
Measuring the SWEBOK Coverage: An Approach and a Tool

Nicolas Guelfi, Alfredo Capozucca, Benoit Ries

Abstract The definition of a software engineering body
of knowledge (SWEBOK) is an important milestone in
the history of the software engineering discipline. One of
the main questions that might be asked in front of such
knowledge definition is: to which extent does my knowledge
cover this body of knowledge ? In a more general perspective
we can be interested in measuring the coverage of any
entity w.r.t. the SWEBOK. It could be a book, a paper, a
course, In this paper, we present the method we defined
to answer such question, the tool we developed and the
experiments we did with the lessons learned.

1 Introduction

Understanding what is meant by “software engineering” is
still nowadays1 a not easy task. The answers spectrum starts
with classical definitions as the following one:

The disciplined application of engineering, scientific,
and mathematical principles, methods, and
tools to the economical production of quality
software.
(Watts S. Humphrey in [5])

In order to be more precise on what SE is, the important
standardization effort by ISO and IEEE made during the
last decade, delivered the software engineering body of
knowledge [6]. This body of knowledge defines 15 knowledge
areas (KA) decomposed into topics and sub-topics.

Among all the actors that are interested in exploiting
the SWEBOK we foresee:

– Education institutions: educating people to become
software engineers needs to agree on which notions
should be covered. Those institutions thus could use the

N. Guelfi, A. Capozucca, B. Ries
University of Luxembourg
Campus Belval
Avenue de l’Université, 2
L-4365 Esch-sur-Alzette
LUXEMBOURG
E-mail: nicolas.guelfi@uni.lu

1and since the well known NATO conference [3]

SWEBOK to either design and maintain their education
program 2, or to evaluate to which extent an existing
program covers the SWEBOK.

– Industry: in order better handle the recruitment, the
management of long life learning, the task allocation,
industry professionals could used the SWEBOK coverage
as a basis.

The problems we are interested in is: what could be
an efficient tool-supported method that one could use to
specify a targeted or effective coverage of the SWEBOK ?

This paper presents our approach to answer this question
by first describing the method, then presenting the tool we
developed and finally by illustrating the method and the
tool using some case studies we did.

2 The Method

The SWEBOK Coverage Measurement Method that we
propose is defined by a process which is described below.

– Step 1 - Focus Range Selection: the SWEBOK
structure is made of 15 knowledge areas (KA), 100 topics
(TP) and 395 sub-topics (STP). It is thus important
to determine which knowledge areas and which topics
should be considered for the coverage analysis.

– Step 2 - Coverage Measurement: for each sub-topic
of the selected topics provide the coverage measure
values according to the following sub-steps:
– Step 2.1 - Sub-topic understanding: read the

synthetic definition provided for the current subtopic
in order to have a clear understanding of what
knowledge is intended to be represented by the sub-
topic name (an extract of these definitions is provided
in Figure 1.

– Step 2.2 - Focus level: define the focus level of
the current sub-topic. Use the following scale: 0 to
indicate that it is not at all the focus, 1 to 3 to
indicate the focus intensity.

2other education program tools, which by the way are related
to the SWEBOK, could be used like: SE2014 Undergraduate
Curriculum [1] or GSwE2009 Graduate Software Engineering 2009
[9]

2 Nicolas Guelfi, Alfredo Capozucca, Benoit Ries

– Step 2.3 - Bloom input level: using the Bloom
taxonomy for cognitive levels [2] given in Figure 2,
define the level considered to be reached before doing
the knowledge acquisition activity targeted (use 0
for the unknowing level if appropriate).

– Step 2.4 - Bloom output level: define the
cognitive level targeted to be reached after having
done the knowledge acquisition activity.

– Step 3 - Compute Global Coverage Measures: use
the sub-topics measures provided at step 2 to compute
the global coverage measures using an acquisition level
scale by cognitive and focus levels as the one provided
in Figure 3.

Remarks:

1. The sub-topic synthetic definition is intended to provide
a first understanding. If necessary an access to the
SWEBOK full text might be useful.

2. If the intent of the coverage is to evaluate the coverage
of a software engineering course w.r.t. the SWEBOK
then the focus indicates to which extent the sub-topic
is targeted by the course as a learning outcome. If
the objective is to make a self-evaluation of your own
knowledge coverage w.r.t. the SWEBOK, then the focus
indicates to which extent your education and professional
experience focused on this sub-topic.

