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Abstract

In this thesis, I present the research I did with my co-authors on several aspects of
symmetric cryptography from May 2013 to December 2016, that is, when I was a PhD
student at the university of Luxembourg under the supervision of Alex Biryukov. My
research has spanned three di�erent areas of symmetric cryptography.

In Part I of this thesis, I present my work on lightweight cryptography. This �eld
of study investigates the cryptographic algorithms that are suitable for very con-
strained devices with little computing power such as rfid tags and small embedded
processors such as those used in sensor networks. Many such algorithms have been
proposed recently, as evidenced by the survey I co-authored on this topic. I present
this survey along with attacks against three of those algorithms, namely Gluon,
Prince and Twine. I also introduce a new lightweight block cipher called Sparx
which was designed using a new method to justify its security: the Long Trail Strat-
egy.

Part II is devoted to S-Box reverse-engineering, a �eld of study investigating the
methods recovering the hidden structure or the design criteria used to build an S-
Box. I co-invented several such methods: a statistical analysis of the di�erential and
linear properties which was applied successfully to the S-Box of the nsa block cipher
Skipjack, a structural attack against Feistel networks called the yoyo game and the
TU-decomposition. This last technique allowed us to decompose the S-Box of the last
Russian standard block cipher and hash function as well as the only known solution
to the apn problem, a long-standing open question in mathematics.

Finally, Part III presents a unifying view of several �elds of symmetric cryptog-
raphy by interpreting them as purposefully hard. Indeed, several cryptographic algo-
rithms are designed so as to maximize the code size, ram consumption or time taken
by their implementations. By providing a unique framework describing all such de-
sign goals, we could design modes of operations for building any symmetric primitive
with any form of hardness by combining secure cryptographic building blocks with
simple functions with the desired form of hardness called plugs. Alex Biryukov and
I also showed that it is possible to build plugs with an asymmetric hardness whereby
the knowledge of a secret key allows the privileged user to bypass the hardness of
the primitive.
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Chapter1

Introduction

In its broadest de�nition, cryptography is the science studying algorithms to ensure
that information is protected from attackers. These attackers may try to read a mes-
sage they are not supposed to have access to, in which case cryptographic algorithms
must provide privacy. If they try to modify the message, these algorithms must en-
sure its integrity. Finally, if attackers try to impersonate one of the actors, algorithms
must authenticate the rightful sender and receiver. Cryptology encompasses the work
of both the cryptographers designing such algorithms and the cryptanalysts trying
to �nd �aws in them. This �eld of research can be thought of as an arms race.

1.1 Modern Cryptography

While cryptography is an ancient topic of research, the algorithms used until the
XXth century were not designed to resist the attacks of cryptanalysts with signi�cant
computing power and relied on simple principles. The most famous example is the
Caesar cipher which encrypts a text by replacing every letter by the one 3 steps above
it in the alphabet, so that A becomes D, B becomes E, etc.

More recently, an even more famous use of cryptography was the Enigma ma-
chine used, among others, by the armed forces of Nazi Germany during WW-II. The
encryption provided by this device was broken by several teams of cryptanalysts.
First, Polish mathematicians lead by Rejewski reverse-engineered the details of this
machine and found the �rst attacks against it. Later, Alan Turing and the cryptan-
alysts of Bletchley Park (UK) built upon this work and found cryptanalyses against
more recent versions of Enigma. In fact, the machines used to break Enigma as well
as other electro-mechanical encrypting devices of the time like the Japanese Purple
or the German Lorentz machine were the prototypes of the �rst ever computers.

Nowadays, if cryptography is still a tool of crucial importance for the military, it
is in fact used more often in a civlian context. Indeed, as the amount of information
shared is reaching new peaks every years thanks to the internet, the ability to control
who can access it has an importance which would be hard to overstate.

A formal description of the aim of modern cryptography is given in Section 1.1.1
while the types of attacks that must be prevented are detailed in Section 1.1.2 (p. 3).
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1.1.1 Purpose

Formally, the aim of modern cryptography is threefold. As is traditional, I will use
a hypothetical communication between Alice and Bob to explain them. Eve is the
attacker1, that is, someone trying to interact malevolently with the communication
between Alice and Bob. Note that neither Alice, Bob nor Eve have to be physical
people; instead they may be servers or institutions.

• Con�dentiality. It must be impossible for Eve to obtain any meaningful infor-
mation from the communication she intercepts. For example, if Eve works for
the intelligence agency of a repressive government, she should not be able to
�gure out what a journalist, Alice, is discussing with her source, Bob.

• Authentication. It must be impossible for Eve to send a message to Bob and
convince him that Alice sent it. If Alice receives a message from her friend
Bob suggesting to pick her up by car, it is crucial to ensure that this message
was indeed sent by Bob and not by a thief, Eve.

• Integrity. It must be impossible for Eve to tamper with a message. If Alice is
sending a message to her bank (Bob) to wire some money to a friend, then it
must be impossible for a thief (Eve) to change the message to have her be the
recipient of the money instead.

More recently, the following two goals have emerged.

• Anonymity. It must be impossible for Eve to �gure out who Alice and Bob
are. To re-use the example where Alice is a journalist, it is crucial that Bob can
hide his identity even if Eve is capable, like spying agencies are, of intercepting
vast amount of internet communications. The aim here is to protect meta-data:
rather than the content of the conversation, what is protected is the identity
of its actors.

• Proof-of-Work It must be impossible to solve a problem without investing a
tunable amount of computation into its resolution. Such objects are used for
example to build crypto-currencies such as Bitcoin [Nak08].

These last two goals require public-key cryptography — which will be de�ned
below — or higher level protocols, both of which are out of the scope of this thesis.
However, in practice, they must combine those with secret-key cryptography.

The distinction between public- and private-key cryptography is straight-forward.
In secret-key cryptography, the key used to operate on the plaintext and on the ci-
phertext are the same. In public-key cryptography, these are di�erent. Public-key
cryptography is easier to use in practice: the key for encrypting plaintexts (called
public key) can be freely distributed while only the decryption key (called private
key) is kept secret. In contrast, secret-key algorithms require that the key is only
known by the entities exchanging messages, which leads to complex key manage-
ment problems.

1I voluntarily chose speci�c and realistic examples of attackers in this introduction. To quote Phillip
Rogaway’s essay, The Moral Character of Cryptography [Rog15]: “When we try to explain [cryptography]
with cartoons and cute narratives, I don’t think we make our contributions easier to understand. [...] Stop
with the cutesy pictures. Take adversaries seriously.”
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Unfortunately, public-key algorithms such as Rsa are orders of magnitude slower
than secret-key algorithms. Therefore, in practice, a combination of both is most
most commonly used. In a nutshell, public-key algorithms are used by Alice and Bob
to agree on a secret key which they then use to secure their communications.

1.1.2 Kerckho�s’ Principle and A�ack Models

Kerckho�s’ law is a strong guideline that must be followed when designing a cryp-
tosystem. It is the second of a series of six requirements for a cryptosystem to be
secure which was published by a cryptographer, August Kerckho�s, in an article
published in 1883 in the “Journal des Sciences Militaires” [Journal of Military Sci-
ences] [Ker83]:

2. Il faut qu[e le système] n’exige pas le secret, et qu’il puisse sans in-
convénient tomber entre les mains de l’ennemi ;

which can be translated into the following.

2. It must be that [the system] does not require secrecy and does not
cause problems should it be stolen by the enemy ;

While almost 134 years old, this principle is still as important today. Indeed,
many cryptosystems have been designed, in particular in the industry, that relied on
the secrecy of the algorithm itself to be secure. And yet, the “Kindle Cipher” used
by Amazon for a drm scheme was reverse-engineered and then broken [BLR13].
Similarly,2 the Keeloq algorithm used among other things for the remote car keys
of many manufacturers has been attacked successfully by multiple teams [EKM+08,
CBW08, ABM+12].

Conversely, the security of all cryptographic algorithms published in the open
literature, be they academic papers or standards, rely exclusively on the secrecy of
the key to provide security. Indeed, attackers are free to read the speci�cation of
the algorithms online. Cryptographers are then free to study these algorithms and
assess their quality, thus allowing us to discard bad algorithms and to increase our
con�dence in the good ones.

In this context, an attack against a cryptosystem is a method which recovers
some information about the plaintext and/or about key. These attacks can be sorted
according to the information which the attackers are considered to have access to.

• Known Plaintext. In a known plaintext attack, the attacker has access to several
pairs consisting of a plaintext and the corresponding ciphertext. However, it
is impossible to choose which plaintexts are encrypted.

• Chosen Plaintext. If the attacker is allowed to �rst chose which plaintexts are
encrypted and then receive all the corresponding ciphertexts, the attack is a
chosen plaintext attack. It is a more contrived setting than the known plaintext
case.

• Related-Key. In this setting, the attacker can encrypt some plaintexts (either
chosen or not) under two di�erent keys k and k ′ which, while unknown, are
linked by a speci�c relation such as, for example, k ⊕ k ′ = c for some known
constant c . It is a more contrived setting than the known and chosen plaintext
cases.

2A list of such industry-designed ciphers of questionable quality is provided in Section 2.2.1 (p. 34).
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All these attack settings are in the black-box model; that is, the attacker cannot
have access to the internal state of the encryption function. Only its input, output and
key (in the related-key setting and only to some extent) can be controlled. However,
this assumption is not always true. For example, a side-channel attack is a technique
that can recover some information about the internal state of the primitive by, for
example, studying the power consumption of a device performing the encryption.
The corresponding model is called gray box because the adversary has partial access
to the internal state.

The most extreme case is that of white-box cryptography in which the adversary
is has full access to the encryption algorithm, including its key. In this context, the
security target is di�erent. It is obviously impossible to prevent the adversary from
decrypting the ciphertext of their choosing. However, it may be possible to prevent
her from recovering a short description of the encryption algorithm. This topic is
more thoroughly discussed in Chapter 15 (p. 303).

1.2 Symmetric Cryptography

Symmetric cryptography deals with primitives that use a unique key for all their
operations — if they use a key at all. The algorithms that fall in this category are
described in Section 1.2.1. This stands in contrast to public key algorithm which use
one key to encrypt and another to decrypt. A quick overview of the di�erent attacks
that can target those is provided in Section 1.2.2.

1.2.1 Basic Symmetric Algorithms

Symmetric algorithms can provide con�dentiality, integrity and authentication. The
�rst can be provided using either a block cipher or a stream cipher, which are de-
scribed in Sections 1.2.1.1 (p. 4) and 1.2.1.2 (p. 6) respectively. Integrity and authenti-
cation are obtained using a Message Authentication Code (mac) which is usually built
using either a block cipher or a hash function. The latter is presented in Section 1.2.1.3
(p. 7) and the mac is described in Section 1.2.1.4 (p. 8). Finally, authenticated ciphers
which provide con�dentiality, integrity and authentication at once are mentioned in
Section 1.2.1.5 (p. 8).

For each algorithm, we brie�y present the most common ways of building them.

1.2.1.1 Block Ciphers

A block cipher is a family of permutations operating on blocks of n bits which is
indexed by a key of k bits. Usually n = 64 or n = 128, the latter o�ering better
security against generic attacks but the former allowing a smaller memory use more
suitable for constrained devices, as discussed in Chapter 2.1.2.

The value of k determines the resilience of the cipher to the most basic attack:
brute-force. It consists simply in enumerating all possible keys until the correct one
is found. Hence, a large enough value of k is needed. While the �rst public block
cipher, the Des, had k = 56 bits of key material,3 modern ciphers such as the Aes use
at least k = 128 and often k = 256.

3This value was chosen after discussion with the National Security Agency (nsa), an American gov-
ernment agency. However, it was considered too small by Hellman, Di�e, Merkle and others as early as
1976 [HMS+76].
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Since block ciphers operate only on blocks of �xed size, they must be combined
with modes of operations to encrypt plaintexts of arbitrary size.

In practice, block ciphers are built by iterating a simple transformation called
round multiple times. The round functions must depend on the key. They can be built
using di�erent well-known structures described below: a Substitution-Permutation
network (spn), a Feistel network or a Lai-Massey structure. A high level view of each
of them is provided in Figures 1.1, 1.2 and 1.3 respectively.

Substitution-Permutation Network (spn). These structures alternate a linear
and a non-linear layer. The non-linear layer usually consists of the parallel applica-
tion of smaller permutations operating on a subset of the internal state called S-Boxes,
as can be seen in Figure 1.1. These components are the topic of an extensive study
in Part II of this thesis. The di�usion layer consists of a linear operation mixing the
output of the di�erent S-Boxes. The round key can simply be xored into the internal
state of the cipher.

⊕ ⊕ ... ⊕ki1 ki2 kim

S S ... S

L

Figure 1.1: An spn round.

The most prominent spn-structured cipher is the current nist standard called
the Advanced Encryption Standard (Aes) [DR02]. The block cipher Prince analyzed
in Chapter 4 (p. 73) is also an spn. The Sparx cipher introduced in Chapter 7 (p. 117)
is a variant of an spn with bigger S-Boxes and a simpler linear layer.

Given the code book of an spn, it is possible to recover the S-Boxes and the lin-
ear layers used even if their full descriptions are secret. Such structural attacks are
discussed in Chapter 11 (p. 207).

Feistel Network. This structure was �rst introduced by Horst Feistel during the
design of the Lucifer block cipher at ibm. Eventually, this line of research lead to the
design of the most prominent example of a Feistel network: the Des [U.S99]. The
round function of a Feistel network uses a keyed Feistel function Fk and maps an
internal state (xL ,xR ), for xL and xR in Fn/2

2 , to a value (yL ,yR ) de�ned as:




yL = xR

yR = xL ⊕ Fk (xR ) ,

as summarized in Figure 1.2. Such round functions are easy to invert, meaning that
implementing both encryption and decryption is not much more expensive than im-
plementing only encryption. It is not necessary that Fk is a permutation. In fact, it
is not a permutation for the Des. It is also possible to replace the xor by a modular
addition.

There are many variants of this structure. In an unbalanced Feistel network, the
two branches are of di�erent sizes. In a Misty-like structure, which is named after
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Fki⊕

Figure 1.2: A Feistel round.

the Misty block cipher [Mat97]), the Feistel function is applied on a branch rather
than on a copy of a branch. In this case, the function has to be a permutation. This
is further generalized in Skipjack [U.S98] where the round function uses four 16-bit
branches where only two of them undergo a Misty-like transformation, as detailed in
Section 9.2.1 (p. 168). Finally, a generalized Feistel network as introduced by [Nyb96]
consists of 2m branches grouped into m groups of two branches. Each group goes
through a regular Feistel round and then the 2m branches are shu�ed. For example,
the block cipher Twine studied in Chapter 5 (p. 89) is a generalized Feistel network.

Chapter 10 (p. 181) is devoted to structural attacks against Feistel networks, that
is, attacks that work regardless of the de�nition of the Feistel functions.

Lai-Massey. The Lai-Massey structure was �rst used in the design of the Idea
block cipher [LM91]. This structures splits the state into two halves xL and xR . Then,
y = f (xL ⊕ xR ) is computed for some function f — it does not have to be a permuta-
tion. Finally, the initial values are replaced as follows: xL ← xL ⊕y and xR ← xR ⊕y.
This type of round is invertible because xL ⊕ xR is left unchanged by this computa-
tion, meaning that the value of f (xL ⊕ xR ) can be evaluated from both the input and
the output of the round. Some function has to be applied on the branches in between
the round to break some simple patterns. In Figure 1.3, this role is played by the σ
function which may or may not be linear.

Fki

⊕

⊕ ⊕

σ

Figure 1.3: A Lai-Massey round.

1.2.1.2 Stream Ciphers

A stream cipher simulates a One-Time Pad (otp), an encryption algorithm which
consists simply in xoring the plaintext with a key of the same length. This cipher
is perfectly secure in the sense that a ciphertext reveals no information whatsoever
about the plaintext apart from its length. However, this security collapses if the
key is re-used, which makes key management too di�cult in practice. To remedy
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this issue, stream ciphers generate a pseudo-random stream of bits called keystream
from a shorter secret key. While this construction looses the security proof of the
otp, it is far easier to use in practice.

The keystream generated must be such that it is impossible, given parts of it,
to recover either the key used to initialize the stream cipher or other parts of the
keystream. Decryption is identical to decryption. Except for some speci�c designs,
stream ciphers only provide privacy, not authentication or integrity.

Historically, many stream ciphers have been built using Linear Feedback Shift
Registers (lfsr) and Non-Linear Feedback Shift Registers (nlfsr). Such stream ci-
phers are particularly attractive where a hardware implementation is needed as il-
lustrated for instance by the stream cipher Trivium [Can06].

It is also common to build stream ciphers out of block ciphers using the counter
mode, that is, by encrypting an increasing counter with a block cipher.

1.2.1.3 Hash Functions

A hash function maps a string of arbitrarily length to a string of �xed length. A
cryptographic hash function must additionally satisfy the following properties.

• Collision resistance: impossible to �nd a pair of messages (x ,x ′) such that
H (x ) = H (x ′) in time less than 2n/2.

• Preimage resistance: givend , impossible to �nd a message x such thatH (x ) = d
in time less than 2n .

• Second preimage resistance: given d and x such that H (x ) = d , impossible to
�nd a message x ′ , x such that H (x ′) = d in time less than 2n (Merkle-
Damgård) or 2n/2 (sponge construction).

Such a function can be used for di�erent purposes. The usual example is document
integrity veri�cation. If the hash of a downloaded document matches the hash com-
puted using the original document, then the two documents are very likely to be
identical. Hash functions can also be used as building blocks of higher level cryp-
tographic constructions. For example, hmac [KBC97] is a message authentication
code (see Section 1.2.1.4 (p. 8)) built using a hash function. The two most prominent
high level structures for hash functions are the Merkle-Damgård construction and
the more recent sponge construction.

Merkle-Damgård. This structure relies on a compression function C : (x ,y) → z
where x and z are n-bit long and y is m-bit long. This compression function must
be collision resistant, meaning that �nding (x ,y) and (x ′,y ′) such that C (x ,y) =
C (x ′,y ′) must be di�cult. Such compression functions can be built from block ci-
phers. Hashing then consists of decomposing the message into blocks ofm bits, ini-
tializing an n-bit variable h0 with a �xed value and then computing hi+1 = C (hi ,mi ).
The last value h` is the digest of the message m. To prevent simple attacks, it is
necessary to pad the message e.g. by appending its length to it.

The most prominent Merkle-Damgård-based hash functions are those of the Sha-
2 family [U.S15a].
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Sponge. The sponge construction [BDPVA07] is characterized by its rate r , its ca-
pacity c and its update function д. It is based on an internal state x of size r +c where,
at each round, r bits of the padded message are xored. Then the sponge alternates
the application of д function with the message injection until the message has been
entirely absorbed. The digest is then squeezed by extracting r bits of the internal
state and applying the update function to the internal state again. This is repeated
as many times as necessary to obtain a digest of desired length. A representation of
a sponge is given in Figure 1.4. The sponge-based hash function is indi�erentiable
from a random oracle in the random-function model up to 2c/2 queries toд [BDPV08].
If д is a permutation, the sponge is a permutation sponge or p-sponge. If д is not a
permutation, the sponge is called transformative sponge or t-sponge.

The most prominent example of sponge construction is Keccak [BDPA15] which
won the NIST Sha-3 competition. Therefore, the Sha-3 hash function is based on
this algorithm [U.S15b].

д д д
⊕ ⊕0

IV

m0 m1 h0 h1
r

c

Initialization Absorption Squeezing

Figure 1.4: A sponge-based hash function.

1.2.1.4 Message Authentication Codes

A message authentication code (mac) is a family of keyed functions Fk mapping an
arbitrarily long plaintext to a tag of �xed length. A mac Fk should be such that it is
computationally infeasible for an attacker to construct a plaintext p and a tag τ such
that τ = Fk (p), unless k is known.

Macs can be built in many ways, including using block ciphers and sponge con-
structions.

1.2.1.5 Authenticated Ciphers

An authenticated cipher encrypts a plaintext into a ciphertext combined with a tag. It
provides at once privacy, integrity and authentication. It can be built by combining
a block cipher and a mac with an appropriate mode of operation. It can also be
constructed using a sponge.

1.2.2 What is an A�ack?

The aim of cryptanalysts is to �nd attacks against these algorithms. But what do we
call an attack? And what is the purpose behind them?

First, I describe the two components of most attacks presented in the literature:
distinguishers which correspond to properties of an algorithm that di�erentiate it
from a random one and key recoveries which identify some information about the key
used using such a distinguisher. These are described respectively in Sections 1.2.2.1
(p. 9) and 1.2.2.2 (p. 10). In each case, examples are provided.
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The goal behind these attacks is two fold. They may of course be used to actually
attack algorithms as they are used in practice. However, more often than not, they
are used as an academic tool to assess the security o�ered by an algorithm. This
second duality is explored in Section 1.2.2.3 (p. 11).

1.2.2.1 Distinguisher

A block cipher is supposed to be indistinguishable from a random permutation. That
is, given a permutation picked uniformly at random from the set of all permutations
(Pseudo-Random Permutation, prp) and a block cipher operating with an unknown
key, an adversary must not be capable of successfully telling which is which with a
probability higher than 1/2.

A property allowing the attacker to successfully make the di�erence between a
prp and a given block cipher is called a distinguisher. There are several well-known
methods for building such objects.

Di�erential Distinguisher. For any pair of non-zeron-bit elements (δin,δout), the
probability

Pr[P (x ⊕ δin) ⊕ P (x ) = δout]

has an expected value of 2−n if P is picked uniformly at random from the set of all
permutation and x is picked uniformly at random from the set of all n-bit blocks.

If this probability is higher than 2−n when P is replaced by a block cipher Ek
with a key picked uniformly at random, then we have a di�erential distinguisher.
The pair (δin { δout) is called a di�erential. By identifying di�erentials (δi { δi+1)
with high probabilitypi for the round function of a block cipher, we can create a high
probability di�erential trail δ0 { δ1 { ... { δr covering r rounds. We typically
assume that the round keys are independent,4 and thus that the probability of δi {
δi+1 and δ j { δ j+1 are independent for i , j. In this case, the di�erential (δ0 { δr )
holds with probability at least ∏i−1

i=0 pi . The attacks presented in Chapters 3 (p. 55), 4
(p. 73) and 5 (p. 89) as well as Section 10.3 (p. 186) can be seen as particular cases of
di�erential attacks.

This principle can be generalized. For example, it may be possible to identify a
class of patterns (δ iin { δ iout) for i ≤ t such that some bits of δ iin and/or δout are
equal to 0 for all i , the other bits taking di�erent values. Such a pattern is called a
truncated di�erential. It was introduced by Knudsen in [Knu95] and Section 5.3 (p. 93)
presents such distinguishers for the lightweight block ciphers Twine [SMMK13],
LBlock [WZ11] and LBlock-s [ZWW+14].

A di�erential (δin { δout) with probability zero can also be used as a distin-
guisher. This is leveraged in impossible di�erential attacks. One of the �rst of these
cryptanalyses targeted the block cipher Skipjack [BBS05, U.S98]5 because of its poor
di�usion.

Finally, it is possible to use two short di�erential trails covering r and r ′ rounds
respectively to attack r + r ′ rounds of a primitive. If the �rst di�erential trail has
probability p and the second has probability p ′, then we can �nd two right pairs for

4This assumption is called the Markov assumption. It is not true in practice because all round keys are
derived from a comparatively small master key, meaning that there must be some dependency between
them. Still, this assumption yields results that can be experimentally veri�ed, so that it is usually a safe
bet in practice.

5Skipjack itself is described in more details in Section 9.2.1 (p. 168).
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each with probability about p2p ′2 using a boomerang attack as �rst introduced by
Wagner in [Wag99].

Linear Distinguisher. Let a · b denote the scalar product of two vectors a and b

of {0,1}n , so that a · b =
⊕n−1

i=0 aibi . If P is a prp, the probability

Pr[a · x ⊕ b · P (x ) = 0]

is close to 1/2 for any pair of non-zero elements (a,b). This probability is the proba-
bility of the linear approximation (a { b).

The quantity ϵ (a,b) = Pr[a · x ⊕ b · P (x ) = 0]−1/2 is the bias of a linear approx-
imation. If it is too high, the permutation can be distinguished from a prp. In order
to identify a linear approximation with a high bias, a linear trail can be constructed
in a fashion analogous to a di�erential trail, as was done in the �rst linear attack
against the Des [Mat94].

Much like in the di�erential case, several linear trails can be used at the same
time to form a so-called linear hull. On the other hand, a linear approximation with
a bias equal to 0 can be used in a so-called zero-correlation attack.

Integral and Zero-Sum Distinguishers. Let fk : Fm2 → Fn2 be a keyed function.
It could for example correspond to some output bits of a block cipher. The sum of
fk (x ) for all x in some subset V of Fm2 may contain some artifacts because of the
structure of fk . In particular, if we can identify a vector spaceV strictly included in
Fm2 such that, for any k , ⊕

x ∈V

fk (x ) = 0,

then we have identi�ed a zero-sum distinguisher. A zero-sum distinguisher can cor-
respond to an integral distinguisher which is obtained by identifying a set V of di-
mension v such that the quantity

Preimage(z) = #{x ∈ V , fk (x ) = z}

is constant for all k and all z. That is, all elements in the range of fk restricted toV
have exactly 2n−v preimages.

Zero-sum distinguishers can be found using the algebraic degree of a function
and are particularly useful to attack secret spn structures, as explained in Chapter 11
(p. 207). Integral distinguishers are related to zero-correlation distinguishers, as �rst
shown in [BLNW12]. This relation is exploited in Section 12.2.1 (p. 228) to identify
visual patterns in a graphical representation of the linear properties of an S-Box.

1.2.2.2 Key Recovery

The methods presented in the previous section merely allow an attacker to �gure
out whether a black box is a given keyed algorithm or an idealised object picked
uniformly at random. However, such properties can be used in a key recovery attack
to actually identify some bits of the key used.

The general idea to attack a block cipher with r rounds is to use a distinguisher
on r − 1 rounds, brute-force the subkey used in the last round and, for each guess,
(partially) decrypt the ciphertext to know the (partial) internal state of the cipher at
round r − 1. If a subkey is such that the internal state at round r − 1 is coherent
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with the distinguisher, then it is probably the right one. If not, it can be discarded.
In practice though, this analysis is much more sophisticated and involves non-trivial
statistical consideration, as can be seen in the multiple truncated di�erential attack
presented in Section 5.3 (p. 93).

Alternatively, the key can be recovered by solving a system of equations. This
resolution can for example be done with the help of a sat-solver, as shown in Sec-
tion 4.2 (p. 76). In this case, an “equation” — in fact a cnf formula — involving vari-
ables corresponding to plaintext, ciphertext and key bits is generated in such a way
that the only solutions correspond to valid encryptions. By �xing the variables cor-
responding to the input and output to their values obtained via known plaintexts,
we can solve a system where the only unknowns are the key bits. In practice, the
resolution of such a system is impractical but there are heuristics based on di�eren-
tial distinguishers allowing a far more e�cient resolution, as shown in Section 4.2
(p. 76) and in [DEKM17]. Linear systems can also be derived and solved, as in the
structural attacks against spns presented in Chapter 11 (p. 207).

1.2.2.3 Security Analysis Versus Practical A�ack

The literature in symmetric cryptography consists mostly in the presentation of al-
gorithms, the theoretical analysis of their components and attacks. The term “attack”
may be misleading for readers who are not familiar with cryptography in the sense
that these attacks are usually wildly impractical because of their tremendous com-
plexity in terms of time, memory needed or amount of plaintext/ciphertext pairs
available.

The aim of such attacks is not really to lay out a strategy which can be used by
an attacker to recover the secret key. Rather, they illustrate structural observations.
For example, in Section 5 (p. 89), I present a truncated di�erential attack against
Twine. It is far too ine�cient to be used by anyone but it shows that the strange
behavior of the linear layer of this cipher allows a cryptanalyst to �nd better attacks
than those found by the designers of the block cipher who overlooked this property.
Therefore, these attacks should not be thought of as paving the way towards practical
cryptanalysis but as security analyses studying whether or not the designers of an
algorithm considered all attack vectors.

For example, although the attacks against the full-round lightweight block ci-
phers Klein [GNL11] and Picaro [PRC12] of Lallemand et al. [LN15, CLNP16] have
too high a complexity to be practical. Nevertheless, the fact that attacks targeting
full-round primitives exist is su�cient to compromise the claims of the designers of
these algorithms. More generally, why use an algorithm vulnerable to as yet imprac-
tical attacks when there are other algorithms which can withstand them.

In accordance with the famous maxim “attacks only get better”, an impractical
attack submitted at a given time may later be improved. In this case, the mere security
analysis is gradually improved into a practical attack. The successive attacks against
the hash function Sha-1 are a good example of this.

1.3 Thesis Outline

In this thesis, I present the work I have done with my co-authors during my studies at
the university of Luxembourg, under the supervision of Alex Biryukov. This section
is a detailed summary of its content.
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1.3.1 Part I - On Symmetric Lightweight Cryptography

Part of my work has been devoted to lightweight cryptography, that is, cryptogra-
phy intended to be used on very constrained devices (such as rfid tags) and micro-
controllers of the type used for the Internet of Things. It is presented in Part I of this
thesis. The main result of this part is presented in its last two chapters.

Main Results of Part I. First, the �eld of lightweight cryptography should be split
into two distinct areas: ultra-lightweight cryptography — aimed at the most constrained
devices — and pervasive cryptography — targeting more sophisticated IoT devices con-
nected to global networks such as the internet.

Second, it is possible to build an arx-based primitive which is provably secure against
single trail di�erential and linear cryptanalysis.

1.3.1.1 Overview of Lightweight Cryptography

Chapter 2. To better understand this �eld of study, I made a thorough analysis
of the literature on this topic. It encompasses both academic papers and standard
speci�cations. A part of this review has already been made available online [BP14a].
A summary of the lightweight algorithms published published by academics is pro-
vided in Figure 1.5.

Figure 1.5: Lightweight algorithms published by academics. If an authenticated
cipher is based on a block cipher, it is listed as a BC-based AE. Similarly, algorithms
based on sponges are shown as such.

Informed by this survey, I argue that the �eld of lightweight cryptography is
in fact too large and that it should be split into two distinct areas. The �rst, ultra-
lightweight cryptography, would deal speci�cally with the lightest hardware plat-
forms such as passive rfid tags. The second, pervasive cryptography, concerns algo-
rithms intended to run on “things” connected to a global network such as the internet
and equipped with a low-power micro-processor or a micro-controller.

The content of this chapter is joint work with Alex Biryukov and Daniel Dinu.
It was also greatly enhanced by the feedback from the audience of ESC’17 where a
�rst version of its content was presented.
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1.3.1.2 Cryptanalysis of Lightweight Algorithms

Chapter 3 The family of sponge-based lightweight hash function Gluon was in-
troduced by Berger et al. in [BDM+12]. It is the only sponge I am aware of where
the transformation is not a bijection. First, we found a simple model quantifying the
loss of information incurred by the iteration of a �xed non-bijective function д. It
depends on the statistical distribution of the number of solution x of f (x ⊕y) ⊕ f (y)
taken over all y which corresponds to its Collision Probability Spectrum (cps). The
shrinkage of дi (S) as i increases is illustrated in Figure 1.6.

S
д(S)
д2 (S)
д3 (S)
д4 (S)

Figure 1.6: Collision trees and output shrinkage of an iterative non-injective function
д operating on S.

For sponge-based hash functions, this shrinkage can be exploited in a second
preimage attack targeting messages ending with multiple repetitions of an identical
block when the rate of the sponge is low. In the speci�c case of Gluon-64, we devised
an algorithm relying on a sat-solver to estimate its cps which turns out to be far
worse than that of a random function. This property, combined with the low rate
used, makes Gluon-64 vulnerable to the generic second preimage search we found.

The content of this chapter is based on [PK15], which I co-wrote with Dmitry
Khovratovich.

Chapter 4 Prince is a lightweight block cipher presented in [BCG+12] which is
optimised for low-latency. Its designers challenged cryptographers to �nd practical
against reduced-round versions of this cipher. I found several such attack using a
sat-solver for key recovery. The �rst simply encodes known plaintext-ciphertext
pairs into a cnf formula and solves for the key. A signi�cant speed up is provided
by exploiting zero di�erences and their probability 1 propagation. Then, an attack
against 6 rounds is presented which combines a di�erential attack with a key recov-
ery performed with the sat-solver. This di�erential attack is peculiar in that it does
not use pairs of plaintexts but families of pairs built in such a way that all pairs in
the same family must follow the di�erential trail if one does.

Some speci�c properties of the cycle structure of Prince are also discussed.
Those are caused by the very speci�c structure of Prince.

The content of this chapter was published along with attacks by Patrick Derbez
in [DP15].

Chapter 5 The lightweight block ciphers Twine-80 and Twine-128 introduced
in [SMMK13] use the same round function based on a generalized Feistel network.
To improve di�usion, the designers used a sophisticated permutation of the branches
instead of a simpler and more classical rotation.
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This improved layer leads to an unexpected behavior of the di�usion whereby
the 16 branches can be divided into two groups of 8 branches. During 3 out of 4
rounds, these sets only interact with themselves. However, during the fourth round,
no information is exchanged within each set; instead, information �ows from one
set to the other. At the end of the fourth round, the two sets are swapped and will
undergo a similar separation for the next 3 rounds.

We deduced high probability truncated di�erentials from this observation. Those
can be used to attack a round-reduced version of Twine and to identify high prob-
ability di�erentials by clustering all di�erential trails that “�t” in those truncated
trails.

The content of this chapter is based on a joint work with Alex Biryukov and
Patrick Derbez [BDP15].

1.3.1.3 Designing a New Family of Lightweight Block Ciphers

The following two chapters present a design strategy and a family of lightweight
block cipher that implement it which I co-designed with Alex Biryukov, Daniel Dinu,
Johann Großschädl, Aleksei Udovenko and Vesselin Velichkov. Those results were
�rst presented in [DPU+16a].

Chapter 6. It is possible to design a block cipher in such a way that its resilience
against single trail di�erential and linear attacks can be proved. This property was
one of the main selling points of Rijndael which eventually won the Aes competition.
Unfortunately, the strategy used by its designer cannot be adapted to design arx-
based ciphers, that is, ones that can be implemented using only modular Addition,
Rotation and xor.

We have found a new method to design (possibly arx-based) block ciphers in
such a way that it is provably secure against single trail di�erential and linear attacks.
We call it the Long Trail Strategy. It works by combining two elements. The �rst is a
transformation consisting of the parallel application of r rounds of a large but rather
weak S-Box which is secure after 2r rounds. The second is a linear layer which merely
copies some of its inputs to its outputs. Combining the parallel calls to the S-Box with
a linear layer application yields a step, as shown in Figure 1.7a. The encryption then
consists of several such steps. Because of this structure, the input of half of the S-
Boxes e�ectively go through 2r rounds of the simple S-Box. If the S-Box is chosen
well, this ensures a high level of security.

L

⊕

S

S
⊕

⊕

S

S
⊕

k0
0

k0
r−1

kw−1
0

kw−1
r−1

round

step

(a) A cipher structure for the long trail strategy.

⊕

≫ 7

�

≪ 2

⊕

(b) The Speckey transformation S .

Figure 1.7: The components of the block ciphers of the Sparx family.
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This behavior can be exploited to formally prove the security of such a block
cipher against single trail di�erential and linear cryptanalysis.

We also found another structure we called Lax combining a modular addition
with arbitrary linear functions. Block ciphers built using it can be proved secure
against single trail di�erential attacks using a simple mathematical argument but
security against linear attacks remains an open problem.

Chapter 7. Using the long trail strategy and the structure summarized in Fig-
ure 1.7a, we designed a family of lightweight block ciphers called Sparx. There are
three instances, Sparx-64/128, Sparx-128/128 and Sparx-128/256 where Sparx-n/k
encrypts n-bit blocks with a k-bit key. The transformation S used, Speckey, is de-
scribed in Figure 1.7b.

Because of their construction, the Sparx ciphers are the �rst arx-based block
ciphers designed to be provably secure against single trail di�erential and linear at-
tacks. Furthermore, their implementations on micro-controllers are quite e�cient
and compare favourably with the state of the art.

1.3.2 Part II - On S-Box Reverse-Engineering

With my co-authors, we pioneered the �eld of S-Box reverse-engineering; that is,
the study of the methods that can be used to recover the hidden design criteria or
the hidden structure used to build an S-Box using only its look-up table. This part
describes the tools we developed for this purpose and the results we obtained using
them. While our aim was S-Box reverse-engineering, these methods have applica-
tions beyond this area. They can be used to attack some white-box constructions or
to derive new mathematical results.

Unlike in the previous part, each chapter does not correspond exactly to one of
the papers I co-authored. Instead, all of the following papers each contributed to a
several chapters.

• [BP15]

• [BLP16]

• [BPU16]

• [PUB16]

• [PU16]

• [BKP17]

• [PU17]

• [CDP17]

The content of this part is based on joint works with, in alphabetic order: Alex
Biryukov, Anne Canteaut, Sébastien Duval, Dmitry Khovratovich, Gaëtan Leurent
and Aleksei Udovenko.

Main Results of Part II. It is possible to decompose all S-Boxes with a structure pre-
viously used in the literature. The corresponding techniques can be successfully applied
to the S-Box of Kuznyechik and to the apn permutation of Dillon et al.. Besides, the
design process of the S-Box of Skipjack can be partially recovered.

1.3.2.1 Mathematical Tools for Analyzing S-Boxes

Chapter 8. In order to study S-Box, it is necessary to �rst de�ne what they are
and what properties they have. This chapter presents their di�erential, linear and
algebraic properties. In particular, the two tables which play a crucial role in the
next chapters are de�ned: the Di�erence Distribution Table (ddt) and the Linear
Approximations Table (lat).
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Then, I performed a thorough analysis of the literature where I listed all S-Boxes
I could �nd. These were sorted according to their structures. While some are built
like small block ciphers, others rely on mathematical constructions or even simpler
heuristic generation algorithms. The proportions of those methods for algorithms
using 8-bit S-Boxes are summarized in Figure 1.8.

Figure 1.8: Types of structure used to build 8-bit S-Boxes by 53 di�erent algorithms
from the literature.

Chapter 9. Given the look-up table of an S-Box, how can we know if it were gen-
erated at random? It turns out that a careful analysis of the coe�cients of its ddt
and lat can often answer this question. In particular, it is shown that the S-Box of
the block cipher Skipjack, which was designed by the nsa in the late 80’s, has non-
random linear properties. Though unimpressive, they are better than what would be
expected from a random S-Box. In fact, I show that the probability that this S-Box
was picked uniformly at random is upper-bounded by 2−54.

Other speci�c ddt/lat artifacts are explored, such as the similarity of the lines
in the lat of an exponential function and a pattern in the position of the coe�cient
4 in the ddt of a permutation a�ne-equivalent to the multiplicative inverse.

Finally, the analysis used to quantify how “non-random” the S-Box of Skipjack is
is applied to all the S-Boxes listed in the previous chapter.

1.3.2.2 Structural A�acks

Chapter 10. An S-Box may have a Feistel structure. In this case, it is necessary
to attack Feistel networks where the Feistel functions are unknown and do not have
any speci�c structure. The chapter starts with a summary of all structural attacks
against Feistel networks. Then, it describes the two I found with my co-authors.

The �rst is the Yoyo game and its improvement using cycles. It works by iterat-
ing the encryption of a plaintext, the addition of a di�erence to the ciphertext, the
decryption of the new ciphertext, the addition of a di�erence to the new plaintext,
etc. The cycle structure of such construction can be leveraged to e�ciently identify
large groups of pairs of plaintexts such that their encryptions all follow the same
known di�erential trail. This pattern is then used to recover the complete look-up
table of the �rst and last Feistel function of 5-round Feistel networks.
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The second is a distinguisher which can identify a Feistel network as such. Con-
sider a 2n-bit Feistel network encrypting blocks using r rounds and Feistel functions
of algebraic degree d . Roughly speaking, if

d br /2c−1 + d dr /2e−1 < 2n

then some terms cannot be present in its algebraic normal form. This property can
be used as a distinguisher but, if a 4-round Feistel network is composed with a�ne
mappings, these absent terms can be used to mount an attack recovering this map-
pings.

Chapter 11. The other large class of block cipher structure is the Substitution-
Permutation Network (spn). Several attacks have already targeted spn with secret
S-Box and a�ne layers, such as the one against SASAS of Biryukov and Shamir [BS01,
BS10] or the ones against ASASA of Dunkelman et al. [DDKL15] and Minaud et
al. [MDFK15].

First, these are brie�y recalled. All those attacks rely on the fact that the algebraic
degree of the composition of two S-Box layers with an a�ne transformation is low.
By applying a theorem of Boura et al. bounding the algebraic degree of a permutation
composed with an S-Box layer, we showed that the same attacks could be applied to
a higher number of rounds provided that the S-Box size is low enough compared to
the block size. In particular, we show that ASASA cannot be secure and that if n is
the block size and m the S-Box size, then about 2 logm−1 (n) rounds are necessary to
achieve full degree.

Chapter 12. The structural attacks described in Chapters 10 and 11 can only be
applied to Feistel networks and spns. Any other structure is safe.

To mitigate this problem, we can look at a the Pollock representation of the ddt
and the lat, that is, a picture where each pixel corresponds to a table coe�cient
whose color depends on the absolute value of the coe�cient. For example, Figure 1.9a
shows the Pollock representation of one of the S-Boxes of the block cipher Clefia.

Several visual patterns that can be expected depending on the properties of the
S-Box are described. In particular, the relation between integral and zero-correlation
distinguishers mean that those are easy to see — literally.

(a) The lat of the S-Box S0 of Clefia.

T

U

µ ′

η′

(b) The TU-decomposition.

Figure 1.9: A new type of distinguisher and the decomposition it yields.
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The main decomposition method presented in this thesis is the TU-decomposition.
It is described in Main Theorem 1 which is reproduced below.

Theorem. Let S : Fn2 → Fn2 be an n-bit S-Box with lat L and let η and µ be linear
permutations such that L ′ de�ned by L ′[a,b] = [µ (a),η(b)] = 0 veri�es L ′[i, j] = 0
for all i < 2n/2 and j < 2n/2. Then S can be written as

S = (ηt )−1 ◦ RU ◦ LT ◦ µ
t ,

where LT (x | |y) = Ty (x ) | |y and RU (x | |y) = x | |Ux (y). This corresponds to the structure
in Figure 1.9b, where µ ′ = µt and η′ = (ηt )−1.

The fact that L ′[i, j] = 0 for all i < 2n/2 and j < 2n/2 corresponds to the presence
of a white square in the upper left corner of the Pollock representation of the table,
as is the case in Figure 1.9a.

1.3.2.3 Applications of the TU-Decomposition

Chapter 13. The latest Russian standards in symmetric cryptography are the 128-
bit block cipher Kuznyechik and the hash function Streebog. They use the same
8-bit S-Box π but their designers did not disclose their design method. This target
was suggested by Oleksandr Kazymyrov who I warmly thank for this pointer.

Using faint patterns in the Pollock representation of its lat, we can identify a
TU-decomposition of this permutation. Its T and U components can be further de-
composed into components consisting of multiplying the output of two non-linear
function, the multiplication being performed in a �nite �eld of size 24. The over-
all structure of this decomposition is given in Figure 1.10a, where L and N denote
respectively some linear and non-linear functions and � represents a �nite �eld mul-
tiplication.

L

N

N

N

N

L

(a) Feistel-like decomposition.

log

A

N

L

(b) Logarithm-based decomposition.

Figure 1.10: Simpli�ed views of our two decompositions of π .

The patterns visually identi�ed in the Pollock representation of the lat of π are
related to patterns expected in the lat of exponential permutation such as the one
used by the latest Belarussian standard, BelT. As a consequence, we looked for a de-
composition of π involving such an object. We found several which share the same
overall structure described in Figure 1.10b, whereL andN denote respectively some
linear and non-linear functions, log is a discrete logarithm and A a permutation
comprising a couple of arithmetic operations. While these decompositions are not
elegant, they highlight an unexpected proximity between π and exponential permu-
tations such as the one used in BelT.
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Chapter 14. A function whose ddt only contains 0 and 2 is called Almost Perfect
Non-linear (apn). Whether apn permutations of F2n exist for n even is still an open
problem, except for n = 6 where a unique one was found by Dillon et al., denoted S0.

This S-Box can be decomposed using a TU-decomposition. The resultingT andU
components can be expressed as simple combinations of the multiplicative inverse
of F23 , namely x 7→ x6, and multiplication by a generator w of the multiplicative
group of the �nite �eld such that Tr (w ) = 0. This decomposition is presented in
Figure 1.11a and in Main Theorem 2 which is reproduced below.

x6

x6

�
w

⊕

⊕

x6

x6

�
w

⊕

⊕

(a) A permutation a�ne
equivalent to S0.

βx3

x1/3

�
α

⊕

⊕

βx3
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(b) Open (bijective) general-
ized butter�y Hα ,β .

�
α
⊕

x3

βx3 ⊕

�
α
⊕

x3

βx3 ⊕

(c) Closed (non-bijective)
generalized butter�y Vα ,β .

Figure 1.11: Butter�y structures; where � denotes �nite �eld multiplications.

Theorem. There exist linear bijectionsA and B such that the apn 6-bit permutation of
Dillon et al. is equal to

x 7→= B (SI (A(x ) ⊕ 9) ⊕ 4,
where SI (` | |r ) is the concatenation of two bivariate polynomials of F23 denoted SL

I
(`,r )

and SR
I
(`,r ) and which are equal to




SR
I
(` | |r ) = (r 6 + `)6 + 2 � r ,

SL
I
(` | |r ) =

(
r + 2 � SR

I
(`,r )

)6
+ SR
I
(`,r )6 .

This structure is summarized in Figure 1.11a.

This structure can be generalized by considering other elements instead ofw , by
multiplying the output of the Feistel functions by a constant and by increasing the
block size. The resulting object are called generalized butter�ies. The permutation
of Dillon et al. is a particular case of an open generalized butter�y, as described in
Figure 1.11b. There are also closed generalized butter�ies which are quadratic non-
bijective functions shown in Figure 1.11c. An open and a closed generalized butter�y
are ccz-equivalent, a form of equivalence which preserves the di�erential and linear
properties. By studying the simpler quadratic case of the closed generalized but-
ter�ies, we were able to show that open generalized butter�ies have the best known
di�erential and non-linear properties over �elds of size 24k+2. Unfortunately, we also
showed that, for k > 1, no such apn permutation exists.

1.3.3 Part III - On Purposefully Hard Cryptography

This last part deals with cryptographic primitives which are, by design, ine�cient.
Although Alex Biryukov and I worked on two papers on this topic, the algorithm
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presented in the second is in the process of being patented at the time of writing.
Thus, this part contains only one chapter based on the �rst of those which is currently
under submission.

Chapter 15. In many di�erent contexts, it may be desirable to evaluate a primitive
with a high complexity. For example, the brute-force of low-entropy passwords can
be slowed down by feeding such low-entropy passwords through a time consuming
key stretching function.

The e�ciency of a primitive is measured along three axes: time, memory con-
sumption and code size. In fact, each of these three quantities are arbitrarily in-
creased in some contexts: a slow primitive is good for key stretching, a memory
consuming primitive is good to prevent attackers from speeding up their computa-
tion with dedicated asics and one with a large code size cannot be duplicated easily,
which is precisely the goal of modern white-box block ciphers.

Ek Ek⊕iP

⊕

r times

Figure 1.12: The HBC block cipher mode introduced in Section 15.3.2 (p. 316).

We proposed a unifying model which allows the design of a primitive with any
of these forms of hardness. It works by combining a secure cryptographic primitive
with a plug, a small function with the desired form of hardness. Essentially, the cryp-
tographic security reduces to that of the primitive used and the hardness is reduced
to that of the plug. For example, it is possible to build a secure time-hard block cipher
by using the HBC mode summarized in Figure 1.12 with Aes-128 as Ek and a time
consuming plug P . This method is generalized to sponges, which in turn allows the
construction of any symmetric algorithm with any form of hardness.

We also noticed that the hardness may be asymmetric. Let f be a hard function.
It is asymmetrically hard if it exists a secret key K such that fK is functionally equiv-
alent to f but does not have its hardness. If an asymmetrically hard plug is used
in our constructions, we can then devise a symmetric primitive with any form of
asymmetric hardness.

We provide plugs for (asymmetric) time-hardness and (asymmetric) code-hardness.
However, only assymmetric memory-hardness is not known to be possible at the
time of writing. We illustrate our framework by building an asymmetrically time-
hard block cipher called Skipper and a code-hard hash function called Whale.
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Chapter2

A Survey of Lightweight Symmetric

Cryptography

Lightweight cryptography has been one of the “hot topics” in symmetric cryptog-
raphy for the past few years. This chapter starts with an overview of this topic in
Section 2.1 (p. 29). What is the aim of lightweight cryptography? What makes an
algorithm lightweight or not? Section 2.2 (p. 34) presents a list of the lightweight al-
gorithms published as of the time of writing which is as complete as possible. Some
trends in the design of lightweight algorithms are identi�ed in Section 2.3 (p. 43).
Then, I present a survey of the algorithms which have actually been standardized in
Section 2.4 (p. 47). Finally, in Section 2.5 (p. 50), I argue that lighweight cryptogra-
phy has been spread too thin by including widely di�erent requirements and that it
should be divided into two better de�ned areas: ultra-lightweight and IoT cryptog-
raphy.

2.1 Overview of Lightweight Cryptography

First, I describe the overall purpose of lightweight cryptography in Section 2.1.1
(p. 29). The design constraints it implies are described in Section 2.1.2 (p. 30). Fi-
nally, I discuss the need for dedicated algorithms in Section 2.1.3 (p. 32).

2.1.1 General Aim

The Internet of Things (IoT) is one of the foremost buzzwords in computer science
and information technology at the time of writing. It is a very broad term describing
the fact that, in the near future, the internet will be used more and more to connect
devices to one another other rather than to connect people together.

Some of these devices use powerful processors and can be expected to use the
same cryptographic algorithms as standard desktop PCs. However, many of them
use extremely low power micro-controllers which can only a�ord to devote a small
fraction of their computing power to security.

A common example of such use is that of sensor networks. Such networks are
intended to connect vast amounts of very simple sensors to a central hub. These
sensors would run on batteries and/or generate their own energy using for exam-
ple solar panels. Cryptographic algorithms must be used on the messages sent by
the sensors to their hub in order to secure them and, in particular, to ensure their

29
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authenticity and integrity. However, because of the very low energy available, the
cryptographic algorithms have to be as “small” as possible.

Similarly, rfid (Radio-Frequency IDenti�cation) chips are used to identify de-
vices, animals — and even people. In order to prevent an eavesdropper from learning
the identi�cation associated to a chip, this information has to be encrypted. Even
better, such rfid tags can be used in challenge response protocols. Because of the
very small number of logical gates that can be used in such devices and because of
the very little energy available, specially designed algorithms are necessary.

2.1.2 Design Criteria

The metrics usually optimized are the memory consumption, the implementation
size and the speed or throughput of the primitive. However, the speci�cs of the com-
parison depend on whether hardware or software implementations are considered.

Hardware Case. If the primitive is implemented in hardware, the memory con-
sumption and the implementation size are lumped together into its gate area which
is termed in Gate Equivalents (GE). It quanti�es how physically large a circuit im-
plementing the primitive is. The throughput is measured in bytes per second and
corresponds to the amount of plaintext processed per time unit.

The exact measures depend on the exact type of circuit considered, e.g. the fre-
quency at which it is clocked or the area of each gate. Furthermore, the tools used to
simulate those circuits do not give the same results and are usually both proprietary
and expensive. Therefore, a fair comparison of the di�erent algorithms proposed
regarding their hardware implementation is very di�cult. In fact, when comparing
their new algorithm with existing ones, designers are usually forced to design their
own implementations of preexisting ones too.

Memory is usually the most expensive part of the implementation of a lightweight
primitive. In most cases, implementations work by storing the full internal state and
key state and then perform one round in c clock cycle, e.g. one round per clock cy-
cle.1 As a consequence, it is preferable to operate on small blocks using a small key.
For some applications, 80-bit keys are preferred over 128-bit ones!

However, some space can be saved by hard-coding or “burning” the keys into the
device. That is, instead of using read/write memory to store the key, use read-only
structures. In order for this method to be viable, the key schedule must build the
round keys using only simple operations taking as input the bits of the master key.
In particular, no key state can be operated upon. This strategy has been used by
several algorithms, both block and stream ciphers, as shown in Section 2.3.2.2 (p. 45).

So�ware Case. Primitives be implemented in software instead, typically for use
on micro-controllers. In this case, the relevant metrics are the ram consumption,
the code size and the throughput of the primitive measured in bytes per cpu cycle.
The Felics framework allows a relevant comparison of these quantities across algo-
rithms and across di�erent implementations of a given algorithm. This framework
was presented in [DBG+15] which was later accepted in the Journal of Cryptographic

1It is a bit more complicated in the case of a serial implementation. They only update a small part of
the state at each round — typically the size of an S-Box — but, due to the simplicity of the logic involved,
they allow a far higher clock frequency.
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Engineering [DLCK+17]. The name Felics stands for “Fair Evaluation of LIghtweight
Cryptographic Systems”.

Felics takes as input the implementation of a block or stream cipher and outputs
the corresponding code size, ram consumption and time taken to perform a given
task. These quantities are obtained for three di�erent micro-controllers: an 8-bit
avr, a 16-bit msp and a 32-bit arm. The tasks investigated correspond to di�erent
scenarios such as the encryption of a 128-bit block in counter-mode. The information
extracted is then summarized into a single quantity called Figure of Merit (FoM)
(see [DLCK+17] for the exact de�nition). The lower this FoM, the better. It can be
used to rank block ciphers, as shown in Table 2.1 where the block and key sizes are
in bits, the code size and maximum ram consumption are in bytes and the time is in
number of cpu cycles.

General info avr (8-bit) msp (16-bit) arm (32-bit) FoM
Name block key Code ram Time Code ram Time Code ram Time

Chaskey 128 128 770 84 1597 490 86 1351 178 80 614 4.7
Speck 64 96 448 53 2829 328 48 1959 256 56 1003 4.8
Speck 64 128 452 53 2917 332 48 2013 276 60 972 4.9
Chaskey-LTS 128 128 770 84 2413 492 86 2064 178 80 790 5.4
Simon 64 96 600 57 4269 460 56 2905 416 64 1335 6.6
Simon 64 128 608 57 4445 468 56 3015 388 64 1453 6.8
Lea 128 128 906 80 4023 722 78 2814 520 112 1171 7.6
Rectangle 64 128 602 56 4381 480 54 2651 452 76 2432 8.1
Rectangle 64 80 606 56 4433 480 54 2651 452 76 2432 8.1
Sparx 64 128 662 51 4397 580 52 2261 654 72 2338 8.3
Sparx 128 128 1184 74 5478 1036 72 3057 1468 104 2935 12.4
RC5-20 64 128 1068 63 8812 532 60 15925 372 64 1919 13.5
Aes 128 128 1246 81 3408 1170 80 4497 1348 124 4044 14.1
Hight 64 128 636 56 6231 636 52 7117 670 100 5532 14.8
Fantomas 128 128 1712 76 9689 1920 78 3602 2184 184 4550 18.8
Robin 128 128 2530 108 7813 1942 80 4913 2188 184 6250 22.0

Table 2.1: The current best Felics results for scenario 2: counter mode encryption
of 128 bits.

The three quantities measured are not independent. For example, loading infor-
mation from the ram into cpu registers is a costly operation and so is its inverse.
Therefore, limiting the number of such operations leads to a decrease in both ram
consumption and time complexity.

Side-Channel A�ack Resilience. Side-channel attacks (scas) use some special
knowledge about the implementation of a cipher to break its security. For example,
observing the power consumption of an encryption can leak information about the
Hamming weight of the output of an S-Box.

Such attacks demand that the cryptanalyst has physical access to the device at-
tacked. However, this requirement is particularly easy to ful�ll in the context of the
IoT: a desktop computer can be expected to be reasonably hard to physically interact
with because it is in a locked room but a sensor measuring tra�c in an open street
may not enjoy such protection.
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As a consequence, lightweight algorithms are often built in such a way as to
decrease the vulnerability of their implementation to such attacks. This can be done
through the use of inherently less leaky operations or by simplifying the use of a
masked implementation. These topics are further discussed in Section 2.3.1 (p. 43).

Other Implementation Criteria. More recently, other criteria have emerged for
the design of lightweight algorithms. For example, energy and power e�ciency are at
the core of the design of the Midori block cipher published about a year ago [BBI+15].
Another criteria is latency, that is, the time taken to perform a given operation.
There are contexts in which a low-latency is crucial, for example for memory en-
cryption. This particular requirement requires speci�c design choices as illustrated
by the lightweight block ciphers Prince [BCG+12] and Mantis [BJK+16].

Common Trade-O�s. To accommodate these constraints, most lightweight algo-
rithms are designed to use smaller internal states and smaller key sizes. Indeed, while
a 128-bit block and at least 128-bit key was demanded from the Aes candidates, most
lightweight block ciphers use only 64-bit blocks. This smaller size leads to a smaller
memory footprint in both software and hardware. It also means that the algorithm
is better suited for processing smaller messages.

Nevertheless, the small block size can be a problem as the security of some modes
of operation such as cbc erodes very quickly when the number of n-bit blocks en-
crypted approaches 2n/2, as exploited for example in [BL16]. As a consequence, ded-
icated modes of operation such as [LPTY16] have been proposed to mitigate these
issues. Furthermore, key sizes are often as small as 80 bits which o�ers little security
margin against brute-force search. Such an attack is likely to be infeasible nowadays
for all but the most powerful state sponsored adversaries, but how long will this last?
As pointed out in [Mou15], time-memory-data tradeo� can become an issue if the
key size is too small, especially in the multi-key setting.

In the case of lightweight block ciphers, it is also common for the components
used to be involutions so as to decrease the cost of the implementation of decryption.
This can be done by using non-linear involutions as S-Boxes or by using a Feistel
structure. On the other hand, this issue can be mitigated through the use of modes
of operations that do not require block cipher decryption. For example, if a block
cipher is used in counter mode, the area/rom which would be needed to store the
description of the inverse block cipher can be saved.

Finally, due to the importance of their performance, lightweight algorithms of-
ten have thinner security margins. For example, Ketje [BDP+16] is a sponge-based
authenticated cipher where the sponge transformation uses only one round. That is,
it does not even provide full di�usion. This obvious issue is o�set by the use of a
non-repeating nonce.

2.1.3 Are Dedicated Algorithms Needed?

As lightweightness is mostly a property of the implementation of an algorithm, we
can wonder if dedicated algorithms are actually needed. Would it not be su�cient to
use lightweight implementations of regular algorithms?

It is often possible. For example, many implementers have worked on optimizing
the implementation of the Aes with some success in both hardware [BJM+14, BBR16,
UMHA16] and software [SS16]. Even if an e�cient implementation of the Aes is
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impossible using the instructions available on a micro-controller, those devices are
sometimes shipped with a hardware acceleration module for this task, e�ectively
adding a new set of instructions dedicated entirely to a quick evaluation of this block
cipher.

In this context, lightweight symmetric algorithms may seem unnecessary. How-
ever, block cipher hardware acceleration has its limitations. As summarized for
example in Table 1 of [OC16] (which is reproduced in Table 2.2), the hardware-
accelerated encryptions used by many devices are vulnerable to various forms of
side-channel attacks. These attacks do not only target these devices “in a vacuum”.
For example, Philips light bulbs using the Zigbee protocol to communicate have been
recently shown to be insecure [ROSW16]. One of the key components of this attack
is a subversion of the update mechanism of the light bulb. Updates are normally au-
thenticated with an Aes-based mac using a secret key which is constant across all
devices. Ronen et al. recovered this key via an sca and were therefore able to push
malicious updates to these devices.

Product Cipher
DESFire, MF3ICD40 3-Des

DS2432, DS28E01 Sha-1
Microchip HCSXXX Keeloq

ProASIC3 Aes
Spartan-6 Aes
Stratix II Aes
Stratix III Aes
Virtex-II 3-Des

Virtext-4, Virtex-5 Aes
XMEGA Aes
Yubikey Aes

Table 2.2: Several micro-processors whose hardware accelerated cryptography is vul-
nerable to sca (reproduced from [OC16]).

Still, there are cases where side-channel attacks are not really relevant. For ex-
ample, a yubikey2 is supposed to be always carried by its owner, so that studying
its power consumption is not practical for the adversary. However, if attackers can
easily access devices with the secret key they are after, e.g. in the case of a wireless
sensor network, such a weakness is not acceptable. This problem could be mitigated
by using protected implementations such as masked ones.

On micro-controllers without hardware support for cryptographic functions, their
assembly implementation must be as small and as fast as possible. In these cases, the
Aes is decently fast, especially on 8-bit micro-controllers where it is in fact one of the
fastest. However, its implementation requires storing at least the full look-up-table
of its 8-bit S-Box, meaning that its code size cannot be as small as that of dedicated
algorithms.

All in all, while the Aes is a decent lightweight block cipher, its large S-Box, large
block size and inherent vulnerability to sca caused by its look-up-based S-Box make
it a suboptimal choice in many cases.

2A yubikey is a commercial usb drive designed to store cryptographic keys securely and use them in
authentication protocols.
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Another case where dedicated lightweight algorithms are needed is for hash-
ing. Indeed, standard hash functions need large amounts of memory to store both
their internal states — 1600 bits in the case of Sha-3 — and the block they are op-
erating on — 512 bits in the case of the Sha-2 family. These memory requirements
signi�cantly hinder performance on lightweight platforms and justify the need for
dedicated lightweight hash functions.

2.2 Symmetric Lightweight Algorithms

Several very distinct actors are involved in the �eld of lightweight cryptography.
In fact, they are the same that discuss “regular” cryptography: academia, industry,
standardizing bodies and government agencies — including spying agencies.

The industry is supposed to be the implementer of those algorithms, designing
or choosing the best one for their purpose. Unfortunately, until the 2000’s and the
spread of the Aes, many of the algorithms used had been designed in-house with
little regard to what is considered best practice. The corresponding algorithms are
described in Section 2.2.1 (p. 34).

Academics have published dozens of symmetric cryptographic algorithms claim-
ing to be lightweight. Those are listed in Section 2.2.5 (p. 39). Said publications
always contain a description of the cryptanalysis attempts by the authors of the al-
gorithm.

This creates a signi�cant contrast with the algorithms proposed by government
agencies: even their public algorithms have been designed in a secret way. Further-
more, these agencies are more often than not also in charge of spying, (see the Amer-
ican nsa and the Russian fsb), meaning that they have contradictory incentives. On
the one hand, it is their task to ensure the security of their own citizens which may
imply designing strong encryption. On the other hand, as evidenced by the �rst
crypto wars and the current ongoing debate surrounding the alleged fear of some law
enforcement agencies of “going dark”, they may also seek to purposefully weaken
these standards. What might have been discounted as mere conspiracy theory a few
years ago is now an established fact: the Snowden documents show that the nsa
has a budget dedicated to the subversion of cryptographic standards and has pushed
for the standardization of the Dual EC pseudo-random number generator [BLN15].
My co-authors and I have also shown, as explained in Chapter 13 (p. 245), that the
latest fsb designs share an S-Box with a hidden structure. Lightweight algorithms
designed by such government agencies are listed in Section 2.2.6 (p. 42).

2.2.1 Algorithms from the Industry

Many lightweight algorithms used by industrial products are surprisingly weak. Many
of those algorithms were designed in the 80’s or early 90’s, a time during which ci-
pher design had to accommodate for the stringent American export laws which for-
bid selling devices with overly strong cryptography. Still, like modern lightweight
algorithms, those were intended to run on devices with little computing power de-
voted to encryption.

The algorithms in this section were, at least at �rst, intended to be kept secret.
They were published through leaks or reverse-engineering (except for the Kindle
cipher). I list them below. They are stream ciphers unless their name is followed by
a “†” mark, in which case they are block ciphers, or a “‡” mark corresponding to
macs.
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• A5/1
• A5/2
• A5-GMR-1
• A5-GMR-2
• Cmea †
• Crypto-1
• CryptoMem.
• Cryptomeria †

• Csa-BC †
• Csa-SC
• Css
• Dsc
• Dst40 †
• E0
• Hitag2
• iClass

• Keeloq †

• Megamos

• Oryx

• PC-1

• RC4

• SecurID ‡

• SecureMem.

As already noted by Kerckho�s in 1883 [Ker83] and as recalled in Section 1.1.2
(p. 3), security through obscurity is no security. It should be assumed that the at-
tacker has access to the algorithm and the security should be based on the secrecy
of the key. This principle was not followed by many of the algorithms below and,
unsurprisingly, those collapsed as soon as their speci�cation was leaked or reverse-
engineered.

2.2.2 Industry-Designed Stream Ciphers

A5/1. The exact design date of this algorithm is unclear but a �rst approximation
of its inner workings was published in 1994 [And94]. It generates a keystream from
a 22-bit IV along with a 64-bit key using three di�erent lfsrs whose lengths add up
to 64 bits. Practical attacks have been implemented using time-memory trade-o�s
exploiting the fact that the update function of the internal state is not bijective [Gol97,
BSW01]. The most time e�cient of those needs only 224 simple steps provided that
a signi�cant (but practical) pre-computation was performed. Furthermore, 10 bits of
the key were always set to 0 in many implementations. The 2G gsm protocol still
uses this algorithm.

A5/2. A cipher somewhat similar similar to A5/1 but even weaker was intended to
be used in countries targeted by American export restrictions. It is called A5/2. It is
vulnerable to ciphertexts only attacks with complexity 216 using redundancy intro-
duced by error correcting codes. It requires a one-time pre-computation of practical
complexity. Unfortunately, interoperability imposed the implementation of this al-
gorithm on devices supposed to run A5/1 instead, thus making downgrade attacks
possible [BBK03, BBK08].

A5-GMR-1 and A5-GMR-2. Satellite phones have their own protocols and, there-
fore, use their own cryptographic algorithms. The two algorithms used, A5-GMR-1
and A5-GMR-2, were reverse-engineered by Driessen et al. in [DHW+12]. Those are
very di�erent from one another but both are easily attacked.

• A5-GMR-1 is a variant of A5/2 with an internal state consisting in 4 lfsrs with
a total size of 82 bits. Those are clocked irregularly, much like in A5/2. It can
be attacked using only known ciphertexts by inverting 221 triangular matrices
of size 532×532, which requires roughly 221×5322/2 ≈ 238.1 simple operations.
A signi�cant but practical pre-computation step is necessary.

• A5-GMR-2 is a byte oriented stream cipher with a much more sophisticated
structure based on 3 di�erent components denoted F ,G andH by Driessen et
al.. Surprisingly,H uses the S-Box S2 and S6 of the Des. A practical attack with
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very low data and time complexity is presented in [LLLS14]. It requires guess-
ing at most 32 bits using only 1 frame of 15 bytes for an average complexity of
228.

Atmel Ciphers. The stream ciphers used by the SecureMemory, CryptoMemory
and CryptoRF families of products from Atmel are similar to one another. They are
proprietary algorithms which were reverse-engineered and attacked by Garcia et al.
in [GvRVWS10]. Other more powerful attacks were later proposed by Biryukov et
al. [BKZ11] breaking the cipher of SecureMemory in time 229.8 using 1 frame and the
cipher of CryptoMemory in time 250 using 30 frames and about 530 Mb of memory.
The ciphers rely on 3 nlfsrs with a total size of a bit more than 100 bits. The attacks
found by both Garcia et al. and Biryukov et al. were successfully implemented.

Crypto-1. It is a stream cipher used by the Mifare classic line of smartcards of nxp.
It was reverse-engineered by Nohl et al. in [NESP08] and was subsequently attacked
by many teams [CNO08, Gol13] with a time complexity as low as 232. It has been
used at least since 1998 but the exact date of its design is unclear. It is based on a
48-bit lfsr combined with several non-linear Boolean functions.

Content Scrambling System (Css). In order to implement Digital Rights Man-
agements (drms), the content of dvd discs is encrypted. This encryption used to be
performed with a stream cipher called Css. It uses two 17- and 25-bit long lfsrs to
generate two 8-bit words in parallel. These are afterwards added modulo 28 to ob-
tain a byte of keystream. However, unlike in most stream ciphers, this key stream
is not simply xored with the plaintext. Instead, the plaintext �rst goes through an
8-bit bijective S-Box whose result is added to the keystream to obtain the ciphertext.
This operation is sometimes called the mangling step. A full description is available
in [BD04] and in [PMA07]. Several powerful attacks target the protocol using this
stream cipher. However, given its key length of 40 bits, the cipher alone is vulnerable
to a brute-force search of time complexity 240.

Common Scrambling Algorithm (Csa-SC). The Common Scrambling Algorithm
is used to secure digital television broadcast. It cascades two ciphers, as described
in [WW05]. The �rst is a block cipher which we call Csa-BC and which is described
below. The second is a stream cipher which we call Csa-SC. The stream cipher is
based on two fsrs consisting of twenty 4-bit cells each and a combiner with mem-
ory. The feedback function of the registers involves, among other things, several
5 × 2 S-Boxes. The combiner uses addition modulo 24 to extract 2 bits of keystream
from its internal state and the two shift registers at each clock cycle. In [WW05], sev-
eral undesirable properties are presented. For example, the keystream often has very
short cycles. It is also possible to recover the secret key by solving about 228 systems
of 60 linear equations with 40 unknowns which must take at most 228 × 603 ≈ 245.7.

Dsc. The Dect3 Standard Cipher, usually abbreviated into Dsc, is a stream cipher
used to encrypt the communications of cordless phones. First, attacks targeting the
protocol using it and its �awed implementation were presented in [LST+09]. It was
subsequently reverse-engineered and its attackers found practical attacks requiring

3Dect stands for “Digital Enhanced Cordless Telecommunications”.
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only about 215 samples of keystream and 234 trial encryptions which take a couple
of hours on a standard computer to recover the key [NTW10]. It is described by the
authors of this paper as being “an asynchronous stream cipher with low gate com-
plexity that takes a 64-bit secret key and a 35-bit initialization vector.” Its structure,
based on irregularly clocked lfsrs, is reminiscent of that of A5/1.

E0. The privacy of the Bluetooth protocol is now based on the Aes but it used to
rely on a custom stream cipher called E0. Its 128-bit internal state is divided into 4
lfsrs and its �lter function has its own 2-bit memory. A description of E0 can be
found in the papers presenting attacks against it such as [FL01, LV04, LMV05]. Lu
et al. found an attack which recovers the secret key using the �rst 24 bits of 223.8

frames and with 238 computations.

Hitag2 ; Megamos. These stream ciphers are used in the car immobilizers im-
plemented by di�erent car manufacturers. These devices prevent a car engine from
starting unless a speci�c transponder is close to them. While initially kept secret, the
�rst was published by Wiener4 and the second was reverse-engineered by Verdult et
al. [VGE13]. They are both stream ciphers with a small internal state of 48 and 57
bits respectively. These small sizes and other weaknesses in the ciphers themselves
and in the protocols using them lead to practical attacks against the devices relying
on these algorithms for security. For example, it is possible to attack a car key us-
ing Hitag2 using 1 min of communication between the key and the car and about
235 encryptions. The secret key of Megamos can be recovered in time 248 but more
powerful attacks are possible using the key update mecanism of the devices using it.

iClass. Formally, iClass is family of smartcards introduced in 2002. The stream ci-
pher it uses was reverse-engineered and attacked by Garcia et al. in [GdKGV14]. It
has a 40-bit internal state. The cryptanalysts who reverse-engineered it presented at-
tacks against this cipher in the same paper. By recording 222 authentication attempts,
the key can be recovered using 240 trial encryptions.

Kindle Cipher (PC1). This stream cipher was �rst published on Usenet by Alexan-
der Pukall in 1997, meaning that this algorithm was not technically designed in the
industry. However, it was not designed by academics and Amazon used it at least up
until 2012 for the drm scheme “protecting” its e-book using the mobi �le format. It
uses a 128-bit key and a separate 24-bit internal state updated using di�erent oper-
ations, including modular multiplications. The keystream is generated byte by byte.
It has been broken by Biryukov et al. [BLR13] using e.g. 220 known plaintexts and a
time of 231. Even practical known-ciphertexts attacks are possible in some contexts.

Oryx. While A5/1 “secures” gsm communications in Europe, the stream cipher
Oryx was chosen by the Telecom Industry Association Standard (tia) to secure
phone communications in north America. A description of the algorithm can be
found in [WSD+99] where practical attacks are presented. It uses a 96-bit key, a 96-
bit internal state consisting of three 32-bit lfsrs, and an 8-bit S-Box which changes
every time. It is possible to attack it in time 216 using 25 bytes of known plaintext.

4While this �rst publication is mentioned for example by Verdult et al. in [VGB12], I was not able to
�nd a copy of it. Nevertheless, the speci�cation of Hitag2 can be found in [VGB12].
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RC4. First designed by Ron Rivest in 1987, this stream cipher was intended to re-
main a trade secret of the Rsa company. However, it was leaked to the cypherpunk
mailing list in 1994 [Nob94] and turned out to be a remarkably simple algorithm.
Unfortunately it has several issues, in particular when its �rst outputs are not dis-
carded. The attack from [ABP+13] was successfully implemented: using between 228

and 232 encryptions of the same message, it is possible to recover it using biases in
the keystream.

The now deprecated wep protocol for wireless communications used it for en-
cryption. It lead to practical attacks implemented e.g. by the aircrack5 tool allowing
an attacker to recover the password protecting WiFi access. It uses a 256-byte inter-
nal state containing all numbers in {0, ...,255} which is updated using a very simple
rule each time an 8-bit output is generated. It supports all key sizes between 40 and
2048 bits, although it usually uses 128-bit keys.

2.2.3 Industry-Designed Block Ciphers

Cmea This block cipher was used by the tia to secure the transmission of phone
numbers across telephone lines. A good description of this algorithm is provided
in [WSK97] which, incidentally, describes an attack against the full cipher. It en-
crypts a block of an arbitrary number of bytes — although in practice those were
usually 2 to 6 bytes long — using a 64-bit key. It is vulnerable to a known plaintext
attacks requiring only 40–80 blocks of data and taking a time between 224 and 232

encryptions.
The extreme weakness of this cipher might indicate that it was designed with

little care, and yet its designers included a hidden structure in its S-Box. It is exhibited
in Section 12.3.2.

Cryptomeria. It is a block cipher nicknamed “C2” in the literature. It shares the
same structure as the Des: it encrypts 64-bit blocks using a 56-bit key and uses a 32-
bit Feistel function. It works by mixing in a 32-bit subkey with a modular addition,
then use one 8-bit S-Box call followed by a 32-bit linear permutation. The S-Box is
secret, so an S-Box recovery attack has been proposed [BKLM09]. The same paper
presents a key recovery with time complexity 248. This algorithm was intended from
the start to be used by “things”, namely dvd players (in which case it can be seen as
a successor of Css) and some SD cards. In total, 10 rounds are used; which means
that only 10 S-Box calls are needed to encrypt one 64-bit block compared to, say, the
160 calls needed to encrypt one 128-bit block using Aes-128.

Common Scrambling Algorithm (Csa-BC). The Common Scrambling Algo-
rithm uses a stream cipher (described above) and a block cipher which we call Csa-
BC. It encrypts a 64-bit block using a 64-bit key. Its structure is reminiscent of a gen-
eralized Feistel network using eight 8-bit branches. The Feistel functions are based
on a unique random-looking 8-bit S-Box B and a variant de�ned as σ ◦B, where σ is
a simple bit permutation. An encryption consists in 56 rounds. A full speci�cation
is given in [WW05]. To the best of our knowledge, there is no attack other than
brute-force against this cipher.

5Its successor, aircrack-ng, is described on its o�cial website http://www.aircrack-ng.org/.

http://www.aircrack-ng.org/
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Dst40. This algorithm was reverse-engineered from partial information disclosed
in a patent and from a physical device implementing this block cipher [BGS+05]. It
was used by rfid transponders sold by Texas Instrument. They were used in car im-
mobilizers and for electronic payment. The cipher itself encrypts a 40-bit block with
a 40-bit key using 200 rounds of an unbalanced Feistel network. The Feistel function
maps 38 bits of internal state and a 40-bit subkey to a 2-bit output by nesting several
Boolean functions. Due to its key size of 40 bits, a brute-force search is practical.

Keeloq. It is a so-called “code-hopping encoder”. A US patent was �led in 1993 and
eventually granted in 1996 [BSK96] but it was designed earlier, around 1985 [Lea14].
Using modern terminology, it is a 32-bit block cipher which uses a 64-bit key. It was
�rst kept secret but its speci�cation was leaked in 2006. Using this information, sev-
eral teams presented practical attacks against devices using this algorithm [IKD+08].
For example, the key be recovered using 216 known plaintexts and 244.5 encryptions.
Far more powerful side-channel attacks have also been proposed against commercial
implementations of the cipher [EKM+08]. This ciphers was still in use when these
attacks were found, 20 years after its design.

2.2.4 Industry-Designed Macs

SecurID mac. A SecurID is small hardware token used for authentication and de-
signed by sdti (which was later bought by Rsa Security). It displays a 6 digit num-
ber which changes every minute. It is based on a 64-bit mac described for example
in [BLP04]. This paper also presents attacks against the algorithm. The details of the
mac were initially kept secret but were eventually leaked which lead to the attacks
of Biryukov et al.. These were later sped up by Contini et al. [CY04] to obtain a time
complexity of about 244 mac computations.

2.2.5 A Semi-Exhaustive List of Public Algorithms

Throughout the last 25 years and especially since 2011, a lot of algorithms intended
to be lightweight have been published in cryptography- and security-related confer-
ence proceedings and journals. Those are listed in this section.

The algorithms in these lists have either been advertised as lightweight in their
speci�cation, have a very small implementation or have been standardized as such.
Figure 2.1 provides an overview of all lightweight symmetric algorithms published
by academics, sorted by publication date and by type.

2.2.5.1 Stream ciphers

The estream competition was held in 2008 to choose two portfolios of stream ci-
phers. The �rst type of algorithms �ts the so-called software pro�le, meaning that
they were aimed at software e�ciency. The second category was the hardware pro-
�le. Further, some of them use an internal state so small that they can be considered
to be lightweight stream ciphers.

However, lightweight stream ciphers were proposed outside the framework of
this competition. For example, Snow 3G corresponds to a simple modi�cation of the
academic-designed Snow 2.0 tailored for speci�c industrial needs: it is used in the
3GPP communication standard.

All such lightweight stream ciphers I am aware of are listed below.
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Figure 2.1: Lightweight algorithms published by academics. If an authenticated
cipher is based on a block cipher, it is listed as a BC-based AE. Similarly, algorithms
based on sponges are shown as such.

• A2U2 [DRL11]
• Chacha20 [Ber08a]
• Enocoro [WIK+08]
• F-fcsr-H/16 [ABL+09]
• Grain [HJM07]

• Lizard [HKM17]
• Mickey [BD08]
• Plantlet [MAM17]
• Salsa20 [Ber08b]
• Snow 2.0 [EJ03]

• Snow 3G [ETS06a]

• Sprout [AM15]

• Trivium [Can06]

2.2.5.2 Block ciphers

Block ciphers are the most common choice for designers trying to build a lightweight
symmetric algorithm. All those designed and published by academics I am aware of
are listed below, sorted by date of publication. Block ciphers followed by a dagger
“†” were published as part of a higher level construction such as an authenticated
encryption scheme submitted to the Caesar competition6 or a mac. Similarly, tweak-
able block ciphers are marked with a double dagger “‡”.

