j + 1}

5.7.3 Algorithmic Description and Efficiency

For a given vector c = (c1, . . . , cn+1) ∈ Zn+1
q , we denote the decryption

oracle as OD(c) := Decrypt(sk, c). For ease of notation, we define the

following function. Let j ∈ {1, 2, . . . , n}, and a, b ∈ Zq; define the function

fj : Z2
q → Zn+1

q such that fj(b1, b2) = (a1, . . . , an+1) with a1 = b1, aj+1 = b2

and ak = 0 for k ̸= 1, j +1. Algorithm 4 takes as input the integers n, q and

returns the secret key s = (s1, . . . , sn) ∈ Zn
q . Algorithm 5 is the optimized

version of it.
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Algorithm 4 Key-Recovery Attack
input: q, n ∈ N
for j = 1 to n do

c← fj(0, 1), b← OD(c), b′ ← b, i← 0
while b′ = b do

i = i + 1
c← fj(i, 1)
b′ ← OD(c)

end while
if b = 1 then

sj ←
⌊

3q
4

⌋
− i + 1

else if b = 0 then
if 1 ≤ i ≤

⌈ q
4
⌉

then
sj ←

⌊ q
4
⌋
− i + 1

else if 1 +
⌈ q

4
⌉
≤ i ≤ q −

⌈
3q
4

⌉
+
⌈ q

4
⌉

then
sj ← q − i +

⌈ q
4
⌉

end if
end if

end for
return s := (s1, . . . , sn)

Notice that max(M0, M1) = (q + 1)/2 =: M . Therefore, in the

worst case the total number Ttot of oracle queries needed to recover

s = (s1, . . . , sn) ∈ Zn
q is

Ttot ≤ n · (1 + M) = n · q + 3
2 ≈ n · q

2

In the optimized version, the total number T opt
tot of oracle queries is

T opt
tot ≤ n · (1 + ⌊log2(M) + 1⌋) ≈ n · (1 + log2(q/2))

Therefore, our optimized key recovery algorithm is indeed optimal since

the number of oracle queries needed to recover the secret key is not greater

than the bits of the secret key (and one oracle query reveals on bit at a
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Algorithm 5 Optimized Key-Recovery Attack
input: q, n ∈ N
if q ≡ 1 mod 4 then

M1 ← q−1
2 , M0 ← q+1

2
else if q ≡ 3 mod 4 then

M1 ← q+1
2 , M0 ← q−1

2
end if
for j = 1 to n do

c← fj(0, 1), b← OD(c), L← 1, U ←Mb

while L ̸= U do
i←

⌊
L+U

2

⌋
c← fj(i, 1)
b′ ← OD(c)
if b′ ̸= b then

U ← i
else if b′ = b then

L← i + 1
end if

end while
if b = 1 then

sj ←
⌊ 3q

4

⌋
− L + 1

else if b = 0 then
if 1 ≤ L ≤

⌈
q
4

⌉
then

sj ←
⌊

q
4

⌋
− L + 1

else if 1 +
⌈

q
4

⌉
≤ L ≤ q −

⌈ 3q
4

⌉
+
⌈

q
4

⌉
then

sj ← q − L +
⌈

q
4

⌉
end if

end if
end for

return s := (s1, . . . , sn)
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time). In fact:

#bits in sk = n · (1 + ⌊log2(q − 1)⌋)

T opt
tot ≤ n ·

(
1 +

⌊
log2

(
q + 1

2

)
+ 1

⌋)
=

(
1 +

⌊
log2

(
q + 1

2 · 2
)⌋)

= n · (1 + ⌊log2(q + 1)⌋)

In particular the above algorithm is polynomial in the security parameter

n: recall that the suggested parameters in Regev’s encryption scheme [68]

for q are n2 ≤ q ≤ 2n2; therefore we have T opt
tot = O(nlog n).

5.8 Key Recovery Attack against the GSW13

SHE Scheme

In this section, we describe a key recovery attack against the SHE scheme

from [44]. We first give some useful preliminary definitions. Let q, k ∈ N.

Let l be the bit-length of q, i.e. l = ⌊log2q⌋+ 1, and let N = k · l. Consider

a vector a := (a1, . . . , ak) ∈ Zk
q , and let (ai)2 := ai,0ai,1 . . . ai,l−1 be the

binary decomposition of ai (bit ordered least to most significant), for every

i = 1, . . . , k. We define

BitDecomp(a) := (a1,0, . . . , a1,l−1, . . . , ak,0, . . . , ak,l−1) ∈ ZN
q

For a given a′ := (a1,0, . . . , a1,l−1, . . . , ak,0, . . . , ak,l−1) ∈ ZN
q , let

BitDecomp−1(a′) := (
l−1∑
j=0

2j · a1,j, . . . ,
l−1∑
j=0

2j · ak,j) ∈ Zk
q
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We notice explicitly that a′ does not necessarily lie in {0, 1}N , but when

it does then BitDecomp−1 is the inverse of BitDecomp. For a′ ∈ ZN
q , we

define

Flatten(a′) := BitDecomp(BitDecomp−1(a′)) ∈ ZN
q

When A is a matrix, let BitDecomp(A), BitDecomp−1(A), Flatten(A) be the

matrix formed by applying the operation to each row of A separately.

Finally, for b := (b1, . . . , bk) ∈ Zq let

PowersOf2(b) := (b1, 2b1, . . . , 2l−1b1, . . . , bk, 2bk, . . . , 2l−1bk) ∈ ZN
q

It is easy to see that, for a, b ∈ Zk
q and for a′ ∈ ZN

q ,

< BitDecomp(a), Powersof2(b) > = < a, b >

< a′, Powersof2(b) > = < BitDecomp−1(a′), b >

= < Flatten(a′), Powersof2(b) >

5.8.1 The GSW13 SHE Scheme

The message space isM = Zq for a given modulus q with # bits(q) = κ =

κ(λ, L). Let n = n(λ) be the lattice dimension and let χ = χ(λ) be the

error distribution over Zq (chosen appropriately for LWE: it must achieve

at least 2λ security against known attacks). Choose m = m(λ) = O(nlogq).

So the parameters used in all algorithms are n, q, χ, m. We have that

l = ⌊log q⌋+ 1 is the number of bits of q, and we let N = (n + 1) · l.

Keygen(λ):

• sample t := (t1, . . . , tn)← Zn
q

• sk := s← (1,−t1, . . . ,−tn) ∈ Zn+1
q
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• let v = Powersof2(s) ∈ ZN
q ; see 1

• sample a matrix B
$← Zm×n

q

• sample a vector e← χ, e ∈ Zm
q

• set b := B · t + e =: (b1, . . . , bm) ∈ Zm
q .

• set A to be the (n + 1)-column matrix consisting of b followed

by the n columns of B

A = (b | B) ∈ Zm×(n+1)
q

• pk := A.

We remark that A · s = e.

Encrypt(pk, µ ∈M):

• sample a matrix R
$← {0, 1}N×m

• output the ciphertext

C = Flatten(µ · IN + BitDecomp(R · A)) ∈ ZN×N
q

Decrypt(sk, C):

• observe that the first l coefficients of v are 1, 2, . . . , 2l−2

• among these coefficients, let vi = 2i be in (q/4, q/2]

• let Ci be the i-th row of C

• compute xi :=< Ci, v >

1v = Powersof2(s) = (s1, 2s1, . . . , 2l−1s1, s2, . . . , 2l−1s2, . . . , sn+1, 2sn+1, . . . , 2l−1sn+1)
= (1, 2, . . . , 2l−1,−t1,−2t1, . . . ,−2l−1t1, . . . ,−tn,−2tn, . . . ,−2l−1tn) ∈ Z(n+1)l

q =
ZN

q
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• output µ′ := ⌊xi/vi⌉

The Decrypt algorithm can recover the message µ when it is in a ‘small

space’ (q = 2, i.e. M = Z2). For an algorithm that can recover any µ ∈ Zq,

we refer to the MPDec algorithm as described (as a special case) in [44]

and in [59]. If the ciphertext is generated correctly, it is not difficult to

show that C · v = µ · v + R · A · s = µ · v + R · e ∈ ZN
q .

Now, the Decrypt algorithm uses only the i-th coefficient of the vector

C ·v ∈ ZN
q , i.e. < Ci, v >= µ·vi+ < Ri, e >∈ Zq. Moreover, in the Decrypt

step, i has to be such that vi := 2i ∈ (q/4, q/2], with i ∈ [1, 2, . . . , 2l−1].

Now remember that l = ⌊log q⌋+ 1 equals the number of bits of q. Hence

we have

2l−3 ≤ q

4 < 2l−2 ≤ q

2 < 2l−1 ≤ q < 2l

Therefore the only possible value for 2i ∈ (q/4, q/2] is 2l−2. For this reason,

Decrypt can be simply rewritten as

Decrypt(sk, C):

• let Cl−2 be the (l − 2)-th row of C

• compute xl−2 :=< Cl−2, v >

• output µ′ := ⌊xl−2/2l−2⌉

One could think of outputting as ciphertext only the (l − 2)-th row Cl−2

of the matrix C; this is actually not possible since the full matrix is still

needed in order to perform the homomorphic operations (in particular, the

multiplication of two ciphertexts). We will not discuss them here; see [44].
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5.8.2 Our Key Recovery Attack

We are going to recover bit by bit each coefficient ti of the secret vec-

tor t := (t1, . . . , tn) ∈ Zn
q . For every 1 ≤ i ≤ n, let BitDecomp(ti) :=

(ti,0, ti,1, . . . , ti,l−1) ∈ Zl
q bits ordered from least to most significant. We

explicitly remark that ti = ∑l−1
j=0 2jti,j. We will proceed as follows: start

with i = 1 and recover, in this order, the bits from most to least signif-

icant. Then continue with i = 2, and so on until i = n. Let x ∈ Zq.

Since #bits(q) = l, we have x ≤ q − 1 ≤ 2l − 2. Moreover, we have

#bits(x) ≤ ⌊log2(q − 1)⌋+ 1 := l∗. We have l∗ = l if q is not a power of

2, i.e. if q ̸= 2h, for any h ∈ {1, 2, . . . , l − 1}. Otherwise, l∗ = l − 1. We

will not distinguish between these two cases: just remark that if l∗ = l− 1,

then ti,l−1 = 0 for all i ∈ {1, 2, . . . , n}.

Recovering BitDecomp(t1)

We start by recovering BitDecomp(t1). The trickiest part is to recover the

most significant bit. We start by recovering t1,l−1, t1,l−2, t1,l−3. We have to

choose, and submit to the decryption oracle, a matrix C ∈ ZN×N
q . Then

the oracle will compute x =< Cl−2, v > and will output the rounded value

µ = ⌊x/2l−2⌉. Our attack works also, with a trivial modification, in the

case we define the rounding function such that ⌊n + 1/2⌉ := n, for every

n ∈ N. Our strategy is to submit a matrix C whose entries are all 0 except

for the (l − 2)-th row Cl−2. Let y = (y1, . . . , yN) ∈ ZN
q be the vector

representing Cl−2.

We select y = (0, . . . , 0,−1, 0, . . . , 0) ∈ ZN
q where −1 is in l + 1-th

position, i.e.

yi =


−1 if i = l + 1

0 otherwise
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Through the decryption oracle, we have x =< y, v >= −vl+1 = t1 ∈ Zq

and µ = ⌊t1/2l−2⌉. There are two cases.

1. µ = 0. In this case, we have 0 ≤ t1
2l−2 < 1

2 i.e. t1 < 2l−3 =∑l−4
j=0 2j + 1. Then it must be t1,l−1 = t1,l−2 = t1,l−3 = 0 .

2. 1 ≤ µ ≤ 4. In particular, 2l−3 ≤ t1 ≤ 2l − 2. Then we have

(t1,l−1, t1,l−2, t1,l−3) ∈ {0, 1}3\{(0, 0, 0)} (5.5)

Next, query the decryption oracle with

y = (0, . . . , 0,−1, 0, 0,−1, 0, . . . , 0) ∈ ZN
q

with −1 in (l − 2)-th and (l + 1)-th positions:

yi =


−1 if i = l − 2 or i = l + 1

0 otherwise

Through the decryption oracle, we have x =< y, v >= t1 − 2l−3 ≥ 0

and µ =
⌊

t1−2l−3

2l−2

⌉
. There are two cases:

2.1. µ = 0. In this case, we have 0 ≤ t1−2l−3

2l−2 < 1
2 i.e. 2l−3 ≤

t1 < 2l−2 = ∑l−3
j=0 2j + 1. Then it must be t1,l−1 = t1,l−2 = 0 .

Condition (5.5) implies that t1,l−3 = 1 .

2.2. 1 ≤ µ ≤ 3. In particular, 2l−2 ≤ t1 ≤ 2l − 2. Then we have

(t1,l−1, t1,l−2) ∈ {0, 1}2\{(0, 0)} (5.6)
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Next, query the decryption oracle with

y = (0, . . . , 0,−1, 0,−1, 0, . . . , 0) ∈ ZN
q

with −1 in (l − 1)-th and (l + 1)-th positions:

yi =


−1 if i = l − 1 or i = l + 1

0 otherwise

Through the decryption oracle, we have x =< y, v >= t1 −

2l−2 ≥ 0 and µ =
⌊

t1−2l−2

2l−2

⌉
. There are two cases:

2.2.1. µ = 0. In this case, we have 0 ≤ t1−2l−2

2l−2 < 1
2 and 2l−2 ≤ t1 <

2l−2 + 2l−3 < 2l−1. This means that t1,l−1 = 0 . Therefore,

condition (5.6) implies that t1,l−2 = 1 . Moreover, since we

have 0 ≤ t1 − 2l−2 < 2l−3, we have that t1,l−3 = 0 .

2.2.2. 1 ≤ µ ≤ 2. In particular, 2l−3 + 2l−2 ≤ t1.

Next, query the decryption oracle with

y = (0, . . . , 0,−1,−1, 0,−1, 0, . . . , 0) ∈ ZN
q

with −1 in (l − 2)-th, (l − 1)-th and (l + 1)-th positions:

yi =


−1 if i = l − 2, i = l − 1 or i = l + 1

0 otherwise

Through the decryption oracle, we have x =< y, v >=

t1 − (2l−3 + 2l−2) ≥ 0 and µ =
⌊

t1−(2l−3+2l−2)
2l−2

⌉
. There are

two cases:
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2.2.2.1. µ = 0. In this case, we have 0 ≤ t1−2l−3−2l−2

2l−2 <

1
2 , i.e. 2l−3+2l−2 ≤ t1 < 2l−1. This implies t1,l−1 = 0 .

Therefore, condition (5.6) gives t1,l−2 = 1 . Moreover,

we have 2l−3 ≤ t1 − 2l−2 < 2l−2; hence t1,l−3 = 1 .

2.2.2.2. µ = 1. We have 2l−1 ≤ t1 ≤ 2l − 2. This implies

t1,l−1 = 1 . We now have to recover t1,l−2, t1,l−3.

Next, query the decryption oracle with

y = (0, . . . , 0,−1,−1, 0, . . . , 0) ∈ ZN
q

with −1 in l-th and (l + 1)-th positions:

yi =


−1 if i = l or i = l + 1

0 otherwise

Through the decryption oracle, we have x =< y, v >=

t1 − 2l−1 ≥ 0 and µ =
⌊

t1−2l−1

2l−2

⌉
. There are two cases:

2.2.2.2.1. µ = 0. In this case, we have 0 ≤ t1−2l−1

2l−2 < 1
2 , i.e. 0 ≤

t1 − 2l−1 < 2l−3 = ∑l−4
j=0 2j + 1.