3. In case the coverage measure is static (no learning
activity) then the input and output levels should be
the same.

Software
Requirements

1
Software

Requirements
Fundamentals

1
Definition of a

Software
Requirement

An expected property of the
targeted software

2
Product and

Process
Requirements

Properties on the targeted product
or on the process that provides it

3
Functional and
Nonfunctional
Requirements

Functional requirements are
properties characterizing the

required actions or operations and
non-functional requirements are
properties expressing qualities of

required actions or operations.

4 Emergent
Properties

Global properties that result from
the local properties satisfaction.

5 Quantifiable
Requirements

Properties for which a measuring
unit and a measuring value can be

defined.

6

System
Requirements
and Software
Requirements

system requirements are
properties on any entity of any
nature related to the product

under development (including
hardware, software, firmware,

people, information, techniques,
facilities, services, and other

support elements).

2 Requirements
Process

1 Process Models

Nature and organization of the
activities related to requirements

management all through a
product life cycle.

2 Process Actors

Nature and organization of the
stakeholders concerned directly
or not by the product (e.g. users,

customers, market namaysits,
regulators, software engineers,

…).

3
Process Support

and
Management

Nature and role of any resource
related to activities involved in a

requirement process

4
Process Quality

and
Improvement

Evaluation and improvement of
requirements process quality

attributes.

Fig. 1 Synthetic description of the sub topic knowledge

1. Remembering: Retrieving, recognizing, and recalling
relevant knowledge from long-term memory.

2. Understanding: Constructing meaning from oral,
written, and graphic messages through interpreting,
exemplifying, classifying, summarizing, inferring,
comparing, and explaining.

3. Applying: Carrying out or using a procedure through
executing, or implementing.

4. Analyzing: Breaking material into constituent parts,
determining how the parts relate to one another and to
an overall structure or purpose through differentiating,
organizing, and attributing.

5. Evaluating: Making judgments based on criteria and
standards through checking and critiquing.

6. Creating: Putting elements together to form a coherent
or functional whole; reorganizing elements into a new
pattern or structure through generating, planning, or
producing.

Fig. 2 Bloom 2001 Cognitive Levels description

Focus Levels
Bloom Levels 1 2 3

Creating 6 80 90 100
Evaluating 5 60 70 80
Analyzing 4 50 55 60
Applying 3 35 40 45
Understanding 2 20 25 30
Remembering 1 5 10 15

Fig. 3 Acquisition Levels Scale (%) by Cognitive and Focus levels

3 The Tool

We engineered a simple tool to support the SWEBOK
Coverage Measurement Method. The tool is made of two
main components which are described below.

1. Data Entry Component: A spreadsheet is providing
(as illustrated in Figure 4) that includes: a sheet with
the full structured list of the 395 SWEBOK sub-topics
to which three columns are added for the focus level,
the input and output cognitive levels; a sheet with the
synthetic description of the sub-topics.

2. Data Treatment Component: A Java program reads
the spreadsheet and generates a Prolog data base
which is exploited to compute the measurements and to
generate the coverage tables and diagrams (as illustrated
in Figures 5,6,7 and 8 which are described in the next
section).

Measuring the SWEBOK Coverage: An Approach and a Tool 3

Fig. 4 Spreadscheet for SWEBOK measures entry

4 Experiments

4.1 Coverage for Software Engineering Project Courses

One of our main targets are academic courses at bachelor or
master level that are dedicated to the practical learning of
software engineering activities. We have made the coverage
analysis for two institutions that offer a software engineering
project course:

– 1 - UL: Bachelor in Informatics - Software Engineering
Project and Software Engineering II Courses ([10]).

– 2 - CMU Silicon Valley: Master in Software
Engineering - Foundations of Software Engineering
Course, US ([7]).

The coverage tables generated by our tool using a
neutral acquisition scale are given in Figures 5 and 6.
The SWEBOK knowledge areas are ranged by decreasing
coverage order. Those tables allow to easily determine which
are the KAs which are the focus of the respective courses
(e.g. Software Requirements and Software Engineering
Models and Methods for University of Luxembourg; and
Software Design and Software Testing for CMU Silicon
Valley). It can also be determined which are the KAs
poorly addressed (e.g. Software Engineering Economics
and Software Configuration Management for University
of Luxembourg; and Engineering Foundations and Software
Engineering Economics for CMU Silicon Valley).