• 3-Way [DGV94]

• RC5 [Riv95]

• Misty1 [Mat97]

• Xtea [NW97]

• Aes [DR98]

• Bksq [DR00]

• Khazad [BR00b]

• Noekeon [DPVAR00]

• Iceberg [SPR+04]

• Hight [HSH+06]

• mCrypton [LK06]

• Sea [SPGQ06]

• Clefia [SSA+07]

• Deslx [LPPS07]

• Present [BKL+07]

• Mibs [ISSK09]

• Katan/Ktantan [CDK09]

• Gost revisited7 [PLW10]

• PrintCipher [KLPR10]

• Epcbc [YKPH11]

• Klein [GNL11]

• LBlock [WZ11]

• Led [GPPR11]

• Piccolo [SIH+11]

• Picaro [PRC12]

• Prince [BCG+12]

• ITUbee [KDH13]

6The project Caesar (Competition for Authenticated Encryption: Security, Applicability, and Ro-
bustness) aims at identifying the best authenticated ciphers. All submissions are listed on the following
web page: http://competitions.cr.yp.to/caesar-submissions.html.

7The “Gost cipher” has been a public Russian standard since 1994 when it was published in the stan-
dard GOST 28147-89. It is thus referred to as “GOST” in most of the literature, although the more recent
block cipher Kuznyechik described in Section 13.1.1 (p. 246) is also such a GOST standard. In GOST 28147-
89, the S-Boxes are not speci�ed. The version of this algorithm described in [PLW10] is technically covered
by this standard, but a speci�c set of S-Boxes is provided. It should not be mistaken for Magma [Fed15],
another modern update of the old Gost cipher aiming at lightweightness. Magma has been designed by
the Russian fsb and is described in Sections 2.2.6 (p. 42).

http://competitions.cr.yp.to/caesar-submissions.html
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• Twine [SMMK13]
• Zorro [GGNS13]
• Chaskey8 [MMH+14] †
• Pride [ADK+14]
• Joltik [JNP14a] † ‡
• Lea [HLK+14]
• iScream [GLS+14] † ‡
• LBlock-s [ZWW+14] †

• Scream [GLS+14] † ‡
• Lilliput [BFMT15]
• Rectangle [ZBL+15]
• Fantomas [GLSV15]
• Robin [GLSV15]9

• Midori [BBI+15]
• Simeck [YZS+15]
• RoadRunneR [BŞ16]

• Fly [KG16]

• Mantis [BJK+16] ‡

• Skinny [BJK+16] ‡

• Sparx [DPU+16a]

• Mysterion [JSV17]

• Qarma [Ava17] ‡

2.2.5.3 Hash functions

It is more di�cult to implement a lightweight hash function than a lightweight block
cipher. Indeed, they usually require a much larger internal state which is reasonable
on a desktop computer but would have a prohibitive cost on a lightweight device.
For example, Sha-3 uses a 1600-bit internal state which dwarfs the 64-bit block of
most lightweight block ciphers.

And yet, since a collision in the internal state leads to a collision in the �nal
digest, it has to have at least a size corresponding to the desired security level.

As an answer to this problem, several designers chose the use of a sponge con-
struction with a very small rate. Indeed, the internal state of a sponge is divided into
two distinct parts:

• the r -bit rate decides how fast the plaintext is processed and how fast the �nal
digest is produced, and

• the c-bit capacity determines the security level as for example a birthday colli-
sion search succeeds with a time complexity of roughly 2c/2 independently of
the digest size.

For example, using a capacity of 128 bits along with a rate of 8 bits, as done in some
versions of the hash functions listed below, minimizes the memory footprint at the
cost of a slower data processing.

All lightweight hash functions I am aware of are listed below. Sponge-based ones
are marked with a dedicated symbol: “※”.

• Armadillo [BDN+10]
• Blake2s/b [ANWOW13]
• Gluon [BDM+12] ※

• Lesamnta-LW [HIK+11]
• Photon [GPP11] ※
• �ark [AHMN10] ※

• SipHash [AB12]
• Spongent [BKL+11] ※
• Spn-Hash [CYK+12] ※

2.2.5.4 Dedicated Authenticated Encryption Schemes

Following the call for submissions of the Caesar competition, several lightweight
authenticated encryption schemes were proposed. Some of them rely on dedicated
block ciphers used with speci�c modes, in which case their underlying block cipher
is in the list above. However, other algorithms based on sponge transformation or
stream cipher-like construction were also proposed. These are listed below. As with
hash functions, sponge-based algorithms are marked with the symbol “※”.

8While Chaskey is a sponge-based mac, its authors proposed the used of the Chaskey Cipher, an
Even-Mansour construction using the sponge transformation of Chaskey as a public permutation.

9To prevent the invariant subspace attack targeting this cipher, a variant called Robin∗ with di�erent
round constants was proposed in [JSV17].
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• Acorn [Wu16]
• Ale [BMR+14]
• Asc-1 [JK12]
• Ascon [DEMS16] ※
• Fides [BBK+13]
• Hummingbird-2 [ESSS12]

• Ketje [BDP+16] ※

• Lac [ZWW+14]

• Norx32 [AJN16] ※

• Helix [FWS+03]

• Sablier [ZSX+14]

2.2.6 Algorithms from Government Agencies

Governmental agencies have published their own lightweight ciphers. The publica-
tion is often done via national standards. These ciphers are usually targeting local
usage but, due to the interconnection of the markets and the corresponding standard-
izing e�orts, these can end up being used outside of their expected zone of in�uence.

For example, Simon and Speck are two block ciphers designed by the American
National Security Agency (nsa) which were disclosed on eprint.iacr.org [BSS+13].
However, they might in the end be used outside of the usa as the nsa is lobbying
iso/iec to include them as part of the standard for “lightweight cryptography”, as
mentioned in Section 2.4.1 (p. 48). The designers of these algorithms were invited
to present these algorithms to the Design Automation Conference (dac) of 2015 but
their paper [BTCS+15] provides little insight into their process. In particular, it dis-
closes no information regarding their security analysis.

The Skipjack block cipher is in a similar position. The rationale behind its design
is not known. The only public information comes from the report written by exter-
nal cryptographers after two days spent at the nsa headquarters [BDK+93]. Their
comments and what my co-authors and I were able to reverse-engineer from the
speci�cation are discussed in Section 9.2 (p. 168).

While some of the design criteria used to build the S-Boxes of the Des [U.S99]
have eventually been published [Cop94], the exact generation process remains a
mystery.

Finally, the same can be said of the Russian lightweight block cipher Magma. It
is speci�ed as a part of the latest Russian standard for block ciphers, Gost R 34.12–
2015 [Fed15], which both describes this algorithm and the heavier Kuznyechik de-
scribed and thoroughly investigated in Chapter 13 (p. 245). Again, the rationale be-
hind these designs is not known. Their speci�cation merely discloses the algorithms,
not their design process and especially not the best cryptanalysis of their authors.

The stream cipher Zuc was designed by the Data Assurance and Communication
Security Research Center (DACAS) of the Chinese Academy of Science. It was pub-
lished directly as part of the 3GPP standard [ETS11]. This addition was caused by the
demand from the Chinese government to use Chinese algorithms when operating in
China. Zuc should in theory not be used while in other countries. Unlike in the cases
of the Russian and American algorithms, some information is provided regarding its
design. In particular, several modi�cations were made necessary by external crypt-
analysis which are described in [ETS11]. Nevertheless, the cryptanalysis (hopefully)
performed by its original designers is, to the best of my knowledge, still secret.

The public lightweight ciphers designed by government agencies are listed below.

• Des [U.S99]
• Magma [Fed15]

• Simon [BSS+13]
• Skipjack [U.S98]

• Speck [BSS+13]
• Zuc [ETS11] †
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2.3 Trends in Lightweight Design

Lightweightness can be seen as a set of speci�c design constraints. These are tack-
led di�erently by di�erent algorithms but some trends emerge when we look at the
evolution of lightweight block ciphers. These are particularly visible on two fronts:
the choice of the non-linear operations and the key schedule which are described
respectively in Section 2.3.1 (p. 43) and in 2.3.2 (p. 44). In Section 2.3.3 (p. 46), the fact
that fewer bad ciphers seem to be in use now than 15 years ago is discussed.

2.3.1 Non-Linear Operations

Non-linearity is a necessary property of any cryptographic primitive. It can be pro-
vided by S-Boxes, a type of function studied thoroughly in Part II (p. 133), or through
the use of non-linear arithmetic operations. S-Box-based algorithms can further be
divided into two categories. The �rst implements them using Look-Up Tables (lut)
and the second relies on bit-sliced implementations. As for arithmetic operations,
only modular additions are considered here, that is, primitives following the arx
paradigm. Although other operations are sometimes used, such as modular mul-
tiplication in the block cipher Idea [LM91] and the PC1 stream cipher, these are
extremely uncommon.

2.3.1.1 Lut-based

Lut-based algorithms use S-Boxes which are intended to be implemented using look-
up tables in software. Such functions are useful as they can o�er (near) optimal
cryptographic properties using only one operation. However, their implementation
requires storing all possible outputs which, for an 8-bit S-Box such as the one used
by the Aes, has a signi�cant cost. Furthermore, the table look-up is the operation
leaking the most information, as shown in [BDG16].

S-Boxes intended to be implemented using luts in software usually correspond
to a simple electronic circuit which can be e�ciently implemented in hardware, such
as the 4-bit S-Boxes used by Piccolo, Present and Skinny.

2.3.1.2 Bit-slice-based

Bit-slice-based algorithms also use S-Boxes but, in this case, the S-Box is supposed to
be implemented in a bit-sliced fashion: no table look-ups are required to evaluate the
S-Box layer. Instead, some bitwise operations such as and and xor are performed
on words of w bits, thus evaluating the S-Box in parallel w times.

S-Boxes implemented in this fashion are typically designed for this purpose.
Thus, they require only a limited number of logical operations: 4-bit ones usually
need only 4 ands during their evaluation which makes their software implementa-
tion particularly easy to mask. At the same time, they allow simple security argument
based for example on the wide trail strategy. A simple bit-sliced implementation is
also related — but is not equivalent to — a small area for a hardware implementation,
meaning that such algorithms can be expected to perform well in hardware as well.

Because of these properties, bit-sliced S-Boxes are a popular choice for the design
of lightweight algorithms, especially during the last 4 years. For example, all the
algorithms in the following list use such components.
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• 3-Way
• Ascon
• Fantomas
• Fly

• iScream
• Ketje
• Mysterion
• Noekeon

• Pride
• Rectangle
• RoadRunneR
• Scream

2.3.1.3 Arx-based

Arx-based algorithms rely on modular addition to provide non-linearity while word-
wise rotations and xor provide di�usion, hence the name: Addition, Rotation, xor.

The bits of highest weight in the output of a modular addition are highly non-
linear functions due to the propagation of the carry. However, the lower weight bits
retain a simple dependency. Furthermore, some di�erentials and linear approxima-
tions have probability 1, meaning that the structure of the linear part must be studied
carefully. In fact, as far as I know, our proposal Sparx presented in Chapter 7 (p. 117)
is the only arx-based primitive designed to be provably secure against di�erential
and linear attacks.

Modular addition is fairly expensive to implement in hardware, especially if the
size of the words is larger as this signi�cantly increases the length of the critical path.
On the other hand, it is extremely cheap in software. Not only does it consist in one
operation, it also uses fewer or no additional registers as it can often be performed
in place using the “+=” operator.

As a consequence, arx-based ciphers are among the best performers for micro-
controllers identi�ed using Felics. Some arx-based block and stream ciphers are
listed below.

• Chacha20
• Chaskey
• Hight

• Lea
• RC5
• Salsa20

• Sparx
• Speck
• Xtea

2.3.2 Key Schedule

The key schedule is the area where lightweight algorithms di�er the most from their
non-lightweight counterparts. Indeed, for algorithms intended to run on standard
computers, it is �ne to have a complex key schedule as it would typically be run only
once, the corresponding subkeys being subsequently stored. For lightweight algo-
rithms, the incurred cost in terms of ram or gate area is unacceptable. Furthermore,
it is common for lightweight algorithms to dismiss resilience against related key at-
tacks, a design decision which authorizes the use of much simpler key schedules.

Di�erent attitudes regarding related-key attacks are discussed in Section 2.3.2.1
(p. 45). Popular strategies for building simple key schedules are described in Sec-
tions 2.3.2.2 (p. 45) and 2.3.2.3 (p. 46).

Some recent proposals provide a tweak in addition to the secret key [LRW02]. It
is a public parameter which enables the use of more sophisticated modes of opera-
tion. In fact, most of these algorithms are parts of authenticated ciphers submitted to
the Caesar competition. However, an overwhelming majority of lightweight block
ciphers do not provide this functionality.
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2.3.2.1 On Related-Key A�acks

Some cipher designers claim resilience against related-key attacks while some other
algorithms are trivially vulnerable against such attacks. For example, the block ci-
pher Prince, whose round reduced versions are attacked in Chapter 4 (p. 73), has a
very simple related-key distinguisher because of its α-re�ection. On the other hand,
other algorithms explicitly give resilience against related-key as a design criteria.

Preventing related-key attacks is a more conservative choice. Whatever the set-
ting, from a security standpoint, being protected against such adversaries can only
be an advantage. And yet this resilience has a cost since it implies the use of more
rounds and/or more complex key schedules which lead to a performance degradation
particularly unwelcome in the lightweight setting. Furthermore, for devices using
a unique factory-de�ned key throughout their lifetimes, the probability of �nding
two devices with the appropriate key relation is small enough that it is of no practi-
cal concern. Similarly, if the protocols using the ciphers are properly implemented,
related-key attacks should not be possible.

The following algorithms were explicitly not designed to prevent related-key at-
tacks. Still, the approach used for Noekeon and Fly is a bit more subtle. Indeed, for
cases where related-key attacks might be of concern, the authors provide a modi�ed
key schedule. While normally the master key is simply xored in the state, as for the
ciphers in Section 2.3.2.2 (p. 45), the related-key protected version imposes that the
master key �rst go through several rounds of the round function so as to break any
pattern relating the keys.

• Fantomas
• Fly

• Mysterion
• Noekeon

• Pride
• Prince

• Zorro
• ...

Some designers prefer to make the most conservative choice by providing related-
key security. Some of the corresponding algorithms are listed below. These usually
employ a more complex key-schedule but, since they remain lightweight ciphers,
those can be evaluated “on the �y” cheaply. It means that the subkeys are obtained
by extracting bits from a key state which is updated in every round, just like the in-
ternal state of the block cipher. However, this update function is kept simple to limit
the performance overhead.

• Epcbc
• LBlock

• Sea
• Simon

• Skinny
• Sparx

• Twine
• ...

2.3.2.2 Even-Mansour and “Selecting” Key Schedules

It is popular for lightweight algorithms to use a key schedule which merely selects
di�erent bits of the master key in each round for use as subkey material along with
some round constants. If the master key of a block cipher is simply xored to the
internal state during each round along with a round constant, the key schedule can be
seen as a variant of the Even-Mansour construction [EM97]. Of course, it is possible
to use said construction directly, as is the case for the Chaskey cipher. It is also
possible to use di�erent chunks of the master key during encryption. For example,
as detailed in Section 9.2.1 (p. 168), Skipjack uses a 32-bit subset of its 80-bit master
key in each round. The subkeys therefore repeat themselves every 5 rounds. I call
such a key schedule a selecting key schedule since it merely selects some bits of the
master key for use as subkeys.
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The main advantage of such methods is that they require very little logic to com-
pute the round keys. Furthermore, they have no need for a key state getting updated
at each round which would be particularly expensive in hardware. This observation
is what lead the designers of the stream cipher Sprout, followed later by those of
Lizard and Plantlet, to �x the content of one of their registers to be the master key
without modifying it. In fact, the paper introducing Plantlet [MAM17] provides a
detailed analysis of the way a key stored in non-volatile memory can be accessed
and its impact on both performance and algorithm design. For example, it is better
to access master key bits sequentially, like in Skipjack and in Led, than to use master
key bits that are far apart to build a given round key.

Below, I list all ciphers using the master key in such a way that no key state
needs to be maintained. It encompasses the (iterated) Even-Mansour construction,
the “selecting” key schedules and the stream ciphers that do not modify their key
register. Stream ciphers are indicated by the “†” symbol.

• 3-Way
• Chaskey
• Des
• Fantomas
• Fly
• Gost revisited
• Hight

• iScream
• ITUbee
• Ktantan
• Led
• Lizard †
• Magma
• Midori

• Mysterion
• Noekeon
• Piccolo
• Plantlet
• Pride
• Prince
• RoadRunneR

• Robin

• Scream

• Skipjack

• Sprout †

• Xtea

• Zorro

The impact of such a key schedule in terms of gate area in hardware is extensively
discussed in the recent paper [MAM17] which introduced Plantlet.

2.3.2.3 Round Function Based

A simple strategy to have a substantial key schedule while minimizing its cost is
to reuse signi�cant parts of the round function to update the key state. The whole
round function can be used, as in Speck, or only parts of it, as in Sparx. Several
block ciphers using this principle are listed below. For Fly and Noekeon, only the
key schedule protecting against related-key attacks is concerned.

• Epcbc
• Fly

• Noekeon
• Sea

• Simeck
• Sparx

• Speck

2.3.3 No More Non-Standard Ciphers?

So far, I have discussed trends regarding algorithm design. But there is another trend
at a higher level: questionable ciphers such as those listed in Section 2.2.1 (p. 34) are
being phased out. Nowadays, the prevalence of the Aes means that using algorithms
such as A5/1 would be unacceptable. Not only new standards are concerned: previ-
ously existing standards such as Bluetooth have been amended to move away from
their previous ad hoc solutions (here, the E0 stream cipher) and towards more com-
mon choices (for Bluetooth, the Aes). The reason behind this change is probably
two-fold.

First, the lessons from the attacks targeting proprietary algorithms have likely
been learned. Thus, once these standards had to be replaced by more modern ones,
the cryptography used was updated at the same time.
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Second, the Aes likely played a signi�cant role. The fact that it performs decently
— even if not optimally — on a wide variety of platforms, means that it a priori con-
stitutes a satisfactory choice in most situations. As explained in Section 2.1.3 (p. 32),
the situation is unfortunately a bit more complicated but using this algorithm is nev-
ertheless a signi�cant step up from what was done before. As a consequence of this
versatility, the Aes has been formally standardized for use in most areas, as explained
in Section 2.4 (p. 47). Still, the time it took for the algorithms from Section 2.2.1 (p. 34)
to be phased out shows the importance of getting an algorithm choice right from the
start.

2.4 Lightweight Cryptography in the Wild

Several standards and libraries are aimed at use cases overlapping with those of
lightweight cryptography. These are listed in this section and summarized in Ta-
ble 2.3. Section 2.4.1 (p. 48) deals with iso/iec standards, Section 2.4.2 (p. 49) with
regional cryptographic ones, Section 2.4.3 (p. 49) with general purpose communica-
tion protocols run by low power devices and, �nally, Section 2.4.4 (p. 49) describes
several libraries speci�cally aimed at the IoT.

Type Name Lightweight algorithms standardized

iso/iec

29167 Aes-128, Present-80, Grain-128A
29192-2 Present, Clefia
29192-3 Enocoro, Trivium
29192-5 Photon, Lesamnta-LW, Spongent
18033-3 Aes, Misty1, Hight
18033-4 Snow 2.0

Regional

FIPS 185 (usa) Skipjack (now deprecated [BR15])
FIPS 197 (usa) Aes
Nessie (EU) Aes, Misty1

estream portfolio (EU) Grain, Trivium, Salsa20, Mickey
gost R 34.12–2015 (Russia) Magma

Protocols

GSM A5/1, A5/2, A5/3 (Kasumi)
3G Snow 3G, Zuc, Aes, Kasumi

Bluetooth E0, Aes
Bluetooth smart Aes

WEP RC4
WPA RC4
WPA2 Aes

Lora Alliance Aes
IEEE 802.15.4 (Zigbee) Aes

Embedded Lib.

Tinysec Skipjack (CBC), (RC5)
Minisec Skipjack (OCB)

mbedTLS (ciphers) Aes, RC4, Xtea, Blow�sh, 3-Des, Camellia
mbedTLS (hash functions) MD5, Sha-1, Sha-256, Sha-512

Table 2.3: Standards and libraries involving lightweight algorithms.
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2.4.1 Iso/iec cryptographic standards.

The International Organization for Standards (ISO) and the International Electrotech-
nical Commission (IEC) are tasked with issuing and maintaining standards regarding
information and communication technology.

Three of their standards are particularly relevant for lightweight cryptography.
The �rst is ISO/IEC 29167: Information technology – Automatic identi�cation and data
capture techniques, in particular parts 10, 11 and 13. Those deal with the symmetric
ciphers that should be used for securing “air interface communications”, that is, rfid
tags. These parts describe respectively Aes-128, Present-80 and Grain-128A. Other
parts deal with public key cryptography.

Another set of relevant iso/iec standards are those with number 29192 which
deal speci�cally with “lightweight cryptography”. The following algorithms are part
of this series of standards: the block ciphers Present and Clefia, the stream ciphers
Trivium and Enocoro, and the hash functions Photon, Spongent and Lesamnta-LW.
The criteria for algorithms to be considered for inclusion in this standard are listed
in the following quote from Annex A of said standard.

a) The security of the cryptographic mechanism. 80-bit security is
considered to be the minimum security strength for lightweight
cryptography. It is however recommended that at least 112-bit se-
curity be applied for systems that will require security for longer
periods (refer to SD12 for security strength references, as the pe-
riod of protection provided is determined by the security strength
as well as the computing power of the adversary who wishes to
break the algorithm.).

b) The hardware implementation properties (for hardware targeted
mechanisms). The chip area occupied by the cryptographic mech-
anism (reduced compared to existing ISO standards) and the en-
ergy consumption. (clear advantage over existing ISO standards,
e.g. ISO/IEC 18033, ISO/IEC 9798, ISO/IEC 11770).

c) The software implementation properties (for software targeted mech-
anisms). In particular, the code size and the required RAM size.
(Less resource requirements compared to existing standards on the
same platform are considered as potentially lightweight for soft-
ware environments).

d) The nature of any licensing issues a�ecting the cryptographic mech-
anism.

e) The maturity of the cryptographic mechanism.
f) The generality of the lightweight properties claimed for the crypto-

graphic mechanism (i.e. the more independent the claimed lightweight
property is from implementation in a speci�c technology, the bet-
ter, as it will be usable by a wider audience).

At the time of writing, the block ciphers Simon and Speck designed by the nsa were
being considered for inclusion in this standard.

Finally, standard 18033 describes “Encryption algorithms”. Some of those can be
considered lightweight, such as the block ciphers Aes, Misty1 and Hight (in 18033-
3) and the stream cipher Snow 2.0 (in 18033-4).
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2.4.2 Regional Cryptographic Standards

Several regional standards deal with cryptography in general and some of the al-
gorithm speci�ed in them can be considered to be lightweight. In the usa, crypto-
graphic standards are handled by the National Institute for Standards and Technol-
ogy (nist) which famously standardized the Aes after an open competition. This
institution is currently working towards a standard for lightweight cryptography, as
explained in a detailed report [MBTM16]. Their intention is to agree upon several
pro�les corresponding to di�erent algorithms, use cases and constraints. Then, pos-
sibly di�erent algorithms will be standardized for use in each of these pro�les. The
legacy cipher Skipjack was a nist standard but it is now deprecated.

In Europe, the Nessie project selected several block ciphers including the Aes
and Misty1. Its failure to �nd good stream ciphers lead to the estream competition.
At its end, a portfolio of stream ciphers was published. It is divided into two pro�les,
one software oriented and one hardware oriented. Several of those stream ciphers
can be considered to be lightweight: Trivium, Grain, Mickey and Salsa20.

Finally, the latest Russian standard for block ciphers contains the 64-bit block
cipher Magma.

2.4.3 Communication protocols

Several communication protocols specify a form of encryption which, given the na-
ture of the devices running them, have to be lightweight. For example, cell phones
are not nearly as powerful as computers, although Moore’s law and modern smart-
phones complicate this picture.

The GSM and 3G networks deal with cell phone communication. They specify
that communications should be encrypted using A5/1, A5/2, A5/3 (Kasumi in counter
mode), Snow 3G, Zuc or Kasumi, the latter being a variant of Misty1.

Bluetooth connects devices over short distances. The original speci�cation re-
quired the stream cipher E0 but it was later replaced by the Aes. A more recent
variant called “Bluetooth smart” aims at lower energy consumption. It also relies on
the Aes for its security.

Modern WiFi connections are secured using wpa or wpa2. The former uses RC4
while the latter moved on to the Aes. The previous standard was wep, which used
RC4, but practical attacks exist against it.

Several protocols have recently been proposed to connect wireless IoT devices to
one another. The one put forward by the Lora Alliance uses the Aes. The same is
true for ieee 802.15.4, which is used e.g. in Zigbee.

2.4.4 IoT Oriented Libraries.

Let us look at two libraries intended for embedded devices. The �rst we consider
is tinysec10 which is used in the security-related stack of the TinyOS operating
system. It uses Skipjack in cbc mode, although RC5 was also considered and found
to be quite e�cient [KSW04]. Its successor is minisec11 and it also uses Skipjack
but in ocb mode. The library mbedTLS which also targets embedded devices but is
not tied to TinyOS o�ers several algorithms, namely the ciphers Aes, RC4, Xtea,

10It is described in the wiki of the TinyOS operating system: http://tinyos.stanford.edu/
tinyos-wiki/index.php/TinySec.

11See http://tinyos.stanford.edu/tinyos-wiki/index.php/MiniSec.

http://tinyos.stanford.edu/tinyos-wiki/index.php/TinySec
http://tinyos.stanford.edu/tinyos-wiki/index.php/TinySec
http://tinyos.stanford.edu/tinyos-wiki/index.php/MiniSec
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Blow�sh, 3-Des and Camellia as well as the hash functions MD5, Sha-1, Sha-256
and Sha-512.

2.5 Two Faces for Lightweight Crypto

Providing a formal de�nition of “lightweightness” is a di�cult task because di�erent
algorithms corresponding to di�erent sets of requirements claim to fall under its
umbrella. In this section, I argue that the area of lightweight should be split into two
distinct �elds. The �rst is ultra-lightweight cryptography, described in Section 2.5.1
(p. 50). The second is IoT cryptography and is discussed in Section 2.5.2 (p. 52).

As evidenced by all the primitives listed in Section 2.2 (p. 34), a lot have been
proposed: the list in Section 2.2.5.3 (p. 41) contains only block ciphers published by
academics and it contains 47 entries! More importantly, even within this a priori
narrower subset, algorithms di�er greatly. Let us look at two extreme cases:

• Ktantan encrypts blocks consisting of at most 64 bits using an 80-bit key and
254 very simple rounds, while

• Lea uses 32-bit modular additions, xors and rotations to encrypt 128-bit blocks
with keys of length 128, 192 or 256.

Both of these algorithms would be considered lightweight, and rightfully so: the
circuit needed to evaluate the non-linear function of Ktantan consists only in a
few gates while Lea is one of the top performers in the Felics triathlon. And yet, a
category so wide that two algorithms so di�erent both �t comfortably in it must be
of little use in terms of classi�cation.

The distinction between these block ciphers goes beyond their intended target —
although Ktantan is indeed hardware-oriented and Lea software oriented. In fact,
their di�erences highlight another gap: what security level is desirable in the context
of lightweight cryptography? There are two broad schools of thought on this matter.

• Lightweight algorithms are intended to run on cheap devices securing cheap
objects, for example rfid tags used to track an inventory of T-shirts. What
would be the point in paying for a high level of security in this context? Indeed,
the consequences of an adversary successfully attacking these tags would be
local at worst.

• On the other hand, IoT devices are, by de�nition, connected to the internet.
It implies that they can be used e.g. for Denial-of-Service attacks, as has al-
ready happened. In this context, can we a�ord not to have a maximum level of
security?

Below, I will argue that both points of view are correct. Rather, the mistake lies
in lumping both use cases together.

2.5.1 Ultra-Lightweight Crypto

As its name indicates, this type of algorithm deals with the most constrained use
cases. On top of the power of the devices, what de�nes this �eld is also their con-
nectivity.
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For example, rfid tags used for challenge-response based access control may
not need full-on 256-bit security against adversaries having access to the full code-
book. As the throughput of these devices is very limited, it makes sense to discard
attacks requiring too much data. Similarly, should the secret key used by this card be
recovered, the consequences would be restricted geographically to whatever place
this card was used in. It would be the same as a physical key being lost and revoking
the access of this card would be the same as changing door locks. In this context,
“weak” cryptography with only 80-bit keys may be understandable. However, a great
emphasis on side-channel protection is likely to be necessary in many cases.

De�nition 2.5.1 (Ultra-Lightweight Crypto). An ultra-lightweight cryptographic al-
gorithm is one running on very cheap devices which are not connected to the internet,
which are easily replaced if necessary and have a limited shelf-life.

Possible use cases for such algorithms include rfid tags, Rain [Rob16] tags, smart
cards, remote car keys, memory encryption... Besides, many algorithms already �t
this bill such as Grain, Ktantan, Photon, Present, Prince, Skinny and Trivium to
name a few.

Because the implementation constraints are particularly stringent in this context,
some speci�c trade-o�s can be relevant. For example, Prince is unlikely to make it
to the top of the Felics triathlon because its design was aimed at low-latency in
hardware. Lower block sizes are also acceptable.

Here are some properties an ideal ultra-lightweight algorithm and its implemen-
tation may have.

• Type: block/stream cipher for versatility and small memory footprint.

• Block size: 64 bits (or more if possible)12;

• Key size: at least 80 bits, more if possible;

• Relevant attacks: since the devices running ultra-lightweight algorithms have
very little computing power, they cannot be expected to produce large amounts
of data. Thus, it makes sense to only consider attacks with rather low data
complexity.13

• sca resilience: countermeasures must be easy to implement by design.

• Use of non-volatile memory: using non-volatile memory to store the key is
cheaper, even though it may require extra care when designing the algorithm.

• Functionality: only one type of operation per device — for example, the block
cipher used on a given smart card will only be used in a challenge-response
protocol. Thus, there is no need for a hash function or a mac.

• Flexibility: it must be possible to optimize any of the relevant quantities. In
other words, if a low latency is needed, the algorithm should allow it at the
cost of a possible increase in area or decrease in throughput. Similarly, a low
area should be possible, etc. To quote [Rob16] (emphasis his): “�exibility gives
the opportunity to �nd the right trade-o�”.

12In [Rob16], Robshaw explains that even Rain rfid tags can a�ord blocks of 64 bits: “there is no
demand for very short block lengths (e.g. 48 bits)”.

13This limitation has already been suggested by the designers of Prince when they issued the “Prince
challenge”. It is further mentioned in Chapter 4.
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The ecosystem of ultra-lightweight algorithm can be expected to be diverse. While
a unique algorithm capable of �tting in every niche of the design space would be
welcome, it is likely that di�erent algorithms are used in di�erent cases.

2.5.2 IoT Crypto

The other sub�eld of lightweight cryptography is IoT cryptography. It is oriented
toward the IoT in its most literal sense, that is, it deals with objects connected to the
internet. While remaining computationally weak compared to a desktop computer
or a higher end smartphone, these devices perform multiple tasks. Accordingly, the
primitive they use must be versatile: unlike ultra-lightweight devices which only
need one cryptographic operation, IoT ones need to both encrypt and authenticate
their communications with their user, authenticate the updates from their manufac-
turers, etc.

Another key di�erence is the importance of their security. The consequences are
further reaching in the case of IoT ones due to their network connection. For ex-
ample, the attacks against the“smart” light bulbs presented in [ROSW16] can spread
from one light bulb to the next. Furthermore, it could be used e�ectively to jam the
WiFi signal in a vast geographical area because of the overlap between the frequen-
cies involved. Similarly, an insecure IoT-enabled device can be used in a DoS attack to
take down websites. As we can see, the security level needed in those cases is much
higher: 80-bit keys are not acceptable in this context, at least 128 bits are necessary.

De�nition 2.5.2 (IoT Crypto). An IoT cryptographic algorithm is one running on a
low-power device connected to a global network such as the internet.

Unlike in the ultra-lightweight case, there should ideally be only one algorithm
or one suite of algorithms for all IoT devices: as they are all networked, they must
all use the same primitives. Since some of these devices will run in conditions in
which an attacker may physically access them, such as outdoor security cameras, it
is crucial that sca counter-measures be easy to implement.

Because IoT devices perform multiple tasks, the cryptographic operations will be
performed by their multi-purpose micro-controllers rather than an electronic circuit.
Thus, software e�ciency is much more important in this case. Several lightweight
algorithms have been explicitly designed for software rather than hardware imple-
mentation: Chaskey, Fly, Lea, Pride, Sparx...

In light of all this, let us list some of the properties such an IoT algorithm should
have.

• Type: block cipher or sponge. In the IoT case, the device must be able to per-
form many di�erent operations so a versatile primitive is needed. Furthermore,
as the intended target is a micro-controller, the idea of “burning” the key into
the circuit does not make sense. Instead, the key will have to occupy some reg-
isters which may as well be used to build the larger internal state of a sponge.

• Block size: 96 bits14 is the minimum, higher sizes must be preferred. Ideally,
the internal state and the key — if any — should all �t into the registers of a
typical micro-controller.

14A block size of 96 bits is such that the data complexity of an attack based on the birthday paradox is
216 times higher than for a 64-bit block. Attacking 64-bit block cipher is practical, as illustrated by [BL16],
but multiplying the data complexity of such attacks by 216 is su�cient to have some security margin.
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• Key size: at least 128 bits.

• Relevant attacks: the security model must be more conservative than in the
ultra-lightweight case. For example, limiting the amount of data available to
the adversary would be too restrictive.

• sca resilience: countermeasures must be easy to implement by design.

• Use of non-volatile memory: the use of non-volatile memory is less relevant in
this context as the main target is software implementation.

• Functionalities: encryption, authentication, hashing... Such devices commu-
nicate non-trivial data with di�erent actors, which means that they require
several cryptographic functionalities.

• Flexibility: the algorithm must be decently e�cient on a wide range of micro-
controllers. Hardware e�ciency is less important but it may help with hard-
ware acceleration.

2.6 Final Remarks

Lightweight cryptography has received signi�cant attention in the last two decades
and even more so in the last 5 years. The need for such algorithms is well established,
as evidenced by the nist e�ort to standardize such algorithms and the short-comings
of the Aes in this context.

Ultra-Lightweight IoT

Block size 64 bits ≥ 128 bits
Security level ≥ 80 bits ≥ 128 bits

Relevant attacks low data/time complexity Same as “regular” crypto
Intended platform dedicated circuit (asic, rfid...) micro-controllers, low-end cpus

sca resilience important important
Functionality one per device, e.g. authentication encryption, authentication, hashing...

Connection to a central hub to a global network

Table 2.4: A summary of the di�erences between ultra-lightweight and IoT cryptog-
raphy.

However, the spectrum of use cases encompassed by “lightweightness” has be-
come too wide. Thus, I propose to split the �eld of lightweight cryptography into
two areas corresponding to two di�erent types of requirements: ultra-lightweight
and IoT cryptography, whose particularities are summarized in Table 2.4. There are
of course common criteria between those cases such as the emphasis that needs to
be put on resilience against sca. Still, I think that the di�erence between the two is
relevant. In particular, I think this separation is necessary because of the di�erent
levels of security they demand: connecting a family of devices to a global network
and protecting them with an 80-bit key is not a desirable situation, and yet it is what
may happen if an ultra-lightweight algorithm is used where an IoT one is needed.





Chapter3

Vanishing Di�erences in Gluon

Consider a function д : S → S where S is some �nite space of size 2N and suppose
that it is not a permutation, i.e. that it has collisions. It is well known that for a ran-
dom д the complexity of a collision search is of 2N /2 calls to д. However, not only the
collision search complexity but also some related problems are not well studied when
collisions have a certain structure, which is the case in several designs [BD08, Gol97].
It might be clear that iterating such a function may lead to an entropy loss, but again,
the scale of this loss and its implications on the security of stream ciphers and hash
functions is not well known or is underestimated. In this chapter, we introduce a
particular parameter, called the Collision Probability Spectrum (cps), which is based
on the number of solutions of the following equation

д(a + y) = д(a) (3.1)

and investigate its consequences over the iterated images and preimages of S by д.
We assume that the composition of two such functions has certain properties, which
is formalized as an independence assumption. For a large class of mappings two
important facts are proved in Theorem 3.1.2.

• First, the size of the iterated image of д is inversely proportional to the number
i of iterations:

|дi (S) | ∼
|S|
κ
2 · i
,

where κ depends on the cps and where i has to be smaller than
√
|S|. Other-

wise, the result does not hold because of the cycles in the functional graph.

• Second, an element y ∈ дi (S) is the root of a collision tree consisting of ele-
ments xl such that any of д(xl ),д2 (xl ), . . . ,д

i (xl ) is equal to y. The average
size of this tree is νi :

νi ∼
κ

4 · i
2,

with the same restriction i <
√
|S|.

These phenomena are summarized in Figure 3.1. The dots represent elements of
S and there is an oriented edge from x to y if д(x ) = y. Here, д(a + x ) = д(a) always
has exactly 3 solutions.

Using this framework, we construct an attack on Gluon-64. We �nd collisions
for the update function with the help of a sat-solver and demonstrate a preimage

55
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S

д(S)

д2 (S)

д3 (S)

д4 (S)

Figure 3.1: Collision trees and output shrinkage of iterative non-injective functions.

attack of complexity 2105 for a message ending with 1 GByte of zeros, which violates
the claimed preimage resistance level of 128 bits.

This chapter is organized as follows. We introduce our theoretical framework
in Section 3.1 and discuss its application to existing primitives. We investigate the
security of t-sponge against collision and preimage search in Section 3.3. Finally, in
Section 3.4, we obtain inner-collisions of the update function of Gluon-64 with the
help of a sat-solver and show a preimage attack.

But �rst, let us put this work into context by listing some previous works on
similar topics. Bellare and Kohno [BK04] studied how the number of preimages to
д(a) a�ects the complexity of the collision search with the notion of balance of a
function. In [FO90], Flajolet and Odlyzko studied several characteristics of random
mappings, in particular the distribution of preimage sizes, the cycle size and the
size of the iterated image. Their result was applied by Hong and Kim [HK05] to
the Mickey [BD08] cipher. Indeed, they found experimentally that the size of the
iterated images of this function was essentially the size of the space divided by the
number of iterations, a behavior which they showed experimentally to correspond to
the prediction of Flajolet et al.. However, the resulting attacks were found to be less
e�cient than a simple collision search [Röc08], though they allow a time/memory
trade-o�. The collision trees implied by our �ndings were observed in the stream
cipher Mickey by Helleseth et al. in [HJKK13]

This chapter focuses on the macroscopic e�ects of iterating a function with inner-
collisions. A recent work by Daemen [Dae16], published after the paper this chapter
is based on [PK15], explores the local e�ects of these inner-collisions using the Walsh
spectra of such lossy functions.

3.1 Theoretical Framework

In this section we introduce a model of random functions and highlight its di�erence
with the usual approach. We then give several properties of the (iterated) images and
preimages of an element by such functions.

3.1.1 Collision Probability Spectrum and Function Model

De�nition 3.1.1 (Collision Probability Spectrum). Let S be a �nite space and let
д : S → S be a function. We denote γk the probability that the following equation has
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exactly k solutions for a ∈ S picked uniformly at random in S:

д(a + x ) = д(a), (3.2)

so that
γk = Pr

[
#{x ∈ S,д(a + x ) = д(a)} = k | a $

← S

]
(3.3)

The solutions x of this equation are called vanishing di�erences. The set of all the
elements a of S such that Equation (3.2) has exactly k solutions is denoted Vk . Finally,
the set Γ = {γk }k≥1 is the Collision Probability Spectrum (cps) of д.

An equivalent de�nition of the cps is that it is the probability distribution of
the number of solutions of Eq. 3.2. We now make some remarks regarding these
de�nitions:

• Since 0 is always a solution of Equation (3.2), we have that γ0 = 0.

• If д is a permutation, then Γ(д) = {γ1 = 1,γk = 0 for k > 1}.

• The input space can be partitioned into S = ⋃∞
k=1Vk and the output space can

be partitioned into д(S) = ⋃∞
k=1 д(Vk ). Both are disjoint unions.

• The size of д(Vk ) is |д(Vk ) | = |S| · γk/k because to each element in д(Vk )
correspond k elements in Vk (see Figure 3.2). As a consequence,

|д(S) | = |S| ·
∞∑
k=1

γk
k

V1 V2

д(V1) д(V2)

S

д(S) S\д(S)

Figure 3.2: The e�ect of д with cps {γ1 = γ2 = 1/2} on S.

3.1.2 Composition of Functions with Known CPS

The most interesting application of our theory is the study of iterative constructions
where the iterated function has some known cps. However, to make meaningful and
correct statements about composition of such functions, some independence must
be assumed.

Assumption 3.1.1 (Independence Assumption). Let д be a function with cps Γ. Then
there is no correlation between the events x ∈ Vj and д(x ) ∈ Vk for any j,k .

This assumption, as we will see, holds for a few (but not for all) real primitives.
For the rest of the chapter, we implicitly assume that it holds unless stated otherwise.
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De�nition 3.1.2. Suppose д is a function on S. Then `i de�ned as

`i =
|S|

|дi (S) |

is called the shrinking ratio of д.

Our �rst theorem shows how to compute the shrinking ratio of the composition
of two functions with known and possibly di�erent cps.

Theorem 3.1.1. Let д and д′ be functions with cps Γ = {γk }k≥1 and Γ′ = {γ ′k }k≥1,
respectively. Then the shrinking ratio of the composition д ◦ д′ is computed as follows:

`1 (д ◦ д
′) =

( 1
`1
−

∞∑
k=1

γk
k

(
1 − 1
`′1

)k )−1
.

In particular, when д′ = дi :

`i+1 =
( 1
`1
−

∞∑
k=1

γk
k

(
1 − 1
`i

)k )−1
.

Full proof of Theorem 3.1.1. We shall look at the e�ect multiple iterations of д have
over sets {x0, ...,xk } where д(x j ) = д(x j′ ) for all j, j ′.

Let x0 be in д′(S) and such that there are k other elements {x1, ...,xk } such that
д(x0) = д(x j ), i.e. x ∈ Vk+1.

As every element in S is in д′(S) with probability only 1/`′1, the number of el-
ements colliding with x in д′(S) follows a binomial distribution with parameters
(m,k,1/`′1) because we consider that the outputs of д′ are uniformly distributed over
S and that they are independent of one another. Thus, there arem elements colliding
with x ∈ д′(S) with probability

(
k
m

)
(1/`′1)m (1−1/`′1)k−m . LetCm+1 be the probability

that д(x0 + x ) = д(x0) hasm non-zero solutions in д′(S) knowing that x0 ∈ д
′(S):

Cm+1 =
∞∑

k=m

γk+1

(
k

m

) ( 1
`′1

)m (
1 − 1
`′1

)k−m
. (3.4)

Furthermore, we have:

`′1
`1 (д ◦ д′)

=
|(д ◦ д′) (S) |

|д′(S) |
=

∞∑
m=1

Cm

m
,

and so:

`′1
`1 (д ◦ д′)

=

∞∑
m=1

1
m

∞∑
k=m−1

γk+1

(
k

m − 1

) ( 1
`′1

)m−1 (
1 − 1
`′1

)k−m+1

=

∞∑
k=0

k∑
m=0

γk+1
m + 1

(
k

m

) ( 1
`′1

)m (
1 − 1
`′1

)k−m
.
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This expression can be simpli�ed because
(
k
m

)
/(m + 1) =

(
k+1
m+1

)
/(k + 1), so that:

`′1
`1 (д ◦ д′)

=

∞∑
k=0

γk+1
k + 1

k∑
m=0

(
k + 1
m + 1

) ( 1
`′1

)m (
1 − 1
`′1

)k−m
=

∞∑
k=0

γk+1
k + 1

k+1∑
m=1

(
k + 1
m

) ( 1
`′1

)m−1 (
1 − 1
`′1

)k−(m−1)

=

∞∑
k=0

γk+1 · `
′
1

k + 1

( k+1∑
m=0

(
k + 1
m

) ( 1
`′1

)m (
1 − 1
`′1

)k+1−m
−

(
1 − 1
`′1

)k+1)
.

Note that ∑k+1
m=0

(
k+1
m

) (
1
`′1

)m (
1 − 1

`′1

)k+1−m
= 1 (binomial theorem), so in the end we

obtain:

1
`1 (д ◦ д′)

=

∞∑
k=0

γk+1
k + 1

(
1 −

(
1 − 1
`′1

)k+1)
=

∞∑
k=1

γk
k

(
1 −

(
1 − 1
`′1

)k )
=

1
`1
−

∞∑
k=1

γk
k

(
1 − 1
`′1

)k
,

which proves the theorem. �

Using this theorem, we can give the asymptotic behavior of `i and of the size of
the collision trees as i increases while remaining small enough so that д(x ) is not on
a cycle. The results stated below have been checked experimentally on the functions
for which the independence assumption presumably holds. But �rst, we need two
more de�nitions.

De�nition 3.1.3. Suppose д is a function on S with cps Γ. Then

• κ (д) denotes the collision average of д. It is the average number of non-zero
solutions of Equation (3.2): κ (д) =

∑
k≥1 γk · k − 1.

• νi (д) denotes the average tree size of д. It is the average number of elements in
a collision tree rooted in дi (S). More formally, it is the average number of pairs
(xl ,kl ) ∈ S × [1,i] such that дkl (xl ) = y for y ∈ дi (S).

Theorem 3.1.2. Let д be a function with cps Γ, then for i <
√
|S| the shrinking ratio

and the average tree size are approximated as follows for large enough i :

`i ∼
κ

2 · i, νi ∼
κ

4 · i
2.

Proof. Since `i is obviously increasing (the output space keeps shrinking and we keep
i < 2n/2 to remain away from the main cycle) we have, for large enough i:

1
`i+1
=

∞∑
k=1

γk
k

(
1 −

(
1 − k

`i
+
k (k − 1)

2 · `2i
+ o(`−2

i )
))

=
1
`i

∞∑
k=1

γk
(
1 − k − 1

2 · `i
+ o(`−1

i )
)
,
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so that we have:

`i
`i+1

=

∞∑
k=1

γk −
∞∑
k=1

γk · (k − 1)
2 · `i

+ o(`−1
i ) = 1 − κ/2

`i
+ o(`−1

i ) ,

which in turn implies

`i+1 =
`i

1 − κ/2
`i
+ o(`−1

i )
= `i +

κ

2 + o(1),

so that `i = κ
2 · i + o(i ). This observation concludes the proof of the behavior of `i .

Let us now look at νi . There are on average `w elements reaching y ∈ дw (S) in
exactly w iterations. Since дi (S) ⊆ дw (S) for all w ≤ i , we have that y ∈ дi (S) is
reached, on average, by:

• `1 elements in exactly 1 iteration,

• `2 elements in exactly 2 iterations,

...

• `i elements in exactly i iterations.

Overall, there are on average ∑i
w=1 `w ≈

∑i
w=1 (κ/2)w ≈ (κ/4)i2 elements reaching

y ∈ дi (S) after at most i iterations of д. �

Finally, we de�ne the following quantities in the same way as Flajolet et al. [FO90].

De�nition 3.1.4. We call cycle length and tail length, denoted respectively µ and λ,
the average smallest values such that

дλ (x ) = дλ+µ (x )

for x drawn uniformly at random in S.

To better understand the behavior of these quantities, we made some experi-
ments. For every N between 12 and 17 included, we generated 100 functions with a
given cps and, for each of them, we picked 40 elements at random in FN2 and com-
puted λ/2N /2 and µ/2N /2 for each of them. The average of these values for cpss
corresponding to di�erent values of κ are given in Fig. 3.3. As we can see, both
λ/2N /2 and µ/2N /2 are almost equal to

√
π/(8κ). These results lead us to the follow-

ing conjecture.

Conjecture 3.1.1. Let д be a function of S with cps Γ. Experimentally, we found the
following values for the tail length λ and the cycle length µ:

λ ∼

√
π

8 · κ |S|, µ ∼
√

π

8 · κ |S|.
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κ

cycle length
trail length
Theory

Figure 3.3: Average value of λ/2N /2 and µ/2N /2 for di�erent κ.

3.2 Other properties of the CPS

The cps of a function is preserved by some transformations as shown in Lemma 3.2.1.
The collision average of д1 ◦ д2 has a simple expression given in Lemma 3.2.2.

Lemma 3.2.1. Let д be a function with cps Γ, P : S → S be a permutation and
J : S → S be injective over д(S). Then д′ = J ◦ д ◦ P has cps Γ as well.

Proof. Since J is injective over д(S), we have д′(y) = д′(a) if and only if д(P (y)) =
д(P (a)). Since the events “д′(y) = д′(a) has k solutions” and “д(x ) = д(P (a)) has k
solutions” have the same probability, namely γk , we see that д and д′ have the same
cps. �

Lemma 3.2.2. Let д1 have collision average κ1 and д2 have collision average κ2. Then
д1 ◦ д2 has collision average κ1 + κ2.

Proof. Suppose that (д2 ◦ д1) (x ) = (д2 ◦ д1) (y) with x , y. There are two distinct
ways this could happen:

• if д1 (x ) = д1 (y), which happens in κ1 cases on average,

• or if д1 (x ) , д1 (y) but д2
(
д1 (x )

)
= д2

(
д1 (y)

)
. There are on average κ2/`1

solutions for д2 (X ) = д2 (Y ) in д1 (S) where `1 is the shrinking ratio of д1.
However, each of these solutions is the image of `1 elements of S by д1.

Overall, the equation has κ1 + `1 ·κ2/`1 = κ1 +κ2 solutions, which proves the lemma.
�

Lemma 3.2.2 had to hold at least for д1 = д2 because otherwise we would have
had a contradiction with the asymptotic behavior of `i described in Theorem 3.1.2.

3.2.1 Independence Assumption in Practice

In this Section, we investigate some results from the literature about particular func-
tions and see how relevant our model is. A summary of this Section is given in
Tab. 3.1.
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Function κ `1 `i /i νi /i2 Reference for the cps

Mickey’s update function 0.625 1.407 2−1.7 2−2.7 [TBA+13]
Random mapping 1 1.582 2−1 2−2 [FO90]
Gluon-64’s update function 6.982 3.578 21.8 20.8 Section 3.4.2

Table 3.1: Characteristics derived from the cps of some functions.

3.2.1.1 Random Mappings

The authors of [FO90] study random mappings and give the probability that some
x ∈ S has r preimages by a random mapping д. From this we deduce that the cps
of a random function is given by the Poisson distribution with λ = 1: Γ = {e−1/(k −

1)!}k≥1. Our framework impliesκ = 1, `1 = 1/(1−e−1) and `i+1 = 1/
(
1−exp(−1/`i )

)
.

These results are coherent with those of [FO90] which provides a good sanity check
for our approach.

Furthermore, the authors of [HK05] observed that log2 (`i ) ≈ log2 (i ) − 1, which
also corresponds to κ = 1 . Finally, the trail and cycle length given in Conj. 3.1.1
match those predicted by [FO90] if we replace κ by 1.

3.2.1.2 A5/1

The update function of A5/1 does not satisfy the independence assumption. The
author of [Gol97] computed its cps and established that `1 = 1.6 and κ = 1.25.

If the assumption held, then the probability for an element in S to be in д100 (S)
would be about 2−6, which is very di�erent from the 2−2.5 actually observed by
Biryukov et al. [BSW01]. The reason is that the update function A5/1 may keep
one of its three LFSR’s untouched, which means that x ∈ Vj and д(x ) ∈ Vk are not
independent events in its case.

3.2.1.3 MICKEY

The update function of the mickey [BD08] stream-ciphers (v1 and v2) �ts our model.
Hong and Kim [HK05] performed some experiments on the �rst version of mickey
and, in particular, estimated the size of д2k (S) for several values of k . Their results
are coherent with our model. For instance, they observed that log2 (`i ) (which they
denote by EL( f i )) is approximated as loд2 (`i ) ≈ log2 (i ) − 1.8. The constant term 1.8
implies κ/2 ≈ 2−1.8.

In turn, from the cps values computed in [TBA+13] (actually, the values γk/k) we
obtain the theoretical value κ = 0.625, which corresponds to a di�erence of about 7%
with the experiments in [HK05].

3.3 Improved Collision and Preimage Search

In this section we explore generic collision and preimage search methods against
functions with �xed collision spectrum.

3.3.1 Basic Collision Search

First, we reformulate the result from Bellare and Kohno [BK04] with our notation.
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Theorem 3.3.1 ([BK04]). Let д be a function with CPS Γ, and let κ be its collision
average. Then the birthday collision attack on д requires about

Q =

√
|S|

κ + 1 .
(3.5)

queries to д.

The original paper [BK04] used the parameter balance of д, denoted µ (д), which
is computed as

µ (д) = log |д (S) |
(

|S|2∑
y∈S |д−1 (y) |2

)
(3.6)

If we know the cps of д, the balance can be expressed as follows:

µ (д) ≈ 1 −
log2

( ∑∞
k=1 k · γk

)
+ log2

( ∑∞
k=1 γk/k

)
log2

(
|S|

) . (3.7)

If Conjecture 3.1.1 holds, then the memory-less collision search based on Floyd’s
cycle �nding algorithm should be

√
κ as fast as in the case of a random function.

3.3.2 Collision A�acks on T-Sponges

Now we demonstrate that the entropy loss caused by collisions in the update func-
tion of a t-sponge construction, though observable, can be mitigated by a large rate
parameter. For a remainder on the t-sponge construction, see Section 1.2.1.3. Here,
we denote a sponge-based hash function by H : F∗2 → F

r j
2 , the internal state space

by S = Fr+c2 , and the update function by д : S → S.

3.3.2.1 Collision Search in T-Sponges

The following theorem shows that to get a signi�cant speed-up in the collision search,
the collision average κ should be at least of the same magnitude as 2r .

Theorem 3.3.2. Letд be a randommapping from Fr+c2 with cps Γ. LetH be a t-sponge
of capacity c and rate r updated with д. Then the probability of success of a brute-force
collision attack on H is

P =
Q2

2c+1 ·
(
1 + κ − 1

2r
)

where Q is the number of queries to д.

For a completely random mapping we have κ = 1, so that the theorem has the
same form as in [BDPVA07].

Proof. Our proof is a modi�ed version of the one used by Bertoni et al. in the paper
where they introduced the sponge construction [BDPVA07]. In particular, we use
the same terminology: we call the elements of Fc+r2 “nodes” and we partition the
space according to the value of the bits in the capacity to obtain 2c “super-nodes”,
each containing 2r nodes. There is an oriented edge from node x to node y if and
only if y = д(x ). Finding a collision in H boils down to �nding two di�erent paths in
this graph starting from points in the super-node with capacity zero to an identical
super-node.
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We shall study the fan-in and the fan-out of these super-nodes, the fan-in of a
super-node being the number of edges going to it and the fan-out the number of edges
going out of it. In this framework, the fan-out of each super-node is 2r . However,
the number of edges going in each super-node is not constant. Consider some super-
node Y made of nodes y1, ...,y2r . Each yi has a fan-in F (yi ) so that the F (yi )’s are
independent and identically distributed random variables with the distribution

Pr [F (yi ) = k] = γk
k

if k ≥ 1 , Pr [F (yi ) = 0] = 1 − 1
`1

which has a mean equal to 1 and a variance equal to κ.
The value of the fan-in of the super-node Y is the sum of the fan-ins of its nodes:

F (Y ) =
2r∑
i=1

F (yi ).

We consider that 2r is large enough to apply the central limit theorem so that F (Y )
is normally distributed with mean equal to 2r and variance equal to κ · 2r .

Consider now the set Nk of all the super-nodes with fan-in equal to k ; in other
words the set of the super-nodes with exactly k preimages. It has a size equal to
|Nk | = 2cG (k ) where

G (k ) =
1

√
2π · κ · 2r

· exp
(
−

1
2 ·

(k − 2r )2
κ · 2r

)
and the Nk ’s form a partition of the space of the super-nodes. Consider some node
x1: the probability that its image by д is in a super-node of Nk is

Pr [д(x1) ∈ Nk
]
=

k

2c+r · |Nk | =
k

2r ·G (k )

Let V be the super-node д(x1) is in. The probability that a second element x2 , x1
is such that д(x2) is in the same super-node as д(x1) is the probability that x2 is at
the beginning of one of the k − 1 edges going to V which are not the one starting
at x1. Therefore, the probability that д(x1) and д(x2) are in the same super-node V
knowing that V ∈ Nk is

Pr [д(x1),д(x2) ∈ V | V ∈ Nk
]
=
k − 1
2c+r ·

k

2r ·G (k )

so that the probability that д(x1) and д(x2) have the same capacity bits for x1 and x2
chosen uniformly at random is

Pr [д(x1),д(x2) ∈ V
]
=

∞∑
k=0

k (k − 1)
2c+2r ·G (k ) ≈

(2r )2 + κ · 2r − 2r
2c+2r .

Therefore, the probability of success of a collision search performed by absorbing Q
messages at random until two internal states with the same capacity bits are observed
is

Pr[success of collision search] ≈
(
Q

2

)
22r + 2r (κ − 1)

2c+2r ≈
Q2

2c+1 ·
(
1 + κ − 1

2r
)
.

�
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We see that a function with κ > 1 does not exactly provide c/2 bits of security
against birthday attacks. Such functions can be found in real cryptographic primi-
tives such as Gluon-64. However, we also immediately see that this e�ect is small
since typical values of κ are of order of magnitude 1. Having κ ≈ 10 already requires
that the function exhibits signi�cantly non-random properties as is the case with
the update function of Gluon-64 which has κ = 6.982, as we establish later in Sec-
tion 3.4. Meanwhile, 2r is at least in the hundreds. Thus, the designers of a t-sponge
need not really worry about the number of collisions in the update function provided
that the rate is high enough.

3.3.3 Improved Preimage A�ack

3.3.3.1 Principle of the Iterated Preimage A�acks

In order to describe the speci�c type of preimage attack we consider, we need the
following concept.

De�nition 3.3.1 (Keyed Walk). Consider a set {дk }k ∈K of random functions ofS with
cps’s {Γk }k ∈K and a �xed starting point x0 ∈ S and let {k1, ...,kl } be a set of l elements
of K . We call keyed walk the sequence(

x1 = дk1 (x0), x2 = дk2 (x1), ...,xl = дkl (xl−1) = d
)
.

It can for instance correspond to the successive values of the internal state of a t-
sponge or of a Davies-Meyer based Merkle-Damgård hash function as we discuss in
the next sections. Consider a keyed walk directed by a sequence {k1,k2, ...,α ,α , ...,α }
ending with z copies of the same symbol α . Then, intuitively, much entropy will have
been lost because of the z iterations of дα so that it should be easier to �nd a second
sequence of keys leading to the same �nal value. This is formalized by the next
theorem. A graphical representation of the phenomena it uses is given in Figure 3.4.

x0 ... xk

d

дi1 дik

дα

дα
дαдαдα

д−zα (d )

Collision tree

Figure 3.4: The two targets of the iterated preimage attacks on d where d is in дzα (S)
and z = 5. Di�erent colors correspond to di�erent function calls.

Theorem 3.3.3. Let {дk }k ∈K be a set of random mappings of S with cps’s {Γk }k ∈K
and consider a sequence {k1,k2, ...,α , ...,α } of l keys from K ending with z identical
keys α . Given the �nal value d of the corresponding keyed walk, the value of α and the
number z, it is possible to �nd, for large enough z:
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1. a keyed walk ending in d in time |S| · 4/(κz),

2. a keyed walk ending in d after precisely z calls to дα in time |S| · 2/κ.

where κ is the collision average of Γα .

Proof. Letd be the �nal element in the walk. From the structure of the walk, we know
that d ∈ дzα (S). Using Theorem 3.1.2, we know that there are (κ/2) · z elements in
д−zα (d ) and that the collision tree rooted at d contains (κ/4) · z2 elements. Therefore,
such an element of д−zα (d ) is found with probability κ · z/( |S| · 2) and an element in
the collision tree with probability κ · z2/( |S| · 4).

However, in both cases, we need to call дα z times to know if the element we
picked at random is mapped to d after exactly z iterations of дα (�rst case) or at most
z iterations (second case). Therefore, �nding an element in the collision tree (�rst
case) requires |S| · z/(κ · z2/4) = |S| · 4/(κz) calls to дα and �nding an element in
д−zα (d ) requires |S| · z/(κ · z/2) = |S| · 2/κ. �

These attacks can be generalized to the case where the end of the message is peri-
odic instead of constant, i.e. if it ends with z copies of (α1,α2, ...,αp ). We simply need
to replace дα by д′ = дα1 ◦ ... ◦дαp . The κ involved in the complexity computations is
then that of д′, i.e. ∑p

i=1 κi where κi is the collision average of дαi (see Lemma 3.2.2
in Section 3.2). The constraint on z being large is only such that we can assume that
z has the asymptotical behaviors described in Theorem 3.1.2.

3.3.3.2 Application to a T-Sponge

Hashing a message with a t-sponge can be seen as performing a keyed walk where
the keys are the message blocks of length r and the initial value x0 is the all-zero
vector. The function дk is дk (x ) = д(x ⊕ k ) where k is set to zero after its r �rst bits
and д is the update function of the t-sponge. Clearly, дk has the same cps as д.

While the �at sponge claim provides a good description of the security o�ered by
a sponge (be it a t-sponge or a p-sponge) against collision search and, for p-sponge,
against second preimage search, there is a gap between the number of queries it
allows and the best algorithm known for preimage search. In particular, there is to
the best of our knowledge no algorithm allowing a preimage search with complexity
below 2c calls to the sponge function.1 Theorem 3.3.4 bridges the gap between the
2c/2 bound of the �at sponge claim and the 2c bound for preimage search by applying
Theorem 3.3.3 to the t-sponge structure.

Theorem 3.3.4. Let H be a t-sponge with update function д, and let κ be the collision
average ofд. LetM be amessage such that its last z injections to the sponge are identical.
Then a preimage to H (M ) can be found with complexity

2c · 2r+2/(κz)

Such messages can be quite common. For instance, the last z calls of д can be
blank calls for the sole purpose to slow down the hashing as suggested by the Keccak

1This case corresponds to the case where the attacker inverts the squeezing operations in time 2c
to retrieve the last internal state of the sponge before the squeezing and then uses a meet-in-the middle
approach to �nd a valid message leading to this internal state in time 2c/2 (see [GPP11]). However, this
second step cannot be carried out in the case of a t-sponge since the update function cannot be inverted.



3.4. Preimage Attack on Gluon-64 67

team in a NIST presentation [BDPVA13].2 Such an attack can be prevented by setting
an upper-bound of about 2r+2/κ for the length of the message which in turn means
that r has to be high in a t-sponge.

3.3.3.3 Similarity to the Herding A�ack

The herding attack was introduced in [KK06] and is also referred to as the Nos-
tradamus attack. In a herding attack, an attacker commits to a digest d and, when
given a challenge P , has to �nd a su�x S such that H (P | |S ) = d . To achieve this she
builds, during an o�ine phase, a so-called diamond structure which is essentially a
binary collision tree with 2` nodes and rooted at d . The nodes of the tree contain the
value of the internal state as well as the message block which needs to be absorbed
to go to its child. During the online phase, she uses the diamond to �nd e�ciently
the su�x S : all she has to do is �nd a way to reach any of the 2`+1 − 1 nodes in the
diamond from the given starting point.

3.3.3.4 Application to a Merkle-Damgård Construction

When a block cipher is used in Davies-Meyer mode to build a Merkle-Damgård-based
hash function, the successive chaining values hi ∈ S are obtained from the previous
one and the i-th message block: hi = Emi (hi−1) ⊕ hi−1 = дmi (hi−1). Because of the
feedback of hi−1, we do not expect дk to be a permutation and, therefore, expect such
a construction to be vulnerable to iterated preimage attacks. The padding used for
Merkle-Damgård constructions usually takes into account the length of the message
so that we need a message of the same length. Therefore, it is not enough to aim
at an element in the collision tree, we need to �nd an element which is precisely in
д−zα (d ) so that a preimage search requires 2N+1/κ: if the cps of дk is such that κ > 2
then the iterated preimage attack is more e�cient than brute-force. Furthermore, if
there is an e�cient way around the padding (e.g., with expandable messages [KS05]),
the e�ciency becomes 2N+2/(κz) where N is the size of the internal state of the hash
function.

3.4 Preimage A�ack on Gluon-64

3.4.1 The Gluon- Family of Hash Functions

Introduced in [BDM+12], the gluon family of hash functions consists of three mem-
bers corresponding to di�erent security levels: Gluon-64, Gluon-80 and Gluon-112.
They have a t-sponge structure and have characteristics summarized in Table 3.2.

The function д used to update the internal state has the same structure in the
three cases. It can be seen as a stream-cipher based on a Feedback with Carry Shift
Register (fcsr). The concept of fcsr has evolved through time as the �rst stream-
cipher [AB05] based on a component bearing this name got broken [HJ11]. When we
talk about fcsr in this paper, we refer to the last version of this structure, i.e. the one
used in X-FCSR v2 [ABL+09] and, of course, gluon. For example, a representation
of the fcsr used by Gluon-64 is given in Fig. 3.5 where blue arrows correspond to

2Here, we consider that the message hashed is of a length equal to a multiple of r to begin with,
so that the padding consisting of appending a one to the end of the message can be seen as part of the
squeezing.
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name rate r capacity c collision search preimage search

Gluon-64 8 128 264 2128

Gluon-80 16 160 280 2160

Gluon-112 32 224 2112 2224

Table 3.2: Characteristics of the hash functions of the gluon family.

feedbacks shifted to the right and red ones to the left. The value of the shift is given
by the label of the arrow.

An fcsr is made of w cells of r bits. Each cell may be on the receiving end of
a feedback. If the cell i receives no feed-backs, then its content at time t + 1 is the
content of the cell of index i + 1 at time t . Consider now that the cell i receives a
feedback. This cell contains an additional memory to store the value of the carry
from one clock to the next. The content of the cell at time t is denoted mt

i and that
of the carry register cti . Since it receives a feedback, there exists a cell index j and a
shift value s (possibly equal to zero) such that:

mt+1
i = mt

i+1 ⊕
(
mt

j � s
)
⊕ cti

ct+1
i =

(
mt

i+1 ∧
(
mt

j � s
) )
⊕

(
mt

i+1 ∧ c
t
i

)
⊕

( (
mt

j � s
)
∧ cti

)
where “� s” is a C-style notation for the shift of the content of a cell by s bits to the
left and ⊕ and ∧ are respectively the bitwise addition and multiplication in Fr2 .

0 1 2 3 4 5

6

7

8

91011121314

15

16

17

+ + +

+

+

+

+++

+

+

+

5

3

5

1

6
3

Figure 3.5: The fcsr used in Gluon-64.

The update function of every member of the gluon family is made of three steps:
padding of the input and loading in an fcsr (pad), clocking of the fcsr (ρ ) and �l-
tering Φ. We describe these steps separately.
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pad The internal state of the sponge is of size r (w − 1), so that r (w − 1) = r + c . The
padding consists simply in appending a block of r bits all equal to one, to the
end of the internal state. The rw bits thus obtained are then loaded in an fcsr
with an internal state made of w cells of size r . All the carries of the fcsr are
set to zero. This operation is denoted pad : Fr+c2 → Frw2 × F

rw
2 as the output is

made of the main register and the carry register of the fcsr.

ρd+4 The fcsr is clocked d + 4 times. One clocking is denoted ρ : Frw2 × Frw2 →

Frw2 × F
rw
2 .

Φ The output of д is extracted r bits by r bits using the following method: �xed
words of the main register are rotated and then xored to obtain r bits and
then the fcsr is clocked. This operation is repeated w − 1 times so as to have
r (w − 1) = r + c bits of output. The action of clocking the fcsr w − 1 times
while �ltering r bits each time is denoted Φ : Frw2 × F

rw
2 → Fr+c2 .

Overall, д is equal to Φ ◦ ρd+4 ◦ pad. The function pad is a bijection and we
shall consider that the restriction of Φ over the set of the pairs main register/carry
register reachable after d + 4 calls to ρ starting in the image of pad is collision-free.
The designers of gluon claim:

After a few iterations from an initial state, the automaton is in a peri-
odic sequence of states of length P . The average number of required
iterations to be in such a state is experimentally less than log2 (n), where
n is the size of the main register [...] This leads to consider a function
[д] which is really close to a permutation from {0,1}b into itself because
the surjective part of the construction is really limited once the function
[д] acts on the main cycle.

However, this claim raises an obvious question. What happens during these �rst
rounds, before the main cycle is reached?

It turns out that we can answer this using a sat-solver. It is possible to encode
the equation

(ρk ◦ pad) (a + x ) = (ρk ◦ pad) (x ) (3.8)

for a �xed a into a cnf-formula solvable by a sat-solver as long as k is not too big,
say 10. The encoding is fairly straight-forward and we shall not go into the details
for the sake of brevity. Note that solving the equation (ρk ◦ pad) (x ) = y using a
sat-solver is fast, meaning that it is possible to run an fcsr backward. However, we
tried encoding the �ltering so as to solve (Φ◦ρk ◦pad) (x ) = y but no sat-solver was
able to handle the corresponding cnf-formula — we killed the process after 1 week
of running time for Gluon-112 (simplest �ltering of the three), and for k = 1 instead
of k = d + 4 = 46.

We solved (3.8) for many values of a and for k = 10 for each member of the gluon
family. While no non-zero solutions were found for any a for Gluon-80 and Gluon-
112, it turns out that (3.8) has many solutions for Gluon-64. We used Algorithm 3.1
to �nd which Vk several random elements a ∈ S belong to by enumerating all the
values of x such that (3.8) holds. This algorithm works by solving (3.8) for x , thus
(possibly) �nding a solutionx1; then solving (3.8) with the constraint that the solution
must be di�erent from x1 in at least one bit, thus (possibly) �nding x2, etc. until no
more solutions can be found. If there are k such x , 0, then a is in Vk+1.



70 Vanishing Di�erences in Gluon

Algorithm 3.1 Enumerating all the solutions of д(a + δ ) = д(a).
Inputs: function д, value a;
Output: list of all δ such that д(a + δ ) = д(a).
D = empty list
b = 0
while b < rw − 1 do

F = CNF(ρ1
k ) + CNF(ρ2

k ) + CNF(ρ1
k (x ) = ρ

2
k (y))

F = F + CNF(x = a) + CNF(xb + yb = 1)
for δ in D do

F = F + CNF(x + y , δ )
end for

if sat-solver concludes that F is satis�able then

Retrieve y from the assignment and append x + y to D
else

b = b + 1 .We move on only when this bit is exhaustively used
end if

end while

return D

3.4.2 CPS and Preimage A�ack on GLUON-64

We ran Algorithm 3.1 for Gluon-64 on 24,000 di�erent elements chosen uniformly at
random in S = Fr+c2 . This allowed us to approximate the cps of the update function.
Our results are summarized in Figure 3.6. Note that non-zero γk were observed well
after k = 20.

γ
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Figure 3.6: Approximation of the cps of the function used by Gluon-64.

We found that γ1 = 0.065, `1 = 3.578 and κ = 6.982 which are much worse
than what one should expect from a random function, namely γ1 = e−1 ≈ 0.368,
`1 = 1/(1 − e−1) ≈ 1.582 and κ = 1. This means that �nding a preimage in a scheme
equivalent to appending z identical words at the end of the message has a complexity
of 2136+2/(6.982 ·z) = 2128 · (146.7/z). For z > 147, this is more e�cient than classical
brute-force. The complexities for some values of z < 2(r+c )/2 = 268 are given in
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Table 3.3.

z 147 b 500 b 1 kb 1 Mb 1 Gb 109 Gb

log2 (C) 127.99 126.23 125.23 115.27 105.30 75.19

Table 3.3: Complexity C of a preimage search for d = H (m) where H is Gluon-64
andm is unknown except for z identical bytes in its end.

The number of possible values for the internal state of Gluon-64 after the ab-
sorption of di�erent values is described in Figure 3.7. It increases when a message
block is absorbed (green vertical arrow) but decreases when it absorbs a constant sev-
eral times (red vertical arrow). As we can see, it drops after each call to д, although
the amplitude of this decrease gets smaller as д is iterated.

)

132

Figure 3.7: Evolution of the number of possible values for the internal state of
Gluon-64.





Chapter4

Di�erential and Structural Analysis

of Prince

While impractical attacks still provide the academic community with valuable in-
sights into the security provided by di�erent block ciphers, their components, their
design strategies, etc., cryptanalysis in the industry is more focused on practical at-
tacks. In order to promote this view, the Technical University of Denmark (DTU),
NXP Semiconductors and the Ruhr University of Bochum challenged the crypto-
graphic community1 with �nding low data complexity attacks on the block cipher
Prince [BCG+12]. More precisely, they accepted attacks requiring only at most 220

chosen plaintexts or 230 known plaintexts. Furthermore, extra rewards (from 1000 to
10000e) were given for attacks on at least 8 rounds which require at most 245 bytes
of memory (about 32 Terabytes) and at most 264 encryptions of the round-reduced
variant attacked.

Studying Prince in this setting may provide valuable data on multiple accounts.
First of all, Prince implements a simpli�ed version of the so-called fx construction:
encryption under key (k0 | |k1) consists of xoring k0 to the plaintext, applying a block
cipher called Prince-core keyed with k1 and then output the result xored with L(k0)
where L is a simple linear bijection. This strategy allows for a greater key size with-
out the cost of a sophisticated key schedule. However, it is impossible to make a
security claim as strong as for a more classical construction. Second, Prince-core
introduced a property called α-re�ection. If we denote by ECk1 the encryption under
Prince-core with subkey k1, then the corresponding decryption operation is ECk1⊕α
for a constant α . In other words, decryption is merely encryption under a related-
key. The consequences of this property have already been studied and, in particular,
some values of α di�erent from the one used have been showed to lead to weaker
algorithms [SBY+15].

Furthermore, several ciphers were developed that implement the same property
in a similar fashion: Mantis [BJK+16] and Qarma [Ava17].

Prince has already been the target of several attacks, notably [JNP+14b] where
the security of the algorithm against multiple attacks was assessed, [SBY+15] which
investigated the in�uence of the value of α , [LJW13] which described Meet-in-the-
Middle attacks on the block cipher and, �nally, [CFG+15] proposed the best attack
to date in terms of time complexity for a high number of rounds. A list of the crypt-

1The Prince challenge, issued by NXP Semiconductors, is described on the following webpage:
https://www.emsec.rub.de/research/research_startseite/prince-challenge/.
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analyses of round-reduced Prince is provided in Table 4.1, where time complexity is
measured in encryption units and Memory complexity is measured in 64-bit blocks.
Attacks working only on Prince-core or for modi�ed versions of Prince (di�erent α
or S-Box) are not shown. The attacks presented in [GR16, RR16a, RR16b] were pub-
lished after the paper containing the results presented in this chapter [DP15]. As I
was not involved in deriving the Meet-in-the-Middle attacks presented in this paper,
I do not present them in this thesis. The interested reader should refer to our paper
to learn more about those.

Reference Type Rounds Data (CP) Time Memory

[JNP+14b] Integral
4 24 264 24

6 216 264 26

Section 4.2 Di�. / Logic
4 210 5s << 227

6 214.9 232.9 << 227

[DP15] MitM

6 216 233.7 231.9

8 216 250.7 (online) 284.9

8 216 265.7 (online) 268.9

10 257 268 (online) 241

[LJW13] MitM
8 253 260 230

9 257 264 257.3

[CFG+15] Multiple di�.
9 246.89 251.21 252.21

10 257.94 260.62 261.52

[GR16] Truncated di�.
4 23 218.25 small
4 28.75 28.15 small

[RR16a] Acc. brute-force
6 2 (KP) 296.8 small
6 2 (KP) 294.05 224.6

[RR16b]

Acc. brute-force 8 2 (KP) 2122.7 small
Acc. brute-force 10 2 (KP) 2124.1 small
Acc. brute-force 12 2 (KP) 2125.1 small

MitM 8 2 (KP) 2109.3 265

MitM 10 2 (KP) 2122.2 253.3

Table 4.1: The best attacks on round-reduced Prince in the single-key model.

As stated before, most of the attacks usually presented in the literature have im-
practical complexities. For instance, di�erential attacks and linear attacks require
large amounts of chosen (respectively known) plaintexts, both of which may be im-
possible to gather to begin with if the algorithm is implemented on a small-device
with little computer and, hence, a small throughput. Therefore, we focused our ef-
forts on Meet-in-the-Middle (MitM) attacks, algebraic/logic attacks where the fact
that a ciphertext is the encryption of a plaintext is encoded as an equation which is
fed to a solver and, surprisingly, di�erential attack for which we found a heuristic
method decreasing signi�cantly the data complexity.

In this chapter, I describe di�erent low data complexity attacks on round-reduced
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Prince which were submitted to the Prince challenge and which turned out2 to be
some of the best ones on Prince reduced to 6 rounds.

In Section 4.2 (p. 76), we show how the equation given to a sat-solver can be mod-
i�ed so as to make an attack on 4 rounds practical. We also explain how the power
of the �lter used to discard wrong pairs in a di�erential attack can be raised to the
power 4 when attacking 6-round Prince by considering groups of pairs. Combin-
ing these two ideas, we attack 6-round Prince using a di�erential attack to recover
half of the key and a sat-solver to recover the other half. In Section 4.3 (p. 83), we
present some observations about the cycle structure of the internal rounds of Prince
and how they imply the existence of alternative representations of the cipher high-
lighting a poor di�usion in some subsets of the input space. While we do not use
these to attack Prince directly, we show that the size of these subsets is far smaller
than what would be expected for a random permutation and actually �nd such sets
for the 4-round Prince-core.

4.1 Specification of Prince

Prince is a 64-bit block cipher with a 128-bit key. It is based on a variant of the the fx-
construction which was proposed by Kilian and Rogaway [KR96] as a generalization
of the desx scheme. The master key k is split into two 64-bit parts k = k0 ‖ k1 and
k0 is used to generate a third subkey k ′0 = (k0 ≫ 1) ⊕ (k0 � 63). Both k0 and k ′0
are used as pre- and post- whitening keys respectively. The full version of the cipher
has 12 rounds and is depicted on Figure 4.1.
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Figure 4.1: The Prince cipher.

The encryption is somewhat similar to the Aes and consists of a nibble-based
substitution layer S and a linear layer M . The operation M can be divided into a
ShiftRows operations and a matrix multiplication M ′ operating independently on
each column but not nibble-oriented. Furthermore the matrix M ′ is an involution
and, combined to the fact that the round constants satisfy the relation RCi ⊕RC

′
i = α

where α = C0AC29B7C97C50DD, the decryption process Dk0,k1,k ′0 is equal to the
encryption process Ek ′0,k1⊕α ,k0 . For further details about Prince we refer the reader
to [BCG+12].

In this chapter, we denote the plaintext and the ciphertext byp and c respectively.
For the �rst R rounds of 2R-round Prince, we denote the internal state just before
(resp. after) the r -th SubNibble layer by xr (resp. yr ) while for the last R rounds those

2 This results was announced at the rump session of Crypto’14 by Christian Rechberger. The slides of
the corresponding talk, “Update on the 10000 Euro Prince cipher-breaking challenge: Results of Round-1”,
are available online: http://crypto.2014.rump.cr.yp.to/d037206eda8f9278cef1ea26cd62e51f.pdf.
Against 6-round Prince, my attacks were ex aequo with Patrick Derbez’s.

http://crypto.2014.rump.cr.yp.to/d037206eda8f9278cef1ea26cd62e51f.pdf
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internal states are denoted by y ′r and x ′r respectively as shown on Figure 4.1. Given
a collection of messages {p0, . . . ,pm , . . .}, the notation xmr [i] holds for the nibble i of
the state xr of the message pm . As Prince is not fully nibble-oriented we use the
notation xr [i]b to refer to the bit i of the state xr and the following relation holds for
all i ∈ {0, . . . ,15} :

xr [i] = xr [4i + 3]b ‖ xr [4i + 2]b ‖ xr [4i + 1]b ‖ xr [4i]b .
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Figure 4.2: Ordering of the bits/nibbles in Prince.

