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Nested multiscale approaches, e.g. the FE2 
framework, come with a number of drawbacks. One 
of those is the formulation of macro-to-micro and 
micro-to-macro relations (to which we refer as 
‘scaling relations’). This involves extracting the 
correct information of the descriptions at the 
different length scales and sending this information 
from one scale to another. It also involves applying 
appropriate boundary conditions (BCs) at the small-
scale models. This is not trivial if the macroscale 
field is more enhanced than piece-wise linear (see 
e.g. [1]). 

Another disadvantage is that the length scale of 
the unit cell must be several orders of magnitude 
smaller than the interpolation elements at the 
macroscale. This is a disadvantage because the user 
needs to ensure that scale separation is present. It 
furthermore leads to large computational efforts if 
domains in which the small-scale model is used are 
coupled to domains in which computational 
homogenization is employed. A side note is that 
error measures can be utilized to overcome this 
issue [2]. 

In this presentation, an equation-free multiscale 
approach is discussed. The approach is applied to 
discrete models of discrete mesostructures. The 
discrete small-scale model is directly incorporated 
in the macroscale model in the proposed scheme, 
such that no scaling relations are required (hence, 
the term ‘equation-free’). Separation of scales is 
also not required.  

The price to pay to avoid upscaling relations 
and scale separation is that each node of the 
macroscale discretization has as a substantial 
number of degrees of freedom. 

The equation-free multiscale approach is the 
result of a numerical generalization of the 
quasicontinuum (QC) method. The QC method was 
originally proposed for discrete conservative 
models with a regular charactre (i.e. atomistics, in 
which each atom is connected to other atoms in the 
same way) [3]. Recently, several generalizations are 
proposed to incorporate dissipative phenomena 
such as (elasto)plasticity, damage and frictional 
fibre sliding [4-6].  

The dissipative QC frameworks could so far 
however also not deal irregularity at the small scale. 
The new QC framework presented here is able to 
deal with irregularity (within a periodic 
representative volume element). This makes 
approach considerably more applicable to discrete 
network models. 

In this presentation, the numerical 
generalization of the QC approach is presented. We 
will start with an explanation of the QC method for 
regular structures. In the discussion we will 
consider the two reduction steps of the QC method 
(see Fig. 1). 

The presented examples focus on discrete planar 
models with damage, useful to represent discrete 
mesostructures. The examples use higher order 
interpolations at the macroscale, showing the 
relative ease to apply the approach for any order of 
macroscale interpolation. 

 

 
Figure 1. The two reduction steps of the QC 
method: interpolation and summation (also called 
sampling, which can be interpreted as reduced 
integration). Both steps come with an error and the 
crux is how to apply both steps such that the 
combined error is sufficiently small. 
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