This implies t1,l−2 = t1,l−3 = 0 .

2.2.2.2.2. 1 ≤ µ ≤ 3. In particular, 2l−3 ≤ t1 − 2l−1. Then we

have

(t1,l−2, t1,l−3) ∈ {0, 1}2\{(0, 0)} (5.7)

Next, query the decryption oracle with

y = (0, . . . , 0,−1, 0,−1,−1, 0, . . . , 0) ∈ ZN
q
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with −1 in (l − 2)-th, l-th and (l + 1)-th positions:

yi =


−1 if i = l − 2, i = l or i = l + 1

0 otherwise

Through the decryption oracle, we have x =< y, v >=

t1 − (2l−1 + 2l−3) ≥ 0 and µ =
⌊

t1−2l−1−2l−3

2l−2

⌉
. There

are two cases:

2.2.2.2.2.1. µ = 0. In this case, we have 0 ≤ t1−2l−1−2l−3

2l−2 <

1
2 , i.e. 2l−3 ≤ t1− 2l−1 < 2l−2. This means that

t1,l−2 = 0 . Condition (5.7) then implies t1,l−3 = 1 .

2.2.2.2.2.2. 1 ≤ µ ≤ 2. In particular, 2l−2 ≤ t1 − 2l−1 ≤ 2l −

2− 2l−1 = 2l−1− 2. Then, we have t1,l−2 = 1 . We

still have to find t1,l−3. Next, query the decryption

oracle with y = (0, . . . , 0,−1,−1,−1, 0, . . . , 0) ∈

ZN
q , where −1 is in (l − 1)-th, l-th and (l + 1)-th

positions:

yi =


−1 if i = l − 1, i = l or i = l + 1

0 otherwise

Through the decryption oracle, we have x =<

y, v >= t1−(2l−1+2l−2) ≥ 0 and µ =
⌊

t1−2l−1−2l−2

2l−2

⌉
.

There are two cases:

2.2.2.2.2.2.1. µ = 0. In this case,

0 ≤ t1 − 2l−1 − 2l−2

2l−2 <
1
2 , i.e.
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i.e. 0 ≤ t1 − 2l−1 − 2l−2 < 2l−3. This implies

that t1,l−3 = 0 .

2.2.2.2.2.2.2. µ = 1. Then 2l−3 ≤ t1−2l−1−2l−2. This implies

that t1,l−3 = 1 .

At this point, we know the first three significant bits t1,l−1, t1,l−2, t1,l−3

of t1. Notice that we have recovered the first three most significant bits

with at most 7 oracle queries. Next, we are going to recover t1,l−4. Query

the decryption oracle with

y = (0, . . . , 0,−t1,l−3,−t1,l−2,−t1,l−1,−1, 0, . . . , 0) ∈ ZN
q

where −t1,i is in (i + 1)-th position. Then

x =< y, v >= t1 − (t1,l−12l−1 + t1,l−22l−2 + t1,l−32l−3)

Now, we have 0 ≤ x < 2l−3. Therefore, µ = ⌊x/2l−2⌉ = 0, and so not

useful at all to learn t1,l−4. The idea is to ‘shift’ the bits ‘to the left’, i.e.

towards the most significant. So, let us instead choose

y = 2 · (0, . . . , 0,−t1,l−3,−t1,l−2,−t1,l−1,−1, 0, . . . , 0) ∈ ZN
q

So now x =< y, v > is such that 0 ≤ x < 2l−2. After submitting y to

the decryption oracle, it will compute and output µ = ⌊x/2l−2⌉. Then

t1,l−4 = µ .

Now we can generalize and recover t1,k, for all k = l − 4, l − 5, . . . , 1, 0.

This will complete the recovery of t1. Suppose that, for a given k, we

recovered already t1,m, ∀m ∈ [k + 1, . . . , l − 1]. We then recover t1,k by
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recurrence. Choose

y = 2l−k−3(0, . . . , 0,−t1,k+1,−t1,k+2, . . . ,−t1,l−1,−1, 0, . . . , 0) ∈ ZN
q

with −t1,i in (i + 1)-th position; i.e.

yi =



−2l−k−3t1,i−1 for i ∈ [k + 2, . . . , l]

−2l−k−3 for i = l + 1

0 otherwise

Then we have x =< y, v >= 2l−k−3
(
t1 −

∑l−1
j=k+1 t1,j2j

)
with 0 ≤ x < 2l−2.

Then, t1,k = µ .

We recover completely t1 after at most 7 + (l− 3) = l + 4 oracle queries.

Recovering BitDecomp(tr), for every r ∈ [1, 2, . . . , n]

We can now generalize and recover BitDecomp(tr), for every r ∈ [1, 2, . . . , n],

in a way analogous to what has been done for the case r = 1. The only

difference is that, when choosing y ∈ ZN
q , we set −1 in position rl + 1. So,

for a given r ∈ [1, 2, . . . , n], we have the following.

• Recovering the first three most significant bits tr,l−1, tr,l−2, tr,l−3. This

is done exactly as in the case of t1, with the only modification yl+1 = 0

and yrl+1 = −1 always.

• Recovering tr,k, for all k = l − 4, l − 5, . . . , 1, 0. Suppose that, for a

given k, we recovered already tr,m, ∀m ∈ [k + 1, . . . , l − 1]. We then

recover tr,k by recurrence. Choose

y = 2l−k−3(0, . . . , 0,−tr,k+1,−tr,k+2, . . . ,−tr,l−1, 0, . . . , 0,−1, 0, . . . , 0) ∈ ZN
q



102 Key-Recovery Attacks against Existing SHE Schemes

with −tr,i in (i + 1)-th position and −1 in (rl + 1)-th position; i.e.

yi =



−2l−k−3tr,i−1 for i ∈ [k + 2, . . . , l]

−2l−k−3 for i = rl + 1

0 otherwise

Then we have x =< y, v >= 2l−k−3
(
tr −

∑l−1
j=k+1 tr,j2j

)
with 0 ≤

x < 2l−2. Then, tr,k = µ .

In summary, we can recover the secret key t ∈ Zn
q with at most (l+4) ·n

oracle queries.

5.8.3 Algorithmic Description

Formally, the attack from Section 5.8.2 can be described by Algorithm

6. For a given vector y = (y1, . . . , yN) ∈ ZN
q , we let Cy ∈ MN×N(Zq) be

the square N ×N matrix whose entries are all 0 except for the (l − 2)-th

row Cl−2, which is y. We have denoted the decryption oracle OD(Cy) :=

Decrypt(sk, Cy) =
⌊

<y,v>
2l−2

⌉
. For ease of notation, we have also considered

the standard vectors e1, . . . , eN ∈ ZN
q : for every i = 1, . . . , N , ei is the

0-vector except in position i, where it has value 1:

ei = (ei,1, . . . , ei,N) = (0, . . . , 0, 1, 0, . . . , 0), ei,i = 1, ei,j = 0 for j ̸= i

We put di := −ei, for all i.
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Algorithm 6 Key Recovery Attack against GSW13 SHE
input: q, n
l← ⌊log2q⌋+ 1; N ← (n + 1) · l
for r = 1 to n do

y← drl+1
if OD(Cy) = 0 then

tr,l−1, tr,l−2, tr,l−3 ← 0
else

y← dl−2 + drl+1
if OD(Cy) = 0 then

tr,l−1, tr,l−2 ← 0; tr,l−3 ← 1
else

y← dl−1 + drl+1
if OD(Cy) = 0 then

tr,l−1, tr,l−3 ← 0; tr,l−2 ← 1
else

y← dl−2 + dl−1 + drl+1
if OD(Cy) = 0 then

tr,l−1 ← 0; tr,l−2, tr,l−3 ← 1
else

tr,l−1 ← 1; y← dl + drl+1
if OD(Cy) = 0 then

tr,l−2, tr,l−3 ← 0
else

y← dl−2 + dl + drl+1
if OD(Cy) = 0 then

tr,l−2 ← 0; tr,l−3 ← 1
else

tr,l−2 ← 1; y← dl−1 + dl + drl+1
if OD(Cy) = 0 then

tr,l−3 ← 0
else

tr,l−3 ← 1
end if

end if
end if

end if
end if

end if
end if
for k = l − 4 to 0 do

y← 2l−k−3 · (drl+1 +∑l
i=k+2 tr,i−1di)

tr,k ← OD(Cy)
end for

end for
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for i = 1 to n do
ti ← BitDecomp−1(ti,0, ti,1, . . . , ti,l−1)

end for
t← (t1, . . . , tn)
return t

We now focus on the NTRU-based SHE schemes. Gentry’s original FHE

scheme is based on ideal lattices and it is implemented using cyclotomic

rings. NTRU is a practical lattice-based cryptosystem, which is also based

on cyclotomic rings, that remained without a security proof for a long time.

NTRU was recently put on a stronger foundation by Stehle and Steinfeld

[74], and NTRU-based cryptosystems returned to become an interesting

research area. Scale-invariant homomorphic encryption was proposed by

Brakerski [11], presenting a construction that avoids the utilization of

modulus switching technique, considerably simplifying the scheme. We

now present original adaptive key recovery attacks on NTRU-based SHE

schemes. In particular, we attack the scale-invariant proposal [9, 55].

5.9 Attack against the LTV12 SHE Scheme

We start by recalling the LTV12 SHE Scheme [55]. Let λ be the security

parameter, consider an integer n = n(λ) and a prime number q = q(λ) ̸= 2.

Consider also a degree-n polynomial φ(x) = φλ(x): following [55], we will

use φ(x) = xn + 1. Finally, let χ = χ(λ) a B(λ)-bounded error distribution

over the ring R := Z[x]/(φ(x)). The parameters n, q, φ(x) and χ are public

and we assume that given λ, there are polynomial-time algorithms that

output n, q and φ(x), and sample from the error distribution χ. The

message space isM = {0, 1}, and all operations on ciphertexts are carried

out in the ring Rq := Zq[x]/(φ(x)).
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KeyGen(λ) :

• sample f ′, g ← χ

• set f := 2f ′ + 1 so that

f ≡ 1 mod 2

• if f is not invertible in Rq,

resample f ′

• pk := h = 2gf−1 ∈ Rq

• sk := f ∈ R

Encrypt(pk, m):

• sample s, e← χ

• output ciphertext c := hs + 2e + m ∈ Rq

Decrypt(sk, c):

• let µ = f · c ∈ Rq

• output µ′ := µ mod 2

Since we don’t need the evaluation step, we omit it in the description.

In the original paper [55], the somewhat homomorphic encryption scheme

is multi-key, i.e. one can use several secret keys sk1 = f1, . . . , skM = fM in

order to decrypt. By analyzing the original decryption step, one can see

that, in order to decrypt the plaintext message, we need to multiply secret

keys sk1 = f1, . . . , skM = fM together, and then multiply the result with the

ciphertext and reduce. For this reason, it is enough to retrieve, as the secret

key, the polynomial f1 · · · fM =: s = s(x) = s0+s1x+s2x
2+· · ·+sn−1x

n−1 ∈

Rq, with si ∈ (−q/2, q/2] for all i = 0, 1, . . . , n− 1. For this reason, it is

enough to present the scheme as we saw it, with only one secret key.
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Remark 5. In [55], the authors do not explicitly state how the decryption

behaves if µ mod 2 is not a constant. We consider three scenarios: (1)

output directly µ mod 2; (2) output the constant of µ mod R2; (3) output

an error. In the following, we describe here a key recovery attack for

scenario (1) and it can be easily extended to scenario (2), which we will

show later on in Chapter 6. It is likely that we can adapt our attack to

scenario (3), but we have not succeeded so far. We will include a discussion

about scenario (3) in Chapter 6.

5.9.1 Attack Preview

Generally, suppose the secret key is in the form of the polynomial f =

s(x) = s0 + s1x + s2x
2 + · · · + sn−1x

n−1 ∈ Rq. Now, since we assume q

odd, and si is an integer, we have −q/2 < si < q/2, and in particular

−
⌊

q
2

⌋
≤ si ≤

⌊
q
2

⌋
, ∀0 ≤ i ≤ n − 1. Each coefficient si can have⌊

q
2

⌋
− (−

⌊
q
2

⌋
)+1 = q possible different values. We remark that there exists

a bit representation of the si’s such that #bits(si) = ⌊log2(q−1)⌋+1 =: N ,

and #bits(s) = n · #bits(si) = n · (⌊log2(q − 1)⌋+ 1). The decryption

oracle reveals a polynomial µ′(x) = µ(x) mod 2 = µ′0+µ′1x+· · ·+µ′n−1x
n−1,

with µ′i ∈ {0, 1} for i = 0, 1, . . . , n− 1. Hence, decryption oracle reveals n

bits at a time. Therefore, the minimum number of oracle queries needed

to recover s is N . As we will see, our attack needs N oracle queries,

plus at most n− 1 oracle queries necessary to determine the signs of the

coefficients of the secret key. We remark that the scheme as described in

[55] has message space M = {0, 1}. When the oracle decryption receives

an honestly-generated ciphertext, it returns either 0 = ∑n−1
i=0 0 · xi ∈ Rq or

1 = 1 +∑n−1
i=1 0 · xi ∈ Rq. However, in principle the oracle decryption can
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return any polynomial in {0, 1}/(xn + 1) and we will use this fact as basis

to build our attack.

Here is the workflow of our key recovery attack. First of all, we are

going to determine the parity of each coefficient si ∈ (−q/2, q/2]. Then,

we are going to find si by gradually reducing (halving) the interval in

which it lies. At some point, si will be reduced to belong to some interval

with at most two consecutive integers; the absolute value of si will be

deduced by its (known) parity. At this point, we will know the secret key

coefficient si in absolute value; in the last step, we are going to query

the oracle decryption at most n times in order to recover the sign of the

coefficients si, for i = 1, 2, . . . , n − 1, relative to the (unknown) sign of

s0. So in the end, we will end up with two possible candidate secret keys

s1(x) and s2(x) = −s1(x). We have then s(x) = s1(x) or s(x) = s2(x),

and recovering which one of the two is trivial with an extra oracle query.

In our description, we consider the coefficients si in the interval

(−q/2, q/2] and can recover the private key with at most ⌊log2q⌋ + n

decryption oracle queries. However, we could consider the stricter interval

[−B, B], with B the bound on coefficients given by the distribution χ from

which the coefficients are picked from. In this case, we can see that the

total number of queries needed to be submitted to the decryption oracle

are actually at most ⌊log2B⌋+ n.
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5.9.2 Detailed Attack

Preliminary Step

Submit to the decryption oracle the “ciphertext" c(x) = 1 ∈ Rq. The oracle

will compute and return the polynomial D(c(x) = 1) = s(x) mod 2 =∑n−1
i=0 (si mod 2)xi, which tells us the parity of each si, i = 0, 1, . . . , n− 1.

Step 1.

Choose and submit to the decryption oracle the “ciphertext" c(x) = 2 ∈ Rq.

It will compute and return the polynomial D(c(x) = 2) = (2s(x) ∈

Rq) mod 2 = ∑n−1
i=0 [(2si mod q) mod 2] xi. For all i ∈ [0, n− 1] we have

−q + 1
2 ≤ si ≤

q − 1
2 , and so − q + 1 ≤ 2si ≤ q − 1 (A)

For each i, we have two cases to distinguish:

Case A1: (2si mod q) mod 2 = 0. Then, condition (A) implies that −q+1
2 ≤

2si ≤ q−1
2 , i.e. −q+1

4 ≤ si ≤ q−1
4

− q + 1 ≤ 4si ≤ q − 1 (A1)

Case B1: (2si mod q) mod 2 = 1. Then, condition (A) implies that q−1
2 + 1 ≤

2|si| ≤ q − 1, i.e. q+1
4 ≤ |si| ≤ q−1

2

q + 1 ≤ 4|si| ≤ 2q − 2 (B1)
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Step 2.