Finally, we use the following notation for some functions.

R The composition of S and M so that R (x ) = M
(
S (x )

)
= SR

(
M ′(S (x ))

)
.

Erk0| |k1
Prince reduced to r rounds.

ECk1 full Prince-core.

ECr
k1

Prince-core reduced to r rounds.

4.2 Combining a Di�erential A�ack with a Sat-Solver

In this section, I describe how Prince can be attacked with a sat-solver. The basic
idea, Di�erential over De�nition, is introduced in Section 4.2.1 (p. 76) where a practical
attack against 4-round Prince is presented. Then, a particular di�erential pattern is
exploited in Section 4.2.2 (p. 79) to attack 6-round Prince. While this attack is based
on a di�erential cryptanalysis, the �nal key recovery is performed with a sat-solver.
The implementation of this attack is described in Section 4.2.3 (p. 82).

4.2.1 A�acking 4-Round Prince with a Sat-Solver

4.2.1.1 Encoding Prince as a Cnf Formula

The idea is to generate a cnf formula where a set p of Boolean variables correspond
to the 64 bits of the plaintext, c to the 64 bits of the ciphertext and k to the 128 bits
of the key, and such that there exists a unique assignment of the variables satisfying
the cnf corresponding to the case Ek (p) = c .

Hence, if we generate such a formula, set the variables in p and k to a chosen
value and use a sat-solver to �nd an assignment satisfying the cnf formula, the
variables in c will correspond to the ciphertext. Solving such a formula is easy, an
observation which we can relate to the fact that the evaluation of a block cipher has
to be “easy” from the point of view of complexity theory.

Another way to use such a formula is to �x the variables in p and in c accord-
ing to a known plaintext/ciphertext pair, solve the cnf and recover the key from the
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variables corresponding to it. Unless the number of rounds is very small (at most 3
in the case of Prince), solving such a system is impractical. Again, we can relate this
observation to the fact that recovering the key given one or several plaintext/cipher-
text pairs has to be “hard”. Our approach consists of using some knowledge about
the internal state of the cipher to simplify the task of the sat-solver and make such
a resolution possible for a higher number of rounds.

In order to encode a Prince encryption as a cnf formula, we introduce several
sets of 64 Boolean variables corresponding to each step of each round: one for the
internal state at the beginning of the round (xr ), one for the internal state after going
through the S-Box (yr ), etc. We also use Boolean variables corresponding to the key
bits.

Our task is then to create a cnf formula connecting these variables in such a way
as to ensure that, for instance if k[0, ...,63] is �xed, it has only one solution where
yr [0, ...,63] is indeed the image of x[0, ...,63]r by S , etc.

In order to encode the linear layer, we use the alternative representation of M ′
from [CFG+15] where it was shown that M ′ operates on columns of 4-bits indepen-
dently by �rst rotating them by a column-dependent number of bit and then xoring
the parity of the column in each bit. We thus add variables corresponding to the
parity of the columns and encode the corresponding xors as cnf formulas. The SR
operation is only a permutation of the bits so we simply set the corresponding bits
to be equal.

The encoding of the S-Box is less simple to obtain. In order to �nd the best one,
we chose to look for it directly instead of using the anf as an intermediate step.
Indeed, since the S-Box is 4x4, it is small enough for us to brute-force all clauses3

involving input and output bits and check if they hold for every input.
Doing this lead us to �nd 29 clauses with 3 variables. However, they are not

su�cient to completely specify the S-Box so we used a greedy algorithm to �nd the
best clauses with 4 variables to add to this encoding. In the end, we have 29 clauses
with 3 variables and 9 clauses with 4 variables which are such that the only solutions
of the cnf made of all these clauses are all the assignments corresponding to pairs(
x ,S (x )

)
for all x ∈ [0,15].

These clauses with 3 variables can be interpreted as simple implications. For ex-
ample, if o[3, ...,0]b = S (i[3, ...,0]b ) then the following two clauses hold with proba-
bility is 1 : (

i[1]b ∨ o[2]b ∨ o[3]b
)
∧

(
i[1]b ∨ o[1]b ∨ o[2]b

)
.

They are logically equivalent to the following implication:

i[1]b =⇒
(
(o[2]b ∨ o[3]b ) ∧ (o[1]b ∨ o[2]b )

)
.

4.2.1.2 Di�erential Over Definition

The approach consisting of using the knowledge from a di�erential trail to ease
the task of a sat-solver used to attack a cryptographic primitive has been explored
in [MZ06] in order to attack md4 and md5. The authors of this paper �rst use heuris-
tic methods to �nd a high probability di�erential trail leading to a collision and then
use a sat-solver to �nd a pair of messages which satis�es this trail. In the same paper,
we can �nd the following observation:

3A clause is the logical OR of several variables. For example, if x is the negation of x then each of
a ∨ b , a and a ∨ b ∨ c are clauses.
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An interesting result of our experiments with sat-solvers is the impor-
tance of having a di�erential path encoded in the formula.

As we shall see, this also holds for block ciphers. Attacking 4 rounds Prince-
core takes more than 10 hours if we simply encode as a cnf that some plaintexts
are encrypted into known ciphertexts but we can drastically reduce this time while
breaking Prince with its whitening keys using di�erential over-de�nition.

De�nition 4.2.1. We call Di�erential Over De�nition the following algorithm which
simpli�es a cnf formula using the knowledge that the variables correspond to bits of
the internal state of an encryption following a certain trail.

For all pairs of variables in the cnf, proceed as follows:

• If they are assumed to be equal, replace all occurrences of the �rst one by the
second one.

• If they are assumed to be di�erent, replace all occurrences of the �rst one by the
negation of the second one.

While the idea behind this algorithm is simple, it is necessary for cryptographers
to implement it e�ciently “by hand”. Indeed, the only input of a sat-solver is a cnf
formula, i.e. merely a list of clauses from which deriving what variables are equal
to each other without knowledge of the structure of the problem is far from trivial.
For instance, it would be necessary for the sat-solver to “understand” that the set of
clauses used to model one S-Box call all correspond to a unique function so that iden-
tical inputs lead to identical outputs; all this without having any distinction between
the input and output bits. That is why di�erential over-de�nition, an easy algorithm
for the cryptographer to implement, is a valuable pre-processing step when using a
sat-solver for cryptography. Indeed, it leads to gains in time complexity of several
orders of magnitude.

This algorithm can be implemented e�ciently using a hashtable containing the
correspondences between the variables. Once this algorithm has been run, the cnf is
over de�ned: the solution would have been such that the equalities hold anyway but
there are less variables and less clauses in the cnf. However, if the pair actually does
not follow the trail, the cnf has become unsatis�able. This is a di�erence between
our work and the one described in [MZ06]: we do not always know before hand if
the cnf has a solution. We can think of this as a trade-o� between “solving one cnf
known to be true” and “solving many over-de�ned cnf’s which may or may not be
true”: the second approach loses time by requiring several calls to a sat-solver but
each of these calls takes less time thanks to the over-de�nition.

Such an over de�nition can be used in di�erent ways.

1. It can be used to directly attack a cipher. By propagating only the zero di�er-
ences holding with probability 1 inside a group of 8 encryptions with many
zero input di�erences, we can reduce the time complexity of an attack on 4
rounds from more than 10 hours to a few seconds (see below). Furthermore,
such a formula is always true.

2. It can be used for key-recovery in a di�erential attack. Instead of implementing
an algorithm recovering the key from a pair following a particular trail by
peeling o� layer after layer of encryption in our attack on 6 rounds described
in Sections 4.2.2 (p. 79) and 4.2.3 (p. 82), we simply re-used the code of our
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attack on 4 rounds and over-de�ned the cnf modeling the encryptions of right
pairs according to the high probability trail we used.

We implemented the attack described in Algorithm 4.1 to attack 4-round Prince
(with its whitening keys) using the sat-solver Minisat [ES03] and obtained an aver-
age total time of 5.13s and average time spent solving the cnf of 3.06s. The designers
of Prince did not consider SAT-based attacks but they did investigate algebraic at-
tacks. They manage to attack 4-round Prince-core in less than 2s while our attack
requires about 5s to attack 4-round Prince, a cipher which uses twice as much key
material.

Algorithm 4.1 Di�erential over-De�nition based attack against 4-round Prince.
Input: 4-round Prince instance ;
Output: secret key k0 | |k1

Query 210 plaintexts/ciphertexts where the �rst 10 bits take all possible values.
Select a subset of 8 plaintexts/ciphertexts maximizing the number of 0-di�erences
in the output.
Encode the 8 encryptions as a cnf A.
Overde�ne A by propagating zero-di�erences with probability 1.
Use a sat-solver to retrieve the key bits from A
return k0 | |k1

4.2.2 Amplified Di�erential Trails

Our attacks rely on some di�erences propagating identically in di�erent pairs. To
better describe this, we introduce the following de�nitions.

Encryption We call encryption a pair plaintext/ciphertext encrypted under a �xed
key.

Pair A pair is a set of two encryptions where the plaintexts are separated by a known
di�erence.

Family A family is a group of pairs with a particular structure. They are gen-
erated from a single pair

{
(p[0], ...,p[b − 1]), (p ′[0], ...,p ′[b − 1])

}
, where p[i]

and p ′[i] are nibbles. Suppose that the input di�erence covers the �rst three
nibbles so that p[3] = p ′[3] = c[3], ...,p[b − 1] = p ′[b − 1] = c[b − 1] for some
constants c[i]. Then the family corresponding to this pair is made by exchang-
ing some nibbles between the two encryptions in the pair so as to obtain the
following pairs:

{
(p[0],p[1],p[2],c[3], ...,c[b − 1])
(p ′[0],p ′[1],p ′[2],c[3], ...,c[b − 1])

{
(p ′[0],p[1],p[2],c[3], ...,c[b − 1])
(p[0],p ′[1],p ′[2],c[3], ...,c[b − 1]){

(p[0],p ′[1],p[2],c[3], ...,c[b − 1])
(p ′[0],p[1],p ′[2],c[3], ...,c[b − 1])

{
(p[0],p[1],p ′[2],c[3], ...,c[b − 1])
(p ′[0],p ′[1],p[2],c[3], ...,c[b − 1]).

Overall, if there are n nibble with non-zero di�erences in the input then a
family is made of 2n−1 pairs and 2n encryptions.
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In the case of Prince, we consider di�erential trails where the input di�erences
are only over one column and such that all the pairs in a family follow the same
trail for the �rst three rounds. For example, the trails we describe in Section 4.2.2.1
(p. 80) are either followed by all the elements in a family or none of them. A similar
heuristic is used in [BS01] to perform a multiset attack on the SASAS structure.

This behavior comes from the fact that the transitions in the trails we study de-
pend only on the transitions occurring during the �rst round, which are the same in
all pairs of a family, and on the actual value of some nibbles that the di�erences have
not had time to reach, and which are the same in all encryptions of the structure.

In a recent paper [Tie16], Tiessen introduced the notion of polytopic cryptanal-
ysis. It generalizes di�erential attacks by considering the propagation of di�erential
patterns linking a set of more than 2 encryptions (a polytope). The attack targeting
a family rather than a simpler pair can be seen as a special case of polytopic crypt-
analysis. Using this framework, each family is a polytope and the di�erential trail
that is followed by all or none of the pairs in the family is a polytopic trail with a
particularly high probability.

4.2.2.1 Our Trails

There has already been some di�erential cryptanalyses of Prince, see for example
[CFG+15], which is the best attack to date, and also [ALL12].

Here, we consider trails which are completely speci�ed during the �rst 3 rounds
and then propagate with probability 1 for 2.5 rounds before having spread to the
full internal state. Figure 4.3a shows a �rst trail covering 5.5 rounds in this way,
which we denote T1. Each array corresponds to the di�erences between the internal
states of two encryptions under 6-round Prince and each cell gives the value of the
di�erence: light gray corresponds to a fully speci�ed non-zero value at the nibble
level (e.g. a di�erence of 1), dark gray to an unknown non-zero di�erence and white
to a zero di�erence. A very similar trail with a probability 2 times smaller, T2, is given
in Figure 4.3b. To compute their probabilities, we use the di�erence distribution table
of the S-Box, as de�ned later in Section 8.2.1 (p. 139). If we let the input di�erence
be (1,1,1,0, ...,0), then T1 has a probability of 2−2·3 · 2−2 · 2−2−2−3 = 2−15 and T2 has a
probability of 2−2·3 · 2−2 · 2−2−3−3 = 2−16.

Querying enough families at random to �nd one right family for any of these
would require (2−15+2−16)−1 = 214.41 families with an input di�erence over 3 nibbles,
i.e. 214.41 · 23 = 217.41 encryptions. However, we can use structures to decrease this
complexity.

Hexadecimal 0x1 0x2 0x4 0xb 0xc 0xd

Binary 0001 0010 0100 1011 1100 1101
Probability 1/4 1/8 1/8 1/8 1/4 1/8

Table 4.2: Input di�erences possibly mapped to 1 by the S-Box of Prince.

The input di�erences which might lead to an output di�erence of 1 are those
listed in Table 4.2. As we can see, the second bit from the right in little-endian nota-
tion is only involved in 0x2 and 0xb which, taken together, only have a probability
of 1/4 of leading to a di�erence of 1. Hence, we use the following structures where b
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Figure 4.3: The two 5.5-round trails we use.

is a bit taking all possible values and c is constant across the structure:

bbcb bbcb bbcb cccc cccc ... cccc.

We found experimentally that such structures contain several4 right families with
probability 2−5.9 on average when we take into account all possible input di�erences,
i.e. (δ ,δ ′,δ ′′,0, ...,0) where δ , δ ′, δ ′′ ∈ {1,4,c,d }. Hence, obtaining at least 2 right
families only requires about 29+5.9 = 214.9 queries to the encryption oracle on aver-
age.

4Actually, a structure of size 212 where the �rst three nibbles take all values contains 64 right families
with probability about 2−5.9. If we reduce these to form the structures of 29 plaintext/ciphertext encryp-
tions we described, only some of these 64 families are still present, hence the presence of either 0 or several
right families in a structure.
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4.2.2.2 Filtering Right Pairs

Full di�usion has been achieved by the 6-th round. Thus, we guess 16 bits of key
material to be able to partially invert the last round on one column. A guess leads to
the correct nibble having a zero di�erence in every pair of the family with probability
2−4·4 = 2−16. We repeat this independently over each column and obtain either 64
bits of key material or none at all. Since there are either several right families or none
at all in the structures we consider, we only return the key guesses which come from
several families as well as the corresponding families.

This is a powerful �lter: while we expect each family from the structure to yield
about one 64-bit candidate, the probability to have a collision is very small5.

4.2.3 Implementing the Di�erential A�acks Against 6 Rounds

Pseudo-code describing our attack on 6-round Prince is provided in Algorithm 4.2.

Algorithm 4.2 sat-based di�erential attack against 6-round Prince.
Input: 6-round Prince instance
Output: secret key k0 | |k1
while the key has not been retrieved do

Query a structure S =
(
(p0, c0), ..., (p212−1, c212−1

)
H ← empty hashtable of lists of families indexed by 64-bits integers
for all families F in S do

for all columns of the internal state do

for all 16-bits key guesses k16 do
for all pairs in F do

Invert key addition for the column using k16
Invert S−1 for the column
Invert M ′ for the column

end for

if the correct nibble has a zero di�erence in all pairs then store k16
end for

end for

Combine all guesses from each column into 64-bits guesses
for all 64-bits guesses k64 append F to H [k64]

end for

for all k64 among the keys of H do

if H [k64] contains strictly more than 1 element then
for all families F in H [k64] do

Generate cnf A encoding all encryptions in F with key s.t. k1 + L(k0) = k64.
for all trails T in {T1, T2 } do

B ← DoD (A, T)
if B is satis�able then retrieve k0 | |k1 from the solution of B and return it

end for

end for

end if

end for

end while

We ran this attack 10 times and found that about 25.75 structures were needed
on average. The �ltering step is the most time consuming: �nding a right pair re-
quires about 1h 30min but the sat-solver requires about 0.5s to recover the full key or

5Each structure yields 29−3 = 26 families for each of the 43 interesting input di�erences so that we
consider the families by groups of 212. This implies that a collision has a probability of about

(212
2
)
·2−64 ≈

2−41.
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(rarely) to discard the pair. For this reason, we approximate the complexity of this at-
tack by the complexity of its �ltering step. We query 25.9 structures of 29 encryptions
and, for each, encryption, we invert the last round by guessing 216 bits of key mate-
rial for each of the 22 columns. Hence, this attack requires about 25.9+9+16+2 = 232.9

partial decryptions and 214.9 chosen/plaintexts. Memory complexity is dominated by
the sat-solver but is (well) below 1 Go, i.e. (well) below 227 64-bits blocks.

4.3 Structural Analysis of Prince

The α-re�ection introduced along with Prince [BCG+12] is the name given to the
following property of a block cipher Ek : E−1

k = Ek⊕α . In other words there is a
constantα such that decryption for a keyk is the same operation as encryption under
key k ⊕ α . Prince-core implements this property by having a three-parts structure
as described here:

ECk1 = F−1
k1⊕α ◦ I ◦ Fk1 ,

where Fk corresponds to 5 rounds of a classical Substitution-Permutation Network
construction and where I is an involution. This structure was later borrowed by both
Qarma [Ava17] and Mantis [BJK+16].

Since we are going to study the structure of the cycles of di�erent functions in a
fashion similar to the way Biryukov analyzed the inner-rounds of some involutional
ciphers in [Bir03], we borrow the notion cycle type of a permutation from this paper.

De�nition 4.3.1 (Cycle Type). The cycle type of a permutation π is an (ordered)
multiset containing the cycle lengths of the permutation. The cycle type of π is denoted
by C (π ).

In what follows, we do not represent the round constants for the sake of simplic-
ity. However, not only do our results hold in their presence but we could actually
generalize them to any key schedule preserving the fact that the subkeys of symmet-
ric rounds have an xor equal to α .

4.3.1 Small Cycles in Round-Reduced PRINCE

The central involution is I = S−1 ◦M ′ ◦ S . Therefore, it is isomorphic to M ′, a linear
involution operating on each column of the internal state independently. It is easy
to check experimentally the result given in [SBY+15] stating that M ′ has exactly 232

�xed points, meaning that I also has 232 �xed points. Therefore, I has 232 cycles of
length 1 and 263 − 231 cycles of length 2.

The cycle type of Iα : x 7→ I (x ) ⊕ α is more sophisticated but still contains a fair
amount of small cycles. As both I and x 7→ x ⊕ α operate on each column of the
internal space independently, we denote Iαi the restriction of x 7→ I (x )⊕α to column
i and Ii that of I . Since each of the functions Iαi operates only on a space of size
216, it is easy to generate their complete cycle structures independently by searching
the whole space. Each Iαi has a cycle type made of many “small” cycles, the largest
having a length of 2844. This is explained by the fact that both I and x 7→ x ⊕ α are
involutions and each column of I has exactly 28 �xed points. Thus, most of the cycles
have a particular structure6 described in [MS87b] which we recall in Figure 4.4. We
remark that to each cycle of Iαi correspond two �xed points of Ii .

6While there are some cycles which do not have this structure, they form a negligible minority: for
f0, 256 elements out of 65536 are on such cycles, 64 for f1, 8 for f2 and 194 for f3.
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Figure 4.4: The structure of a cycle of Iαi for i ∈ [0,3].

After generating the cycle type for each Iαi , we combine them to obtain the cycle
type of x 7→ I (x ) ⊕ α using Algorithm 4.3. The cycle type of this function is too
complex to be printed completely but some information extracted from it is given in
Table 4.3. If we pick x uniformly at random, the expected length of the cycle it is on
is 230.7.

Algorithm 4.3 Generating the cycle type of Iα from those of its columns.
for i ∈ [0,3] do
Ci ← List of the cycle length of Iαi

end for

C ← Hashtable indexed by integers
for (`0, `1, `2, `3) ∈ C0 × C1 × C2 × C3 do
` ← lcm

(
`0, `1, `2, `3

)
C[`]← C[`] + `−1 ·

∏3
i=0 `i

end for

return C

Cycle Length ` #{cycles of length `} Pr[`(x ) = `,x drawn uniformly]

1 0 0
2 27 2−57

4 210.25 2−53.75

8 215.46 2−48.54

10080 233.06 2−17.63

110880 231.96 2−15.27

≤ 210 – 2−22.4

≤ 215 – 2−12.4

≤ 224 – 2−4.1

Table 4.3: Information about the cycle type of Iα , where `(x ) is the length of the
cycle on which x is.

Recall that EC4
k1

is the permutation of {0,1}64 corresponding to an encryption
under key k1 by Prince-core reduced to 4 rounds. Then x 7→ EC4

k1
(x ) ⊕ α has the

same cycle type as Iα due to the cancellation of the last round of one encryption
with the �rst round of the next. Indeed, to each cycle of this function corresponds
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one cycle of Iα , as illustrated in Figure 4.5 where a cycle (x0,x1,x2,x3) of length 4 of
x 7→ EC4

k1
is represented along with the corresponding cycle of Iα (dashed line).

Figure 4.5: Correspondence between a cycle of x 7→ EC4
k1
(x ) ⊕ α and a cycle of Iα .

A �rst consequence of these observations is the existence of a distinguisher for
4-round Prince-core requiring about 227.4 adaptatively chosen plaintexts. As stated
in Table 4.2, an element picked at random is on a cycle of length at most 215 with
probability 2−12.4. Therefore, we repeat the following experiment multiple times:

1. pick an element x uniformly at random,

2. check if it is on a cycle of length at most 215 by iterating x 7→ EC4
k1
(x ) ⊕ α at

most 215 times.

The experiment is a success if x is on a cycle of length at most 215. If the permutation
is EC4

k1
for some k1, then its probability of success is 212.4 but if the permutation is a

random permutation7, then the probability of success becomes 2−49. We con�rmed
experimentally the success probability of this experiment for EC4

k1
.

A second consequence is the existence of “small” sets of plaintext/ciphertext en-
cryptions where the set of the ciphertexts is the image of the set of the encryptions

7Recall that the probability for x to be on a cycle of length ` for a permutation of [0, N − 1] is equal
to 1/N . Hence, the probability that the length is smaller than 215 for a permutation of [0, 264 − 1] is∑215

`=1 2−64 = 2−49.
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by a function signi�cantly simpler than a Prince encryption. This topic is studied
in the next section.

4.3.2 Simplifications of the Representation of Prince

The particular cycle types of the round-reduced versions of Prince studied above
lead to simpler alternative representations of the encryption algorithm.

4.3.2.1 Consequences of the Cycle Type of I

Suppose that an encryption is such that the input of I is one of the 232 �xed-points
of this function. Then the key addition before and after this function cancel each
other so that only the addition of α remains. Then, since M is linear, the operations
M−1 ◦ (⊕α ) ◦M become simply the addition of M−1 (α ). Thus, the 4 center rounds —
minus the �rst and last key addition — become a simple S-Box layer which we denote
S ′ and which is de�ned by

S ′(x ) = S−1
(
S (x ) ⊕ M−1 (α )

)
.

This simplifying process is summarized in Figure 4.6. Note that if M−1 (α ) has any
nibble equal to 0 then the function S ′ is the identity for this nibble. However, for the
value of α chosen by the designers of Prince, there is no such nibble.

Figure 4.6: Simpli�cation of the 4 center-rounds if the input of I is a �xed point.

The simpli�cation goes further. Indeed, since S ′ operates only at the nibble level,
it commutes with the operations SR and SR−1 (up to a reordering of the S-Boxes in
S ′). Therefore, if we add one round before and one round after S ′, we can replace
SR−1◦S ′◦SR by S ′′where S ′′ is another S-Box layer. Hence, 6-round Prince operates
on each column of the internal state independently: each output bit depends only on
16 bits of the input, 28 bits8 of k1 and at most 18 bits of k0. This simpli�cation is
summarized in Figure 4.7.

Similar simpli�cations occur if instead of having a �xed point we have a par-
ticular collision between two encryptions. This setting corresponds to the so-called
mirror slide attack described by Dunkelman et al.in [DKS12]. Consider two encryp-

8In each column, 16 bits from the corresponding column of k1 are used as well as 16 bits from the
corresponding column of SR−1 (k1). Since the top nibble of these two sets is the same, we are left with
32 − 4 = 28 bits.
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Figure 4.7: Simpli�cation of the 6 center-rounds if the input of I is a �xed point.

tions (p0,c0) and (p1,c1) by Prince-core as follows

c0 = ECk1 (p
0) =

(
F−1
k1⊕α

◦ I ◦ Fk1

)
(p0)

c1 = ECk1 (p
1) =

(
F−1
k1⊕α

◦ I ◦ Fk1

)
(p1)

which are such that Fk1 (p
0) = I

(
Fk1 (p

1)
)
. In this case, we have that

c0 =
(
F−1
k1⊕α

◦ Fk1

)
(p1)

c1 =
(
F−1
k1⊕α

◦ Fk1

)
(p0),

where 6 rounds of F−1
k1⊕α

◦ Fk1 can be simpli�ed exactly as described and therefore
only operate on each column separately.

In conclusion, if an encryption is such that the input of I is a �xed-point of this
function or if two encryptions form a mirror slide pair, then 4 rounds of Prince
consist simply in 16 parallel operations on each nibble and 6 rounds of Prince in 4
parallel operations on each column.

4.3.2.2 Consequences of the Cycle type of Iα

Consider a sequence of plaintexts (p0, . . . ,p`−1) and their corresponding ciphertexts
(c0, ...,c`−1) such that the input x i5 ⊕ k1 of the sixth round for the plaintext pi is
the image of x i−1

5 ⊕ k1 by Iα . We call such a sequence a cycle set and we give a
representation of such a sequence on Figure 4.8: if two values are equal then they
are connected by a line; red lines correspond to the cycle of Iα this set is built out
of and blue lines correspond to the propagation of these equalities through identical
operations, namely x 7→ k1 ⊕ R−1 (x ⊕ k1).

There is a unique function mapping pi to ci−1 in every cycle set which corre-
sponds to the encryption algorithm where the 4 center-rounds have been removed
and replaced by a simple addition of α . This means that this function undergoes the
simpli�cations described above except that these cover 2 more rounds. In particular,
for 6-round Prince-core, the function mapping pi to ci−1 only operates at the nibble
level and, for 8-round Prince-core, it operates at the column level. At least 10 rounds
are necessary to obtain full di�usion. Prince has 12 rounds in total.

The cycle sets we consider cover the 4 center-rounds of Prince but it is possible
to generalize this construction to an arbitrary number of rounds. However, the cycle
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Figure 4.8: A cycle set of 6-round Prince-core.

set sizes are abnormally small in this case because of the cycle type of Iα . Indeed, a
random plaintext/ciphertext pair is in a cycle set of size 230.7 and in a cycle set of size
smaller than 215 with probability 2−12.4. In other cases, including a priori if we have
a cycle covering at least 6 rounds, the expected size of a cycle set is the expected size
of the cycle of a random permutation a random element is on, namely 263 for a 64-bit
permutation.

Should the cycle sets of Prince become identi�able, the security of up to 8 rounds
may be compromised as the alternative versions of the cipher we described in this
section are much weaker than the original cipher. Furthermore, since small cycles are
not unlikely to be found, the data complexity of such an attack may remain feasible.



Chapter5

Truncated Di�erentials in Twine

The Generalized Feistel Network (gfn), introduced by Nyberg in [Nyb96], is a mod-
i�cation of the regular Feistel Network which uses more than 2 branches. Having
more branches allows the use of a simpler Feistel function, the branch permutation
taking care of the di�usion. However, the simple branch rotation used in most gfn
with b branches requires b rounds to obtain full di�usion. To improve this number,
more sophisticated permutations were introduced in [SM10] and one such permuta-
tion has been used by the authors of Twine [SMMK13], a lightweight block cipher
with a gfn structure: while Twine uses 16 branches, only 8 rounds are necessary for
full di�usion.

Twine is therefore a good example of common trade-o�s in lightweight cryptog-
raphy as it has a simple round function iterated many times, while also being one of
the only instances of a gfn with improved di�usion layer.

A similar block cipher is LBlock [WZ11], a lightweight block cipher which served
as the basis for the design of LBlock-s, a variant with a di�erent S-Box and key sched-
ule used in the Lightweight Authenticated Cipher (Lac) submitted to the CAESAR
competition by a related team [ZWW+14]. While LBlock is described as a “regular”
two-branched Feistel Network, the rotation used in its permutation layer and the
simplicity of its Feistel function make it equivalent to a gfn similar to Twine. The
designers of Twine pointed out this resemblance in [SMMK13].

The particular permutation layer of Twine implies a vulnerability of its round
function against truncated di�erential cryptanalysis [Knu95]. Unlike “normal” dif-
ferential cryptanalysis, this technique does not rely on studying fully speci�ed trails
where each bit of di�erence is supposed to have a particular value but instead on
looking at more general patterns where some bit di�erences may take both values 0
and 1. In the case of word oriented cipher, we can restrict the investigation to trails
where the di�erences are studied at the word level: either there is at least one dif-
ference over the whole word or there is none. Trails where some of the bits are not
speci�ed are often used when adding rounds on the top and the bottom of a di�eren-
tial distinguisher. However, using a truncated di�erential covering all the rounds can
also yield powerful attacks. For example, such an approach has been used recently by
Lallemand et al. [LN15] to attack the lightweight block cipher KLEIN [GNL11]. Trun-
cated di�erentials have also been used to enhance the search for high probability dif-
ferentials. Two recent examples are the attack on the block cipher Prince [CFG+15]
covering the highest number of rounds and a di�erential forgery attack on the au-
thenticated cipher Lac [Leu16].

89
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As we introduce new attacks on Twine, we summarize the complexities of the
best attacks against this cipher in the single-key model in Table 5.1.

Reference Type Version Data Time Memory

[ÇKB12] Biclique
full Twine-80 260 279.1 28

full Twine-128 260 2126.82 28

[ZJ14] Impossible di�.
23-round Twine-80 257.85 279.09 278.04

24-rounds Twine-128 258.1 2126.78 2125.61

[BDP15] Meet-in-the-Middle 25-round Twine-128 248 2124.7 2109

[BDP15] Impossible di�. 25-round Twine-128 259.6 2125.8 278.6

Section 5.3.3 Truncated di�. 23-round Twine-128
258 2126.78

289262 2125.94

264 2124.35

Table 5.1: The best attacks on Twine in the single-key model and their complexity.

In Section 5.2, we highlight a property of the permutation used in Twine. Rounds
of encryption can be grouped into blocks of 4 rounds in such a way that two halves of
the internal states evolve independently from one another during the �rst 3 rounds
and then exchange information only during the fourth. This property is iterative. We
also discuss why LBlock and its simpler variant LBlock-s exhibit the same 4-round
behavior. As a consequence of this observation, we describe several high probability
truncated di�erential trails for all these ciphers. We then leverage them in Section 5.3
to attack 23-rounds of Twine-128 using comparatively low memory. Finally, we use
these truncated trails to optimize a search for high probability di�erentials and show
that the conservative choice of S-Box made by the designers of Twine greatly limits
the di�erential e�ect in this primitive — unlike in LBlock-s for instance.

5.1 Descriptions of Twine, LBlock and LBlock-s

5.1.1 Description of Twine

This block cipher uses 16 branches of 4-bits and has a very simple round function
(see Figure 5.1): the Feistel function consists of a xor of a sub-key and a call to a
unique S-Box based on the inverse function in GF (24) (see Section 8.3.1.1 (p. 147)).
Then, the branches are shu�ed using a sophisticated nibble permutation ensuring
faster di�usion than a simple branch rotation [SM10]. One version of Twine uses an
80 bits key, another uses a 128 bits key and we denote these versions Twine-80 and
Twine-128. They only di�er by their key-schedule and both have 36 rounds. Both
key schedules have a sparse gfn structure which uses only 2 and 3 S-Box calls per
round for Twine-80 and Twine-128 respectively. The gfn used by the key-schedule
of Twine-128 is depicted on Figure 5.2. We refer the reader to [SMMK13] for the
80-bit version. At each round, some �xed nibbles of the key-state are used as round
keys for the block cipher. One round of Twine is depicted on Figure 5.1.

Given a collection of messages {P0, . . .}, the nibble with index i taken at round
r of message m is denoted xmr [i]. The master key is denoted K while the round key
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Figure 5.1: The round function of TWINE.
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Figure 5.2: The key-schedule of TWINE-128.

used at round r is denoted RKr .

5.1.2 Descriptions of LBlock and LBlock-s

LBlock [WZ11] is a two-branched Feistel Network. The Feistel function of consists
of a key addition, an S-Box layer S made of 8 di�erent 4-bit S-Boxes and a nibble per-
mutation P . In addition to the usual Feistel structure, there is a rotation by 8 bits to
the left on the right branch before the xor. This operation on the right branch leads
to a strong structural similarity with Twine, as the authors of this cipher acknowl-
edged. The complete round function is described in Figure 5.3. In total, 32 rounds
are used to encrypt a block.

Unlike Twine, LBlock only uses 80-bit keys. Its key-schedule is similar to that
of Present [BKL+07]: it relies on a rotation of the 80-bits register used to store the
master key and on the application of two S-Boxes.

LBlock-s, the block cipher used in the authenticated cipher Lac [ZWW+14], is
identical to LBlock except that the S-Box layer uses a unique S-Box instead of 8 dif-
ferent ones and that its key-schedule is closer to the one of Twine-80. The S-Boxes
of LBlock and that of LBlock-s all have similar di�erential and linear properties.

5.2 The 4-Round Structure of Twine, LBlock and LBlock-s

The round functions of Twine can be described using an equivalent representation
which allows a clearer representation of some di�erential path. This alternative rep-
resentation is given in Figure 5.4a. A similar representation of LBlock(-s) can be ob-
tained, as shown in Figure 5.4b. This observation highlights the similarities between
these two designs.
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Figure 5.3: The round function of LBlock

(a) Twine (b) LBlock(-s)

Figure 5.4: Round functions alternative representations

For Twine, we simply move all the branches going into Feistel functions to the
left and those receiving its output to the right. This means we simply move branches
with even indices on the left and those with odd ones on the right, as described in
Figure 5.4a.

The process leading to the alternative description of LBlock(-s) is more compli-
cated than for Twine and is summarized in Figure 5.5. The S-Boxes and the permu-
tation layer P both operate on 4-bit nibbles, which implies that P ◦ S is equivalent
to S ′ ◦ P where S ′ is a reordered S-Box layer. Then, instead of applying P within
the Feistel function, we apply it before entry and then apply the functional inverse
1/P of P on the same branch to compensate. Finally, we note that the rotation R
and the inverse permutation 1/P are applied on the same data, so we combine them
into one operation R ◦ (1/P ). Finally, we replace the two 32-bit words of the internal
state of LBlock by eight 4-bit nibbles each and thus obtain the representation given
in Figure 5.4b.

We represent 4 rounds of Twine using our alternative representation on the left
of Figure 5.6. In this picture, S-Boxes are not shown and xors are represented by
circles. The basic representation is on the left and another representation which
highlights the two components is on the right. The numbers correspond to nibble
indices in the “regular” representation of Twine, i.e. as in Figure 5.1. As we can
see, the 16 branches can be grouped into two disjoint components, red and blue, such
that branches from one component interact only with each other during 3 rounds
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Figure 5.5: How to obtain the alternative representation of LBlock(-s).

Figure 5.6: Alternative representations of 4 rounds of Twine.

out of 4. However, during the last round, branches from each component interact
only with branches from the other component. Furthermore, these components are
stable in the sense that such groups of 4 iterations can be plugged together to cover
any number of rounds and remain separated for all rounds with index r where r . 3
mod 4. Indeed, in Figure 5.6, the branches which are blue at the output of the fourth
round are exactly those which are red at the input of the �rst round. If we draw these
components separated from one another, we obtain another description of 4 rounds
of Twine given on the right of Figure 5.6. The same can be done with LBlock(-s), see
Figure 5.7.

5.3 Truncated Di�erential Cryptanalysis of Twine

Because of the particular structure it has over 4 rounds, Twine exhibits some trun-
cated di�erential patterns with high probability. These are described in Section 5.3.1.
Then, they are used in a key-recovery attack targeting 23-round Twine-80 in Sec-
tion 5.3.2.
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Figure 5.7: Alternative representation of 4 rounds of LBlock(-s).

5.3.1 Truncated Di�erentials over 4 Rounds

The simplest truncated di�erential pattern deduced from the 4-round behavior of
Twine implies 4 active branches in the input and 4 active branches in the output of
4 rounds at the cost of 4 di�erence cancellations during round 3. More precisely, let
(x[0],x[2],x[6],x[10]) have non-zero di�erences. Then these di�erences will prop-
agate to the full blue component during the next two rounds. During round 3, if
the di�erences in (x[0],x[4],x[6],x[12]) cancel themselves with the di�erences in
(x[1],x[5],x[7],x[13]) after going through the key addition and the S-Box layer, then
the di�erences do not propagate to the red component. Hence, the di�erences remain
contained in the blue component for another 3 round with probability 1. Since 4 can-
cellations happen with probability 2−16 and since such truncated characteristics can
be “plugged” so as to cover as many rounds as we want, we have a truncated di�er-
ential covering 4r rounds with probability 2−16·r .

(a) L1 (pink) and its counterpart L′1 (b) R1 (pink) and its counterpart R ′1

Figure 5.8: 4-rounds truncated di�erentials for Twine and their modi�ed versions.

Other slightly di�erent characteristics involve three active branches in the input
and the output after 4 rounds in such a way that only 4 cancellations are necessary,
meaning that they also have a probability of 2−16. Two of them are described in
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(a) Truncated characteristic L1 (b) Truncated characteristic L2

(c) Truncated characteristic L3 (d) Truncated characteristic L4

Figure 5.9: Truncated di�erential characteristics on the left component of Twine and
their extensions towards the top.

Figure 5.8a and the others are in Figure 5.9, where non-zero di�erences are purple
and zero di�erences are black. They all work by having one cancellation during the
second round and three during the third. As before, the �rst and fourth rounds have
probability 1. However, we can extend them for the �rst 4 rounds by adding non-zero
di�erences over all the components — which is represented by a blue dotted line in
Figure 5.9. At the cost of one more cancellation, hence a probability of 2−20, we can
use structures made of 232 plaintext/ciphertext couples giving raise to

(232

2

)
≈ 263

pairs following the �rst 4-round trail with probability 2−20, meaning that about 243

will be right pairs for this trail. Without extending the trail, we would get
(224

2

)
×

2−16 ≈ 241 right pairs.
As we can see, such di�erential trails move on to the right component after 4

rounds. There are similar trails covering it described in Figure 5.10 and 5.8b. As be-
fore, black represents zero di�erences, purple non-zero ones and purple squares the
cancellations which must occur during encryption. These �gures also represent, in
dotted blue, the di�erence propagation during the �rst 3 rounds without any con-
straints regarding the cancellations so that this trail has probability 1. The green
squares represent the cancellations which must be observed when starting from the
bottom and partially decrypting a pair of ciphertext having the correct output dif-
ference.
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(a) Truncated characteristic R1 (b) Truncated characteristic R2

(c) Truncated characteristic R3 (d) Truncated characteristic R4

Figure 5.10: Truncated di�erential characteristics on the right component of Twine
and their extensions towards the bottom.

It is therefore possible to cover as many rounds as we want using a characteristic
Li ,Ri , ...,Li ,Ri for any i ∈ [1,4]. Such a trail would cover 4r rounds with probability
2−16·r . We also denote L ′i the trail Li extended on top so as to have 8 non-zero input
di�erences at the cost of one additional cancellation and R ′i the trail Ri reduced to
3 rounds and where no cancellations occur. Both L ′i and R ′i correspond to the case
where the dotted blue lines contain non-zero di�erences.

5.3.2 E�icient Key Recovery

The 5 cancellations preventing the di�erence from spreading to the other component
can be grouped into 2 sets, one of 2 cancellations and one of 3, each depending on a
distinct set of 5 and 6 sub-keys. This phenomenon is illustrated in Figure 5.11, where
dotted lines correspond to zero di�erences and squares to cancellations.

Starting from a pair of plaintexts separated by the correct input di�erence, it is
easy to generate the set of all the sub-keys combinations which would lead to the
trail we expect as follows:

1. Try all possible combinations of the sub-keys involved in the blue part of Fig-
ure 5.11 and store only those leading to the correct cancellations. There are
24×5 = 220 possibilities, out of which 220−3×4 = 28 lead to the correct pattern.
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Figure 5.11: Data-paths involved in the 5 cancellations happening in L ′1.

2. Try all possible combinations of the sub-keys involved in the pink part of Fig-
ure 5.11 and store only those leading to the correct cancellations. There are
24×6 = 224 possibilities, out of which 220−2×4 = 216 lead to the correct pattern.

3. Combine the 28 and 216 independent sub-candidates to obtain 224 candidates
of 4 × (5 + 6) = 44 bits each.

A very similar algorithm can be used to recover the candidates yielding the cor-
rect cancellations when partially decrypting the ciphertexts of the same pair. Doing
so generates another 224 candidates of 44 bits each.

5.3.3 Combining Truncated Di�erentials to A�ack 23-Rounds

Twine-128

The high level idea of this attack is to discard some combinations of values for the set
made of the 12 sub-keys used to update the left component during the �rst 3 rounds
and the 12 sub-keys used to update the right component during the last 3 rounds.
These form of set of 24 nibbles, i.e. 96 bits. The �rst and last 4-rounds blocks of the
truncated di�erential trails described in Figure 5.12 all depend on the sub-keys in
this set, although each of the trails only uses a di�erent set of 88 bits out of the 96
bits available. It is therefore easy to combine the information deduced from each. A
complete description of our attack is provided in Section 5.3.3.1 and its complexity
is estimated in Section 5.3.3.2.

5.3.3.1 Details of the A�ack

Using the trails described in the previous Section, we can cover 23 rounds with prob-
ability p = 2−84 in four di�erent ways. The combination of these di�erent 4-rounds
characteristics is described in Figure 5.12, where 0 means there is no di�erence on
this nibble and x means there is some non-zero di�erence. The nibbles are ordered
as in the right side of Figure 5.6. They all require the same input truncated di�erence
and are mutually exclusive.

1. Data generation. First of all, we need to generate the pairs from which we are
going to extract information about the sub-keys. For this purpose, we use 2s
structures of 232 plaintext/ciphertext couples each. In these structures, nibbles
x0[0..3,6,7,10,11] take all possible values while the others are constant. We
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Figure 5.12: The four distinct 23-rounds truncated di�erential trails we use to attack
Twine.

thus obtain about 2s+63 pairs with the correct input di�erence at a cost of D =
232+s queries to an encryption oracle. We then obtain all the pairs which also
have the correct output di�erence, namely1 08x8, at the cost of 2s sorting of
arrays of 232 ciphertexts. Since this output di�erence has probability f = 2−32,
this leaves Np = 2s+63 · f = 2s+31 pairs with the correct input and output
di�erences. Among these, there are Nr = 2s+63 · p = 2s−21 right pairs for each
of the 4 truncated di�erential trails described in Figure 5.12 — which means
that s must be at least equal to 21. Note that Np = Nr f /p and D = Nr /p.
Now that we have the data we need, we process it as follows for each of the 4

1The order of the nibbles in this di�erence corresponds to the order of the nibbles in our alternative
representation.
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trails, t being the index of the trail considered.

2. Counters increment. For t ∈ [1,4]:

a) Let Tt be an array of size 288. For each of the Np pairs which passed the
�lter, we run the algorithms described in Section 5.3.2 to recover 224 sub-
candidates for the subset of 11 sub-keys used in the �rst 3 rounds and
224 sub-candidates for the other subset of 11 sub-keys used in the last 3
rounds. This leads to K = 248 candidates living in a space of size S = 288

3. Discarding candidates. We now have 4 tables Tt ,t ∈ [1,4] of S counters.
In each table, each of the S candidates has been incremented Np times with
probability K/S = 2−40. We thus approximate the distribution of the counters
by a normal distribution with average value µwrong = NpK/S = Nr ( f K )/(pS)
and variance σ 2

wrong = Np (K/S) (1 − K/S) ≈ Nr ( f K )/(pS). However, the
correct counter has also been incremented by each of the Nr correct pairs,
meaning that its average value is µright = NpK/S + Nr = Nr

(
( f K )/(pS) + 1

)
.

We de�ne µ0 in order to express µwrong, σ 2
wrong and µright easily:

µ0 =
f · K

p · S
, µwrong = Nr µ0, σ

2
wrong = Nr µ0, µright = Nr (µ0 + 1).

We then combine the information from these counters. To achieve this, we
recall that the indices in the tables Tt correspond to di�erent subsets of 88 bits
of a set of sub-keys of 96 bits in total. Therefore, we can associate a single
representative in each table Tt to each candidate of 96 bits. Hence, we can give
a score to each 96-bits candidate by taking the average of the scores of their
representatives in each table. As a consequence, the score of a wrong candidate
follows a normal distribution with the following parameters:

N
( 4 · µwrong

4 ,
4 · σ 2

wrong

42

)
= N

(
µwrong,

σ 2
wrong

4
)
.

Similarly, the score of the right candidate is a sample from a normal distribu-
tionN

(
µright,σ

2
right/4

)
. If we want a probability of keeping the right candidate

of about 1/2, we need to discard all the candidates having a score below µright.
We denote Pr [wrong] the probability to keep a wrong candidate, i.e. the prob-
ability that a wrong candidate has a score greater than µright. It is given by:

Pr [wrong] = 1
2

[
1 − erf

( µright − µwronд√
2σ 2

wrong/4

)]
=

1
2

[
1 − erf

(√ 2Nr

µ0

)]
. (5.1)

Unsurprisingly, the number of wrong candidates discarded increases with the
number Nr of right pairs for each trail. Table 5.2 gives the value of the probability
Pr [wrong] of keeping a wrong candidate depending on the value of Nr as well as
the corresponding data complexity knowing that µ0 = 2−32+56+84−96 = 212. Note also
that the maximum value of Nr corresponds to the full code-book, i.e. when we query
all 232 possible structures, in which case, Nr = 232−21 = 211.
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5.3.3.2 Complexity Estimation

The memory complexity of the truncated di�erential attack described in the previous
section is straightforward to evaluate. We need to store at most 263 plaintext/cipher-
text pairs and 4 times 288 counters. These counters are on average equal to Nr · 212

with Nr equal to at most 211. Hence, 32 bits are more than enough for each of them.
Storing the counters is clearly the dominating factor here, meaning that the memory
complexity of this attack is 4 · 288 = 290 counters of 32 bits or 289 internal states.

We need Nr · 253 plaintext/ciphertext pairs, meaning that the data complexity is
Nr · 253.

This also implies that we need at least the time taken to generate these. Further-
more, we also need to compute the possible candidates for each of the Nr · 252 pairs
which passed the �lter. As seen in Section 5.3.2, this can be done in time 248 for each
pair. Hence, we also need to perform a counter increment 4 · Nr · 252 · 248 = Nr · 2102

times. Finally, for all the candidates with a high enough score, we need to brute-
force the 32 remaining bits of the key. This requires 2128 · Pr [wrong] encryptions.
The corresponding complexities for di�erent values of Nr are given in Table 5.2.

Nr Pr [wrong] Data Time Memory

25 2−1.22 258 2126.78

28927 2−1.47 260 2126.53

29 2−2.06 262 2125.94

211 2−3.67 264 2124.34

Table 5.2: Data, time and memory complexity of a truncated di�erential attack on
Twine-128.

5.4 Optimizing the Search for High Probability Di�erentials

As shown in the previous section truncated di�erentials can be used directly to attack
(round-reduced) block ciphers. However they can also be used to optimize the search
for high probability di�erentials. Indeed, by providing a "template" which di�erential
characteristics should follow, it can reduce the size of the search space signi�cantly
and make the computation of a lower bound on a di�erential probability tighter.
A similar approach was used in [CFG+15] to identify high probability di�erentials
for Prince which were then used in a multiple di�erential attack which is the best
attack on this cipher today. Lac [ZWW+14], a lightweight candidate of the Caesar
competition based on a simpli�ed version of LBlock called LBlock-s, has been the
target of another high probability di�erential search by Leurent [Leu16] which uses
similar ideas.

In both cases, the method has been the same: �rst identify a high probability
di�erential trail and then use a heuristic method to compute a lower bound on the
probability of a di�erential by essentially clustering all characteristics following said
truncated di�erential. Since we have iterated truncated trails covering any amount
of rounds for Twine, we apply this method on this cipher to identify high probability
di�erentials.

For a truncated characteristic T covering r rounds, we denote Pr[δ { ∆] the
probability of the di�erential (δ { ∆) obtained by summing the probabilities of all
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the di�erential trails mapping δ to ∆ which follow the truncated trail. Using these
probabilities, we build a matrix M (C ) such that M (T )i,j = Pr[i { j]. To obtain the
distribution of ∆ given δ , we simply multiply a vector made of zeroes everywhere
except in position δ , where it is equal to 1, by M (T ). Note that the sum of the prob-
abilities of the values ∆ obtained in this fashion is not equal to 1 as the truncated
trail itself does not have a probability of 1. Given M (T ), �nding the di�erential with
the highest probability can be done easily by �nding the maximum coe�cient in the
matrix. The size of M (T ) is limited by only taking into account the values of δ and
∆ which are coherent with T .

In order to obtain the distribution of ∆ after two iterations of the trail T , we
multiply the same vector by the matrix M (T ) × M (T ), where "×" denotes regular
matrix multiplication. This construction can of course be iterated.

In the case of Twine, we computed two matrices M (L1) and M (R1) correspond-
ing to the truncated trails L1 and R1 described in Figures 5.8a and 5.8b respectively,
where zero di�erences are represented in black and squares correspond to places
where cancellations are necessary. Both M (L1) and M (R1) are square matrices of
size 212 × 212 because both trails have only 3 non-zero nibbles as both their input
and output. Using di�erent multiplications of these, we found the high probability
di�erentials given in Table 5.3.

Rds. Input di�erence δ Output di�erence ∆ Pr[δ { ∆] 2−2(#Active S-Boxes)

4

10 20 00 60 00 00 00 00 00 00 20 00 60 00 00 60 2−17.496

2−1860 20 00 60 00 00 00 00 00 00 20 00 60 00 00 10 2−17.496

30 60 00 30 00 00 00 00 00 00 60 00 30 00 00 10 2−17.759

10 60 00 30 00 00 00 00 00 00 60 00 30 00 00 30 2−17.759

8

10 20 00 60 00 00 00 00 60 20 00 10 00 00 00 00 2−34.542

2−3610 20 00 60 00 00 00 00 60 20 00 f0 00 00 00 00 2−34.981

f0 20 00 60 00 00 00 00 60 20 00 10 00 00 00 00 2−34.981

d0 f0 00 80 00 00 00 00 80 f0 00 d0 00 00 00 00 2−34.994

12

10 20 00 10 00 00 00 00 00 00 20 00 60 00 00 10 2−52.083

2−5410 20 00 60 00 00 00 00 00 00 20 00 10 00 00 10 2−52.083

80 f0 00 80 00 00 00 00 00 00 f0 00 d0 00 00 80 2−52.144

80 f0 00 d0 00 00 00 00 00 00 f0 00 80 00 00 80 2−52.144

16

60 20 00 60 00 00 00 00 60 20 00 60 00 00 00 00 2−67.538

2−7230 60 00 30 00 00 00 00 30 60 00 30 00 00 00 00 2−67.595

90 30 00 90 00 00 00 00 90 30 00 90 00 00 00 00 2−67.626

80 f0 00 80 00 00 00 00 80 f0 00 80 00 00 00 00 2−67.762

Table 5.3: High probability di�erentials for round-reduced Twine.

As we can see, the highest probability for a di�erential over 4-rounds is higher
than we might expect. Indeed, 9 S-Boxes are involved in it and the maximum prob-
ability for a di�erential in the S-Box is 2−2. Hence, the maximum probability of a
characteristic is 2−18, which is smaller than the value of 2−17.5 our model predicts
and which we checked experimentally. The gain then increases as the number of
rounds increases. For 12 rounds, we have 27 active S-Boxes which means that the
probability of a characteristic cannot be higher than 2−54 and yet the highest di�er-
ential probability is at least 2−52.1.
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Leurent obtained more impressive results for LBlock-s (e.g. a lower bound of
2−29.8 for 8 rounds) which might be surprising at �rst glance since the linear layer of
these two ciphers are very similar and both use S-Boxes with a maximum di�erential
probability equal to 2−2. However, the distribution of the coe�cients in the di�erence
distribution tables of the S-Boxes of these ciphers are di�erent. For instance, with SL
and ST denoting the S-Boxes of LBlock-s and Twine respectively, we have P

[
SL (x ⊕

δ ) ⊕ SL (x ) = 4
]
= 2−2 for δ ∈ {4,5,6,7} while there exists only one δ such that

P
[
ST (x ⊕ δ ) ⊕ ST (x ) = ∆

]
= 2−2 for any ∆ , 0. In other words, the distribution

of the output di�erences is closer to being uniform in Twine than in LBlock-s (and
LBlock). To study the consequences of these variations in di�erential behavior, we
reiterated our di�erential search by replacing the S-Box of Twine by that of LBlock-
s. We obtained four distinct di�erentials with probability at least 2−31.7 for 8-rounds.2
This result is 24.3 times better than what a wide-trail argument would give and 23

times higher than for the Twine S-Box.
Our �ndings highlight both how large truncated di�erentials can be leveraged to

prove tighter lower bounds on di�erential probabilities and how the distribution of
the coe�cients in the di�erence distribution table of a S-Box as a whole should be
taken into account when designing a primitive in contrast to simply looking at the
maximum coe�cient, as is often the case when wide-trail arguments are used.

The di�erential properties of S-Boxes, such as those built using a �nite �eld mul-
tiplicative inverse, are discussed much more thoroughly in Part II. In particular, Sec-
tion 8.3.1.1 is devoted to such functions.

2Note that Leurent used a truncated di�erential with 17 active S-Boxes while ours has 18. This dif-
ference is likely to account for the factor 21.9 separating our results.



Chapter6

Design Strategies for ARX-based

Block Ciphers

Arx, standing for Addition/Rotation/Xor, is a class of symmetric-key algorithms de-
signed using only the following simple operations: modular addition, bitwise rota-
tion and exclusive-or. In contrast to S-box-based designs, where the only non-linear
elements are the substitution tables (S-boxes), arx designs rely on modular addition
as the only source of non-linearity.

Notable representatives of the arx class include the stream ciphers Salsa20 and
ChaCha20 [Ber08b, Ber08a], the Sha-3 �nalists Skein [NLS+10] and blake [AHMP08]
as well as several lightweight block ciphers such as tea, xtea [NW97], etc. In fact,
in a related work [DLCK+15], Daniel Dinu and some of my colleagues reported that
the most e�cient block cipher software implementations on small processors be-
longed to ciphers from the arx class. Those are the Chaskey-cipher [MMH+14] by
Mouha et al., Speck [BSS+13] by the American National Security Agency (nsa) and
lea [HLK+14] by the South Korean Electronic and Telecommunications Research
Institute.1

For all these algorithms, the choice of using the arx paradigm was based on four
observations.

1. Getting rid of the table look-ups, associated with S-Box based designs, in-
creases the resilience against side-channel attacks.

2. This design strategy minimizes the total number of operations performed dur-
ing an encryption, allowing particularly fast software implementations.

3. In software, few additional registers are needed to store intermediate results.
As loading and spilling to ram are slow operations, minimizing those not only
decreases the memory footprint of the algorithm, it also makes it faster.

4. The computer code describing such algorithms is very small, making this ap-
proach especially appealing for lightweight block ciphers where the memory
requirements are the harshest.

While this was not mentioned in the original paper on Speck, its designers later pub-
lished an invited paper at the Design Automation Conference [BTCS+15]. It provides

1Speck and the MAC Chaskey are being considered for standardization by ISO.
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little information but its authors do say that they aimed at low code size and tried to
prevent word copies.

Despite the widespread use of arx ciphers, the following problem has remained
opened until now.

Is it possible to design an arx cipher that is provably secure against
single-trail di�erential and linear cryptanalysis by design?

To the best of our knowledge, there has only been one attempt at tackling this
issue. In [BVC16] Biryukov et al. have proposed several arx constructions for which
it is feasible to compute the exact maximum di�erential and linear probabilities over
any number of rounds. However, these constructions are limited to 32-bit blocks. The
general case of this problem, addressing any block size, has still remained without a
solution.

More generally, the formal understanding of the cryptographic properties of arx
is far less satisfying than that of, for example, S-Box-based substitution-permutation
networks (spn). Indeed, the wide trail strategy [DR01] (wts) and the wide trail ar-
gument [DR02] provide a way to design S-box based spns with provable resilience
against di�erential and linear attacks. It relies on bounding the number of active
S-Boxes in a di�erential (resp. linear) trail and deducing a lower bound on the best
expected di�erential (resp. linear) probability.

In this chapter, we propose two di�erent strategies to build arx-based block ci-
phers with provable bounds on the maximum expected di�erential and linear prob-
abilities, thus providing a solution to the open problem stated above.

The �rst strategy is called the Long Trail Strategy (lts). It borrows the idea of
counting the number of active S-Boxes from the wide trail argument but the overall
principle is actually the opposite to the wide trail strategy as described in [DR01].
While the wts dictates the spending of most of the computational resources in the
linear layer in order to provide good di�usion between small S-boxes, the lts ad-
vocates the use of large and comparatively expensive S-Boxes in conjunction with
cheaper and weaker linear layers. We formalize this method and describe the Long
Trail argument that can be used to bound the di�erential and linear trail probabilities
of a block cipher built using this strategy. This strategy is described in Section 6.2
(p. 106).

In Section 6.3 (p. 112), we propose the Lax construction, where bit rotations are
replaced with a more general linear permutation. The bounds on the di�erential
probability are expressed as a function of the branching number of the linear layer.
We note that the key insight behind this construction has been published in [Wal03b],
but its realization has been left as a challenge. But �rst, we introduce the notation
and concepts we need in Section 6.1.

6.1 Preliminaries

Let f : Fn2 → Fn2 , (a,b) ∈ Fn2 × Fn2 and x ∈ Fn2 . We denote the probability of
the di�erential trail (a { b) by Pr [ f (x ) ⊕ f (x ⊕ a) = b

] and the correlation of the
linear approximation (a { b) by (2 Pr [a · x = b · f (x )] − 1) where y · z is the scalar
product of y and z.

In an iterated block cipher, not all di�erential (respectively linear) trails are pos-
sible. Indeed, they must be coherent with the overall structure of the round function.
For example, it is well known that a 2-round di�erential trail for the Aes with less
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than 4 active S-Boxes is impossible. To capture this notion, we use the following
de�nition.

De�nition 6.1.1 (Valid Trail). Let f be an n-bit permutation. A trail a0 → ... → ar
for r rounds of f is a valid trail if Pr[ai → ai+1] > 0 for all i in [0,r − 1]. The set of
all valid r -round di�erential (respectively linear) trails for f is denoted Vδ ( f )r (resp.
V` ( f )

r ).

We use the acronyms medcp and melcc to denote respectivelymaximum expected
di�erential characteristic probability and maximum expected linear characteristic cor-
relation – a signature introduced earlier in [KS07]. The medcp of the keyed function
fki : x 7→ f (x ⊕ ki ) iterated over r rounds is de�ned as follows:

medcp( f r ) = max
(∆0→...∆r )∈Vδ (f )r

r−1∏
i=0

Pr[∆i { ∆i+1] ,

where Pr[∆i { ∆i+1] is the expected value of the di�erential probability of ∆i {
∆i+1 for the function fk when k is picked uniformly at random. melcc( f r ) is de�ned
analogously. Note that medcp( f r ) and

(
medcp( f 1)

)r
are not equal.

As designers, we thrive to provide upper bounds for both medcp( f r ), so as to
evaluate the resilience against single-trail di�erential cryptanalysis, and melcc( f r )
to better investigate single-trail linear attacks. Doing so allows us to compute the
number of rounds f needed in a block cipher for the probability of all trails to be too
low to be usable. In practice, we want medcp( f r ) � 2−n and melcc( f r ) � 2−n/2

where n is the block size.
While this strategy is the best known, the following limitations must be taken

into account by algorithm designers.

1. The quantities medcp( f r ) and melcc( f r ) are relevant only if we make the
Markov assumption, meaning that the di�erential and linear probabilities are
independent in each round. This would be true if the subkeys were picked
uniformly and independently at random but, as the master key has a limited
size, it is not the case.

2. These quantities are averages taken over all possible keys: it is not impossible
that there exists a weak key and a r -round di�erential trail T such that the
probability of T is higher than medcp( f r ) for this particular key. The same
holds for the linear probability.

3. These quantities deal with unique trails. However, it is possible that several
di�erential trails share the same input and output di�erences, thus leading to
a higher probability for said di�erential transition. This so-called di�erential
e�ect can be leveraged to decrease the data complexity of di�erential attack.
The same holds for linear attacks where several approximations may form a
linear hull.

Still, this type of bound is the best that can be achieved in a generic fashion (to the
best of our knowledge). In particular, this is the type of bound provided by the wide
trail argument used in the Aes.
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6.2 Arx-Based Substitution-Permutation Network

In this section, we present a general design strategy for building arx-based block
ciphers borrowing techniques from spn design. The general idea is to build an spn
with arx-based S-boxes instead of with S-boxes based on look-up tables (lut). The
proofs for the bound on the medcp and melcc are inspired by the wide trail argu-
ment introduced in the design of the Aes [DR02]. However, because of the use of
large S-Boxes, the method used relies on a di�erent type of interaction between the
linear and non-linear layers. We call the corresponding design strategy the Long
Trail Strategy. It is quite general and could be also applied in other contexts e.g. for
non-arx constructions.

First, we present possible candidates for the arx-based S-Box and, along the way,
identify the likely reason behind the choice of the rotation constants in Speck-32.
Then, we describe the Long Trail Strategy in more details. Finally, we present two
di�erent algorithms for computing a bound for the medcp and melcc of block ciphers
built using a lt strategy. We also discuss how to ensure that the linear layer provides
su�cient di�usion.

6.2.1 Arx-Boxes

De�nition 6.2.1 (arx-box). An arx-box is a permutation onm bits (wherem is much
smaller than the block size) which relies entirely on addition, rotation and xor to provide
both non-linearity and di�usion. An arx-box is a particular type of S-Box.

Possible constructions for arx-boxes can be found in a recent paper by Biryukov
et al. [BVC16]. A �rst one is based on the MIX function of Skein [NLS+10] and
is called Marx-2. The rotation amounts, namely {1,2,7,3}, were chosen so as to
minimize the di�erential and linear probabilities. The key addition is done over the
full state. The second construction is called Speckey and consists of one round of
Speck-32 [BSS+13] with the key added to the full state instead of only to half the
state as in the original algorithm. The two constructions, Marx-2 and Speckey, are
shown in Figures 6.1a and 6.1b, where the branch size is 8 bits for Marx-2 and 16
bits for Speckey. The di�erential and linear bounds for them are given in Table 6.1.

⊕
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≪ 7
�

≪ 3
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(a) Marx-2.

⊕

≫ 7
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≪ 2

⊕

(b) Speckey.

Figure 6.1: Key addition followed by the candidate 32-bit arx-boxes.

While it is possible to choose the rotations used in Speckey in such a way as to
slightly decrease the di�erential and linear bounds2, such rotations are more expen-

2Both can be lowered by a factor of 2 if we choose rotations (9, 2), (9, 5), (11, 7) or (7, 11) instead of
(7, 2).
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r 1 2 3 4 5 6 7 8 9 10

Marx-2 medcp(Mr ) 0 −1 −3 −5 −11 −16 −22 −25 −29 −35
melcc(Mr ) 0 0 −1 −3 −5 −8 −10 −13 −15 −17

Speckey medcp(Sr ) 0 −1 −3 −5 −9 −13 −18 −24 −30 −34
melcc(Sr ) 0 0 −1 −3 −5 −7 −9 −12 −14 −17

Table 6.1: Maximum expected di�erential characteristic probabilities (medcp) and
maximum expected absolute linear characteristic correlations (melcc) of Marx-2
and Speckey (log2 scale); r is the number of rounds.

sive on small microcontrollers which only have instructions implementing rotations
by 1 and by 8 (in both directions). The designers of Speck made the same observation
in [BTCS+15].

6.2.2 Naïve Approaches and Their Limitations

A straight-forward approach to build arx-based ciphers with provable bounds on
the medcp and the melcc is to use an spn structure where the S-boxes are replaced
by arx operations for which we can compute the medcp and melcc. This is indeed
the strategy we follow but care must be taken when actually choosing the arx-based
operations and the linear layer.

Let us for example build a 128-bit block cipher with an S-Box layer consisting
in one iteration of Speckey on each 32-bit word and with an mds linear layer, say a
multiplication with the MixColumns matrix with elements in F232 instead of F28 . The
medcp bound of such a cipher computed using a classical wide trail argument would
be equal to 1! Indeed, there exists probability 1 di�erentials for 1-round Speckey so
that, regardless of the number of active S-Boxes, the bound would remain equal to 1.
Such an approach is therefore not viable.

As the problem identi�ed above stems from the use of 1-round Speckey, we now
replace it with 3-round Speckey where the iterations are interleaved with the addi-
tion of independent round keys. The best linear and di�erential probabilities are no
longer equal to 1, meaning that it is possible to build a secure cipher using the same
layer as before provided that enough rounds are used. However, such a cipher would
be very ine�cient. Indeed, the mds bound imposes that 5 arx-boxes are active every
2 rounds, so that the medcp bound is equal to p5r /2

d where r is the number of rounds
andpd is the best di�erential probability of the arx-box (3-rounds Speckey). To push
the bound below 2−128 we need at least 18 spn rounds, meaning 54 parallel applica-
tions of the basic arx-round! We will show that, with our alternative approach, we
can obtain the same bounds with much fewer rounds.

6.2.3 The Long Trail Design Strategy

Informed by the shortcomings of the naïve design strategies described in the previous
section, we devised a new method to build arx-based primitives with provable linear
and di�erential bounds. It is based on the following observation.

Observation 6.2.1 (Impact of Long Trails). Letd (r ) and `(r ) be the medcp and melcc
of some arx-box iterated r times and interleaved with the addition of independent sub-
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keys. Then, in most cases:

d (qr ) � d (r )q and `(qr ) � `(r )q .

In other words, in order to diminish the medcp and melcc of a construction, it is better
to allow long trails of arx-boxes without mixing.

For example, if we look at Speckey, the medcp for 3 rounds is 2−3 and that of 6
rounds is 2−15 which is far smaller than (2−3)2 = 2−6 (see Table 6.1). Similarly, the
melcc for 3 rounds is 2−1 and after 6 rounds it is 2−7 � (2−1)2.

In fact, a similar observation has been made by Nikolić when designing the Cae-
sar candidate family Tiaoxin [Nik15]. It was later generalized to larger block sizes
in [JN16], where Jean and Nikolić present, among others, the Aes-based A2

⊕ per-
mutation family. It uses a partial Large-Box layer where the Large-Box consists of 2
Aes rounds and a word-oriented linear layer in such a way that some of the Large-
Box calls can be chained within 2-round long trails. Thus, they may use the 4-round
bound on the number of active 8-bit Aes S-Boxes, which is 25, rather than twice
the 2-round bound, which would be equal to 10 (see Table 6.2). Their work on this
permutation can be interpreted as a particular case of the observation above.

# R 1 2 3 4 5 6 7 8 9 10
# Active S-Boxes 1 5 9 25 26 30 34 50 51 55

Table 6.2: Bound on the number of active 8-bit S-Boxes in a di�erential (or linear)
trail for the Aes.

De�nition 6.2.2 (Long Trail). We call Long Trail (lt) an uninterrupted sequence of
calls to an arx-box interleaved with key additions. No di�erence can be added into the
trail from the outside. Such trails can happen for two reasons.

1. A Static Long Trail occurs with probability 1 because one output word of the
linear layer is an unchanged copy of one of its input words.

2. A Dynamic Long Trail occurs within a speci�c di�erential trail because one out-
put word of the linear layer consists of the xor of one of its input words with a
non-zero di�erence and a function of words with a zero di�erence. In this way
the output word of the linear layer is again equal to the input word as in a Static
lt, but here this e�ect has been obtained dynamically.

De�nition 6.2.3 (Long Trail Strategy). The Long Trail Strategy is a design guideline:
when designing a primitive with a rather weak but large S-Box (say, an arx-based per-
mutation), it is better to foster the existence of long trails rather than to have maximum
di�usion in each linear layer.

This design principle has an obvious caveat: although slow, di�usion is neces-
sary! Unlike the wts, in this context it is better to trade some of the power of the
di�usion layer in favor of facilitating the emergence of long trails.

The Long Trail Strategy is a method for building secure and e�cient ciphers
using a large but weak S-Box S such that we can bound the medcp (and melcc) of
several iterations of x 7→ S (x ⊕ k ) with independent round keys. In this paper, we
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focus on the case where S consists of arx operations but this strategy could have
broader applications such as, as brie�y discussed above, the design of block ciphers
operating on large blocks using the Aes round function as a building block.

In a way, this design method is the direct opposite of the wide trail strategy as it
is summarized by Daemen and Rijmen in [DR01] (emphasis ours):

Instead of spending most of the resources on large S-boxes, the wide trail
strategy aims at designing the round transformation(s) such that there
are no trails with a low bundle weight. In ciphers designed by the wide
trail strategy, a relatively large amount of resources is spent in the linear
step to provide high multiple-round di�usion.

The long trail approach minimizes the amount of resources spent in the linear layer
and does spend most of the resources on large S-Boxes. Still, as discussed in the next
section, the method used to bound the medcp and melcc in the Long Trail Strategy
is heavily inspired by the one used in the wide trail strategy.

6.2.3.1 A Cipher Structure for the LT Strategy

We can build block ciphers based on the Long Trail Strategy using the following two-
level structure. First, we must choose an S-Box layer operating onw words in parallel.
The composition of a key addition in the full state and the application of this S-Box
layer is called a round. Several rounds are iterated and then a word-oriented linear
mixing layer is applied to ensure di�usion between the words. The composition of r
rounds followed by the linear mixing layer is called a step3, as described in Fig. 6.2.
The encryption thus consists of iterating such steps. We used this design strategy to
build a block cipher family, Sparx, which we describe in Chapter 7 (p. 117).

L
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S

S
⊕
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S

S
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k0
0

k0
r−1

kw−1
0

kw−1
r−1

round

step

Figure 6.2: A cipher structure for the lt strategy.

6.2.3.2 Long Trail-Based Bounds

In what follows, we only discuss di�erential long trails for the sake of brevity. Linear
long trails are treated identically.

De�nition 6.2.4 (Truncated lt-Decomposition). Consider a cipher with a round func-
tion operating onw words. A truncated di�erential trail is a sequence of values of {0,1}w
describing whether an S-Box is active at a given round. The lt-Decomposition of a
truncated di�erential trail is obtained by grouping together the words of the di�erential

3This terminology is borrowed from the speci�cation of LED [GPPR11] which also groups several
calls of the round function into a step.
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trails into long trails and then counting how many active long trails of each length are
present. It is denoted {ti }i≥1 where ti is equal to the number of truncated long trails
with length i .

Example 6.2.1. Consider a 64-bit block cipher using a 32-bit S-Box, one round of Feis-
tel network as its linear layer and 4 steps without a �nal linear layer. Consider the
di�erential trail (δL0 ,δ

R
0 ) → (δL1 ,δ

R
1 ) → (0,δR2 ) → (δL3 ,0) (see Fig. 6.3 where the zero

di�erence is dashed). Then this di�erential trail can be decomposed into 3 long trails
represented in black, blue and red: the �rst one has length 1 and δR0 as its input; the
second one has length 2 and δL0 as its input; and the third one has length 3 and δL1 as
its input so that the lt decomposition of this trail is {t1 = 1,t2 = 1,t3 = 1}. Using the
terminology introduced earlier, the �rst two trails are Static lt, while the third one is a
Dynamic lt.

δ L0 δR0
S S

L ⊕

δ L1 δR1

L

S S

⊕

0 δR2

L

S S

⊕

δ L3 0
S S

Figure 6.3: An example of active lt decomposition.

Theorem 6.2.1 (Long Trail Bound). Consider a truncated di�erential trailT covering
r rounds consisting of an S-Box layer with S-Box S interleaved with key additions and
some linear layer. Let {ti }i≥1 be the lt decomposition of T . Then the probability pD of
any fully speci�ed di�erential trail �tting in T is upper-bounded by

pD ≤
∏
i≥1

(
medcp(S i )

)ti
where medcp(S i ) is an upper-bound on the probability of a di�erential trail covering i
iterations of S .

Proof. Let ∆i,s { ∆j,s+1 denote any di�erential trail occurring at the S-Box level in
one step, so that the S-Box with index i at step s sees the transition ∆i,s { ∆j,s+1.
By de�nition of a long trail, we have in each long trail a chain of di�erential trails
∆i0,s0 { ∆i1,s0+1 { ... { ∆it ,s0+t which, because of the lack of injection of di�er-
ences from the outside, is a valid trail for t iterations of the S-Box. This means that
the probability of any di�erential trail following the same sequence of S-boxes as in
this long trail is upper-bounded by medcp(St ). We simply bound the product by the
product of the bounds to derive the theorem. �
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6.2.4 Choosing the Linear Layer: Bounding the medcp and melcc

while Providing Di�usion

In order to remain as general as possible, in this section we do not consider the details
of a speci�c S-Box but instead we focus on �eshing out design criteria for the linear
layer. All the information on the S-Box that is necessary to follow the explanation is
the medcp and melcc of its r -fold iterations including the key additions e.g. the data
provided in Table 6.1 for our arx-box candidates.

As the linear layers we consider may be weaker than those usually to design
spns, it is also crucial to ensure that ciphers built using such a linear layer are not
vulnerable to integral attacks [KW02], in particular those based on the division prop-
erty [Tod15b]. Incidentally, this gives us a criteria quantifying the di�usion provided
by several steps of the cipher.

In this section, we propose two methods for bounding the medcp and melcc of
several steps of a block cipher. The �rst one is applicable to any linear layer but is
relatively ine�cient, while the second one works only for a speci�c subset of linear
layers but is very e�cient.

When considering truncated di�erential trails, it is hard to bound the probability
of the event that di�erences in two or more words cancel each other in the linear
layer. Therefore, for simplicity we assume that such cancellations happen for free
i.e. with probability 1. Due to this simpli�cation, we expect our bounds to be much
higher than the actual best di�erential probabilities. In other words, we underesti-
mate the security of the cipher. Note that we also exclude the cases where the full
state at some round has zero di�erence as the latter is impossible due to the cipher
being a permutation.

6.2.4.1 Algorithms for Bounding medcp and melcc of a Cipher

We propose generic approaches that do not depend on the number of rounds per
step. In fact, to fully avoid the confusion between rounds and steps in what follows
we shall simply refer to spn rounds. One way to bound the medcp and of a cipher is
described in Algorithm 6.1.

Algorithm 6.1 Finding the best bound on the DP of all di�erential trails covering r
rounds for a long-trail based block cipher with S-Box S .
Input: medcpS i for 1 ≤ i; r ;
Output: bound on all di�erential trail probabilities pmax.
pmax = 1
for all truncated trails T covering r rounds do
{ti }

r
i=0 ← lt-decomposition of T

pT =
∏r

i=0
(
medcpS i

)ti
pmax = min(pT ,pmax)

end for

return pmax

The algorithm we actually implemented is more sophisticated than Algorithm 6.1
as the latter is not e�cient enough in practice. More details about the speci�cs of the
actual algorithm, designed by my colleague Aleksei Udovenko, can be found in the
appendix of the full version of our paper which is available on eprint [DPU+16b].
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Both algorithms can be used to bound the probability of linear trails. Propaga-
tion of a linear mask through some linear layer can be described by multiplying the
mask by the transposed inverse of the linear layer matrix. In our matrix notation
we can easily transpose the matrix but inversion is harder. However, we can build
the linear trails bottom-up (i.e. starting from the last round): in this case we need
only the transposed initial matrix. Our algorithm does not depend on the direction,
so we obtain bounds on linear trails probabilities by running the algorithm on the
transposed matrix using the linear bounds for the iterated S-box.

6.2.4.2 Ensuring Resilience Against Integral A�acks

As illustrated by the structural attack against SASAS and its generalization described
in Chapter 11.5 (p. 212), an spn with few rounds may be vulnerable to integral attacks.
This attack strategy has been explored by Todo [Tod15b] who proposed the so-called
division property as a means to track which bit should be �xed in the input to have a
balanced output. He also described an algorithm allowing an attacker to easily �nd
such distinguishers.

We implemented this algorithm to search for division-property-based integral
trails covering as many rounds as possible. With it, for each matrix candidate we
compute a maximum number of rounds covered by such a distinguisher. This quan-
tity can then be used by the designer of the primitive to see if the level of protection
provided against this type of attack is su�cient or not.

Tracking the evolution of the division property through the linear layer requires
special care. In order to do this, we �rst make a copy of each word and apply the
required xors from the copy to the original words. Due to such state expansion, the
algorithm requires both a lot of memory and time. In fact, it is even infeasible to
apply on some matrices. To overcome this issue, we ran the algorithm with reduced
word size. During our experiments, we observed that such an optimization may only
result in longer integral characteristics and that this side e�ect occurs only for very
small word sizes (4 or 5 bits). In light of this, we conjecture that the values obtained
in these particular cases are upper bounds and are very close to the values which
could be obtained without reducing the word size.

6.3 Replacing Rotations with Linear Layers: the Lax

Construction

In this section we outline an alternative strategy for designing an arx cipher with
provable bounds against di�erential and linear cryptanalysis. It is completely inde-
pendent of the Long Trail Strategy outlined in the previous sections and uses the
di�erential properties of modular addition to derive proofs of security.

6.3.1 Motivation

In his Master thesis [Wal03b], Wallén posed the challenge to design a cipher that
uses only addition modulo-2n and GF(2)-a�ne functions, and that is provably resis-
tant against di�erential and linear cryptanalysis [Wal03b, Sect. 5]. In this subsection
we partially solve this challenge by proposing a construction with provable bounds
against single-trail di�erential cryptanalysis.

To mitigate the ambiguity of the “+” notation, we denote the xor with ⊕ and the
addition modulo 2n with “�”.
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6.3.2 Theoretical Background

De�nition 6.3.1 (xdp+). The di�erential probability DP of addition modulo 2n is de-
�ned as:

Pr [α ,β { γ
]
= 2−2n · #

{
(x ,y) : ((x ⊕ α ) � (y ⊕ β )) ⊕ (x � y) = γ

}
,

where α , β and γ are n-bit xor di�erences and x and y are n-bit values.

The linear correlation of addition modulo 2n is de�ned in a similar way. Ef-
�cient algorithms for the computation of the di�erential probability and the lin-
ear correlation of addition modulo 2n have been proposed respectively in [LM02]
and [Wal03a, NW06, DRS15]. These results also reveal the following property: the
magnitude of both the di�erential probability and the linear correlation is inversely
proportional to the number of bit positions at which the input/output di�erences
(resp. masks) di�er. For the di�erential probability, this fact is formally stated in the
form of the following proposition.