Nb Knowledge Area Cov. (%)
1 Software Requirements 80
9 Software Engineering Models and Methods 75
7 Software Engineering Management 67
11 Software Engineering Professional Practice 63
2 Software Design 46
3 Software Construction 39
8 Software Engineering Process 33
4 Software Testing 32
5 Software Maintenance 28
14 Mathematical Foundations 19
15 Engineering Foundations 18
10 Software Quality 17
13 Computing Foundations 11
12 Software Engineering Economics 8
6 Software Configuration Management 0

Fig. 5 Coverage table for 1 - UL - (Average is 36%)

Nb Knowledge Area Cov. (%)
2 Software Design 89
4 Software Testing 79
3 Software Construction 75
11 Software Engineering Professional Practice 68
10 Software Quality 67
5 Software Maintenance 56
7 Software Engineering Management 54
1 Software Requirements 50
6 Software Configuration Management 44
9 Software Engineering Models and Methods 44
13 Computing Foundations 37
8 Software Engineering Process 33
14 Mathematical Foundations 29
15 Engineering Foundations 18
12 Software Engineering Economics 17

Fig. 6 Coverage table for 2 - CMU Silicon Valley - (Average
is 51%)

4.2 Compartive Coverage for Bachelors in Computer
Science

We have also applied our approach to full academic
education programs for bachelors in Computer Science. As
an example, we provide below the comparative coverage
obtained without Bloom levels consideration for the three
following bachelors:

– 1 - USC: Bachelor in Computer science, California
State University, US ([4]).

– 2 - MSU: Bachelor in Computer science, Michigan
State University, US ([7]).

– 3 - ULB: Bachelor in Computer science, Université
Libre de Bruxelles, US ([11]).

KA Name USC MSU ULB
1 Software Requirements 73 70 33
2 Software Design 66 54 17
3 Software Construction 64 67 36
4 Software Testing 32 42 5

5 Software Maintenance 17 0 0
6 Software Configuration Management 17 0 6
7 Software Engineering Management 75 71 58

8 Software Engineering Process 40 33 33
9 Software Engineering Models and Methods 56 100 31
10 Software Quality 8 42 50
11 Software Engineering Professional Practice 84 79 58

12 Software Engineering Economics 8 60 21
13 Computing Foundations 65 79 77
14 Mathematical Foundations 75 69 63

15 Engineering Foundations 29 65 41

Fig. 7 Bachelors Coverage Comparison (%)

The generated table or diagram by our tool, illustrated
in Figures 7 and 8 allow to have a first understanding of
each program content w.r.t. software engineering. They also
allow to have a comparative analysis of the programs w.r.t.
each others in terms of SWEBOK coverage3.

3We provide here only global coverage measures at knowledge
areas level but of course one can choose to observe at topic or
even sub-topic levels).

4 REFERENCES

KA 1

KA 2

KA 3

KA 4
KA 5

KA 6

KA 7

KA 8

KA 9

KA 10

KA 11

KA 12
KA 13

KA 14

KA 15

Fig. 8 Coverage Comparison table

5 Lessons Learned and Conclusion

The development of the method and its tool together with
the experiments made allowed us to obtain some interesting
outcome.
For what concerns the method, the experiments made shown
the following:

– Defining the measures is of course the key point. In
our study we ensure consistency by doing ourselves
all the measures (except for the software engineering
course at CMU). In any case those values represent the
knowledge of the evaluator of the SWEBOK but also
of the observed entities (a program, a individual, . . .).
It is thus very important to understand who are the
evaluators and with which inputs they evaluated the
measurement values.

– The need to access the full SWEBOK book increases
the complexity to proceed to the coverage analysis. This
is why the method is applicable only if the user can
provide the measures only using the knowledge area,
topic and sub-topic terms completed with the synthetic
description provided.

– Having a configurable acquisition scale by focus and
cognitive levels is very important since this allow to
represent the individual coverage understanding by the
users of the method.

For what concerns the tool, the experiments made shown
the following:

– many operational faults are possible in entering the data
in the spreadsheet.

– it takes from 60 to 90 minutes to fill all the values for
the 395 topics (depending on if you use, or not, multiple
fill for topics or even knowledge areas when you think
that they should have the same measures).