Choose and submit to the decryption oracle the “ciphertext" c(x) = 4 ∈ Rq.

It will compute and return the polynomial D(c(x) = 4) = [s(x)·4]q mod 2 =∑n−1
i=0 [[4si]q mod 2] xi. For each i, we have four cases to distinguish:

Case A2: In Step 1 case A1 held, and [4si]q mod 2 = 0. Then, condition (A1)

implies that −q+1
2 ≤ 4si ≤ q−1

2 , i.e. −q+1
8 ≤ si ≤ q−1

8

− q + 1 ≤ 8si ≤ q − 1 (A2)

Case B2: In Step 1 case A1 held, and [4si]q mod 2 = 1. Then, condition (A1)

implies that q−1
2 + 1 ≤ 4|si| ≤ q − 1, i.e. q+1

8 ≤ |si| ≤ q−1
4

q + 1 ≤ 8|si| ≤ 2q − 2 (B2)

Case C2: In Step 1 case B1 held, and [4si]q mod 2 = 0. Then, condition (B1)

implies that q + 1 + q−1
2 ≤ 4|si| ≤ 2q − 2, i.e. 3q+1

8 ≤ |si| ≤ q−1
2

3q + 1 ≤ 8|si| ≤ 4q − 4 (C2)

Case D2: In Step 1 case B1 held, and [4si]q mod 2 = 1. Then, condition (B1)

implies that q + 1 ≤ 4|si| ≤ 3q−1
2 , i.e. q+1

4 ≤ |si| ≤ 3q−1
8

2q + 2 ≤ 8|si| ≤ 3q − 1 (D2)
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Step 3.

Choose and submit to the decryption oracle the “ciphertext" c(x) = 8 ∈ Rq.

It will compute and return the polynomial D(c(x) = 8) = [s(x)·8]q mod 2 =∑n−1
i=0 [[8si]q mod 2] xi. For each i, we have four cases to distinguish:

Case A3: In Step 2 case A2 held, and [8si]q mod 2 = 0. Then, condition (A2)

implies that −q+1
2 ≤ 8si ≤ q−1

2 , i.e. −q+1
16 ≤ si ≤ q−1

16

− q + 1 ≤ 16si ≤ q − 1 (A3)

Case B3: In Step 2 case A2 held, and [8si]q mod 2 = 1. Then, condition (A2)

implies that q−1
2 + 1 ≤ 8|si| ≤ q − 1, i.e. q+1

16 ≤ |si| ≤ q−1
8

q + 1 ≤ 16|si| ≤ 2q − 2 (B3)

Case C3: In Step 2 case B2 held, and [8si]q mod 2 = 0. Then, condition (B2)

implies that 3q+1
2 ≤ 8|si| ≤ 2q − 2, i.e. 3q+1

16 ≤ |si| ≤ q−1
4

3q + 1 ≤ 16|si| ≤ 4q − 4 (C3)

Case D3: In Step 2 case B2 held, and [8si]q mod 2 = 1. Then, condition (B2)

implies that q + 1 ≤ 8|si| ≤ 3q−1
2 , i.e. q+1

8 ≤ |si| ≤ 3q−1
16

2q + 2 ≤ 16|si| ≤ 3q − 1 (D3)
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Case E3: In Step 2 case C2 held, and [8si]q mod 2 = 0. Then, condition (C2)

implies that 7q+1
2 ≤ 8|si| ≤ 4q − 4, i.e. 7q+1

16 ≤ |si| ≤ q−1
2

7q + 1 ≤ 16|si| ≤ 8q − 8 (E3)

Case F3: In Step 2 case C2 held, and [8si]q mod 2 = 1. Then, condition (C2)

implies that 3q + 1 ≤ 8|si| ≤ 7q−1
2 , i.e. 3q+1

8 ≤ |si| ≤ 7q−1
16

6q + 2 ≤ 16|si| ≤ 7q − 1 (F3)

Case G3: In Step 2 case D2 held, and [8si]q mod 2 = 0. Then, condition (D2)

implies that 2q + 2 ≤ 8|si| ≤ 5q−1
2 , i.e. q+1

4 ≤ |si| ≤ 5q−1
16

4q + 4 ≤ 16|si| ≤ 5q − 1 (G3)

Case H3: In Step 2 case D2 held, and [8si]q mod 2 = 1. Then, condition (D2)

implies that 5q+1
2 ≤ 8|si| ≤ 3q − 1, i.e. 5q+1

16 ≤ |si| ≤ 3q−1
8

5q + 1 ≤ 16|si| ≤ 6q − 2 (H3)

Final step.

We continue in this fashion and finally we obtain integers s′i := |si| ∈ [0, q−1
2 ],

for i = 0, 1, . . . , n−1. This is obtained in the last step, where all coefficients

|si|, in absolute value, can assume at most only two (consecutive) values;

the known parity will then determine |si|. It is easy to see that in order to

achieve this we need ⌊log2q⌋ steps.
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The strategy now is to find out whether si · sj < 0 or si · sj > 0 holds,

for every i, j with si, sj ̸= 0. Let sm be the first non-zero coefficient. This

way, we will obtain two possible candidates of the secret key, one with

sm > 0 and the other with sm < 0. A trivial query to the oracle decryption

will allow us to determine which is the correct secret key.

We have to choose an appropriate “ciphertext" c(x) = c0 + c1x + · · ·+

cn−1x
n−1 to submit to the decryption oracle. Choose c0 = 1, c1 = 1 and

cj = 0 for j ̸= 0, 1. Oracle decryption will compute and return the

polynomial

D(c(x)) = s(x) · c(x) = [s0 − sn−1]q mod 2 +
n−1∑
i=1

([si + si−1]q mod 2)xi

Fix i = 1, 2, . . . , n−1 such that si, si−1 ≠ 0. Let bi := [si + si−1]q mod 2 be

the coefficient of xi, and let b′i := [s′i + s′i−1]q mod 2. There are two cases

to consider:

• s′i + s′i−1 ≥ q+1
2 . Then

• if bi = b′i, then si and si−1 have the same sign;

• if bi ̸= b′i, then si and si−1 have different signs.

• 0 ≤ s′i + s′i−1 ≤ q−1
2 . Then we need to make an extra query to

understand whether si and si−1 have the same sign or not.

Now, for each one of the i of the previous case (i.e. such that 0 ≤ s′i+s′i−1 ≤
q−1

2 , i = 1, 2, . . . , n − 1, and si, si−1 ̸= 0) we choose and submit to the

decryption oracle the polynomial c(x) = αi|si−1|+ αi|si|x, i.e. we choose

c0 = αi|si−1|, c1 = αi|si|, c2 = c3 = · · · = cn−1 = 0, where αi is chosen

such that

αi|si−1 · si| ∈
(

q − 1
4 ,

q − 1
2

]
(5.8)
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(it is always possible to find such an αi). The oracle decryption will return

the polynomial

D(c(x)) = s(x) · c(x) = [αi|si−1|s0 − αi|si|sn−1]q mod 2 +

+
n−1∑
j=1

([αi|si−1|sj + αi|si|sj−1]q mod 2) xj

Let’s focus on the coefficient of xi, i.e. βi := [αi|si−1|si + αi|si|si−1]q mod 2.

Now, there are two cases:

• if si, si−1 have different signs, then βi = 0;

• if si, si−1 have the same sign, then βi = 1 (trivial to verify: 5.8 holds,

and therefore [2αi · |si · si−1|]q) is odd.

By repeating this idea for every i = 1, 2, . . . , n−1 such that 0 ≤ s′i +s′i−1 ≤
q−1

2 we will know which one of the following relations si · si−1 < 0 ∨ si ·

si−1 > 0 holds, for every consecutive non-zero coefficients si, si−1.

Now, we have one more thing to consider: we have to be careful in case

one of the coefficient si is zero. In this case in fact, no information can be

given about the sign of si−1 if we compare it to si. To solve this problem,

we have to choose and submit to the decryption oracle a polynomial

c(x) = a+bxj for appropriates a, b, j. Let 0 ≤ m1 ≤ n−1 be an integer such

that sm1 is the first non-zero coefficient of the secret key s(x). If there exists

i1 > m1 such that si1 = 0, then let m2 be the first non-zero coefficient such

that i1 < m2 ≤ n−1. Then we want to compare the relative signs of sm1 and

sm2 by choosing the polynomial c(x) with c0 = α|sm1|, cm2−m1 = α|sm2|,

cj = 0 for j ̸= 0, m2−m1. So we have c(x) = α|sm1|+ α|sm2|xm2−m1 , with

α such that α|sm1sm2| ∈
(

q−1
4 , q−1

2

]
. The oracle decryption will return the

polynomial D(c(x)) = s(x) · c(x) = β0 + β1x + · · ·+ βn−1x
n−1. Consider



114 Key-Recovery Attacks against Existing SHE Schemes

the m2-th coefficient βm2 = [α|sm1|sm2 + α|sm2|sm1 ]q mod 2. As before, we

can conclude that if sm1 , sm2 have different signs, then βm2 = 0, and if

sm1 , sm2 have the same sign, then βm2 = 1.

Now, similar to what just discussed, if there exists i2 > m2 such that

si2 = 0, then let m3 be the first non-zero coefficient such that m3 > i2. We

will in a similar fashion compare the relative signs of sm1 and sm3 . We keep

proceeding this way, and in the end we will know, for every 0 ≤ i, j ≤ n−1

such that si ≠ 0, sj ̸= 0, whether si ·sj > 0 or si ·sj < 0 occurs. This allows

us to determine two possible candidates for the secret key s(x) (assume sm

is the first non-zero coefficient; then one candidate has sm < 0, the other

has sm > 0). A trivial oracle decryption query will reveal which one of the

two is the correct secret key. The total number of queries needed to be

submitted to the oracle decryption query is then at most ⌊log2q⌋+ n.

5.10 Attack against the BLLN13 SHE Scheme

We start by recalling the BLLN13 SHE Scheme [9]. For a given positive

integer d ∈ N>0, define the quotient ring R := Z[x]/(Φd(x)), i.e. the

ring of polynomials with integer coefficients modulo the d-th cyclotomic

polynomial Φd(x) ∈ Z[x]. The degree of Φd is n = ϕ(d), where ϕ is Euler’s

totient function. As considered by the authors of [9], for correctness of

the scheme, let d be a power of 2; in this case, we have Φd(x) = xn + 1

with n also a power of 2. Therefore R = Z[x]/(xn + 1). The other

parameters of the [9] SHE scheme are a prime integer q ∈ N and an

integer t ∈ N such that 1 < t < q. Let also χkey, χerr be two distributions

on R. The parameters d, q, t, χkey and χerr are public and we assume

that given λ, there are polynomial-time algorithms that output d, q, t and
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φ(x), and sample from the error distributions χ. The message space is

M = R/tR = Zt[x]/(xn + 1), and all operations on ciphertexts are carried

out in the ring Rq := Zq[x]/(φ(x)).

KeyGen(λ) :

• sample f ′, g ← χkey

• let f = [tf ′ + 1]q

• if f is not invertible in Rq, resample f ′

• set pk := h = [tgf−1]q ∈ Rq

• set sk := f ∈ Rq

Encrypt(pk, m):

• for a message m + tR, choose [m]t as its representative

• sample s, e← χerr

• output ciphertext c = [⌊q/t⌋[m]t + e + hs]q ∈ Rq

Decrypt(sk, c):

• output m =
[⌊

t
q
· [fc]q

⌉]
t
∈ Rt

Since we don’t need the evaluation step, we omit it in the description.

5.10.1 Attack Preview

We are going to recover the secret key f(x) = f0 + f1x + f2x
2 + · · · +

fn−1x
n−1 ∈ Zq [x]

(xn+1) , where fi is an integer in (−q/2, q/2] for all i =

0, 1, . . . , n−1. In order to recover f(x), we are going to submit specifically-

chosen ’ciphertexts’ of the form c(x) = c0 + c1x + c2x
2 + · · ·+ cn−1x

n−1 ∈
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Zq [x]
(xn+1) , with integers ci ∈ (−q/2, q/2]. Choose c(x) = 1 = 1 + 0x + 0x2 +

· · ·+ 0xn−1. We have

D(c = 1) =
[⌊

t

q
· [f · 1]q

⌉]
t

=
[⌊

t

q
·
(
[f0]q + [f1]qx + [f2]qx2 + · · ·+ [fn−1]qxn−1

)⌉]
t

∗=
[⌊

t

q
·
(
f0 + f1x + · · ·+ fn−1x

n−1
)⌉]

t

=
[⌊

t

q
f0

⌉
+
⌊

t

q
f1

⌉
x + · · ·+

⌊
t

q
fn−1

⌉
xn−1

]
t

Equality ∗= holds since the integer coefficients fi are already reduced

modulo q. Now, for every 0 ≤ i ≤ n − 1 we have −q/2 < fi ≤ q/2. We

have that q > 2 since in [9] it is claimed that 1 < t < q, with t, q integers.

In particular, q is a prime integer greater than 2, and therefore q/2 /∈ N.

So we have −q/2 < fi < q/2. In particular we have that − t
2 < t

q
· fi < t

2 .

For every 0 ≤ i ≤ n − 1, let u
(1)
i :=

⌊
t
q
fi

⌉
. We have

⌈
− t

2

⌉
≤ u

(1)
i ≤

⌊
t
2

⌋
.

Each u
(1)
i can have

⌊
t

2

⌋
−
⌈
− t

2

⌉
+ 1 = 2

⌊
t

2

⌋
+ 1 =


t if t is odd

t + 1 if t is even

possible different values, i.e. u
(1)
i can have t different possible values if t

is odd, and can have t + 1 different possible values if t is even. Now, for

every 0 ≤ i ≤ n− 1, we have that [u(1)
i ]t ∈ (−t/2, t/2] and therefore

• [u(1)
i ]t ∈= [− t

2 + 1
2 ,− t

2 + 3
2 ,− t

2 + 5
2 , · · · , t

2 −
1
2 ] =: T1 if t is odd;

• [u(1)
i ]t ∈

[
− t

2 + 1,− t
2 + 2, . . . , t

2

]
=: T2 if t is even.
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We have that #(T1) = #(T2) = t. Let v
(1)
i := [u(1)

i ]t for 0 ≤ i ≤ n − 1.

It is clear that if u
(1)
i = −t/2, i.e. if u

(1)
i = ⌈−t/2⌉ and t is even, then

v
(1)
i = t/2. We have

D(c(x) = 1) =
[
u

(1)
0 + u

(1)
1 x + u

(1)
2 x2 + · · ·+ u

(1)
n−1x

n−1
]

t

= [u(1)
0 ]t + [u(1)

1 ]tx + · · ·+ [u(1)
n−1]txn−1

= v
(1)
0 + v

(1)
1 x + v

(1)
2 x2 + · · ·+ v

(1)
n−1x

n−1

where, ∀i = 0, 1, . . . , n− 1, we have

v
(1)
i =


t
2 if u

(1)
i = − t

2(i.e. if u
(1)
i =

⌈
− t

2

⌉
and t is even)

u
(1)
i otherwise

In particular, if t is odd, then D(c = 1) = u
(1)
0 + u

(1)
1 x + u

(1)
2 x2 + · · · +

u
(1)
n−1x

n−1.