Proposition 6.3.1 (Di�erential probability bound (for �)). The di�erential probabil-
ity is upper-bounded by 2−k , where k is the number of bit positions, excluding the most
signi�cant bit, at which the bits of the di�erences are not equal:

Pr [α ,β { γ
]
≤ 2−k , where k = #

{
i : ¬(α[i] = β[i] = γ [i]),0 ≤ i ≤ w − 2

}
.

Proof. Follows from [LM02, Alg. 2, Sect. 4]. �

A similar proposition also holds for the linear correlation (see e.g. [BVC16]).
Proposition 6.3.1 provides the basis of the design strategy described in the following
subsection.

6.3.3 The Lax Construction

Lax is a block cipher construction with 2n-bit block and n-bit words. We investigate
three instances of Lax designated by the block size: Lax-16, Lax-32 and Lax-64. A
brief description of the round function of Lax-2n is shown in Figure 6.4 (without the
key additions). It operates on two n-bit words x and y using a two-word (k,k ′) and
maps to two n-bit words (u,b) as follows:




u = L(y ⊕ k ′)

v = L
(
(x ⊕ k ) � (y ⊕ k ′)

)
,

where L is a linear bijection operating on n bits.

L L

�
α

β

γ

Figure 6.4: The round function of Lax.
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We denote by d the branching number of L, so that hw (x ) + hw (L(x )) ≥ d
for any x , 0. In fact, the matrix representation of L is chosen as the non-identity
part of the generator matrix G of a systematic [2n,n,d] linear code over GF(2) such
that G = [I L]. More speci�cally, the matrices L for Lax-16, Lax-32 and Lax-64 are
derived from the following codes respectively: [16,8,5], [32,16,8] and [64,32,10]. In
fact, the matrix of Lax-32 is the same as the one used in block cipher aria [KKP+04].

6.3.4 Bounds on the Di�erential Probability of Lax

Lemma 6.3.1. For all di�erences α , 0, the di�erential (α ,α { α ) is impossible.

Proof. Let Pr [α ,β { γ
]
, 0 for some di�erences α , β and γ . The proof follows

from the following two properties of the di�erential probability of the addition mod-
ulo 2n [LM02]:

1. it must hold that α[0] ⊕ β[0] ⊕ γ [0] = 0, and

2. if α[i] = β[i] = γ [i] for some 0 ≤ i ≤ n − 2, then it must hold that α[i + 1] ⊕
β[i + 1] ⊕ γ [i + 1] = α[i].

Assuming that α = β = γ , we deduce from the �rst property that α[0] = β[0] =
γ [0] = 0. Furthermore, the second property imposes that α[i] = β[i] = γ [i] = 0, for
all i ≥ 1. Thus, the only value of α for which Pr [α ,β { γ

]
, 0 and α = β = γ is

α = 0. �

Theorem 6.3.1 (Di�erential bound on 3 rounds of Lax-2n). The maximum di�er-
ential probability of any trail on 3 rounds of Lax-2n is 2−(d−2) , where d is the branch
number of the matrix L.

Proof. Let (αi−1,βi−1,γi−1), (αi ,βi ,γi ) and (αi+1,βi+1,γi+1) be the input/output di�er-
ences of the addition operations in three consecutive rounds of Lax-2n and let pk =
Pr [αk ,βk { γk

] for k ∈ {i−1,i,i+1} be the di�erential probability of (αk ,βk { γk ).
We have to show thatpi−1pipi+1 ≤ 2−(d−2) or, equivalently, that log2 (pi−1)+log2 (pi )+
log2 (pi+1) ≤ −(d − 2). Let hw∗ (x ) denote the Hamming weight of x , excluding its
most signi�cant bit, so that hw∗ (x ) ≤ hw (x ) − 1. We consider two cases.

Case 1: βi−1 , γi−1. Proposition 6.3.1 imposes log2 (pi−1) ≤ −hw∗ (βi−1 ⊕ γi−1) and
log2 (pi ) ≤ −hw∗ (αi ⊕ βi ). Since βi = L(γi−1) and αi = L(βi−1) and using the linear-
ity of L we have that hw∗ (αi ⊕ βi ) = hw∗ (L(βi−1 ⊕ γi−1)). As βi−1 , γi−1 it follows
that hw∗ (βi−1 ⊕ γi−1) , 0 and hw∗ (L(βi−1 ⊕ γi−1)) , 0. Thus, we derive:

log2 (pi−1) + log2 (pi ) ≤ −hw∗ (βi−1 ⊕ γi−1)) − hw∗ (L(βi−1 ⊕ γi−1)) .

The properties of L further imply that −h(βi−1 ⊕ γi−1) − h(`(βi−1 ⊕ γi−1)) ≤ −d and
so −h∗ (βi−1 ⊕ γi−1) − h

∗ (`(βi−1 ⊕ γi−1)) ≤ −(d − 2). Therefore:

log2 (pi−1) + log2 (pi ) ≤ −(d − 2) .

Case 2: βi−1 = γi−1 , 0. In this caseαi = βi = L(βi−1) = L(γi−1). Due to Lemma 6.3.1,
γi , βi , which means we can apply the argument from Case 1 on rounds i and i + 1
to derive the statement of the theorem in this case. �
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6.3.5 Experimental Results

We have implemented the search algorithm proposed in [BVC16] in order to �nd
the probabilities of the best di�erential trails in Lax-16 and Lax-32. In Table 6.3, we
compare the results to the theoretical bounds computed using Theorem 6.3.1.

# Rounds 1 2 3 4 5 6 7 8 9 10 11 12

Lax-16

pbest +0 −2 −4 −7 −8 −11 −13 −16 −18 −20 −23 −25
cbest +0 +0 −1 −2 −3 −5 −5 −7 −8 −9 −10 −11
pbound −3 −6 −9 −12

Lax-32

pbest +0 −2 −6 −9 −11 −16 −18 −20 −24 −28 −29 −34
cbest +0 +0 +0 −4 −4 −8 −8 −8 −8 −12 −12 −16
pbound −6 −12 −18 −24

Table 6.3: Best di�erential probabilities and best absolute linear correlations (log2
scale) for up to 12 rounds of Lax.

As we can see, the bound from Theorem 6.3.1 would not hold for the linear case.
The problem is the “three-forked branch” in the Lax round function that acts as a xor
when the inputs are linear masks rather than di�erences. Thus, Lax only provides
di�erential bounds and the full solution to the Wallén challenge still remains an open
problem.

Open Problem 6.3.1. Is it possible to design a structure similar to Lax in such a way
that the maximum linear correlation after several rounds can be upper bounded?





Chapter7

The Sparx Family of Lightweight

Block Ciphers

Using the long trail strategy established in the previous chapter, we built a family
of lightweight block ciphers called Sparx. All three instances in this family can be
entirely speci�ed using only three operations: addition modulo 216, 16-bit rotations
and 16-bit XOR. To the best of our knowledge this is the �rst family of arx ciphers
that is provably secure against (single trail) linear and di�erential cryptanalysis by
design. Furthermore, while one may think that these provable properties imply a
performance degradation, we show that it is not the case. On the contrary, Sparx
ciphers have very competitive performance on lightweight processors. In fact, the
most lightweight version – Sparx-64/128 – is in the top 3 for 16-bit micro-controllers
according to the classi�cation method presented in [DLCK+15].

This whole chapter is devoted to this family of ciphers. First, Section 7.1 (p. 117)
provides a high level view of these algorithms. More details are provided in Sec-
tion 7.2 (p. 119) which contains a full speci�cation of each instance in this family.
Section 7.3 (p. 121) explains the rationale behind our design choices. Our algorithms
are then evaluated from a security stand-point in Section 7.4 (p. 124) and from an
implementation point of view in Section 7.5 (p. 128).

7.1 High Level View

The plaintexts and ciphertexts consist of w = n/32 words of 32 bits each and the
key is divided into v = k/32 such words. The encryption consists of ns steps, each
composed of an arx-box layer of ra rounds and a linear mixing layer. In the arx-box
layer, each word of the internal state undergoes ra rounds of Speckey, including key
additions. The v words in the key state are updated once ra arx-boxes have been
applied to one word of the internal state. The linear layers λw for w = 2,4 provide
linear mixing for the w words of the internal state.

This structure is summarized by the pseudo-code in Algorithm 7.1. The structure
of one round is represented in Fig. 7.1, where A is the 32-bit arx-box consisting of
one unkeyed Speck32 round. We also useAa to denote a rounds of Speckey with the
corresponding key additions (see Figure 7.2a).

The di�erent versions of Sparx all share the same de�nition of A. However, the
permutations λw and Kv depend on the block and key sizes. The di�erent members
of the Sparx-family are speci�ed below. The round keys can either be derived on the

117
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�y by applying Kv on the key state during encryption or they can be precomputed
and stored. The �rst option requires less ram, while the second is faster. The only
operations needed to implement any instance of Sparx are:

• addition modulo 216, denoted �,

• 16-bit exclusive-or (XOR), denoted ⊕, and

• 16-bit rotation to the left or right by i , denoted respectively x ≪ i and x ≫ i .

Algorithm 7.1 Sparx encryption
Inputs plaintext (x0, ...,xw−1); key (k0, ...,kv−1)
Output ciphertext (y0, ...,yw−1)

Let yi ← xi for all i ∈ [0, ...,w − 1]
for all s ∈ [0,ns − 1] do

for all i ∈ [0,w − 1] do
for all r ∈ [0,ra − 1] do

yi ← yi ⊕ kr
yi ← A(yi )

end for

(k0, ...,kv−1) ← Kv
(
(k0, ...,kv−1)

)
. Update key state

end for

(y0, ...,yw−1) ← λw
(
(y0, ...,yw−1)

)
. Linear mixing layer

end for

Let yi ← yi ⊕ ki for all i ∈ [0, ...,w − 1] . Final key addition
return (y0, ...,yw−1)

λw

⊕

A

A

⊕

⊕

A

A

⊕

ksw0

kswr−1

ksw+w−1
0

ksw+w−1
r−1

(a) Round function of Sparx.

kr0 kr1 ... krv−1

Kv

kr+1
0 kr+1

1
... kr+1

v−1

(b) Key schedule.

Figure 7.1: A high level view of step s of Sparx.

We claim that no attack using less than 2k operations exists against Sparx-n/k
in neither the single-key nor in the related-key setting. We also faithfully declare
that we have not hidden any weakness in these ciphers. Sparx is free for use and its
source code is available in the public domain 1.

1See https://www.cryptolux.org/index.php/SPARX.

https://www.cryptolux.org/index.php/SPARX
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7.2 Specification

Table 7.1 summarizes the di�erent Sparx instances and their parameters. The quan-
tity minsecure (ns ) corresponds to the minimum number of steps for which we can
prove that the medcp is below 2−n , that the melcc is below 2−n/2 for the number of
rounds per step chosen and for which we cannot �nd integral distinguishers covering
this amount of steps.

Sparx-64/128 Sparx-128/128 Sparx-128/256

# State words w 2 4 4
# Key words v 4 4 8
# Rounds/Step ra 3 4 4
# Steps ns 8 8 10
Best Attack (# rounds) 15/24 22/32 24/40

minsecure (ns ) 5 5 5

Table 7.1: The di�erent Sparx instances.

7.2.1 Sparx-64/128

The lightest instance of Sparx is Sparx-64/128. It operates on two words of 32 bits
and uses a 128-bit key. There are 8 steps and 3 rounds per step. As it takes 5 steps to
achieve provable security against linear and di�erential attacks, our security margin
is at least equal to 37% of the rounds. Furthermore, while our Long Trail argument
proves that 5 steps are su�cient to ensure that there are no single-trail di�erential
and linear distinguishers, we do not expect this bound to be tight.

A high level view of the di�erent components of Sparx-64/128 is provided in
Figure 7.2, where branches have a width of 16 bits (except for the keys in the step
structure). The linear layer λ2 simply consists of a Feistel round using L as a Feistel
function (Figure 7.2c). The general structure of a step of Sparx-64/128 is provided in
Fig. 7.2b. The 128-bit permutation used in the key schedule has a simple de�nition
summarized in Fig. 7.3, where the counter r is initialized to 0. It corresponds to the
pseudo-code given in Algorithm 7.2, where (z)L and (z)R are the 16-bit left and right
halves of the 32-bit word z.

⊕ ⊕

A

A

⊕ ⊕

kL0 kR0

kLr−1 kRr−1

(a) Ark .

xs0 xs1

k2s k2s+1A3 A3

L
0
1

⊕
⊕

(b) Step structure.

⊕

⊕ ⊕

≪ 8

0 1

(c) L.

Figure 7.2: A high level view of Sparx-64/128.
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TheL function is borrowed from Noekeon [DPVAR00] and can be de�ned using
16- or 32-bit rotations. It is de�ned as a Lai-Massey structure mapping a 32-bit value
x | |y to x ⊕

(
(x ⊕ y) ≪ 8

)
| |y ⊕

(
(x ⊕ y) ≪ 8

)
. Alternatively, it can be seen as a

mapping of a 32-bit value z to z ⊕ (z ≪32 8) ⊕ (z ≫32 8) where the rotations are
over 32 bits.

k0 k1 k2 k3

A

�
�

�r + 1

Figure 7.3: K64
4 (used in Sparx-

64/128).

r ← r + 1
k0 ← A(k0)
(k1)L ← (k1)L + (k0)L mod 216

(k1)R ← (k1)R + (k0)R mod 216

(k3)R ← (k3)R + r mod 216

k0,k1,k2,k3 ← k3,k0,k1,k2

Algorithm 7.2: Pseudo-code of K64
4

7.2.2 Sparx-128/128 and Sparx-128/256

For use cases in which a larger block size can be a�orded, we provide Sparx instances
with a 128-bit block size and 128- or 256-bit keys. They share an identical step struc-
ture which is fairly similar to Sparx-64/128. Indeed, the linear layer relies again on
a Feistel function except that L is replaced by L ′, a permutation of {0,1}64. Both
Sparx-128/128 and Sparx-128/256 use 4 rounds per step but the �rst uses 8 steps
while the last uses 10.

xs0 xs1 xs2 xs3

k4s k4s+1 k4s+2 k4s+3A4 A4 A4 A4

L ′
⊕
⊕

⊕
⊕

0
1
2
3

(a) Step structure.

⊕

⊕
⊕ ⊕

⊕

≪ 8

0 1 2 3

(b) L′.

Figure 7.4: The step structure of both Sparx-128/128 and Sparx-128/256.

The Feistel function L ′ can be de�ned as follows. Let a | |b | |c | |d be a 64-bit word
where each word a, ...,d is 16-bit long. Let t = (a ⊕ b ⊕ c ⊕ d ) ≪ 8. Then
L ′(a | |b | |c | |d ) = c ⊕ t | | b ⊕ t | | a ⊕ t | | d ⊕ t . This function can also be expressed using
32-bit rotations. Let x | |y be the concatenation of two 32-bit words and L ′b denote
L ′ without its �nal branch swap. Let t =

(
(x ⊕ y)≫32 8

)
⊕

(
(x ⊕ y)≪32 8

)
, then

L ′b (x | |y) = x ⊕ t | |y ⊕ t . Alternatively, we can use L to compute L ′b as follows:
L ′b (x | |y) = y ⊕ L (x ⊕ y) | |x ⊕ L (x ⊕ y).

The ciphers Sparx-128/128 and Sparx-128/256 di�er only by their number of
steps and by their key schedule. The key schedule of Sparx-128/128 needs a 128-bit
permutation K128

4 described in Fig. 7.5 and Algorithm 7.3 while Sparx-128/256 uses
a 256-bit permutation K256

4 , which is presented in both Fig. 7.6 and Algorithm 7.4.
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k0 k1 k2 k3

A A

�
�

�
�

�r + 1

Figure 7.5: K128
4 (used in Sparx-

128/128).

r ← r + 1
k0 ← A(k0)
(k1)L ← (k1)L + (k0)L mod 216

(k1)
R ← (k1)R + (k0)R mod 216

k2 ← A(k2)
(k3)L ← (k3)L + (k2)L mod 216

(k3)R ← (k3)R + (k2)R + r mod 216

k0,k1,k2,k3 ← k3,k0,k1,k2

Algorithm 7.3: Pseudo-code of K128
4

k0 k1 k2 k3 k4 k5 k6 r7

A A

�
�

�
�

�r + 1

Figure 7.6: K256
8 (used in Sparx-128/256).

Algorithm 7.4 Sparx-128/256 key schedule permutation.
r ← r + 1
k0 ← A(k0)
(k1)L ← (k1)L + (k0)L mod 216

(k1)R ← (k1)R + (k0)R mod 216

k4 ← A(k4)
(k5)L ← (k5)L + (k4)L mod 216

(k5)R ← (k5)R + (k4)R + r mod 216

k0,k1,k2,k3,k4,k5,k6,k7 ← k5,k6,k7,k0,k1,k2,k3,k4

Test vectors for all instances of Sparx are provided in Table 7.2 as 16-bit words
in hexadecimal notation.

7.3 Design Rationale

There are four main components in the di�erent instances of Sparx. The arx-box
is discussed in Section 7.3.1, the high level mixing layer in Section 7.3.2, the linear
Feistel function in Section 7.3.3 and the key schedule in Section 7.3.4.

7.3.1 Choosing the arx-box

We chose the round function of Speckey/Speck32 over Marx-2 because of its supe-
rior implementation properties. Indeed, its smaller total number of operations means
that a cipher using it needs to do fewer operations when implemented on a 16-bit
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Sparx-64/128

key 0011 2233 4455 6677 8899 aabb ccdd eeff
plaintext 0123 4567 89ab cdef
ciphertext 2bbe f152 01f5 5f98

Sparx-128/128

key 0011 2233 4455 6677 8899 aabb ccdd eeff
plaintext 0123 4567 89ab cdef fedc ba98 7654 3210
ciphertext 1cee 7540 7dbf 23d8 e0ee 1597 f428 52d8

Sparx-128/256

key 0011 2233 4455 6677 8899 aabb ccdd eeff
ffee ddcc bbaa 9988 7766 5544 3322 1100

plaintext 0123 4567 89ab cdef fedc ba98 7654 3210
ciphertext 3328 e637 14c7 6ce6 32d1 5a54 e4b0 c820

Table 7.2: Test vectors for the di�erent instances of Sparx.

platform. Ideally, we would have used an arx-box with 32-bit operations but, at
the time of writing, no such function has known di�erential and linear bounds (cf.
Table 6.1) for su�ciently many rounds.

We chose to evaluate the iterations of the arx-box over each branch rather than
in parallel because such an order decreases the number of times each 32-bit branch
must be loaded in CPU registers. This matters when the number of registers is too
small to contain both the full key and the full internal state of the cipher and does not
change anything if it is not the case as far as software implementations are concerned.

7.3.2 Mixing Layer, Number of Steps and Rounds per Step.

7.3.2.1 Overall Design Strategy

Our main approach for choosing the mixing layer was exhaustive enumeration of
all matrices suitable for our long trail bounding algorithm from Section 6.2.4.1 and
selecting the �nal matrix according to various criteria, which we will discuss later.

For Sparx-64/128, there is only one linear layer ful�lling our design criteria: one
corresponding to a Feistel round. For such a structure, we found that the best integral
covers 4 steps (without the last linear layer) and that, with 3 rounds per step, the
medcp and melcc are bounded by 2−75 and 2−38. These quantities imply that no single
trail di�erential or linear distinguisher exists for 5 or more steps of Sparx-64/128.

For Sparx instances with 128-bit block we implemented an exhaustive search on
a large subset of all possible linear layers. After some �ltering, we arrived at roughly
3000 matrices. For each matrix we ran our algorithm from Section 6.2.4.1 to obtain
bounds on medcp and melcc for di�erent values of the number of rounds per step
(ra ). We also ran the algorithm for searching integral characteristics described in
Section 6.2.4.2.

Then, we analyzed the best matrices and found that there is a matrix which corre-
sponds to a Feistel-like linear layer with the best di�erential/linear bound for ra = 4.
This choice also o�ered good compromise between other parameters, such as di�u-
sion, strength of the arx-box, simplicity and easiness/e�ciency of implementation
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and symmetry between encryption and decryption. It also generalizes elegantly the
linear layer of Sparx-64/128. We thus settled for this Feistel-like function.

For more details on the selection procedure and other interesting candidates for
the linear layer, see [DPU+16b].

7.3.3 The Linear Feistel Functions

The linear layer obtained using the steps described above is only speci�ed at a high
level, it remains to de�ne the linear Feistel functions L and L ′. The function L
that we have chosen has been used in the Lai-Massey round constituting the linear
layer of Noekeon [DPVAR00]. We reuse it here because it is cheap on lightweight
processors as it only necessitates one rotation by 8 bits and 3 XORs. It also provides
some di�usion as it has branching number 3. Its alternative representation using
32-bit rotations allows an optimized implementation on 32-bit processors.

The Feistel function L ′, used for a larger block size, is a generalization of L:
it also relies on a Lai-Massey structure as well as a rotation by 8 bits. The reason
behind these choices are the same as before: e�ciency and di�usion. Furthermore,
L ′ must also provide di�usion between the branches. While this is achieved by the
XORs, we further added a branch swap in the bits of highest weight. This ensures
that if only one 32-bit branch is active at the input ofL ′ then two branches are active
in its output. Indeed, there are two possibilities: either the output of the rotation is
non-zero, in which case it gets added to the other branch and spreads to the whole
state through the branch swap. Otherwise, the output is equal to 0, which means
that the two 16-bit branches constituting the non-zero 32-bit branch hold the same
non-zero value. These will then be spread over the two output 32-bit branches by
the branch swap. The permutation L ′ also breaks the 32-bit word structure, which
can help prevent the spread of integral patterns.

7.3.4 Key Schedule

The key schedules of the di�erent versions of Sparx have been designed using the
following general guidelines.

First, we look at criteria related to the implementation. To limit code size, com-
ponents from the round function of Sparx are re-used in the key-schedule itself. To
accommodate cases where the memory requirements are particularly stringent, we
allow an e�cient on-the-�y computation of the key.

We also consider cryptographic criteria. For example, we need to ensure that the
keys used within each chain of 3 or 4 arx-boxes are independent of one another. As
we do not have enough entropy from the master key to generate truly independent
round keys, we must also ensure that the round-keys are as di�erent as possible from
one another. This implies a fast mixing of the master key bits in the key schedule.
Furthermore, in order to prevent slide attacks [BW99], we chose to have the round
keys depend on the round index. Finally, since the subkeys are XOR-ed in the key
state, we want to limit the presence of high probability di�erential pattern in the key
update. Di�usion in the key state is thus provided by additions modulo 216 rather
than exclusive-or. While there may be high probability patterns for additive di�er-
ences, these would be of little use because the key is added by an XOR to the state.

As with most engineering tasks, some of these requirements are at odds against
each other. For example, it is impossible to provide extremely fast di�usion while
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also being extremely lightweight. Our designs are the most satisfying compromises
we could �nd.

7.4 Security Analysis

7.4.1 Single Trail Di�erential/Linear A�ack

By design and thanks to the Long Trail argument, we know that there is no di�eren-
tial or linear trail covering 5 steps (or more) with a useful probability for any instance
of Sparx. Therefore, the 8 steps used by Sparx-64/128 and Sparx-128/128 and the
10 used by Sparx-128/256 are su�cient to ensure resilience against such attacks.

7.4.2 A�acks Exploiting a Slow Di�usion

We consider several attacks in this category, namely impossible and truncated dif-
ferential attacks, meet-in-the middle attacks as well as integral attacks.

When we chose the linear layers, we ensured that they prevented integral at-
tacks based on the division-property. This implies that they provide good di�usion.
Furthermore, the Feistel structure of the linear layer makes it easy to analyze and
increases our con�dence in our designs. In the case of 128-bit block sizes, the Feistel
function L ′ has branching number 3 in the sense that if only one 32-bit branch is ac-
tive then the two output branches are active. This prevents attacks trying to exploit
patterns at the branch level. Finally, this Feistel function also breaks the 32-bit word
structure through a 16-bit branch swap which frustrates the propagation of integral
characteristics.

Meet-in-the-middle attacks are further hindered by the large number of key addi-
tions. This liberal use of the key material also makes it harder for an attacker to guess
parts of it to add rounds at the top or at the bottom of, say, a di�erential distinguisher.

7.4.3 Best A�acks Against Sparx

The best attacks we could �nd are integral attacks based on Todo’s division prop-
erty. For 22-round Sparx-128/128, we can recover the key in time 2105 using 2102

chosen plaintexts and 272 blocks of memory. We attack 24-round Sparx-128/256 in
time 2233, using 2104 chosen plaintexts and 2202 blocks of memory. Finally, the at-
tack against Sparx-64/128 covers 15/24 rounds and recovers the key in time 2101

using 237 chosen plaintexts and 264 blocks of memory. The integral distinguisher we
use to attack Sparx128/k is described in Section 7.4.3.1 (p. 124). Then, the attacks
against Sparx128/k are described in Section 7.4.3.2 (p. 126) and the one targeting
Sparx64/128 is in Section 7.4.3.3 (p. 127).

7.4.3.1 An Integral Distinguisher for 128-bit Blocks

Consider an instance of Sparx operating on 128-bit blocks. Using Todo’s division
property, we found that if we �x the left-most 32-bit word of the plaintext and let
the other 3 take all possible 296 values, then the output of the two right-most word at
the end of the last S-Box layer of the 5th step are balanced. This pattern is destroyed
by the linear layer of the 5th step.

However, because half of the A function merely undergoes linear transforma-
tions, and because the lsb of modular addition is a linear function, it is possible to
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Figure 7.7: Principle of the integral attack against Sparx instances operating on 128
bits. Bold numbers denote bit rotations to the left. The letter B denotes balanced
16-bit words at the end of the S-Box layer of the �fth step.

extend this distinguisher by one more round. First, the last operations of A can be
inverted for free because they are linear, as summarized in Figure 7.7, to obtain new
16-bit values a,b, ...,h, as de�ned in the same picture where we also de�ne the quan-
tities t ,u,v and w .

Consider a structure of size 296 obtained by encrypting 296 plaintexts where the
left-most 32-bit word is �xed and the other take all possible values. We use z[j] to
denote the j-th bit of a 16-bit word z where the ordering is from lsb to msb. Let i be
the index of the ciphertexts in our structure. Then the following equation holds with
probability 1:

296−1⊕
i=0

(
(ei [0]⊕ f i [0])⊕ f i [14]⊕ (дi [0]⊕hi [0])⊕hi [14]

)
⊕ (bi [10]⊕ f i [10]) = 0. (7.1)

Indeed, the sum of these values and the corresponding key bits yields the value of
ui [10] which sums to 0 over the structure, regardless of the key bits. If we look at
w i [10] instead of ui [10], we can derive another equation:

296−1⊕
i=0

(
(ei [0]⊕ f i [0])⊕ f i [14]⊕ (дi [0]⊕hi [0])⊕hi [14]

)
⊕ (di [10]⊕hi [10]) = 0. (7.2)

Equations (7.1) and (7.2) hold for any key and for any such structure of 296 ciphertexts.
They can be used to attack both Sparx-128/128 and Sparx-128/256.
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7.4.3.2 Integral A�ack Against 22/(24)-round Sparx-128/128(256)

We use this distinguisher to attack 22-round Sparx-128/128. It is naturally extended
to attack 6 steps (24 rounds) of Sparx-128/256 by guessing keys for two more rounds.
We will use the partial sums technique introduced by Ferguson et al.in [FKL+01].
The idea of the attack is to encrypt several structures of plaintexts and then by using
partial sums to split the key guessing work into two parts and �nally to �lter out
wrong keys. An outline of the attack follows.

1. Encrypt 64 structures of 296 plaintexts such that the left-most word is �xed
inside each structure and the other three take all possible values.

2. For each structure and each word position:

a) Store all word values which occur an odd number of times in this position
in all ciphertexts from the structure. On average there will be 231 such
values per structure per position.

3. Initialize a hash table indexed by 128-bit blocks.

4. For all 264 possible keys K0,K1:

a) For each structure, decrypt one round of Speckey on all stored words for
positions 0 and 1 using keys K0 and K1 respectively. Compute the con-
tribution of decrypted bits to sums from Equations (7.1) and (7.2). Such
contributions form a 128-bit string s (two bits per structure).

b) Add K0 | |K1 to the hash table with index s .

5. For all 264 possible keys K2,K3:

a) Decrypt one round of Speckey on all stored words for positions 2 and 3
using keysK2,K3 and compute the contributions similarly to the previous
step. Since XOR of the contributions from left and right halves must be
equal to zero for each structure, the contributions must be equal.

b) Check if the 128-bit contribution string is in the hash table. If it is there,
get the corresponding key K0 | |K1 and save K0 | |K1 | |K2 | |K3 as a key can-
didate.

6. On average we will obtain 1 key candidate for the last round. Then we can de-
crypt the last round and run another attack or we can exploit the key schedule
and reconstruct all round keys.

Step 2 requires 64 · 296 · 4 = 2104 simple operations. Complexity of steps 4 and 5
is equal to 264 · 64 · 2 · 231 = 2102 Speckey round decryptions. Therefore full attack
complexity can be bounded by 2105 operations. The data complexity is equal to 64 ·
296 = 2102. To store the hashtable we need around 264 · (2 · 64 + 64) < 272 memory
blocks.

The 24-round attack on Sparx-128/256 is very similar. We encrypt 192 structures
and guess keys required to decrypt three Speckey rounds instead of one. The com-
plexity then is dominated by steps 4 and 5 and is equal to 2 · 2192 · 192 · 2 · 231 < 2233

operations. The data complexity is 192 · 296 < 2104 chosen plaintexts. The memory
complexity is around 2192 · (2 · 192 + 192) < 2202 blocks.
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We note that by exploiting the key schedule we can reduce the complexities by
not guessing a repeating key material. However, we did not manage to attack more
rounds.

7.4.3.3 Integral A�ack Against 15-round Sparx-64/128

If we encrypt a structure built by setting the left side to a constant and letting the
right side take all possible values using Sparx-64/128 then, with probability 1, the
right side after 3 steps (minus the last linear layer) must take all 232 possible values.
Using multi-set terminology, a permutation on the right side of the input becomes
a permutation on the right side of the output. We can use this property as a dis-
tinguisher for 12 rounds. It turns out that the division property does not yield any
stronger result in this case.

As for the attacks against 128-bit block variants, we can append one round after
the end of the 4th step and derive a linear equation linking the lsb of the modular
addition on the right with 2 other bits from the right hand side and 1-bit from the left
hand side. The sum of these bits over the ciphertexts in a structure must be equal to
0.

We append two rounds at the end of this distinguisher to attack 5 steps of this
block cipher. To do this, we repeat the following procedure several times.

1. Encrypt a structure of 232 plaintexts and invert the last linear linear.

2. For all 64-bit key kL , partially decrypt 2 rounds for the left-hand side and store
kL in a list indexed by the xor of the 3 interesting bits from this side.

3. For all 64-bit key kR , partially decrypt 2 rounds for the right-hand side and
store kR in list indexed by the unique interesting bit from this side.

Each time we repeat this procedure, we re-distribute the key guesses in list indexed
by the concatenation of the indices in the successive structures. For example, if kR
is in list 1 for the �rst structure and list 0 for the second one, we place it in a general
list with index 01 = 1. If it is placed in list 1 by the third structure, we move it to the
general list 101 = 5, and so on.

If we repeat this procedure u times, we obtain 2128−u key candidates of 128 bits
from which we deduce full key candidates that are tested with trial encryptions. We
thus have a time/data tradeo�: with only one structure, we can only recover 1 bit
from the key. Conversely, with all 128 structures, we recover the full key.

The treatment of each structure requires 232+64 operations and the storage of 232

ciphertexts. At all times, we must also store all 264 candidates for both kL and kR .
The complexity of the �nal brute-force is 2128−u . If u ≥ 32, the bottle-neck in terms
of time is the treatment of all u structures.

In the end, we attack 5 steps (i.e. 15 rounds) of Sparx-64/128 using about 264

blocks of memory, 232 × u chosen plaintexts and u296 = 2128−u operations. In par-
ticular, if we use 32 structure, we can break this cipher in time 2101 using 237 chosen
plaintexts.
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7.5 So�ware Implementation

In [DLCK+15], Dinu et al. presented the Felics2 framework. It is a benchmarking tool
providing a uni�ed method for benchmarking lightweight block and stream ciphers
on several micro-controllers: the 8-bit Atmel ATmega128, the 16-bit ti msp430, and
the 32-bit arm Cortex-M3.

The information extracted using this framework allowed to highlight some prop-
erties of Sparx. These are detailed in Section 7.5.1. Our cipher is compared with
other lightweight ciphers in Section 7.5.2.

7.5.1 Implementation Properties

An encryption using either version of Sparx has the same overall structure consist-
ing of three interleaved loops. At the highest level there is a loop over all steps.
During each step, there is a loop over all branches. Finally, over each branch, there
is a loop over rounds per steps.

By (partially) rolling or unrolling these loops, we obtain very di�erent imple-
mentations, as shown in Table 7.3. This allows Sparx to cover a large subset of the
performance space: it can be small, using only 166 bytes to be implemented on msp,
or it can be fast so as to use only 932 cycles to encrypt one block on arm.

Our choice to leave the �nal linear layer despite the fact that it plays no role
as far as security is concerned was motivated by this analysis. Indeed, it turns out
that removing it can marginally speed up a fully unrolled implementation and is
actually harmful in other cases. This behavior is caused by the extra logic needed to
implement a special last round.

Version Implementation
avr msp arm

Time Code ram Time Code ram Time Code ram
[cyc.] [B] [B] [cyc.] [B] [B] [cyc.] [B] [B]

Sparx-64/128

1-step rolled 1789 248 2 1088 166 14 1370 176 28
1-step unrolled 1641 424 1 907 250 12 1100 348 24

2-steps rolled 1677 356 2 1034 232 10 1331 304 28
2-steps unrolled 1529 712 1 853 404 8 932 644 24

Sparx-128/128

1-step rolled 4553 504 11 2809 300 26 3463 348 44
1-step unrolled 4165 1052 10 2353 584 24 2784 884 40
2-steps rolled 4345 720 11 2593 432 18 3399 620 40
2-steps unrolled 3957 1820 10 2157 1004 16 2377 1692 36

Table 7.3: Di�erent trade-o�s between the execution time and code size for the en-
cryption of a block using Sparx-64/128 and Sparx-128/128.

2Felics stands for Fair Evaluation of LIghtweight Cryptographic Systems. Up to date results are
provided on the web page of the framework: https://www.cryptolux.org/index.php/FELICS.

https://www.cryptolux.org/index.php/FELICS
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7.5.2 Comparison with Other Ciphers

Felics takes as input several implementations of a block cipher, written in C or in
assembly, and returns their ram consumption, the number of cycles they need to and
their code size. These are extracted in di�erent settings emulating real-life scenarios
such as the encryption in ctr mode of 128 bits of data.

The �nal result is expressed using a single quantity called Figure Of Merit (fom)
which is better when lower. It aggregates the time-, ram- and code-e�ciency of the
di�erent implementations of a given algorithm.

As we can see in Table 7.4, Sparx ranks favorably among micro-controllers-
oriented lightweight block ciphers. Furthermore, if we restrict the comparison to
algorithms designed to provide provable bounds for di�erential and linear probabil-
ities, Sparx and Rectangle are the best two algorithms: among the top ten algo-
rithms, only Rectangle, Sparx, the Aes and Fantomas have such bounds.

Rank Cipher Reference Block Key Scenario 1
size size fom

1 Speck [BSS+13] 64 128 5.0
2 Chaskey-lts [MMH+14] 128 128 5.0
3 Simon [BSS+13] 64 128 6.9
4 Rectangle [ZBL+15] 64 128 7.8
5 Lea [HLK+14] 128 128 8.0
6 Sparx This chapter 64 128 8.6

7 Sparx This chapter 128 128 12.9

8 Hight [HSH+06] 64 128 14.1
9 Aes [DR02] 128 128 15.3

10 Fantomas [GLSV15] 128 128 17.2

Table 7.4: Top 10 best implementations in Scenario 1 (encryption key schedule +
encryption and decryption of 128 bytes of data using CBC mode) ranked by the Figure
of Merit (fom) de�ned in Felics.

The fom of Sparx indicates that it is, overall, suitable for use on micro-controllers.
We can also give more speci�c �gures. Of all the algorithms implemented in Felics,
it can use the least amount of ram on both avr and msp. It is also one of the fastest
algorithm on msp, which should come as no surprise given that it operates on 16-bit
words.
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Chapter8

Definitions and Literature Survey

A symmetric primitive has to be non-linear. There are two di�erent strategies for
achieving a high non-linearity. The �rst consists of using modular addition, usually
within the framework of the arx design paradigm which stands for Addition, Rota-
tion, xor. For example, the Sparx family of lightweight block ciphers presented in
Chapter 7 (p. 117) is built in this fashion. The other method consists of using so-called
S-Boxes.

De�nition 8.0.1 (S-Box). An S-Box is a function mapping a small number of bitsm
to n bits. The input lengthm must be small. Thus, they are usually speci�ed through
their look-up tables.

S-Boxes have many advantages. First of all, as they are usually implemented
through table look-ups, they are quite fast in software.1 Should side-channel resis-
tance be needed, they can also be implemented/speci�ed using a small electronic
circuit or a bit-sliced implementation. Finally, due to their small size, it is possi-
ble to precisely evaluate their cryptographic properties. In fact, both the wide trail
strategy [DR01] which was used to design the Aes [DR02] and the long trail strategy
which we proposed in [DPU+16a] (see Chapters 6 and 7) are methods which allow
the designer of a block cipher to prove the security of their algorithm against basic
di�erential [BS91] and linear [Mat94] attacks using the properties of the S-Boxes in-
volved. Therefore, the study of the cryptographic properties of these functions is of
paramount importance.

In this chapter, I �rst introduce the basic mathematical concepts needed to de-
scribe and analyze S-Boxes in Section 8.1. The cryptographic properties of S-Boxes
are presented in Section 8.2 (p. 139), namely their di�erential, linear and algebraic
properties. Then, I present an extensive analysis of the literature in terms of S-Box
design in Section 8.3 (p. 146): which design strategies have been used by cryptogra-
phers in practice, and why where those chosen?

8.1 Representation and Basic Concepts

Recall that {0,1} = F2. The set Fn2 consisting of elements x = (x0, ...,xn−1) can be
given di�erent structures:

1This speed has however a price: a table look-up is an operation which leaks some information about
its input, meaning that they are particularly vulnerable to side-channel attacks. As discussed in Chapter 7
(p. 117), this is one of the reasons why the arx paradigm is preferable in some cases.
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• it can be interpreted as a �nite �eld of size 2n de�ned as F2n = F2[x]/p (x ) for
some irreducible polynomial p of degree n, or

• alternatively, Fn2 can be viewed as Z/2nZ, in which case x ∈ Fn2 is identi�ed
with x =

∑n−1
i=0 xi2i .

We usually represent S-Boxes using the hexadecimal representation of their look-
up tables (lut), either as lists if they are small or as tables if they are bigger. For
instance, the 3-bit permutation z : x 7→ (3 × x + 1) mod 8 is represented as z =
[1,4,7,2,5,0,3,6]. The 8-bit S-Box SAES of the Aes is represented in Table 8.1. As we
can see, SAES (0x7a) = 0xda.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1. ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2. b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3. 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4. 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5. 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6. d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7. 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8. cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9. 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a. e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b. e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c. ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d. 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e. e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f. 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table 8.1: The S-Box of the Aes.

There are di�erent equivalence classes partitioning the space of the S-Boxes map-
ping Fm2 to Fn2 . Linear- and a�ne-equivalence are described below. Another more
complex equivalence called ccz-equivalence is introduced in Chapter 14 (p. 267).

De�nition 8.1.1 (Linear Equivalence). Let f : Fm2 → Fn2 and д : Fm2 → Fn2 be two
S-Boxes. They are linear-equivalent if and only if there exists two linear permutations
η and µ such that д = η ◦ f ◦ µ.

De�nition 8.1.2 (A�ne Equivalence). Let f : Fm2 → Fn2 and дFm2 → F
n
2 be two

S-Boxes. They are a�ne-equivalent if and only if there exists two a�ne permutations
η and µ such that д = η ◦ f ◦ µ.

We call a�ne whitening the action of composing a function with two a�ne per-
mutations in order to hide its structure.

The scalar product of the two vectors u = (um−1, ...,u0) and v = (vm−1, ...,v0) is
denoted u · v and is equal to

⊕m−1
i=0 ui ∧ vi , where ∧ is the logical and. Using this

scalar product, I can introduce the distinction between coordinate and component of
an S-Box.
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De�nition 8.1.3 (Coordinates and Components). An S-Box s with n output bits has
n coordinates, denoted Si , where si (x ) is the i-th output bit of s (x ). It also has 2n − 1
components x 7→ a · s (x ), one for each non-zero a in Fn2 . In particular, si (x ) = ei · s (x ),
where {ei }i<n is the canonical basis of Fn2 .

Finally, I recall the well-known concept of balanced function.

De�nition 8.1.4 (Balanced function). A function f : Fm2 → Fn2 is balanced if and
only if all preimage sets {x ∈ Fm2 , f (x ) = y} have the same size for all y of Fn2 .

8.2 Cryptographic Properties of S-Boxes

In this Section, I summarize some of the properties of an S-Box that are relevant in
cryptography. Its content is basically folklore nowadays: these notions are well un-
derstood and a signi�cant amount of papers have been devoted to these topics, either
directly or through their connection with e.g. coding theory. The di�erential, linear
and algebraic properties of S-Boxes are introduced in Sections 8.2.1, 8.2.2 and 8.2.3
respectively.

8.2.1 Di�erential Properties

The di�erential properties of an S-Box are fully described by its Di�erence Distribu-
tion Table.

De�nition 8.2.1 (Di�erence Distribution Table). The Di�erence Distribution Table
(ddt) of an S-Box s : Fm2 → Fn2 is the 2m × 2n table DDT where the entry DDT[i, j] is
equal to the number of solutions x of

s (x ⊕ i ) ⊕ s (x ) = j .

For example, the 3-bit S-Box r = [6,0,7,3,2,5,1,4] obtained with a Knuth shu�e
has the ddt shown in Table 8.2.

0 1 2 3 4 5 6 7
0 8 0 0 0 0 0 0 0
1 0 0 0 0 2 2 2 2
2 0 4 0 4 0 0 0 0
3 0 0 0 0 2 2 2 2
4 0 0 0 0 2 2 2 2
5 0 0 4 4 0 0 0 0
6 0 0 0 0 2 2 2 2
7 0 4 4 0 0 0 0 0

Table 8.2: The ddt of r = [6,0,7,3,2,5,1,4].

Several distinct S-Boxes can have the same ddt. For example, s : Fm2 → Fn2 and
sa,b : Fm2 → Fn2 where sa,b (x ) = s (x ⊕ b) ⊕ a, a ∈ Fn2 and b ∈ Fm2 have the same ddt.
To the best of my knowledge, there is no e�cient algorithm allowing to recover an
S-Box from its ddt.

The maximum value of DDT[i, j] for i , 0 is called di�erential uniformity of
s [Nyb94] and is denoted ∆s , e.g. ∆r = 4. The lower it is, the better an S-Box is



140 De�nitions and Literature Survey

at preventing di�erential attacks. Indeed, the highest probability for a di�erential
pattern to go through this S-Box successfully is equal to ∆s/2n which is lower when
∆s is. The wide trail argument relies on this bound on the di�erential probability at
the S-Box level.

The optimal value for ∆s is 2. A function f such that ∆s = 2 is called Almost
Perfect Non-linear (apn) but, unfortunately, the very existence of apn permutation
is not really understood. On �nite �elds of odd degree, the cube function x 7→ x3

and the inverse function x 7→ x2n−2 are for example known to be apn. However,
on �nite �elds of even degree, the mere existence of apn permutations is an open
problem. The only exception is for n = 6: Dillon et al. found an apn permutation in
F26 . Chapter 14 (p. 267) is devoted to an analysis of this permutation.

The expected distribution of the coe�cients in the ddt of a random S-Box is
known. In fact, it can be used as a criteria to �gure out if an S-Box may have been
generated at random or not, as explained in Chapter 9 (p. 159).

For a given S-Box, the maximum value may not be su�cient to assess the security
of a cipher using it because of the di�erential e�ect. This phenomenon corresponds
to the clustering of several distinct di�erential trails covering several rounds which
share the same input and output di�erences. For example, we showed in Section 5.4
(p. 100) that the block ciphers Twine, LBlock and LBlock-s exhibit such an e�ect.
The probability of a single trail covering several rounds of one of these ciphers is
bounded using the number of active S-Boxes and the di�erential uniformity of the
S-Boxes. However, the probability of the di�erential itself — thus taking into account
all di�erential trail with the same input and output di�erence — is higher than this
bound. The exact probability depends on the distribution of the coe�cients in the
ddt even if the di�erential uniformity is the same.

Finite �eld monomials are particularly easy to study because the rows of the
ddt of such functions all share the same coe�cient distribution. This insight was
�rst presented in [BCC10]. The coe�cients in line a correspond to the number of
solution x to the following equation, for each value of b:

(x + a)e + xe = b is equivalent to
(x
a
+ 1

)
+

(x
a

)e
=

b

ae
.

As we can see, for a , 0, this number does not depend on a. In particular, the ddt of
the multiplicative inversion over �elds of even degree has lines with one 4, 2n−1 − 2
occurrences of 2 and 2n−1 + 1 zeroes. Over �elds of odd degree, this function is apn
so that all lines with non-zero indices contain 2n−1 zeroes and an equal amount of 2.

To capture the idea that the inverse function over �elds of even degree is in some
sense “almost” apn, the concept of local-uniformity was introduced in [BCC11] for
the apn case and generalized in [BP14b]: a monomial such that DDT[1,b] ≤ δ for
b , 0,1 is said to be locally di�erentially δ -uniform. In particular, if δ = 2, the
monomial is locally-apn, so that the inverse function in F28 is locally-apn. I used the
fact that the inverse is locally-apn to e�ciently reverse-engineer the S-Box of the
German block cipher Chiasmus in Section 9.3 (p. 177).

Below, we list the e�ect of some simple operations on the ddt.

Lemma 8.2.1. The ddt of the inverse of a permutation s is the transpose of the ddt of
s . In other words, if D is the ddt of s and D ′ that of s−1, then D[i, j] = D ′[j,i] for all i, j.

Lemma 8.2.2. Let f be an n-bit permutation and let D be its ddt. Let д = η ◦ f ◦ µ
where η and µ are a�ne permutations and let D ′ be its ddt. Then D ′ and D are related
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as follows:
D ′[a,b] = D[µ (a),η−1 (b)].

8.2.2 Linear Properties

Just like the di�erential properties, the linear properties of an S-Box are fully de-
scribed by its Linear Approximation Table.

De�nition 8.2.2 (Linear Approximation Table). The Linear Approximation Table
(lat) of an S-Box s : Fm2 → Fn2 is the 2m × 2n table LAT where LAT[a,b] = (1/2)Wa,b .
The coe�cientsWa,b are the Walsh coe�cients of s and are given by

Wa,b =
∑
x ∈Fm2

(−1)a ·x ⊕b ·s (x ) ,

where u · v denotes the scalar product of the two vectors u = (um−1, ...,u0) and v =
(vm−1, ...,v0).

For example, the 3-bit S-Box r = [6,0,7,3,2,5,1,4] used previously has the lat
shown in Table 8.3.

0 1 2 3 4 5 6 7
0 4 0 0 0 0 0 0 0
1 0 0 -2 -2 0 0 2 -2
2 0 2 0 -2 0 2 0 2
3 0 2 -2 0 0 -2 -2 0
4 0 0 -2 2 0 0 2 2
5 0 0 0 0 -4 0 0 0
6 0 2 2 0 0 -2 2 0
7 0 -2 0 -2 0 -2 0 2

Table 8.3: The lat of r = [6,0,7,3,2,5,1,4].

Unlike the ddt, an lat is uniquely associated to its S-Box. In fact, it is possible
to recover the S-Box from its lat using the following lemma.

Lemma 8.2.3. Let si be the i-th coordinate of s : Fm2 → Fn2 and let LAT[a,b] be the
lat coe�cients of s . Then si can be recovered using:

si (x ) =
1
2 −

1
2m

∑
a∈Fm2

LAT[a,2i ](−1)a ·x . (8.1)

Proof. This formula is easily derived using the relationship between the lat and the
Fourier transform. It is also straightforward to check it:∑

a∈Fm2

LAT[a,2i ](−1)a ·x = 1
2

∑
a∈Fm2

∑
y∈Fm2

(−1)a ·y ⊕ (2i ) ·s (y ) ⊕ a ·x

=
1
2

∑
z∈Fm2

(−1)si (z⊕x )
∑
a∈Fm2

(−1)a ·z ,

where z = x ⊕ y. The sum ∑
a∈Fm2

(−1)a ·z is always equal to 0 unless z = 0, in
which case it equals 2m . The right hand side of Equation (8.1) is thus equal to (1 −
(−1)si (x ⊕0) )/2 which is indeed equal to si (x ). �
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In a linear attack, the data complexity depends on the square of the lat coe�-
cients of the S-Box present in the linear trail. The higher these coe�cients, the more
e�cient the attack. Thus, the main design criteria for an S-Box in terms of lat is to
have a low maximum coe�cient absolute value. This is measured using the linearity:
the linearity Ls of an S-Box s : Fm2 → Fn2 is equal to 2×maxa,0,b ( |LAT[a,b]|). Alter-
natively, authors sometimes use the non-linearity which, for an S-Box s : Fm2 → Fn2 , is
de�ned asNL (s ) = 2m−1 − Ls/2 = 2m−1 −maxa,0,b ( |LAT[a,b]|). The non-linearity
measures the distance between the S-Box and the set of all a�ne functions. There-
fore, the higher it is, the better the S-Box.

Much like for the ddt, only the maximum coe�cient of the lat of the S-Box is
used to prove that a block cipher is secure against linear attacks. However, e.g. in a
multi-dimensional linear attack [BDQ04, KR94] or in zero-correlation attacks [BR11,
BW12], we need to look at other coe�cients.

The similarities between the roles of the lat in linear attacks and its generaliza-
tions and that of the ddt in di�erential attacks and its generalizations is well studied,
see for instance [BN13, BN14]. In fact, the following relation between the ddt and
the lat was observed much earlier by Chabaud and Vaudenay in [CV95]: the ddt
and the lat of an S-Box s : Fm2 → Fn2 are such that

DDT[δ ,∆] = 1
2n+m−2

∑
a∈Fm2

∑
b ∈Fn2

(LAT[a,b])2 (−1)a ·δ ⊕b ·∆.

The lat of such an S-Box s : Fm2 → Fn2 must also satisfy the following equations.
Recall that its coe�cients are LAT[a,b] =Wa,b/2.

• Parseval’s equality: for all b, ∑a∈Fm2
W 2

a,b = 22m .

• Linearity bound : Ls ≥ 2m/2 — if the equality holds, the function is bent.

• If s is a permutation of Fn2 , then the lat of f −1 is the transpose of that of f .

The coe�cients in an lat are merely shu�ed by a�ne-whitening, as formalized
in the following lemma.

Lemma 8.2.4. Let f be an n-bit permutation and let L be its lat. Let L ′ be a table
de�ned by L ′[u,v] = L[µ (u),η(v )] for some linear permutations µ and η. Then the
function f ′ has lat L ′, where

f ′ = ηt ◦ f ◦ (µ−1)t .

8.2.3 Algebraic Properties

S-Boxes can be represented in di�erent ways. So far, we have only used their look-
up tables but other representations exist. Furthermore, those have some relevance
when assessing the security provided by the S-Box.

De�nition 8.2.3 (Algebraic Normal Form). The Algebraic Normal Form (anf) of a
Boolean function f : Fm2 → F2 is

f (x ) =
⊕
u ∈Fm2

asux
u ,
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where afu ∈ F2 and xu is de�ned as

xu =
m−1∏
i=0

xuii .

The anf coe�cients afu can be found using the Möbius transform:

a
f
u =

⊕
x4u

f (x ),

where a 4 b if ai ≤ bi for every i . For an S-Box s : Fm2 → Fn2 , the anf consists of the
anf of each of its coordinates si for i ∈ {0, ...,n − 1}.

For example, the anf of r = [6,0,7,3,2,5,1,4] is

ANF(r ) =



r0 = x0x2 + x1

r1 = x0x1 + x1x2 + x0 + 1
r2 = x0 + x2 + 1 ,

De�nition 8.2.4 (Algebraic degree). The Algebraic Degree of a Boolean function is
the maximum number of variables in a term of its anf. For an S-Box s : Fm2 → Fn2 , it is
the maximum algebraic degree of its coordinates.

For example, the algebraic degree of r is equal to 2 because deg(r0) = deg(r1) = 2,
even though deg(r2) = 1.

The algebraic degree and the lat coe�cients are connected by the following well
known lemma (see e.g. [Lan90, Prop. 1.5]).

Lemma 8.2.5 (lat coe�cient divisibility). If all Walsh coe�cients of an S-Box with
m input bits are divisible by 2` then its algebraic degree is at mostm + 1 − `.

Identically, if all lat coe�cients are divisible by 2` , the algebraic degree of the S-Box
is at mostm − `.

A cryptographic primitive such as a block cipher Ek must have a high algebraic
degree. Otherwise, it is easy to �nd e.g. zero-sum distinguisher, that is, sets of inputs
{x0, ...,xM−1} such that

⊕M−1
i=0 Ek (xi ) = 0. In fact, Chapter 11 (p. 207) is devoted to

the analysis of the algebraic degree of SPNs and to its use in cryptanalysis.
While the anf represents a Boolean function as a multivariate polynomial with

variables in F2, it is also possible to use the �eld structure of Fn2 by de�ning a poly-
nomial representation in F2n .

De�nition 8.2.5 (Univariate polynomial representation). Let s : Fn2 → Fn2 be an
S-Box with identical input and output length. We can interpret the vectors of Fn2 as
elements of a �nite �eld F2n , and, further, s can be written as a univariate polynomial
of F2n [X ] in a unique fashion:

s (X ) =
2n−1∑
i=0

νiX
i .

This representation can be obtained using for example Lagrange interpolation. The
univariate degree of s is the maximum value of i for which νi , 0.
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The univariate representation of r in F23 = F2[X ]/(X 3 + X + 1) is

Univ(r ) = (a + 1)x6 + x5 + (a + 1)x4 + x2 + (a2 + a)x + a2 + a ,

where a is a generator of the multiplicative group of F23 .
The univariate degree and the algebraic degree are two di�erent notions that

should not be mistaken for one another. However, the two are related as follows.

Lemma 8.2.6. Let s : X 7→ ∑2n−1
i=0 νiX

i be an n-bit S-Box. Its univariate degree is, by
de�nition, max ({i,νi , 0}). Its algebraic degree da is equal to

da = max ({hw (i ) ,νi , 0}) .

In particular, for a monomial x 7→ xe of F2n , the algebraic degree is the Hamming
weight of e .

If the univariate degree of a function is too low, it may �rst lead to its algebraic
degree being to low, as a consequence of Lemma 8.2.6. It may also lead to interpola-
tion attacks such as the one [JK01] directed at the KN-cipher [NK95].

Finally, I mention the notion of High-Degree Indicator Matrix. It was introduced
by Aleksei Udovenko and myself in [PU16].

De�nition 8.2.6 (High-Degree Indicator Matrix (hdim)). Let S be an n-bit permuta-
tion. We de�ne the High-Degree Indicator Matrix Ĥ (F ) of F to be the n ×n matrix such
that Ĥ (F )[i, j] = 1 if and only if the anf of Fi contains the monomial

∏
k,j xk (which

has degree n − 1).

For example, the HDIM of r is equal to

Ĥ (r ) =



0 1 0
1 0 1
0 0 0


.

The hdim has some interesting properties. For starters, it is related to the lat:
the lat coe�cients of a permutation are always divisible by 2 but their congruence
modulo 4 is determined by the hdim. In order to establish this relation, we �rst derive
an expression of the congruence modulo 4 of lat coe�cients.

Lemma 8.2.7 (lat modulo 4). Let F be an n-bit permutation (n > 2) and let L be its

lat. Then L[a,b] is such that L[a,b] ≡ 2 ×
(⊕

x ∈Fn2

(
b · F (x )

) (
a · x

))
mod 4 or,

equivalently,
L[a,b]

2 ≡
⊕
x ∈Fn2

(
b · F (x )

) (
a · x

)
mod 2.

Proof. First of all, we remark that (−1)z = 1 − 2z for z in {0,1}. Using this equality,
we can rewrite L[a,b] as

L[a,b] = 1
2

∑
x ∈Fn2

(−1)a ·x+b ·F (x )

=
1
2

∑
x ∈Fn2

(−1)a ·x −
∑
x ∈Fn2

(
b · F (x )

)
(−1)a ·x
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For a , 0, it holds that ∑
x ∈Fn2

(−1)a ·x = 0. We deduce that the coe�cient L[a,b] is
equal to

L[a,b] = −
∑
x ∈Fn2

(
b · F (x )

)
(−1)a ·x

= −
∑
x ∈Fn2

(
b · F (x )

)
+ 2

( ∑
x ∈Fn2

(
b · F (x )

) (
a · x

))
.

The �rst term in this sum is equal to 2n−1 as every component of a permutation is
balanced.2 Thus, if we look at the congruence modulo 4 of L[a,b], we obtain the
following (for any n > 2):

L[a,b] ≡ 2
( ∑
x ∈Fn2

(
b · F (x )

) (
a · x

))
mod 4,

from which we deduce that

L[a,b]
2 ≡

∑
x ∈Fn2

(
b · F (x )

) (
a · x

)
mod 2

As sum and xor are equivalent modulo 2, this proves the lemma. �

Let B (L) be a 2n × 2n Boolean matrix with

B (L)[a,b] = L[a,b] mod 4
2 ,

that is, B (L)[a,b] = 0 if and only if L[a,b] ≡ 0 mod 4. Because of Lemma 8.2.7 and
because the scalar product is bilinear, this matrix has the following property:

B (L)[a⊕a′,b⊕b ′] = B (L)[a,b] ⊕ B (L)[a,b ′] ⊕ B (L)[a′,b] ⊕ B (L)[a′,b ′]. (8.2)

In other words, the function (a,b) 7→ B (L)[a,b] is a bilinear form. In fact, this
bilinear form is entirely de�ned by the hdim. Indeed, Lemma 8.2.7 implies that

B (L)[a,b] =
⊕
x ∈Fn2

(a · x ) (b · F (x )) ,

which, when a and b are elements of the canonical basis (e0, ...en−1) of Fn2 , is equal
to

B (L)[ei ,ej ] =
⊕
x ∈Fn2

(ei · x )
(
ej · F (x )

)
. (8.3)

The Boolean function x 7→ ej · F (x ) has algebraic degree at most n − 1 because F is a
permutation. Therefore, the only way the sum in Equation (8.3) can be equal to 1 is
if the monomial ∏j,i x j appears in the anf of x 7→ ej ·F (x ), namely Fj . By de�nition
of the hdim, we immediately derive that B (L)[ei ,ej ] = Ĥ (F )[i, j]. We deduce the
following lemma.

2If F is not a permutation but some function with degree at most n − 1, then this term a priori does
not go away when taking the modulo 4 of the expression.
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Lemma 8.2.8 (hdim alternative de�nition). Let F be a permutation of Fn2 and let Ĥ (F )
be its hdim. Then its hdim coe�cients are equal to

Ĥ (F )[i, j] =
⊕
x ∈Fn2

(ei · x )
(
ej · F (x )

)
.

Using Equation (8.2), we can express a connection between the hdim and the lat
of a permutation which is stated in the following lemma.

Lemma 8.2.9 (lat and hdim). Let F be an n-bit permutation, let Ĥ (F ) be its hdim and
L be its lat. It holds that

L[a,b] mod 4 = 2 ×
(
bt × Ĥ (F ) × a

)
.

Due to the fact that the lat of the inverse of a permutation F is the transpose of
the lat of F , we have the following lemma.

Lemma 8.2.10 (hdim of the inverse). Let F be an n-bit permutation. The hdim of F−1

is the transpose of the hdim of F .

We now show that the hdim of η ◦ f ◦ µ can easily be deduced from that of f
when η and µ are n-bit linear permutations. The corresponding theorem will be used
in Section 10.5.2 (p. 201) to attack Feistel Networks whitened using a�ne layers.

Lemma 8.2.11. Let µ,η be linear n-bit mappings, F be an n-bit permutation and let
G = η ◦ F ◦ µ. Furthermore, let Ĥ (F ) be the hdim of f and Ĥ (G ) be that of G. Then it
holds that

Ĥ (G ) = η × Ĥ (F ) × (µt )−1.

Proof. We prove this result in two steps. First, the fact that Ĥ (F ◦ µ ) = Ĥ (F ) × (µ−1)t

can be derived as follows:

Ĥ (F ◦ µ )[i, j] =
⊕
x ∈Fn2

(
ei · F (µ (x ))

) (
ej · x

)
=

⊕
y∈Fn2

(
ei · F (y)

) (
ej · µ

−1 (y)
)

=
⊕
y∈Fn2

(
ei · F (y)

) (
(µt )−1 (ej ) · y

)
.

We then note that Ĥ (η◦F ) = Ĥ (F−1 ◦η−1)t which, using what we just found, is equal
to (Ĥ (F−1) × ηt )t = (Ĥ (F )t × ηt )t , so that Ĥ (η ◦ F ) = η × Ĥ (F ). This concludes the
proof. �

8.3 S-Boxes in the Wild

In this section, I survey the literature on symmetric cryptography and collect all
S-Boxes used along with their design criteria and structures (if known). I �rst go
over S-Boxes de�ned using a mathematical structure in Section 8.3.1 (p. 147). Then,
I describe S-Boxes built like small block ciphers in Section 8.3.2 (p. 152). These com-
ponents can also be speci�ed using electronic circuits or bit-sliced implementation,
e.g. in the context of lightweight cryptography. Such S-Boxes are presented in Sec-
tion 8.3.3 (p. 154). As explained in Section 8.3.5 (p. 155), hill climbing can also be used.
Finally, it is also possible to construct S-Boxes as random functions or permutations
using some nothing-up-my-sleeve quantity as a randomness source, as detailed in
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Section 8.3.4 (p. 155). The popularity of the di�erent structures found is summarized
in Section 8.4 (p. 156).

Several rarer constructions are not discussed in this section. For example, injec-
tive S-Boxes mappingm bits ton withm � n such as those used in Cast-128 [Ada97],
Blow�sh [Sch94], Dfc [GGH+98] and Coconut98 [Vau98] are not described here.

Even fewer constructions rely on data dependent S-Boxes. That is, the generation
of the S-Box is part of the key schedule. This strategy is used by Two�sh [SKW+98],
Polar bear [HN+05], Oryx [WSD+99], and Cmea [WSK97]. Both Two�sh and Cmea
use a �xed S-Box to generate the data-dependent one. These are discussed in Sec-
tions 8.3.2.2 (p. 153) and 12.3.2 (p. 241) respectively.

8.3.1 Mathematical Objects

Some S-Boxes are built from mathematical objects. A fairly comprehensive survey
of such design strategies can be found in [BN15]. By far the most popular is the
�nite �eld multiplicative inversion, used most notably by the Aes. This function is
di�erentially 4-uniform in �elds of even degree, in particular in F28 . It is even apn
in �elds of degree 7 and 9, a property which is actually used e.g. in the block cipher
Misty [Mat97]. The only known apn permutation operating on an even number of
bits is de�ned over 6 bits and is in fact used by an algorithm. This 6-bit permutation
and the structure we identi�ed in it are discussed in Chapter 14 (p. 267).

8.3.1.1 Finite Field Inversion

The �nite �eld inversion is a very popular choice due to its ideal di�erential unifor-
mity, non-linearity and algebraic degree. These properties were �rst described by
Nyberg in [Nyb94]. Here is a list of algorithms using a �nite �eld inversion for their
S-Box. If the algorithm uses several distinct S-Box, we append the number of S-Boxes
based on the inverse over the total number of S-Boxes. First, the 8-bit S-Boxes are
listed below. Algorithms using the exact same S-Box as the Aes are marked with a
“†” symbol.

• Asc-1 [JK12] †
• Aes [DR02] †
• Ale [BMR+14] †
• Aria [KKP+04] (2/2) †
• Bksq [DR00] †
• Camellia [AIK+01] (4/4) †
• Chiasmus [STW13]
• Clefia [SSA+07] (1/2)
• Grøstl [GKM+11] †
• Hierocrypt 3 [OMSK01]

• Mugi [WFY+02] †

• Photon [GPP11] †

• Seed [LLY+05] (2/2)

• Shark [RDP+96]

• Sms4 [Ltd06]

• Snow 2.0 [EJ03] †

• Snow 3G [ETS06a] (1/2) †

• Square [DKR97]

• Zuc [ETS11] (1/2)

S-Boxes based on the inverse are used for other word sizes. Those are listed
below.

• mCrypton [LK06] n = 4, (2/2)
• Mibs [ISSK09] n = 4
• Misty [Mat97] n = 7, 9, (2/2)
• Panda [YWH+14] n = 4,

• SC2000 [SYY+02] n = 5, 6, (2/3)

• Twine [SMMK13] n = 4

• Whirlwind [BNN+10] n = 16
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The Seed block cipher is a standard in South Korea as well as an rfc stan-
dard [LLY+05] which, according to said rfc, “has been adopted by most of the secu-
rity systems in the Republic of Korea”. It is also described in a document published
by its authors3 which shows that the two S-Boxes are a�ne equivalent to x 7→ x247

and x 7→ x251 respectively, both of which are in the cyclotomic class of x 7→ x−1 as
4 × (28 − 2) ≡ 251 mod (28 − 1) and 8 × (28 − 2) ≡ 247 mod (28 − 1).

For Sms4, the structure of the S-Box used was not made public. However, it was
found to be a�ne-equivalent to the inverse function by Liu et al. in [LJH+07].

For Chiasmus, a thorough analysis is provided in Section 9.3 (p. 177). Monomials
in general and the multiplicative inverse in particular are easily recovered from an
unknown S-Box built by composing a monomial with a�ne functions, as shown in
Section 9.1.2.4 (p. 163).

8.3.1.2 Apn Functions

Apn permutations are harder to use in cryptography as those either operate on an
odd number of bits or on 6 bits, neither of which are as convenient as 8 bits. Still, the
following algorithm use apn function on n bits:

• 3-WAY [DGV94] n = 3

• Fides [BBK+13] n = 5,6

• Misty [Mat97] n = 7,9

• SC2000 [SYY+02] n = 5

8.3.1.3 Finite Field Exponentiation

Another mathematical structure received signi�cant attention from cryptographers,
both from the academic community and some government agencies: exponential
S-Boxes. These are built from the exponentiation in �nite �eld or its inverse, the
discrete logarithm. However, the exponential has no preimage for 0. It must there-
fore be chosen arbitrarily and, unfortunately, not all papers on this type of structure
“agree” on what this position should be.

S-Boxes built from a particular type of linear recurrence equivalent to a �nite
�eld exponentiation and where 0 maps to 0 are called exponential substitution. They
were introduced and some of their properties were studied in papers by some of the
BelT designers, BelT [Bel11] being the current standard block cipher of Belarus. The
�rst one is a paper published in “Вести НАН Беларуси” [News of the National
Academy of Sciences of Belarus] [AA05] while the second is a translation which the
authors published on eprint [AA04].

De�nition 8.3.1 (Exponential substitution [AA04, AA05]). Let α be a primitive el-
ement of the �nite �eld F2n with minimal polynomial xn +

∑n−1
i=1 mix

i + 1. First, let
x be an element of Fn2 and denote x =

∑n−1
i=0 xi2i . An exponential substitution is a

permutation s such that

s (x ) =



0 if x = 0,
αx otherwise.

In this case, the truth table of each coordinate si of s is such that, for all x less than
2n − n,

si (x + n) ⊕mn−1si (x + n − 1) ⊕ . . . ⊕m1si (x + 1) ⊕ si (x ) = 0.
3Available online at http://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/%5B2%5D_

SEED+128_Specification_english_M.pdf.

http://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/%5B2%5D_SEED+128_Specification_english_M.pdf
http://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/%5B2%5D_SEED+128_Specification_english_M.pdf
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In other words, each coordinate of s is a segment of an lfsr sequence with linear re-
currence given by the same irreducible polynomial which is used to de�ne the �nite
�eld.

In particular, it is shown in [AA04, AA05] that exponential substitutions have
reasonably high non-linearity and high algebraic degree. It is also shown that the
di�erential uniformity is low as well as the probability of hybrid di�erentials mixing
modular addition and xor such as s (x ⊕ a) = s (x ) � b. This type of di�erential is
studied more thoroughly in Section 9.1.2.5 (p. 167).

To formalize the di�erence between such structures and other de�nitions of ex-
ponential/discrete logarithm-based S-Boxes which use a di�erent preimage for 0, we
introduce the following de�nition. While the impact of the di�erence between in-
serting 0 at position 0 or at position 2n − 1 is limited as it merely rotates the truth
table, inserting it in the middle of the truth table of the S-Box has more consequences.

De�nition 8.3.2 (Pseudo-Exponential/Logarithm). We call pseudo-exponential of n
bits a permutation de�ned by an exponent λ generating the multiplicative group of some
�eld of size 2n and a position z at which 0 is inserted. It is denoted expλ,z , so that

expλ,z (x ) =




0 if x = z,

λx�1 if x < z,

λx otherwise .

A pseudo-logarithm is the functional inverse of a pseudo-exponential. The functional
inverse of expλ,z is denoted logλ,z .

Both discrete logarithm [HN10] and exponential [BR00c, RBF08] have been dis-
cussed in the Western literature before but the de�nitions used di�er slightly. As it is
de�ned in [HN10], the discrete logarithm maps x , 0 to logα (x ) for some primitive
element α of F2n and it maps 0 to 2n − 1. Thus, its inverse is not an exponential sub-
stitution in the sense of De�nition 8.3.1: it maps x to αx unless x = 2n − 1 which is
mapped to 0. In this case, 0 is not inserted at position 0 but at position 2n − 1. This is
the structure used by the block cipher magenta [JH98]. In [RBF08], rotational sym-
metries of such exponentials were studied. They were also used to build the small
4-bit S-Box E used inside the Whirlpool hash function [BR00c]. Therefore, what is
called “exponential” in those papers is here called “pseudo-exponential with a 0 at
position 2n − 1”, which is denoted expλ,2n−1.

It is possible to represent the S-Box H of BelT using a pseudo-exponentiation. In
order to �nd the decomposition described below, we brute-forced all possible bases
for the exponentiation and all �eld representations to obtain pseudo exponentials
expλ,10. For each, we checked whether H ◦ exp−1

λ,10 was linear and, if it were, com-
puted its matrix representation. Only one of those matrices has a visible structure; it
corresponds to the decomposition we kept. Let ωH be the symmetric matrix de�ned
by

ωH =



1 1 1 0 1 1 1 0
1 1 0 1 1 1 0 0
1 0 1 1 1 0 0 0
0 1 1 1 0 0 0 1
1 1 1 0 0 0 1 1
1 1 0 0 0 1 1 1
1 0 0 0 1 1 1 0
0 0 0 1 1 1 0 1


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and let λ = w7 + w3 + w , where w is the generator of the multiplicative group of
F2[x]/(x8 + x6 + x5 + x + 1). Then H (x ) can be computed as follows:

H (x ) = (ωH ◦ expλ,10) (x ).

Furthermore, as explained in [HN10], the coordinates of expλ,2n−1 are closely
related to the functions introduced by Feng et al. in [FLY09] and studied in [CF09].
In fact, when the input and output are of the same size, the function of Feng et al. is
the discrete logarithm except in {0,1}: it maps 0 to 0 and 1 to 2n − 1.

This structure is not nearly as popular as the inverse function but is has been
used by several algorithms listed below.

• Magenta [JH98] n = 8

• Whirlpool [BR00c] n = 4

• Whirlbob [SB15] n = 4

• BelT [Bel11] n = 8

• Stribog [Fed12]? n = 8

• Kuznyechik [Fed15]? n = 8

The S-Box of the hash function Whirlpool has a recursive structure detailed in
Section 8.3.2.3 (p. 153). The 4-bit permutation it uses is a pseudo-exponential in F24

which maps 24 − 1 to 0. The same 8-bit S-Box is used by the second round Caesar
candidate Whirlbob.

The case of the S-Box shared by the hash function Stribog and the block cipher
Kuznyechik, both of which are Russian standards, is quite peculiar. Indeed, this S-
Box was only speci�ed as a look-up table in the original speci�cations of these al-
gorithms. However, we managed to recover some hidden structure in it. In fact,
an entire chapter of this thesis is devoted to this topic, namely Chapter 13 (p. 245).
In it, we describe two decompositions. The �rst is reminiscent of a 2-round Feistel
Network with �nite �elds multiplications instead of xor, which is I we also list this
S-Box among the Feistel-based in Section 8.3.2 (p. 152). Moreover, we also identi-
�ed a close proximity of this S-Box to a pseudo-exponential permutation of F28 : this
S-Box is functionally equivalent to such a permutation composed with a very weak
8-bit permutation with a di�erential uniformity of 128.

8.3.1.4 Other Constructions

Other mathematical constructions have been used, notably by the block ciphers
Safer [Mas94], E2 [KMA+00] and Picaro [PRC12] as well as by the stream cipher
Snow 3G [ETS06a].

Modular Ring Exponentiation. Safer is a block cipher which was �rst proposed
in 1993 by Massey. It uses an 8-bit S-Box along with its inverse in the round function.
It is a bijection based on exponentiation in the prime �eld Z/257Z mapping x ∈
Z/256Z to 45x . The rationale behind this choice is given by Massey in the original
paper:

Thus the mapping “45(.)” is an invertible mapping from one byte to one
byte that is very nonlinear with respect to the arithmetic of GF (257) as
well as with respect to the vector space of 8-tuples over the binary �eld
GF (2) whose addition is bit-by-bit xor.
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However, it must be noted that the highest lat and ddt coe�cients are respectively
equal to 46 and 128, both of which are far higher than what could be expected from
a random 8-bit permutation, as explained in Section 9.4 (p. 178).

Dickson Polynomial. Snow 3G is a stream cipher used by the 3GPP standard.
The structures of its components are described in [ETS06b]. Its S-Box S2 is based
on a Dickson polynomial [Dic96]. Dickson polynomials are bivariate polynomials
Di (x ,y) given by the following induction in the case where the variables are in F2n :




D0 (x ,y) = 0
D1 (x ,y) = x

Di (x ,y) = xDi−1 (x ,y) + yDi−2 (x ,y) .

The reason behind this choice is stated in Section 9.4.1.3 of [ETS06b]:

There are few criteria for the selection of S2:

• it should have a higher Algebraic Immunity than [the S-Box of the
Aes],

• it should not lead to a design that is weaker than Snow 2.0, and
• it should be relatively “cheap” to implement.

Bivariate Polynomials. Picaro was designed to allow an easy masking of its
evaluation so as to thwart side-channel attacks. The key metric to minimize for this
purpose is the number of �nite �eld multiplications performed during encryption
which in turn implies that the S-Box should use few multiplications as well. Because
of its Feistel structure, the S-Box of Picaro does not need to be a bijection. It is
evaluated as a pair of bivariate polynomial mapping (F24 )2 to itself:

f :



F24 × F24 → F24 × F24

(x ,y) 7→
(
xy, (x3 + ω) (y3 + ω ′)

)
,

where ω and ω ′ are some constants. This structure is derived from a previous paper
by Carlet [Car11].

Combining Finite Field and Modular Arithmetic. E2 [KMA+00] was a candi-
date for the Aes competition based on a Feistel network using a Feistel function with
a SAS structure. It relies on a unique 8-bit bijective S-Box, denoted S . It was obtained
by composing two functions f and д, where f is de�ned over a modular ring as




f : Z/256Z 7→ Z/256Z
x 7→ 97 × x + 225 ,

and д is a �nite �eld monomial with an exponent in the cyclotomic class of the in-
verse:




д : F28 → F28

x 7→ x127 .

Composing functions operating on di�erent groups was seen by the authors of E2 as
a strategy to thwart algebraic attacks.
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8.3.2 Block Cipher-Based

S-Boxes must have good cryptographic properties so that a block cipher using them
has good cryptographic properties as well. This recursive phenomenon, whereby the
strength of the smaller component is propagated upwards to the larger object, can be
used backwards as well: the S-Box itself may be built from even smaller strong sub-
components. In this case, it is natural to use a small block cipher structure to build
the S-Box from smaller ones, namely a Feistel, an spn or a Lai-Massey structure. A
remainder about these types of round function is provided in Section 1.2.1.1 (p. 4).

Such a recursive structures lend themselves well to e�cient hardware implemen-
tations. Indeed, it is far easier to implement e.g. two layers of good 4-bit S-Boxes than
a random 8-bit S-Box. In fact, the use of a block cipher structure to build an S-Box
is very often justi�ed by the lower circuit size it implies. Thus, most of the S-Boxes
mentioned in this section also �t in Section 8.3.3 (p. 154).

As shown in Chapters 11 (p. 207) and 10 (p. 181), S-Boxes built using spn and
Feistel structures can be decomposed given their full lut unless many rounds are
used.

8.3.2.1 Feistel Networks and Misty Structures

The Feistel and Misty structures have been used to build the S-Boxes of several algo-
rithms. A list is provided below, the number between parenthesis being the number
of rounds inside the S-Box. All of them are Feistel Networks, except for the S-Box of
Fantomas (which is also used by Scream [GLS+14]). The S-Box �rst found by Can-
teaut et al. [CDL16] is used by the Scream [GLS+14] Caesar candidate.

• Crypton 0.5 [LH98] (3)
• CS-cipher [SV00] (3)
• Kuznyechik [Fed15] (2;?)
• Fantomas [GLSV15] (3)
• iScream [GLS+14] (3)

• Scream [CDL16, GLS+14] (3)

• Skinny-128 [BJK+16] (4)

• Zorro [GGNS13] (4)

• Zuc [ETS11] (3)

In all cases, lightweightness was a criteria. In the case of Zorro, the total number
of multiplication in F24 was also minimized to aid the implementation of masking,
much like in the S-Box of Picaro.

The Feistel structure may be tweaked slightly. For example, in the case of Zorro,
the structure is a bit peculiar in that the branch swap is replaced by a more com-
plex bit permutation. This leads to the existence of peculiar patterns in hdim and
lat which are presented in Section 12.2.2 (p. 229). Similarly, the S-Box s0 of Zuc is
composed with a bit rotation.

The bigger variants of the lightweight block cipher Skinny [BJK+16] use an 8-bit
S-Box built using a generalized Feistel Network reminiscent of the high-level struc-
ture of the Piccolo [SIH+11] block cipher. The internal state is divided into four 2-bit
branches which go through 4 Feistel rounds. In each, a simple nor is used as a Feistel
function which is called twice. The branches then undergo a sophisticated shu�ing
rather than a simple rotation.

Finally, the S-Box of Kuznyechik can be represented as a sort of 2-round Feistel
Network where the usual xor has been replaced with �nite �eld multiplications in
F24 . However, it is still unclear whether this Feistel-like representation exists by
design or as a side-e�ect of some other structure, as explained in Chapter 13 (p. 245).
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8.3.2.2 Substitution-Permutation Network

The spn structure has been used to build S-Boxes from smaller ones. The layers used
inside an spn can be described using S to denoted a layer of parallel smaller S-Boxes
and A to denoted an a�ne layer, as detailed in Chapter 11 (p. 207).