To conclude, we have developed an interesting method
and tool that goes far beyond the one followed and presented
in [8]. Our tool needs to be redesigned and made available

through a web interface to the community. This is what
we expect to do in the coming months depending on the
support we will find.
Concerning the experiments, we intend to start some large
scale experiments:

– an experiment allowing to have a detailed analysis of
the SWEBOK coverage at bachelor levels by continents.

– an experiment to evaluate the actual knowledge
acquisition w.r.t. SWEBOK sub-topics. Some software
engineering courses will be selected and students will
use the method and the tool to evaluate their SWEBOK
coverage before and after the course.

– an experiment to evaluate the actual knowledge w.r.t.
SWEBOK sub-topics by academics in charge of software
engineering courses.

Acknowledgements The authors would like to thank especially
Dr. Cécile Péraire from CMU Silicon Valley for having applied
the method and used the tool for what concerns her Foundations
of Software Engineering Course.

References

1. ACM/IEEE (2015) Software Engineering 2014 - Curriculum
Guidelines for Undergraduate Degree Programs in
Software Engineering. ACM, New York, NY, USA, URL
https://www.acm.org/education/SE2014-20150223_
draft.pdf,https://www.acm.org/education/
curricula-recommendations

2. Anderson LW, Krathwohl DR, Bloom BS (2001) A taxonomy
for learning, teaching, and assessing: A revision of Bloom’s
taxonomy of educational objectives. Allyn & Bacon

3. Bauer FL (1971) Software engineering. In: 1. Foundations and
systems., International Federation for Information Processing:
IFIP congress series, pp 530–538

4. California State University (2015) Bachelor in computer
science. http://catalogue.usc.edu/preview_program.
php?catoid=2&poid=1486, accessed: 2015-06-05

5. Humphrey WS (1989) Managing the software process.
Reading, Mass: AddisonWesley

6. ISO/IEC (2014) Software Engineering – Guide to the Software
Engineering Body of Knowledge (SWEBOK). International
Organization for Standardization, iSO-IEC TR 19759-2014

7. Michigan State University (2015) Bachelor in computer
science. http://www.cse.msu.edu/Resources/
CSECourseInformation.php, accessed: 2015-06-05

8. Pyster A, Turner R, Henry D, Lasfer K, Bernstein L (2009)
Master’s degrees in software engineering: An analysis of 28
university programs. IEEE software 26(5):94–101

9. Pyster A, et al (2009) Graduate software engineering
2009 (gswe2009) curriculum guidelines for graduate degree
programs in software engineering. Stevens Institute of
Technology

10. University of Luxembourg (2016) Bachelor in informatics
- software engineering project and software engineering
ii courses. http://www.cse.msu.edu/Resources/
CSECourseInformation.php, accessed: 2016-05-01

11. Université Libre de Bruxelles (2015) Bachelor in computer
science. http://banssbfr.ulb.ac.be/PROD_frFR/
bzscrse.p_disp_prog_detail?term_in=201415&
prog_in=BA-INFO&lang=FRENCH#cursus_section,
accessed: 2015-06-05
=2

https://www.acm.org/education/SE2014-20150223_draft.pdf, https://www.acm.org/education/curricula-recommendations
https://www.acm.org/education/SE2014-20150223_draft.pdf, https://www.acm.org/education/curricula-recommendations
https://www.acm.org/education/SE2014-20150223_draft.pdf, https://www.acm.org/education/curricula-recommendations
http://catalogue.usc.edu/preview_program.php?catoid=2&poid=1486
http://catalogue.usc.edu/preview_program.php?catoid=2&poid=1486
http://www.cse.msu.edu/Resources/CSECourseInformation.php
http://www.cse.msu.edu/Resources/CSECourseInformation.php
http://www.cse.msu.edu/Resources/CSECourseInformation.php
http://www.cse.msu.edu/Resources/CSECourseInformation.php
http://banssbfr.ulb.ac.be/PROD_frFR/bzscrse.p_disp_prog_detail?term_in=201415&prog_in=BA-INFO&lang=FRENCH#cursus_section
http://banssbfr.ulb.ac.be/PROD_frFR/bzscrse.p_disp_prog_detail?term_in=201415&prog_in=BA-INFO&lang=FRENCH#cursus_section
http://banssbfr.ulb.ac.be/PROD_frFR/bzscrse.p_disp_prog_detail?term_in=201415&prog_in=BA-INFO&lang=FRENCH#cursus_section

	1 Introduction
	2 The Method
	3 The Tool
	4 Experiments
	5 Lessons Learned and Conclusion