We have, ∀0 ≤ i ≤ n− 1,

if t is odd, − t

2 + 1
2 ≤ v

(1)
i ≤

t

2 −
1
2; if t is even, − t

2 + 1 ≤ v
(1)
i ≤

t

2

In both cases, v
(1)
i can only have t different values. As we saw before, in

case of t odd we need to perform ⌈log2(q/t)⌉+ 1 oracle decryption queries;

in case of t even, we need to perform extra oracle decryption queries (at

most n− 1) in order to understand which sign are given the coefficients

of the secret key. Therefore, the total number of queries to the decryption

oracle is at most ⌈log2(q/t)⌉+ n. If we use the actual bound B given on

the coefficients si by the distribution χ, we have that the total number of

queries to the decryption oracle is at most ⌈log2(B/t)⌉+ n.
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5.10.2 Detailed Attack in three Cases

Case 1: t is odd

Step 1: select c(x) = 1

Select “ciphertext" c(x) = 1 and submit it to the decryption oracle. Since

t is odd and v
(1)
i = u

(1)
i , ∀0 ≤ i ≤ n− 1, we obtain the polynomial D(c =

1) = u
(1)
0 +u

(1)
1 x+u

(1)
2 x2 + · · ·+u

(1)
n−1x

n−1, where
⌈
− t

2

⌉
≤ u

(1)
i ≤

⌊
t
2

⌋
. Every

u
(1)
i can have only t different values and can be written as u

(1)
i =

⌈
− t

2

⌉
+ki,1,

with ki,1 ∈ {0, 1, . . . , t− 1}. Now, it is easy to see that

u
(1)
i =

⌈
− t

2

⌉
+ ki,1 ⇔ −

q

2 + q

t
ki,1 < fi < −q

2 + q

t
(ki,1 + 1)

The polynomial obtained from the decryption oracle can therefore be

written as

D(c(x) = 1) = u
(1)
0 +u

(1)
1 x+u

(1)
2 x2 + · · ·+u

(1)
n−1x

n−1 =
n−1∑
i=0

(⌈
− t

2

⌉
+ ki,1

)
xi

Each fi belongs to the interval (−q/2, q/2). But after this our first

query we learn values ki,1 ∈ [0, 1, . . . , t− 1], 0 ≤ i ≤ n− 1, such that

− q

2 + q

t
ki,1 < fi < −q

2 + q

t
(ki,1 + 1) (F(0,1))

We have − q
2 + q

t
(ki+1 + 1)−

(
− q

2 + q
t
ki+1

)
= q

t
. Therefore, we know each

integer coefficient fi with an error up to q
t
. The idea now is to keep

submitting ’ciphertext’ to the decryption oracle and obtain values ki,j,

with 0 ≤ i ≤ n − 1 and increasing integers j = 1, 2, 3, . . ., in such a way

that we keep reducing the interval in which fi lies until we know fi with

an error smaller than 1, which determines each fi completely.
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Step 2: select c(x) = 2

Select now “ciphertext” c(x) = 2 = 2 + 0x + 0x2 + · · ·+ 0xn−1. Decryption

oracle computes and return the polynomial

D(c = 2) =
[⌊

t

q
· [f · 2]q

⌉]
t

=
[⌊

t

q
·
(
[2f0]q + [2f1]qx + [2f2]qx2 + · · ·+ [2fn−1]qxn−1

)⌉]
t

=
[⌊

t

q
f

(2)
0

⌉
+
⌊

t

q
f

(2)
1

⌉
x + · · ·+

⌊
t

q
f

(2)
n−1

⌉
xn−1

]
t

where we have put f
(2)
i := [2fi]q, for every 0 ≤ i ≤ n− 1; of course we have

− q
2 < f

(2)
i < q

2 . Now,

• if −q/4 < fi < q/4, then − q
2 < 2fi < q

2 and therefore f
(2)
i = [2fi]q =

2fi

• if −q/2 < fi < −q/4, then −q < 2fi < − q
2 and therefore f

(2)
i =

[2fi]q = 2fi + q

• if q/4 < fi < q/2, then q
2 < 2fi < q and therefore f

(2)
i = [2fi]q =

2fi − q

So we have

f
(2)
i = [2fi]q =



2fi if − q
4 < fi < q

4

2fi + q if − q
2 < fi < − q

4 , and in this case 0 < f
(2)
i < q

2

2fi − q if q
4 < fi < q

2 , and in this case − q
2 < f

(2)
i < 0

(5.9)

Let u
(2)
i :=

⌊
t
q
· f (2)

i

⌉
. Then

D(c = 2) =
[
u

(2)
0 + u

(2)
1 x + u

(2)
2 x2 + · · ·+ u

(2)
n−1x

n−1
]

t
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As before, u
(2)
i can have only t different possible values, and can be

written as u
(2)
i =

⌈
− t

2

⌉
+ ki,2, with ki,2 ∈ {0, 1, . . . , t − 1}, and also

u
(2)
i =

⌈
− t

2

⌉
+ ki,2 ⇔ − q

2 + q
t
ki,2 < fi < − q

2 + q
t
(ki,2 + 1). As before, since

−q/2 < f
(2)
i < q/2 and t is odd, we have

⌈
− t

2

⌉
≤ u

(2)
i ≤

⌊
t
2

⌋
, and therefore

we can simply write D(c = 2) = u
(2)
0 + u

(2)
1 x + u

(2)
2 x2 + · · ·+ u

(2)
n−1x

n−1 =∑n−1
i=0

(⌈
− t

2

⌉
+ ki,2

)
xi. So now, for each 0 ≤ i ≤ n− 1, we know ki,1, ki,2

such that 
− q

2 + q
t
ki,1 < fi < − q

2 + q
t
(ki,1 + 1)

− q
2 + q

t
ki,2 < [2fi]q < − q

2 + q
t
(ki,2 + 1)

There are 3 cases to distinguish, where 3 = 22 − 1.

(1/3)[c=2]. If − q
2 + q

t
(ki,1 + 1) ≤ − q

4 ∧ −
q
2 + q

t
ki,1 ≥ − q

2 , which says that

0 ≤ ki,1 ≤
⌊

t
4 − 1

⌋
, then we are sure that fi ∈ (− q

2 ,− q
4). Therefore,

by condition (5.9), we expect f
(2)
i = [2fi]q = 2fi + q. Therefore,

−3q
4 + q

2t
ki,2 < fi < −3q

4 + q
2t

(ki,2 + 1)

(2/3)[c=2]. If − q
2 + q

t
(ki,1+1) ≤ q

4∧−
q
2 + q

t
ki,1 ≥ − q

4 , which says that
⌈

t
4

⌉
≤ ki,1 ≤⌊

3t
4 − 1

⌋
, then we are sure that fi ∈ (− q

4 , q
4). Therefore, by condition

(5.9), we expect f
(2)
i = [2fi]q = 2fi. Therefore, − q

4 + q
2t

ki,2 < fi <

− q
4 + q

2t
(ki,2 + 1)

(3/3)[c=2]. If − q
2 + q

t
(ki,1 + 1) ≤ q

2 ∧ −
q
2 + q

t
ki,1 ≥ q

4 , which says that
⌈

3t
4

⌉
≤

ki,1 ≤ t−1, then we are sure that fi ∈ ( q
4 , q

2). Therefore, by condition

(5.9), we expect f
(2)
i = [2fi]q = 2fi − q. Therefore, q

4 + q
2t

ki,2 < fi <

q
4 + q

2t
(ki,2 + 1)

Now, we remark that there are values of ki,1 for which is not clear to

which of the previous cases we are falling in. For instance, if ki,1 is such

that − q
4 ∈

(
− q

2 + q
t
ki,1,− q

2 + q
t
(ki,1 + 1)

)
, then we are not sure whether
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we are in Case (1/3)[c=2] or in Case (2/3)[c=2]. This uncertainty happens

when @ki,1 ∈ [0, 1, . . . , t − 1] such that − q
2 + q

t
ki,1 = − q

4 , i.e. such that

ki,1 = t/4. So, if @ki,1 ∈ [0, 1, . . . , t − 1] such that ki,1 = t/4, i.e. if 4 - t,

then − q
4 ∈

(
− q

2 + q
t

⌊
t
4

⌋
,− q

2 + q
t

(⌊
t
4

⌋
+ 1

))
. So, if ki,1 =

⌊
t
4

⌋
, with t

4 /∈ N,

we have that

fi ∈
(
−q

2 + q

t

⌊
t

4

⌋
,−q

2 + q

t

(⌊
t

4

⌋
+ 1

))
=: I

It is easy to see that

− q

2 + q

t

(⌊
t

4

⌋
+ 1

)
≤ 0,∀1 < t < q (5.10)

There are two cases:

1/2: fi ∈ I1 := I ∩ (−q/2,−q/4). Then condition (5.9) implies that

f
(2)
i = [2fi]q ∈ (0, q/2)

2/2: fi ∈ I2 := I ∩ (−q/4, 0). Then f
(2)
i = [2fi]q ∈ (−q/2, 0)

So, to sum up we have that if ki,1 =
⌊

t
4

⌋
, with t

4 /∈ N, then

• if f
(2)
i ∈ (0, q/2) then fi ∈ (−q/2,−q/4) and apply Case (1/3)[c=2]

• if f
(2)
i ∈ (−q/2, 0) then fi ∈ (−q/4, 0) and apply Case (2/3)[c=2]

Similarly to what just discussed, if ki,1 is such that

q

4 ∈
(
−q

2 + q

t
ki,1,−

q

2 + q

t
(ki,1 + 1)

)
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then we are not sure if we are in Case (2/3)[c=2] or in Case (3/3)[c=2] This

uncertainty happens when @ki,1 ∈ [0, 1, . . . , t− 1] such that − q
2 + q

t
ki,1 = q

4 ,

i.e. such that ki,1 = 3t/4. So, if @ki,1 ∈ [0, 1, . . . , t−1] such that ki,1 = 3t/4,

then q
4 ∈

(
− q

2 + q
t

⌊
3t
4

⌋
,− q

2 + q
t

(⌊
3t
4

⌋
+ 1

))
. So, if ki,1 =

⌊
3t
4

⌋
, with 3t

4 /∈ N,

we have that fi ∈
(
− q

2 + q
t

⌊
3t
4

⌋
,− q

2 + q
t

(⌊
3t
4

⌋
+ 1

))
=: I. It is easy to see

that

− q

2 + q

t

⌊3t

4

⌋
≥ 0,∀t, q (5.11)

There are two cases:

1/2: fi ∈ I1 := I ∩ (0, q/4). Then f
(2)
i = [2fi]q ∈ (0, q/2)

2/2: fi ∈ I2 := I ∩ (q/4, q/2). Then condition (5.9) implies that f
(2)
i =

[2fi]q ∈ (−q/2, 0)

So, to sum up we have that if ki,1 =
⌊

3t
4

⌋
, with 3t

4 /∈ N, then

• if f
(2)
i ∈ (0, q/2) then fi ∈ (−q/4, q/4) and apply Case (2/3)[c=2]

• if f
(2)
i ∈ (−q/2, 0) then fi ∈ (q/4, q/2) and apply Case (3/3)[c=2]

We can write now all the 3 cases in a more complete way:

(1/3)[c=2]. Suppose that

0 ≤ ki,1 ≤
⌊

t

4 − 1
⌋
∨
(

ki,1 =
⌊

t

4

⌋
, with t

4 /∈ N ∧ f
(2)
i ∈ (0, q/2)

)
(K(1,1))
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Then

fi ∈
(
−q

2 ,−q

4

)
, −3q

4 + q

2t
ki,2 < fi < −3q

4 + q

2t
(ki,2 + 1)

(F((1,1))

(2/3)[c=2]. Suppose that

⌈
t

4

⌉
≤ ki,1 ≤

⌊3t

4 − 1
⌋
∨
(

ki,1 =
⌊

t

4

⌋
∧ f

(2)
i ∈ (−q/2, 0)

)
∨

∨
(

ki,1 =
⌊3t

4

⌋
∧ f

(2)
i ∈ (0, q/2)

)
(K(1,2))

Then

fi ∈
(
−q

4 ,
q

4

)
, −q

4 + q

2t
ki,2 < fi < −q

4 + q

2t
(ki,2 + 1) (F(1,2))

(3/3)[c=2]. Suppose that

⌈3t

4

⌉
≤ ki,1 ≤ t− 1 ∨

(
ki,1 =

⌊3t

4

⌋
∧ f

(2)
i ∈ (−q/2, 0)

)
(K(1,3))

Then

fi ∈
(

q

4 ,
q

2

)
,

q

4 + q

2t
ki,2 < fi <

q

4 + q

2t
(ki,2 + 1) (F(1,3))

In all cases, we end up by knowing fi with an error up to q
2t

.
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Step 3: select c(x) = 4

Select now “ciphertext” c(x) = 4 = 4 + 0x + 0x2 + · · ·+ 0xn−1. Decryption

oracle computes and return the polynomial

D(c = 4) =
[⌊

t

q
· [f · 4]q

⌉]
t

=
[⌊

t

q
·
(
[4f0]q + [4f1]qx + [4f2]qx2 + · · ·+ [4fn−1]qxn−1

)⌉]
t

=
[⌊

t

q
f

(3)
0

⌉
+
⌊

t

q
f

(3)
1

⌉
x + · · ·+

⌊
t

q
f

(3)
n−1

⌉
xn−1

]
t

where we have put f
(3)
i := [4fi]q, for every 0 ≤ i ≤ n− 1; of course we have

− q
2 < f

(3)
i < q

2 .
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Now,

• if −q/8 < fi < q/8, then

−q

2 < 4fi <
q

2

and therefore

f
(3)
i = [4fi]q = 4fi

• if −q/4 < fi < −q/8, then

−q < 4fi < −q

2

and therefore

f
(3)
i = [4fi]q = 4fi + q

• if q/8 < fi < q/4, then

q

2 < 4fi < q

and therefore

f
(3)
i = [4fi]q = 4fi − q

• if −3q/8 < fi < −q/4, then

−3q

2 < 4fi < −q

and therefore

f
(3)
i = [4fi]q = 4fi + q

• if q/4 < fi < 3q/8, then

q < 4fi <
3q

2

and therefore

f
(3)
i = [4fi]q = 4fi − q

• if −q/2 < fi < −3q/8, then

−2q < 4fi < −3q

2

and therefore

f
(3)
i = [4fi]q = 4fi + 2q

• if 3q/8 < fi < q/2, then

3q

2 < 4fi < 2q

and therefore

f
(3)
i = [4fi]q = 4fi − 2q
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So we have

f
(3)
i = [4fi]q =



4fi if − q
8 < fi < q

8

4fi + q if − q
4 < fi < − q

8 , and in this case 0 < f
(3)
i < q

2

4fi − q if q
8 < fi < q

4 , and in this case − q
2 < f

(3)
i < 0

4fi + q if − 3q
8 < fi < − q

4 , and in this case − q
2 < f

(3)
i < 0

4fi − q if q
4 < fi < 3q

8 , and in this case 0 < f
(3)
i < q

2

4fi + 2q if − q
2 < fi < −3q

8 , and in this case 0 < f
(3)
i < q

2

4fi − 2q if 3q
8 < fi < q

2 , and in this case − q
2 < f

(3)
i < 0
(5.12)

Let u
(3)
i :=

⌊
t
q
· f (3)

i

⌉
. We have

D(c = 4) =
[
u

(3)
0 + u

(3)
1 x + u

(3)
2 x2 + · · ·+ u

(3)
n−1x

n−1
]

t

As before, u
(3)
i can have only t different possible values, and can be written

as

u
(3)
i =

⌈
− t

2

⌉
+ ki,3, with ki,3 ∈ {0, 1, . . . , t− 1}

As before, we have

u
(3)
i =

⌈
− t

2

⌉
+ ki,3 ⇔ −

q

2 + q

t
ki,3 < fi < −q

2 + q

t
(ki,3 + 1)

As before, since −q/2 < f
(3)
i < q/2 and t is odd, we have

− t

2 <
⌈
− t

2

⌉
≤ u

(3)
i ≤

⌊
t

2

⌋
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and therefore we can simply write

D(c = 4) = u
(3)
0 + u

(3)
1 x + u

(3)
2 x2 + · · ·+ u

(3)
n−1x

n−1 =
n−1∑
i=0

(⌈
− t

2

⌉
+ ki,3

)

and therefore we learn integers ki,3, for 0 ≤ i ≤ n − 1. Now, for each

0 ≤ i ≤ n− 1, we know ki,1, ki,2, ki,3 such that



− q
2 + q

t
ki,1 < fi < − q

2 + q
t
(ki,1 + 1)

− q
2 + q

t
ki,2 < [2fi]q < − q

2 + q
t
(ki,2 + 1)

− q
2 + q

t
ki,3 < [4fi]q < − q

2 + q
t
(ki,3 + 1)

There are 7 = 23 − 1 cases to distinguish.