Some of the 8-bit S-Boxes of the following algorithms have an spn structure:

• ASASA scheme [BBK14]
• Clefia [SSA+07] (SAS)
• Crypton 1.0 [DPV01] (SAS)
• Enocoro [WIK+08] (SASA)
• Iceberg [SPR+04] (SASAS)

• Khazad [BR00b] (SASAS)

• Midori-128 [BBI+15] (ASA)

• Qarma-128 [Ava17] (ASA)

• Two�sh [SKW+98] (ASAS)

In all cases other than the ASASA white-box scheme of Biryukov et al., the main
aim is to facilitate the hardware implementation of the S-Box.

In fact, the design criteria for the S-Boxes of Iceberg and Khazad are identical.
These have to be involutions with ∆s ≤ 8, Ls/2 ≤ 32, a non-linearity order equal to
7 and no �xed points. The 4-bit involutions used, s0 and s1 for Iceberg, P and Q for
Khazad, where chosen using some form of hill climbing among the set of the di�er-
entially 4-uniform permutation with best non-linearity and best nonlinear order.

For Two�sh, the four 4-bit S-Boxes used inside each 8-bit S-Box have been gen-
erated independently at random, a process which was iterated until a good enough
S-Box was found. Similarly, the two distinct 4-bit involutions used to build the four
S-Boxes of Crypton v1.0 were chosen as those implying the best properties for the
big 8-bit construction out of a set of 4-bit involutions.

For Midori-128, the four 8-bit S-Boxes are built by combining the 4-bit S-Box
Sb1, chosen for its low-latency and low energy consumption, with simple bit per-
mutations — one for each of the four 8-bit S-Boxes. The bit permutation is applied
�rst, then two calls to Sb1 are made in parallel and, �nally, the inverse of the bit-
permutation is called. The aim was to reduce the overall latency and energy con-
sumption. The 8-bit S-Box of the larger variant of Qarma, Qarma-128, is built simi-
larly and for the same reason.

The ASASA scheme was intended for white-box cryptography, the aim being to
force regular users to store big tables while privileged users could use the secret
ASASA decomposition of these tables to save space. White-box cryptography is dis-
cussed more thoroughly in Part III of this thesis.

8.3.2.3 Lai-Massey

This structure is not very common for block cipher design so it should come as no
surprise that few S-Boxes use it. Still, the following algorithms rely on S-Boxes using
a Lai-Massey round. The number between parenthesis is the number of rounds used.

• Fox (Idea nxt) [VJ04] (3)

• Whirlpool [BR00c] (1)

• Fly [KG16] (1)

In the case of Fox (also known as Idea nxt), the aim was to avoid the use of
an algebraic structure. It uses 3 di�erent 4-bit functions which were chosen to have
optimal di�erential uniformity, linearity and algebraic degree. The exact instances
used for these subfunctions were chosen randomly until a good candidate for the
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larger 8-bit S-Box was found. Therefore, this S-Box also �ts in the category of the
S-Boxes built via hill climbing described in Section 8.3.5 (p. 155).

The S-Box of Whirlpool uses only one Lai-Massey round sandwiched between
two 4-bit S-Box layers. These 4-bit S-Boxes are based on a pseudo-exponential func-
tion, as explained in Section 8.3.1.3 (p. 148).

Finally, the S-Box of Fly uses only one Lai-Massey round followed by an S-Box
layer. The 4-bit S-Box used within the Lai-Massey round and the S-Box layer was
chosen for its e�cient bitsliced implementation — it is in fact the one of [UDCI+11].
In this case, this overall structure was chosen for its lightweightness and the fact that
it has both a di�erential and a linear branching number equal to 3, meaning that no
di�erential/linear pattern exist that connect a 1-bit input with a 1-bit output with
non-trivial probability.

8.3.3 Simple Circuit

A very popular design criteria, especially for small 4- or 5-bit S-Boxes, is the existence
of an e�cient hardware and/or bit-sliced implementation. For instance, [UDCI+11]
provides a comprehensive search for a 4-bit S-Box with optimal cryptographic prop-
erties (di�erential uniformity, linearity and algebraic degree) with a bit-sliced im-
plementation as small as possible. The �nal result is the Class 13 set of S-Boxes.
Members of this class have been used directly, e.g. in RoadRunner and Mysterion.
They have also been used as sub-components of some 8-bit S-Boxes, namely those
of Fly, and Zorro. A bit-sliced implementation operating on four words a,b,c,d is
provided in [KG16]; we reproduce it in Algorithm 8.1.

Algorithm 8.1 The bit-sliced implementation of the Class 13 member used in Fly.
Inputs: words a, b, c, d;
Outputs: updated words a, b, c, d.

t = b; b |= a; b ^= c; // (B): c ^ (a | b)
c &= t; c ^= d; // (C): d ^ (c & b)
d &= b; d ^= a; // (D): a ^ (d & B)
a |= c; a ^= t; // (A): b ^ (a | C)

Several S-Boxes for which a small circuit and/or a small bit-sliced implementation
was a design criteria are listed below. All of them are 4-bit permutations, except for
the S-Box of Ascon [DEMS16] which permutes F5

2. When an 8-bit S-Box is built
out of smaller 4-bit S-Boxes for e�ciency reasons, it is instead listed in the category
corresponding to the high-level structure used in Section 8.3.2 (p. 152). The S-Box
of Present has been reused by multiple algorithms indicated by a “†” mark. Joltik
borrows the S-Box of Piccolo and Skinny-64 uses a variant of it.

• Ascon [DEMS16]
• Epcbc [YKPH11] †
• Gost rev. [PLW10] †
• ITUbee [KDH13]
• Joltik [JNP14a]
• Hummingbird-

2 [ESSS12]
• LBlock [WZ11]
• Led [BKL+07] †

• Lilliput [BFMT15]
• Noekeon [DPVAR00]
• Midori-64 [BBI+15]
• Mysterion [JSV17]
• Photon [GPP11] †
• Piccolo [SIH+11]
• Present [BKL+07] †
• Pride [ADK+14]
• Prince [BCG+12]

• Prøst [KLL+14]
• Qarma-64 [Ava17]
• Rectangle [ZBL+15]
• RoadRunner [BS15]
• SC2000 [SYY+02]
• Serpent [BAK98]
• Skinny-64 [BJK+16]
• Spongent [BKL+11] †
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For Rectangle, Serpent, Hummingbird-2, Present, and many of the algorithms
sharing its S-Box, another additional criteria was added: the minimization of the
number of 1-bit to 1-bit entries in both the ddt and the lat. Still, an e�cient hard-
ware or bitsliced implementation was an important requirement in their design.

8.3.4 Hill Climbing

Another method for building S-Boxes with good di�erential/linear properties is the
use of a form of hill-climbing. The general idea is to swap some entries and check
if the properties were improved. If so, we keep iterating this transformation. If not,
we backtrack. Below, I list some S-Boxes that have been built in this fashion. All of
them are 8-bit permutations.

• Anubis [BR00a]

• Fox (Idea nxt) [VJ04]

• Kalyna [OGK+15b]

• Skipjack [U.S98] (?)

The S-Box of Anubis was picked from a set of about 600 millions random 8-bit
involutions. It had to have ∆s ≤ 8, Ls/2 ≤ 324, and no �xed points. Finally, every
value of S (x ) ⊕ x occurs exactly twice.

As described before, Fox uses a Lai-Massey structure where the 4-bit sub-functions
have been chosen through hill-climbing.

Kalyna is the current standard block cipher in Ukraine. The standard hash func-
tion, Kupyna [OGK+15a], uses the same S-Boxes. Their 4 distinct S-Boxes were all
generated in the same way: starting from a random S-Box, random entries were
swapped. If the result has better di�erential or linear properties, then try again us-
ing the new swapped S-Box as a starting point. This method is described in more
details in [KKO13]. A signi�cant amount of resources was devoted to this computa-
tion as it took several hours on a cluster of 4096 processors.

We show in the next chapter, Section 9.2.3 (p. 172) that the peculiar linear prop-
erties of the S-Box of Skipjack can be accurately imitated using a hill-climbing algo-
rithm with a speci�c optimization criteria. However, the nsa has yet to release the
actual method they used.

8.3.5 Random Generation

In other designs, the authors deemed a random permutation to o�er a su�cient level
of security. Some algorithms using such 8-bit S-Boxes are listed below.

• MD2 [Kal92]

• newDES [Sco85]

• Turing [RH03]

Generating an S-Box randomly is very easy. The challenge in this case is to gener-
ate the S-Box in an way that is easy to duplicate and using a process simple enough
that no hidden weakness could have been hidden. For example, the S-Box of the
stream cipher Turing was generated using the internal state of the stream cipher
RC4: it was �rst seeded with the string “Alan Turing” and then the internal state

4It is not the case as Ls /2 = 34. This is due to a simple bug in the authors program which they
acknowledge in the speci�cation.
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was updated 10,000 times. The S-Box with the best properties among those 10,000
permutations was kept.

Similarly, the S-Box of newDES was derived using a simple algorithm along with
the American declaration of independence as an external source of entropy. That of
the hash function MD2 was obtained5 from the digits of the constant π .

8.4 Summary of the Structures Found in the Literature

Figure 8.1 summarizes the structure used to build all the 8-bit S-Boxes mentioned
in this chapter. If a cipher uses several S-Boxes built in the same way, it counts as
1. If it uses di�erent structures, as say Clefia, it counts as 1 in each category. The
S-Box of Fox was built using hill climbing but, most importantly, it has a Lai-Massey
structure. Thus, it is in the latter category. The numbers for each structure are as
follows:

• Inverse: 19 (incl. 11 Aes),
• Exponential: 2,
• Other math: 4
• SPN: 9,

• Feistel: 7,
• Misty: 1,
• Lai-Massey: 3,
• Hill climbing: 2,

• Pseudo-random: 3,
• Unknown: 3.

These are summarized in Figure 8.1 where mathematical structures are in shades
of blue, block ciphers in warm colors and those built with heuristic or unknown
methods are in shades of gray. The algorithms which merely re-use the Aes S-Box
are indicated as such within the inverse category.

Figure 8.1: Types of structure used to build 8-bit S-Boxes by 53 di�erent algorithms
from the literature.

A summary of the cryptographic properties of the 8-bit S-Boxes mentioned above
along with additional criteria is provided at the end of the next chapter, in Section 9.4
(p. 178).

5The details of the algorithm used are available on crypto.stackexchange. One of its users asked
Rivest for his generation algorithm and published his answer (https://crypto.stackexchange.com/
questions/11935/how-is-the-md2-hash-function-s-table-constructed-from-pi).

https://crypto.stackexchange.com/questions/11935/how-is-the-md2-hash-function-s-table-constructed-from-pi
https://crypto.stackexchange.com/questions/11935/how-is-the-md2-hash-function-s-table-constructed-from-pi
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8.5 The Need for S-Box Decomposition

As we have seen, many di�erent methods have been used to design the S-Boxes
actually used to build block ciphers and hash functions. However, the method used
and even the very design criteria considered have been kept secret by some designers,
most notably the American and Russian secret service (nsa and fsb respectively).
This observation raises an obvious question.

Using only its look-up table, how can we recover the hidden structure
and/or the design criteria used to build an S-Box?

The �eld of S-Box reverse-engineering aims at answering this question. The remainder
of this part of my thesis is devoted to this topic. It is based on papers I was fortu-
nate to co-author with the following cryptographers: Alex Biryukov, Anne Canteaut,
Sébastien Duval, Dmitry Khovratovich, Gaëtan Leurent and Aleskei Udovenko.

The problem of recovering the hidden structure of an S-Box is related to the idea
of attacking so-called white-box implementations of block ciphers. The aim of the
designer in this context is to build an implementation of a primitive in such a way
that an attacker with full access to said implementation cannot

• �nd an implementation of the decryption function (strong white-box), or

• �nd a smaller implementation (weak white-box).

As a consequence, the aim of the attacker is to recover the hidden components used
to build said implementation. This task is fairly similar to the decomposition of an
S-Box from its lut. The topic of white-box cryptography is discussed much more
thoroughly in Part III.

I conclude this chapter with a list of block ciphers for which the structure/design
method used to build the S-Boxes have not been speci�ed by their designers. First,
the “mysterious” 8-bit S-Boxes I am aware o� are listed in Table 8.4 along with the
results we managed to derive about them.

Algorithms Source Our results

Skipjack [U.S98] nsa Optimized linear properties, possibly via
hill climbing; see Section 9.2 (p. 168).

Chiasmus [STW13] bsi † Based on the multiplicative inverse func-
tion; see Section 9.3 (p. 177).

Stribog [Fed12]
Kuznyechik [Fed15]

fsb Feistel- and exponential-like structures
found, see Chapter 13 (p. 245).

Cmea [WSK97] tia ‡ A TU-decomposition is possible, as shown
in Section 12.3.2 (p. 241).

† Federal o�ce for information security (Germany).
‡ Telecommunications Industry Association (USA).

Table 8.4: 8-bit S-Boxes with unknown structures and our results about them.
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There are also some unknown 4-bit S-Boxes. The Data Encryption Standard
(Des) [U.S99] uses eight S-Boxes mapping F6

2 to F4
2. Each of them consists of 4 per-

mutations of F4
2. While some design criteria have been published [Cop94], the exact

generation procedure remains mysterious. Furthermore, some patterns were noticed
in the 70’s which, to the best of my knowledge, remain unexplained [HMS+76].

The Russian gost block cipher [Dol10a] and its variants use di�erent sets of S-
Boxes. Unless those come from academia, as in gost revisited and its use of the S-Box
of Present, the source of the S-Boxes remains mysterious. This cipher could still be
used today as Magma, a variant of the old gost, is speci�ed in the same document
as Kuznyechik [Fed15]. The eight 4-bit S-Boxes of Magma, which are denoted π ′i for
i = 0, ...,7, are all a�ne-equivalent to one another: there are constants ai and linear
permutations Ai and Bi such that π ′i (x ) = Bi

(
π ′0 (Ai (x ⊕ ai ))

)
for all i .

While our results summarized in Table 8.4 show that attacking 8-bit S-Boxes is
possible, our techniques are unlikely to work as well against 4-bit S-Boxes. Thus, the
following problem remains largely open.

Open Problem 8.5.1 (Reverse-Engineering 4-bit S-Boxes). What is the exact struc-
ture used by the designers of the Des and the gost variants to build their small S-Boxes?



Chapter9

Statistical Analysis of the ddt/lat

Block ciphers such as the Des [U.S99], Skipjack [U.S98], as well the more recent
Magma [Fed15] and Kuznyechik [Fed15] use di�erent S-Boxes for which the gen-
eration method is partially or completely unknown. It is worth pointing out that
the common thread linking these algorithms is their having been designed by gov-
ernmental agencies. Indeed, the �rst two have been designed at least in part by the
American National Security Agency (nsa) and the latter two by its Russian counter-
part, the fsb.

As early as 1976, cryptanalysts have attempted to recover the design criteria or
the hidden structure in the S-Boxes of the Des [HMS+76]. In fact, they managed to
recover several of the design criteria which were published 18 years later by Cop-
persmith [Cop94]. Still, the exact process used remains unknown to this day.

In this chapter, I describe e�cient methods for �guring out whether an S-Box
could have been picked uniformly at random from the set of all possible S-Boxes
or not. The idea is to look very carefully at the distribution of the coe�cients in
both its ddt and its lat. First, I describe several patterns indicating that an S-Box
cannot have been picked uniformly at random in Section 9.1 (p. 159). I then use these
methods to study the S-Box of Skipjack in Section 9.2 (p. 168) and that of Chiasmus
in Section 9.3 (p. 177). Finally, I describe the results of an analysis of all the 8-bit
S-Boxes I know of in Section 9.4 (p. 178).

When attempting to reverse-engineer an S-Box, it is crucial to ground the in-
vestigation into a solid mathematical foundation, such as proper probability compu-
tations. Indeed, as already noted 40 years ago by the cryptographers who tried to
reverse-engineer the S-Boxes of the Des [HMS+76]:

The problem [of S-Box reverse-engineering] is complicated by the ability
of the human mind to �nd apparent structure in random data, which is
really not a structure at all.

9.1 Non-Randomness in the ddt/lat

As discussed in Chapter 8 (p. 137), the ddt and lat play a crucial role in assessing
the security provided by an S-Box from a cryptographic stand-point. In this section,
I illustrate how these tables can be put to use by a cryptanalyst attempting to recover
information about the design process of an S-Box.

159
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9.1.1 Coe�icient Divisibility and Algebraic Degree

Lemma 8.2.5 links the algebraic degree of an S-Box with the congruence of its lat
coe�cients modulo 2` . It provides a simple tool for identifying some non-random
S-Boxes using only the absolute value of their lat. Indeed, a function mapping Fm2
to Fn2 has an algebraic degree strictly smaller than m − 1 with probability at most
1/2n×m . This is due to the fact that each of them possible monomials of degreem−1
occurs in the anf of each of the n coordinates with an independent probability equal
to 1/2. Thus, if the lat coe�cients are all divisible by e.g. 4, then we can rule out
that the S-Box has been picked uniformly at random.

Obviously, this distinguisher can be used independently of the lat by computing
the algebraic degree of the function directly.

9.1.2 Statistical Artifacts in Coe�icient Distributions

Since it is better for an S-Box to have a low di�erential uniformity and a low linearity,
it is natural to expect S-Box designers to minimize these quantities. In light of this,
when given an S-Box of unknown origin, we must ask ourselves if the distribution of
the coe�cients in the ddt/lat is compatible with its having been picked uniformly
at random. If it is not the case, this information allows a cryptanalyst to recover
some of the design criteria used by the designers.

We discard the �rst row and the �rst column of the ddt and lat of permutations
in this section. Indeed, the distribution of the coe�cients in those is useless from a
cryptanalyst’s perspective as they are always the same.

9.1.2.1 Coe�icient Distributions

Such an analysis requires a careful study of the distribution of the coe�cients in the
ddt/lat of an S-Box. Fortunately, these distributions are known for both random
functions and random permutation as they were derived by Daemen and Rijmen
in [DR07] as well as, in the case of the lat, in [O’C95]. These results are based on
the following assumption.

Assumption 9.1.1 (Coe�cient Independence). Each coe�cient in the ddt/lat of a
random function (or permutation) is an independent sample from a given distribution.

The validity of this assumption is supported in [DR07] by experimental data.1
Below, I list their results regarding the distribution of the coe�cients in the ddt and
lat of a random function and permutation. Theorem 9.1.1 is a rephrasing of Corol-
laries 2 and 4 of [DR07] while Theorem 9.1.2 repeats the content of both Theorem 1
of [O’C95] and Theorem 5 of [DR07].

Theorem9.1.1 (ddt coe�cient distribution). Under Assumption 9.1.1, the coe�cients
DDT[i, j] in the ddt of a random S-Box mappingm bits to n (withm ≥ 5 andm − n

1This assumption is technically not true because the coe�cient of the Walsh spectrum (from which
the lat is deduced) must satisfy Parseval’s equality, namely ∑

aW 2
a,b = 22n for all b . Similarly, the coe�-

cients of the ddt must be such that ∑δ DDT[δ , ∆] = 2n for all ∆. Nevertheless, Assumption 9.1.1 is a safe
assumption in the sense that the results derived from it predict very precisely the distributions observed
in practice. Besides, a thorough mathematical analysis of the case of the lat is provided in [O’C94] which
shows that the approximation we use for this table is a valid one.
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small) are independent and identically distributed random variables with a probability
distribution which can be approximated by:

Pr[DDT[i, j] = 2z] = Poisson(z,2m−n−1) = e−2m−n−1 2(m−n−1)z

z! . (9.1)

In particular, for an n-bit random permutation (m = n), this probability distribution
becomes

Pr[DDT[i, j] = 2z] = e−1/2

2zz! . (9.2)

Theorem9.1.2 (lat coe�cient distribution [O’C95, DR07]). Under Assumption 9.1.1,
the coe�cients LAT[i, j] in the lat of a random function mapping m bits to n are in-
dependent and identically distributed random variables with the following probability
distribution:

Pr[LAT[i, j] = z] = 2−2n
(

2n
2n−1 + z

)
. (9.3)

If we consider an n-bit random permutation rather than a function, this probability
distribution becomes

Pr[LAT[i, j] = 2z] =

( 2n−1

2n−2+z

)2( 2n
2n−1

) . (9.4)

9.1.2.2 Maximum Value

Using the distributions from Theorem 9.1.1 and 9.1.2, we can compute the expected
value of the maximum coe�cient in both the ddt and the lat. These are given
for some values of n in Table 9.1. The case n ≤ 5 is not considered because the
approximations in those theorems are no longer valid. I have indeed found signi�cant
discrepancies between the distribution of the maximum values predicted by theory
and its experimental counterpart for those values.

n E (∆s ) E (Ls/2) (permutation) E (Ls/2) (function)

6 9.11 14.90 14.93
7 10.32 23.12 23.13
8 11.34 35.30 35.32
9 12.45 53.35 53.34

Table 9.1: The expected value of the maximum coe�cients in the ddt/lat of a ran-
dom permutation/function.

More generally, we can compute the probability that a bijective S-Box has a max-
imum coe�cient equal to at most M in its ddt or lat using the following formula:

Pr[max(c ) ≤ M] = *
,

M∑
k=0

Pr[c = k]+
-

(2n−1) (2m−1)

,

where c is the random variable corresponding to a coe�cient of one of the tables
and Pr[c = k] is given by Theorem 9.1.1 if the table is a ddt and Theorem 9.1.2 if
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δ log2 (Pr[∆s ≤ δ ])

4 -1359.530

6 -164.466

8 -16.148

10 -1.329

12 -0.094

14 -0.006

(a) max(DDT) (∆s ).

` log2 (Pr[Ls/2 ≤ `])

22 -371.609
24 -161.900
26 -66.415
28 -25.623
30 -9.288
32 -3.160
34 -1.008
36 -0.302
38 -0.084

(b) max(LAT) (Ls/2).

Table 9.2: Probability that the maximum coe�cient in the ddt/lat of an 8-bit per-
mutation is at most equal to a certain threshold.

it is an lat. The value of these probabilities for 8-bit permutations are provided in
Table 9.2a for the ddt and Table 9.2b for the lat.

For example, the probability that the di�erential uniformity of an 8-bit permuta-
tion is at most equal to 6 is equal to about 2−164. Thus, if an 8-bit S-Box is di�erentially
6-uniform, it is safe to assume that it has not been picked uniformly at random. We
can also rule out the idea that it has been chosen as the best among a feasibly large
set of pseudo-random permutations as this set would need to contain about 2164 such
elements. Therefore, using this result, we can say that a di�erentially 6-uniform 8-bit
permutation must be the output of a speci�c generation procedure.

9.1.2.3 The Pair Maximum/Number of Occurrences of the Maximum

As explained in Section 8.2.2 (p. 141), it is often not su�cient to look at the maximum
coe�cient of the lat of an S-Box to assess its strength. Therefore, the designer of
an S-Box may have tried to optimize not only the maximum value of the coe�cients
but also the number of occurrences of this maximum.

Therefore, in order to investigate the possibility of an S-Box having been picked
uniformly at random, we can also consider the pair (max( |C|),# max( |C|)) where
|C| is the set of the absolute values of all the coe�cients in either table. In other
words, we consider the maximum coe�cient of the table along with its number of
occurrences. Such pairs can be ordered using a simple lexicographic ordering. Two
pairs (M ,u) and (M ′,u ′) where M ,M ′,u and u ′ are integers can be ordered using the
following rule:

(M ,u) < (M ′,u ′) if and only if



M < M ′, or
M = M ′, and u < u ′.

This ordering allows us to compute the probability that a random S-Box has a
couple (max( |C|),# max( |C|)) at least as good as a given one. The formula we need
to apply to compute this quantity is obtained in a straight-forward way:

Pr[(max( |C|),# max( |C|)) < (M ,u)] =
M∑
k=0

(
T

k

)
(Pr[c = u])k (Pr[c < u])T−k , (9.5)
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where T is the size of the table without its �rst column and row, so that T = (2m −
1) (2n −1), and Pr[c < u] = ∑u−1

i=0 Pr[c = i]. In the case of the lat, we are considering
the absolute values of the coe�cient. This implies that if i , 0, then Pr[c = i] =
Pr[LAT[a,b] = i] + Pr[LAT[a,b] = −i].

Let us consider 8-bit permutations. For the ddt coe�cients, we see in Table 9.2a
that the probability that their maximum is at most equal to 6 is equal to 2−164.5. This
probability increases very quickly: the probability that it is di�erentially 8-uniform
is equal to 2−16.2. Looking at the number of coe�cients equal to 8 in the ddt of a
di�erentially 8-uniform permutation allows a �ner grained investigation of its prop-
erties. Figure 9.1 shows the evolution of Pr[∆s ≤ 8 and #{DDT[i, j] = 8} ≤ N8] for
increasing values of N8. As expected, we obtain Pr[∆s = 6] when N8 = 0. The prob-
ability then increases and converges towards Pr[∆s = 8].
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Figure 9.1: Probability that a di�erentially 8-uniform 8-bit permutation has at most
N8 coe�cients equal to 8 in its ddt (log scale).

For the lat, more values of its maximum coe�cient can be of interest. The cases
corresponding to the maximum coe�cients being equal to 26, 28 and 30 are repre-
sented in Figure 9.2.

Our main result on the S-Box of Skipjack, which is presented in Section 9.2
(p. 168), is obtained via a direct application of this method.

9.1.2.4 Row/Column Level Pa�erns

As already mentioned in the end of Section 8.2.1 (p. 139), monomials have a very
speci�c pattern in their ddt: every line contains the exact same distribution of co-
e�cients. Such a pattern is preserved by a�ne-whitening. This makes monomials
very easy to identify. But the usefulness of considering patterns at the row/column
level is not limited to monomials.

A direct consequence of Assumption 9.1.1 is the following observation.

Observation 9.1.1. The rows and the columns of the ddt of a random permutation
should be independent of one another. The same is true for its lat.

This observation is very simple but there are several large classes of functions for
which it does not hold. Thus, a violation of this observation not only rules out that
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Figure 9.2: Probability that an 8-bit permutation has linearity Ls = 2k and at most
Nk coe�cients equal to k ∈ {26,28,30} in its lat (log scale). The probabilities that
an 8-bit permutation has a maximum lat coe�cient equal to 24, 26, 28 or 30 are
represented in red, green, blue and orange respectively.

the S-Box has been picked uniformly at random, it also gives clear pointers towards
its actual structure. An extreme case is that of monomials but other constructions
exhibit patterns at the row/column level.

For example, Figure 9.3 shows the variance of the absolute value of the coe�-
cients in each row of the lat of the S-Box H of the block cipher BelT, which has
a pseudo-exponential structure described in Section 8.3.1.3 (p. 148). As we can see,
some of the lines have identical and abnormally low variance.
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Figure 9.3: The variance of the lines of the lat (absolute values) of H (BelT). The
expected variance is represented with a red dashed line.

For comparison, Figure 9.4 shows the variance of the absolute value of the coef-
�cients in each row of the lat of an 8-bit S-Box obtained using a Knuth shu�e. It
uses the same scale as Figure 9.3.
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Figure 9.4: The variance of the lines of the lat (absolute values) of a random S-Box.
The expected variance is represented with a red dashed line.

Incidentally, the coordinates of H−1 with low-variance Walsh spectra are related
to the Boolean functions of Feng et al. [FLY09], though not directly because of the
position of the 0.

It is trivial to recover the structure of exponential substitutions.

Observation 9.1.2. If a permutation is an exponential substitution, then applying the
Berlekamp-Massey algorithm [Mas69] on each coordinate will give the linear recurrence
used to generate the permutation.

This reverse-engineering method will fail if the S-Box is composed with a�ne
layers (a�ne whitening). Nevertheless, exponential substitutions have a very strong
algebraic structure. It thus comes as no surprise that such permutations have speci�c
patterns at the row level in their lat.

Proposition 9.1.1. Let ρd denote the rotation by d bits to the left. The distribution of
the coe�cients in lines a and ρd (a) of the lat of an exponential substitutions is identical
for any d .

Proof. Because of the relation between lat and Walsh coe�cients, we prove the
proposition for the Walsh coe�cientsWa,b of an exponential substitution s . Remem-
ber that the Walsh coe�cientsWa,b of an S-Box s are given by:

Wa,b =
∑
x ∈Fn2

(−1)a ·x+b ·s (x ) .

The scalar product a · x is equal to ρd (a) · ρd (x ). Using this, we rewrite Wa,b as
follows:∑

x ∈Fn2

(−1)a ·x+b ·s (x ) =
∑
x ∈Fn2

(−1)ρd (a) ·ρd (x )+b ·s (x ) =
∑
y∈Fn2

(−1)ρd (a) ·y+b ·s (ρ−d (y )) ,

where y = ρd (x ). Furthermore, for all b there exists a unique b ′ such that b ·
s
(
ρ−d (y)

)
= b ′ · s (y) for all y. Let us prove this fact. This equality obviously holds

for y = 0. If y , 0, then the right-hand side is equal to

b · s
(
ρ−d (y)

)
= b · *

,

n−1∏
i=0

αyi 2
i−d +

-
= b · *

,

n−1∏
i=0

αyi 2
i +
-

2−d

,
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where x 7→ x2−d is a linear permutation which can be written x 7→ Md × x for some
n × n binary matrix Md . We deduce that b · s

(
ρ−d (y)

)
= b ′ · s (y) for b ′ = (Mt

d × b),
where Mt

d is the transpose of Md . As a consequence, the multisets {Wa,b ,∀b ∈ F
n
2 }

and {Wρd (a),b ,∀b ∈ F
n
2 } are identical, which in turn implies the proposition. �

This proposition can be used to distinguish exponential substitutions from ran-
dom permutations.

If such an S-Box has been composed with an a�ne layer, i.e. if a permutation
σ is equal to A ◦ f where A is an a�ne permutation and f is an exponential per-
mutation, then the pattern described in Proposition 9.1.1 is still present: because of
Lemma 8.2.4, this composition merely shu�es the columns which leaves the distribu-
tion of the coe�cients in each line unchanged. Adding another linear layer before f
shu�es the rows. While this breaks the rotational pattern, the fact that the rows fall
into few distinct classes with regards to the distribution of the coe�cients remains
unchanged.

Observation 9.1.3. Consider the lat of a permutation σ = A ◦ f ◦ B where A and
B are a�ne permutations and f is an exponential permutation. The distribution of the
coe�cients in the di�erent lines are not independent. In fact, it is possible to recover
some information about B using the fact that the lat of A ◦ f is such that rows a and
ρd (a) have the exact same coe�cient distribution.

The lat of pseudo-exponentials is not invariant through a rotation of the row
indices, unlike for exponential substitution. In other words, Proposition 9.1.1 does
not hold for pseudo-exponentials. Still, some patterns remain as explained in the
following proposition and its corollary.

Proposition 9.1.2. Let `z be the smallest integer such that 2`z > z. The lines of the
lat of the pseudo-exponential expλ,z with indices a = k × 2`z for any integer k do
not depend on z. In particular, they are identical to those of the lat of an exponential
substitution with the base λ, which corresponds to the case z = 0.

Proof. Let s be a pseudo-exponential substitution with exponent λ and preimage for
zero z, i.e. s = expλ,z , and let f be the exponential substitution with the same λ. We
must prove that the following quantities are identical as long as a = k × 2`z :∑

x ∈Fn2

(−1)a ·x ⊕b ·s (x ) =
∑
x ∈Fn2

(−1)a ·x ⊕b ·f (x )

First of all, let us rewrite the left-hand side:∑
x ∈Fn2

(−1)a ·x ⊕b ·s (x ) =
∑
x<z

(−1)a ·x ⊕b ·λx�1
+ (−1)a ·z +

∑
x>z

(−1)a ·x ⊕b ·λx

= (−1)a ·z +
∑

0<x ≤z
(−1)a ·(x�1)⊕b ·λx +

∑
x>z

(−1)a ·x ⊕b ·λx

= (−1)a ·z +
∑
x,0

(−1)a ·ϕz (x )⊕b ·λx ,

where ϕz (x ) = x if x > z and ϕz (x ) = x � 1 otherwise, where x =
∑n−1

i=0 xi2i . It is
su�cient to prove the proposition to show that if a = k × 2`z then a · ϕz (x ) = a · x
for all x , 0.
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If there exists i in [0, `z − 1] such that xi = 1 , then the carry from the subtraction
cannot propagate to x j and the other bits with higher weight. Therefore, it is neces-
sary for a · ϕz (x ) to be di�erent from a · x that x0 = ... = x`z−1 = 0. If it is the case,
then x = m × 2`z . However, it also holds that ϕz (x ) = x because x ≥ 2`z > z. Thus,
for all x , 0 and all a = k × 2`z , a · ϕz (x ) = a · x . The proposition follows. �

Proposition 9.1.2 does not work when z = 2n − 1, i.e. for exponentials studied
in [HN10]. If z is this large, no lat row index can be higher.

As the lat of a pseudo-exponential shares some of its lines with an exponential
substitution, these lines also share the patterns presented in Proposition 9.1.1.

Corollary 9.1.1. The distributions of the coe�cients in lines with indices a2d and a2d ′

of the lat of a pseudo-exponential substitutions are identical for any a and any d ,d ′

such that z < min(2d ,2d ′ ) and max(a2d ,a2d ′ ) < 2n .

This partially explains the patterns visible in Figure 9.3. However, the lat of
the S-Box H of BelT contains stronger patterns than those which can be deduced
from Corollary 9.1.1. Indeed, rows with indices 2i and 3 × 2i all shared the same
distribution of absolute value of coe�cients.

These patterns were experimentally con�rmed for other such pseudo-exponential,
so that we make the following conjecture.

Conjecture 9.1.1. Let L and L ′ be the lat of the exponential substitution with base
λ and expλ,z respectively. Then, for all i , the distribution of the absolute value of the
coe�cients at line 2i and 3 × 2i is the same in L and L ′, regardless of z.

The proof of Proposition 9.1.1 cannot be simply adapted to prove this conjecture.
Indeed, although the distribution of the absolute value of the coe�cients is preserved,
we observed that neither the sign nor the position of the coe�cients are identical if
a , k × 2`z .

Open Problem 9.1.1. Is Conjecture 9.1.1 true?

9.1.2.5 Alternative ddt Definitions

In some contexts, in particular when the round function uses modular addition (see
e.g. the old “gost” cipher, Magma [Dol10a] or BelT [Bel11]), it is natural to consider
patterns using di�erent operations in the input and output. For example, we can
count the number of solutions of the following equation for some S-Box s and for all
a,b in F8

2:
s (x � a) ⊕ s (x ) = b,

where ⊕ denotes a bit-wise exclusive-or and � denotes addition modulo 28. The
results obtained for di�erent S-Boxes are given in Table 9.3, where the cases a = 0
and b = 0 are ignored.

There exists on average one x such that s (x � a) ⊕ s (x ) = b so we model the
number of solutions of this equation for a given pair (a,b) as a sample from a Poisson
distribution with parameter 1. The corresponding expected number of solutions are
listed in the “Theoretical” column of Table 9.3. “Random” corresponds to an 8-bit
permutation generated using a Knuth shu�e.

As we can see, the maximum number of solutions for BelT is far too small. As
explained before in Section 8.3.1.3 (p. 148), its S-Box is based on a �nite �eld exponen-
tiation and having a low probability for transitions of the form H (x ⊕ a) = H (x ) � b
was one of its design criteria.
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# solutions N #{(a,b),#solutions = N }

BelT Kuznyechik AES Random Theoretical

0 11175 23252 22270 23582 23921.36
1 42498 24466 25486 24148 23921.36
2 11274 12414 12968 12271 11960.68
3 78 3784 3490 3810 3986.89
4 0 945 685 965 996.72
5 0 132 110 204 199.34
6 0 30 14 37 33.22
7 0 2 2 6 4.75
8 0 0 0 2 0.59

Table 9.3: The distribution of the number of solutions of s (x�a)⊕s (x ) = b depending
on a and b for di�erent S-Boxes and for a Poisson distribution.

9.2 Detailed Results on Skipjack

Skipjack is a block cipher released in [U.S98] which was intended for use inside the
Clipper chip. This device was supposed to encrypt communications in such a way as
to provide a key escrow allowing American government employees to eavesdrop on
any communication encrypted with it. The announcement of this device caused the
�rst Crypto War : the American government argued for the need of such an escrow
from fear of “going dark”, that is, of not being able to (lawfully) eavesdrop on the
conversations of criminals; while privacy advocates pointed out that an algorithm
with a key escrow cannot be secure and that criminals would simply use other forms
of encryption without such a “feature”.

Quickly, several attacks against the mode of operation used in the chip were
published [Bla94, FY95]. They allowed an easy bypass of the key escrow, thus making
the chip useless. These attacks, combined with the widespread use of open-source
cryptography, turned the Clipper chip into a complete �asco: only one device2 ever
used it.

When Skipjack was released, only its speci�cation was published. The rationale
behind its design was — and in fact still is — kept secret by the nsa. In this section,
I present how Alex Biryukov and myself managed to recover some of the design
criteria of its S-Box.

9.2.1 Overview of Skipjack

Skipjack has a block size of 64 bits and key size of 80 bits. A high level view of the two
types of rounds used during encryption, called “rule A” and “rule B”, are provided in
Figure 9.5a and 9.5b. TheG function is given in Figure 9.5c and the so-called “F-Table”
used inside the G function is in fact an 8-bit bijective S-Box speci�ed using only its
lut (see Table 9.4).

Encryption consists of 8 rounds of rule A, 8 rounds of rule B, 8 rounds of rule A
and �nally 8 rounds of rule B. A round counter, which we denote r , is used in both

2Namely the AT&T TSD-3600 telephone encryptor, see http://www.cryptomuseum.com/crypto/
att/tsd3600/index.htm.

http://www.cryptomuseum.com/crypto/att/tsd3600/index.htm
http://www.cryptomuseum.com/crypto/att/tsd3600/index.htm
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rules. The key schedule is extremely simple: 32 bits of the master key are extracted
in a rolling manner in each round, i.e. 8-bit words k0, ...,k3 are used in round 1,
k4, ...,k7 in round 2, k8,k9,k0,k1 in round 3, etc. The interested reader may refer
to the o�cial speci�cation [U.S98] or to the best attack on the cipher [BBS05], an
impossible di�erential attack leveraging its particular round structure.

In previous works, other authors tried to discover the design criteria of Skipjack
e.g. in [KRW99, KW01]. For example, Knudsen and Wagner showed that rule A
and rule B are almost the inverse of one another, which means that encryption and
decryption o�er the same level of security. They also show that starting with rule
B instead of rule A would weaken the cipher. However, these studies focus on the
overall structure of the algorithm, not the speci�cs of its S-Box. Another work on
Skipjack [BBD+99] lists the di�erential and linear properties of F without attempting
to decompose it.

r

w1 G w2 w3 w4

⊕ ⊕

(a) “rule A”.

w1 G w2 w3 w4

r

⊕

⊕

(b) “rule B”.

yL yR

⊕ F ⊕

k4r+3

⊕F⊕

k4r+2

⊕ F ⊕

k4r+1

⊕F⊕

k4r

xL xR

(c) The G function.

Figure 9.5: The structure of the Skipjack block cipher.

The distribution of the coe�cients in the ddt of Skipjack is summarized in Ta-
ble 9.5 along with the theoretical distribution from Theorem 9.1.1. As we can see it is
di�erentially 12-uniform, the same as you would expect from a random permutation,
which is surprising since minimizing the di�erential uniformity is usually one of the
corner stones of provable resilience against di�erential attacks.

9.2.2 The Linear Properties are Too Good to be True

Figure 9.6 contains the distribution of the value of the coe�cients of the lat (minus
the �rst line and column) along with the theoretical proportions obtained by applying
Theorem 9.1.2.

The probability that a random 8-bit permutation has a maximum lat coe�cient
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.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. a3 d7 09 83 f8 48 f6 f4 b3 21 15 78 99 b1 af f9

1. e7 2d 4d 8a ce 4c ca 2e 52 95 d9 1e 4e 38 44 28

2. 0a df 02 a0 17 f1 60 68 12 b7 7a c3 e9 fa 3d 53

3. 96 84 6b ba f2 63 9a 19 7c ae e5 f5 f7 16 6a a2

4. 39 b6 7b 0f c1 93 81 1b ee b4 1a ea d0 91 2f b8

5. 55 b9 da 85 3f 41 bf e0 5a 58 80 5f 66 0b d8 90

6. 35 d5 c0 a7 33 06 65 69 45 00 94 56 6d 98 9b 76

7. 97 fc b2 c2 b0 fe db 20 e1 eb d6 e4 dd 47 4a 1d

8. 42 ed 9e 6e 49 3c cd 43 27 d2 07 d4 de c7 67 18

9. 89 cb 30 1f 8d c6 8f aa c8 74 dc c9 5d 5c 31 a4

a. 70 88 61 2c 9f 0d 2b 87 50 82 54 64 26 7d 03 40

b. 34 4b 1c 73 d1 c4 fd 3b cc fb 7f ab e6 3e 5b a5

c. ad 04 23 9c 14 51 22 f0 29 79 71 7e ff 8c 0e e2

d. 0c ef bc 72 75 6f 37 a1 ec d3 8e 62 8b 86 10 e8

e. 08 77 11 be 92 4f 24 c5 32 36 9d cf f3 a6 bb ac

f. 5e 6c a9 13 57 25 b5 e3 bd a8 3a 01 05 59 2a 46

Table 9.4: Skipjack’s S-Box, F , in hexadecimal notation. For example, F (0x7a) =
0xd6.

Coe�cient Number Proportion (%) in F Poisson(1/2) (%)

0 39104 60.14 60.65
2 20559 31.62 30.33
4 4855 7.467 7.582
6 686 1.055 1.264
8 69 0.106 0.158

10 5 0.008 0.016
12 2 0.003 0.002

Table 9.5: Distribution of the coe�cients in the ddt of F .

equal to 28 is given in Table 9.2b and is equal to

P[max(LAT) ≤ 28] = 2−25.62.

This probability is low but it would be feasible to generate a set of about 226 random
8-bit permutations and compute the lat for each of them as this computation costs
about 8 × 22×8 = 219 simple operations. In such a set, the best S-Box s should verify
max(LAT) = 28. However, we can better estimate the number of S-Boxes that would
need to be generated to imitate the linear properties of F by taking into account the
number of occurrences of 28 in its lat. Coe�cients with absolute value 28 occur 3
times in the lat of F . As we can see in Figure 9.2, this quantity is close to 2−55.

More rigorously, we compute the probability to have at most u coe�cients equal
to 28 in the lat of a permutation picked uniformly at random from the set of all 8-bit
permutations using Equation (9.5). If we let p (2i ) = Pr[LAT[a,b] = 2i], then this
probability is equal to P28,u where

P28,u =
u∑
j=0

[((28 − 1)2
j

) (
p (28) + p (−28)

) j ( 13∑
k=−13

p (2k )
) (28−1)2−j ]

.
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Figure 9.6: Coe�cients of the lat of F and the expected distribution for a random
8-bit permutation.

For u = 3, the case of the F-table of Skipjack, we �nd:

P28,3 = 2−54.4.

The probability that a random permutation has linear properties comparable to those
of Skipjack’s F is thus equal 2−54.4. Hence, we make the following claims:

• F was not chosen uniformly at random among the set of all 8-bit permutations,

• the designers of Skipjack did not generate many 8-bit random permutation
to then pick the best according to some criteria as they would need to have
generated at least about 255 S-Boxes,

• the method used to build F improved its linear properties.

When I presented this work at Crypto’15, a member of the audience pointed out
that 255 is, in some sense, not that large. It is true that such an amount of comput-
ing power is within reach nowadays. However, Skipjack was designed in the end
of the 1980’s/beginning of the 1990’s. Furthermore, and I �nd this argument more
compelling, a hypothetical designer would need to generate 255 S-Boxes and then,
for each of them, compute the lat. This operation requires about 8×22×8 = 219 steps
in this case, which brings the total cost of such a brute-force search to roughly 274

operations. While we can only speculate about the feasibility of such a computation
for an institution as powerful as the nsa, we must keep in mind that, as shown in the
following section, it is extremely easy to design an algorithm which obtains similar
results in negligible time.

While it is impossible at this stage to rule out the idea that F was picked from a
very large set of random 8-bit S-Boxes, the tremendous cost of such a search would
not be justi�ed by its end result: while the linear properties of F are indeed observ-
ably better than those of a random S-Box, they remain less than impressive compared
to those of a dedicated structure like the inverse function.

I therefore still think that this S-Box was somehow engineered and not merely
picked from a random set.
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9.2.3 A Possible Design Criteria

We tried to create an algorithm capable of generating S-Boxes with linear and dif-
ferential properties similar to those of F . It turns out that such an algorithm is both
e�cient and easy to write. First, we introduce a quantity we denote R ( f ) and de�ne
as follows:

R ( f ) =
∑
`≥0

N` · 2` ,

where N` counts the number coe�cients with absolute value ` in the lat of f : N` =

#{LAT[i, j] ∈ (LAT of f ), |LAT[i, j]| = `}.
Algorithm 9.1 starts from a random 8-bit permutation s and returns a new permu-

tation s ′ such that R (s ′) < R (s ) and such that s ′ is identical to s except for two entries
x and y which are swapped: s ′(x ) = s (y) and s ′(y) = s (x ). It works by identifying
one of the highest coe�cients in the lat, removing it through swapping two entries,
and checking whether R (s ) was actually improved. This algorithm can be used in
two di�erent ways: either we keep iterating it until it reaches a point at which no
swap can improve R (s ) or we stop as soon as R (s ) is below an arbitrary threshold.

Algorithm 9.1 Improve-R (): optimizing the linear properties of an S-Box.
Input: S-Box s;
Output: S-Box s ′ with improved R ()
L := lat of s
Find a,b such that |L[a,b]| = Ls/2
` := empty list
for all x ∈ F8

2 do
if a · x = b · f (x ) then

Append x to `
end if

end for

for all (x ,y) ∈ ` × `,x , y do

s ′ = s ; s ′(x ) = s (y) ; s ′(y) = s (x )
if R (s ′) < R (s ) then

return s ′

end if

end for

return Fail

We implemented both variants. For the second one, we stop when R (s ) < 1010

because R (F ) ≈ 109.92 ≈ 233.1. We now denote NT
`

the average number of coe�cients
with absolute value ` in the table T taken over several S-Boxes obtained in di�erent
ways, where T ∈ {LAT,DDT}. For the lat, log2 (N

LAT
`

) is given in Table 9.6b and in
Figure 9.7; for the ddt it is in Table 9.6a. In those tables:

• “Rand.” corresponds to the average over 200 bijective 8-bit S-Boxes picked
uniformly at random;

• “F ” to the distribution for the S-Box of Skipjack;

• “F -like” to the average over 100 S-Boxes obtained using Improve-R () and stop-
ping when R (s ) < 1010; and
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• “best” to the average over 100 S-Boxes obtained using Improve-R () and stop-
ping only when it fails.

Figure 9.7 also contains the average coe�cient distribution in the lat of 100 S-Boxes
generated using a variant of Algorithm 9.1. Instead of optimizing R (s ), it merely
improves the pair (LS/2,NLS /2). That is, it tries to minimize the maximum value in
the lat and its number of occurrences without considering other coe�cients. The
program was made to stop when reaching the value corresponding to F , namely
(28,3).
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Figure 9.7: Distribution of the coe�cients in the lat of F and of some outputs of
Improve-R (s ).

` Rand. F F -like best R ()

0 15.265 15.246 15.250 15.227
2 14.270 14.327 14.314 14.380
4 12.277 12.245 12.257 12.210
6 9.693 9.422 9.492 9.126
8 6.701 6.109 6.198 5.265
10 3.374 2.322 2.287 0.714
12 -0.059 1.000 -1.786 -5.059
14 -4.059 - -5.059 -

(a) ddt

` Rand. F F -like best R ()

20 9.164 9.147 9.230 9.311
22 8.220 8.308 8.336 8.247
24 7.173 7.267 7.280 6.400
26 6.041 5.755 5.688 0.000
28 4.826 1.585 1.157 -
30 3.506 - - -
32 2.146 - - -
34 0.664 - - -

(b) lat

Table 9.6: Distribution of log2 (N
T
`
) for T ∈ {DDT,LAT} and for di�erent S-Boxes.

Using Improve-R () with an appropriate threshold allows us to create S-Boxes
with both linear and di�erential properties very close to F . However, in order to
achieve this, we need to choose a threshold value computed from F and which does
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not correspond to anything speci�c. In fact, to the best of our knowledge, the quan-
tity R (s ) does not have any particular importance unlike for instance the linearity
Ls . Still, replacing R (s ) by Ls or the pair (Ls ,#{(i, j ), |LAT[i, j]| = Ls/2}) yields S-
Boxes which are very di�erent from F . Such S-Boxes indeed have a value of NLs /2−2
observably higher than in the random case and much higher than for F , as can be
seen in Figure 9.7.

While our de�nition of R (s ) may seem arbitrary, it is the only one we could �nd
that leads to linear properties similar to those of F . For instance it may have been
tempting to base R (s ) on the square of ` which is used when computing the corre-
lation potential of a linear trail, a quantity useful when looking for linear attacks.
We would thus de�ne R (s ) =

∑
`≥0 N``

2. However this quantity is worthless as an
optimization criteria since it is constant: Parseval’s equality on the Walsh spectrum
of a Boolean function imposes that the sum of the (LAT[i, j])2 over each column is
equal to 22n−2.

In summary, we have found new non-random properties of the S-box of Skipjack
which are improving its strength against linear cryptanalysis and we developed and
algorithm which could be used to generate such S-boxes.

9.2.4 Public Information About the Design of Skipjack

The only information indirectly published by the nsa on Skipjack corresponds to an
“Interim Report” [BDK+93] written by external cryptographers and it contains no
information on the speci�cs of the design. The most relevant parts of this report as
far as the S-Box is concerned are the following ones.

SKIPJACK was designed to be evaluatable [...]. In summary, SKIPJACK is
based on some of nsa’s best technology. Considerable care went into its
design and evaluation in accordance with the care given to algorithms
that protect classi�ed data.

Furthermore, after the “leakage” of an alleged version of Skipjack to Usenet further
discussed in Section 9.2.5 (p. 175), Schneier replied with a detailed analysis of this
cipher [Sch95] which contained in particular the following quote indicating that the
S-box was changed in August 1992.

The only other thing I found [through documents released under FOIA]
was a SECRET memo. [...] The date is 25 August 1992. [...] [P]aragraph 1
reads:

1. (U) The enclosed Informal Technical Report revises the F-table in
SKIPJACK 3. No other aspect of the algorithm is changed.

Note also that the �rst linear cryptanalysis of Des [Mat94] had not been published yet
in August 1992 when the F-Table was changed. At Crypto’90 [GC91], Gilbert et al.
suggested the use of linear equations to help with key guessing in a di�erential crypt-
analysis against Feal. This block cipher was later attacked at Crypto’91 [TCG92]
and Eurocrypt’92 [MY93] using directly some linear equations involving plaintext,
ciphertext and key bits. We can but speculate about a connection between these
papers and the change of Skipjack’s S-Box.3

3I tried asking nsa cryptographers I met during conferences but they claimed, quite plausibly, that
this algorithm was too old for them to know about the speci�cs of its design.
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9.2.5 What About S-1?

The S-1 algorithm, alleged to be Skipjack in [Ano95], gives us no information about
the F-table of Skipjack. However, I think it is worth investigating its possible rela-
tionship with Skipjack now that this algorithm is known.

The Usenet post which prompted Schneier’s answer was the publication by an
anonymous member of sci.crypt of the C implementation of an algorithm which
they claimed to be Skipjack at a time when this algorithm was still classi�ed [Ano95].
The algorithm described, “S-1”, turned out to be di�erent from Skipjack as we know
it.

It is an unbalanced Feistel network encrypting 64-bit blocks divided into four 16-
bit words using an 80-bit key. Its round function is represented in Figure 9.8 where
di�erent line widths indicate di�erent data-path widths. This algorithm uses 16-, 8-,
4- and 2-bit data paths. The Feistel function uses four distinct functions Fi : F8

2 → F
4
2

which are stored in a so-called “F-table”, the same term as in Skipjack. The content
of one branch is sent through a function G which outputs a 2-bit counter j. This
counter is used to “rotate” the ordering of the functions Fi : Fj is applied on the �rst
byte, F (j+1) mod 4 on the second, etc. In a way, the F-table can be seen as a rotor of
S-Boxes which rotates depending on the content of one branch. The content of the
other two branches is then sent through the F-table and xored with the last branch.
Since the Fi functions have an output half as large as their input, the function is well
de�ned. An encryption uses 32 rounds.

Figure 9.8: The structure of the “S-1” cipher.

The round-key is xored just before the computation of the round function. The
key schedule is very simple: the round-key of round i consists of 6 bytes rki0, ...rki5
where the least signi�cant and most signi�cant 4-bit nibbles are equal to:




lsn(rkij ) = F0 (K[6i + j + s (j + 0)]) ⊕ F1 (K[6i + j + s (j + 1)])
msn(rkij ) = F2 (K[6i + j + s (j + 2)]) ⊕ F3 (K[6i + j + s (j + 3)]) ,

whereK is the 80-bit master key, the index of the master key byte is taken modulo 10
and where s = {5,8,3,1,4,0}. Note that s is the concatenation of s ′ = {5,8,3,1,4} and
{0} where s ′ is such that s ′[i +2] = s[i]+s[i +1] mod 10. However, the most impor-
tant property of this key schedule is its periodicity: just like in the actual Skipjack,
the round keys are identical every 5 rounds!
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What can we say about S-1? Is it a hoax? Since Schneier was able to get the
report quoted above around the time of the publication of S-1, it could be that the
anonymous poster found out about the term “F-table”, the existence of two previous
versions of Skipjack and the block/key size through the same mean. This observation
echoes the following remark from Schneier’s analysis:

The hoaxer knew about Blaze’s and my MacGu�n paper and that we
thought SKIPJACK was a 48:16 UFN. We made no secret about this, and
our paper is on Blaze’s web page. The hoaxer knew to use the term F-
table. I haven’t shown many people what I found in EPIC’s documents,
so the hoaxer either had to look through them himself or get them by
some other means (maybe an independent FOIA request).
[...]
So, maybe it’s SKIPJACK. It has a 64-bit block size and an 80-bit key size.
It’s a 48:16 UFN with 32 rounds (or shifts, or whatever). And it has an F-
table. This is really interesting, because the structure really is an S-box.
Everyone knows it’s an S-box, and it makes no sense for a hoaxer to call
it something else. But in S-1 it’s called an F-table. (I think this is very
signi�cant, but others �nd it less convincing.)

The key aspect about S-1 which links it to Skipjack as we know it is the key
schedule. Schneier was unimpressed by it:

The hoaxer knew enough to make a design that included [...] a bizarre
key schedule. [...] The key schedule is hopelessly �awed (David Wagner
posted an attack to sci.crypt). [...] But the key schedule is just plain
wrong.

The attack he refers to is one of the �rst two4 slide attacks [Wag95]. It exploits the
fact that the key repeats itself every 5 rounds without having any round constant in
the round function.

And yet, although the periodicity of the key schedule is a �aw in the context of
S-1, the counter added in the round function of Skipjack allows the use of a similar
repeating key schedule with a period of 5 rounds.

The conclusion of Shneier’s analysis is below (emphasis mine):

And maybe the code originally didn’t have an 80-bit key schedule. Maybe
it had a longer key schedule. The poster then modi�ed this key sched-
ule to make it look more like SKIPJACK. (This might also explain the
bug in the code, which might not be a bug if it still had the original key
schedule.)
Which leaves us precisely nowhere. The most likely explanation is that
it is a hoax, but I am hard-pressed to imagine a hoaxer with the requisite
combination of skills, resources, and attitude. I also don’t believe that it
is SKIPJACK. It might be a preliminary design for SKIPJACK, but if both
the key schedule and F-table entries are wrong, we really haven’t

4The other of the �rst two slide attacks was independently found by Biryukov to break the TREYFER
lightweight block cipher [Yuv97]. After a suggestion of Bruce Schneier — who also proposed the name
“slide attack”, Biryukov and Wagner later collaborated to write the �rst academic paper on slide at-
tacks [BW99, Bir17].
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learned anything. If we suddenly discovered that unbalanced S-boxes
are far superior to balanced ones, then all [bets] are o�.

We now know that its key schedule is in fact not wrong, it is close to the one
actually used in Skipjack. Thus, I tend to agree with Schneier: I strongly suspect that
S-1 is indeed Skipjack-1 (recall that Skipjack as we know it is actually Skipjack-3).

Unfortunately, I did not manage to �nd any evidence that the functions in the
F-table of S-1 have not been picked uniformly at random: their algebraic degree,
linearity and di�erential uniformity are on par with what would be expected from a
random S-Box mapping F8

2 to F4
2.

9.3 Detailed Results on Chiasmus

The S-Box of Chiasmus is based on the �nite �eld inverse. The use of the inverse
function has not been made public by the designers of Chiasmus to the best of my
knowledge. This is to be expected as this cipher was not supposed to be public in
the �rst place, it was designed for internal use within the German government by
the Federal O�ce for Information Security. The structure of the cipher was success-
fully reverse-engineered from an encryption program by two independent groups:
Schejbal et al. [STW13] and Schuster [Sch14]. These revealed the two S-Boxes used,
one being the functional inverse of the other. The proximity between the S-Boxes
of Chiasmus and the Aes was already noted by Schuster who however ruled out an
identical structure, as explained in his slides:

• I.e. there exists no combination of any inversion in GF (28) that
in combination with any a�ne mapping in GF (2)8 constructs the
Chiasmus s-boxes. [...]

• Probably there is just another a�ne mapping before the inversion
is applied.

This intuition was correct: the S-Box of Chiasmus is indeed built from the in-
verse function composed with two di�erent a�ne mappings. These could be recov-
ered using the algorithm of Biryukov et al. [BDBP03] for a�ne equivalence in time
O

(
n322n

)
but, in the case where the basic building block is a monomial di�erentially

∆-uniform and locally (∆ − 2)-uniform, such as the multiplicative inverse in F2n for
even n and ∆ = 4, we can bypass the xor of the input and output constants and thus
use the more e�cient algorithm for linear equivalence in time O

(
n32n

)
presented in

the same paper. The trick is based on the following lemma.

Lemma 9.3.1. Let x 7→ xe be a di�erentially ∆-uniform and locally di�erentially
(∆ − 2)-uniform permutation of F2n and let s : x 7→ B ((A(x ) ⊕ c )e ) ⊕ d , where A and
B are linear permutations and c,d are constants from F2n . Let (ai ,bi ) for 1 ≤ i < 2n
be the set of the indices such that DDT[ai ,bi ] = ∆ in the ddt of s . Then the indices are
linked by the following relation:

bi = B ((A(ai ))
e ) .

In other words, by looking at the highest coe�cients in the ddt of s we can bypass the
constant additions.
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Proof. Because x 7→ xe is a monomial, the coe�cients in its ddt De are such that
De [a,b] = De [1,ba−e ] because

(x + a)e + xe = b is equivalent to
(x
a
+ 1

)
+

(x
a

)e
=

b

ae
.

Furthermore, the ddt Ds of s can be obtained from De using the fact that Ds [a,b] =
De [A(a),B−1 (b)], as explained in Lemma 8.2.2. We deduce that the ddt of s can be
expressed as Ds [a,b] = De [A(a),B−1 (b)] which is equal to De [1,B−1 (b) (A(a))−e ].
Since the only index a such that De [1,a] = ∆ is 1 (by de�nition of local di�erential
(∆ − 2)-uniformity), we deduce that if Ds [ai ,bi ] = ∆ then B−1 (bi ) (A(ai ))

−e = 1, so
that

bi = B
(
(A(ai ))

e
)
,

meaning that ai 7→ bi is the same as s minus its constant additions. �

Incidentally, this gives another criteria to know if an 8-bit S-Box has been built
using a �nite �eld inverse. By applying �rst this method and then the linear equiv-
alence algorithm of [BDBP03], we can �nd the a�ne mappings x 7→ A(x ) ⊕ a and
x 7→ B (x ) ⊕ b in time O(22n ), as it is the time taken to compute the ddt, instead of
O(n322n ).

I applied this method5 to Chiasmus and recovered many such functions. This
is not surprising as the existence of one decomposition implies that of many oth-
ers because constant multiplications and squarings can be applied to the �rst linear
mapping — provided that their inverses are applied to the second one — without
breaking the equivalence. I brute-forced all such linear mappings hoping to �nd
a “good-looking” decomposition. Unfortunately, none of them looked particularly
structured.

The S-Box C of Chiasmus can be computed as

C (x ) = B
(
(A(x ) ⊕ a)−1 )

⊕ b,

where the inversion is in F2[X ]/X 8 + X 4 + X 3 + X + 1, a = 0x8f, b = 0x59 and

A =



1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0
1 0 0 1 1 0 1 1
0 1 1 0 0 0 0 0
0 1 1 1 1 1 1 0
1 1 1 0 0 0 1 1
0 0 1 0 1 1 1 1



and B =



0 0 0 1 0 1 0 0
0 0 1 1 1 1 1 0
0 1 0 1 0 0 1 0
1 0 1 0 1 0 1 0
1 1 0 1 1 0 0 1
1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1
1 0 0 1 0 1 0 1



.

9.4 Application to Other S-Boxes

Using Theorems 9.1.1 and 9.1.2, we can compute the probability that an S-Box picked
uniformly at random is at least as good as another one from the di�erential and linear
perspective. If this probability is close to 1, it means that the S-Box is not better than
a random one from a di�erential or linear stand-point. Conversely, if this probability
is low, it means that the S-Box is much better.

5I thank Aleksei Udovenko for providing his implementation of the linear equivalence algorithm
from [BDBP03].
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This provides a mean to compare the di�erent constructions described in Sec-
tion 8.3 (p. 146). The results are summarized in Table 9.7. I have only considered
8-bit S-Boxes because these are very common and because smaller ones usually do
not have a speci�c structure other than that of the �nite �eld multiplicative inverse.
The probability that a random S-Box r has a pair (∆r ,#{(i, j ),DDT[i, j] = ∆r }) under
that of a particular S-Box s is denoted 2`dif . The counterpart for the lat is denoted
2`lin . All the properties listed in Table 9.7 are invariant under a�ne-equivalence. The
only exception is the fact that a function is an involution.

We can see that the S-Boxes of Iceberg and Khazad have better di�erential prop-
erties than those of Clefia, Two�sh and Crypton 0.5. This is probably due to the
former using 3 layers of 4-bit S-Boxes while the latter only use 2. Interestingly, the
S-Box S0 of Clefia has much better linear properties than those of Two�sh and Cryp-
ton 0.5. The linear layer inside S0 is based on an mds matrix mapping (F24 )2 to itself,
thus o�ering better di�usion than the other two.

There is also a signi�cant discrepancy between the properties of the S-Box of
CS-cipher and other Feistel-based constructions, in particular that of Zuc (s0) and
the one of iScream. A possible reason is that the designers of the CS-cipher used a
Feistel function with a simple structure while Zuc uses apn functions.

It is also interesting to see that the S-Box of Anubis was picked as the best in a
set of roughly 600× 106 ≈ 229.2 random involutions, which is very close to the value
of 2−min(`dif,`lin ) = 228.7. This con�rms that the approach described in Section 9.1.2.3
(p. 162) provides an accurate method for estimating the probability that a random
permutation has di�erential and linear properties similar to those of a given S-Box.
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Structure. Algorithm Reference ∆s Ls /2 `dif `lin Involution Deg.

Inverse [Nyb94] 4 16 -7382.1 -3329.4 Yes 7
BelT [Bel11] 8 26 -74.8 -123.0 No 7
E2 [KMA+00] 10 28 -12.7 -41.0 No 7

Magenta [JH98] 8 26 -91.5 -128.6 No 7
Picaro† [PRC12] 4 34 -1359.5 -1.40 No 4

Safer [Mas94] 128 46 0 0 No 7

Mathematical

Snow 3G [ETS06a] 8 32 -36.8 -3.16 No 5

Clefia S0 [SSA+07] 10 28 -2.57 -25.6 No 6
Crypton 0.5 [LH98] 16 40 0 -0.02 No 6

Enocoro [WIK+08] 10 32 -1.92 -3.26 No 6
Iceberg [SPR+04] 8 32 -18.4 -3.59 Yes 7
Khazad [BR00b] 8 32 -18.4 -3.16 Yes 7

Midori-128 [BBI+15] 64 64 0 0 Yes 3
Qarma-(σ0/1)-128 [Ava17] 64 64 0 0 No 3

Two�sh p0 [SKW+98] 10 32 -1.36 -3.16 No 6

spn

Two�sh p1 [SKW+98] 10 32 -1.34 -3.16 No 6

Crypton 1.0 [DPV01] 10 32 -3.67 -3.37 No 6
CS-cipher [SV00] 16 32 0 -3.16 Yes 5
iScream [GLS+14] 16 32 0 -3.16 Yes 6
Scream [GLS+14, CDL16] 8 32 -16.1 -3.16 No 6
Zorro [GGNS13] 10 32 -2.19 -3.37 No 7

Feistel

Zuc s0 [ETS11] 8 32 -18.4 -3.16 No 5

gfn Skinny-128 [BJK+16] 64 64 0 0 No 6

Misty-like Fantomas [GLSV15] 16 32 0 -3.16 No 5

Fox [VJ04] 16 32 0 -3.16 No 6
Whirlpool [BR00c] 8 28 -23.0 -25.7 No 7Lai-Massey

Fly [KG16] 16 32 0 -3.16 No 5

Anubis [BR00a] 8 34 -28.7 -1.04 Yes 7
Kalyna π0 [OGK+15b] 8 24 -104.2 -235.8 No 7
Kalyna π1 [OGK+15b] 8 24 -122.6 -268.1 No 7
Kalyna π2 [OGK+15b] 8 24 -129.9 -239.3 No 7

Hill-climbing

Kalyna π3 [OGK+15b] 8 24 -122.6 -242.9 No 7

MD2 [Kal92] 10 38 -1.355 -0.10 No 7
newDES [Sco85] 12 36 -0.44 -0.32 No 7Pseudo-random
Turing [RH03] 12 34 -0.18 -1.84 No 7

Cmea† [WSK97] 12 32 -0.44 -4.53 No 7
Kuznyechik [Fed15] 8 28 -80.6 -34.35 No 7Unknown

Skipjack [U.S98] 12 28 -0.18 -54.38 No 7

The dagger symbol “†” indicates that the function is not a permutation.

Table 9.7: An overview of di�erent 8-bit S-Boxes from the literature.



Chapter10

Structural A�acks Against Feistel

Networks

A possible structure for an S-Box is a Feistel network with few rounds. Given the
look-up table of such a permutation, is it possible to recover the Feistel functions,
even if they have been picked uniformly at random? In this chapter, we investigate
algorithms allowing us to distinguish Feistel networks from random permutation
and to actually recover their Feistel functions.

Our results are di�erent depending on whether the Feistel network attacked uses
an exclusive-or (⊕) or a modular addition (�). Thus, we refer to a Feistel network
using xor as a ⊕-Feistel and to one based on modular addition as a �-Feistel. If we
do not specify which operation is used, xor is implied.

After clarifying the notation used throughout this chapter in Section 10.1 (p. 181),
I describe attacks from the literature in Section 10.2 (p. 182).

Then, in Sections 10.3 (p. 186) and 10.4 (p. 190), I present new attacks against
generic 5-round Feistel networks which recover all Feistel functions e�ciently in-
stead of only distinguishing them from random. Furthermore, unlike distinguishers
from the literature, these attacks do not make any assumptions about whether the
Feistel functions are bijective or not. The attack only works against ⊕-Feistel. It
uses the yoyo game, a tool introduced in [BBD+99] which is improved by providing a
more general theoretical framework for it and leveraging particular cycle structures
to diminish its cost. The principle of the yoyo game is introduced in Section 10.3
(p. 186) and how to use cycles to improve it is described in Section 10.4 (p. 190).

In Section 10.5 (p. 197), the hdim of Feistel networks is studied and, in particular,
the presence of speci�c artifacts is proved. These can be used to distinguish Feistel
networks e�ciently from random permutation even after many rounds, provided
that the degree of the Feistel functions is small enough.

10.1 Notation

We introduce some notation for the di�erent states during encryption which are
summarized in Figure 10.1a. Each of the values is assigned a letter, e.g. the left side
of the input is in position “A”. When we look at 5-round Feistel networks, the input
is fed into positions A and B and the output is read inG,F . For 6 rounds, the input is
the same but the output is read in H ,G with H = S5 (G ) + F . If we study a �-Feistel
then “+” denotes modular addition (�); it denotes exclusive-or (⊕) if we attack a ⊕-
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182 Structural Attacks Against Feistel Networks

Feistel. Concatenation is denoted “| |” and encryption is denoted E (the number of
rounds being clear from the context). For example, E (a | |b) = д | | f for a 5-round
Feistel network. The bit-length of a branch of the Feistel network is equal to n.

In addition, we make the following observation.

Observation 10.1.1. For an R-round Feistel, we can �x one entry of the last R − 2
Feistel functions (or the �rst R − 2 ones) arbitrarily. For example, the output of the
5-round Feistel network described in Figure 10.1b does not depend on α0, α1 or α2.

S0+

S1+ C

S2+ D

S3+ E

S4+

A B

FG

(a) Internal state notation.

S0+

S1+

S2+

S3+

S4+

+α0

�

−α0

�

+α1

�

−α1

�

+α2−α0

�

−α2

�

−α1

�

−α2

�

(b) Equivalent Feistel networks.

Figure 10.1: Notation and an observation about Feistel networks.

10.2 Overview of Structural A�acks Against Feistel Networks

After a quick summary of all the structural attacks and distinguishers I am aware of in
Section 10.2.1 (p. 182) and in Table 10.1, I present in a bit more detail several of them.
The di�erential distinguishers are in Section 10.2.2 (p. 184) and the impossible di�er-
ential ones in Section 10.2.3 (p. 184). The recovery attacks based on sat-solver usage
and integral properties are described in Sections 10.2.4 (p. 185) and 10.2.5 (p. 185)
respectively.

While our focus is on 2-branched balanced Feistel networks, we brie�y mention
attacks against variants of this structure in Section 10.2.6 (p. 186).

10.2.1 Summary

A �rst theoretical analysis of the Feistel structure and the �rst generic attacks were
proposed in the seminal paper by Luby and Racko� [LR88]. Since then, several crypt-
analyses have been identi�ed with the aim either to distinguish a Feistel network
from a random permutation or to recover the Feistel functions.

Di�erential distinguishers against up to 5 rounds in the usual setting and 6 rounds
in a multi-key setting are presented in [Pat08], although they assume that the Feis-
tel functions are random functions and thus have inner-collisions. Conversely, an
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R Type Power Restrictions Time Data Ref.

Di�erential Distinguisher Non bij. round func. 2n 2n [Pat08]
0-correlation Distinguisher Bij. round func. n22n 22n Sec 12.2.3.34

Guess & Det. Recovery – 23n 23n [BLP16]

Di�erential Distinguisher Non bij. round func. 22n 22n [Pat08]
Imp. di�. Distinguisher Bij. round func. 22n 2n [Knu98]

hdim-based Distinguisher Bij. round func. 22n−1 22n−1 Sec. 10.5.3
sat-based Recovery n ≤ 7 Practical 22n [BP15]

Yoyo Recovery Only for ⊕-Feistel 22n 22n Sec. 10.4.4
Integral Recovery S1 or S3 bij. 22.81n 22n [BLP16]

Guess & Det. Recovery – 2n23n/4 22n [BLP16]

5

Imp. monom. Recovery Bij. round func. 23n 22n [PU16]

Di�erential Distinguisher Multi-key setting 24n 24n [Pat08]
6

Yoyo Recovery Only for ⊕-Feistel 2n22n+2n 24n Sec. 10.4.5

7 Yoyo Recovery Only for ⊕-Feistel 2n22n+1+2n 24n Sec. 10.4.5

hdim-based Distinguisher Bij. Fi , θ (d, r − 1) < 2n 22n−1 22n−1 Sec. 10.5.3
hdim-based Distinguisher Non bij. Fi , θ (d, r ) < 2n 22n−1 22n−1 Sec. 10.5.3r

Imp. monom. Recovery dr−3 < n 23n 22n [PU16]

Table 10.1: Structural attacks against Feistel networks. n is the branch size, d is the
degree of the Feistel functions, Fi is the Feistel function at round i .

impossible di�erential covering 5 rounds in the case where the Feistel functions are
permutations is described in [Knu98] and used to attack Deal, a block cipher based
on a 6-round Feistel network.

More recently, Aleksei Udovenko and I identi�ed some patterns in the hdim of
Feistel networks. These can cover much more rounds than the di�erential ones pro-
vided that the algebraic degree of the Feistel function is not too high. These distin-
guishers are described in Section 10.5. There are also visible patterns in the lat of
4-round Feistel networks which allow an easy identi�cation of those, as explained in
Section 12.2.3.3 (p. 232).

Cryptographers have also investigated recovery attacks aiming at recovering the
secret components of a Feistel network instead of merely identifying its structure.
Lampe et al. [LS15], followed by Dinur et al. [DDKS15], studied Feistel networks
where the Feistel function at round i consists of x 7→ Fi (x ⊕ ki ), with Fi being public
but ki being kept secret. If the subkeys are independent then it is possible to recover
all of them for a 5-round (respectively 7-round) Feistel network in time O(22n ) (resp.
O(23n )) using only 4 known plaintexts with the optimized Meet-in-the-Middle attack
described in [DDKS15].

However, we consider the much more complex case where the Feistel functions
are completely unknown. First, I designed a method relying on a sat-solver which
was published in [BP15] and is summarized in Section 10.2.4 (p. 185). It is capable of
decomposing Feistel networks with up to n = 7 in at most a couple of hours. How
this time scales for largern is unclear but will anyway remain slower than the attacks
presented in this chapter.

The yoyo game described in Section 10.3 (p. 186) and its cycle-based improvement
described in Section 10.4 (p. 190) are the most e�cient recovery attacks. However,
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they only work against ⊕-Feistel. In a joint work, Leurent found guess and deter-
mine attacks which, while less e�cient, do work against �-Feistel [BLP16]. If some
Feistel functions are bijective, then some integral attacks become possible. These are
summarized in Section 10.2.5 (p. 185).

All these attacks, their limitations and their e�ciency are summarized in Ta-
ble 10.1, where “Recovery” means that the attack recovers the lut of all Feistel func-
tions while “Distinguisher” means the attack merely identi�es the Feistel network as
such. The function θ : Z2 → Z is de�ned by

θ (d ,r ) = d br /2c−1 + d dr /2e−1,

where b2kc = b2k + 1c = 2k and d2ke = d2k − 1e = 2k .
A short description of some these attacks is given in the remainder of this section

for the sake of completeness.

10.2.2 Di�erential Distinguishers

In [Pat08], Patarin shows a di�erential distinguisher against 5-round Feistel net-
works. However, it only works if the Feistel functions have inner-collisions. It is
based on the following observation. Let (дi | | fi ) be the image of (ai | |bi ) by a permu-
tation and let bi be constant. Then for i , j, such that fi = fj , count how many times
ai ⊕ aj = дi ⊕дj . This number is roughly twice as high for a 5-round Feistel network
than for a random permutation.

In the same paper, Patarin suggests two distinguishers against 6-round ⊕-Feistel
networks. However, these do not target a permutation but a generator of permu-
tations. This can be interpreted as a multi-key attack: the attacker has a black-box
access to several permutations and either none or all are 6-round ⊕-Feistel networks.
The �rst attack uses the fact that the signature of a ⊕-Feistel network is always even.
The second attack exploits a statistical bias too weak to be reliably observable using
one codebook but usable when several permutations are available. It works by count-
ing all quadruples of encryptions (ai | |bi ) → (дi | |hi ), i = 1..4 satisfying this system:




b1 = b3, b2 = b4

д1 = д2, д3 = д4

a1 ⊕ a3 = a2 ⊕ a4 = д1 ⊕ д3

h1 ⊕ h2 = h3 ⊕ h4 = b1 ⊕ b2.

If there are λ black-boxes to distinguish and ifm queries are performed for each then
we expect to �nd about λm42−8n solutions for a random permutation and 2λm42−8n

for 6-round Feistel networks, i.e. twice as much.

10.2.3 Impossible Di�erential

Knudsen described in [Knu98] an impossible di�erential attack against his AES pro-
posal, DEAL, a 6-round Feistel network using the DES [U.S99] as a round function.
This attack is made possible by the existence of a 5-round impossible di�erential
caused by the Feistel functions being permutations. In this case, an input di�erence
(α | |0) cannot be mapped to a di�erence of (α | |0) after 5 rounds. This would imply
that the non-zero di�erence which has to appear in D as the image of α by S2 is
mapped to 0, which is impossible.
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To distinguish such a 5-round Feistel network from a random permutation we
need to generate λ · 22n pairs with input di�erence (∆| |0). Among those, about
λ should have an output di�erence equal to (∆| |0) if the permutation is a random
permutation while it is impossible to observe if for a 5-round Feistel network with
bijective Feistel functions. Note that while the time complexity is O(22n ), the data
complexity can be brought down to O(2n ) using structures.

An attack on 6 rounds uses this property by identifying pairs of encryptions with
di�erence (α | |0) in the input and (α | |∆) for the output for any ∆ , 0. A pair has a
correct output di�erence with probability 2−n (1 − 2−n ) since α is �xed and ∆ can
take any value except 0. We repeat this process for the whole codebook and all
α , 0 to obtain 2n+(2n−1) · 2−n (1 − 2−n ) = 22n−1 − 2n−1 pairs. Each of them gives
an impossible equation for S5: if {(a | |b) → (д | |h), (a ⊕ α | |b) → (д ⊕ α | |h ⊕ ∆)} is
a pair of encryptions then it is impossible that S5 (д) ⊕ S5 (д ⊕ α ) = ∆ as it would
imply the impossible di�erential. In the end, we have a system of about 22n−1 − 2n−1

impossible equations, a random Feistel function satisfying an impossible equation
with probability (1 − 2−n ). Thus, this attack �lters out all but the following fraction
of candidates for S5:

Impossible di�erential �lter = (1 − 2−n )22n−1−2n−1
≈ 20.72−1.443·2n−1

.

10.2.4 Sat-based Recovery

In [BP15], I proposed an algorithm based on a sat-solver for attacking both ⊕-Feistel
and �-Feistel networks. The idea is the same in both cases and consists of building a
cnf formula which uses the entries of the lut of the r Feistel functions as unknowns.
Using these unknowns, we build for each plaintext/ciphertext a cnf encoding that a
block cipher using the unknown Feistel functions maps said plaintext to said cipher-
text. An o�-the-shelf sat-solver such as minisat [ES04] is then used to solve the cnf
formula. If it has no solution, it means that the function considered is not a Feistel
network with r rounds. If a solution is found, we deduce the Feistel functions from
the variable assignment returned.

10.2.5 Integral A�ack

This attack was �rst presented in [BLP16]. In fact, its principle had been suggested
by an anonymous reviewer of the sac’15 conference.

Let us use the notation described in Section 10.1 (p. 181). Suppose that S1 is a
bijection. If B is �xed and if A takes all 2n possible values, thenC and, in turn, D also
take all possible values. It means that the sum of the values E (A,B) taken over all
values of A is �xed. Indeed, this sum is equal to∑

A∈Fn2

E (A,B) =
∑
A∈Fn2

S2 ((D (A,B)) +
∑
A∈Fn2

C (A,B) ,

where ∑
A∈Fn2

C (A,B) = 0 because1 C takes all possible values and the other half of
this sum does not depend on B: ∑A∈Fn2

S2 ((D (A,B)) =
∑

D∈Fn2
S2 (D).