(1/7)[c=4]. Suppose that at Step 2, we were in case (1/3)[c=2], i.e. ki,1 satisfies

condition (K(1,1)) and fi satisfies condition (F((1,1)):

fi ∈
(
−q

2 ,−q

4

)
, −3q

4 + q

2t
ki,2 < fi < −3q

4 + q

2t
(ki,2 + 1)

If

−3q

4 + q

2t
(ki,2 + 1) ≤ −3q

8 ∧ −
3q

4 + q

2t
ki,2 ≥ −

q

2

which says that ⌈
t

2

⌉
≤ ki,2 ≤

⌊3t

4 − 1
⌋

then we are sure that fi ∈ (− q
2 ,−3q

8 ). Therefore, by condition (5.12),

we expect f
(3)
i = [4fi]q = 4fi + 2q. Therefore,

−q

2 + q

t
ki,3 < 4fi + 2q < −q

2 + q

t
(ki,3 + 1)

−5q

8 + q

4t
ki,3 < fi < −5q

8 + q

4t
(ki,3 + 1)
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(2/7)[c=4]. Suppose that at Step 2, we were in case (1/3)[c=2], i.e. ki,1 satisfies

again condition (K(1,1)) and fi satisfies condition (F((1,1)). If

−3q

4 + q

2t
(ki,2 + 1) ≤ −q

4 ∧ −
3q

4 + q

2t
ki,2 ≥ −

3q

8

which says that ⌈3t

4

⌉
≤ ki,2 ≤ t− 1

then we are sure that fi ∈ (−3q
8 ,− q

4). Therefore, by condition (5.12),

we expect f
(3)
i = [4fi]q = 4fi + q. Therefore,

−q

2 + q

t
ki,3 < 4fi + q < −q

2 + q

t
(ki,3 + 1)

−3q

8 + q

4t
ki,3 < fi < −3q

8 + q

4t
(ki,3 + 1)

(3/7)[c=4]. Suppose that at Step 2, we were in case (2/3)[c=2], i.e. ki,1 satisfies

condition (K(1,2)) and fi satisfies condition (F(1,2)):

fi ∈
(
−q

4 ,
q

4

)
, −q

4 + q

2t
ki,2 < fi < −q

4 + q

2t
(ki,2 + 1)

If

−q

4 + q

2t
(ki,2 + 1) ≤ −q

8 ∧ −
q

4 + q

2t
ki,2 ≥ −

q

4

which says that

0 ≤ ki,2 ≤
⌊

t

4 − 1
⌋

then we are sure that fi ∈ (− q
4 ,− q

8). Therefore, by condition (5.12),

we expect f
(3)
i = [4fi]q = 4fi + q. Therefore,

−q

2 + q

t
ki,3 < 4fi + q < −q

2 + q

t
(ki,3 + 1)
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−3q

8 + q

4t
ki,3 < fi < −3q

8 + q

4t
(ki,3 + 1)

(4/7)[c=4]. Suppose that at Step 2, we were in case (2/3)[c=2], i.e. ki,1 satisfies

again condition (K(1,2)) and fi satisfies condition (F(1,2)). If

−q

4 + q

2t
(ki,2 + 1) ≤ q

8 ∧ −
q

4 + q

2t
ki,2 ≥ −

q

8

which says that ⌈
t

4

⌉
≤ ki,2 ≤

⌊3t

4 − 1
⌋

then we are sure that fi ∈ (− q
8 , q

8). Therefore, by condition (5.12),

we expect f
(3)
i = [4fi]q = 4fi. Therefore,

−q

2 + q

t
ki,3 < 4fi < −q

2 + q

t
(ki,3 + 1)

−q

8 + q

4t
ki,3 < fi < −q

8 + q

4t
(ki,3 + 1)

(5/7)[c=4]. Suppose that at Step 2, we were in case (2/3)[c=2], i.e. ki,1 satisfies

again condition (K(1,2)) and fi satisfies condition (F(1,2)). If

−q

4 + q

2t
(ki,2 + 1) ≤ q

4 ∧ −
q

4 + q

2t
ki,2 ≥

q

8

which says that ⌈3t

4

⌉
≤ ki,2 ≤ t− 1

then we are sure that fi ∈ ( q
8 , q

4). Therefore, by condition (5.12), we

expect f
(3)
i = [4fi]q = 4fi − q. Therefore,

−q

2 + q

t
ki,3 < 4fi − q < −q

2 + q

t
(ki,3 + 1)
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q

8 + q

4t
ki,3 < fi <

q

8 + q

4t
(ki,3 + 1)

(6/7)[c=4]. Suppose that at Step 2, we were in case (3/3)[c=2], i.e. ki,1 satisfies

condition (K(1,3)) and fi satisfies condition (F(1,3)):

fi ∈
(

q

4 ,
q

2

)
,

q

4 + q

2t
ki,2 < fi <

q

4 + q

2t
(ki,2 + 1)

If
q

4 + q

2t
(ki,2 + 1) ≤ 3q

8 ∧
q

4 + q

2t
ki,2 ≥

q

4

which says that

0 ≤ ki,2 ≤
⌊

t

4 − 1
⌋

then we are sure that fi ∈ ( q
4 , 3q

8 ). Therefore, by condition (5.12), we

expect f
(3)
i = [4fi]q = 4fi − q. Therefore,

−q

2 + q

t
ki,3 < 4fi − q < −q

2 + q

t
(ki,3 + 1)

q

8 + q

4t
ki,3 < fi <

q

8 + q

4t
(ki,3 + 1)

(7/7)[c=4]. Suppose that at Step 2, we were in case (3/3)[c=2], i.e. ki,1 satisfies

again condition (K(1,3)) and fi satisfies condition (F(1,3)). If

q

4 + q

2t
(ki,2 + 1) ≤ q

2 ∧
q

4 + q

2t
ki,2 ≥

3q

8

which says that ⌈
t

4

⌉
≤ ki,2 ≤

⌊
t

2 − 1
⌋
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then we are sure that fi ∈ (3q
8 , q

2). Therefore, by condition (5.12), we

expect f
(3)
i = [4fi]q = 4fi − 2q. Therefore,

−q

2 + q

t
ki,3 < 4fi − 2q < −q

2 + q

t
(ki,3 + 1)

3q

8 + q

4t
ki,3 < fi <

3q

8 + q

4t
(ki,3 + 1)

We remark that, similarly as what we discussed in Step 2, there are values

of ki,2 for which is not clear immediately to which of the previous cases we

are falling in. For instance, if in Step 2 we were in case (1/3)[c=2], and if

ki,2 is such that

−3q

8 ∈
(
−3q

4 + q

2t
ki,2,−

3q

4 + q

2t
(ki,2 + 1)

)

then we are not sure if we are in Case (1/7)[c=4] or in Case (2/7)[c=4]. This

uncertainty happens when @ki,2 ∈ [0, 1, . . . , t− 1] such that

−3q

4 + q

2t
ki,2 = −3q

8

i.e. such that ki,2 = 3t/4. So, if @ki,2 ∈ [0, 1, . . . , t−1] such that ki,2 = 3t/4,

i.e. if 4 - 3t, i.e. if 4 - t, then

−3q

8 ∈
(
−3q

4 + q

2t

⌊3t

4

⌋
,−3q

4 + q

2t

(⌊3t

4

⌋
+ 1

))

So, if ki,2 =
⌊

3t
4

⌋
, with 3t

4 /∈ N, we have the following.

fi ∈
(
−3q

4 + q

2t

⌊3t

4

⌋
,−3q

4 + q

2t

(⌊3t

4

⌋
+ 1

))
=: I

There are two cases:
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1/2: fi ∈ I1 := I ∩ (−q/2,−3q/8)

Then condition (5.12) implies that f
(3)
i = [4fi]q ∈ (0, q/2)

2/2: fi ∈ I2 := I ∩ (−3q/8,−q/4)

Then condition (5.12) implies that f
(3)
i = [4fi]q ∈ (−q/2, 0)

So, to sum up we have that if ki,2 =
⌊

3t
4

⌋
, with 3t

4 /∈ N, then

• if f
(3)
i ∈ (0, q/2) then fi ∈ (−q/2,−3q/8) and apply Case (1/7)[c=4]

• if f
(3)
i ∈ (−q/2, 0) then fi ∈ (−3q/8,−q/4) and apply Case (2/7)[c=4]

Similarly to what just discussed, if in Step 2 we were in case (2/3)[c=2],

and if ki,2 is such that

−q

8 ∈
(
−q

4 + q

2t
ki,2,−

q

4 + q

2t
(ki,2 + 1)

)

then we are not sure if we are in Case (3/7)[c=4] or in Case (4/7)[c=4]. Again,

reasoning in similar way as before, if ki,2 =
⌊

t
4

⌋
, with t

4 /∈ N, we have the

following.

fi ∈
(
−q

4 + q

2t

⌊
t

4

⌋
,−q

4 + q

2t

(⌊
t

4

⌋
+ 1

))
=: I

It is easy to see that

− q

4 + q

2t

(⌊
t

4

⌋
+ 1

)
≤ 0,∀t, q (5.13)

There are two cases:

1/2: fi ∈ I1 := I ∩ (−q/4,−q/8)

Then condition (5.12) implies that f
(3)
i = [4fi]q ∈ (0, q/2)
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2/2: fi ∈ I2 := I ∩ (−q/8, 0)

Then f
(3)
i = [4fi]q ∈ (−q/2, 0)

So, to sum up we have that if ki,2 =
⌊

t
4

⌋
, with t

4 /∈ N, then

• if f
(3)
i ∈ (0, q/2) then fi ∈ (−q/4,−q/8) and apply Case (3/7)[c=4]

• if f
(3)
i ∈ (−q/2, 0) then fi ∈ (−q/8, 0) and apply Case (4/7)[c=4]

Similarly, if in Step 2 we were in case (2/3)[c=2], and if ki,2 is such that

q

8 ∈
(
−q

4 + q

2t
ki,2,−

q

4 + q

2t
(ki,2 + 1)

)

then we are not sure if we are in Case (4/7)[c=4] or in Case (5/7)[c=4]. Again,

reasoning in similar way as before, if ki,2 =
⌊

3t
4

⌋
, with 3t

4 /∈ N, we have the

following.

fi ∈
(
−q

4 + q

2t

⌊3t

4

⌋
,−q

4 + q

2t

(⌊3t

4

⌋
+ 1

))
=: I

It is easy to see that

− q

4 + q

2t

⌊3t

4

⌋
≥ 0,∀t, q (5.14)

There are two cases:

1/2: fi ∈ I1 := I ∩ (0, q/8)

Then f
(3)
i = [4fi]q ∈ (0, q/2)

2/2: fi ∈ I2 := I ∩ (q/8, q/4)

Then condition (5.12) implies that f
(3)
i = [4fi]q ∈ (−q/2, 0)

So, to sum up we have that if ki,2 =
⌊

3t
4

⌋
, with 3t

4 /∈ N, then
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• if f
(3)
i ∈ (0, q/2) then fi ∈ (0, q/8) and apply Case (4/7)[c=4]

• if f
(3)
i ∈ (−q/2, 0) then fi ∈ (q/8, q/4) and apply Case (5/7)[c=4]

Similarly, if in Step 2 we were in case (3/3)[c=2], and if ki,2 is such that

3q

8 ∈
(

q

4 + q

2t
ki,2,

q

4 + q

2t
(ki,2 + 1)

)

then we are not sure if we are in Case (6/7)[c=4] or in Case (7/7)[c=4]. Again,

reasoning in similar way as before, if ki,2 =
⌊

t
4

⌋
, with t

4 /∈ N, we have the

following.

fi ∈
(

q

4 + q

2t

⌊
t

4

⌋
,
q

4 + q

2t

(⌊
t

4

⌋
+ 1

))
=: I

There are two cases:

1/2: fi ∈ I1 := I ∩ (q/4, 3q/8)

Then condition (5.12) implies that f
(3)
i = [4fi]q ∈ (0, q/2)

2/2: fi ∈ I2 := I ∩ (3q/8, q/2)

Then condition (5.12) implies that f
(3)
i = [4fi]q ∈ (−q/2, 0)

So, to sum up we have that if ki,2 =
⌊

t
4

⌋
, with t

4 /∈ N, then

• if f
(3)
i ∈ (0, q/2) then fi ∈ (q/4, 3q/8) and apply Case (6/7)[c=4]

• if f
(3)
i ∈ (−q/2, 0) then fi ∈ (3q/8, q/2) and apply Case (7/7)[c=4]

(1/7)[c=4]. Suppose that

Condition (K(1,1)) holds and(⌈
t

2

⌉
≤ ki,2 ≤

⌊3t

4 − 1
⌋
∨
(

ki,2 =
⌊3t

4

⌋
∧ f

(3)
i ∈

(
0,

q

2

))) (K(2,1))

Then

fi ∈ (−q

2 ,−3q

8 ), −5q

8 + q

4t
ki,3 < fi < −5q

8 + q

4t
(ki,3 + 1) (F(2,1))
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(2/7)[c=4]. Suppose that

Condition (K(1,1)) holds and(⌈3t

4

⌉
≤ ki,2 ≤ t− 1 ∨

(
ki,2 =

⌊3t

4

⌋
∧ f

(3)
i ∈

(
−q

2 , 0
))) (K(2,2))

Then

fi ∈ (−3q

8 ,−q

4), −3q

8 + q

4t
ki,3 < fi < −3q

8 + q

4t
(ki,3 + 1) (F(2,2))

(3/7)[c=4]. Suppose that

Condition (K(1,2)) holds and(
0 ≤ ki,2 ≤

⌊
t

4 − 1
⌋
∨
(

ki,2 =
⌊

t

4

⌋
∧ f

(3)
i ∈

(
0,

q

2

))) (K(2,3))

Then

fi ∈ (−q

4 ,−q

8), −3q

8 + q

4t
ki,3 < fi < −3q

8 + q

4t
(ki,3 + 1) (F(2,3))

(4/7)[c=4]. Suppose that

Condition (K(1,2)) holds and[ ⌈ t

4

⌉
≤ ki,2 ≤

⌊3t

4 − 1
⌋
∨
(

ki,2 =
⌊

t

4

⌋
∧ f

(3)
i ∈

(
−q

2 , 0
))
∨

∨
(

ki,2 =
⌊3t

4

⌋
∧ f

(3)
i ∈

(
0,

q

2

)) ] (K(2,4))

Then

fi ∈ (−q

8 ,
q

8), −q

8 + q

4t
ki,3 < fi < −q

8 + q

4t
(ki,3 + 1) (F(2,4))

(5/7)[c=4]. Suppose that

Condition (K(1,2)) holds and(⌈3t

4

⌉
≤ ki,2 ≤ t− 1 ∨

(
ki,2 =

⌊3t

4

⌋
∧ f

(3)
i ∈

(
−q

2 , 0
))) (K(2,5))
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Then

fi ∈ (q

8 ,
q

4), q

8 + q

4t
ki,3 < fi <

q

8 + q

4t
(ki,3 + 1) (F(2,5))

(6/7)[c=4]. Suppose that

Condition (K(1,3)) holds and(
0 ≤ ki,2 ≤

⌊
t

4 − 1
⌋
∨
(

ki,2 =
⌊

t

4

⌋
∧ f

(3)
i ∈

(
0,

q

2

))) (K(2,6))

Then

fi ∈ (q

4 ,
3q

8 ), q

8 + q

4t
ki,3 < fi <

q

8 + q

4t
(ki,3 + 1) (F(2,6))

(7/7)[c=4]. Suppose that

Condition (K(1,3)) holds and(⌈
t

4

⌉
≤ ki,2 ≤

⌊
t

2 − 1
⌋
∨
(

ki,2 =
⌊

t

4

⌋
∧ f

(3)
i ∈

(
−q

2 , 0
))) (K(2,7))

Then

fi ∈ (3q

8 ,
q

2), 3q

8 + q

4t
ki,3 < fi <

3q

8 + q

4t
(ki,3 + 1) (F(2,7))

In all cases, we end up by knowing fi with an error up to q
4t

.

Generalization and complexity

At each step, we keep submitting “ciphertexts" c(x) := 2h, for increasing

values h = 0, 1, 2, . . ., i.e. at step h + 1 we submit ciphertext c(x) = 2h.

Suppose we are at step h + 1. Then we submit to the decryption oracle

the ’ciphertext’ c(x) = 2h, and the decryption oracle will return us a
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polynomial

D(c = 2h) = u
(h+1)
0 + u

(h+1)
1 x + · · ·+ u

(h+1)
n−1 xn−1 =

n−1∑
i=0

u
(h+1)
i xi

=
n−1∑
i=0

(⌈
− t

2

⌉
+ ki,h+1

)
∈ Rt

from which we learn values ki,h+1 for 1 ≤ i ≤ n− 1. So, at this point, we

know ki,j, for 0 ≤ i ≤ n− 1 and 1 ≤ j ≤ h + 1. These values allow us to

distinguish between mh := 2h+1− 1 cases: for each 0 ≤ i ≤ n− 1, we know

that integer fi belongs to one of the cases:

(a/2h+1 − 1)[c=2h]. Suppose that

[Condition (C(h, a, 1)) holds] ∧ [Condition (C(h, a, 2)) holds] (K(h,a))

Then

fi ∈ (xa,h, ya,h), ∆h,a + q

2ht
ki,h+1 < fi < ∆h,a + q

2ht
(ki,h+1 + 1)

(F(h,a))

where a ∈ {1, 2, . . . , 2h+1 − 1}. Since

∆h,a + q

2ht
(ki,h+1 + 1)−

(
∆h,a + q

2ht
ki,h+1

)
= q

2ht
,

this allows us to recover, for each 0 ≤ i ≤ n − 1, the integer fi with an

error up to q
2ht

. Therefore, we keep submitting ’ciphertexts’ c(x) = 2h

for increasing values h = 0, 1, 2, . . . until h is such that q
2ht

< 1, i.e. h ≥

⌈log2(q/t)⌉. So, we have to repeat our attack, submitting ciphertexts c(x) =

1 = 20, 21, 22, 23, . . . , 2H , where H := ⌈log2(q/t)⌉. Se we repeat our attack

H +1 times. Now, the secret key is f(x) = f0 +f1x+ · · ·+fn−1x
n−1, where
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fi ∈ (−q/2, q/2], ∀0 ≤ i ≤ n − 1. So fi can have q different values. The

decryption oracle reveals a polynomial m(x) = m0 +m1x+ · · ·+mn−1x
n−1,

where mi ∈ (−t/2, t/2], ∀0 ≤ i ≤ n− 1. So mi can have t different values.

Each fi can be described with at most ⌊log2(q − 1)⌋ + 1 bits. So f(x)

can be described with n · (⌊log2(q − 1)⌋+ 1). Oracle decryption reveals

n · (⌊log2(t− 1)⌋+ 1) bits. So the minimum number of oracle queries to

determine f(x) is given by n·(⌊log2(q−1)⌋+1)
n·(⌊log2(t−1)⌋+1) . In order to finish our attack for

t odd, we need to give complete description of ∆h,a, Condition C(h, a, 1)

and Condition C(h, a, 2), for each 0 ≤ h ≤ ⌈log2(q/t)⌉ = H and for each

1 ≤ a ≤ 2h+1 − 1. Fix 0 ≤ h ≤ ⌈log2(q/t)⌉. For a given 1 ≤ a ≤ 2h+1 − 1

put

δh,a :=



2h−1 if a = 2h

⌊
a
2

⌋
if 1 ≤ a < 2h

⌈
a
2

⌉
if 2h < a ≤ 2h+1 − 1

, ∆h,a := −
(

1
2 + 1

2h+1 −
δh,a

2h

)
· q

Also, put

η(h, a) :=


⌈

a
2

⌉
if 1 ≤ a ≤ 2h

⌊
a
2

⌋
if 2h < a ≤ 2h+1 − 1

Then

Condition (C(h, a, 1)) = Condition (K(h− 1, η(h, a)))

Remark that, if h = 0 or h = 1, then Condition (C(h, a, 1)) = ∅ i.e., we

don’t put any condition at all, vacuous condition.

For Condition C(h, a, 2), remark that if h = 0 then Condition (C(0, a, 2)) =

∅ i.e., we don’t put any condition at all, vacuous condition. One can see

that, at step h + 1, condition C(h, a, 2) is only one among the following 5:
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1. V3,h := U2,1 = U1,1 ∧ (r is even) = U3,1 ∧ (r is odd):

0 ≤ ki,h ≤
⌊

t

4 − 1
⌋
∨
(

ki,h =
⌊

t

4

⌋
∧ f

(h+1)
i ∈

(
0,

q

2

))
(V3,h)

2. V5,h := U2,2:

⌈
t

4

⌉
≤ ki,h ≤

⌊3t

4 − 1
⌋
∨
(

ki,h =
⌊

t

4

⌋
∧ f

(h+1)
i ∈

(
−q

2 , 0
))
∨

∨
(

ki,h =
⌊3t

4

⌋
∧ f

(h+1)
i ∈

(
0,

q

2

)) (V5,h)

3. V2,h := U2,3 = U1,2 ∧ (r is odd) = U3,2 ∧ (r is even):

⌈3t

4

⌉
≤ ki,h ≤ t− 1 ∨

(
ki,h =

⌊3t

4

⌋
∧ f

(h+1)
i ∈

(
−q

2 , 0
))

(V2,h)

4. V1,h := U1,1 ∧ (r is odd) = U3,1 ∧ (r is even):

⌈
t

2

⌉
≤ ki,h ≤

⌊3t

4 − 1
⌋
∨
(

ki,h =
⌊3t

4

⌋
∧ f

(h+1)
i ∈

(
0,

q

2

))
(V1,h)

5. V0,h := U1,2 ∧ (r is even) = U3,2 ∧ (r is odd):

⌈
t

4

⌉
≤ ki,h ≤

⌊
t

2 − 1
⌋
∨
(

ki,h =
⌊

t

4

⌋
∧ f

(h+1)
i ∈

(
−q

2 , 0
))

(V0,h)

So, suppose we are in case (a/2h+1 − 1)[c=2h]. Then we see that we have
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Therefore, we have

C(h, a, 2) =



V1,h if 1 ≤ a ≤ 2h − 2 ∧ a ≡ 1 mod 4 or

2h + 2 ≤ a ≤ 2h+1 − 1 ∧ a ≡ 0 mod 4

V2,h if 1 ≤ a ≤ 2h − 2 ∧ a ≡ 2 mod 4 or

2h + 2 ≤ a ≤ 2h+1 − 1 ∧ a ≡ 1 mod 4 or

a = 2h + 1

V3,h if 1 ≤ a ≤ 2h − 2 ∧ a ≡ 3 mod 4 or

2h + 2 ≤ a ≤ 2h+1 − 1 ∧ a ≡ 2 mod 4 or

a = 2h − 1

V0,h if 1 ≤ a ≤ 2h − 2 ∧ a ≡ 0 mod 4 or

2h + 2 ≤ a ≤ 2h+1 − 1 ∧ a ≡ 3 mod 4

V5,h if a = 2h
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Case 2: t is even but not 2

Step 1: select c(x) = 1

Select ”ciphertext” c(x) = 1 and submit it to the decryption oracle. We

obtain the polynomial D(c(x) = 1) = v
(1)
0 + v

(1)
1 x + v

(1)
2 x2 + · · ·+ v

(1)
n−1x

n−1.

Suppose there exists v
(1)
i = t/2. This means that either u

(1)
i = t

2 or

u
(1)
i = − t

2 . We want to find out which one among the two above cases

holds.

1. If we are in case u
(1)
i = t

2 , then we have
⌊

t
q
fi

⌉
= t

2 ⇔
q
2 −

q
2t

< fi < q
2

2. If we are in case u
(1)
i = − t

2 , then we have
⌊

t
q
fi

⌉
= − t

2 ⇔ −
q
2 < fi <

− q
2 + q

2t

To find out which one is the case, we have to wait for the next step.

Now, let’s focus on all the other v
(1)
i ≠ t

2 . We have in this case,

v
(1)
i = u

(1)
i . Now, similarly as before, we have − t

2 + 1 ≤ u
(1)
i ≤ t

2 , and

every u
(1)
i can have only t different values; it can be written as u

(1)
i =

− t
2 + 1 + ki,1, with ki,1 ∈ {0, 1, . . . , t− 1}. Now, it is easy to see that

u
(1)
i = − t

2 + 1 + ki,1 ⇔ −
q

2 + q

t
(ki,1 + 1

2) < fi < −q

2 + q

t
(ki,1 + 3

2)

The polynomial obtained from the decryption oracle can therefore be

written as D(c(x) = 1) = ∑n−1
i=0

(
− t

2 + 1 + ki,1
)

xi. Each fi belongs to

the interval (−q/2, q/2). But after this our first query we learn values

ki,1 ∈ [0, 1, . . . , t − 1], 0 ≤ i ≤ n − 1, such that − q
2 + q

t
(ki,1 + 1

2) < fi <

− q
2 + q

t
(ki,1+ 3

2) We have that− q
2 + q

t
(ki+1+3/2)−

(
− q

2 + q
t
(ki+1 + 1/2)

)
= q

t
.

Therefore, we know each integer coefficient fi with an error up to q
t
.
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The idea now is to keep submitting ’ciphertext’ to the decryption

oracle and obtain values ki,j, with 0 ≤ i ≤ n− 1 and increasing integers

j = 1, 2, 3, . . ., in such a way that we keep reducing the interval in which

fi lies until we know fi with an error smaller than 1, which determines

each fi completely.

Step 2: select c(x) = 2

Select now ”ciphertext” c(x) = 2 = 2 + 0x + · · ·+ 0xn−1. Decryption oracle

computes and return the polynomial

D(c(x) = 2) =
[⌊

t

q
· [f · 2]q

⌉]
t

=
[⌊

t

q
·
(
[2f0]q + [2f1]qx + · · ·+ [2fn−1]qxn−1

)⌉]
t

Now, let’s focus on
[⌊

t
q
[2fi]q

⌉]
t
xi for each i such that, in the previous step,

v
(1)
i = t

2 .

1. We have

q

2 −
q

2t
< fi <

q

2 ⇔ q − q

t
< 2fi < q ⇔ −q

t
< [2fi]q < 0

⇔ −1 <
t

q
[2fi]q < 0

⇔ −1 ≤
[⌊

t

q
[2fi]q

⌉]
t

≤ 0

⇔
[⌊

t

q
[2fi]q

⌉]
t

=


0 or − 1 if t > 2

0 or 1 if t = 2

2. We have analogously − q
2 < fi < − q

2 + q
2t
⇔
[⌊

t
q
[2fi]q

⌉]
t

= 0 or 1.
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From now on we assume t > 2; we will consider later the case in which

t = 2. Let v
(2)
i =

[⌊
t
q
[2fi]q

⌉]
t
. We have that

1. if v
(2)
i = −1, then u

(1)
i = t

2 and q
2 −

q
2t

< fi < q
2

2. if v
(2)
i = 1, then u

(1)
i = − t

2 and − q
2 < fi < − q

2 + q
2t

3. if v
(2)
i = 0, then we can’t conclude right now the exact interval in

which fi belongs; this will be considered in the next step.

Remark 6. Suppose we are in the above case 3, i.e. v(2) =
⌊

t
q
[2fi]q

⌉
= 0.

Then

1. We have

q

2 −
q

2t
< fi <

q

2 ∧
⌊

t

q
[2fi]q

⌉
= 0⇔ q

2 −
q

4t
< fi <

q

2

2. Similarly, we have

−q

2 < fi < −q

2 + q

2t
∧

⌊
t

q
[2fi]q

⌉
= 0⇔ −q

2 < fi < −q

2 + q

4t

We will use this remark in the next step to investigate further the interval

in which fi lies. Now, let’s focus on all of the other coefficients. Using the

same arguments as in section 5.10.2, the decryption oracle computes and

return the polynomial

D(c(x) = 2) =
[⌊

t

q
· [f · 2]q

⌉]
t

=
[⌊

t

q
f

(2)
0

⌉
+
⌊

t

q
f

(2)
1

⌉
x + · · ·+

⌊
t

q
f

(2)
n−1

⌉
xn−1

]
t

=
[
u

(2)
0 + u

(2)
1 x + u

(2)
2 x2 + · · ·+ u

(2)
n−1x

n−1
]

t

:= v
(2)
0 + v

(2)
1 x + · · ·+ v

(2)
n−1x

n−1
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As before, suppose there exists v
(2)
i = t/2. This means that either u

(2)
i = t

2 ,

or u
(2)
i = − t

2 . We can easily understand which case we are by considering

the known value v
(1)
i ̸= t

2 . All the other v
(2)
i correspond to values u

(2)
i ̸= −t

2 .

These u
(2)
i can then have only t different possible values, and can be written

as u
(2)
i = − t

2 + 1 + ki,2, with ki,2 ∈ {0, 1, . . . , t− 1}, and also

u
(2)
i = − t

2 + 1 + ki,2 ⇔ −
q

2 + q

t
(ki,2 + 1

2) < fi < −q

2 + q

t
(ki,2 + 3

2)

So now, for each 0 ≤ i ≤ n− 1 such that v
(1)
i ≠ t

2 ∨ (v(1)
i = t

2 ∧ v
(2)
i = 0),

we know ki,1, ki,2 such that


− q

2 + q
t
(ki,1 + 1

2) < fi < − q
2 + q

t
(ki,1 + 3

2)

− q
2 + q

t
(ki,2 + 1

2) < fi < − q
2 + q

t
(ki,2 + 3

2)

There are 3 cases to distinguish. These cases can be computed in an

analogous way to what seen for the case t odd. We omit the details.