Using this property, we can attack both 5-round ⊕-Feistel and 5-round �-Feistel.
The recovery is performed by writing a system of linear equations encoding that∑

A∈Fn2
E (A,B) =

∑
A∈Fn2

E (A,B′) for all pairs (B,B′) using the outputs of S4 (x ) as
1If + denotes xor then the equality holds. If it denotes addition modulo 2n , it holds modulo 2n .
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variables. Solving this system yields the look-up table of S4. After that, only 4 rounds
remain to attack.

A similar attack was described by Aleksei Udovenko in a joint work with me [PU16].
Instead of recovering the lut of the last Feistel function using a constant sum, it
works by identifying some monomials that cannot appear in the anf of the Feistel
network at round 4. This information is then used to recover the anf of the last
Feistel function.

10.2.6 A�acks Targeting Variants of Feistel Networks

Variants of the Feistel structure have received less attention in terms of structural
attacks. Unbalanced Feistel networks with public Feistel functions but xored with se-
cret round keys are vulnerable to the Meet-in-the-Middle attacks described in [GJNS17].

Similarly, generalized Feistel networks based on public Feistel functions preceded
by secret key xor have been studied by Blondeau and Minier in [BM15]. They found
some structural integral, impossible di�erential and zero-correlation distinguishers
against such structures. When the Feistel functions used in a generalized Feistel
network are secret and independent, some di�erential distinguishers exist. They are
described in [NVP13].

10.3 Yoyo Game and Cryptanalysis

Several cryptanalyses have been proposed in the literature that rely on encrypting a
plaintext, performing an operation on the ciphertext and then decrypting the result.
For example, the “double-swiping” used against newDES [KSW97] in the related-key
setting relies on encrypting a pair of plaintexts using two related-keys and decrypt-
ing the result using two di�erent related-keys. Another example is the boomerang
attack introduced by Wagner [Wag99] in the single-key setting. A pair with input
di�erence δ is encrypted. Then, a di�erence ∆ is added to the ciphertexts and the
results are decrypted, hopefully yielding two plaintexts with a di�erence of δ .

In this section, we discuss how the yoyo game introduced in [BBD+99] and de-
scribed in Section 10.3.1 (p. 186) can be used against Feistel networks. A theoretical
framework is provided in Section 10.3.2 (p. 187) and it is applied to 5-round ⊕-Feistel
in Section 10.3.3 (p. 188).

10.3.1 The Original Yoyo Game

The yoyo game was introduced by Biham et al. in [BBD+99] where it was used to at-
tack the 16 center rounds of Skipjack [U.S98], a block cipher described in Section 9.2.1
(p. 168). We describe this attack using slightly di�erent notation and terminology to
be coherent with the rest of our paper. In this paragraph, Ek denotes an encryption
using round-reduced Skipjack under key k .

If the di�erence between two encryptions at round 5 is (0,∆,0,0) with ∆ , 0 then
the other three words have di�erence 0 between rounds 5 and 12. Two encryptions
satisfying this truncated di�erential are said to be connected.

The key observation is the following. Let x ,x ′ de�ned as x = (x0,x1,x2,x3)
and x ′ = (x ′0,x

′
1,x2,x

′
3) be two plaintexts with the same value x2. If they are con-

nected, then the pair ϕ (x ,x ′) =
(
(x0,x

′
1,x2,x3), (x

′
0,x1,x2,x

′
3)

)
is connected as well.

A detailed explanation on why it is the case is given in [BBD+99]. Furthermore, let
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y = (y0,y1,y2,y3) and y ′ = (y ′0,y
′
1,y
′
2,y
′
3) be the encryption of x and x ′ respectively,

i.e. y = Ek (x ) and y ′ = Ek (x ′). We can form two new ciphertexts by swapping their
�rst words to obtain z = (y ′0,y1,y2,y3) and z ′ = (y0,y

′
1,y
′
2,y
′
3). If we decrypt them to

obtain (u,u ′) = (E−1
k (z),E−1

k (z ′)), then u and u ′ are connected. If we denoteψ (x ,x ′)
the function which encrypts x and x ′, swaps the �rst words of the ciphertexts ob-
tained and decrypts the result then ψ preserves connection, just like ϕ. It is thus
possible to iterate ϕ andψ to obtain many connected pairs, this process being called
the yoyo game.

In this section, we present other de�nitions of the connection and of the functions
ϕ andψ which allow us to play a similar yoyo game on 5-round Feistel networks.

10.3.2 Theoretical Framework for the Yoyo Game

Consider two plaintexts a | |b and a′ | |b ′ such that the di�erence between their encryp-
tions in positions (C,D) is equal to (γ ,0) with γ , 0. Then the di�erence in position
E is equal to γ . Conversely, the di�erence in (E,D) being (γ ,0) implies that the dif-
ference in C is γ . When this is the case, the two encryptions satisfy the systems of
equations and the trail described in Figure 10.2.

Top equations




S0 (b) ⊕ S0 (b
′) = a ⊕ a′ ⊕ γ

S1 (a ⊕ S0 (b)) ⊕ S1 (a
′ ⊕ S0 (b

′)) = b ⊕ b ′

Bottom equations




S4 ( f ) ⊕ S4 ( f
′) = д ⊕ д′ ⊕ γ

S3 (д ⊕ S4 ( f )) ⊕ S3 (д
′ ⊕ S4 ( f

′)) = д ⊕ д′

0+

1+ γ

2+ 0

3+ γ

4+

a ⊕ a′ b ⊕ b′

д ⊕ д′ f ⊕ f ′

Figure 10.2: The equations de�ning connection in γ and the corresponding di�er-
ential trail.

De�nition 10.3.1. If the encryptions of a | |b and a′ | |b ′ follow the trail in Figure 10.2
then they are said to be connected in γ .

This connection is an “exclusive” relation: if (a | |b) and (a′ | |b ′) are connected,
then neither (a | |b) nor (a′ | |b ′) can be connected to anything else. Furthermore, we
can replace (a,a′) by (a ⊕ γ ,a′ ⊕ γ ) in the top equations and still have them be true.
Indeed, the two γ cancel each other in the �rst one. In the second, the values input to
each call to S1 are simply swapped as a consequence of the �rst equation. Similarly,
we can replace (д,д′) by (д ⊕ γ ,д′ ⊕ γ ) in the bottom equations.2 As a consequence
of these observations, we state the following lemma.

Lemma 10.3.1. We de�ne the following two involutions

ϕγ (a | |b) = (a ⊕ γ ) | |b, ψγ = E
−1 ◦ ϕγ ◦ E .

If a | |b and a′ | |b ′ are connected then, with probability 1:

2However, such a yoyo game cannot be played against a �-Feistel, as explained in Section 10.3.4. It
only works in characteristic 2.
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• ϕγ (a | |b) and ϕγ (a′ | |b ′) are connected,

• ψγ (a | |b) andψγ (a′ | |b ′) are connected.

By repeatedly applying ϕγ andψγ component-wise on a pair of plaintexts (x ,x ′),
we can play a yoyo game which preserves connection in γ . This process is de�ned
formally below.

De�nition 10.3.2. Let
(
x0 = (a0 | |b0),x

′
0 = (a′0 | |b

′
0)

)
be a pair of inputs. The yoyo

game in γ starting in (x0,x
′
0) is de�ned recursively as follows:

(
xi+1,x

′
i+1

)
=




(
ϕγ (xi ),ϕγ (x

′
i )
)

if i is even,(
ψγ (xi ),ψγ (x

′
i )
)

if i is odd

Lemma10.3.2. If (x0,x
′
0) is connected inγ then all pairs in the game starting in (x0,x

′
0)

are connected in γ . In other words, either all pairs within the game played using ϕγ and
ψγ are connected in γ or none of them are.

10.3.3 The Yoyo Cryptanalysis Against 5-Round ⊕-Feistel Networks

Given a yoyo game connected in γ , it is easy to recover Feistel functions S0 and S4
provided that the yoyo game is long enough, i.e. that it contains enough connected
pairs to be able to recover all 2n entries of both S-Boxes. If the yoyo game is not
connected in γ then yoyo cryptanalysis (Algorithm 10.1) identi�es it as such very
e�ciently.

It is a di�erential cryptanalysis which uses the fact that all pairs in the game are
(supposed to be) right pairs for the di�erential trail de�ning connection in γ . If it is
not the case, S0 or S4 will end up requiring contradictory entries, e.g. S0 (0) = 0 and
S0 (0) = 1. In this case, the game is not connected in γ and must be discarded. Yoyo
cryptanalysis3 is described in Algorithm 10.1. It only takes as inputs a (possible) yoyo
game and the value of γ . Algorithm 10.2 describes AddEntry, a subroutine handling
some linear equations. Because of Observation 10.1.1 (p. 182), one entry can be set
arbitrarily. In this algorithm, we chose S0 (0) = 0.

LetY be a (supposed) yoyo game containing |Y | pairs of plaintexts. For each pair
in it, one of three operations is undertaken: adding an equation to the list, returning
FAIL or calling AddEntry. While the recursive calls to AddEntry may lead to a worse
time complexity quadratic in |Y | if naïvely implemented, this problem can be miti-
gated by using a hashtable indexed by the Feistel functions’ inputs instead of a list.
Furthermore, since already solved equations are removed, the total time complexity
is O( |Y |).

10.3.4 On the Infeaseability of Our Yoyo Game Against an �-Feistel

Assume that the following equations hold:




(S0 (b) + a) − (S0 (b
′) + a′) = γ

(S1 (S0 (b) + a) + b) − (S1 (S0 (b
′) + a′) + b ′) = 0.

(10.1)

In order to be able to play a yoyo game against the corresponding �-Feistel, we need
to be able to replace a by a +γ and a′ by a′+γ in System (10.1) and still have it hold.

3It can also recover S4 in an identical fashion but this part is omitted for the sake of clarity



10.3. Yoyo Game and Cryptanalysis 189

Algorithm 10.1 Yoyo cryptanalysis against a 5-round ⊕-Feistel network
Inputs: supposed yoyo game

(
ai | |bi ,a

′
i | |b

′
i

)
; di�erence γ

Output: S0 or FAIL.
Le ← [] . List of equations
S0 ← empty S-Box
δ0 ← a0 ⊕ a

′
0 ⊕ γ

S0 (b0) ← 0, S0 (b
′
0) ← δ0

for all i ≥ 1 do

δi ← ai ⊕ a
′
i ⊕ γ

if S0 (bi ) and S0 (b
′
i ) are already known and S0 (bi ) ⊕ S0 (b

′
i ) , δi then

return FAIL
else if S0 (bi ) is known but not S0 (b

′
i ) then

AddEntry
(
S0,b

′
i ,S0 (bi ) ⊕ δi ,Le

)
; if it fails then return FAIL

else if S0 (b
′
i ) is known but not S0 (bi ) then

AddEntry
(
S0,bi ,S0 (b

′
i ) ⊕ δi ,Le

)
; if it fails then return FAIL

else

add “S0 (b
′
i ) ⊕ S0 (bi ) = δi ” to Le .

end if

end for

return S0

Algorithm 10.2 AddEntry: adding a new entry to S0
Inputs: S-Box S0 ; input x ; output y ; List of equations Le
Output SUCCESS or FAIL.
if S0 (x ) already set and S0 (x ) = y then

return SUCCESS . No new information
else if S0 (x ) already set and S0 (x ) , y then

return FAIL . Contradiction identi�ed
else

S0 (x ) ← y
for all Equation S0 (xi ) ⊕ S0 (x

′
i ) = ∆i in Le do

if S0 (xi ) and S0 (x
′
i ) are set then

if S0 (xi ) ⊕ S0 (x
′
i ) , ∆i then return FAIL ; else Remove eq. from Le

. Eq. satis�ed
else if S0 (xi ) is set but not S0 (x

′
i ) then

AddEntry
(
S0,x

′
i ,S0 (xi ) ⊕ ∆i ,Le

)
; if it fails then return FAIL

. Eq. gives new entry
else if S0 (x

′
i ) is set but not S0 (xi ) then

AddEntry
(
S0,xi ,S0 (x

′
i ) ⊕ ∆i ,Le

)
; if it fails then return FAIL

. Eq. gives new entry
end if

end for

end if

return SUCCESS
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In other words, we need that if Equations (10.1) hold then the following equations
hold as well:




(S0 (b) + a + γ ) − (S0 (b
′) + a′ + γ ) = γ

(S1 (S0 (b) + a + γ ) + b) − (S1 (S0 (b
′) + a′ + γ ) + b ′) = 0.

(10.2)

The �rst one trivially does. Using it, we note that S0 (b) +a+γ = S0 (b
′) +a′+ 2γ . Let

X = S0 (b
′) + a′. Then the left-hand side of the second equation in System (10.2) can

be re-written as S1 (X + 2γ ) − S1 (X + γ ) + b − b
′. Furthermore, the second equation

in System (10.1), which is assumed to hold, implies that S1 (X + γ ) − S1 (X ) = b ′ − b.
Thus, the left-hand side of the second equation in System (10.2) is equal to

S1 (X + 2γ ) − (b ′ − b + S1 (X )) + b − b ′ = S1 (X + 2γ ) − S1 (X ) − 2(b ′ − b).

The term S1 (X +2γ )−S1 (X ) has an unknown value unless γ = 2n−1. Nevertheless, in
this case, we would need 2(b ′ − b) = 0 which does not have a probability equal to 1.
However both S1 (X +2γ )−S1 (X ) and 2(b ′−b) are always equal to 0 in characteristic
2 which is why our yoyo game can always be played against a ⊕-Feistel.

10.4 An Improvement Using Cycles

In order to perform a complete recover attack, it is necessary to choose a value γ and
pair of random plaintexts (x ,x ′), then iterate ϕγ andψγ to generate the correspond-
ing yoyo game and then run Algorithm 10.1 in time at least O (2n ) on it. If it failed,
another pair of plaintexts is picked. The overall time complexity of this method is at
least equal to O

(
23n

)
.

It is possible to signi�cantly improve it into O
(
22n

)
by essentially getting a yoyo

game and exploiting it with Algorithm 10.1 in one go using a trick involving the cycle
structure of the composition of ϕγ andψγ .

The general method used is described in Section 10.4.1 (p. 190). It involves cy-
cles with di�erent structures described in Section 10.4.2 (p. 191) and for which some
experimental results are given in Section 10.4.3 (p. 192). The attack leveraging these
cycles targets 5-round ⊕-Feistel and is described in Section 10.4.4 (p. 194). It can
be used as a subroutine to attack 6- and even 7-round ⊕-Feistel, as shown in Sec-
tion 10.4.5 (p. 195).

10.4.1 Cycles and Yoyo Cryptanalysis

A yoyo game is a cycle of ψγ and ϕγ applied iteratively component-wise on a pair
of elements. Thus, it can be decomposed into two cycles, one for each “side” of the
game: (x0,x1,x2, ...) and (x ′0,x

′
1,x
′
2, ...). This means that both cycles must have the

same length, otherwise the game would imply that x0 is connected to x ′j for j , 0,
which is impossible. Since both ϕγ and ψγ are involutions, the cycle can be iterated
through in both directions. Therefore, �nding one cycle gives us two directed cycles.

In order to exploit yoyo games, we could generate pairs (x0,x
′
0) at random, gen-

erate the yoyo game starting at this pair and then try and recover S0 and S4 but
this endeavor would only work with probability 2−2n (the probability for two ran-
dom points to be connected). Instead, we can use the link between cycles, yoyo
games and connection in γ as is described in this section. Note that the use of cy-
cles in cryptography is not new; in fact it was used in the �rst cryptanalyses against
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Enigma. More recently, particular distributions of cycle sizes were used to attack
involutional ciphers [Bir03] and, in Section 4.3 (p. 83), to distinguish round-reduced
Prince-core [BCG+12] from random.

10.4.2 Di�erent Types of Cycles

Let C = (xi )
`−1
i=0 be a cycle of length ` ofψγ and ϕγ , with x2i = ψγ (x2i−1) and x2i+1 =

ϕγ (x2i ). We denote the point connected toxi asyi , where all indices are taken modulo
`. Since xi and yi are connected, and the connection relation is one-to-one, we also
have y2i = ψγ (y2i−1) and y2i+1 = ϕγ (y2i ). Therefore, C′ = (yi )

`−1
i=0 is also a cycle of

length `.
We now classify the cycles according to the relationship between C and C′.

• If C and C′ are Distincts, C is a Type-D cycle. A representation is given in
Figure 10.3a. Otherwise, there exists k such that y0 = xk .

• If k is even, we have xk+1 = ϕγ (xk ). Since xk = y0 is connected to x0, xk+1 =
ϕγ (xk ) is connected to ϕγ (x0) = x1, i.e. y1 = xk+1. Further, xk+2 = ψγ (xk+1)
is connected to ψγ (x1) = x2, i.e. y2 = xk+2. By induction, we have yi =
xk+i . Therefore x0 is connected to xk and xk is connected to x2k . Since the
connection relation is one-to-one, this implies that 2k = `.
We denote this setting as a Type-S cycle. Each element xi is connected to
xi+`/2. Thus, if we represent the cycle as a circle, the connections between the
elements would all cross in its center, just like Spokes, as can be seen in Figure
10.3b.

• If k is odd, we have xk−1 = ϕγ (xk ). Since xk = y0 is connected to x0, xk−1 =
ϕγ (xk ) is connected to ϕγ (x0) = x1, i.e. y1 = xk−1. Further, xk−2 = ψγ (xk−1) is
connected toψγ (x1) = x2, i.e. y2 = xk−2. By induction, we have yi = xk−i .
We denote this setting as a Type-P cycle. If we represent the cycle as a circle,
the connections between the elements would all be Parallel to each other as
can be seen in Figure 10.3c.
In particular, there at exactly two pairs (xi ,xi+1) such that xi and xi+1 are con-
nected. Indeed, we have xi+1 = yi if and only if i + 1 ≡ k − i mod ` i.e.
i ≡ (k − 1)/2 mod `/2. As a consequence, the existence of w connected pairs
(x ,x ′) with x ′ = ϕγ (x ) or x ′ = ψγ (x ) implies the existence of w/2 Type-P
cycles.
In addition, Type-P cycles can only exist if either S1 or S3 are not bijections.
Indeed, if (a | |b) and (a ⊕ γ | |b) are connected then the di�erence in position D
cannot be zero unless S1 can map a di�erence ofγ to zero. If it is a permutation,
this is impossible. The situation is identical for S3.
Furthermore, each value c such that S1 (c ) = S1 (c ⊕ γ ) implies the existence
of 2n values (a | |b) connected to ϕγ (a | |b) as b can be chosen arbitrarily and
a computed from b and c . Again, the situation is identical for S3. Thus, if
S1 (x ) = S1 (x ⊕ γ ) has w1 solutions and if S3 (x ) = S3 (x ⊕ γ ) has w3 solutions
then there are (w1 +w3) · 2n−2 Type-P cycles.

In Section 10.4.3.1 (p. 192), experimental examples of the structures of the func-
tional graphs of ϕγ andψγ are provided for small n.
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(a) Type-D cycles. (b) A Type-S cycle. (c) A Type-P cycle.

Figure 10.3: All the types of cycles that can be encountered. ϕγ is a blue line,ψγ is a
red one and connection is a green one (remember that ϕγ andψγ are involutions).

We denote by Pr[S]n the probability that a Type-S cycle exists for a speci�c γ
for a 5-round Feistel network built out of bijective Feistel functions. When averaged
over all such Feistel networks, this probability does not depend on γ . A discussion
about its value is given in Section 10.4.3.2.

10.4.3 Experimental Results About Cycles

To better understand and illustrate the behavior of these di�erent types of cycles, we
made some experiments. In Section 10.4.3.1 (p. 192), we investigate their distribu-
tions.

10.4.3.1 Examples of Cycle Distribution

To illustrate the di�erent types of cycles and their behavior, we plotted the functional
graphs of ϕγ and ψγ along with connection in γ for three di�erent Feistel networks
withn = 3. The functional graphs ofϕγ andψγ for di�erent 5-round Feistel networks
are represented in Figures 10.4, 10.5 and 10.6. In those, ϕγ is in blue, ψγ is red and
connection in γ is green.

First, we considered the case of a 5-round ⊕-Feistel built using only permutations.
We denote it E0 and its Feistel functions are:

• S0 = [2, 0, 1, 3, 4, 7, 6, 5],

• S1 = [5, 6, 2, 1, 7, 0, 3, 4],

• S2 = [7, 2, 1, 3, 5, 6, 0, 4],

• S3 = [4, 1, 6, 2, 3, 7, 0, 5], and

• S4 = [6, 3, 0, 5, 2, 1, 4, 7].

The functional graph of ϕγ composed withψγ yields two Type-S cycles in this case,
as shown in Figure 10.4.

Then, we looked at the case of a 5-round ⊕-Feistel E1 which is built out of func-
tions, namely:

• S0 = [2, 6, 1, 0, 6, 3, 4, 6],

• S1 = [6, 6, 0, 6, 2, 5, 1, 2],
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Figure 10.4: Case of E0 (permutations).

• S2 = [7, 5, 1, 5, 1, 2, 5, 4],

• S3 = [7, 1, 6, 2, 4, 3, 0, 1], and

• S4 = [4, 5, 2, 7, 6, 7, 7, 3].

Its second Feistel function (S1) has two collisions for an input di�erence of γ = 1
while S3 has none. Thus, it yields 2 · 2n−2 = 4 Type-P cycles. It also yields two
Type-D ones, as can be seen in Figure 10.5).

Figure 10.5: Case of E1 (2 collisions in S1).

Finally, we considered another 5-round ⊕-Feistel, E2, which also uses functions.
Those are

• S0 = [3, 7, 1, 1, 1, 5, 6, 2],

• S1 = [2, 2, 1, 5, 3, 2, 6, 0],

• S2 = [1, 0, 5, 4, 4, 4, 6, 4],

• S3 = [7, 3, 1, 1, 3, 4, 1, 7], and

• S4 = [0, 2, 1, 0, 5, 1, 3, 4],

and both S1 and S3 have two collisions for an input di�erence of γ = 1. Thus, it yields
(2 + 2) · 2n−2 = 8 Type-P cycles which are shown in Figure 10.6.

10.4.3.2 Experimental Estimation of Pr[S]n
We call γwin the �rst value of γ such that a large Type-S cycle is found. Those will be
used in our attack against 5-round ⊕-Feistel in Section 10.3.3 (p. 188). Since Pr[S]n
does not depend on γ , the probability distribution of γwin is:

P[γwin = x] = (1 − Pr[S]n )x−1
· Pr[S]n .



194 Structural Attacks Against Feistel Networks

Figure 10.6: Case of E2 (2 collisions in S1 and 2 collisions in S3).

This is coherent with our experimental results. Indeed, we found that

P[γwin = x] ≈ Q · exp(−x/τ ).

Using this equation, Pr[S]n can be estimated using the value ofQ and that of τ . These
two distinct estimations provide a sanity check.

The values ofQ and τ are given for di�erent values of 4 ≤ n ≤ 11 in the bijective
and non-bijective case described in Section 10.4.3.2 (p. 193) in Tables 10.2a and 10.2b.
The �nal result is Figure 10.7 which shows our estimation of Pr[S]n , obtained by
averaging our two estimates, and its counterpart in the non-bijective case.

As we can see, there is a discrepancy: the probability is on average about 2.65
times smaller in the case of non-bijective Feistel functions. This can be explained
by the massive presence of Type-P cycles. Let wi be the number of solutions of
Si (x ) = Si (x ⊕γ ). Then, as explained in Section 10.4.1, there are (w1+w3) ·2n−2 Type-
P cycles. If w1 +w3 > 0 then the large number of such cycles we obtain e�ectively
“clogs” the cycle space and prevents the existence of large enough Type-S cycles. In
fact, as a consequence of Theorem 9.1.1 (p. 160), wi/2 follows a Poisson distribution
with parameter 1/2 when Si is a random function mapping n bits to n. Hence, the
probability that wi = 0 is exp(−1/2) and the probability that w1 + w3 = 0 is equal
to e−1, meaning that the probability is about 2.72 times smaller in the non-bijective
case. This result is coherent with the ratio of 2.65 we found experimentally.

10.4.4 The Cycle-Based Yoyo Cryptanalysis

Exploiting a Type-S cycle is a lot easier than exploiting a Type-P or a pair of Type-D
cycles. Indeed, the connected pairs (xi ,xi+`/2) can be immediately derived from the
length ` of the cycle, while we have to guess a shift amount for connected pairs in
a Type-P cycle, or between two type D cycles. Thus, it makes sense to target those
speci�cally, for instance by implementing Algorithm 10.3.

This attacks requires O(22n/n) blocks of memory to store which plaintexts were
visited and O(22n ) time. Indeed, at most all elements of the codebook will be eval-
uated and inspected a second time when attempting a yoyo cryptanalysis on each
cycle large enough. Even though the attack must be repeated about 1/Pr[S]n times
to be able to obtain a large enough Type-S cycle, Pr[S]n increases with n so that
1/Pr[S]n can be upper-bounded by a constant independent of n.4 Special points can
be used to obtain a time-memory tradeo�: instead of storing whether all plaintexts
were visited or not, we only do so for those with, say, the �rst B bits equal to 0.

4As shown in Section 10.4.3.2 (p. 193), a lower bound of 0.1 is more than su�cient even for n as small
as 4.
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n Q τ Pr[S]n (from Q) Pr[S]n (from τ ) Pr[S]n (avg.)

4 0.584 2.16 0.369 0.371 0.370
5 1.110 1.349 0.526 0.524 0.525
6 1.662 1.020 0.624 0.625 0.625
7 1.867 0.9558 0.651 0.649 0.650
8 2.833 0.7427 0.739 0.740 0.740
9 3.254 0.6833 0.765 0.769 0.767

10 3.880 0.6338 0.795 0.794 0.794
11 4.943 0.5679 0.832 0.828 0.830

(a) Feistel functions are bijective.

n Q τ Pr[S]n (from Q) Pr[S]n (from τ ) Pr[S]n (avg.)

4 0.173 6.549 0.147 0.142 0.144
5 0.2687 4.094 0.212 0.217 0.214
6 0.310 3.746 0.237 0.234 0.235
7 0.3386 3.411 0.253 0.254 0.254
8 0.3837 2.969 0.277 0.286 0.281
9 0.4096 2.851 0.291 0.296 0.293

10 0.4065 2.964 0.289 0.286 0.287
11 0.4019 2.964 0.287 0.286 0.286

(b) Feistel functions are not bijective.

Table 10.2: Experimentally found expression of Pr[S]n .

In this case, the time complexity becomes O(B · 22n ) and the memory complexity
O

(
22n/(n · B)

)
). Access to the hash table storing whether an element has been vis-

ited or not is a bottle-neck in practice so special points actually give a “free” memory
improvement in the sense that memory complexity is decreased without increasing
time. In fact, wall clock time may actually decrease. An attack against a ⊕-Feistel
with n = 14 on a regular desktop computer5 takes about 1 hour to recover both S0
and S4.

10.4.5 A�acking 6 and 7 Rounds

It is obviously possible to use the yoyo game to attack 6 and 7 rounds by �rst guessing
the last or the last two Feistel functions and then validating this choice using a yoyo
cryptanalysis on the remaining rounds. However, we show below that it is possible to
perform attacks which, while having a double exponential complexity, remain much
more e�cient than the naïve approach just described.

5CPU: Intel core i7-3770 (3.40 GHz); 8 Gb of RAM. The program was compiled with g++ along with
the optimization �ag -O3.
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Figure 10.7: Experimentally found probability of having a large enough Type-S cycle
when all Feistel functions are permutations (black) and when collisions are allowed
(red).

Algorithm 10.3 Cycle based yoyo cryptanalysis of a 5-round ⊕-Feistel.
for all γ ∈ {0,1}2n\{0} do

for all s ∈ {0,1}2n do

if s was not encountered before for this γ then

C ← empty list
x ← s
repeat

x ← ϕ (x ); append x to C
x ← ψ (x ); append x to C

until x = s
if |C| ≥ 2n+2

then

Build yoyo game Y = (C[0, .., ` − 1],C[`, ..,2` − 1]) with ` = |C |2
Run yoyo cryptanalysis (Alg. 10.1) against Y
if yoyo cryptanalysis is a success then

return S0,S4
end if

end if

end if

end for

end for

10.4.5.1 An A�ack on 6 rounds

A naïve approach could consist in guessing all of the entries of S5 and, for each guess,
try running a cycle-based yoyo cryptanalysis. If it fails then the guess is discarded.
Such an attack would run in time O

(
2n2n+2n

)
. However, it is possible to run such

an attack at a cost similar to that of guessing only half of the entries of S5, namely
O(2n2n−1+2n ) which means that it is 2n2n−1 times faster.

Instead of guessing all the entries, this attack requires guessing the values of
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∆5 (x ,γ ) = S5 (x ) ⊕ S5 (x ⊕ γ ). Once these are know, we simply need to replaceψγ by
ψ ′γ with (

E ◦ψ ′γ ◦ E
−1

)
(д | |h) = (д ⊕ γ | | h ⊕ ∆5 (x ,γ )) .

The cycle-based yoyo cryptanalysis can then be run as previously because, again,
both ϕγ and ψ ′γ preserve connection in γ . Once it succeeds, the top S-Box is known
which means that it can be peeled of. The regular attack is then performed on the
remaining 5 rounds. Note that if the yoyo cryptanalysis fails because of inner colli-
sions in S1 or S3 then we can still validate a correct guess by noticing that there are
O(2n ) cycles instead of O(2n) as would be expected6.

In this algorithm, 2n−1 values of [0,2n − 1] must be guessed and for each of those
an attack with running time O(22n ) must be run. Hence, the total running time is
O

(
2n2n−1+2n

)
. The time necessary to recover the remainder of the Feistel functions

is negligible.

10.4.5.2 An A�ack on 7 rounds

A ⊕-Feistel with 7 rounds can be attacked in a similar fashion by guessing both
∆0 (x ,γ ) and ∆6 (x ,γ ) for all x . These guesses allow the de�nition of ϕ ′′γ and ψ ′′γ , as
follows:

ϕ ′′γ (a | |b) = (a ⊕ ∆0 (x ,γ ) | | b ⊕ γ )(
E ◦ψ ′′γ ◦ E

−1
)
(д | |h) = (h ⊕ ∆6 (x ,γ ) | | д ⊕ γ ) .

For each complete guess ((∆0 (x ,γ0),∀x ), (∆6 (x ,γ0),∀x )), we run a yoyo cryptanaly-
sis. If it succeeds, we repeat the attack for a new di�erence γ1. In this second step,
we don’t need to guess 2n−1 values for each ∆0 (x ,γ1) and ∆6 (x ,γ1) but only 2n−2 as
∆i (x ⊕γ0,γ1) = ∆i (x ,γ0) ⊕ ∆(x ⊕γ1,γ0) ⊕ ∆i (x ,γ1). We run again a cycle-based yoyo
cryptanalysis to validate our guesses. The process is repeated n − 1 times in total
so as to have ∑n−1

k=0 2k = 2n independent linear equations connecting the entries of
S0 and another 2n for the entries of S6. Solving those equations gives the two outer
Feistel functions, meaning that they can be peeled o�. We then run a regular yoyo
cryptanalysis on the 5 inner rounds to recover the remainder of the structure.

Since ∑n−1
k=0 2n2k+2n = O

(
2n2n+2n

)
, the total time complexity of this attack is

O
(
2n2n+2n

)
, which is roughly the complexity of a naïve 6-round attack based on

guessing a complete Feistel function and running a cycle-based yoyo cryptanalysis
on the remainder.

10.5 The High-Degree Indicator Matrix of Feistel Networks

The hdim as described in De�nition 8.2.6 (p. 144) can be used to identify Feistel net-
works e�ciently even if many rounds are used provided that the algebraic degree of
the round functions is low enough. This section explains why such distinguishers
are possible and how they could be used. Section 10.5.1 (p. 198) describes some arti-
facts which are always present in the hdim of some Feistel networks. These are used
to attack 4-round Feistel networks hidden using a�ne whitening in Section 10.5.2
(p. 201). Finally, some connections with integral distinguishers are drawn in Sec-
tion 10.5.3 (p. 203).

6A random permutation of a space of size N is expected to have about loge (N ) cycles.
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In what follows, we denote Frd an r -round Feistel network with bijective Feistel
functions of algebraic degree at most d .

10.5.1 Artifacts in the HDIM of Feistel Networks

The hdim of a Feistel network may yield interesting patterns depending on the de-
gree of its Feistel functions, whether they are bijections or not and its number of
rounds. These are formalized by Theorem 10.5.1 and its corollary (Corollary 10.5.1).
These results link the maximum degree d of the Feistel functions, the number of
rounds r and the presence or not of some patterns using the function θ : N2 → N
de�ned by

θ (d ,r ) = d br /2c−1 + d dr /2e−1,

where b2kc = b2k + 1c = 2k and d2ke = d2k − 1e = 2k , so that bkc + dke = 2k for all
k .

Theorem 10.5.1. Let F be a 2n-bit Frd . Then the hdim of F is such that Ĥ (F )[i, j] = 0
if i < n or j < n under the following conditions:

• if the Feistel functions are bijections and θ (d ,r ) < 2n, or

• if the Feistel functions are not bijections and θ (d ,r + 1) < 2n.

The general idea of the proof is to express the sum corresponding to coe�cient
Ĥ (F )[i, j] using well-chosen variables (α ,β ) located in the middle of the encryption.
The value of F (x ) is then a function of degree d dr /2e−1 of (α ,β ) and that of x is a
function of degree d br /2c−1. The coe�cients can thus be written as

Ĥ (F )[i, j] =
⊕

(α ,β )∈(Fn2 )
2

(ei · F (x (α ,β )))
(
ej · x (α ,β )

)
and the result is equal to 0 if θ (d ,r ) = d br /2c−1+d br /2c−1 < 2n. If the Feistel functions
are not bijective then a “trick” used to slightly decrease the degree in (α ,β ) of the
output cannot be used, hence the small discrepancy in this case.

In order to formally prove the theorem, we �rst state the following lemma which
can be derived by simply tracking the evolution of the algebraic degree of each
branch of the Feistel network.

Lemma 10.5.1 (Feistel network algebraic degree). Let F : x 7→ F` (x ) | |Fr (x ) be a 2n-
bit Frd and let G : x 7→ G` (x ) | |Gr (x ) be a 2n-bit permutation such that deg(Gr ) = dG
and deg(G` ) ≤ d ×dG . Then the degree of the left and right words of F ◦G are bounded
as follows:

deg(F` ◦G ) ≤ dr+1 × dG and deg(Fr ◦G ) ≤ dr × dG .

Proof of Theorem 10.5.1. The inverse of a Frd is also a Frd . As the hdim of the functional
inverse of a permutation is the transpose of its hdim, it is su�cient to prove that
Ĥ (F )[i, j] = 0 for i < n. In this case, Ĥ (F )[i, j] = 0 for j < n is derived immediately
by considering the F−1. By Lemma 8.2.8, the coe�cient Ĥ (F )[i, j] is equal to

Ĥ (F )[i, j] =
⊕
x ∈F2n

2

(ei · F (x ))
(
ej · x

)
.
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Our proof relies on expressing this sum using another set of variables and show-
ing that the Boolean functions using these variables has an algebraic degree below
2n, so that it always sums to 0.

Let F be a 2n-bit Frd built using Feistel functions f0, ..., fr−1. We denote c the input
of f br /2c , a the other input of round br/2c and b = a ⊕ f br /2c (c ) the output of round
br/2c which is not equal to c (see Figure 10.8).

f br /2c−1⊕

f br /2c⊕

f br /2c+1⊕

a

b
c

Figure 10.8: The variables a,b and c .

Let us denote (x` (a,b),xr (a,b)) the left and right side of the input of F such that
the input of round br/2c is (c,a) and (y` (a,b),yr (a,b)) the corresponding output.
The coe�cients of the hdim of F for i < n can thus be expressed as⊕

a | |b ∈F2n
2

(ei · yr (a,b)) ×
(
ej · x` (a,b) ⊕ ej · xr (a,b)

)
. (10.3)

It is therefore su�cient to �nd a bound B on the degree in (a,b) of this expression
and show that it is below 2n to prove the theorem. We will achieve this by looking
separately at the degree of yr and that of x` | |xr . For r = 3, we have:




x` (a,b) = f0 (a) ⊕ c,xr (a,b) = a

y` (a,b) = f1 (b) ⊕ c,yr (a,b) = b .

Our bounds are di�erent depending on whether the Feistel functions are bijective
or not. We de�ne Bb (r ) = deg(yr )+deg(x` | |xr ) (bijective case) and Bc (r ) = deg(y ′r )+
deg(x ′

`
| |x ′r ) (collisions are allowed).

Bijective case. If the functions are bijections, we compute c using c = f −1
1 (a ⊕ b)

so that the degrees of x` ,xr ,y` and yr are upper bounded respectively by d ,1,dand
1. If r = 2k + 1 is odd, we add k − 1 Feistel rounds before and after x` | |xr and y` | |yr .
In this case, Lemma 10.5.1 implies that the degrees become dk ,dk−1,dk ,dk−1 so that
Bb (2k + 1) ≤ dk + dk−1 = θ (d,2k + 1). If r = 2k , we add k − 2 rounds at the top
and k − 1 at the bottom which means that the degrees become dk−1,dk−2,dk ,dk−1,
so that Bb (2k ) ≤ dk−1 + dk−1 = θ (d ,2k ). Thus, if the functions are bijections and if
θ (d ,r ) < 2n, then Ĥ (F )[i, j] = 0 for i < n.

Non-bijective case. If the Feistel functions are not bijections, then we compute b
using b = a ⊕ f1 (c ), sum over (a | |c ) and look at functions x ′

`
,x ′r ,y

′
`

and y ′r taking as
input a and c instead of a and b.
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The degrees of x ′
`
,x ′r ,y

′
`
,y ′r are upper bounded respectively by d ,1,d2,d . The

same reasoning as above applies, so that if r = 2k +1 then we add k −1 rounds above
and below and the degrees become dk ,dk−1,dk+1,dk . We deduce that Bc (2k + 1) ≤
dk + dk = θ (d ,2k + 2). Similarly, if r = 2k then we add k − 1 rounds at the top and
k − 2 at the bottom which implies that the degrees become dk−1,dk−2,dk+1,dk . In
this case, we deduce that Bc (2k ) ≤ dk−1 + dk = θ (d ,2k + 1). In the end, we obtain
that if the functions are not bijections and if θ (d ,r + 1) < 2n, then Ĥ (F )[i, j] = 0 for
i < n. �

Corollary 10.5.1. Let F be a 2n-bit Frd . The hdim of F is such that Ĥ (F )[i, j] = 0 if
i < n and j < n under the following conditions:

• if the Feistel functions are bijections and θ (d ,r − 1) < 2n, or

• if the Feistel functions are not bijections and θ (d ,r ) < 2n.

Proof. Let r and d be such that Fr−1
d �ts the hypothesis of Theorem 10.5.1. The right

word of the output of a Frd structure is the left word output by a Fr−1
d structure. As

each line of the hdim corresponds to one output bit, the top n rows of the hdim of
the r -round Feistel network are equal to the bottom n rows of the same permutation
reduced to (r − 1) rounds. Because of Theorem 10.5.1, this bottom half is such that
the �rst n columns are all 0. Thus, the �rst n columns of the �rst n rows of the hdim
of a Frd are all equal to 0. � �

Observation 10.5.1. In Theorem 10.5.1 and Corollary 10.5.1, a distinction is made
between the case where the Feistel functions are bijections and the case where they are
not. Actually, due to how the proofs work, it would be su�cient to look at the Feistel
function at round k +1 if the permutation has 2k +1 rounds and at the Feistel functions
of rounds k and k + 1 if the permutation has 2k rounds.

To illustrate these theorems, we give the hdim of a 4- and a 5-round Feistel
network with 3-bit bijective Feistel functions picked uniformly at random. Since
θ (2,4) = 21 + 21 = 4 < 6, these hdims must exhibit the patterns described in the the-
orems above. It is the case, as we can see below. The zeroes caused by Theorem 10.5.1
and Corollary 10.5.1 are represented in grey:

Ĥ (F4) =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 0 1



, Ĥ (F5) =



0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 1 1 0 1 0
1 0 0 0 0 0
0 1 1 1 1 1



. (10.4)

Recall that the hdim and the congruence modulo 4 of lat coe�cients are linked
by Lemma 8.2.9. Thus, the patterns in these hdim imply the existence of other pat-
terns in the lat of these functions. These are discussed in Section 12.2.2 (p. 229).

Even though a Frd structure has an algebraic degree of 2n − 1 in the conditions
of Theorem 10.5.1, the way in which this high degree is achieved is very structured:
only half of the output bits actually have a maximum degree and the monomials of
degree 2n−1 can not contain the product of n−1 bits from the right side of the input.

These patterns lead to the existence of distinguishers as long as the conditions
necessary for Corollary 10.5.1 are satis�ed. Table 10.3 shows the value of the num-
ber of rounds for which the conditions of Corollary 10.5.1 are satis�ed for di�erent
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(d ,2n) Feistel functions rmax (d ,n) Instance

(2,32) 1-to-1 10 —
collisions 9 Simon-32 [BSS+13]

(5,64) 1-to-1 7 —
collisions 6 Des [U.S99]

(31,64) 1-to-1 5 Misty1/Kasumi [Mat97]
collisions 4 —

(n − 1,2n) 1-to-1 5 —
collisions 4 —

Table 10.3: If r = rmax (d ,2n) then the 2n-bit permutation Frd exhibits an artifact of
size n2 in its hdim.

values of d ,r and n in both the 1-to-1 case and the case where collisions in the Feis-
tel functions are allowed. If real ciphers correspond to these parameters, we specify
them. Note that the rotation applied to one of the branches in the round function
of LBlock [WZ11] does not change anything. The key-dependent linear Fl layers in
Misty1 [Mat97] do not protect from our distinguisher as well and may be included
from any side for free.

10.5.2 Bypassing A�ine Whitening

In the context of component reverse-engineering/white-box cryptography, it may
not be su�cient to be able to attack a generic Feistel structure. Indeed, simply
whitening a generic structure with secret a�ne layers can prevent many attacks
from succeeding at small cost for the designer. For example, applying a�ne layers
before and after a 5-round Feistel network would prevent the pro�table use of the
yoyo game used in Section 10.3. Similarly, the attacks against ASASA are much more
sophisticated than the attack against SASAS (see Chapter 11).

As a consequence, we study the generic construction denoted AFrdA consisting in
a Frd construction with secret Feistel functions preceded and followed by the appli-
cation of independent and secret linear layers7. We published a �rst attack against
this structure in [BPU16] but our attack is signi�cantly more e�cient than the one
presented in this section.

It is worth mentioning that such structures are used in practice. Indeed, one
of the S-Boxes used by the stream cipher Zuc [ETS11] has this structure: it is a 3-
round Feistel network composed with a bit rotation. Another decomposition method
against this S-Box is presented in Section 12.2.4.3 (p. 235). Let us show how the
hdim and the artifacts we identi�ed in the previous section can be used to attack
permutations with AFrdA structures.

Our attack works for a subset of all possible linear layers. We de�neG = η ◦F ◦ µ
where F has a Frd structure satifying the conditions of Theorem 10.5.1 and µ and η

7We note that adding constants to make the layers a�ne is equivalent to replacing the Feistel func-
tions by other ones with identical properties.
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(a) G = η ◦ F ◦ µ.

S0

S3

⊕

⊕

a

b c d

⊕

⊕

a′

b ′ c ′ d ′

⊕

⊕

µ
F F
′

η
(b) G (alt. representation).
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⊕
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(c) F ′ (alt. representation).

Figure 10.9: The target of our attack, its result and its alternative representation. In
Figure 10.9c, S ′i is a�ne equivalent to Si .

are linear layers. The layer applied �rst must have a decomposition as follows:

µ =

[
µ0,0 µ0,1
µ1,0 µ1,1

]
=

[
d 0
c b

]
×

[
I a
0 I

]
=

[
d d × a
c b + c × a

]
,

and the layer applied last must have a similar one:

η =

[
η0,0 η0,1
η1,0 η1,1

]
=

[
I a′

0 I

]
×

[
d ′ 0
c ′ b ′

]
=

[
d ′ + a′ × c ′ a′ × b ′

c ′ b ′

]
.

It is su�cient for such a decomposition of the �rst layer to exist that µ0,0 is invertible.
Indeed, we can then simply set d = µ0,0, c = µ1,0, a = d−1 × µ0,1 and b = µ1,1 − c × a.
The matrix b has to be invertible since µ is invertible. Similarly, it is su�cient that
η1,1 is invertible to decompose the �nal layer. Using these decompositions, we de�ne
F ′ and G as follows:

G =

[
I a′

0 I

]
◦

[
d ′ 0
c ′ b ′

]
◦ F ◦

[
d 0
c b

]

︸                              ︷︷                              ︸
F ′

◦

[
I a
0 I

]
.

A graphical representation of the relation between F , F ′ and G is provided in Fig-
ures 10.9a and 10.9b. As F satis�es the condition of Theorem 10.5.1, its hdim is such
that Ĥ (F )[i, j] = 0 if i < n or j < n. The hdim of a permutation composed with a
linear permutation is given by Lemma 8.2.11. We deduce that the hdim of F ′ is equal
to

Ĥ (F ′) =

[
d ′ 0
c ′ b ′

]
× Ĥ (F ) ×

[
d c
0 b

]−1
=

[
0 0
0 h′

]
with h′ = b ′ × h × b−1,

h being the bottom-right part of Ĥ (F ). Like in Ĥ (F ), it holds that Ĥ (F ′)[i, j] = 0
if i < n or j < n. Another way to see why this holds is shown in Figure 10.9c.
Indeed, F ′ can be written as a Frd structure, like F , where n-bit linear permutations
are applied only on two branches and where the Feistel functions f ′i are obtained
from compositions of b,b ′,d ,d ′ and fi , as well as the addition of c and c ′ for the
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�rst and last rounds. We deduce that ifG indeed has a AFrdA structure satisfying the
conditions for Theorem 10.5.1, then the following equation, which has as unknowns
the n × n binary matrices a and a′, must have at least one solution:

[
I a′

0 I

]
× Ĥ (G ) ×

[
I 0
a I

]
=

[
0 0
0 h1,1

]
,

whereh1,1 is the bottom right corner of Ĥ (G ). This system has 2n2 unknowns and 3n2

equations, meaning that it is unlikely to have solutions ifG is a random permutation.
However, if it does have a solution then we deduce both thatG has an AFrdA structure
and the expression of parts of the linear layers. We summarize these results in the
following attack.

Attack 10.5.1 (Partial Recovery Against AFrdA). Let G be a 2n-bit permutation. It is
necessary forG to be in AFrdA for some (r ,d ) satisfying Theorem 10.5.1 that the equation

[
I a′

0 I

]
× Ĥ (G ) ×

[
I 0
a I

]
=

[
0 0
0 h1,1

]
,

where h is an unknown n × n matrix, has at least one solution. The unknowns are the
coe�cients of the n × n matrices a and a′, so that 2n2 Boolean variables must satisfy
3n2 equations corresponding to the zeroes in the right hand side.

This distinguisher requires the full code-book and as much time as is needed to
compute the hdim and solve a system of equations. Since the system is small, the
bottle-neck is the computation of the hdim which can be done in time O(n22n ) where
n is the branch size.

We can use the exact same reasoning to attack one more round if the decom-
position of η and µ involve the same “linear Feistel function” a. This happens in
particular if η = µ−1. In this case, we can use the distinguisher obtained from the
following attack.

Attack 10.5.2 (Partial Recovery Against A−1Fdr+1A). Let G be a 2n-bit permutation.
In order for G to be in AFrdA for some (r ,d ) satisfying Corollary 10.5.1 in such a way
that the linear layers are the inverse of one another, it is necessary that the equation

[
I a
0 I

]
× Ĥ (G ) ×

[
I 0
a I

]
=

[
0 h0,1

h1,0 h1,1

]
,

where h0,1,h1,0 and h1,1 are unknown n × n matrices, has at least one solution. The
unknowns are the coe�cients of the n ×n matrices a, so that n2 Boolean variables must
satisfy n2 equations corresponding to the zero in the right hand side.

Note that if there is a single whitening a�ne layer applied at some side, we have
a similar system with n2 unknowns. If we consider one more round, we will have n2

equations as well. Therefore we can attack FrdA, where r is the maximum number of
rounds satisfying Corollary 10.5.1.

10.5.3 Relationship Between hdim-based and Integral/Zero-Sum

Distinguishers

The hdim has a simple integral interpretation. Indeed, the hdim coe�cients corre-
spond to anf coe�cients which can be computed using the Möbius transform:

Ĥ (F )[i, j] =
⊕
x4ej

Fi (x )
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where ej is the vector where all elements are equal to 1 except in position j. Due to
the computation method, coe�cients equal to 0 e�ectively correspond to zero-sum
distinguishers much like those obtained in an integral attack. This has two conse-
quences. First, we can compute the hdim of an n-bit permutation in time O(n2n−1),
and, second, zeroes in column j imply the existence of an integral distinguisher.

In light of this, we state the following corollary of Corollary 10.5.1.

Corollary 10.5.2 (Zero-sum Distinguisher for Frd ). Let F be a 2n-bit Frd and suppose
that one of the following conditions holds:

• the Feistel functions are bijections and θ (d ,r − 1) < 2n, or

• the Feistel functions are not bijections and θ (d ,r ) < 2n.

Then there exists a zero-sum distinguisher with data and time complexity 22n−1 for this
structure, namely ⊕

x4ej

(ei · F (x )) = 0

for all i < n and j < n. In other words, the sum of the right words of F (x ) is equal to 0
over a cube where one bit of the input right word is �xed to 0.

We notice a relation between our attacks and the so-called division property. This
tool for �nding integral attacks was introduced by Todo in [Tod15b] and later used
by the same author to attack full-round Misty1 [Tod15a]. In his seminal paper, Todo
gives some integral distinguishers against Feistel networks for various block sizes,
number of rounds, degree of the Feistel functions for both bijective and non-bijective
Feistel functions. Interestingly, his results are extremely similar to ours! Indeed,
while there is no generic formula in Todo’s paper, the application of his algorithm
shows the existence of linear spaces of dimension 2n − 1 whose sum is equal to 0
for a number of rounds identical to the ones we predicted. In fact, results about the
division property of the output of a Feistel network can be extracted from its hdim.
To explain this, we �rst recall the de�nition of the division property.

De�nition 10.5.1 (Division Property). Let X be a multiset of Fn2 and k be an integer
of [0,n]. We say that X has the division property Dn

k if, for all u in Fn2 such that
hw (u) ≤ k ,

⊕
x ∈X x

u = 0.

This property is further generalized into the collective division property whose
description we simplify to only encompass the case of 2-branched Feistel networks.

De�nition 10.5.2 (Collective Division Property (for Feistel networks)). Let X be a
multiset of (Fn2 )

2 and kL ,kR be integers of {0, ...,n}. We say that X has the collective
division propertyDn

(kL,kR ) if, for allu,v in Fn2 such that hw (u) ≤ kL and hw (v ) ≤ kR ,⊕
(x,y )∈X x

uyv = 0.

In particular, Todo applied his technique to 2n-bit Frd . The integral distinguisher
against the highest number of rounds corresponds to integrals over linear spaces of
dimension 2n − 1 where the constant bit has to be on the left side.8 As we have seen,
summing over such a space is equivalent to computing half of the lines of the hdim
of the function.

8It is actually on the right side in Todo’s paper. Unlike in our paper, the Feistel function is xored in
the right branch in his case.
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Let F be a 2n-bit Frd , x denote the left input bits, y denote the right ones and FL
and FR denote its left and right output halves so that F (x | |y) = FL (x | |y) | | FR (x | |y).
Suppose that the top left corner of the hdim of F is all zero. We deduce that the
following holds for any i ≤ n and for any linear space Ck of dimension 2n − 1 where
the bit at index k ≤ n is �xed:

⊕
x ∈Ck

F (x ) · ei (x ) = 0. This can also be written as⊕
x ∈Ck

(FL (x ))
ui (FR (x ))

0 =
⊕
x ∈Ck

(FL (x ))
ui = 0 ,

where ui is the element of Fn2 equal to 0 except at position i where it is equal to 1.
In other words, for all u in Fn2 , hw (u) ≤ 1 implies that

⊕
x ∈Ck

(FL (x ))
u = 0, which

means that the image of Ck has vectorial division propertyDn
1,0. The hdim of Feistel

networks can thus be interpreted as describing the vectorial division property of each
output half.





Chapter11

Structural A�acks Against Spns

A popular choice for building S-Boxes is the Substitution-Permutation Network struc-
ture. It has also been used to build large incompressible permutations in the context
of white-box crypto, e.g. by Biryukov et al. [BBK14] and by Bogdanov et al. [BIT16].
In this chapter, I present several methods that can be used to decompose such per-
mutations. These can be used either to decompose an unknown S-Box or to attack a
white-box block cipher.

The notation used throughout this chapter is described in Section 11.1 (p. 207).
Section 11.2 (p. 208) summarizes the results about the decomposition of Substitution-
Permutation Networks with secret components. The rest of the chapter deals with
these attacks. General results about spn with two non-linear layers are extracted in
Section 11.3 (p. 209). The attacks from the literature against schemes with 2- and
3-non-linear rounds are reinterpreted using these results in Section 11.4 (p. 210).
Then, Section 11.5 (p. 212) presents a generalization of the distinguisher presented
in Section 11.3 (p. 209) which can be used to attack more rounds when the S-Boxes
are small enough. Finally, some connections between these attacks and the division
property are presented in Section 11.6 (p. 222).

11.1 Notation

We consider block ciphers operating on n bits by alternating n-bit linear permu-
tations operating on the full state and n-bit S-Box layers consisting of the parallel
application of n/m permutations ofm bits.

S0 S1 ... Sn/m−1

L

S

A

m

n bits

Figure 11.1: A secret spn round SA.

The linear layers may be di�erent. We use A to denote any such function. Sim-

207
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ilarly, the S-Box layers may be di�erent in each round and, during each round, the
n/m permutations used may also be di�erent from one another. However, we assume
that they always have the maximum algebraic degree of m − 1. The composition of
such A and S is denoted

A(SA)q = ASASA . . . SA︸         ︷︷         ︸
2qlayers

.

An a�ne space C is obtained from a vector space L and a constant a as follows:
C = {a ⊕ x ,x ∈ L}. The set of all a�ne spaces of {0,1}n of dimension c is denoted
An (c ) and the union ∪n

`=cAn (`) is denoted An (≥ c ).
For a predicate P we write

[P] =



1, if P is true;
0, if P is false .

The coe�cients in the algebraic normal form (anf) of function f : Fn2 → F2 are
denoted a

f
u so that

f (x ) =
⊕
u ∈Fn2

a
f
ux

u .

The attacks presented in this chapter may have complexities close to 2n but the
aim here is not to recover a secret key as long as the block size, as would be the case
when attacking a block cipher. The structures attacked contain far more entropy as
all of their components are secret.

11.2 Overview of the Structural A�acks Against Spns

As early as 1997, Patarin and Goubin proposed building a public key crypto-system
out of ASASA structures [PG97]. In the same paper, they presented e�cient attacks
against ASA. In their scheme, the non-linear layers S were not bijections. Biham
quickly found an attack against this scheme [Bih00].

Shortly after, Biryukov and Shamir [BS01, BS10] presented a generic attack against
the SASAS structure when the S-Boxes are bijective. This attack is described in Sec-
tion 11.4.1 (p. 210).

This type of structure regained interest following the publication of white-box
schemes based onASASA by Biryukov et al. at Asiacrypt’2014 [BBK14]. In this paper,
two types of schemes are proposed. The �rst consists of public key schemes using
expanding S-Boxes which were subsequently attacked by Gilbert et al. [GPT15]. The
second consists of white-box schemes,1 that is, encryption algorithms whose im-
plementation requires signi�cantly large tables and cannot be compressed unless a
secret is known. They use bijective components. Two independent teams found prac-
tical attacks against them: Minaud et al. [MDFK15] and Dunkelman et al. [DDKL15].

Dmitry Khovratovich, with the help of Alex Biryukov and myself [BKP17], found
generalizations of these attacks to more rounds when the S-Box size is small enough
compared to the block size.

1This notion is discussed in Chapter 15 (p. 303). As is explained there, this type of white-box encryp-
tion is asymmetrically code-hard.



11.3. Analysis of SASA 209

11.3 Analysis of SASA

In this section, I present a very e�cient distinguisher for the SASA structure. A sim-
ple zero-sum distinguisher for AS is described in Section 11.3.1 (p. 209) and then ex-
tended essentially for free to the SASA structure in Section 11.3.2 (p. 209). Finally, an
equivalence between di�erent instances of secret spns is discussed in Section 11.3.3
(p. 210).

11.3.1 A Simple Degree-based Zero-sum

The following lemma is well known and is easily derived using the Möbius transform
described in De�nition 8.2.3.

Lemma 11.3.1 (Degree-based 0-sum). Let f : Fn2 → Fn2 be a function with degree
deg( f ) = d . Let C be an a�ne space of dimension at least d + 1. Then the following
sum is equal to zero for any C in An (≥ d + 1):⊕

x ∈C

f (x ) = 0 .

A direct consequence of Lemma 11.3.1 is that
⊕

x ∈C ASA(x ) = 0 for all C in
An (≥ m). Indeed, since S consists of the parallel application of n/m functions of
degreem− 1, it has degreem− 1 as well. This algebraic degree is not changed by the
compositions with A. It is therefore particularly easy to distinguish a permutation
based on ASA from a random one.

11.3.2 Free S-Box Layer Addition

The vector space consisting of all possible inputs for an S-Box is mapped to itself.
Similarly, an a�ne space built from this vector space is mapped to another a�ne
space built from the same vector space. Using terminology from [BS01], this ob-
servation corresponds to the propagation of the “permutation” pattern through an
S-Box. This observation can be generalized.

Lemma 11.3.2 (Free S-Box Layer). Let G be a permutation of degree deg(G ) < k ×
(m − 1) < n and let S be a layer consisting of n/m parallel m-bit S-Boxes. If C is an
a�ne space of dimension k × (m− 1) which covers the inputs of k distinct S-Boxes, then⊕

x ∈C

(G ◦ S) = 0.

Proof. Because the S-Boxes are bijections, an a�ne space C = L + a as speci�ed in
the statement is mapped toL+b. Since it is an a�ne space of dimension k× (m−1) >
deg(G ), because of Lemma 11.3.1, the sum

⊕
x ∈C G (x ) is equal to 0. �

We remark that, in Lemma 11.3.2, the integer k does not need to be the smallest
possible. It works for all k such that deg(G ) < k × (m − 1) < n.

The algebraic degree of ASA withm-bit full degree S-Boxes is equal tom− 1. We
can thus apply Lemma 11.3.2 to deduce a distinguisher against SASA.
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Lemma 11.3.3 (Distinguisher for SASA). Consider a SASA construction and let k > 0
be an integer. For all a�ne spaces C of An (≥ k ×m) covering the input of k S-Boxes,
the following holds: ⊕

x ∈C

SASA(x ) = 0.

Unlike in Lemma 11.3.1, the exact structure of the a�ne spaces matters in this
case. Indeed, if the a�ne space does not correspond to S-Box inputs, the sum may
not be equal to 0. This creates an asymmetry between a�ne spaces of equal size:
those corresponding to S-Box inputs are bound to yield zero-sums while the others
can sum to anything.

11.3.3 Equivalences in Secret spns

A given permutation with a SA structure has several equivalent decomposition with
this overall structure. Indeed, it is possible to compose each S-Box with any m-bit
a�ne permutation and compose the a�ne layer with its inverse to get a functionally
equivalent SA structure.

Moreover, in an ASA structure, we can add an a�ne permutation before each S-
Box in the same fashion. It is also possible to permute the order of the S-Box provided
that the inverse permutation is factored in both the input and the output linear layer.

In what follows, I present methods recovering the components of a secret SNP.
However, those methods only recover one equivalent representations.

11.4 Component Recovery A�acks

While they were not introduced in this fashion by their authors, the attack against
SASAS from [BS01] and the integral against ASASA from [DDKL15] can be inter-
preted as adding another round before or after SASA and leveraging Lemma 11.3.3.
These are explained in Sections 11.4.1 (p. 210) and 11.4.2 (p. 211) respectively.

11.4.1 S-Box Recovery Against SASAS

The attack against SASAS described in [BS01, BS10] uses the SASA distinguisher
provided by Lemma 11.3.3. Let E be a SASAS construction with secret component,
let Si denote the i-th S-Box of the �nal layer and let (y j0, ...,y

j
n/m−1) denote the image

of the plaintext (j,0, ...,0).
Because of Lemma 11.3.3, the following holds for all i < n/m:

2m⊕
j=0

S−1
i (y ji ) = 0.

Indeed, this sum is equal to the sum over a part of the output of a SASA construc-
tion, as illustrated in Figure 11.2. We deduce a �rst linear equation connecting the
entries of S−1

i to one another for each i . We then iterate this process by replacing the
constants equal to 0 by others. Doing so about 2m times gives us 2m equations con-
necting the entries of S−1

i to one another. Solving the corresponding system gives
us the look-up table of S−1

i for all i < n/m and, thus, the last S-Box layer of this
construction.
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S ′′0 S ′′1 ... S ′′n/m−1

L′

S ′0 S ′1 ... S ′n/m−1

L

S0 S1 ... Sn/m−1

j 0 0

y j0 y j1 y jn/m−1

Zero sums

Figure 11.2: The principle of the attack against SASAS.

11.4.2 Linear-layer Recovery Against ASASA

Two main attacks target this structure. The �rst is presented by Dunkelman et al.
in [DDKL15] and it exploits the distinguisher against SASA of Lemma 11.3.3. The
second, by Minaud et al. [MDFK15], is based on a simple algebraic observation dif-
ferentiating linear masks related to the last linear layer from others.

Both attacks aim at recovering the vector spacesVi of dimensionm corresponding
to the image of the output of the S-Box Si by the last linear layer. Once those have
been recovered, the last linear layer is deduced.

Integral Approach. Algorithm 1 from [DDKL15] starts from a random vector
space of size d > m. If the permutation sums to 0 over it, it looks for smaller sub-
spaces that still sum to 0 until one of size d is found. This procedure is repeated
enough times so as to recover n/m distinct vector spaces Vi .

This technique works as long asm >
√
n and, as is always the case in this chapter,

if the S-Boxes have maximum algebraic degree.

Algebraic Approach. The approach of Minaud et al. is di�erent. The key obser-
vation behind their work is a di�erence in the algebraic degree of the scalar product
of two output bits from the same S-Box and from di�erent ones.

Lemma 11.4.1 (Lemma 2 of [MDFK15]). Let su and sv be two output bits of them-bit
permutation s . Then the algebraic degree of su · sv : x 7→ su (x ) · sv (x ) is at mostm − 1.

For the sake of completeness, here is a proof of this lemma.

Proof. Since s hasm inputs, the algebraic degree of su · sv is at mostm. To prove that
it is not equal to m, it is su�cient to prove that x0...xm−1 does not appear in its anf
which, by the Möbius transform, is equivalent to

⊕
x ∈Fm2

su (x ) · sv (x ) = 0. The left
hand side is equal to ⊕

x ∈Fm2

su (x ) · sv (x ) =
⊕

x ∈Fm2 ,sv (x )=1
su (x ).
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As s is a permutation, the function sv restricted to the preimage of 1 by sv is bal-
anced. If it were not the case, then s would have inner collisions. Thus, it holds that⊕

x ∈Fm2
su (x ) · sv (x ) = 0. �

This bound contrasts with the one that exists for the scalar product of outputs
from two di�erent S-Boxes. As those have di�erent inputs and have algebraic degree
at mostm − 1, such a product has degree at most 2(m − 1). By composing S with SA,
we obtain the result that the algebraic degree of the scalar product of two outputs
from the same S-Box is at most equal to (m − 1)2 while it is bounded by 2(m − 1)2 if
the outputs are from di�erent S-Boxes.

Let eu and ev be two vectors of Fn2 with only one non-zero coordinate at position
u andv respectively. Let also E be an ASAS instance. If eu and ev have their non-zero
component over the output of the same S-Box, then x 7→ (eu · E (x )) × (ev · E (x ))

sums to zero over any space ofAn
(
≥ (m − 1)2 + 1

)
. If eu and ev cover di�erent S-Box

outputs, it is not the case.
Let L be some a�ne permutation of n bits. Let us consider the ASASA construc-

tion E ′ = L◦E and let C be some vector space ofAn
(
≥ (m − 1)2 + 1

)
. The following

holds:

0 =
⊕
x ∈C

(eu · E (x )) × (ev · E (x ))

=
⊕
x ∈C

(
eu · (L

−1 ◦ E ′) (x )
)
×

(
eu · (L ◦ E

′) (x )
)

=
⊕
x ∈C

(
(L−1)t (eu ) · E

′(x )
)
×

(
(L−1)t (eu ) · E

′(x )
)
.

The principle of the attack then consists of �nding vectors ai and bi such that⊕
x ∈C (ai ·E

′(x ))× (bi ·E
′(x )) = 0 for C inAn

(
(m − 1)2 + 1

)
. Those give information

about (L−1)t (eu ) for all u and, thus L. The exact details of this linear layer recovery
can be found in [MDFK15].

It needs to generate n(n − 1)/2 vector spaces of dimension (m − 1)2 + 1. Those
are obtained by �xing any 2 variables from the input to 0, so it is necessary that
(m − 1)2 + 1 ≤ n − 2. Thus, this attack requires that (m − 1)2 < n − 2.

11.5 A�acking More Rounds

The recovery attacks described in Section 11.4.1 (p. 210) rely on the small algebraic
degree of (SA)2. Di�erent heuristics are then used to attack the additional �nal S-
layer of a SASAS construction or the �nal A-layer of an ASASA scheme. In this
section, we bound the algebraic degree of (SA)q for higher values of q and deduce
attacks recovering the components of secret spns with more rounds provided that
the S-Box size is small enough.

These results are obtained from a result by Boura et al. which is recalled in Sec-
tion 11.5.1 (p. 213). Then, we extract a closed formula for the number of rounds that
can be attacked in Section 11.5.2 (p. 213). Said attacks are described in Section 11.5.3
(p. 218).
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Figure 11.3: Evolution of the maximum algebraic degree of an spn with 128-bit blocks
and 4-bit S-Boxes as bounded by Proposition 11.5.1.

11.5.1 The Recursive Degree Bound of Boura et al.

Proposition 11.5.1 ([BCD11]). Let P be an arbitrary function on Fn2 . Let S be an S-
Box layer of Fn2 corresponding to the parallel application of m-bit bijective S-Boxes of
degreem − 1. Then

deg(P ◦ S ) ≤ n −

⌈
n − deg(P )

m − 1

⌉
.

This proposition captures the in�uence of the fact that an S-Box layer consists
of the parallel application of several smaller functions. Note in particular that if
m = n, which corresponds to the case where one S-Box is applied to the full state,
this bound does not give new information: it merely states that deg(P ◦ S ) ≤ n − 1,
which is obviously the case since it is a permutation. When the S-Box layers consists
of several smaller S-Boxes however, it implies a degree discrepancy as illustrated in
Figure 11.3 which shows the evolution of the maximum degree of an spn withm = 4
and n = 128: starting from r = 4, the degree increase is much slower. It reaches the
maximum of 127 only after 8 rounds, meaning that a simple integral distinguisher
exists for up to 7 rounds.

The principle behind this bound was �rst used to derive zero-sum distinguishers
for the permutation updating the internal state of Keccak [BC11]. Its statement was
then re�ned into its current form in [BCD11].

11.5.2 Closed Formulas for a Degree Bound

In what follows, we use x` ...x0
d to denote the base d expansion of x , where ` =

blogd (x )c:

x = x` ...x1x0
d , where x =

∑̀
i=0

xid
i .

The following theorem allows us to study the evolution of the algebraic degree
of an spn based on Proposition 11.5.1.
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Theorem 11.5.1. For all ` ≤ blogd (n)c, it holds that:

deg
(
A(SA)`+r

)
≤ n −

(
ψr +

⌊ n

dr

⌋
−
d`

dr

)
,

where

ψi =



0 if ni−1 = ni−2 = ... = n0 = 0,
1 otherwise.

Furthermore, if ` = blogd (n)c and n` ...n1n0 is the base d expansion of n, we have

⌊ n

dr

⌋
=

∑̀
i=r

nid
i−r ,

so that if we need deg
(
A(SA)`+r

)
≤ n − k , then it is su�cient that

ψr +
⌊ n

dr

⌋
−
d`

dr
≥ k or, equivalently, (n` − 1)d`−r +

`−1∑
i=r

nid
i−r ≥ k −ψr .

Proof. We bound the algebraic degree of r spn rounds using θr : deg(A(SA)r ) ≤ θr .
Obviously, θ0 = 1 holds as (SA)0 is the identity. For larger values, θr is bounded in
three di�erent ways: the natural bounds dr and n − 1, and the one from Proposi-
tion 11.5.1:

θr ≤ n −

⌈
n − θr−1

d

⌉
.

As long as the �rst bound prevails, the expression of θr is very simple: θr = dr .
We now consider a larger number of rounds. Let ` be such that ` ≤ logd (n). It

holds that θ`+1 ≤ n −
⌈
(n − d` )/d

⌉
, which, using the base d expansion of n, is equal

to
θ`+1 ≤ n −

⌈∑∞
i=0 nid

i − d`

d

⌉
.

Because all coe�cients in the numerator except n0 can be divided by d , this quantity
is equal to:

θ`+1 ≤ n − *
,

∞∑
i=1

nid
i−1 − d`−1 +

⌈n0
d

⌉
+
-
.

Finally, we note that ∑∞
i=1 nid

i−1 = bn/dc and conclude that

θ`+1 ≤ n −
(⌊n
d

⌋
− d`−1 +

⌈n0
d

⌉)
.

In fact, we can generalize this equality using a simple induction for r ≤ `. To simplify
its writing, we de�neψi inductively usingψ1 = dn0/de andψi+1 =

⌈
(ni +ψi )/d

⌉. Our
induction hypothesis is then

θ`+r ≤ n −
(⌊ n

dr

⌋
− d`−r +ψr

)
, (11.1)

and we have established that it holds for r = 1. Suppose now that it holds for some
r . Using Proposition 11.5.1, we deduce that

θ`+r+1 ≤ n −



n −
(
n − bn/dr c + d`−r −ψr

)
d


,
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which implies

θ`+r+1 ≤ n −

⌈∑∞
i=r nid

i−r − d`−r +ψr

d

⌉
.

Using again that all di−r for i ≥ r are divisible by d except for d0, we can rewrite this
inequality as

θ`+r+1 ≤ n − *
,

∞∑
i=r

nid
i−r−1 − d`−r−1 +

⌈
nr +ψr

d

⌉
+
-
.

We simplify this expression using that ∑∞
i=r nid

i−r−1 = bn/dr+1c and the de�nition
ofψr+1 and obtain

θ`+r+1 ≤ n −
(⌊ n

dr+1

⌋
− d`−r−1 +ψr+1

)
.

Let us simplify this expression. First, the quantity bn/dr c −d`−r can be written using
the base d expansion of n:

bn/dr c − d`−r ≤
∑

i≥r , i,`

nid
i−r + (nr − 1)d`−r .

Furthermore, all ni for i > ` are equal to 0. Using this, the inequality becomes:

bn/dr c − d`−r ≤
`−1∑
i=r

nid
i−r + (nr − 1)d`−r .

Second, we can easily compute ψi using the base d expansion of n. We again
proceed inductively using the following hypothesis:

ψi =



0 if ni−1 = ni−2 = ... = n0 = 0,
1 otherwise.

The equality obviously holds for i = 0 as dn0/de = 0 if and only if n0 = 0,
otherwise it is equal to 1 because nj < d for all j. Assuming the equality holds for i ,
let us now computeψi+1. By de�nition,

ψi+1 =

⌈
ni +ψi

d

⌉
,

which, given that ni < d andψi ≤ 1, is at most equal to 1. Thus,ψi+1 = 1 if and only
if eitherψi or ni is strictly greater than 0. This concludes the induction and thus the
proof of the theorem. �

The best bounds are derived for ` = blogd (n)c but the theorem holds for any
` ≤ blogd (n)c.

Unless n is a power of d we have that ψr is equal to 1 at least for r ≥ ` − 1.
Furthermore, it is likely to be equal to 1 even for lower values of r . The algebraic
degree of r + ` spn rounds is bounded by n + d`−r − bn/dr c. This observation has
some interesting corollaries.
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Corollary 11.5.1. Let ` = blogd (n)c, n = n` ...n0
d be the block size andm = d + 1 be

the size of the S-Boxes. Assume that there exists i < ` − 2 such that ni , 0. Then the
maximum number of rounds for which the degree is at most n − 2 is equal to




2` if n` > 1,
2` − 1 if n` = 1, n`−1 ≥ 1,
2` − 2 if n` = 1, n`−1 = 0, n`−2 ≥ 1.

The same results can be expressed using intervals rather than the expansion in base d
of n. The maximum number rs of rounds for which deg(A(SA)rs−1) ≤ n − 2 is equal to




2` if 2d` < n < d`+1,

2` − 1 if d` + d`−1 < n ≤ 2d` ,
2` − 2 if d` + d`−2 < n ≤ d` + d`−1.

Proof. Using the assumptions of the corollary along with Theorem 11.5.1, we deduce
that the degree is at most n − 2 if bn/dr c − d`−r ≥ 1, which can also be written∑`−1

i=r nid
i−r + (n` − 1)d`−r ≥ 1.

• If r = `, then we need that n` − 1 ≥ 1, which implies the �rst case.

• If n` = 1 then the inequality becomes ∑`−1
i=r nid

i−r ≥ 1. For r = ` − 1, it is
equivalent to n`−1 ≥ 1. For r = ` − 2 and n`−1 = 0, it is equivalent to n`−2 ≥ 1.

These results are easily turned into intervals. For example, n` > 1 and ψ` = 1 if
and only if n > 2d` . Furthermore, if n = d` then rs = 2` − 1 as in this case ψ` = 0.
The other intervals are deduced identically. �

We deduce from Corollary 11.5.1 that a good rule of thumb to estimate the num-
ber of spn rounds necessary to achieve full degree is to use 2 × blogm−1 (n)c rounds.
Interestingly, this result is very similar to what is stated about Feistel networks in
Theorem 10.5.1. Roughly speaking, in order to prevent the existence of an integral
distinguisher, it is necessary that dr /2 ≥ n where d is the degree of the Feistel func-
tion and n is the block size.

Corollary 11.5.1 gives us a bound on the number of rounds for which the maxi-
mum algebraic degree can not be reached. It is also worth looking at round bounds
for smaller degrees. Let us look for the maximum number of rounds rs such that
deg(A(SA)rs−1) ≤ n − (m + 1). It is then possible to attack (SA)rs by �xing d + 1 =m
bits corresponding to an S-Box input, as in Lemma 11.3.2.

Corollary 11.5.2. Let ` = blogd (n)c, n = n` ...n0
d be the block size andm = d + 1 be

the size of the S-Boxes. Assume that there exists i < ` − 3 such that ni , 0. Then the
maximum number rs of rounds for which deg(A(SA)rs−1) ≤ n − (m + 1) is equal to




2` if n` > 2 or n` = 2, n`−1 ≥ 1,
2` − 1 if n` = 2, n`−1 = 0 or n` = 1,n`−1 ≥ 2 or n`−1 = 1,n`−2 ≥ 1
2` − 2 if n` = 1,n`−1 = 0, n`−2 ≥ 1.

The same results can be expressed using intervals rather than the expansion in base d
of n. The maximum number rs of rounds for which deg(A(SA)rs−1) ≤ n − (m + 1) is
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equal to



2` if 2d` + d`−1 < n < d`+1,

2` − 1 if d` + d`−1 + d`−2 < n ≤ 2d` + d`−1

2` − 2 if d` + d`−2 < n ≤ d` + d`−1 + d`−2.

Proof. We want bn/dr c − d`−r > d , which is equivalent to

∑̀
i=r

nid
i−r ≥ d + d`−r + 1.

• We cannot have r = ` as this would imply n` > d + 1, which is impossible
because ni < d for all i .

• In order to have r = `−1, it is necessary and su�cient to have dn`+n`−1 > 2d .
It is the case if and only if n` ≥ 3 or n` = 2 and n`−1 > 0.

• If it is not the case, then we may have r = ` − 2. In order for this to happen,
we need d2n` + dn`−1 + n`−2 > d + d2. It is the case if n` = 2. Otherwise, as
n` = 1, we need either n`−1 ≥ 2 or both n`−1 = 1 and n`−2 > 0.

This concludes the proof for the base d expansions. Intervals are deduced from those
in the same fashion as for Corollary 11.5.2. �

In most cases, the approach relying on �xing the input of a whole S-Box to lever-
age a distinguisher on q − 1 rounds to attack q rounds leads to the best attacks. It is
usually true that rs = ri , meaning that both distinguishers cover an equal number
of rounds. Since the data complexity of the second approach is lower as the whole
input of an S-Box is �xed instead of just 1 bit, it is a better attack.

However, there are cases where the simpler distinguisher based on a degree
bound of n − 2 covers one more round. Using Corollary 11.5.1 and Corollary 11.5.2,
we can see that the case n` = 2,n`−1 = 0 yields such a case. Indeed, for such val-
ues, ri = 2` which means that 2` rounds have algebraic degree at most n − 2, but
rs = 2`−1 = ri−1. This actually occurs withd = 7 andn = 104 = 2067. For these val-
ues, the progression of the bound on the degree as deduced from Proposition 11.5.1
is 1 → 7 → 49 → 96 → 102 → 103. Since 96 = 108 − 8, it is impossible to extend
a 4-round distinguisher using the �xed-S-Box method. And yet, since 102 < 103, a
simple distinguisher on 5-round exists. Similarly, for d = 3 and n = 512 = 2002223,
we have that rs = 9, and ri = 10. Indeed, the last steps of the progression of the alge-
braic degree are 502→ 508→ 510→ 511 and 508 is too high to allow a �xed-S-Box
integral distinguisher with a 4-bit S-Box.

We applied these corollaries to several S-Box size/block size combinations and
obtained the results in Table 11.1. We denote ri the maximum number of rounds
obtained with Corollary 11.5.1 such that deg(A(SA)ri ) ≤ n − 2. The actual value of
deg(A(SA)ri ) is also given: it can be computed either directly from Theorem 11.5.1
or by recursively applying the formula from Proposition 11.5.1. We also computed
the number rs of rounds having a degree at most equal to n − (m + 1) using Corol-
lary 11.5.2. We then compute deg(A(SA)rs ) and deduce the minimum dimension of
an a�ne space cmin summing to zero over SA(SA)rs by rounding deg(A(SA)rs−1) up
to its closest multiple ofm.
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S-box sizem Block size n (n` ,n`−1,n`−2) ri deg(A(SA)ri ) rs cmin

16 (1, 2, 1) 3 13 3 12
24 (2, 2, 0) 4 22 4 20
32 (1, 0, 1) 4 29 4 24
48 (1, 2, 1) 5 45 5 44
64 (2, 1, 0) 6 62 6 60
128 (1, 1, 2) 7 126 7 124

4

512 (2, 0, 0) 10 510 9 504

64 (1, 2, 1) 3 61 3 56
104 (2, 0, 6) 4 102 3 56
128 (2, 4, 2) 4 126 4 120
256 (5, 1, 4) 4 251 4 232

8

512 (1, 3, 3) 5 508 5 488

Table 11.1: Theorem 11.5.1 and its Corollaries 11.5.1 and 11.5.2 for somem,n.

11.5.3 A�ack Against Secret spns

Our attacks di�er depending on whether the �rst layer is an a�ne layer or an S-
Box layer. The former case is dealt with in Section 11.5.3.1 (p. 218) and the latter
in Section 11.5.3.2 (p. 219). Another distinguisher based on the rank of the hdim is
described in Section 11.5.3.3 (p. 220). The limits of the ASASA construction in light of
Theorem 11.5.1 are explored in Section 11.5.3.4 (p. 222). Finally, some experimental
results are presented in Section 11.5.3.5 (p. 222).

11.5.3.1 Decomposition A�acks on Schemes Starting with an A-layer

Attack 11.5.1. The (AS)2q+1 scheme with secret a�ne transformations over Fn2 and
with secret bijective (possibly di�erent) S-boxes of degreem−1 such that 3(m−1)q+1 ≤ n
can be decomposed with data and time complexity

C (AS)2q+1 ≤ 2n .

Recovery of the final S-layer. In Theorem 11.5.1, we set l = r = q. By the
condition of the attack we have eitherψq = 1 and n/dq ≥ 3, orψq = 0 and n/dq ≥ 4.
In both cases we have

deg(A(SA)2q ) = D ≤ n − 3.

Therefore, an a�ne space of dimension D + 1 is encrypted to ciphertexts that sum to
0. We can then duplicate the approach used in [BS01] and explained in Section 11.4.1
(p. 210) consisting of deriving 2m systems of 2m equations corresponding to the en-
tries of S−1

i . These systems are then solved to recover the last layer of S-Boxes.

Complexity. The complexity of peeling o� the �nal S-layer is determined by the
number of encryptions, which is upper bounded by 2D+m+1. However, this bound
can be improved signi�cantly. Consider an a�ne space C of dimension D ′ > D + 1,
where (n−D ′) variables are �xed and the others are free. Let us compute how many
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linearly independent equations linking the entries of S−1
i we can obtain using only

the plaintexts from this space.
Linearly independent equations correspond to linearly independent indicator

functions of the plaintext sets. For example, in 3-dimensional space the 2-dimensional
sets {(∗,∗,0)}, {(∗,∗,1)}, {(0,∗,∗)} and {(1,∗,∗)} are linearly dependent. However, any
three of them are linearly independent.

We can guarantee the linear independence as follows. Consider subspaces of C of
dimension D ′ − 1, which are formed by �xing any variable (out of D ′) to 1. These D ′
subspaces are linearly independent. Within each, we can select (D ′−1) subspaces of
dimension (D ′ − 2) in the same fashion. Therefore, a space of dimension (D + 3) ≤ n
contains at least D2 + 5D spaces of dimension D + 1. For all d ,m,n that we consider
the condition D2 + 5D > 2m holds as D ≈ n andm ≈ logq (n), so the total complexity
of the �rst step is upper bounded by 2D+3 ≤ 2n .

Recovery of the A-layers. We are left with the subcipher A(SA)2q which has
incomplete degree D ≤ n − 3. The a�ne layers can be recovered with the technique
from [MDFK15] recalled in Section 11.4.2 (p. 211) provided that we can �nd enough
equations.

We have already demonstrated that the full codebook contains at least (n − 3)2 +
5(n − 3) ≥ n2/2 linearly independent a�ne spaces of dimension n − 2, so the total
complexity of the a�ne-recovery step does not exceed 2n . For smaller D the com-
plexity is around 2D+3.

Attack 11.5.2. The (AS)2q schemewith secret a�ne transformations over Fn2 and secret
bijective S-boxes of degreem − 1 (possibly di�erent) such that 2(m − 1)q + 1 ≤ n can be
attacked with data and time complexity

C (AS)2q ≤ 2n−m+3.

The argument in this case is similar to the previous one except that l = q,r = q−1.
Brie�y, we have a bound deg(AS ) (2q−1) ≤ n− (1+ 2(m− 1) − (m− 1)) = n−m, which
is smaller by (m − 3) than in Attack 11.5.1. This di�erence is deducted from the
complexity exponent in 2n .

11.5.3.2 Decomposition A�acks on Schemes Starting with an S-layer

Attack 11.5.3. The S(AS)2q+1 scheme with secret a�ne transformations over Fn2 and
secret bijective (possibly di�erent)m-bit S-boxes of degreem − 1 such that (m + 1) (m −
1)q + 1 ≤ n can be decomposed with complexity

CS(AS)2q+1 ≤ 2n .

Proof. We have that n ≥ (m + 1) (m − 1)q + 1 = (m − 1)q+1 + 2(m − 1)q + 1. Thus, by
applying Corollary 11.5.2 withq = `−1, we deduce that deg(A(SA)2q ) = D ≤ n−m−1.
Therefore, it is su�cient to encrypt a�ne spaces of dimension n −m. Those can be
produced before the a�ne layer by �xing the input to a single S-box and varying the
others.

The rest of the attack is identical to the decomposition of SASAS: the input of
one of the S-boxes is �xed successively to each possible values while the others take
all possible values at once. We deduce and solve 2m linear equations. The total data
complexity is about 2n encryptions. �
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We summarize our attacks for small q and some interestingm,n in Table 11.2 and
give the equivalent key size for the AS pair of layers, that is, about (n−1.45n/m)2m +
n2 bits.

m n Key size ASASAS SASASAS ASASASAS SASASASAS

12 270 211 - - -
16 420 211 215 215 -4
24 1060 211 215 215 224

12 728 212 - - -
18 1200 217 - - -
24 1744 221 - - -
36 3048 228 236 236 -

6

120 214 228 236 2106 2114

128 215 252 264 2118 2128
8 256 217 252 264 2230 2240

Table 11.2: Summary of the complexity of our decomposition attacks with concrete
m,n and di�erent number of rounds q.

11.5.3.3 Exploiting Lower-Degree Linear Combinations

Even if the targeted primitive has maximal degree, it can still be attacked under some
circumstances. We e�ectively add one more a�ne layer to a generic spn structure
vulnerable to the decomposition attacks described above. We present a distinguisher
that exposes a property that is unlikely to occur in a random permutation.

The �rst observations allowing our attack is the following lemma.

Lemma 11.5.1. Let f be an n-bit function and z ( f ,n) be the number of non-zero b
in Fn2 such that deg

(
x 7→ b · f (x )

)
≤ n − 2. Then the expected value of z ( f ,n) is

1 − 2−n ≈ 1.

Proof. We consider the hdim of f , as de�ned in De�nition 8.2.6: it is a n × n binary
matrix where the coe�cient at line i and column j is equal to 1 if and only if the
monomial ∏k,j xk of degree n − 1 is present in the anf of the i-th output bit of f .

We consider each of the coordinates independently and assume that a monomial
appears in the anf of a coordinate of a random permutation with probability 1/2.
The expected number of solutions b of the equation M × b = 0 where M is such a
matrix is given by Theorem 3.2.4 and the preceding comments of [Kol99]: it is equal
to 1 − 2−n and thus converges to 1 as n goes to in�nity.

Such solutions correspond to linear combinations of the coordinates of f such
that the monomials of degree n−1 cancel each other. In other words, such b are such
that deg

(
x 7→ b · f (x )) ≤ n − 2 and their expected number is 1 − 2−n . �

Consider now an n-bit permutation P with degree n − m + 1 and a layer S of
m-bit S-Boxes with degree m − 1. Then S ◦ P has degree n − 1. However, because of
Lemma 11.5.1, we can expect each of the S-Boxes to have a linear combination of its
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coordinates with lower degree. Hence, we expect the existence of about n/m linearly
independent linear combinations of the coordinates of S with an algebraic degree at
most equal tom−2. They are denoted using elementsvi of Fn2 such that x 7→ vi ·S (x )
has degreem − 2 and such that the vi are linearly independent.

Using the following lemma, we will deduce that the degree of x 7→ vi · S (P (x ))
is at most equal to n − 2.

Lemma 11.5.2. Let P be a permutation of Fn2 such that deg(P−1) ≤ n−m+1 form < n
and let F be a function mapping Fn2 to F2 of degree at mostm − 2. Then the degree of
the composition of F and P is bounded as follows:

deg(F ◦ P ) ≤ n − 2.

Proof. The degree of F ◦ P is at most equal to n − 1. Indeed, deg(F ) ≤ m − 2 < n,
which means that ∑x ∈Fn2

F (P (x )) =
∑
y∈Fn2

F (y) = 0. We deduce that that the degree
of F ◦ P is strictly smaller than n.

Using the Möbius transform (see De�nition 8.2.3 (p. 142)), we see that the degree
of F ◦P is equal to n−1 if and only if there exists a vector spaceU = {x 4 u,∀x ∈ Fn2 }
for some u with hw (u) = n − 1 such that⊕

x ∈U

F (P (x )) = 1 .

This sum can be re-written using the function IU : Fn2 7→ F2 which is such that
IU = 1 if and only if x is inU :⊕

x ∈U

F (P (x )) =
⊕
x ∈Fn2

F (P (x )) × IU (x ) =
⊕
y∈Fn2

F (y) × IU
(
P−1 (y)

)
,

where y = P (x ).
SinceU is the set of all x such that x 4 u where ui = 1 for all i , k , its indicator

function is simply IU : x 7→ 1 ⊕ xk . In particular, it has algebraic degree 1. Thus,
F ◦ P has algebraic degree n − 1 if and only if⊕

y∈Fn2

F (y)︸︷︷︸
deg≤m−2

× IU
(
P−1 (y)

)︸         ︷︷         ︸
deg≤n−m+1

= 1 ,

which is impossible because deg
(
y 7→ F (y) × IU

(
P−1 (y)

))
≤ n − 1, meaning that it

sums to 0 over the whole space Fn2 . We conclude that deg(F ◦ P ) ≤ n − 2. �

The low degree coordinates of F ◦P can be detected using the following method.
For all n vector spaces Ci where only bit i is �xed to 0, compute the sum

⊕
x ∈Ci (S ◦

P ) (x ) = si . Then, build the n × n matrix where row i is equal to si , i.e. the hdim of
S ◦ P .

If a linear combination of the output bits has algebraic degree n − 2, then the
corresponding linear combination of the rows of this matrix is equal to the all-zero
row because each row is a sum over a space of size 2n−1 which is equal to 0 for the
lower-degree linear combinations. Hence, the rank of this matrix will be close to n−
n/m while the rank of a random binary matrix is expected to be n−1. As the number
of S-Boxes in the layer increases, the rank of this matrix decreases. Furthermore, the
application of an a�ne layer after S ◦ P does not change the presence of low-degree
linear combinations, it merely shu�es them. Thus, the same discrepancy in rank
would be observed in A ◦ S ◦ P .



222 Structural Attacks Against Spns

Attack 11.5.4. Let PSA denote a construction where P is a secret permutation with
deg(P ) = n −m + 1, S is a secret layer ofm-bit (possibly di�erent) S-Boxes with degree
m − 1 and A is a secret a�ne transformation. This permutation can be distinguished
from a random one with high probability with complexity

CPSA ≤ n2n−1.

11.5.3.4 Why ASASA Can Not Be Secure

An ASASA structure with equal-size S-boxes cannot reach a full degree. Indeed, even
if we take an ASASA instance with maximum degree, namely one with two S-Box
layers where each consists of two S-Boxes of size m = n/2, then the decomposition
of n in base d is simply n = 2d + 2. This implies that the algebraic degree is at most
n − 2 as this puts us in the situation of Corollary 11.5.1.

Corollary 11.5.3. The n-bit ASASA scheme with equal-size S-Boxes has algebraic de-
gree at most n − 2.

This can be seen in several of the S-Boxes listed in Table 9.7. The S-Boxes of
Clefia (S0), Crypton, Enocoro, and the two of Two�sh use a SAS structure possibly
composed with additional linear layers. All of them have algebraic degree n − 2 = 6.

As a result of Corollary 11.5.3, we deduce a distinguisher on the ASASA scheme
for anym with a complexity of 2n−1: the sum over any cube of this size must be equal
to 0. For comparison, the best attack in [DDKL15, MDFK15] has complexity 23n/2.
However, it is a recovery attack while we only have a distinguisher.

11.5.3.5 Experimental Verification

We have veri�ed our attack experimentally. We considered the ASASASAS scheme
with 16-bit block and four 4-bit S-boxes. The inputs to the last S-layer have degree
13, thus they sum to zero over any a�ne space of dimension 14.

We need 24 linearly independent equations to recover the S-box. We encrypted
215 plaintexts that start with the zero bit. Within this structure, we consider 15 sub-
structures {Si }, where i-th bit is zero in Si . We obtained a system of 15 equations
with rank 11 (in most cases). We assigned arbitrary distinct values to 5 unknowns and
solved the resulting system. As a result, we got an S-box which is a�ne-equivalent to
the original one. If we use the true values of these unknowns, the S-box is recovered
precisely.

We also tried the rank based distinguisher against the ASASASASA scheme (addi-
tion of 1 secret a�ne layer) with the same parameters. As the degree of ASASASA is
equal to 13 andm = 4, we expect the presence of 4 linear combinations of the output
bits with algebraic degree 14 instead of 15. We ran the matrix based method to count
these linear combinations. Over ten ASASASASA schemes’ constructions, we found
that the average number of low-degree linear combinations is 4.5 while the average
of this quantity is equal to 0.7 for the same number of permutations generated with
a Knuth shu�e.

11.6 Links with the Division Property

The similarity between our results derived using Theorem 11.5.1 and those obtained
by Todo using his division property is described in Section 11.6.1 (p. 223). We show in



11.6. Links with the Division Property 223

Section 11.6.2 (p. 223) that the division property can be reinterpreted as the algebraic
degree of the indicator function of a set. The evolution of this degree is investigated
in Section 11.6.3 (p. 224).

11.6.1 Similarity of the Results

The division property was introduced by Todo [Tod15b]. It was recalled in De�ni-
tion 10.5.1.

If we set k bits to take all possible values and the other to constant, we get a
multiset with division property Dn

k or, in other words, an a�ne space of dimension
k . If the multiset sums to 0 over all n bits, it has division property Dn

2 . Todo found
distinguishers of the form

Dn
k 7→ D

n
2

for generic spn constructions with n-bit block and m-bit S-boxes of degree m − 1.
Those are given in Table 11.3. Since these attacks outperform the existing degree
bounds so far, it seems that the division property method is more e�ective than the
algebraic one.

n m r k Target

64 4 6 60 Present
128 4 7 124 Serpent
128 8 4 120 Aes
256 4 8 252 Minalpher
512 4 10 509 Prost-512
512 8 5 488 Whirlpool

Table 11.3: Todo’s best integral distinguisher against spns.

The same results can be found using the algebraic degree bounds from Theo-
rem 11.5.1 and Lemma 11.3.2. The idea is �rst to demonstrate that the algebraic
degree of the (r − 1)-round primitive is at most n −m − 1. Therefore, the encryp-
tions of any cube of dimension n −m sum to 0 over r − 1 rounds. We then apply the
technique illustrated by Lemma 11.3.2 and �x the input of onem-bit S-Box while the
others take all 2n−m possible values. In this case, the sum after ciphertexts after r
rounds is equal to 0.

This procedure applies for all cases in Table 11.3. For instance, we have

2 · 33 + 32 + 1 ≤ 64,

which, by Theorem 11.5.1, implies that the 5-round Present has degree 59, which is
exactly what we require. The same holds for the other primitives.

11.6.2 Algebraic View of the Division Property

In order to demonstrate why the division property covers as many rounds as the al-
gebraic distinguisher, we introduce an equivalent de�nition of the division property.
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It might seem that checking the division property requires the evaluation of the
entire multiset for every u. However, it is much easier for multisets with a compact
description. The de�nition of the division property ignores the order of the elements
of the multiset. Moreover, it is unimportant how many times an element occurs; it
matters only whether this number is odd or even2.

Let us de�ne the multiset indicator Boolean function, which is true if and only if
its input y is present in the multiset an odd number of times:

IX (y) =
⊕
x ∈X

[x = y]

Lemma 11.6.1. The multiset X has division property Dn
k if and only if its indicator

function has degree at most n − k .

Proof. Suppose that a multiset X has division property Dn
k . Consider the dual mul-

tiset X
x ∈ X ⇔ x ∈ X,

where x denotes the negation of x . The algebraic degrees of IX and I
X

are the same.
Now consider the anf

⊕
u a
I
X
u xu of I

X
and some coe�cient au with hw(u) > n − k .

From the Moebius transform, we get

a
I
X
u =

⊕
y4u

I
X
(y).

This sum is equal to the parity of the size of the intersection of {y ∈ Fn2 ,y 4 u} with
X. It is thus equal to

a
I
X
u =

⊕
x ∈X

[x 4 u] .

The predicate [x 4 u] is equivalent to [u 4 x], so that

a
I
X
u =

⊕
x ∈X

[u 4 x] =
⊕
x ∈X

xu .

As hw(u) < k , the division property of X implies that this last quantity is equal to 0.
Thus, all coe�cients of the anf of IX corresponding to terms of degree higher than
n − k are equal to 0, meaning that deg (IX ) ≤ n − k . �

Thus, looking at the division property of a multiset boils down to studying the
algebraic degree of the indicator function of the multiset. The decrease of k in Dn

k
as a multiset goes through the rounds of the cipher has therefore a natural algebraic
explanation: the multiset description becomes more sophisticated and is described
by a function of increasing algebraic degree.

11.6.3 Evolution of the Multiset Degree

Suppose now that the multiset X corresponding to the indicator function IX goes
through an S-box S of degree d and becomes Y = S (X). The anf of its indicator

2A similar approach was independently taken in [BC16].
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function IY , expressed as
⊕

v a
IY
v y

v , is such that

a
IY
v =

⊕
y≤v

IY (y)

=
⊕
y≤v

⊕
x ∈Fn2

[S (x ) = y]IX (x )

=
⊕
x ∈Fn2

[S (x ) ≤ v]IX (x ) .

The Boolean function x 7→ [S (x ) ≤ v] has degree d (n − hw(v )) as x 7→ S (x ) has
degree d and y 7→ [y ≤ v] has degree (n − hw (v )). Therefore, for

d (n − hw(v )) + deg(IX ) < n,

the function x 7→ [S (x ) ≤ x]IX (x ) has incomplete degree in x , so it sums to 0 over
Fn2 . We deduce that if v is such that

hw (v ) > n −

⌊
n − deg(IX )

d

⌋
,

then the anf coe�cient aIYv is equal to zero. As a consequence,

deg(IY ) ≤ n −

⌈
n − deg(IX )

d

⌉
, (11.2)

which is equivalent to Dn
k becoming Dn

d kd e
.

Equation (11.2) is the same as in Proposition 11.5.1! Therefore, the multiset de-
gree grows at the same speed as the algebraic degree of the primitive. We conclude
that the evolution of the division property is the same process as the algebraic degree
growth.





Chapter12

Pollock Representation and

TU-Decomposition

Not all S-Box structures correspond to simple mathematical objects or block cipher
structures such as those attacked in the previous chapters. The methods presented
in Chapters 10 and 11 may not be su�cient.

In order to both distinguish an S-Box from a random one and propose a decom-
position of it, we introduce two di�erent tools: the Pollock representation and the
TU-decomposition. The �rst is a trick to look for visual patterns in the ddt/lat of
an S-Box. The second uses particular integral patterns to decompose S-Boxes with
certain structures. These tools are related: the �rst step of a TU-decomposition may
be the reconstruction of a visual pattern in the lat of a function.

The Pollock representation is introduced in Section 12.1. In Section 12.2, I de-
scribe some of the patterns that can be expected in the Pollock representation of an
S-Box depending on its structure. In particular, a connection between integral and
zero-correlation attacks is used and some properties of Feistel networks are identi-
�ed. The Pollock representations of the S-Boxes of Clefia, Enocoro and Zuc are
studied in Section 12.2.4. I also describe an algorithm which generates an S-Box such
that an arbitrary (small) picture is embedded in its ddt in Section 12.2.5. Finally,
Section 12.3 presents the TU-Decomposition and shows a �rst simple application of
its principle by decomposing the S-Box of Cmea.

The next two chapters are in fact devoted to the decomposition of two permu-
tations for which the TU-decomposition was the �rst step: the S-Box of the last
two gost standards in symmetric cryptography in Chapter 13 (p. 245) and the only
known apn permutation on an even number of variables in Chapter 14 (p. 267).

12.1 From an S-Box to a Picture and Back Again

In order to distinguish an S-Box from a random one we propose a new method which
we call Pollock’s Pattern Recognition1. It is based on turning the ddt and the lat of
the S-Box into a picture called its Pollock representation and then use the natural
pattern �nding power of the human eye to identify “not-random properties”. For
example, Figure 12.1 contains the Pollock representation of the ddt and the lat of
the “F-table” of Skipjack which was studied in Section 9.2 (p. 168).

1The pictures obtained in this fashion have a strong abstract feel to them, hence a name referring to
the painter Jackson Pollock for this method.

227
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(a) ddt. (b) lat.

Figure 12.1: The two tables of the S-Box of Skipjack.

The aim of this process is to use the natural pattern �nding abilities of the human
eye. Furthermore, as shown in Section 12.2, several S-Box structures lead to the pres-
ence of strong patterns in the Pollock representations which allow the cryptographer
to identify a hidden structure at a glance.

Unfortunately, this method did not yield any result for Skipjack. Should you �nd
some pattern in either Figure 12.1a or 12.1b, let me know.

12.2 Expected Pa�erns in Pollock Representations

In this section, I list several of the visual patterns that are to be expected in the Pollock
representation of several constructions. For each pattern, an explanation as to why
it is present is provided.

12.2.1 Zero-Correlations and Integrals

In [BLNW12], Bogdanov et al. have identi�ed some links between integral and zero-
correlation distinguishers which are summarized by the following proposition.

Proposition 12.2.1 (Proposition 1 in [BLNW12]). Let f : Fm2 → Fn2 be a function.
If the input and output linear masks α and β are independent, then the following two
statements are equivalent:

• LAT[a,b] = 0 for all a 4 α and b 4 β , and

• x 7→ f
(
(x&α ) ⊕ a′

)
· b ′ is balanced for all a′ 4 α and b ′ 4 β ,

where x is the complement of x and v = x&m is a C-style notation representing the
vector v ∈ Fn2 such that vi = min(xi ,mi ).

The second statement means that, after �xing all bits covered by α , all components
of f covered by β are balanced (in the sense of De�nition 8.1.4).

A direct consequence of this equivalence is the following lemma.

Lemma 12.2.1 (White-square Lemma). Let f : F2n
2 → F2n

2 be a function with two
coordinates fh and f` so that f (x | |y) = fh (x ,y) | | f` (x ,y), where h stands for “high
weight” and ` for “low weight”. Then the following two statements are equivalent:
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• x 7→ f` (x | |y) is a permutation of Fn2 for all y in Fn2 , and

• LAT[a,b] = 0 if a < 2n and b < 2n .

In particular, if white pixels represent coe�cients equal to 0 then the Pollock repre-
sentation of the lat of f has a white-square �lling the space of coordinates (x ,y) with
x < 2n and y < 2n .

For example, Figure 12.2a contains the Pollock representation of the lat of a
function f : F8

2 → F
8
2 such that, using notation from [BS01], (∗,c ) is mapped to (?,∗).

That is, if the input nibble of high weight takes all possible values then the output
nibble of low weight takes all possible values as well.

(a) f . (b) W ◦ f

Figure 12.2: The lats of a function f with a particular integral distinguisher and of
f composed with a word swap.

Lemma 12.2.1 implies that some integral patterns can be easily detected in the
Pollock representation of an lat. However, this pattern detection depends heavily
on the representation of the �eld elements used when computing the index of the
lines. For example, Figure 12.2b contains the Pollock representation of the lat of the
same function f as in Figure 12.2a except that it has been composed with a 4-bit word
swapW : x | |y 7→ y | |x . The pattern is still present in the sense that LAT[a | |0,b | |0] = 0
but this cannot be spotted with the naked eye.

More generally, an algorithm capable of e�ciently �nding two non-trivial vec-
tor spaces U and V such that LAT[u,v] = 0 for all (u,v ) in U × V would prove
extremely useful for decomposing S-Boxes as it could identify patterns more general
than the white-square, which in turn would be very useful when trying to perform
a TU-decomposition as described in Section 12.3.

Open Problem 12.2.1. Is there an algorithm which, given a list of elements L of (Fn2 )
2,

can e�ciently �nd the largest vector spacesU ⊂ Fn2 andV ⊂ Fn2 such that (u,v ) is in
L for all u ∈ U and v ∈ V?

12.2.2 The Role of the HDIM

In Section 8.2.3 (p. 142), I presented the hdim. This matrix was introduced in a joint
work with Aleksei Udovenko [PU16]. Lemma 8.2.9 showed that the congruence of
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the coe�cients of the lat of an n-bit permutation can be derived using the hdim
Ĥ (F ) of this permutation as follows:

LAT[a,b] mod 4 = 2 ×
(
bt × Ĥ (F ) × a

)
.

Since the function (a,b) 7→ LAT[a,b] mod 4 is a bilinear form, we can expect
to see a lot of regularity in the Pollock representation of the lat modulo 4 of any
permutation. Furthermore, any pattern in the hdim will lead to the presence of pat-
terns in this Pollock representation. A very good example of this is the S-Box of
Zorro [GGNS13]. I noticed while working on [BP15] that the lat of this S-Box had
a strange striped pattern in it, as can be seen in Figure 12.3a.

(a) Without modulo. (b) Modulo 4

Figure 12.3: The lat of the S-Box of Zorro

After the publication of this paper, Anne Canteaut suggested looking at the lat
modulo 2` for di�erent powers of ` as this quantity is related to the algebraic degree
of the components of the permutation. As we can see in Figure 12.3b, the lat modulo
4 of Zorro is indeed strongly structured.2 In hindsight, the explanation behind this
pattern is very simple. The hdim of the S-Box of Zorro is very sparse; it is equal to



0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



.

This high number of zeroes explains the bar-code-like patterns in Figure 12.3b. In-
deed, the only way for an lat coe�cient to be non-zero modulo 4 is if a4 , 0, hence
the 32 bit period of the pattern along the vertical axis. For the �rst 16 lines we have
that a4 = 0. Thus, no entry congruent to 2 modulo 4 exists. For the next 16 lines,
a4 = 1. However, it is then necessary that the sum b1 ⊕b3 ⊕b4 ⊕b5 is equal to 1. This
pattern repeats itself every 32 lines and explains why its rows are all identical.

The patterns in the hdim of Feistel networks described in Theorem 10.5.1 and in
its Corollary 10.5.1 also lead to the existence of patterns in the Pollock representation
of Feistel networks. These are discussed in Section 12.2.3.1

2This is one of the reasons which pushed Aleksei and myself to investigate the congruence modulo
4 of lat coe�cients, a study which eventually lead to [PU16].
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12.2.3 Feistel Networks

Several attacks and distinguishers against Feistel networks have been introduced in
Chapter 10 (p. 181). It turns out that their Pollock representations can also be used
to identify them because of the strong patterns they contain. Those are described
below.

12.2.3.1 Pa�erns Caused by the HDIM

Figures 12.4a and 12.4b show the “Pollock representation” of the lat modulo 4 of a
4- and a 5-round 6-bit Feistel networks for some bijective Feistel functions picked
uniformly at random.

(a) r = 4 (b) r = 5

Figure 12.4: lat of r -round Feistel networks (modulo 4).

As we can see, the congruence of the biases is constant in each square of dimen-
sions 8 × 8 for the 4-round Feistel Networks. Furthermore, there seems to be linear
patterns for the 5-round structure: if we divide the lat into 8 × 8 squares as before
then we �nd that each square at position (i, j ) is the sum of the squares at positions
(i,0) and (0, j ) and a square-wise constant.

There are two reasons behind these patterns. The �rst reason is that the function
(a,b) 7→ (L[a,b] mod 4) for the lat L of a permutation is a bilinear form with
the hdim of the function as its matrix. The second aspect of the justi�cation for
the patterns is the probability 1 presence of zeroes in the hdim of Feistel networks
described in Theorem 10.5.1 and in its Corollary 10.5.1. Indeed, the hdim of these
permutations are:

Ĥ (F4) =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 0 1



, Ĥ (F5) =



0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 1 1 0 1 0
1 0 0 0 0 0
0 1 1 1 1 1



,

where Fr denotes the r round Feistel network and where the zeroes caused by The-
orem 10.5.1 and in its Corollary 10.5.1 are represented in gray.

12.2.3.2 Pa�erns in the lat of a 3-Round Feistel Network

The lat and ddt of 3-round Feistel networks have patterns that cannot be explained
by their hdim. For example, Figure 12.5 contains the Pollock representation of both
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the lat3 and the ddt of the S-Box S of the block cipher iScream [GLS+14].

(a) ddt of S . (b) lat ofW ◦ S ◦W .

Figure 12.5: The two tables of the S-Box S of iScream.

Both tables are symmetric along their top-left to bottom-right diagonal because
S is an involution. We also note that both share a white-square of 16 × 16 pixels in
the top left corner. For the ddt, this is caused by the impossibility of the di�erence
(δ ,0) { (δ ′,0) for all non-zero pairs (δ ,δ ′). Indeed, if the input di�erence is (δ ,0)
then the right output di�erence after 3 rounds is the image of δ by the middle Feistel
function. Since it is a permutation, it cannot be 0. For the lat, it is caused by the
presence of an integral distinguisher (see Section 12.2.1).

The chessboard-like pattern whereby the ddt and lat seems divided into 2n
squares of side 2n/2 (where n is the block size) has always been present for all the
3-round Feistel networks I generated at random. It is stronger when all Feistel func-
tions are permutations but is mostly scrambled if the second Feistel function has
inner-collisions.

The cause of this pattern remains unclear. A 3-round Feistel network may not
have algebraic degree n−1, as is the case for iScream. This means that all coe�cients
in its hdim are equal to 0, which implies that this structure is not the cause of this
pattern.

It is noteworthy that open butter�ies, a structure introduced in Chapter 14, ex-
hibit the same type of chessboard pattern. In particular, the apn permutation of
Dillon et al. does if it is composed with an appropriate linear permutation, as shown
in Figure 14.1b (p. 268). Since 3-round Feistel networks with bijective second Feis-
tel functions are particular instances of the butter�y structure, it is likely that an
explanation can be found at this level.

Open Problem 12.2.2. What is the cause of the checkered pattern occurring in both
the ddt and the lat of a 3-round Feistel network (after composition with branch swaps)?

12.2.3.3 Pa�erns in the lat of a 4-Round Feistel Network

Let F0, ...,F3 be four n-bit Boolean permutations. Figure 12.6a represents the 4-round
Feistel network f built using Fi as its i-th Feistel function. Figure 12.6b is the Pol-
lock representation of the lat of an 8-bit Feistel network fexp built using four 4-bit
permutations picked uniformly at random.

3The lat is actually that of S composed with two word swaps denotedW .
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F0

F1

F2

F3

⊕

⊕

⊕

⊕

hack
(a) De�nition of f . (b) The lat (Pollock repr.) of fexp.

Figure 12.6: A 4-round Feistel network and its lat.

In Figure 12.6b, we see that the lat Lexp of fexp contains both vertical and hor-
izontal segments of length 16 which are made only of zeroes. These segments form
two lines starting at (0,0), one ending in (15,255) and another one ending in (255,15),
where (0,0) is the top left corner. The vertical segments are in columns 0 to 15 and
correspond to entries Lexp[aL | |aR ,0| |aL] for any (aL ,aR ). The horizontal ones are in
lines 0 to 15 and correspond to entries Lexp[0| |aR ,aR | |aL] for any (aL ,aR ).

The coe�cients which correspond to such vertical segments for any 4-round Feis-
tel network f with lat L are such that

2L[aL | |aR ,0| |aL] =
∑
x ∈F2n

2

(−1) (aL | |aR ) ·x ⊕aL ·f (x )

=
∑
r ∈Fn2

(−1)aR ·r
∑
`∈Fn2

(−1)aL ·
(
`⊕fR (` | |r )

)
,

where fR (x ) is the right word of f (x ). This quantity is equal to ` ⊕ F0 (r ) ⊕ F2
(
r ⊕

F1 (` ⊕ F0 (r ))
)
, so that L[aL | |aR ,0| |aL] can be re-written as:

2L[aL | |aR ,0| |aL] =
∑
r ∈Fn2

(−1)aR ·r
∑
`∈Fn2

(−1)aL ·
(
F0 (r )⊕F2

(
r ⊕F1 (`⊕F0 (r ))

))
.

Since ` 7→ F2
(
r ⊕F1 (`⊕F0 (r ))

)
is balanced for all r , the sum over ` is equal to 0 for all

r (unless aL = 0). This explains4 the existence of the vertical “white segments”. The
existence of the horizontal ones is a simple consequence of the relationship between
the lat of a permutation and that of its inverse. As the inverse of f is also a 4-round
Feistel, its lat must contain white vertical segments and since the lat of f is the
transpose of the lat of f −1, these vertical white segments become the horizontal
ones. We summarize this observation with the following lemma.

4In fact, our proof only requires that F1 and F2 are permutations. The pattern would still be present
if the �rst and/or last Feistel functions had inner-collisions.
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Lemma 12.2.2 (lat lines for 4-round FN). For a 4-round Feistel network operating on
2n bits with bijective second and third Feistel functions, the lat is such that for all aL
and aR in Fn2 :

LAT[aL | |aR ,0| |aL] = LAT[0| |aL ,aL | |aL] = 0 .

12.2.4 Case Studies: Some Known S-Boxes

12.2.4.1 An S-Box of Clefia

The block cipher Clefia [SSA+07] uses two di�erent S-Boxes: S0 and S1. While S1
is simply based on the inverse function, S0 has a SAS structure: it uses two layers of
4-bit S-Boxes interleaved with a linear mixing layer based on the following matrix
mapping (F24 )2 to itself:

M =

[
1 2
2 1

]
.

An integral pattern (∗,c ) is mapped to (∗,∗) by M; and so is (c,∗). This explains why
the Pollock representation of its lat has a white-square and horizontal “dents” on its
left-most side which correspond to another white-square after its row indices have
had their left and right words swapped. Since its inverse yields the same integral
patterns, vertical “dents” are present at its top.

Figure 12.7: The lat of the S-Box S0 of Clefia.

With some practice, we can also notice that this Pollock representation has too
few colors. This is due to the algebraic degree of the S-Box being equal5 to 6 = 8-2,
which implies that all lat coe�cients must be divisible by 4. Therefore, all colors
corresponding to 2, 6, 10, etc. are absent in this case.

5In Corollary 11.5.3 (in Chapter 11), we have showed that this degree is in fact the best that can be
achieved by such a Substitution-Permutation Network structure.
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12.2.4.2 The S-Box of Enocoro

The S-Box used by the stream cipher Enocoro, denoted Se , has a structure similar
to that of Clefia, except that a rotation by 1 bit to the left is applied after the SAS
construction. It is su�cient to partially scramble the patterns present in its lat, as
shown in Figure 12.8a.

(a) The lat of Se , L. (b) L′ where L′[a,b] = L[a, (b ≪ 1)].

Figure 12.8: The Pollock representation of Se .

However, it is easy to recover this �nal rotation from Figure 12.8a. Indeed, we
note that the top-left corner contains a speci�c pattern: instead of a 16 × 16 white-
square, it contains a 16 × 32 rectangle where every second column is white. These
columns are easily re-aligned to the left by applying a 1-bit rotation to the right on
the column indices. The result is shown in Figure 12.8b.

By Lemma 8.2.4, the S-Box with the lat in Figure 12.8b is equal tox 7→ (Se (x )≫ 1).
because transposing the binary matrix representing a rotation yields the represen-
tation of its inverse. Since Se consists of a SAS structure followed by a rotation to
the left, composing it with a rotation to the right unsurprisingly yields a result very
similar to the S-Box of Clefia.

As we can see, the Pollock representation is a convenient method for identifying
the last linear layer of an S-Box if it consists of a simple rotation. This idea is further
illustrated below by the S-Box of Zuc.

12.2.4.3 The S-Box of Zuc

Zuc [ETS11] is a Chinese stream cipher which uses two di�erent S-Boxes, s0 and s1.
The latter is based on a �nite �eld inversion, much like the one of the AES. However,
s0 has a structure which, while public, is easy to recover.6

The Pollock representation of its lat, denoted L, is given in Figure 12.9a. It is
obvious from it that the S-Box is structured: there are too many zeroes, too few colors

6In fact, the structure is not described in all the speci�cations of ZUC. The one Alex Biryukov, Aleksei
Udovenko and I looked at �rst did not contain it. We thus decomposed it using the strategy outlined in
this section. However, later, Gaëtan Leurent — who I thank for this — pointed out that this structure was
released in another document.
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(which indicates a low algebraic degree) and some form of period of length 32 along
the horizontal axis.

(a) The lat of s0, L. (b) L′ where L′[a,b] = L[a, (b ≪ 5)].

Figure 12.9: The Pollock representation of s0.

It is thus natural to rotate the column indices by 5 bits to the right so as to cluster
similar columns together. The result is given in Figure 12.9b and is typical of a 3-
round Feistel network, as discussed above in Section 12.2.3.2 (p. 231).

As with Enocoro, the explanation is simple. Indeed, this S-Box was built by com-
posing a 3-round Feistel network with a rotation by 5 bits to the left, as illustrated in
Figure 10.1 in Section 10.3.1.1 of [ETS11]. As for Enocoro, the Pollock representation
allows a cryptanalyst to easily peel o� a linear layer.

12.2.5 Seurat’s Steganography

In this section, we present an algorithm allowing the creation of a non-bijective S-
Box such that the picture representation of its ddt contains a particular image. Since
we draw this image dot after dot like in pointillism and since it hides said image, we
call the method we present below Seurat’s Steganography. The pictures we embed
are black and white, the white parts corresponding to places where di�erentials are
impossible and black parts to places where the di�erentials have non-zero probabil-
ity.

12.2.5.1 The Algorithm

We de�ne white and black equations as those giving the corresponding pixel color
in the Pollock representation of the ddt of an S-Box:

• white Equations: Wa,b : ∀x ∈ {0,1}m , S (x + a) + S (x ) , b, and

• black Equations: Ba,b : ∃x ∈ {0,1}m , S (x + a) + S (x ) = b.

The inputs considered in this Section are:

• B: the complete list of the black equations,
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• Tw : a table of Boolean variables of size u × v (the dimensions of the image)
where Tw [a,b] is false if and only if the pixel at (a,b) cannot be white,

• i: the index of the equation in B for which we need to �nd a solution, and

• S : a partially unspeci�ed S-Box such that all equations Bj for j < i hold and
such that none of theWj has a solution for any j.

We �rst need a sub-routine checking if adding an entry S (x ) = y to a partially as-
signed S-Box, i.e. an S-Box for which some of the outputs are unspeci�ed, leads to at
least one of the white equations no longer holding. It is described in Algorithm 12.1.

Algorithm 12.1 checkW(S ,x ,y,Tw ).
Inputs: S-Box S , elements x ,y, table of Boolean variables Tw ;
Outputs: true or false
for all a ∈ {0,1}m , if S (x + a) is speci�ed, do

if Tw [a,S (x + a) + S (x )] is false then return false
end for

return true

We now describe Seurat’s Steganoraphy, namely Algorithm 12.2, which uses two
lists of equations to iteratively build an S-Box such that a particular picture appears
in its ddt. It works by �rst making a list L of all the ways entries could be added to
the S-Box in order to satisfy the black equation Bi . If none are found, the function
fails. The function is �nally called recursively on the candidates found to look for
a solution for the next equation. If no solution is found for the next equation, the
function fails.

Some optimizations are possible. First of all, it is not necessary to write this
algorithm using recursion. It is also not necessary to let L be as large as possible. In
fact |L| ≤ 2 is su�cient, although |L| = 1 does not work unless the picture is very
simple. It is also possible to allow some noise by tweaking CheckW(S ,x ,y,Tw ) to
return true with low probability for pairs (x ,y) even if they blacken a white pixel.

Several outputs of this algorithm are presented in Section 12.2.5.3 (p. 239).

12.2.5.2 Counting Possible S-Boxes

Let S be a random function from {0,1}m to {0,1}n . Then Wa,b holds if and only if
DDT[a,b] = 0, which happens with probability Pr[DDT[a,b] = 0] = exp

(
−2m−n−1

)
because the coe�cients in the ddt of a random function follow approximately a
Poisson distribution with parameter 1/2 (see Theorem 9.1.1). Hence, if we have b
black equations, w white ones and if we consider that their having solutions are
independent events, then the probability that an S-Box has the correct image at the
center of its ddt is Psuccess =

(
exp(−2m−n−1)

)w
×

(
1 − exp(−2m−n−1)

)b
. In the case

where m = n, we use that log2 (exp(−1/2)) ≈ −1.35 and that log2 (1 − exp(−1/2)) ≈
−0.72 to approximate this probability by

Psuccess = 2−(0.72·w+1.35·b ) .

As there are 2n2n possible n × n S-Boxes, we expect to have very roughly the
following number of solutions:

NSolutions = 2n2n−(0.72·w+1.35·b ) .
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Algorithm 12.2 Seurat(S ,B,Tw ,i ): Seurat’s steganography.
Inputs: S-Box S , black equations B, table of Boolean Tw , counter i
Output: S-Box S ′ satisfying all black equations or FAIL
δin := input di�erence in Bi
δout := output di�erence in Bi
L := empty list of S-Boxes
if Bi is already satis�ed by S then

Append S to L and return L
end if

for all x ∈ {0,1}m do

if S (x ) is not de�ned then

if S (x + δin) is de�ned then

y = S (x + δin) + δout
if CheckW(S ,x ,y,Tw ) then

S ′ = S ; S ′(x ) = y
Append S ′ to L

end if

else if S (x + δin) is not de�ned then

for all y ∈ {0,1}n do

if CheckW(S ,x ,y,Tw ) and CheckW(S ,x + δin,y + δout,Tw ) then
S ′ = S ; S ′(x ) = y ; S ′(x + δin) = y + δout
Append S ′ to L

end if

end for

end if

end if

end for

If L is still empty then return FAIL
for all S ′ ∈ L do

If Seurat(S ′,B,Tw ,i + 1) does not fail then return S ′

end for

return FAIL

Therefore, we need 0.72 · w + 1.35 · b < n2n in order to have a non-empty set
of S-Boxes with the image we want inside their ddt. Black pixels are about twice
as expensive as white ones according to this model. However, in practice, it is only
possible to build an S-Box such that its ddt contains a black square of size 22 × 22
or a white one of size 62× 62 without any noise, meaning that black pixels are, from
the point of view of our algorithm, about 8 times more expensive. Stirling’s equation
gives an approximate number of 2(n−1.44) ·2n permutations of {0,1}n , so we need that
0.72·w+1.35·b < (n−1.44)2n for permutations with the correct black/white pixels to
exist with non negligible probability. However, our algorithm will require signi�cant
changes in order to search for permutations.

Since our algorithm does not require the pixels to be organized inside a square,
we can also use it to force white or black pixels to appear anywhere in the ddt of an
S-Box. This could be used to place a sort of trapdoor by for instance ensuring that
a truncated di�erential compatible with the general structure of a cipher is present.
Another possible use could be to “sign” an S-Box: Alice would agree with Bob to
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generate an S-Box for him and tell him beforehand where some black/white pixels
will be. Bob can then check that they are placed as agreed.

12.2.5.3 Some Results

The S-Boxes described in Tables 12.1a, 12.1b, 12.1c and 12.1d were built using the
method described in Section 12.2.5. Note that these are not bijections. The picture
representations of their ddt are given in Figures 12.10a, 12.10b, 12.10c and 12.10d
respectively. Those clearly show the pictures we chose to embed in them. Unfortu-
nately, the di�erential and linear properties of these S-Boxes are less than impressive.

(a) The ddt of the S-Box in Table 12.1a (b) The ddt of the S-Box in Table 12.1b

(c) The ddt of the S-Box in Table 12.1c (d) The ddt of the S-Box in Table 12.1d

Figure 12.10: The ddt of some outputs of Seurat’s Steganography: |di,j | = 0 is in
white, |di,j | ≥ 2 is in black.
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.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 6c b7 4b 27 72 72 5e 5e 41 6c 38 0b a1 22 a3 5a
1. 70 57 20 df d7 dc b2 28 da 28 f6 f2 db 23 ca c5
2. 96 38 3a c2 35 8b 3b e4 c7 59 14 4e 34 c5 c6 ca
3. 6c c2 b6 43 65 6c f2 26 e1 c2 0a 46 94 8d 9b 47
4. aa aa f6 5d 61 09 a2 92 ae 93 0c ae f2 38 35 08
5. 46 07 16 0a 22 d4 07 f6 24 fa 06 08 0f d0 22 26
6. cc 5b 33 36 ea 7b 84 7f b6 c5 c9 34 f6 72 19 c0
7. d2 9a 69 96 b4 40 45 6e b4 9e 6a 6a 8f 3a a4 51
8. b6 ae be 90 9a 9a 90 92 9c 97 b0 ea f0 67 9d 54
9. 89 8d 78 83 32 e4 be c9 db 28 e4 2c cc cd c1 ec
a. df d4 2c d1 0b d3 6d f6 df f4 3d da 0c fd 09 fd
b. 9c f0 c0 c5 6c 51 74 0f 92 53 8c 53 17 53 a4 a8
c. 9b cc ca 61 6c 0b 5b 00 c6 06 20 ae b6 9b 97 0f
d. ca ca cb 4e 0b bd ba d1 33 31 61 34 c8 d2 6c f9
e. 3a 20 cf 28 8d 8f 98 81 d2 25 d7 29 68 dd 8e 0e
f. 87 81 53 73 48 7c 43 b6 ab 95 5f 1c a5 ba f4 71

(a) “I am secure trust me”.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 1b 1e e7 1b 00 1b 4f e7 07 a8 b7 1c 00 06 1c 1c
1. 30 a9 ab af 54 50 36 57 65 01 17 7c 53 99 fb 65
2. 86 b5 33 78 c9 80 f5 7f 79 7d 87 7a 4d 14 49 2b
3. 66 d5 c8 54 a9 57 54 ab aa 98 a8 a8 32 17 d2 cb
4. d4 e7 73 1b 51 b3 af 50 51 68 ac 6b d7 52 1b d5
5. 71 75 8a 97 c8 36 37 33 74 ce 75 4a 77 88 8f 77
6. 1b ff e4 b5 ff 1f 1e fa b3 4a b1 4c fd fc 4b 01
7. ca c8 a0 5b 5e a1 5b a6 9d c8 98 84 cb 31 ca cb
8. 33 ca 33 cc 7b 83 98 cb a2 7f a3 ce 34 33 cb cd
9. e7 fd ff 03 7f 2d 00 b5 05 e5 ff 02 03 06 fc 06
a. 88 8e 74 8b 8c 8e 8c 51 c9 03 88 c9 8a c9 70 fc
b. 94 2b d4 29 ae 69 6b af b7 91 b7 b7 8b 89 d4 75
c. d1 c9 98 99 61 ab aa 61 99 66 12 65 15 2d 2d 33
d. b3 b3 7c 86 83 7a 7f 78 cf 98 81 30 7e cf c9 c9
e. 01 a9 57 ad e3 80 ad 61 56 53 53 28 56 a8 c8 ae
f. 18 1d 00 06 df 52 52 af 1d 61 e2 60 e2 e6 fa e2

(b) “It’s me, Mario!”.
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. bb 44 93 4a a6 2f af ac 77 66 55 47 8a b0 21 18
1. 96 99 a3 a7 5b 3e b3 5a 87 66 a6 ab ad 09 71 04
2. 2a 20 de df 21 df 21 21 20 21 20 5b c5 7f df de
3. 28 df ce f7 6f 8d 84 20 4d a5 49 8b 55 ff 47 32
4. 7d 52 28 a0 5d 45 8d 7e 4f bf 5c 46 2a 51 a6 a5
5. a0 a0 a0 a1 a1 a1 a1 a1 a0 cf 5f a1 a0 a0 98 ab
6. c1 3d b8 3b 70 33 30 5f 7c c7 db c8 09 06 83 c7
7. f9 01 f7 52 51 d4 57 e2 52 57 f4 b4 f5 37 30 07
8. 33 37 c1 09 c2 12 2b 56 18 9a 51 ad 5e 08 95 f6
9. 40 cb 08 0b b7 45 23 80 44 91 7d 70 74 e2 5e 36
a. 5f 5e 5a 5f a6 58 5e 5e 53 5f 51 5e 5f ab ab b9
b. 85 ab b2 86 b2 b3 48 45 49 8d 23 b9 b7 b5 8e 2a
c. c2 33 3f 02 35 fe c8 cc 86 86 fa c9 cd 39 c3 06
d. d8 de 7b 20 d7 d5 b4 26 44 d0 21 d2 d0 d7 23 af
e. 07 f8 50 f4 41 ab 7a aa 5e a7 c3 5e a2 5c 8b 55
f. a6 51 4d 42 e8 dc 46 67 17 90 ab 51 b4 bd 45 a4

(c) The eye of Sauron.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. bf bd b3 4c 45 48 b7 bf b3 45 b8 48 45 4a 4d 45
1. 9b 9a 62 96 60 91 91 93 60 62 6b 65 97 9f 9e 61
2. 80 76 7e 82 7b 84 81 87 81 77 85 74 73 82 70 76
3. be 43 bc b1 4f be 43 bf b0 bc bf bb bd 4e 49 b3
4. c9 c6 c4 33 39 3f 37 33 3d 32 c6 cd 3a 36 c8 32
5. 02 0a 06 f1 fa 02 ff 01 08 f2 fb 08 fe 0e fa 02
6. 14 1e e7 e2 16 e7 e1 e7 1b 1b ed eb e6 e7 15 e9
7. 37 cc c8 c1 35 3f 3a c9 cc 39 c5 38 c4 35 c9 c7
8. cb 33 cd c2 32 c8 32 3e 33 3e 33 30 3d 34 30 c8
9. e7 e8 e6 11 e4 15 13 18 1c 14 1e 13 1d e2 e8 ed
a. 02 fe f6 0b 06 00 f6 fa fd 08 0f 09 f1 f9 05 ff
b. 39 36 c4 3b cc c5 ce cb 3d c4 32 39 3a c4 30 c8
c. bd b3 be b1 40 45 41 4a 45 b1 b6 ba b2 48 ba bf
d. 7f 83 79 77 82 7f 85 7c 7e 88 79 8f 71 89 7f 85
e. 61 6f 6b 68 91 9e 9f 63 67 9b 6e 6c 63 67 90 90
f. bf 46 b0 b7 4a bf 4a bd b1 bb ba 47 48 b6 41 ba

(d) Forcing a central black square.

Table 12.1: Some outputs of the algorithm described in Section 12.2.5.

12.3 The TU-Decomposition

12.3.1 Principle

The TU-decomposition is a method allowing the decomposition of a function f with
a particular structure. It must consist in a core д with the integral property described
in the White-square Lemma (Lemma 12.2.1) composed with two a�ne permutations
η and µ so that f = η ◦ д ◦ µ. The TU-decomposition recovers T ,U , η′ and µ ′ such
that f has the decomposition presented in Figure 12.11.

The following lemma speci�es a simple decomposition of a function д having the
integral property of Lemma 12.2.1.

Lemma 12.3.1 (TU-core Decomposition). Letд be a functionmapping Fn2 ×F
n
2 to itself

such that �xing the right input to any value and letting the left one take all 2n possible
values leads to the left output taking all 2n possible values. Then д can be decomposed
using a keyed n-bit permutation T and a keyed n-bit functionU (see Figure 12.11):

д(x ,y) =
(
Ty (x ),UTy (x ) (y)

)
,
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T

U

µ ′

η′

Figure 12.11: The TU-decomposition.

Additionally, if д is a permutation thenU is a keyed permutation.

Proof of Lemma 12.3.1. We simply de�ne Ty (x ) to be the left side of д(x ,y). Because
of the multiset property, Ty is a permutation for all y. We then de�ne U to be such
that Uk (y) is the right side of д

(
T −1
y (k ),y

)
.

Ifд is a permutation then (x ,y) 7→ д
(
T −1
y (x ),y)

)
is a permutation equal to (x ,y) 7→

(x ,Ux (y)). In particular, it holds thatUx is a permutation for all x , making it a keyed
permutation. �

Main Theorem 1 (The TU-Decomposition). Let S : Fn2 → Fn2 be an n-bit S-Box
with lat L and let η and µ be linear permutations such that L ′ de�ned by L ′[a,b] =
[µ (a),η(b)] = 0 veri�es L ′[i, j] = 0 for all i < 2n/2 and j < 2n/2. Then S can be written
as

S = (ηt )−1 ◦ U ◦ T ◦ µt ,

where T (x | |y) = Ty (x ) | |y and U (x | |y) = x | |Ux (y). This corresponds to the structure
in Figure 12.11, where µ ′ = µt and η′ = (ηt )−1.

Proof. Using Lemma 8.2.4, we derive that the function s ′ = ηt ◦s ◦ (µ−1)t has lat L ′.
Since the conditions of the theorem impose the presence of a white square in L ′, we
can apply Lemma 12.3.1 and thus deduce that s ′ can be decomposed intoU ◦T . The
result of the theorem is obtained by composing these decompositions. �

12.3.2 A Simple Example: the S-Box of Cmea

Examples of full-�edged TU-decompositions are provided in Chapters 13 (p. 245)
and 14 (p. 267). Let us consider a simpler case where a previously unknown TU-core
decomposition in the style of Lemma 12.3.1 can be obtained.

The S-Box of the block cipher Cmea is an 8-bit function which I denote C . Its
look-up table is given in Table 12.2 and the cipher itself was brie�y described in
Section 2.2.3 (p. 38). As we can see, this S-Box has inner collisions such as C (a5) =
C (bc) = 0. With the exception of that of Picaro, it is the only 8-bit non-injective
S-Box listed in Section 8.3 (p. 146).

While the distribution of its linear and di�erential coe�cients or on par with
what would be expected of a random permutation, it yields a �rst algebraic pattern.
Indeed, a random 8-bit Boolean function has algebraic degree 8 with probability 1/2.
Yet, all of the 8 coordinates of C have degree 7, an event which has probability 2−8.
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.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

0. d9 23 5f e6 ca 68 97 b0 7b f2 0c 34 11 a5 8d 4e

1. 0a 46 77 8d 10 9f 5e 62 f1 34 ec a5 c9 b3 d8 2b

2. 59 47 e3 d2 ff ae 64 ca 15 8b 7d 38 21 bc 96 00

3. 49 56 23 15 97 e4 cb 6f f2 70 3c 88 ba d1 0d ae

4. e2 38 ba 44 9f 83 5d 1c de ab c7 65 f1 76 09 20

5. 86 bd 0a f1 3c a7 29 93 cb 45 5f e8 10 74 62 de

6. b8 77 80 d1 12 26 ac 6d e9 cf f3 54 3a 0b 95 4e

7. b1 30 a4 96 f8 57 49 8e 05 1f 62 7c c3 2b da ed

8. bb 86 0d 7a 97 13 6c 4e 51 30 e5 f2 2f d8 c4 a9

9. 91 76 f0 17 43 38 29 84 a2 db ef 65 5e ca 0d bc

A. e7 fa d8 81 6f 00 14 42 25 7c 5d c9 9e b6 33 ab

B. 5a 6f 9b d9 fe 71 44 c5 37 a2 88 2d 00 b6 13 ec

C. 4e 96 a8 5a b5 d7 c3 8d 3f f2 ec 04 60 71 1b 29

D. 04 79 e3 c7 1b 66 81 4a 25 9d dc 5f 3e b0 f8 a2

E. 91 34 f6 5c 67 89 73 05 22 aa cb ee bf 18 d0 4d

F. f5 36 ae 01 2f 94 c3 49 8b bd 58 12 e0 77 6c da

Table 12.2: The look-up table of C . For example C (0x7A) = 0x62.

However, the strongest patterns are in the Pollock representations of its ddt and
lat which are shown in Figures 12.12a and 12.12b respectively. There is a white-
square at the top left corner of its ddt implying that all di�erentials (0,δ ) → (0,δ ′)
are impossible. Furthermore, its lat contains white “dents” at rows 16 × k on the 16
left-most columns. It means that composing it with a 4-bit branch swapW : x | |y 7→
y | |x of its input would yield a function with a TU-core decomposition.

(a) ddt. (b) lat.

Figure 12.12: The Pollock representations of the S-Box C of Cmea.

It is indeed the case. The ciphers T and U obtained are given in Tables 12.3a
and 12.3b respectively.

As expected since C is not a permutation, the lines of U are not permutations;
but its columns are permutations. It means that the function x 7→ Ux (k ) de�ned for
any k is a permutation. As a consequence, C can be decomposed as shown in Fig-
ure 12.13a, where the code-book of the well de�ned mini-block cipherU t is obtained
by transposing the Table 12.3b.

This decomposition can be further simpli�ed into the one shown in Figure 12.13b,
where U ′ is the composition of T and U t .
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0 1 2 3 4 5 6 7 8 9 a b c d e f
T0 9 3 f 6 a 8 7 0 b 2 c 4 1 5 d e
T1 a 6 7 d 0 f e 2 1 4 c 5 9 3 8 b
T2 9 7 3 2 f e 4 a 5 b d 8 1 c 6 0
T3 9 6 3 5 7 4 b f 2 0 c 8 a 1 d e
T4 2 8 a 4 f 3 d c e b 7 5 1 6 9 0
T5 6 d a 1 c 7 9 3 b 5 f 8 0 4 2 e
T6 8 7 0 1 2 6 c d 9 f 3 4 a b 5 e
T7 1 0 4 6 8 7 9 e 5 f 2 c 3 b a d
T8 b 6 d a 7 3 c e 1 0 5 2 f 8 4 9
T9 1 6 0 7 3 8 9 4 2 b f 5 e a d c
Ta 7 a 8 1 f 0 4 2 5 c d 9 e 6 3 b
Tb a f b 9 e 1 4 5 7 2 8 d 0 6 3 c
Tc e 6 8 a 5 7 3 d f 2 c 4 0 1 b 9
Td 4 9 3 7 b 6 1 a 5 d c f e 0 8 2
Te 1 4 6 c 7 9 3 5 2 a b e f 8 0 d
Tf 5 6 e 1 f 4 3 9 b d 8 2 0 7 c a

(a) T .

0 1 2 3 4 5 6 7 8 9 a b c d e f
U0 b 1 0 7 2 1 8 3 3 f 0 0 6 b d e
U1 1 f 2 d f f d b 5 9 8 7 7 8 9 0
U2 f 6 d f e 6 1 6 f a 4 a f a 2 1
U3 2 b e 2 8 9 f c 1 4 3 1 c e 7 c
U4 3 3 6 e 4 7 5 a c 8 1 4 0 0 3 9
U5 a a 1 1 6 4 9 0 e 6 2 c b 2 0 f
U6 e 4 9 5 7 8 2 9 8 7 b b 9 6 f 3
U7 9 7 4 9 c a 7 5 9 1 e 3 d c 6 7
U8 6 d 3 8 3 e b f d 3 d 8 a f 1 5
U9 d c 5 4 0 2 e 4 a 2 c d 2 7 8 4
Ua c 0 c b b 0 3 d 7 c f 5 5 4 a d
Ub 7 2 8 c a c 0 2 b d a 9 1 1 c 8
Uc 0 e b 3 1 3 a 7 6 b 7 e e d 5 6
Ud 8 8 7 0 5 b 6 e 0 0 5 2 8 9 4 b
Ue 4 5 a a d d 4 8 4 5 9 f 4 3 e a
Uf 5 9 f 6 9 5 c 1 2 e 6 6 3 5 b 2

(b) U .

Table 12.3: The mini-block ciphers used to decompose C ◦W .

U t

T

xL xR

yL yR

(a) Basic decomposition.

U ′ T

xL xR

yL yR

(b) Re�ned decomposition.

Figure 12.13: First decompositions of the S-Box C of Cmea.

Open Problem 12.3.1. Is there a decomposition of the mini-block ciphers T and U ′

used to build the S-Box of Cmea?





Chapter13

Decomposing the Gost 8-bit S-Box

The Russian Federation has recently standardized two symmetric primitives: a hash
function called Streebog [Fed12] and a block cipher called Kuznyechik [Fed15], which
means “grasshopper” in Russian. These were developed by the Russian Technical
Committee for standardization of “Cryptography and security mechanisms” (TC 26)
which is supervised by the Russian Federal Security Service (fsb), i.e. the Russian
counterpart of the American National Security Agency (nsa). These algorithms are
speci�ed in two di�erent standards, gost R 34.12–2015 for Kuznyechik and gost R
34.11–2012 for Streebog. They should not be mistaken with the older gost stan-
dard usually referred to as “gost cipher” in the literature [Dol10a], a 64-bit Feistel
network. Since this “gost cipher” is still part of the Russian standard, gost R 34.12–
2015 calls the last iteration of this older cipher “Magma”.

In this chapter, I present two attempts made jointly with Alex Biryukov and Alek-
sei Udovenko at reverse-engineering the S-Box shared by these two algorithms. Our
�rst decomposition is somewhat similar to a 2-round Feistel network with �nite �eld
multiplications instead of xors. It is obtained in Section 13.2. The second one is based
on a pseudo-exponential composed with a very weak and oddly structured. I explain
how we obtained it in Section 13.3.

L

N

N

N

N

L

(a) First decomposition.

log

A

N

L

(b) Second decomposition.

Figure 13.1: A simplied view of our two decompositions of π .

Both decompositions are summarized in Figures 13.1a and 13.1b respectively. In
these �gures, linear (resp. nonlinear) functions are denoted L (resp. N ); � denotes
�nite �eld multiplication; log is a �nite �eld logarithm and A denotes a few simple
integer arithmetic operations. Linear functions are represented in gray, �nite �eld
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operations in red and integer operations in blue.
But �rst, I provide a brief description of the block cipher, Kuznyechik, the hash

function Streebog and the properties of their S-Box in Section 13.1.

13.1 Preliminary

13.1.1 Description of Kuznyechik

It is a Substitution-Permutation Network which uses 9 rounds to encrypt a 128-bit
block using a 256-bit key. The linear layer consists in multiplying the internal state
by a 16 × 16 mds matrix with elements in a �nite �eld of size 28. This matrix multi-
plication can be e�ciently implemented using an lfsr.

The non-linearity is provided by an S-Box layer using an 8-bit S-Box π given
in Table 13.1. This S-Box is applied in parallel on the full state. There have been
few third-party attacks of this cipher. The only one published to the best of our
knowledge are a 5-round meet-in-the-middle attack [AY15a] and a 7-round inte-
gral/algebraic attack based on the zero-sum distinguishers described in Chapter 11
(p. 207) [BKP17]. This algorithm is sometimes named “Kuznechik”.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

0. FC EE DD 11 CF 6E 31 16 FB C4 FA DA 23 C5 04 4D

1. E9 77 F0 DB 93 2E 99 BA 17 36 F1 BB 14 CD 5F C1

2. F9 18 65 5A E2 5C EF 21 81 1C 3C 42 8B 01 8E 4F

3. 05 84 02 AE E3 6A 8F A0 06 0B ED 98 7F D4 D3 1F

4. EB 34 2C 51 EA C8 48 AB F2 2A 68 A2 FD 3A CE CC

5. B5 70 0E 56 08 0C 76 12 BF 72 13 47 9C B7 5D 87

6. 15 A1 96 29 10 7B 9A C7 F3 91 78 6F 9D 9E B2 B1

7. 32 75 19 3D FF 35 8A 7E 6D 54 C6 80 C3 BD 0D 57

8. DF F5 24 A9 3E A8 43 C9 D7 79 D6 F6 7C 22 B9 03

9. E0 0F EC DE 7A 94 B0 BC DC E8 28 50 4E 33 0A 4A

A. A7 97 60 73 1E 00 62 44 1A B8 38 82 64 9F 26 41

B. AD 45 46 92 27 5E 55 2F 8C A3 A5 7D 69 D5 95 3B

C. 07 58 B3 40 86 AC 1D F7 30 37 6B E4 88 D9 E7 89

D. E1 1B 83 49 4C 3F F8 FE 8D 53 AA 90 CA D8 85 61

E. 20 71 67 A4 2D 2B 09 5B CB 9B 25 D0 BE E5 6C 52

F. 59 A6 74 D2 E6 F4 B4 C0 D1 66 AF C2 39 4B 63 B6

Table 13.1: The look-up table of π . For example π (0x7A) = 0xC6.

13.1.2 Description of Streebog

Streebog (also spelled Stribog) is a hash function standardized by gost in 2012 [Fed12].
It uses a variant of the haifa construction [BD07] based on a 512-bit block cipher
somewhat resembling the Aes. The overall structure of this algorithm is quite close
to that of Whirlpool [BR00c].

The round constants of Streebog were chosen by feeding 12 di�erent seeds into a
round-constant-less version of the hash function with a modi�ed linear layer [Rud15].
These seeds are given as hexadecimal strings of varying length which seem at �rst
glance to lack any justi�cation. However, they correspond to Russian names written
backwards in Cyrillic and encoded in cp1251 as described in Table 13.2.
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R Hexadecimal seed Name (Cyrillic) Name (Latin)

1 e2e5ede1e5f0c3 Гребнев Grebnev
2 f7e8e2eef0e8ece8e4e0ebc220e9e5e3f0e5d1 Сергей Владимирович Sergej Vladimirovich
3 f5f3ecc4 Дмух Dmukh
4 f7e8e2eef0e4ede0f1eae5ebc020e9e5f0e4edc0 Андрей Александрович Andrej Aleksandrovich
5 ede8e3fbc4 Дыгин Dygin
6 f7e8e2eeebe9e0f5e8cc20f1e8ede5c4 Денис Михайлович Denis Mihajlovich
7 ede8f5fef2e0cc Матюхин Matjuhin
8 f7e8e2eef0eef2eae8c220e9e8f0f2e8ecc4 Дмитрий Викторович Dmitrij Viktorovich
9 e9eeeaf1e4f3d0 Рудской Rudskoj

10 f7e8e2e5f0eee3c820f0e8ece8e4e0ebc2 Владимир Игоревич Vladimir Igorevich
11 ede8eaf8e8d8 Шишкин Shishkin
12 f7e8e2e5e5f1eae5ebc020e9e8ebe8f1e0c2 Василий Алексеевич Vasilij Alekseevich

Table 13.2: The seeds used for each round constant of Streebog and the corresponding
name.

13.1.3 Public and Basic Information about π

This S-Box is di�erentially 8-uniform with 25 occurrences of 8. The maximum lat
coe�cient (in absolute value) is equal to 28 and occurs 14 times. By applying Equa-
tion (9.5) from Section 9.1.2.3 (p. 162), we see that the probabilities for a random 8-bit
permutation to have di�erential and linear properties at least as good as those of π
are equal to, respectively, about 2−80.6 and 2−34.3. Thus, we can already rule out that
this S-Box has been picked from a feasibly large set of random S-Boxes. It has to
be the output of some generation algorithm, either based on hill-climbing or on a
hidden structure.

It is worth noticing that all coordinates of π have a maximum algebraic degree
equal to 7. There is no speci�c pattern in its hdim that I can see:

Ĥ (π ) =



0 1 1 0 1 1 1 0
1 0 0 0 0 0 1 1
0 1 1 0 0 1 1 0
0 0 1 1 0 1 0 0
1 0 0 1 0 1 0 1
1 0 1 0 0 0 1 0
0 0 0 1 0 1 0 0
1 1 1 1 1 1 1 0



.

There is very little public information available about this S-Box.
In a �rst presentation at RusCrypto’13 [Shi13] given by Shishkin on behalf of

the fsb, some information about the design process of the S-Box was given. It is
supposed not to have an analytic structure — even if that means not having opti-
mal cryptographic properties unlike e.g. the S-Box of the Aes — and to minimise
the number of operations necessary to compute it so as to optimize hardware and
vectorized software implementations. However, speci�cs about the method used to
achieve this goal were not given.
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One year later, at CTCrypt’14, the authors explained that one guideline they used
to design Kuznyechik was: “only well examined constructions and transformations
are used as building blocks” (slide 7 of [SDL+14]). As we will see, this seems to be
contradicted by the structures we found. This might indicate that the structure they
hid is one they have studied intensively without disclosing their results.

The most relevant data was gathered by Markku Saarinen during informal con-
versations with the designers held during CTCrypt’14 which he reports on in [SB15]:

[The designers’] recollection was that the aim was to choose a “ran-
domized” S-Box that meets the basic di�erential, linear, and algebraic
requirements. Randomization using various building blocks was simply
iterated until a “good enough” permutation was found. This was seen
as an e�ective countermeasure against yet-unknown attacks [such as
algebraic attacks].

13.2 A Feistel-like Decomposition

Our �rst decomposition resembles a 2-round Feistel network. We obtained it by
�rst identifying visual artifacts in the lat of π using the method described in Sec-
tion 13.2.1 (p. 248). We deduced a TU-decomposition of π in the style of Theorem 1
(p. 241) and decomposed the mini-block cipherT andU we obtained. It is explained in
Section 13.2.2 (p. 250). Finally, this �rst decomposition is discussed in Section 13.2.3
(p. 256).

13.2.1 Pa�erns in the Lat of Kuznyechik

As all the structural attacks presented in the previous chapter failed against this S-
Box. However, the Pollock representation of its lat contains interesting patterns.
The Pollock representation of the absolute value of the coe�cients of the lat of π
is given in Figure 13.2a. While it may be hard to see on paper, blurry vertical lines
appear when looking at a large enough version of this picture. In order to better see
this pattern, we introduce the so-called ⊕-texture. It is a kind of auto-correlation.

De�nition 13.2.1. We call ⊕-texture of the lat L of an S-Box the matrix T ⊕ with
coe�cients T ⊕[i, j] de�ned as:

T ⊕[i, j] = #
{
(x ,y), |L[x ⊕ i,y ⊕ j]| = |L[x ,y]|

}
.

The Jackson Pollock representation of the ⊕-texture of the lat Lπ of π is given
in Figure 13.2b. The lines are now much more obvious and, furthermore, we observe
dark dots in the very �rst column. The indices of both the rows containing the black
dots and the columns containing the lines are the same and correspond to a binary
vector spaceV de�ned, using hexadecimal notation, as:

V = {00,1a,20,3a,44,5e,64,7e,8a,90,aa,b0,ce,d4,ee,f4}.

In order to cluster the columns together to the left of the picture and the dark
dots to the top of it, we can apply a linear mapping L to obtain a new table L ′π where
L ′π [i, j] = Lπ [L(i ),L(j )]. We de�ne L so that it maps i ∈ F4

2 to the i-th element ofV
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(a) Pollock representation. (b) ⊕-texture.

Figure 13.2: The lat of π (absolute value).

and then complete it in a natural way to obtain a linear permutation of F8
2. It maps

each bit as described below in hexadecimal notation:



L(01) = 1a, L(02) = 20, L(04) = 44, L(08) = 8a,

L(10) = 01, L(20) = 02, L(40) = 04, L(80) = 08.

The Jackson Pollock representation of L ′π is given in Figure 13.3. As we can see,
it is highly structured: there is a 16×16 square containing1 only coe�cients equal to
0 in the top left corner. Furthermore, the left-most 15 bits to the right of column 0,
exhibit a strange pattern: each of the coe�cients in it has an absolute value in [4,12]
although the maximum coe�cient in the table is equal to 28. This forms a sort of
low-contrast “stripe”. The low number of di�erent values it contains implies a low
number of color in the corresponding columns in Lπ , which in turn corresponds to
the lines we were able to distinguish in Figure 13.2a.

Figure 13.3: The Jackson Pollock representation of L ′π , where L ′π [i, j] =

Lπ [L(i ),L(j )].

These column can also be identi�ed using the method described in Section 9.1.2.4
(p. 163). It consists of looking at the variance of the absolute value of the coe�cients

1Except of course in position (0, 0) where the bias is equal to the maximum of 128.
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in the rows and the columns of the lat. The corresponding data for π is provided in
Figure 13.4. The columns for which the variance is abnormally low have their indices
inV .

5

10

15

20

25

30

0 50 100 150 200 250

V
a
r
ia
n
c
e

Column index

Figure 13.4: The variance of the columns of the lat (absolute values) of π . The
expected variance is represented with a red dashed line.

It is natural to try and build another S-Box from π such that its lat is equal to
L ′π . By applying Lemma 8.2.4, we obtain that Lt ◦ π ◦ (Lt )−1 has L ′π as its lat. The
mapping Lt consists of a linear Feistel round followed by a permutation of the left
and right 4-bit nibbles (which we denote swapNibbles). To simplify the modi�cations
we make, we remove the nibble permutation and de�ne

π ′ = L∗ ◦ π ◦ L∗

where L∗ is the Feistel round in Lt and is described in Figure 13.5.

x7 x6 x5 x4 x3 x2 x1 x0

⊕
⊕

⊕

⊕
⊕

Figure 13.5: A circuit computing L∗ where its input is given in binary.

13.2.2 A TU-Decomposition of π

This a�ne-equivalent S-Box π ′ is highly structured. First of all, the lat of π ′ com-
posed with swapNibbles both before and after is L ′π , with its white square in the top
left and strange left side.

Furthermore, the presence of this white-square means we can apply Lemma 12.3.1.
We deduce that π ′ can be decomposed into the structure recalled in Figure 13.6,
whereT andU are mini-block ciphers with 4-bit block size and 4-bit keys. Their full
code-books are given in Tables 13.3a and 13.3b respectively.

We decompose the mini-block ciphersT andU themselves in Section 13.2.2.1 and
Section 13.2.2.2 respectively.
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T

U

Figure 13.6: The high level structure of π ′−1.

0 1 2 3 4 5 6 7 8 9 a b c d e f
T0 e f 2 5 7 b 8 1 3 c d a 0 9 4 6
T1 2 9 a 4 e 6 7 b 1 8 3 d 0 c f 5
T2 e f 2 5 7 b 8 1 3 c d a 0 9 4 6
T3 5 d 4 2 6 7 b 8 c 1 9 f 0 3 a e
T4 5 e 6 7 4 3 f a 0 1 d 2 8 b c 9
T5 9 d f a c 6 8 1 0 5 b 3 2 4 e 7
T6 3 9 d f 1 e b 8 0 2 7 c 4 a 5 6
T7 5 e 6 7 4 3 f a 0 1 d 2 8 b c 9
T8 7 b 8 5 9 d c 3 2 e a f 6 1 0 4
T9 d f a c e 6 2 5 1 3 b 7 9 4 0 8
Ta e 6 7 4 c 3 8 1 a 2 d 9 5 b 0 f
Tb 4 2 5 d b 8 6 7 9 f c 1 a e 0 3
Tc 2 5 a 4 3 9 d 8 c f 0 7 b 1 6 e
Td e 6 2 5 d f a c 9 4 0 8 1 3 b 7
Te 9 d c 3 7 b 8 5 6 1 0 4 2 e a f
Tf 8 1 7 b 2 5 e f 4 6 0 9 d a 3 c

(a) T .

0 1 2 3 4 5 6 7 8 9 a b c d e f
U0 8 f 0 2 d 5 6 9 e 3 1 7 c b 4 a
U1 8 c 7 3 d f 2 0 e 4 1 b 6 5 9 a
U2 3 4 e 9 d 8 0 5 1 2 c f 7 b a 6
U3 b 8 9 a 0 7 2 5 f 6 d 4 1 e 3 c
U4 c 2 5 b e 8 7 1 4 f d 6 9 3 0 a
U5 4 e 2 8 3 7 5 1 a b c d f 6 9 0
U6 f 6 b 2 3 0 7 4 5 d 1 9 e 8 a c
U7 7 a c 1 e f 5 4 b 9 0 2 8 d 3 6
U8 a f b e c 4 d 5 7 0 6 1 8 3 9 2
U9 2 3 c d 1 b f 5 9 4 7 a e 6 0 8
Ua 9 b 5 7 1 c d 0 6 2 a e f 8 3 4
Ub 1 7 2 4 c 3 f 0 8 6 b 5 9 d a e
Uc 6 d e 5 2 c a 4 3 f b 7 1 0 9 8
Ud e 1 9 6 f 3 8 4 d b a c 7 5 0 2
Ue 5 9 0 c f 4 a 1 2 d 7 8 6 b 3 e
Uf d 5 7 f 2 b 8 1 c 9 6 3 0 e a 4

(b) U .

Table 13.3: The mini-block ciphers used to decompose L∗ ◦ π ′−1 ◦ L∗.

13.2.2.1 Reverse-Engineering T

The mini-block cipher T ′ de�ned as T ′k : x 7→ Tk
(
x ⊕ tin (k ) ⊕ 0xC

)
for tin (k ) =

0| |k2 | |k3 | |0 (see Table 13.4) is such that T ′k (0) = 0 for all k .

0 1 2 3 4 5 6 7 8 9 a b c d e f

T ′0 0 9 4 6 3 c d a 7 b 8 1 e f 2 5

T ′1 0 c f 5 1 8 3 d e 6 7 b 2 9 a 4

T ′2 0 9 4 6 3 c d a 7 b 8 1 e f 2 5

T ′3 0 3 a e c 1 9 f 6 7 b 8 5 d 4 2

T ′4 0 1 d 2 8 b c 9 5 e 6 7 4 3 f a

T ′5 0 5 b 3 2 4 e 7 9 d f a c 6 8 1

T ′6 0 2 7 c 4 a 5 6 3 9 d f 1 e b 8

T ′7 0 1 d 2 8 b c 9 5 e 6 7 4 3 f a

T ′8 0 4 6 1 a f 2 e c 3 9 d 8 5 7 b

T ′9 0 8 9 4 b 7 1 3 2 5 e 6 a c d f

T ′a 0 f 5 b d 9 a 2 8 1 c 3 7 4 e 6

T ′b 0 3 a e c 1 9 f 6 7 b 8 5 d 4 2

T ′c 0 7 c f 6 e b 1 a 4 2 5 d 8 3 9

T ′d 0 8 9 4 b 7 1 3 2 5 e 6 a c d f

T ′e 0 4 6 1 a f 2 e c 3 9 d 8 5 7 b

T ′f 0 9 4 6 3 c d a 7 b 8 1 e f 2 5

Table 13.4: A modi�ed version T ′ of the mini-block cipher T .

Furthermore,T ′ is such that all lines ofT ′k can be obtained through a linear com-
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bination of T ′6 ,T ′7 ,T ′8 and T ′9 as follows:

T ′0 = T ′7 ⊕ T
′
9 T ′1 = T ′8 ⊕ T

′
9 T ′2 = T ′7 ⊕ T

′
9

T ′3 = T ′6 ⊕ T
′
7 T ′4 = T ′7 T ′5 = T ′7 ⊕ T

′
8

T ′a = T ′6 ⊕ T
′
7 ⊕ T

′
8 ⊕ T

′
9 T ′b = T ′6 ⊕ T

′
7 T ′c = T ′6 ⊕ T

′
7 ⊕ T

′
8

T ′d = T ′9 T ′e = T ′8 T ′f = T ′7 ⊕ T
′
9 .

(13.1)

Besides, T ′6 ,T ′7 ,T ′8 and T ′9 are all a�ne equivalent. Indeed, the linear mapping A de-
�ned by A : 1 7→ 4,2 7→ 1,4 7→ 8,8 7→ a (see Figure 13.7a) is such that:

T ′7 = A ◦ T ′6
T ′8 = A2 ◦ T ′6
T ′9 = A3 ◦ T ′6 .

Let us denote swap2lsb the operation consisting of swapping the two least signi�cant
bits of a 4-bit word. By composing A with swap2lsb before and after to obtain Â =
swap2lsb ◦A ◦ swap2lsb, we obtain a clear lfsr structure displayed in Figure 13.7b.

⊕

(a) De�nition of A.

⊕

(b) A representation of Â.

Figure 13.7: The mapping used to generate T ′7 ,T ′8 and T ′9 from T ′6 .