Generalization

We continue in this way, following the blueprint for t odd and taking care

of all the coefficients for which v
(1)
i = t

2 and all subsequents v
(j)
i = 0 (when

we finally find a j ≥ 2 such that v
(j)
i = 1 or −1, then we can deduce

the original value of u
(1)
i = t

2 or − t
2). If at the last step m we still get

v
(m)
i = 0, then all the values u

(1)
i remain undetermined, which also say that

all the corresponding coefficients fi can have only two possible values. At

this point, the strategy is to submit to the decryption oracle ’ciphertexts’

in order to determine whether fi · fj < 0 or fi · fj > 0 holds among all

the non-zero coefficients fi, fj, in a way similar to what we have already

discussed for the attack on the [55] SHW scheme. We omit the details; we
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will give a description of how to do this in the case t = 2; the general case

t > 2 is then easy to obtain. We study now the case t = 2.
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Case 3: t = 2

Step 1: select c(x) = 1

Choose and submit to the decryption oracle the polynomial c(x) = 1. It

will compute and return the polynomial

D(c(x) = 1) =
[⌊

2
q
· [f · 1]q

⌉]
2

=
[⌊

2
q

f0

⌉
+
⌊

2
q

f1

⌉
x + · · ·+

⌊
2
q

fn−1

⌉
xn−1

]
2

For every 0 ≤ i ≤ n− 1, u
(1)
i :=

⌊
2
q
fi

⌉
is such that −1 ≤ u

(1)
i ≤ 1, and so

v
(1)
i := [u(1)

i ]2 = 0 or 1. We have two cases to distinguish:

1) v
(1)
i = 0. We have v

(1)
i = 0 ⇔ u

(1)
i = 0 ⇔

⌊
2
q
fi

⌉
= 0 ⇔ −1

2 < 2
q
fi <

1
2 ⇔ −

q
4 < fi < q

4

2) v
(1)
i = 1. We have

v
(1)
i = 1 ⇔ u

(1)
i = −1 or u

(1)
i = +1

⇔
⌊

2
q

fi

⌉
= −1 or

⌊
2
q

fi

⌉
= +1

⇔ −3
2 <

2
q

fi < −1
2 or 1

2 <
2
q

fi <
3
2

⇔ −q

2 < fi < −q

4 or q

4 < fi <
q

2

Step 2: select c(x) = 2

Choose and submit to the decryption oracle the polynomial c(x) = 2. It

will compute and return the polynomial

D(c(x) = 2) =
n−1∑
i=0

[⌊
2
q

[2fi]q
⌉]

2
xi =:

n−1∑
i=0

[
u

(2)
i

]
2

xi =:
n−1∑
i=0

v
(2)
i xi
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We have two cases to distinguish:

1) v
(2)
i = 0. We have

v
(2)
i = 0 ⇔ u

(2)
i = 0⇔

⌊
2
q

[2fi]q
⌉

= 0⇔ −1
2 <

2
q

[2fi]q <
1
2

⇔ −q

4 < [2fi]q <
q

4
⇔ −q

4 < 2fi <
q

4 or − 5q

4 < 2fi < −3q

4 or 3q

4 < 2fi <
5q

4
⇔ −q

8 < fi <
q

8 or − q

2 < fi < −3q

8 or 3q

8 < fi <
q

2

We have three cases to distinguish, according to which known interval

fi lies at the end of step 1:

1.1) If − q
4 < fi < q

4 , then − q
8 < fi < q

8

1.2) If − q
2 < fi < − q

4 , then − q
2 < fi < −3q

8

1.3) ] If q
4 < fi < q

2 , then 3q
8 < fi < q

2

2) v
(2)
i = 1. We have

v
(2)
i = 1 ⇔ u

(2)
i = −1 or u

(2)
i = +1

⇔
⌊

2
q

[2fi]q
⌉

= −1 or
⌊

2
q

[2fi]q
⌉

= +1

⇔ −3
2 <

2
q

[2fi]q < −1
2 or 1

2 <
2
q

[2fi]q <
3
2

⇔ −3q

4 < [2fi]q < −q

4 or q

4 < [2fi]q <
3q

4
⇔ −3q

4 < 2fi < −q

4 or q

4 < 2fi <
3q

4
⇔ −3q

8 < fi < −q

8 or q

8 < fi <
3q

8
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Now, again we have three cases to distinguish, according to which known

interval fi lies at the end of step 1:

2.1) If − q
4 < fi < q

4 , then − q
4 < fi < − q

8 or q
8 < fi < q

4

2.2) If − q
2 < fi < − q

4 , then −3q
8 < fi < − q

4

2.3) ] If q
4 < fi < q

2 , then q
4 < fi < 3q

8

Generalization and the last step

We continue in this way, and in the end we will know each coefficient fi up

to the sign. Therefore, we will know a polynomial f ′(x) = f ′0 + f ′1x + · · ·+

f ′n−1x
n−1, with f ′i = |fi| for every i. We proceed similarly to what we have

seen for the attack on the [55] scheme, i.e. we query the decryption oracle in

order to find out the relations fi ·fj < 0 or fi ·fj > 0 among the coefficients

fi of the secret key f(x). Suppose that the two consecutive coefficients fi,

fi−1 are both non-zero. We know their absolute values f ′i , f ′i−1. Choose

and submit to the decryption oracle the polynomial c(x) = α|fi−1|+α|fi|x,

with α ∈ (−q/2, q/2] such that [2α|fi−1 · fi|]q ∈
[

q
4 , q

2

]
(it is always possible

to find such an α). Now, the decryption oracle will compute and return

the polynomial

D(c(x)) =
[⌊

2
q

[α|fi−1|f0 − α|fi|fn−1]q
⌉]

2
+

n−1∑
j=1

[⌊
2
q

[α|fi−1|fj + α|fi|fj−1]q
⌉]

2
xj

Let’s focus on the i-th coefficient
[⌊

2
q
[α|fi−1|fi + α|fi|fi−1]q

⌉]
2
. We have

two cases:

1) If fi, fi−1 have different signs, then

α|fi−1|fi + α|fi|fi−1 = 0
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and therefore the i-th coefficient is zero:

[⌊
2
q

[α|fi−1|fi + α|fi|fi−1]q
⌉]

2
= 0

2) If fi, fi−1 have the same positive sign, then

[α|fi−1|fi + α|fi|fi−1]q = [2α|fifi−1|]q ∈
[
q

4 ,
q

2

]

In case fi, fi−1 are both negative, we have that

[α|fi−1|fi + α|fi|fi−1]q = [−2α|fifi−1|]q ∈
[
−q

2 ,−q

4

]
)

In both cases, it easy to see that

[⌊
2
q

[α|fi−1|fi + α|fi|fi−1]q
⌉]

2
= 1

So we can distinguish whether two consecutive non-zero coefficients fi, fi−1

have the same sign or not. Exactly as we saw for the attack on the [55]

scheme, this leads us to two possible candidates for the secret key; to

determine which one is the correct one, it is enough to submit an extra

appropriate query to the decryption oracle.

Remark 7. As we saw for the attack on the [55] scheme, we have to be

careful in case one of the coefficient fi is zero. In this case in fact, no

information can be given about the sign of fi−1 if we compare it to fi. To

solve this problem, we have to choose and submit to the decryption oracle

a polynomial in the form c(x) = a + bxj, for appropriates a, b, j. We omit

the details, which are straightforward from what we have just discussed

and from the attack on the [55] scheme.
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5.10.3 A Remark

Parallel to our work, Dahab, Galbraith and Morais [26] have also proposed

similar attacks for [9, 55] but only for specific parameter settings at ICITS

conference 2015. In comparison, our attacks apply to all parameter settings

and are more efficient than theirs.

The key recovery attacks by Dahab, Galbraith and Morais [26] work for

arbitrarily-tailored parameters for the LTV12 and BLLN13 SHE schemes.

For example, they require 6(t2+t) < q and B2 < q
36t2 while these conditions

are not assumed in [55, 9]. On the other side, we hereby present attacks

that work for all parameter settings. Moreover, our attacks are more

efficient than theirs, see the following table. Note that n is defined as

an integer of power of 2, B is a bound on the coefficient size of error

distribution and is much smaller than q, t ≥ 2 is an integer that partially

determines the message space size. More detailed definitions for these

parameters can be found in the following sections.

Our Attacks Attacks from [26]

[55] ⌊log2B⌋+ n n · ⌈log2B⌉+ n

[9] (t is odd) ⌈log2(B/t)⌉ n · ⌈log2B⌉

[9] (t is even but not 2) ⌈log2(B/t)⌉+ n n · ⌈log2B⌉

[9] (t = 2) ⌈log2(B/t)⌉+ n n · ⌈log2B⌉+ n



Chapter 6

Attacks to the modified LTV12 SHE

scheme

We are going to analyze a line of attacks towards a modified version of the

[55] SHE scheme. We refer to Section 5.9 for the details of the scheme.

As we already mentioned in Section 5.9, in [55], the authors do not

explicitly state how the decryption behaves if µ mod 2 is not a constant.

We can consider three scenarios: (1) output directly µ mod 2; (2) output

the constant of µ mod R2; (3) output an error. We have shown in Section

5.9 a key-recovery attack for scenario (1). We will see in this chapter how

to extend this attack to scenario (2). It is likely that we can adapt our

attack to scenario (3), but we have not succeeded so far. However, we there

are good indicators that scenario (3) can resist to key-recovery attacks,

and we are going to discuss this scenario in what follows.

6.1 Key-Recovery Attack: Scenario (2)

As we remarked earlier, the [55] SHE scheme only encrypts 1-bit plaintexts

m ∈ {0, 1}, but decryption actually reveals a polynomial µ′(x) = µ(x) mod
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2 = µ′0 +µ′1x+ · · ·+µ′n−1x
n−1 ∈ R2. Therefore, if the ciphertext is honestly

generated, we would expect µ′(x) ∈ {0, 1} ⊂ R2. Hence, a natural idea

of preventing our attack would be to only output the coefficient µ′0, since

anyway µ′i = 0, for 1 ≤ i ≤ n− 1, if ciphertext is honestly generated. SHE

scheme is the same as before, except the following alternative decryption

step:

Decrypt′(sk1, . . . , skM , c):

• parse ski = fi for i ∈ [M ]

• let µ = f1 · · · fM · c ∈ Rq

• µ′(x) := µ(x) mod 2 = µ′0 + µ′1x + · · ·+ µ′n−1x
n−1 ∈ R2

• output µ′0 ∈ {0, 1}

We show that, even in this case, our attack works with few modifications.

Instead of recovering all coefficients si of the polynomial s(x) = s0 +

s1x + · · · + sn−1x
n−1 ∈ Rq at once, we are going to recover in sequence

s0, s1, . . . , sn−1.

Recovering s0

It is clear that, by performing the same attack as described above, we

recover coefficient s0 with at most N oracle queries; but no information

will be leaked about si, for 1 ≤ i ≤ n− 1.

Recovering s1

In order to recover s1, we repeat the same attack as before, with the

following modifications:
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Preliminary step: submit to the decryption oracle the ’ciphertext’ c =

−xn−1 ∈ Rq. This way,

µ(x) mod 2 = s · (−xn−1) mod 2 =

= (s1 mod 2) + (s2 mod 2)x + · · ·+

· · ·+ (sn−1 mod 2)xn−2 − (s0 mod 2)xn−1

since xn = −1 in Rq. So µ′0 = s1 mod 2.

Similarly,

Step k, for 1 ≤ k ≤ m, with m = ⌊log2(q − 1)⌋: Submit to the decryp-

tion oracle the ’ciphertext’

c = 2k · (−xn−1) ∈ Rq

These modifications lead to a full recovery of s1 (the final step is the same

as in the original key-recovery attack).

Recovering si, for 0 ≤ i ≤ n− 1

Similarly, and more generally, we are going to recover si ∈ [0, q− 1], for all

0 ≤ i ≤ n− 1. Steps are as follows:

Preliminary step: submit to the decryption oracle the ’ciphertext’ c =

−xn−i ∈ Rq.

Step k, for 1 ≤ k ≤ m, with m = ⌊log2(q − 1)⌋: Submit to the decryp-

tion oracle the ’ciphertext’

c = 2k · (−xn−i) ∈ Rq



154 Attacks to the modified LTV12 SHE scheme

Final step: same as in the original key-recovery attack.

6.2 Key-Recovery Attack: Scenario (3)

We are going here to investigate the modified [55] SHE scheme with

ciphertext-validity check; is this possibly IND-CCA1-secure? Let’s consider

the following modified version of the SHE scheme in [55], where we tweak

the decryption step. We focus here on a way of preventing our key-recovery

attack, and possibly to make the [55] SHE scheme secure under key-recovery

attacks. Decryption step is modified in order to perform a ciphertext-

validity check before revealing the bit µ0. Secret key sk is f = 2f ′ + 1 as

in the original scheme.

Decrypt′′(sk = f, c):

• let µ(x) := (f · c ∈ Rq) mod 2 = µ0 +µ1x+ · · ·+µn−1x
n−1 ∈ R2

• if µ(x) /∈ {0, 1} ⊂ R2, return ⊥

• else, output µ′(x) = µ′0 ∈ {0, 1}

This simple ciphertext-validity check makes the scheme resistant to above

key-recovery attack, and we could not yet find a working key-recovery

attack against this modified SHE scheme. We tried to attack the scheme

in such a way to gather the maximum possible information of the bits of

the secret keys through repeted oracle decryption queries. Let’s see the

details.

Let f ′ = f ′0 + f ′1x + f ′2x
2 + · · ·+ f ′n−1x

n−1 ∈ R. We have

−
⌊

q

2

⌋
≤ |f ′i | ≤

⌊
q

2

⌋
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Since f ′ is B-bounded, we have in particular that

|f ′i | ≤ B ≪ q

And we have

f = 2f ′ + 1 = (2f ′0 + 1) + 2f ′1x + 2f ′2x
2 + · · ·+ 2f ′n−1x

n−1

Since B ≪ q, we still have 2B ≪ q.

Choose ’ciphertext’ c = 1. We have

Dec(2c) = 2c ∗ f = 2f ∈ Rq

= (4f ′0 + 2) + 4f ′1x + 4f ′2x
2 + · · ·+ 4f ′n−1x

n−1

=: g0 + g1x + g2x
2 + · · ·+ gn−1x

n−1

Since |fi| ≤ B and B ≪ q, we have |fi| ≤ q
2 . So it is easy to see that

Dec(2c) = 2f mod 2 = 0.

Let’s gradually increase the value c ∈ N. Let c0 ∈ N be the smallest

integer greater than 1 such that

Dec(2c0) := g0 + g1x + g2x
2 + · · ·+ gn−1x

n−1 ̸= 0

Then, this means that ∃i ∈ [0, 1, . . . , n− 1] such that |gi| >
⌊

q
2

⌋
. Also, we

have Dec(2(c0 − 1)) = 0, where

Dec(2(c0−1)) = [(4c0−4)f ′0+(2c0−2)]+(4c0−4)f ′1x+· · ·+(4c0−4)f ′n−1x
n−1
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And

Dec(2c0) = [4c0f
′
0 + 2c0] + 4c0f

′
1x + 4c0f

′
2x

2 + · · ·+ 4c0f
′
n−1x

n−1

So we have

1) Dec(2(c0 − 1)) = 0

2) Dec(2c0) ̸= 0:

2.1) Dec(2c0) = 1

2.2) Dec(2c0) =⊥

From this we have that

1)⇒


∣∣∣f ′0 + 1

2

∣∣∣ ≤ ⌊ q−1
8(c0−1)

⌋
|f ′i | ≤

⌊
q−1

8(c0−1)

⌋
∀1 ≤ i ≤ n− 1

2.1)⇒


∣∣∣f ′0 + 1

2

∣∣∣ ≥ ⌈ q+1
8c0

⌉
|f ′i | ≤

⌊
q−1
8c0

⌋
∀1 ≤ i ≤ n− 1

2.2)⇒


∃1 ≤ i ≤ n− 1s.t. |f ′i | ≥

⌈
q+1
8c0

⌉
∣∣∣f ′0 + 1

2

∣∣∣ ≤ ⌊ q−1
8c0

⌋
or

∣∣∣f ′0 + 1
2

∣∣∣ ≥ ⌊ q+1
8c0

⌋
(Notice that there may be more than one such coefficient f ′i .) So, to sum

up:

First Step

• submit to the decryption oracle increasing integer values c = 1, 2, 3, . . .

• let c0 ∈ N be the smallest integer s.t. Dec(2c0) ̸= 0. We have:
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Dec(2(c0 − 1)) = 0⇒


∣∣∣f ′0 + 1

2

∣∣∣ ≤ ⌊ q−1
8(c0−1)

⌋
|f ′i | ≤

⌊
q−1

8(c0−1)

⌋
∀1 ≤ i ≤ n− 1

Dec(2c0) = 1⇒


∣∣∣f ′0 + 1

2

∣∣∣ ≥ ⌈ q+1
8c0

⌉
|f ′i | ≤

⌊
q−1
8c0

⌋
∀1 ≤ i ≤ n− 1

Dec(2c0) =⊥⇒


∃1 ≤ i ≤ n− 1s.t. |f ′i | ≥

⌈
q+1
8c0

⌉
∣∣∣f ′0 + 1

2

∣∣∣ ≤ ⌊ q−1
8c0

⌋
or

∣∣∣f ′0 + 1
2

∣∣∣ ≥ ⌊ q+1
8c0

⌋
(Again, there may be more than such a coefficient f ′i)

Second Step

Define the intervals

I+
0 :=

[⌈
q + 1
8c0

⌉
,
⌊

q − 1
8c0 − 8

⌋]
I−0 :=

[
−
⌊

q − 1
8c0 − 8

⌋
,−

⌈
q + 1
8c0

⌉]
J+

0 :=
[
0,
⌊

q + 1
8c0

⌋]
J−0 :=

[
−
⌊

q + 1
8c0

⌋
, 0
]

Notice that
⌊

q−1
8c0−8

⌋
≤ B. We have
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• Case 2.1) ⇔ |f ′0 + 1
2 | ∈ I+

0 and |f ′i | ∈ J+
0 , ∀1 ≤ i ≤ n− 1;

• Case 2.2) ⇔ ∃is.t. |f ′i | ∈ I+
0

Therefore, in Case 2.1) there is exactly one coefficient that overflows, but

in Case 2.2) there may be more than one. Our next question is to compute

the probability that such a case happens.

Question: In Case 2.2), what is the probability p0 that ∃!i ∈ [1, n− 1]

s.t. |f ′i | ∈ I+
0 , and also |f ′0 + 1

2 | ∈ J+
0 ?

Remember that the coefficients are chosen from the Gaussian normal

distribution χ given by the function

f(x) = 1
σ
√

2π
e−

x2
2σ2

where σ is the variance of the Gaussian distribution. We have, for a given

1 ≤ j ≤ n− 1, j ̸= i:

Pj := Prob(|f ′j| ∈ J+
0 ,∃j ̸= i) = 2

σ
√

2π

∫ ⌊ q−1
8c0−8

⌋
0

e−
x2

2σ2 dx

Then, we have that the probability that every 1 ≤ j ≤ n−1, j ̸= i, belongs

to J+
0 is given by

Ptot := Prob(|f ′j| ∈ J+
0 ,∀j ̸= i) = P n−2

j

Finally, we have

P0 := Prob(|f ′0 + 1
2 | ∈ J+

0 ) ≈ Pj, for some j
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In total,

p0 = Ptot ∗ P0 ≈ P n−1
j =

 2
σ
√

2π

∫ ⌊ q+1
8c0

⌋
0

e−
x2

2σ2 dx

n−1

(6.1)

The probability p0 ≈ P n−1
j depends on the parameters σ, q, c0.

a) If it is the Case 2.2) and at least two coefficients overflow, then it is

difficult to continue the attack.

b) If it the Case 2.1) we have isolated the (only) coefficient which

overflows (it is |f ′0|)

c) If it is the Case 2.2) and we have only one coefficient |f ′i | overflowing,

then we still don’t know which one is it. However, it is easy to isolate

which coefficient is it by simply query the decryption oracle with

’ciphertexts’ 2c0x
j , for j = 0, 1, 2, . . .. This simply shifts the position

of the coefficient, until the coefficient |f ′i | will be brought to position

0. More in particular, if the overflowing coefficient is |f ′i |, then

Dec(2c0x
j) =⊥ for j = 0, 1, 2, . . . , n− 1− i and Dec(2c0x

j) = 1 for

j = n−1−i+1. So if j is the first value for which Dec(2c0x
j) = 1, we

know that i = n− j and we have isolated the overflowing coefficient.

Therefore, if we are in cases b) or c) we can continue by submitting to the

decryption oracle increasing values of c1 = c0 + 1, c0 + 2, . . .. Unfortunately,

if we are in case a) we have no idea how to proceed: the ciphertext validity

check in our tweaked decryption seems to make the scheme invulnerable

to this line of key-recvoery attacks, which was successful for all the other

SHE schemes.

Now, the probability that case 2.1) happens is given by p0. In order to

compute such probability, we need to compute formula 6.1, which depends
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on parameters σ, q, c0 and B. If this probability is close to 1, then the

proposed line of attack can be considered to a viable key recovery attack

(we succeed in fact to isolate only one overflowing parameter with high

probability and we can continue our attack). However, in order to actually

compute this probability, we need concrete parameters to plug in in formula

6.1. Unfortunately, literature does not provide such concrete parameters,

therefore we can only try to estimate them.

In [55], the authors state that ”Using the same security proof as in [74],

we can base the security of the scheme [LTV12] on the DSPR assumption

and the RLWE assumption. With the choice of parameters stated below,

this yields security under the DSPR assumption and the hardness of

approximating shortest vectors on ideal lattices to within a factor of 2nϵ ,

which is believed to be hard.”

In the paper [55], the authors require that:

• n = n(λ), where λ is the security parameter

• n is a power of 2

• q = 2nϵ , for ϵ ∈ (0, 1)

• r = poly(n)

• B = poly(n)

Parameter Selection in the NTRU-FHE

For these reasons, it would be interesting to understand what concrete

parameters to use in the [55] SHE scheme. Unfortunately There currently

do not exist definitive, up to date works on these parameters.
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We can consider then some parameters suggested for NTRU-FHE.

Stehle and Steinfeld have shown that the DSPR problem is hard even

for unbounded adversaries with their parameter selection. However, the

new NTRU-FHE scheme will require different parameters to support

homomorphic evaluation. The impact of the new parameter settings to the

security level is largely unknown and requires careful research. However,

even if we assume that the DSPR problem is hard for typical NTRU-FHE

parameter selection, concrete parameters are still hard to chose. The

RLWE problem is still relatively new and lacks thorough security analysis.

A common approach is to assume that RLWE follows the same behavior

as the LWE problem [43]. Under this assumption only, we can select

parameters. If we omit the noise, given the prime number q and λ-bit

security level, the dimension is bounded as in [43] as n ≤ log(q)(λ+110)/7.2.

For example, given a 256-bit prime q, an 80-bit security level will require

dimension n = 6756. ([31]).

To sum up, we can try to use the following parameters:

• λ = 80

• n = 6756

• q = 2nϵ should have 256 bits. We can therefore take q = 2256. Now

since ϵ ∈ (0, 1) and q has 256 bits, we can take ϵ such that nϵ ≈ 256,

i.e. ϵ ≈ log6756(256) ≈ 0.629.

• c0 is such that B ≤ q−1
8c0−8 and B ≥ q+1

8c0
. From this, we get that

q
8B
≤ c0 ≤ q−8B

8B
. We can assume that c0 is in the middle of this

interval, hence we can take c0 = q−4B
8B

.

• B = poly(n) = n = 6756 (totally arbitrary)
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• r = poly(n) = n = 6756 (totally arbitrary)

Using these parameters, we obtain

p0 =
 2

σ
√

2π

∫ ⌊ q+1
8c0

⌋
0

e−
x2

2σ2 dx

n−1

≈ 7.412860139583738 ∗ 10−1121

which basically is 0 probability. However, if we use as parameter B the

following one

• B = poly(n) = n2 = 67562 = 45, 643, 536

we obtain

p0 =
 2

σ
√

2π

∫ ⌊ q+1
8c0

⌋
0

e−
x2

2σ2 dx

n−1

≈ 1

Hence, until we don’t obtain more concrete real parameters, nothing can

be said about the the real potential of our line of attacks, since by tweaking

parameters as we can in the given range, we can obtain both a working

and a not working key recovery attack. This leaves us material to consider

for an interesting future work.
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Conclusion and Future Work

Fully (and somewhat) homomorphic encryption is an interesting topic with

potentially many useful applications. Current FHE schemes are far from

being of any practical use, even though - as we have seen in Chapter 2 -

there are already several real-world applications which make use of SHE

schemes, and any implementer should keep in mind the threats of malicious

attackers who can mount key-recovery attacks to these SHE schemes.

It is therefore important to have a clear and precise idea of what level

of security is offered by the existing SHE and FHE schemes. This was the

main goal of this dissertation: in Chapter 5 we have developed complete and

efficient key-recovery attacks for most of the existing SHE schemes. More in

particular, we showed that the SHE schemes from [15, 14, 12, 11, 44, 55, 9]

suffer from key recovery attacks when the attacker is given access to the

decryption oracle. Combining the results from [54, 76], we now know that

most1 existing SHE schemes suffer from key recovery attacks, and so they
1The only exception is the variation of [71] SHE scheme as shown in [54]. The

authors use the notion of valid ciphertexts, and obtain an IND-CCA1 scheme. But as
we already mentioned, this is obtained under a strong non-standard lattice knowledge
assumption, and moreover they also show their scheme is not secure under a natural
adaptive attack based on a ciphertext validity oracle. It would be desirable to have a
IND-CCA1 secure SHE scheme which does rely on standard assumptions only.
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are not IND-CCA1 secure. In Chapter 6 we have considered the SHE

scheme from [55] - for which we developed an efficient key recovery attack

in Chapter 5 - and we have tweaked its decryption step in two ways, leading

to scenarios (2) and (3) as explained in that chapter. We successfully

showed a key-recovery attack for scenario (2); however, scenario (3) seems

to resist any attempt to show a key-recovery attack. We have shown that

our usual strategy for key-recovery attacks does not lead to a successful

attack, and our variation of the [55] SHE scheme seems therefore to be the

a good candidate for being IND-CCA1 secure. As an interesting future

work, one can look for a security proof of this scheme.

Our work sheds more light on the security of SHE schemes, and more

importantly can be of great help to potential implementers who want to

use a given SHE scheme for a real-world application. At the same time,

our results encourage us and other researchers to investigate more on the

IND-CCA1 security of SHE and FHE schemes, with the ultimate goal of

obtaining a SHE scheme which offers this level of security, and relying on

standard assumptions.

We now raise attention on some interesting future work and directions.

7.1 Future Directions

During our research on FHE, we crossed several interesting and important

points which are worth of future investigation. We list here a few interesting

future works, some of which are a natural direct continuation of our work.
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Making IND-CCA1 secure SHE schemes based on standard as-

sumptions

A major open problem is protect levelled homomorphic encryption from

adaptive attacks that allow an adversary to learn the private key. Therefore,

a natural next step is to investigate whether it is possible to enhance these

SHE schemes to avoid key recovery attacks and make them IND-CCA1

secure. One thing we should keep in mind is to preserve their homomorphic

properties. Following the work of [54], one could think of tweaking the

decryption step of a SHE scheme by including a ciphertext validity check

in order to make sure that, with some high probability, the ciphertext

is honestly generated by the attacker and not specifically chosen for the

purpose of recovering a given bit (or bits) of the secret key. Unfortunately,

we cannot directly apply the techniques from [54] due to the fact that the

SHE scheme from [54] enjoys some particular algebraic properties which

do not exist in other schemes. So, we need to treat each SHE scheme

individually.

At this moment it is still not clear whether we can adapt our key-

recovery attack to the scenario (3) of the SHE scheme [55], but as noted

in Chapter 6 we have good indicators that this can be. An interesting

future work related to the above mentioned tweaked version of the [55]

SHE scheme is to find a proof of its IND-CCA1 security.

Key recovery attacks and existing work on partial recovered se-

cret key

Obtaining a SHE scheme which is IND-CCA1 secure has proved to be

a difficult task, and so far no such scheme has been found. All the key-
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recovery attacks that we have developed, can completely determine each

bit of the secret key sk. For the way they have been developed, these

attacks work by querying the decryption oracle in such a way that for each

oracle reply, a new bit of the secret key is determined. The secret key is

then fully recovered once a given amount of oracle queries is performed.

(In general, these key recovery attacks require a number of oracle queries

approximatively equal to the number of bits of the secret key.)

An interesting future direction would therefore be to focus our attention

to a more practical way of preventing key recovery attacks. Consider the

scenario in which we consider a malicious attacker allowed to submit

only a limited number of queries to the decryption oracle, and therefore

he’s unable to recover fully the secret key of the SHE solely relying on

oracle decryption queries. (See also Remark 3.) We could thus address the

question on how many bits of the secret key can be leaked, while preserving

the IND-CCA1 security of a given SHE scheme; i.e. to what extent a given

SHE scheme is secure under this attack, which we call partial key-recovery

attack. How can we extract the secret key in case we can recover only

a limited number of bits of the secret key through direct queries to the

decryption oracle?

More precisely, let n ∈ N be the number of the bits of sk. Let r ≤ n

be the number of bits of sk determined by the attacker after each oracle

query, and let t be the number of oracle queries needed by the attacker to

recover all the bits of sk. In most of the attacks that we previously, we

have r = 1 and t ≈ n, so that after approximatively n queries the attacker

can fully determine sk. In our new scenario, we have to solve the following

problem:
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Problem. Consider a given SHE scheme E whose secret key sk has n

bits; in binary notation, we write sk := s = (sn−1sn−2 · · · s1s0)2. Consider

an attacker A who wants to break its IND-CCA1 security by recovering

sk. Let’s assume that with each oracle query Qi, for i = 1, 2, . . ., A is

learning a single different bit si of sk. Let t′ ≤ n be the maximum number

of queries that A can submit to the decryption oracle.

Determine what is the minimum value 0 ≤ t′ ≤ n allowing A to recover

sk without extra queries.

Other directions

Among other interesting open problems, we can consider the following one

recently proposed by S. Galbraith et al. in [53]. The authors investigated

a different countermeasure to our key recovering attack by considering

how key recovery attacks could be prevented in a scenario in which a SHE

scheme has more than one valid secret key, and for every decryption a

different secret key is used. More in particular, the idea is to generate a

”one-time” private key every time the decryption algorithm is run, so that

even if an attacker can learn some bits of the one-time private key from

each decryption query, this does not allow them to compute a valid private

key. They show an implementation of their idea on the [44] SHE scheme.

This new approach is trying to achieve security against adaptive attacks

which does not rely on a notion of ”valid ciphertexts” (see also Remark 2).

This way, key recovery attacks (in the style we developed them in this

thesis, i.e. recovering the secret key fully bit-by-bit) seem to fail in some

particular cases.
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