We deduce the LFSR polynomial to be X 4 + X 3 + 1. This points towards �nite
�eld multiplication and, indeed, the mapping Â can be viewed as a multiplication by
X in F24 = F2[X ]/(X 4 +X 3 + 1). To �t the swap into the original TU-decomposition,
we modify T ′6 and the bottom linear layer. We use the fact that

Ai = (swap2lsb ◦ Â ◦ swap2lsb)i = swap2lsb ◦ Âi ◦ swap2lsb for i = 0,1, . . .,

to merge one swap2lsb intoT ′6 and move the other swap2lsb through xors outsideT ′.
If we let t = swap2lsb ◦T ′6 then swap2lsb ◦T ′k (x ) is a linear combination of X i � t (x )
for some exponents i ∈ {0,1,2,3} and � is multiplication in the speci�ed �eld. In the
end, T can be expressed as

Tk (x ) = swap2lsb
(
f (k ) � t

(
x ⊕ tin (k ) ⊕ 0xC

))
,

where f captures the linear relations described in Equations (13.1). Both f and t
are given in Figure 13.8b and a picture representing the structure of T is given in
Figure 13.8a.

Note that f (x ) is never equal to 0: if it were the case then the function would
not be invertible. On the other hand, the inverse ofTk is easy to compute: f must be
replaced by 1/f where the inversion is done in the �nite �eld F24 , t by its functional
inverse t−1 and the order of the operations must be reversed.

13.2.2.2 Reverse-Engineering U

We can easily deduce from Table 13.3b that for k , 0, Uk can be expressed as

Uk (x ) =
(
k3 ×U8 (x )

)
⊕

(
k2 ×U4 (x )

)
⊕

(
k1 ×U2 (x )

)
⊕

(
k0 ×U1 (x )

)
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k3 k2 k1 k0 x3 x2 x1 x0
⊕
⊕

t

f �

(a) The high-level structure of T .

0 1 2 3 4 5 6 7 8 9 a b c d e f

f a c a 3 2 6 1 2 4 8 f 3 7 8 4 a

t 2 d b 8 3 a e f 4 9 6 5 0 1 7 c

(b) Mappings f and t .

Figure 13.8: The components of our decomposition of the mini-block cipher T .

0 1 2 3 4 5 6 7 8 9 a b c d e f

B2 5 c 0 9 2 b 7 e 3 a 6 f 4 d 1 8
B4 1 d 7 b f 3 9 5 c 0 a 6 2 e 4 8
B8 5 6 d e 0 3 8 b a 9 2 1 f c 7 4

Table 13.5: A�ne functions such that Uk = Bk ◦U1 for k ∈ {2,4,8}.

where k = ∑
i≤3 ki2i and “×” denotes a simple multiplication. We also notice that the

permutations U2,U4 and U8 can all be derived from U1 using some a�ne functions
Bk so that Uk = Bk ◦U1. The values of Bk (x ) are given in Table 13.5.

If we let B (x ) = B4 (x ) ⊕ 1 then B2 (x ) = B−1 (x ) ⊕ 5 and B8 (x ) = B2 (x ) ⊕ 5. Thus,
we can de�ne a linear function uout such that

U1 (x ) = B0 ◦U1 (x ) ⊕ uout (1)
U2 (x ) = B−1 ◦U1 (x ) ⊕ uout (2)
U4 (x ) = B1 ◦U1 (x ) ⊕ uout (4)
U8 (x ) = B2 ◦U1 (x ) ⊕ uout (8).

(13.2)

Let M2 be the matrix representation of the multiplication by X in the �nite �eld we
used to decompose T , namely F24 = F2[X ]/(X 4 + X 3 + 1). The linear mapping uf
de�ned by uf : 1 7→ 5,2 7→ 2,4 7→ 6,8 7→ 8 is such that B = uf ◦ M2 ◦ u

−1
f so that

Equations (13.2) can be re-written as

U1 (x ) =
(
uf ◦M

0
2 ◦ u

−1
f ◦U1

)
(x ) ⊕ uout (1)

U2 (x ) =
(
uf ◦M

−1
2 ◦ u

−1
f ◦U1

)
(x ) ⊕ uout (2)

U4 (x ) =
(
uf ◦M

1
2 ◦ u

−1
f ◦U1

)
(x ) ⊕ uout (4)

U8 (x ) =
(
uf ◦M

2
2 ◦ u

−1
f ◦U1

)
(x ) ⊕ uout (8).

(13.3)

If we swap the two least signi�cant bits of k , then the exponents of matrix M2 will go
in ascending order: (−1,0,1,2). Letu1 = M−1

2 ◦u
−1
f ◦U1. SinceM2 is the multiplication

by X in the �nite �eld, we can write the following expression for Uk (when k , 0):

Uk (x ) = uf
(
u1 (x ) � swap2lsb(k )

)
⊕ uout (k ). (13.4)

The complete decomposition of U is presented in Figure 13.9. It uses the 4-bit per-
mutationsu0 andu1 speci�ed in Table 13.9b. We could not �nd a relation betweenu1
and u0 = u−1

f ◦U0 so there has to be a conditional branching: U selects the result of
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Equation (13.4) if k , 0 and the result of u0 (x ) otherwise before applying uf . This is
achieved using a multiplexer which returns the output of u0 if k3 = k2 = k1 = k0 = 0,
and returns the output of u1 if it is not the case. In other words, U can be computed
as follows:

Uk (x ) =



uf
(
u1 (x ) � swap2lsb(k )

)
⊕ uout (k ), if k , 0

uf
(
u0 (x )

)
if k = 0.

k3 k2 k1 k0 x3 x2 x1 x0

u1 u0

�

Multiplexer

⊕
⊕

⊕⊕
⊕
⊕⊕

uf

⊕uout

(a) A high level view of U .

0 1 2 3 4 5 6 7 8 9 a b c d e f

u0 8 b 0 2 9 1 4 f c 5 7 3 e d 6 a

u1 4 7 d e 8 9 1 0 6 3 f a 2 c b 5

(b) The permutations u0 and u1.

Figure 13.9: The structure of the mini-block cipher U and its components.

13.2.2.3 A Structure for π

In Sections 13.2.2.1 and 13.2.2.2, we decomposed the two mini-block ciphers T and
U which can be used to build π ′−1, the inverse of L∗ ◦ π ◦ L∗. These mini-block
ciphers are based on the non-linear 4-bit functions f ,t ,u0,u1, two �nite �eld multi-
plications, a “trick” to bypass the non-invertibility of multiplication by 0 and simple
linear functions. Let us now use the expressions we identi�ed to express π itself.

First, we associate the linear functions identi�ed as parts of the decompositions
ofT andU with L∗ to form α and ω, two linear permutations applied respectively at
the beginning and the end of the computation.

Input layer α . First of all, we need to apply L∗ as well as the the swap of the left
and right branches (swapNibbles) present in the high level decomposition of π ′−1

(see Figure 13.6). Then, we note that the key inU needs a swap of its 2 bits of lowest
weight (swap2lsb) and that the ciphertext ofT needs the same swap. Thus, we simply
apply swap2lsb. Then, we apply the addition of uout and the inverse of uf .

Output layer ω. This function is simpler: it is the composition of the addition of
tin and of L∗.
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The matrix representations of these layers are

α =



0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
0 1 0 0 0 0 1 1
1 1 1 0 1 1 1 1
1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 0
0 0 0 1 1 0 1 0
0 0 1 0 0 0 0 0



, ω =



0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 1 1 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



.

Deducing π . In order to invert U , we de�ne ν0 = u−1
0 and ν1 = u−1

1 . If ` = 0, then
the output of the inverse ofU is ν0 (r ), otherwise it is ν1

(
r �I (`)

)
, where I : x 7→ x14

is the multiplicative inverse in F24 . To invertT , we de�ne σ = t−1 and ϕ = I ◦ f and
compute σ

(
ϕ (`) � r

)
.

ω

σ

ϕ �

ν1ν0

I�

α

(a) High level structure.

0 1 2 3 4 5 6 7 8 9 a b c d e f

I 0 1 c 8 6 f 4 e 3 d b a 2 9 7 5

ν0 2 5 3 b 6 9 e a 0 4 f 1 8 d c 7

ν1 7 6 c 9 0 f 8 1 4 5 b e d 2 3 a

ϕ b 2 b 8 c 4 1 c 6 3 5 8 e 3 6 b

σ c d 0 4 8 b a e 3 9 5 2 f 1 6 7

(b) Non-linear functions.

Figure 13.10: The �rst decomposition of π .

Figure 13.10a summarizes how to compute π using these components. The non-
linear functions are all given in Table 13.10b. A Sage [Dev16] script performing those
computations can be downloaded on Github.2 Pseudo-code computing π using our
components is provided in Algorithm 13.1.

Algorithm 13.1 π evaluation ;
Input: 8-bit block x ;
Output: 8-bit block y
x ← α (x )
` | | r ← x . ` and r are 4-bit long.
if r = 0 then

` ← ν0 (`)
else

` ← ν1 (` � I (r ))
end if

r ← σ
(
r � ϕ (l )

)
y ← ` | | r
return y

2https://github.com/picarresursix/GOST-pi

https://github.com/picarresursix/GOST-pi
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13.2.3 Studying this Decomposition of π

The knowledge of this �rst decomposition can give us more information about the
properties of π . In Section 13.2.3.1 (p. 256), we list some properties of the non-linear
4-bit components we extracted. In Section 13.2.3.2 (p. 256), we comment on the over-
all structure used. Finally, we discuss the impact of this decomposition over the
hardware implementation of π in Sections 13.2.3.3 (p. 259).

13.2.3.1 Analyzing the Components

Table 13.6 summarizes the properties of the non-linear components of our decompo-
sition. While it is not hard to �nd 4-bit permutations with a di�erential uniformity
of 4, we see that none of the components chosen do except for the inverse function.
We can thus discard the idea that the strength of π against di�erential and linear
attacks relies on the individual resilience of each of its components.

1-to-1 Best di�erentials and their
probabilities

Best linear approximations and
their probabilities

ϕ No 1 { d (8/16) 3 { 8 (2/16), 7 { d (2/16)
σ Yes f { b (6/16) 1 { f (14/16)
ν0 Yes 6 { c (6/16), e { e (6/16) 30 approximations (8 ± 4)/16
ν1 Yes 9 { 2 (16/16) 8 approximations (8 ± 6)/16

Table 13.6: Linear and di�erential properties of the components of π .

As can be seen in Table 13.6, there is a probability 1 di�erential in ν1: 9 { 2. Fur-
thermore, a di�erence equal to 2 on the left branch corresponds to a 1 bit di�erence
on bit 5 of the input of ω, a bit which is left unchanged by ω.

The structure itself also implies the existence of a truncated di�erential with high
probability. Indeed, if the value on the left branch is equal to 0 for two di�erent in-
puts, then the output di�erence on the left branch will remain equal to 0 with prob-
ability 1. This explains why the probability that a di�erence in ∆in = {α

−1 (` | |0), ` ∈
F4

2, ` , 0} is mapped to a di�erence in ∆out = {ω (` | |0), ` ∈ F4
2, ` , 0} is higher than

the expected 2−4:

1
24 − 1

∑
δ ∈∆in

P[π (x ⊕ δ ) ⊕ π (x ) ∈ ∆out] =
450

(24 − 1) × 28 ≈ 2−3.

13.2.3.2 Comments on the Structure Used

We de�ne π̂ as ω−1 ◦ π ◦ α−1, i.e. π minus its whitening linear layers.
The structure of π̂ is similar to a 2-round combination of a Misty-like and Feistel

structure where the xors have been replaced by �nite �eld multiplications. To the
best of our knowledge, this is the �rst time such a structure has been used in cryptog-
raphy. There are sophisticated lightweight decompositions of the S-Box of the Aes
which rely on �nite �eld multiplications in F24 , for instance in [Can05]. However,
the high level structure used in this case is quite di�erent. If π corresponds to such
a decomposition then we could not �nd what it corresponds to. Recall in particular
that π cannot be a�ne-equivalent to a monomial.
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The use of �nite �eld multiplications in such a structure yields a problem: if the
output of the “Feistel function” is equal to 0 then the structure is not invertible. This
issue is solved in a di�erent way in each round. During the �rst round, a di�erent
data-path is used in the case which should correspond to a multiplication by zero.
In the second round, the “Feistel function” is not bijective and, in particular, has no
pre-image for 0.

Our decomposition also explains the pattern in the lat3 of π and π ′ that we used
in Section 13.2.1 (p. 248) to partially recover the linear layers permutations α and
ω. This pattern is made of two parts: the white square appearing at the top-left of
L ′π and the “stripe” covering the 16 left-most columns of this table (see Figure 13.3).
While the white-square is caused by an integral pattern, the reason behind the stripe
is more complicated.

On the Stripe The “stripe” is explained by the following lemma which gives a
closed formula expressing those biases as a function of the biases in the lat of ν0
and ν1.

Lemma 13.2.1. Biases in the stripe correspond to approximations (aL | |aR { bL | |0) in
π̂ , where bL > 0. The expression of L[aL | |aR ,bL | |0] is

L[aL | |aR ,bL | |0] = L0[aL ,bL] + 8 ×
(
(−1)bL ·y0 − δ̂ (bL )

)
,

where L0 is the lat of ν0, y0 depends on aR , aL and the lat of ν1, and δ̂ (bL ) is equal to
1 if bL = 0 and to 0 otherwise.

Proof. Biases in the stripe correspond to approximations (aL | |aR { bL | |0) in the
linear layer-less version of π , which is denoted π̂ . These approximations are equal
to:

2 × L[aL | |aR ,bL | |0] =
∑
x ∈Fn2

(−1) (aL | |aR ) ·x ⊕ (bL | |0) ·π̂ (x ) ,

which we decompose by splitting x ∈ F8
2 into (`,r ) ∈ (F4

2)
2 to obtain∑

r ∈F4
2,r,0

∑
`∈F4

2

(−1)aL ·` ⊕ aR ·r ⊕ bL ·ν1 (`�I (r )) +
∑
`∈F4

2

(−1)aL ·` ⊕ bL ·ν0 (`) . (13.5)

The second term in this sum is equal to 2 × L0[aL ,bL] where L0 is the lat of ν0.
The �rst term can be simpli�ed using the change of variable u = ν1 (` � I (r )), i.e.
` = ν−1

1 (u) � r :∑
`∈F4

2

(−1)aL ·` ⊕ bL ·ν1 (`�I (R )) =
∑
u ∈F4

2

(−1)bL ·u ⊕ aL ·(ν−1
1 (u )�r ) .

As a consequence, the �rst term of Equation (13.5) can be re-written:∑
r ∈F4

2,r,0

∑
u ∈F4

2

(−1)aR ·r ⊕ bL ·u ⊕ aL ·(ν−1
1 (u )�r )

=
∑
u ∈F4

2

(−1)bL ·u
*..
,

∑
r ∈F4

2

(−1)aR ·r ⊕ aL ·(ν−1
1 (u )�r ) − 1

+//
-
.

3Note that the lat of π̂ is not exactly the same as L′π which is given in Figure 13.3 because of a
nibble swap.
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First, we note that ∑16
u=0 (−1)bL ·u is equal to 0 if bL , 0 and 16 otherwise. Then, we

remark that ∑
r ∈F4

2
(−1)aR ·r ⊕ aL ·(ν−1

1 (u )�r ) is equal to 2 × Lm
ν−1

1 (u )
[aR ,aL], where Lm

k

is the lat of the Boolean linear permutation r 7→ r � k . If we further replace u by
y = ν−1

1 (u) then Equation (13.5) can be re-written

2 ×
∑
y∈F4

2

(−1)bL ·ν1 (y )Lm
y [aR ,aL] − 16 × δ̂ (bL ).

where δ̂ (bL ) = 1 if and only if bL = 0. Besides, since r 7→ r �k is a linear function for
all k , 0 it holds that for every pair (aR ,aL ) with aR > 0 and aL > 0, there is exactly
one value y0 such that Lm

y0 [aR ,aL] = 8 and Lm
y [aR ,aL] = 0 for y , y0.

We deduce that the expression of L[aL | |aR ,bL | |0] is indeed

L[aL | |aR ,bL | |0] = L0[aL ,bL] + 8 ×
(
(−1)bL ·y0 − δ̂ (bL )

)
.

�

We deduce from Lemma 13.2.1 that, very roughly, ν1 is responsible for the sign
of the biases in the stripe and ν0 for their values. Since the minimum and maxi-
mum biases in L0 are −4 and +4, the absolute value of L[aL | |aR ,bL | |0] is indeed
in {4,6,8,10,12}. As we deduce from our computation of these biases, the stripe is
caused by the conjunction of three elements:

• the use of a multiplexer,

• the use of �nite �eld inversion, and

• the fact that ν0 has good non-linearity.

Ironically, the only “unsurprising” sub-component of π , namely the inverse function,
is one of the reasons why we were able to reverse-engineer this S-Box in the �rst
place. Had I been replaced by a di�erent (and possibly weaker!) S-Box, there would
not have been any observable lines in the lat, the very pattern which got our reverse-
engineering started.

However, detecting linear subspaces of zeroes in the lat of π would have worked
because the white-square does not depend on the use of the inverse function. Fur-
thermore, while not visible with the naked eye, the lower number of values in the
stripe would still imply a drop in the variance of the absolute value of the coe�cients
in it. Thus, the technique previously described in Section 9.1.2.4 (p. 163) would still
work as well.

Alternative Representation Because of the multiplexer, we can deduce an alter-
native representation of π̂ . If the right nibble of the input is not equal to 0 then π̂ can
be represented using a Feistel-like structure as shown in Figure 13.11b. Otherwise, it
is essentially equivalent to one call to the 4-bit S-Box ν0, as shown in Figure 13.11a.
We also have some freedom in the placement of the branch bearing ϕ. Indeed, as
shown in Figure 13.11c, we can move it before the call to ν1 provided we replace ϕ
byψ = ϕ ◦ ν1.

Moreover, the decomposition we found is not unique. In fact, we can create many
equivalent decompositions by e.g. adding multiplication and division by constants
around the two �nite �eld multiplications. We can also change the �nite �eld in
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which the operations are made at the cost of appropriate linear isomorphisms modi-
fying the 4-bit S-Boxes and the whitening linear layers. The presented decomposition
is the most structured that we have found.

⊕ 0xCν0

(a) π̂ when r = 0.

σ

ϕ�

ν1

I�

(b) π̂ when r , 0.

I

ψ

�

�

ν1 σ

(c) π̂ when r , 0.

Figure 13.11: Alternative representations of π̂ where π = ω ◦ π̂ ◦ α .

13.2.3.3 Hardware Implementation

It is not uncommon for cryptographers to build an S-Box from smaller ones, typically
an 8-bit S-Box from several 4-bit S-Boxes, as described in Section 8.3.2 (p. 152). A
common goal is to allow an e�cient implementation of the S-Box in hardware or
using a bit-sliced approach. Another possible reason behind such a choice is given by
the designers e.g. of Clefia: it is to prevent attacks based on the algebraic properties
of the S-Box, especially if it is based on the inverse in F28 like in the Aes. This would
be coherent with the information gathered by Saarinen.

As stated before, hardware optimization was supposed to be one of the design
criteria used by the designers of π . Thus, it is reasonable to assume that one of the
aims of the decomposition we found was to decrease the hardware footprint of the
S-Box.

To test this hypothesis, we simulated the implementation of π in hardware.4 We
used four di�erent de�nitions of π : the look up table given by the designers, our
decomposition, a tweaked decomposition where the multiplexer is moved lower5

and, �nally, the alternative decomposition presented in Figure 13.11c. Table 13.7
contains both the area taken by our implementations and the delay, i.e. the time
taken to compute the output of the S-Box. For both quantities, the lower is the better.
As we can see, the area is divided by up to 2.5 and the delay by 8, meaning that an
implementer knowing the decomposition has a signi�cant advantage over one that
does not.

13.3 Exponential Decompositions

In the S-Box of BelT, the low-variance rows in the lat identi�ed in Section 9.1.2.4
(p. 163) are related to its being a �nite �eld pseudo-exponentiation. Given that the

4We used Synopsys design_compiler (version J-2014.09-SP2) along with digital library
SAED_EDK90_CORE (version 1.11). I thank my colleague Yann Le Corre for performing those experiments

5More precisely, the multiplexer is moved after the left side is input to ϕ . This does not change the
output: when the output of ν0 is selected, the right branch is equal to 0 and the input of σ is thus 0
regardless of the left side.
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Structure Area (µm2) Delay (ns)

Naïve implementation 3889.6 362.52
Feistel-like (similar to Fig. 13.11b) 1534.7 61.53
Multiplications-�rst (similar to Fig. 13.11c) 1530.3 54.01
Feistel-like (with tweaked MUX) 1530.1 46.11

Table 13.7: Results on the hardware implementation of π .

lines observed in the Pollock representation of the lat of π correspond in fact to
low variance columns, it is tempting to investigate a possible relation between π and
pseudo-exponential functions. Another element linksπ to �nite �eld exponentiation:
the 4-bit S-Box ν0 from the decomposition obtained in Section 13.2.2.3 (p. 254) is
a�ne-equivalent to a �nite �eld logarithm in F24 .

In this section, we explore this relation further. We �rst formally identify patterns
linking π to �nite �eld exponentiations in Section 13.3.1 (p. 260). We deduce two
di�erent decompositions, one based on an exponentiation in Section 13.3.1 (p. 260)
and one based on a pseudo-exponentiation in Section 13.3.2 (p. 263). Finally, we
discuss the consequences of these decompositions in Section 14.2 (p. 274).

13.3.1 Finding exponential pa�erns in π−1

For any exponential function x 7→ дx , it holds that дx�c = дx � дc where � denotes
addition modulo 255. This property can be used to check if a function is based on
an exponentiatial. Unfortunately, if the function is composed with some whitening
linear layers then this property does not hold anymore. We can still use it though:
x�2i = x⊕2i with probability 1/2 and “⊕” is linear in the same �eld as the whitening
layer, meaning that values 2i are simply mapped by the whitening layer to other �xed
values.

We made an exhaustive search and found four high probability relations: for
c ∈ {12,26,24,30}, one of the following relations holds for all but 16 values of x :

π−1 (x ⊕ ci ) = π
−1 (x ) �w2i , or

π−1 (x ⊕ ci ) = π
−1 (x )/w2i ,

where i runs over {0,1,2,3}, multiplication and division are done in the �nite �eld
F2[X ]/(X 8+X 4+X 3+X 2+1) andw is the primitive element de�ned byX . For other
polynomials, the relations hold with much lower probabilities.

Interestingly, the linear layer of the block cipher Kuznyechik uses multiplica-
tions in a �nite �eld de�ned by another irreducible polynomial. It is therefore hard
to see whether there is a special relation or interaction between the S-Box and the
linear layer of the block cipher. The linear layer of the inner block cipher of the
hash function Streebog has also been reverse-engineered [KK13] and, much like in
Kuznyechik, uses �nite �eld arithmetic over F8

2 de�ned by the irreducible polyno-
mialX 8+X 6+X 5+X 4+1. To simplify further analysis, we consider the permutation
τ = logw,0 ◦ π

−1.
If π is indeed based on an exponentiation, the constants ci should be mapped

by the linear whitening layer to some powers of 2. We therefore assume that an
unknown linear layer maps ci to 2i for i ∈ {0,1,2,3}.
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.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
0. 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
1. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
2. 143 144 141 142 139 140 137 138 151 152 149 150 147 148 145 146
3. 160 161 158 159 156 157 154 155 168 169 166 167 164 165 162 163
4. 216 215 214 213 220 219 218 217 208 207 206 205 212 211 210 209
5. 97 96 95 94 101 100 99 98 89 88 87 86 93 92 91 90
6. 48 47 50 49 44 43 46 45 40 39 42 41 36 35 38 37
7. 82 81 84 83 78 77 80 79 74 73 76 75 70 69 72 71
8. 172 171 174 173 176 175 178 177 180 179 182 181 184 183 186 185
9. 53 52 55 54 57 56 59 58 61 60 63 62 65 64 67 66
A. 127 126 125 124 123 122 121 120 135 134 133 132 131 130 129 128
B. 246 245 244 243 242 241 240 239 254 253 252 251 250 249 248 247
C. 232 233 230 231 236 237 234 235 224 225 222 223 228 229 226 227
D. 113 114 111 112 117 118 115 116 105 106 103 104 109 110 107 108
E. 221 238 255 0 153 170 187 204 85 102 119 136 17 34 51 68
F. 13 14 15 16 9 10 11 12 5 6 7 8 1 2 3 4

Table 13.8: The look-up table of τ−1 ◦ α−1.

We complete the mapping by setting preimages for powers 2j for j ∈ {4,5,6,7}.
First, we complete it randomly and get some linear mapping α ′ (see Equation 13.6).
We then observe that the look-up table of τ ◦ α ′−1 given in Table 13.8 is very highly
structured. As with the mini-block cipher T decomposed in Section 13.2.2.1 (p. 251),
we can xor a value which depends on the column index to the right branch before
the permutation in such a way that the entries in each rows are sorted in increasing
order — except in the row E. where 0 is misplaced. This function is linear so it can
be included into the linear layer. The matrix of the resulting linear layer β is given
in Equation 13.6 and the look-up table of τ ◦ β−1 is given in Table 13.9.

α ′ =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0



−1

, β =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0
1 0 0 0 1 0 0 1
0 0 1 0 0 0 0 0
0 1 0 0 0 1 1 0
1 0 1 0 0 0 1 1
0 0 0 1 0 0 0 0



−1

. (13.6)

Let
q = [12,2,9,10,13,6,3,5,11,4,8,15,14,7,0,1],

and let qL (x | |y) = q(x ) | | y be a permutation of F4
2 × F

4
2. We reorder the rows by

composing the function with qL , that is, by applying a 4-bit S-Box on the left input
branch of τ ◦ β−1. The look-up table of τ ◦ β−1 ◦ q−1

L is given in Table 13.10. As
we can see, this permutation is almost the identity. We then deduce a complete
decomposition of the inverse of π which is presented in Algorithm 13.2.

Oddly, q is a�ne-equivalent to one of the S-Boxes used in the gost R 34.11-
94 hash function, namely the S-Box “pi[1]” speci�ed in rfc 5831 [Dol10b]. This
hash function is the predecessor of Streebog; it was designed by the Russian Fed-
eral Agency of Government Communications and Information, an institution which
was later incorporated into the fsb. However, there are only 302 a�ne-equivalence
classes of 4-bit S-Boxes (see Table 5 of [BDBP03]), meaning that a mere coincidence
cannot be ruled out.
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.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
0. 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
1. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
2. 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
3. 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
4. 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
5. 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
6. 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
7. 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
8. 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
9. 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
A. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
B. 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
C. 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
D. 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
E. 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 0
F. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 13.9: The look-up table of logλ,0 ◦ π−1 ◦ β−1.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
0. 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 0
1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
3. 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
4. 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
5. 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
6. 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
7. 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
8. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
9. 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
A. 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
B. 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
C. 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
D. 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
E. 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
F. 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

Table 13.10: The look-up table of logλ,0 ◦ π−1 ◦ β−1 ◦ q−1
L .

Algorithm 13.2 π−1 evaluation;
Input: 8-bit block x ;
Output: 8-bit block y
` | | r ← β (x )
` ← q(`)
if ` = 0 then

z ← 17 × ((r + 1) mod 16)
else

z ← 17 × ` + r − 16
end if

y ← expw,0 (z)
return y
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13.3.2 Another Decomposition of π

The somewhat heavy arithmetic performed in the middle of the computation of π
using our new decomposition could point towards the idea that π is built using a
pseudo-exponential rather than an exponential substitution. Intuitively, these oper-
ations could correspond to a “correction” of the o�set.

To explore this idea, we brute-forced all possible preimages z for 0 and all possible
bases v for the exponentiation. For each such pseudo-exponential substitution, we
ran the following steps.

1. Compute6 s = π ◦ expv,z .

2. Compute the di�erential uniformity and the maximum lat coe�cient of s .

3. If these quantities are high enough then look for vector spacesV0 andV1 such
that, for all (a,b) inV0 ×V1, LAT[a,b] = 0.

We restrict ourselves to cases where the maximum lat coe�cient or di�erential
uniformity of s is high. Indeed, this restriction ensures that the functions we study
are “weak”, which would be the case if it consisted only of few simple operations. In
fact, we found that for appropriate choices ofv and z, the di�erential uniformity and
the maximum lat coe�cient are respectively above 120 and 80, while typical values
for a random permutation are expected to be in the vicinity of 12 and 32 respectively
as was seen in Table 9.1 (p. 161).

The idea behind the search for vector spaces of zeroes is of course to identify
possible linear layers to apply before and/or after s in such a way that the resulting
permutation has a TU-decomposition. To do so, we used a variant of the algorithm
described in [BPU16] to recover part of the linear layer used to whiten a 4-round
Feistel Network by reconstructing the pattern described by Lemma 12.2.2 (p. 233).

Among the pairs (z,v ) such thatV0 andV1 were large enough, some were such
that




V0 = {00,01,02,03,04,05,06,07,08,09,0a,0b,0c,0d,0e,0f}

V1 = {00,1a,20,3a,44,5e,64,7e,8a,90,aa,b0,ce,d4,ee,f4}.

Interestingly,V1 = V , the vector space corresponding to the indices of the columns
identi�ed in the Jackson Pollock representation of the lat of π in Section 13.2.1
(p. 248). The inverse of the �nal linear layer of the decomposition of Section 13.2
(p. 248), which was denoted ω, can therefore be composed with permutations s ob-
tained in this way to derive TU-decompositions of these.

Furthermore, it is possible to �nd a 4 × 4 linear layer Lu such that x 7→ (Lu ◦
Uk ) (x ) = x �q′(k ) for some 4-bit function q′. However, the only pair (v,z) for which
q′ is a permutation is (v = w ,z = 16), in which case q′ has the following look-up
table:

q′ = [4,14,5,12,3,10,2,9,8,1,7,6,15,0,13,11].

Therefore, if we compose s with the inverse of Lu on the right side and the inverse
of q′ on the left one, we obtain a new permutation whose TU-decomposition is such

6We did consider that π might consist of a pseudo-logarithm preceded by another permutation, un-
like here where we consider that it is followed by one. This line of investigation did not lead to any
decomposition.
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thatUk (x ) = x �k , which is quite simple. Unfortunately,T remains a strange object:

Tk ((−1) × x ) =



15, if x + k = 16,
x � 1, if x + k > 16,
x , otherwise,

where + denotes addition without a modulo and where x × y = x × y mod 16. The
full codebook of T is provided in Figure 13.12b. As we can see, each permutation Tk
is obtained from the identity by inserting 15 at position 17 − k (except for T0), much
like 0 is inserted at an arbitrary position in a pseudo-exponential substitution. The
complete decomposition is summarized in Algorithm 13.3 and Figure 13.12a. The
arithmetic layer of Algorithm 13.3 is quite sparse: Uk is merely a modular addition
and Tk is simply derived from the identity. In fact, this arithmetic layer has a di�er-
ential with probability 1/2.

Algorithm 13.3 Evaluation of π ;
Input: 8-bit block x ;
Output: 8-bit block y.

(l | |r ) ← logw,16 (x )
l ← (−l ) mod 16
if l + r = 16 then

l ← 15
else if l + r > 16 then

l ← (l − 1) mod 16
end if

r ← (l + r ) mod 16
l ← q′−1 (l )
y ← ω ′(l | |r )
return y

ω ′

⊗−1

�

q′−1

logw,16

T

(a) High level view.

0 1 2 3 4 5 6 7 8 9 a b c d e f
T0 0 1 2 3 4 5 6 7 8 9 a b c d e f
T1 0 1 2 3 4 5 6 7 8 9 a b c d e f
T2 0 1 2 3 4 5 6 7 8 9 a b c d f e
T3 0 1 2 3 4 5 6 7 8 9 a b c f d e
T4 0 1 2 3 4 5 6 7 8 9 a b f c d e
T5 0 1 2 3 4 5 6 7 8 9 a f b c d e
T6 0 1 2 3 4 5 6 7 8 9 f a b c d e
T7 0 1 2 3 4 5 6 7 8 f 9 a b c d e
T8 0 1 2 3 4 5 6 7 f 8 9 a b c d e
T9 0 1 2 3 4 5 6 f 7 8 9 a b c d e
Ta 0 1 2 3 4 5 f 6 7 8 9 a b c d e
Tb 0 1 2 3 4 f 5 6 7 8 9 a b c d e
Tc 0 1 2 3 f 4 5 6 7 8 9 a b c d e
Td 0 1 2 f 3 4 5 6 7 8 9 a b c d e
Te 0 1 f 2 3 4 5 6 7 8 9 a b c d e
Tf 0 f 1 2 3 4 5 6 7 8 9 a b c d e

(b) The code-book of the block-cipher T .

Figure 13.12: Another decomposition of π .
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13.4 A Discussion of Our Decompositions

The exponential-based decompositions have less “information-heavy” elements than
the Feistel-based one — one 4-bit S-Box and one linear layer instead of four and two
respectively.

The last decompositions contain a central layer consisting of several arithmetic
operations whose purpose is not clear. Oddly enough, the �nite �eld logarithms or
exponentials do not have TU-decompositions, but one appears when the arithmetic
layer is added. It is therefore possible that these were added so as to build S-Boxes
with better hardware implementations, as discussed in Section 13.2.3.3 (p. 259).

The relationship between our decompositions is anything but obvious. While
the �nal linear layers are related, the remainder is utterly di�erent: two 4-bit �nite
�eld multiplications, 5 random-looking 4-bit S-Boxes and a multiplexer turn out to
be functionally equivalent to a pseudo logarithm followed by modular arithmetic and
a 4-bit S-Box.

The relation between the two representations would have been clearer if the mod-
ular arithmetic layer had been placed before the pseudo-logarithm. In this case the
�nite �eld multiplications would have been performed with logarithm tables. It is
not the case: removing the �nal linear layer exposes directly a modular addition in
the new decompositions.

We also note that the function π−1 ◦ logw,16 is extremely weak from a crypto-
graphic perspective. Its coordinates have an algebraic degree as low as 3, it is di�er-
entially 128-uniform and its highest linear bias is 96/128. We deduce that, in some
sense, π is “close” to logw,16. A permutation picked uniformly should yield a random
looking S-Box when composed with logw,16, not a di�erentially 128-uniform. The
probability that a random 8-bit permutation is at least di�erentially 128-uniform can
be estimated7 using Theorem 9.1.1 (p. 160). Under the conditions of Theorem 9.1.1,
probability that a random permutation has a di�erential uniformity strictly less than
128 is given by:

Pr[∆s < 128] = *
,
1 −

256∑
k=128

exp(−1)
k!

+
-

255×255

≈ 1 − (2552)

e

256∑
k=128

1
k! ≈ 1 − 2−346 .

In other words, the probability that a random permutation composed with logw,16 is
di�erentially 128-uniform is extremely low. The only way such an event can occur
is if π indeed has a structure somewhat related to logw,16.

These results show that the algebraic structure, whose presence was known thanks
to the �rst decomposition, is stronger and more mathematical in nature.

The permutation π may have been built using one of the decompositions pre-
sented in this section. However, we think it more likely that each of these decom-
positions is a consequence of another still secret algebraic structure, one related to
a �nite �eld exponential. Still, this “master decomposition” remains elusive. Unfor-
tunately, unless the Russian secret service release their design strategy,8 their exact

7Theorem 9.1.1 (p. 160) relies on the assumption that the ddt coe�cients are independent. This
approximation is likely to interfere with our computation: since the sum of the coe�cients in each column
is equal to 256, having one greater than or equal to 128 will skew the distribution of all the other coe�cients
in the same row and column. Still, this estimation of Pr[∆s < 128] shows that this probability is negligible.

8Alas, such a release seem unlikely. The designers of these algorithms did release the design crite-
ria for the round constants of Streebog [Rud15] after it was shown that those could be chosen malevo-
lently [AY15b]. However, when asked by a cryptographer about their S-Box design in light of the work
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process is likely to remain a mystery, if nothing else because of the existence of al-
ternative decompositions. Which exists by design and which is a mere side-e�ect of
this design?

presented in this chapter, they insisted that they did generate π pseudo-randomly and that our �rst de-
composition constitutes a “discovery” which is welcome as it simpli�es the hardware implementation of
the S-Box. This claim is coherent with Saarinen’s initial recollection of his conversations with the design-
ers. I remain nevertheless extremely skeptical about the groundedness of their claims.



Chapter14

Decomposing the Only Known Apn

Permutation on F22n

The techniques intended for S-Box reverse-engineering and other structural attacks
described in the previous chapters can be applied to other aims. Indeed, as long as
the full look-up table of a function is known, those same methods can be applied to
try and decompose this function.

We have applied this idea with great success to the only known solution to the
apn problem. The coe�cients in the ddt of an S-Box are always even and, in order
to ensure resilience against di�erential attacks, the lower their maximum the better.
An optimal function in this context is one which only has 0 and 2 in its ddt — except
when the input di�erence is equal to 0. Such a function is called Almost Perfect Non-
linear (apn). It is easy to �nd apn permutations in F2n when n is odd but the very
existence of such objects for n even is an open problem. The most recent advance on
this topic is a paper by a team of mathematicians from the nsa [BDMW10] who ex-
hibited the �rst apn permutation in F26 , S0. Unfortunately, they could not generalize
their construction to higher dimensions and stated the still open “big apn problem”.

Open Problem 14.0.1 (Big apn Problem). Is it possible to �nd an apn permutation
of F2n for n even and n ≥ 8?

In this chapter, I �rst present the decomposition of S0 Aleksei Udovenko and I
derived. It is a particular case of the open butter�y construction which is recovered
in Section 14.1 (p. 268). A �rst analysis of this structure is presented in Section 14.2
(p. 274). Our decomposition implies the existence of e�cient hardware and bit-sliced
implementations of S0 which are discussed in Section 14.3 (p. 277). Using these re-
sults, Anne Canteaut, Sébastien Duval and I developed a more advanced general-
ization of the butter�y structure. The properties of such mappings are explored in
Section 14.4 (p. 280). Unfortunately, we show that Dillon’s permutation is the only
apn generalized butter�y, which therefore cannot be solutions of the big apn prob-
lem.

In what follows, the �eld trace of an element x of F2n is:

Tr (x ) =
n−1∑
i=0

x2i .

267
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14.1 A Decomposition of the 6-bit Apn Permutation

In this section, we identify a decomposition of the Dillon apn permutation. We de-
note this permutation S0 : F6

2 → F
6
2 and give its look-up table in Table 14.1. As we

are interested only in its being an apn permutation, we allow ourselves to compose
it with a�ne permutations as such transformations preserve this property. We will
omit the respective inverse permutations to simplify our description.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 00 36 30 0d 0f 12 35 23 19 3f 2d 34 03 14 29 21

1. 3b 24 02 22 0a 08 39 25 3c 13 2a 0e 32 1a 3a 18

2. 27 1b 15 11 10 1d 01 3e 2f 28 33 38 07 2b 2c 26

3. 1f 0b 04 1c 3d 2e 05 31 09 06 17 20 1e 0c 37 16

Table 14.1: The Dillon permutation S0 in hexadecimal (e.g. S0 (0x10) = 0x3b).

As in Chapter 13, our strategy relies on the TU-decomposition of Theorem 1. Sec-
tion 14.1.1 presents this �rst decomposition. Then, we decompose the corresponding
mini-block ciphers in Section 14.1.2. Finally, we provide the complete decomposition
of an S-Box a�ne-equivalent to S0 in Section 14.1.3.

14.1.1 High-Level TU-Decomposition

The “Jackson Pollock” representation of the absolute value of the lat of S0 is given in
Figure 14.1a. We can see some patterns, namely columns and aligned short vertical
segments of black and white colors within a grey rectangle, where white is 0, grey is
4 and black is 8. The black-and-white columns also have the 8 topmost coe�cients
equal to zero. Moreover, their horizontal coordinates form a linear subspace of F6

2.

(a) lat of S0. (b) lat of ηt ◦ S0.

Figure 14.1: The Jackson Pollock representation of the lat of two permutations (ab-
solute value).

We compose the S-Box with a linear permutation mapping these special columns
to the leftmost columns of the picture. The black-and-white columns have coor-
dinates {0,4,a,e,10,14,1a,1e}. Those form a linear subspace of F6

2 of dimension 3
spanned by the binary expansions of 4,a and 10.

We therefore build the linear permutation ηF6
2 → F

6
2 so that

η(1) = 4, η(2) = a, η(4) = 10
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and, in order to fully de�ne it, we complete it by setting

η(8) = 1, η(10) = 2, η(20) = 20 .

Using Lemma 8.2.4, the composition ηt ◦ S0 has an lat which groups the black-and-
white columns to its left, as intended. It is indeed the case: this pattern is visible in
the Pollock representation of ηt ◦ S0 in Figure 14.1b.

The “grey-less” columns have indeed been grouped, as was our goal, but addi-
tional patterns have emerged. The short black-and-white segments became small
squares, thus making the whole picture more structured. There is also a “white-
square”, typical of the structures described by Lemma 12.3.1 in the top-left corner.

By applying this Lemma, we deduce a TU-decomposition of the original per-
mutation based on mini-block ciphers T and U as well as the linear layer ηt . The
corresponding mini-block ciphers T and U are given in Table 14.2.

0 1 2 3 4 5 6 7
T0 0 6 4 7 3 1 5 2
T1 7 5 1 6 4 2 0 3
T2 4 3 2 0 5 6 1 7
T3 3 5 2 1 4 6 7 0
T4 1 2 0 6 4 3 7 5
T5 6 5 2 4 7 0 1 3
T6 5 2 6 4 0 3 1 7
T7 2 0 1 6 5 3 4 7

(a) T .

0 1 2 3 4 5 6 7
U0 0 3 6 4 2 7 1 5
U1 7 4 0 2 3 6 1 5
U2 1 4 2 6 3 0 5 7
U3 7 2 5 1 3 0 4 6
U4 7 3 4 1 0 2 6 5
U5 3 7 1 4 2 0 5 6
U6 1 3 7 4 6 2 5 0
U7 4 6 3 0 5 1 7 2

(b) U .

Table 14.2: The keyed permutations T and U . Tk and Uk denote the permutations
corresponding to the key k .

Using the algorithm by Biryukov et al. from [BDBP03], we found that the per-
mutations T −1

k and Uk are linearly equivalent. This linear equivalence is given by:

U (x ) = M ′U ◦ T
−1 ◦MU (x ),

where T : x | |y 7→ x | |T (x ,y) andU : x | |y 7→ x | |U (x | |y) are 6-bit permutations and
the linear permutations MU and M ′U correspond to the following binary matrices:

MU =



0 1 1 0 1 0
1 0 0 0 1 0
0 0 1 0 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1



, M ′U =



1 1 0 0 0 0
0 1 0 0 1 0
1 0 1 1 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1



.

14.1.2 Decomposing T

SinceT andU are related, we �rst decomposeT and then will deduce a decomposition
of U from it.

As was done for the gost S-Box in Section 13.2.2.1 (p. 251), we compose Tk with
a Feistel round to ensure that 0 is mapped to itself for all keys. If we apply such an
appropriate Feistel round before or after T −1, the corresponding Feistel function is
always a permutation. This Feistel function is linear when used between T and U
but non-linear when applied before. We thus consider the former case. We de�ne
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T ′−1

t⊕

(a) Detaching a linear
Feistel round.

L

t

N

⊕

⊕

(b) Splitting T ′−1 into N and
L.

L

t

I

p

⊕

⊕

(c) Simplifying N into I and
linear functions.

Figure 14.2: Simplifying the keyed permutation T ′−1.

0 1 2 3 4 5 6 7 Interpolation polynomial

T ′−1
0 0 5 7 4 2 6 1 3 3x6 + 2x5 + 3x4 + 5x3 + 2x2 + 0x

T ′−1
1 0 3 1 4 7 5 2 6 3x6 + 2x5 + 1x4 + 5x3 + 4x2 + 2x

T ′−1
2 0 4 5 7 3 6 2 1 3x6 + 2x5 + 0x4 + 5x3 + 0x2 + 0x

T ′−1
3 0 2 3 7 6 5 1 4 3x6 + 2x5 + 2x4 + 5x3 + 6x2 + 2x

T ′−1
4 0 2 5 1 7 4 6 3 3x6 + 2x5 + 3x4 + 5x3 + 0x2 + 5x

T ′−1
5 0 4 3 1 2 7 5 6 3x6 + 2x5 + 1x4 + 5x3 + 6x2 + 7x

T ′−1
6 0 3 7 2 6 4 5 1 3x6 + 2x5 + 0x4 + 5x3 + 2x2 + 5x

T ′−1
7 0 5 1 2 3 7 6 4 3x6 + 2x5 + 2x4 + 5x3 + 4x2 + 7x

Table 14.3: The values and polynomial interpolation of each T ′−1
k .

t (k ) = Tk (0) and T ′k (x ) = Tk (x ) ⊕ t (k ) as illustrated in Figure 14.2a, so that T ′k (0) =
T ′−1
k (0) = 0 for all k . The linear permutation t is given by t (x ) = [0,7,4,3,1,6,5,2].

We then look for algebraic structures inT ′. The irreducible polynomialX 3+X +1
is used to perform computations in F23 . Let w be a generator of the multiplicative
subgroup of F23 . We represent an element x = x0 ⊕ x1w ⊕ x2w

2 of this �eld using an
italic rendition of the integer x0 + 2x1 + 4x2. For example,w is represented as 2. This
representation is motivated by concision and convenience for working with Sage
[Dev16] where �eld elements can be generated from integers in this fashion using
the F.fetch_int() method of a �nite �eld instance F. We only use this notation for
this decomposition process.

The Lagrange interpolation of T ′−1
k for all k as polynomials over F23 is given in

Table 14.3. Interestingly, the coe�cients of the non-linear terms x6,x5 and x3 are key-
independent. We thus decomposeT ′−1 as a sum of its non-linear part N and its key-
dependent linear part Lk so thatT ′−1

k (x ) = N (x )+Lk (x ), whereN (x ) = 3x6+2x5+5x3

and Lk (x ) is linear for any k . This process is illustrated in Figure 14.2b.
We now simplify N by applying a linear permutation of our choice afterT ′−1 (see

Figure 14.2c). The output of T ′−1 corresponds to the input of the higher level struc-
ture, meaning that applying this linear function will result in an overall construction
a�ne-equivalent to the original, and thus one which is also apn. Choosing this side
also avoids a corresponding modi�cation of U . We choose the linear permutation
p (x ) = 4x4 + x2 + x because (p ◦ N ) : x 7→ x6 is the multiplicative inverse function
in F23 . We denote this inverse I.
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Function Polynomial
p ◦ L0 7x4 + 3x2

p ◦ L1 2x4 + 4x2

p ◦ L2 0x4 + 0x2

p ◦ L3 5x4 + 7x2

Function Polynomial
p ◦ L4 4x4 + 6x2

p ◦ L5 1x4 + 1x2

p ◦ L6 3x4 + 5x2

p ◦ L7 6x4 + 2x2

Table 14.4: The interpolation polynomials of each p ◦ Lk .

The composition of p and Lk , denoted, (p ◦ Lk ), is also simpler than Lk . Its La-
grange interpolation only has nonzero coe�cients for the terms in x2 and in x4, as
can be see seen in Table 14.4. The composition of p with L2 is the constant function
(p ◦ L2) : x 7→ 0 so we add 2 to k to obtain these linear layers:

(p ◦ Lk ) (x ) = l2 (k + 2)x2 + l4 (k + 2)x4,

where l2 (x ) = 2x4+ 4x2+x and l4 (x ) = x4+ 6x2+ 2x are deduced from the Lagrange
interpolations of p ◦ Lk from Table 14.4.

We can simplify this structure further. To this end, we looked for a linear per-
mutation q such that l2 ◦ q and l4 ◦ q have simpler forms. It turns out that if q(x ) =
3x4 + 7x2 + 3x then (l2 ◦ q) (x ) = x4 and (l4 ◦ q) (x ) = x2. Thus, we deduce that
(p ◦ Lk ) (x ) = k

′4x2 + k ′2x4, where k ′ = q−1 (k + 2).
In the end, we have obtained a representation of of p ◦T ′−1 which depends only

on linear functions and the inverse function. It is described in Equation (14.1) and in
Figure 14.3:

(p ◦T ′−1
k ) (x ) = x6 + x2k ′4 + x4k ′2

= (x + k ′)6 + k ′6, with k ′ = q−1 (k + 2) .
(14.1)

L

t

I

p

⊕

⊕

2
q1 q−1 ⊕

2

⊕

(a) Using k ′ = q(k ) ⊕ 2.

t

I

I⊕

q−1 ⊕

2

⊕

⊕

(b) Using Equation (14.1).

Figure 14.3: Simplifying p ◦ L and thus T ′−1. The dashed area corresponds to the
equivalence given by Equation 14.1.

Then, we replace the application of x 7→ q−1 (x + 2) on the horizontal branch in
Figure 14.3b by its application on the right vertical branch followed by its inverse
(see Figure 14.4a; note that q−1 (2) = 5). By then discarding the a�ne permutation
applied on the top of the right branch, we obtain the structure shown in Figure 14.4b.
Finally, we merge the two linear Feistel functions t and q into z : x 7→ t (q(x )) ⊕ x to
obtain our �nal decomposition of T −1:

T −1 (` | |r ) = I
(
` + z

(
q−1 (r )

)
+ 5

)
+ I

(
q−1 (r ) + 5

)
| | (q−1 (r ) + 5),



272 Decomposing the Only Known Apn Permutation on F22n

which is also described in Figure 14.4c. In what follows, we use this decomposition
of T to express a complete permutation a�ne-equivalent to S0.

t

q−1

5

I

I

5
q

(a)

q−1

I

qt⊕

⊕

⊕5 ⊕5

I⊕

(b)

q−1

I

z⊕

⊕5 ⊕5

I⊕

(c)

Figure 14.4: Finishing the decomposition ofT −1: movingq, q−1 and x 7→ x+2 around,
removing the outer a�ne layer and merging the Feistel linear rounds.

14.1.3 Joining the decompositions of T and U .

Let us now join the decomposition of T and U together, that of U being obtained
using thatU its a�ne-equivalence withT . The a�ne transformations applied on the
top ofT ′−1 make the relation betweenT −1 andU a�ne instead of linear on one side.
This side corresponds to the output of the S-Box and we omit this transformation.
The other linear mapping MU connecting T −1 and U merges with the linear part
of T −1 and its symmetric copy from U into the linear mapping M , as illustrated in
Figures 14.5a and 14.5b). The linear permutation M has the following matrix repre-
sentation:

M =



1 0 1 1 1 1
1 1 0 0 1 0
0 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 0
1 0 1 0 0 1



.

In order to further improve our decomposition, we studied how each component
of this structure could be modi�ed so as to preserve the apn property of the permuta-
tion. We investigated both the replacement of the linear and non-linear permutations
used and described our �ndings in [PUB16]. In particular, we found that we could
modify the central a�ne layer in the following fashions while still keeping the apn
property of the permutation (see Theorem 2 of [PUB16]):

• changing the xor constants to any value, and, in particular, setting them to 0;

• inserting two arbitrary 3-bit linear permutations a and b as shown in Fig-
ure 14.5c.

Thus, we remove the xors from the structure and exhaustively check all linear per-
mutations a,b such that the resulting linear layer from Figure 14.5c has the simplest
form. We found that for




a(x ) = 2x4 + 2x2 + 4x
b (x ) = 2x4 + 3x2 + 2x

,
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(a) Joining the decompositions of T
and U .
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(b) Merging linear lay-
ers.
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a a

M

b b

I

I

(c) Allowed transfor-
mations.

Figure 14.5: Simplifying the middle a�ne layer. The linear mappings in the dotted
area in Figure 14.5a form the linear layer M .

the resulting linear permutation can be represented by the matrix M ′ over (F23 ×F23 )
de�ned as

M ′ =

[
2 5
1 2

]
.

Because M ′ is an involution and because of the symmetry of our decomposition,
the whole S-Box is involutive too! The matrix M ′ can further be decomposed into
a 2-round Feistel Network with �nite �eld multiplications by 2 as Feistel functions.
We deduce our �nal decomposition from this �nal observation and describe it in the
following theorem.

Main Theorem 2. There exist linear bijections A and B such that the apn 6-bit per-
mutation of Dillon et al. is equal to

S0 (x ) = B (SI (A(x ) ⊕ 9) ⊕ 4,

where SI (` | |r ) is the concatenation of two bivariate polynomials of F23 denoted SL
I
(`,r )

and SR
I
(`,r ) and which are equal to




SR
I
(` | |r ) = (r 6 + `)6 + 2 � r ,

SL
I
(` | |r ) =

(
r + 2 � SR

I
(`,r )

)6
+

(
SR
I
(`,r )

)6
.

A picture representing a circuit computing SI is given in Figure 14.6.

For the sake of completeness, we give the matrices of the linear permutations A
and B:

A =



1 1 0 1 0 1
1 1 1 1 0 0
1 0 0 0 0 0
0 0 0 1 0 1
0 0 0 1 0 0
0 0 0 1 1 0



, B =



0 1 1 1 0 1
0 0 0 0 0 1
0 0 1 1 1 0
0 0 0 1 1 1
0 0 1 0 1 0
1 0 1 1 0 1



.
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I
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⊕

⊕
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I

�
2

⊕

⊕

Figure 14.6: The apn involution SI , where I denotes the inverse in the �nite �eld
F23 i.e. the monomial x 7→ x6.

14.2 Analyzing Our Decomposition

In this section, we study the structure of the 6-bit apn permutation we derived from
the Dillon permutation in the previous section. We start with a description of its
cryptographic properties in Section 14.2.1. Then, we generalize this structure into
the Butter�y structure (see Section 14.2.2). We also discover some new relations be-
tween the apn permutation, the Kim function and the cube mapping over F26 in
Section 14.2.3.

14.2.1 Cryptographic Properties

The �rst consequence of our decomposition is the surprising observation that the 6-
bit apn permutation is a�ne-equivalent to an involution. To the best of our knowl-
edge, this was not known.

The permutation SI is obviously apn due to its a�ne-equivalence with the per-
mutation of Dillon et al., so that the highest di�erential probability is equal to 2/64 =
2−5. The Pollock representation of the ddt of Swap ◦ SI ◦ Swap, where Swap denotes
a swap of two 3-bit branches, is provided in Figure 14.7a. The lat of SI contains1, in
absolute value, only 3 di�erent coe�cients: 945 occurrences of 0, 2688 occurrences
of 4 and 336 occurrences of 8. Its Pollock representation is in Figure 14.7b. The max-
imum linear bias is 8/32 = 2−2. The left half of its output bits have algebraic degree
4 and those on the right half have algebraic degree 3.

14.2.2 The Bu�erfly Structure

As described above, the output of our 6-bit apn permutation SI is the concatenation
of two bivariate polynomials of F23 . We de�ne the keyed permutation Rk of F23 with
a key in F23 as

Rk (x ) = (x + 2 � k )6 + k6,

where Rk is indeed a permutation a�ne equivalent to the inverse function x 7→ x6.
In fact, its inverse R−1

k such that R−1
k (Rk (x )) = x is equal to R−1

k = (x + k6)6 + 2 � k .
Using this keyed permutation and its inverse, it is easy to express SI :

SI (` | |r ) = RR−1
r (`) (r ) | | R

−1
r (`) .

1As SI is a permutation, we ignore the �rst line and the �rst column of its lat.
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(a) Ddt of Swap ◦ SI ◦ Swap (white: 0,
black: 2).

(b) Lat of SI (white: 0, grey: 4, black: 8).

Figure 14.7: The Pollock representation of the ddt and lat of SI .

This structure is described in Figure 14.8a.
Using this representation, we show that SI is ccz-equivalent to a quadratic func-

tion with a very similar structure. First, we recall the de�nition of ccz-equivalence,
where ccz stands for Carlet-Charpin-Zinoviev [CCZ98] as it is de�ned e.g. in [BN15].

De�nition 14.2.1 (ccz-equivalence). Let f and д be two functions mapping F2n to it-
self. They are said to be ccz-equivalent if the sets {(x , f (x )) | x ∈ F2n } and {(x ,д(x )) | x ∈
F2n } are a�ne equivalent. In other words, they are ccz-equivalent if and only if there
exists a linear permutation L of (F2n )

2 such that
{
(x , f (x )),∀x ∈ F2n

}
=

{
L (x ,д(x )) ,∀x ∈ F2n

}
.

For example, a permutation is ccz-equivalent to its inverse because the function
L : (x ,y) 7→ (y,x ) is linear.

A key property of ccz-equivalence is that it preserves both the di�erential uni-
formity and the Walsh spectrum (i.e. the distribution of the coe�cients in the lat).

Lemma 14.2.1. The permutation SI is ccz-equivalent to the quadratic function QI :
F26 → F26 obtained by concatenating two bivariate polynomials of F23 :

QI (` | |r ) = Rr (`) | | R` (r ).

A representation of QI is given Figure 14.8b.

R−1

R

(a) The permutation SI .

R R

(b) The function QI .

Figure 14.8: Two CCZ-equivalent APN functions of F6
2.
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Proof. The functional graph of the function QI is the following set:
{(
x | |y, Ry (x ) | |Rx (y)

)
, ∀x | |y ∈ F26

}
,

in which we can replace the variable x by z = Ry (x ) so that x = R−1
y (z) — recall that

Rk is invertible for all k . We obtain a new description of the same set:
{(
R−1
y (z) | |y, z | |RR−1

y (z ) (y)
)
, ∀z | |y ∈ F26

}
.

As the function µ : (F26 )2 → (F26 )2 with µ (x | |y,a | |b) = (a | |y,b | |x ) is linear, this
graph is linearly equivalent to the following one:

{(
z | |y, RR−1

y (z ) (y) | |R
−1
y (z)

)
, ∀z | |y ∈ F26

}
,

which is the functional graph of SI . We conclude that the two functions are ccz-
equivalent. �

De�nition 14.2.2 (Butter�y Structure). Let α be in F2n , e be an integer such that
x 7→ xe is a permutation of F2n and Rk [e,α] be the keyed permutation

Rk [e,α](x ) = (x + αk )e + ke .

We call Butter�y Structures the functions of (F2n )
2 de�ned as follows:

• the Open Butter�y with branch size n, exponent e and coe�cient α is the permu-
tation denoted Hα

e de�ned by:

Hα
e (x ,y) =

(
R−1
Ry [e,α ](x ) (y), Ry[e,α](x )

)
,

• the Closed Butter�y with branch size n, exponent e and coe�cient α is the func-
tion denoted Vαe de�ned by:

Vαe (x ,y) =
(
Ry[e,α](x ), Rx [e,α](y)

)
.

Furthermore, the permutation Hα
e and the function Vαe are ccz-equivalent.

xe

x1/e

�
α

⊕

⊕

xe

xe

�
α

⊕

⊕

(a) Open (bijective) butter�y Hαe .

�
α

⊕

xe

xe ⊕

�
α

⊕

xe

xe ⊕

(b) Closed (non-bijective) butter�y Vαe .

Figure 14.9: The two types of butter�y structure with coe�cient α and exponent e .

Pictures representing such functions are given in Figure 14.9. Our decomposition
of the 6-bit apn permutation and its ccz-equivalent function have butter�y struc-
tures: SI = H2

6 and QI = V2
6. In fact, the proof of the ccz-equivalence of open and

closed butter�y is identical to that of Lemma 14.2.1. The properties of a generaliza-
tion of such structures are studied in Section 14.4, in particular in Theorem 14.4.2. In
this section, we focus on the case n = 3.
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14.2.3 Relations with the Kim and the Cube functions

Biryukov et al. suggest in [BDBP03] counting the number of pairs of a�ne permu-
tations A,B such that SI = B ◦ SI ◦ A as a measure of the symmetries inside SI . An
algorithm performing this task is also provided. Using it, we have found that there
are only 7 such pairs including the pair of identity mappings. This property is pre-
served by a�ne transformations, meaning that our decomposition is not necessary
to �nd this number. However, for the S-Box SI , these 7 pairs of transformations have
a natural description. Let “⊗” be such that (a,b) ⊗ (c,d ) = (ac,bd ). Then for all λ in
F∗23 , it holds that

SI (λx ,λ
−1y) = (λ,λ−1) ⊗ SI (x ,y) . (14.2)

In other words, multiplying the inputs by λ and λ−1 is equivalent to multiplying the
outputs by the same values.

This property is reminiscent of one of those of the “Kim mapping”. This func-
tion is a non-bijective quadratic apn function from which Dillon et al. [BDMW10]
obtained the apn permutation by applying ccz-equivalence preserving transforma-
tions. The Kim mapping is de�ned over F26 as

κ (x ) = x3 + x10 +w � x24 ,

where w is some primitive element of F26 . Dillon et al. noticed [BDMW10] that it
has the following property for all λ ∈ F23 :

κ (λx ) = λ3κ (x ) . (14.3)

We found experimentally that the Kim mapping is actually a�ne-equivalent to
all closed butter�ies Vαe with n = 3,e ∈ {3,5,6},Tr (α ) = 0 and α , 0. In particular, it
is a�ne-equivalent to the function QI = V2

6 described before.
The property that k (λx ) = λ3k (x ) for all λ ∈ F23 can be nicely translated to Vαe

structures when α , 0. Indeed, it is easy to see that the following holds for all λ in
F23 :

Vαe (λx ,λy) = (λe ,λe ) ⊗ Vαe (x ,y) .

In particular, setting e = 3 andα such thatVαe is a�ne-equivalent to the Kim mapping
leads to a branch-wise variant of the property from Equation 14.3.

Similarly, the Open Butter�ies Hα
e exhibit the following property:

Hα
e (λ

ex ,λy) = (λe ,λ) ⊗ Hα
e (x ,y) for all λ ∈ F23 . (14.4)

14.3 Implementing 6-bit Apn Permutations

We can use the open butter�y structure to e�ciently implement 6-bit apn permuta-
tions in both a bit-sliced fashion for use in software and in hardware. In this section,
we explore this idea and provide an S-Box Ao which is a�ne equivalent to H2

3 and
has an e�cient bit-sliced implementation.

14.3.1 E�icient Bit-Sliced Implementations

Starting from the algebraic normal forms of the operations used to computeH2
3 (given

in Table 14.5), it is easy to write a �rst naïve bitsliced implementation given in Algo-
rithm 14.1.
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function algebraic normal form

y = x3
y0 = x0x1 ⊕ x0x2 ⊕ x1 = x0 (x1 ⊕ x2) ⊕ x1
y1 = x0x2 ⊕ x1 ⊕ x2 = x0 (x2 ⊕ 1) ⊕ x1
y2 = x1x2 ⊕ x0 ⊕ x1 ⊕ x2 = (x0 ⊕ 1) ⊕ (x1 ⊕ 1) (x2 ⊕ 1)

y = 2 � x
y0 = x1
y1 = x0 ⊕ x2
y2 = x2

y = x5
y0 = x0x1 ⊕ x2
y1 = x0x1 ⊕ x0x2 ⊕ x1 = x0 (x1 ⊕ x2) ⊕ x1
y2 = x1x2 ⊕ x0 ⊕ x1 ⊕ x2 = (x0 ⊕ 1) ⊕ (x1 ⊕ 1) (x2 ⊕ 1)

Table 14.5: The algebraic normal form of the sub-functions used to compute H2
3.

Algorithm 14.1 A naïve bitsliced implementation of the open butter�y H2
3.

Inputs: words X0, ...,X5;
Outputs: updated words X0, ...,X5.

. R ⊕= L3

1. X0 ⊕= (X5 ∧ (X4 ⊕ X3)) ⊕ X4
2. X1 ⊕= (¬X5 ∧ X3) ⊕ X4
3. X2 ⊕= (X4 ∧ ¬X3) ⊕ (¬X5)
. R = R5

4. t = (¬X1) ∧ (¬X0)
5. X0 ⊕= X2 ∧ X1
6. X1 ⊕= X2 ∧ X0
7. X2 ⊕= ¬t
. R ⊕= α · L
8. X0 ⊕= X4
9. X1 ⊕= X5 ⊕ X3

10. X2 ⊕= X3
. L ⊕= α · R

11. X3 ⊕= X1
12. X4 ⊕= X2 ⊕ X0
13. X5 ⊕= X0
. L = L3

14. u = X3
15. t = X4
16. X4 ⊕= ((¬X5) ∧ X3)
17. X3 = (X5 ∧ (u ⊕ t )) ⊕ t
18. X5 ⊕= ¬(¬t ∧ ¬u)
. L ⊕= R3

19. X3 ⊕= (X2 ∧ (X1 ⊕ X0)) ⊕ X1
20. X4 ⊕= (¬X2 ∧ X0) ⊕ X1
21. X5 ⊕= (¬X1 ∧ ¬X0) ⊕ (¬X2)

This implementation can be optimized using Boolean algebra and removing the
linear component of x 7→ x3 in the �rst and last steps. Doing this is equivalent to
applying an a�ne permutation before and after H2

3 to obtain a new permutation Ao.
This operation preserves the di�erential and linear properties of the permutation
while also keeping the property that A−1

o = Swap6 ◦ Ao ◦ Swap6, where Swap6 simply
swaps the two 3-bit branches. The bitsliced implementation of this simpli�ed S-Box
is given in Algorithm 14.2 and its look-up table in Table 14.6.

14.3.2 Hardware Implementation

Our decompositions also facilitates the hardware implementation of these S-Boxes.
To illustrate this, we simulated the circuit computing these functions in three di�er-
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.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 0 1d 6 3f 3c 3b 31 12 22 35 17 2c 16 33 30 39
1. 2d a 38 2b 1 4 2f 1e 3 34 2e 25 27 1a 29 28
2. 2a 7 14 3d 36 19 b 20 3e d 37 8 1b 2 9 1c
3. 10 1f 21 3a 26 13 24 5 c f 11 e 23 32 15 18

Table 14.6: The look-up table of Ao in hexadecimal, e.g. Ao (0x32) = 0x21.

Algorithm 14.2 An optimized bitsliced implementation of Ao, an S-Box a�ne-
equivalent to the open butter�y with α = 2, e = 3.
Inputs: words X0, ...,X5;
Outputs: updated words X0, ...,X5;

1 . t = (X5 ∧ X3)
2 . X0 ⊕= t ⊕ (X5 ∧ X4)
3 . X1 ⊕= t
4 . X2 ⊕= (X4 ∨ X3)
5 . t = (X1 ∨ X0)
6 . X0 ⊕= (X2 ∧ X1) ⊕ X4
7 . X1 ⊕= (X2 ∧ X0) ⊕ X5 ⊕ X3
8 . X2 ⊕= t ⊕ X3
9 . X3 ⊕= X1
10 . X4 ⊕= X2 ⊕ X0
11 . X5 ⊕= X0

12 . u = X3
13 . t = X4
14 . X3 ⊕= t
15 . X3 = X3 ∧ X5 ⊕ t
16 . X4 ⊕= ((¬X5) ∧ u)
17 . X5 ⊕= (t ∨ u)
18 . t = (X2 ∧ X0)
19 . X3 ⊕= t ⊕ (X2 ∧ X1)
20 . X4 ⊕= t
21 . X5 ⊕= (X1 ∨ X0)

ent ways. First, we simply gave the look-up table to the software2 and let it �nd the
best implementation it could (“no decomposition” case). Then, we fed it our decom-
position of the di�erent structures (“decomposed” case). We also tried implementing
the cube function using �nite �eld arithmetic but this approach did not improve our
results.

The software optimizes two competing quantities. The �rst is the area, which
simply corresponds to the physical space needed to implement the circuit using the
logical gates available. The second is the propagation time, i.e. the delay necessary
for the electronic signal to go through the circuit implementing the S-Box and to
stabilize itself to the output value.

For each function, we repeated the experiment several times using di�erent pe-
riods for the clock cycles. Priority is given to area optimization when the period is
maximum. But as the period decreases, the priority shifts towards propagation time.
The results are given in Table 14.7.

As we can see, the knowledge of the decompositions always allows a more e�-
cient implementation: regardless of what the main optimization criteria is, both the
area and the delay are decreased.

2We used the digital cell library SAED90n-1P9M in the “normalVt , high temperature, nominal voltage”
corner.
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Base Decomposed

S-Box Period (ns) a d a×d a d a×d

100 799 56.4 45079.6 414 39.3 16274.3
20 827 19.75 16333.3 404 18.7 7554.8
10 928 9.81 9103.7 431 9.76 4206.6H2

3

5 1062 4.81 5108.2 569 4.81 2736.9

100 774 53.1 41122.6 384 42.0 16131.8
20 812 19.3 15671.6 384 15.4 5925.1
10 869 9.63 8368.5 382 9.8 3732.1Ao

6 1041 5.8 6037.8 464 5.8 2691.2

Table 14.7: Results on the hardware implementation of our S-Boxes. The area a is in
(µm)2, the delay d is in ns and a × d is their product.

14.4 Generalizing the Bu�erfly Construction

In this section, we will show that the butter�y structure can be generalized by using
an additionnal parameter β and by considering arbitrary odd values for its branch
sizen. These functions are all di�erentially 4-uniform, except those a�ne-equivalent
to the Dillon permutation. But �rst, let us recall some general results about Boolean
functions and their di�erential uniformity.

An up to date overview of known apn functions can be found in [BN15]. As
apn functions operating on an even number of bits are still to be found for even
block sizes larger than 6, di�erentially 4-uniform permutations have received a lot
of attention from researchers. An obvious example is the inverse function x 7→ x2n−2

of F2n studied in the seminal work of Nyberg [Nyb94].
However, security against di�erential cryptanalysis is not su�cient and linear

attacks need to be taken into account too. The search can thus be focused on dif-
ferentially 4-uniform permutations of 2n bits with non-linearity 22n−1 − 2n which
is, as far as we know, the best that can be achieved. Whether there are functions
improving this bound is an open problem (Open Problem 2 in [BL10]). The same pa-
per also states Open Problem 1: we must �nd other highly non-linear di�erentially
4-uniform functions operating on �elds of even degree. Several papers have then pre-
sented constructions for such permutations, for example using binomials [BTT12] or
an apn permutation on F2n+1 for even n [LW14a].

The generalized butter�ies and their properties are introduced in Section 14.4.1
(p. 280). The proof for their di�erential properties is given in Section 14.4.2 (p. 283)
and the one for their algebraic degree is given in Section 14.4.3 (p. 295).

14.4.1 Generalized Bu�erflies

14.4.1.1 Definition

Generalized butter�ies are built using the same structure as the butter�ies from Def-
inition 14.2.2. Here, we restrict ourselves to the case where R (x ,y) has univariate
degree 3 as the butter�ies obtained in the previous sections of this chapter have such
a structure. However, we consider more sophisticated functions of univariate degree
3.
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The following lemma describes all polynomials R satisfying this degree condition
which de�ne a keyed permutation, as demanded by the butter�y de�nition.

Lemma 14.4.1 (Degree Restriction). Let R be a bivariate polynomial of F2n such that
Ry : x 7→ R (x ,y) is a permutation for any y and such that all terms in R are non-linear
terms with degree at most 3. Then R can be described using two elements of F2n denoted
α and β as

R (x ,y) = (x + αy)3 + βy3 .

The proof of this lemma relies on the following theorem.

Theorem 14.4.1 (Cor. 2.9 from [MS87a]). Let Fq have characteristic di�erent from 3.
Then f (x ) = ax3 + bx2 + cx + d = 0 (a , 0) permutes Fq if and only if b2 = 3ac and
q ≡ 2 mod 3.

Proof of Lemma 14.4.1. Let

R (x ,y) = Ax3 + Bx2y +Cxy2 + Dy3 + Exy.

Since x 7→ R (x ,0) = Ax3 must be a permutation, we deduce that A , 0. A multipli-
cation by a non-zero constant changes neither the degree nor the integral property.
Therefore, we consider a normalised case where A = 1. We need that x 7→ R (x ,y)
is a permutation for any y. We are in characteristic 2 and, using the notation of
Theorem 14.4.1, we always have that q ≡ 2 mod 3 because n is odd. Thus, in or-
der to ful�ll the integral condition, Theorem 14.4.1 imposes that (By)2 = Cy2 + Ey
for all y. This implies that E = 0 and B2 = C . The polynomial can thus be written
R (x ,y) = x3+Bx2y+B2xy2+Dy3 which we factor intoR (x ,y) = (x+By)3+ (B3+D)y3.
Simply setting α = B and β = B3 + D gives us the lemma. �

We are now ready to formally de�ne the generalized butter�ies considered in this
section.

De�nition 14.4.1. We call the butter�ies based on polynomials R : (x ,y) 7→ (x +
αy)3 + βy3 generalized butter�ies. They are denoted Vα ,β and Hα ,β for closed and
open butter�ies respectively.

In this context, the results from the previous sections of this chapter can be inter-
preted as handling the particular case β = 1. If α = 1, the open butter�ies and closed
butter�ies are functionally equivalent to the functions presented in Figure 14.10. In
particular, open butter�ies are functionally equivalent to 3-round Feistel networks
when α = 1.

Lemma 14.4.1 excludes terms in x2, y2, x and y from R. Since such terms have
algebraic degree 1, they could be added without changing the linearity and the dif-
ferential properties of the closed butter�y, which is why we ignore them.

14.4.1.2 Equivalence Relations

The proof of Lemma 14.2.1 is easily updated to show that an open and a closed gen-
eralized butter�y with identical parameters are ccz-equivalent. There are other re-
lations linking butter�ies to each other.
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βx3

x1/3

⊕

⊕

βx3

x3

⊕

⊕

(a) Open butter�y H1,β .

βx3⊕

x1/3 ⊕

βx3⊕

(b) Fβ (note Fβ = H1,β ).

βx3 x3 βx3

⊕

⊕⊕

(c) Closed butter�y V1,β .

Figure 14.10: The equivalence between H1,β and Fβ .

Equivalent Exponents. If the exponent is equal to e = 3 × 2t , the correspond-
ing closed butter�y is a�ne-equivalent to the closed butter�y with the same α ,β .
Therefore, all results presented in this section also hold when

R (x ,y) = (x + αy)3×2t + βy3×2t

for some t .

Equivalent Coe�icients (Squaring). The closed butter�ies Vα ,β and Vα 2,β 2 are
a�ne-equivalent as Vα 2,β 2 (x2,y2) =

(
Vα ,β (x ,y)

)2
.

Equivalent Coe�icients (Multiplication). For any α , 1, the closed butter�ies
Vα ,β and Vα ,β ′ with β ′ = β−1 (1 + α )6 are a�ne-equivalent. This equivalence is
obtained by composing Vα ,β with the inverse of the linear permutation

L : (x ,y) 7→ (z1,z2) = (αx + y,x + αy) .

Indeed, as we can see, Vα ,β ◦ L−1 (x ,y) is a�ne-equivalent to Vα ,β :

Vα ,β ◦ L−1 (x ,y) =
(
z3

2 + β
[
(1 + α )−2 (z1 + αz2)

]3
,z3

1 + β
[
(1 + α )−2 (z2 + αz1)

]3)
=

(
(1 + α )−6

[
(z1 + αz2)

3 + β ′z3
2

]
, (1 + α )−6

[
(z2 + αz1)

3 + β ′z3
1

] )
.

Multiplicative Stability. As in Section 14.2.3 (p. 277), let ⊗ be such that (a,b) ⊗
(c,d ) = (ac,bd ) for any pairs (a,b) and (c,d ) of (F2n )

2. Then the generalized butter-
�ies exhibit the following properties:

Vα ,β
(
(λ,λ) ⊗ (x ,y)

)
= (λ3,λ3) ⊗ Vα ,β (x ,y),

and
Hα ,β

(
(λ3,λ) ⊗ (x ,y)

)
= (λ3,λ) ⊗ Hα ,β (x ,y).

Note that these multiplicative properties correspond to the so-called subspace prop-
erty introduced in [BDMW10] and investigated in [Göl15].
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14.4.1.3 Cryptographic Properties

The following theorem summarizes all the cryptographic properties of the general-
ized butter�ies.

Theorem 14.4.2. The cryptographic properties of the generalized butter�ies Vα ,β and
Hα ,β , which are based on functions R : (x ,y) 7→ (x + αy)3 + βy3 with α ,β , 0 are as
follows:

• the algebraic degree of Vα ,β is always equal to 2,

• if n = 3, α , 0, Tr (α ) = 0 and β ∈ {α3 + α ,α3 + 1/α } then the butter�ies are
apn, have a linearity equal to 2n+1 and the algebraic degree of Hα ,β is equal to
n + 1;

• if β = (1 + α )3 then the di�erential uniformity is equal to 2n+1, the linearity is
equal to 2(3n+1)/2 and the algebraic degree of Hα ,β is equal to n;

• otherwise, the di�erential uniformity is equal to 4, the linearity is equal to 2n+1

and the algebraic degree of Hα ,β is either n or n + 1. It is equal to n if and only if

1 + αβ + α4 = (β + α + α3)2.

In particular, there are no apn butter�ies operating on more than 6 bits.

Open generalized butter�ies with β , (1 + α )3 form a family of permutations
operating on 2n bits with a linearity and a di�erential uniformity equal to the best
known to be possible. Furthermore, the only known apn permutation on �elds of
even dimension is, up to a�ne-equivalence, a generalized butter�y as well.

The proof of this theorem is divided into several parts. Section 14.4.2 (p. 283)
proves their di�erential uniformity and Section 14.4.3 (p. 295) proves their algebraic
degree. The proof of their linearity, found by Anne Canteaut, is available in our joint
paper [CDP17].

14.4.2 Di�erential Properties of Generalized Bu�erflies

In this section, we describe the di�erential properties of generalized butter�ies. First,
Section 14.4.2.1 is dedicated to Theorem 14.4.3, which shows that generalized but-
ter�ies Vα ,β and Hα ,β have di�erential uniformity at most 4, unless β = (1 + α )3.
Then, Theorem 14.4.4 and its immediate consequence, Corollary 14.4.1, give a nec-
essary and su�cient condition on α and β for a generalized butter�y to be apn.
This corollary is then used to show Proposition 14.4.1 which states that there are no
apn butter�ies if n > 3. These results are presented and proved in Section 14.4.2.2.
Section 14.4.2.3 focuses on the special case α = β = 1, for which the generalized
butter�ies are equivalent to a 3-round Feistel network. In this case, we recover, with
a di�erent proof, a result from [LW14b], which states that the di�erence distribution
tables of the corresponding butter�ies do not contain the value 2.

But �rst, we give a lemma playing a crucial role in these proofs. It lets us easily
derive the exact number of solutions of some particular degree-4 equations that ap-
pear several times in our proof. Since most proofs in this section rely on the number
of solutions of univariate equations over F2n , the concept of “degree” always refers
to the univariate degree in what follows.
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Lemma 14.4.2. LetU ,V be elements of F2n withn odd and letUz4+Vz2+(U +V )z = C
be some linearized degree-4 equation in z. It has:

• 0 or 2n solutions ifU = V = 0,

• 0 or 4 solutions ifU , 0,U , V and Tr (V /U ) = 1,

• 0 or 2 solutions otherwise, that is if one of the following is true:(
U = 0,V , 0

)
or

(
U , 0,V = U

)
or

(
U , 0,Tr (V /U ) = 0

)
.

Proof. First of all, for any value of the constant C , the number of solutions of the
equation is either zero or equal to the number of solutions of the linearized equation
Uz4 + Vz2 + (U + V )z = 0. We then only need to study the case C = 0. Obviously,
the number of solutions is always even as if z is a solution then z + 1 is too.

If U = V = 0 then the linearized equation does not involve z, meaning that all
values of z satisfy it. We now suppose that either U , 0 or V , 0.

If U = 0 then the equation corresponds to Vz (z + 1) = 0, implying that it has 2
solutions. Let us now suppose that U , 0. In this case, we can rewrite the equation
as

Uz (z + 1)
(
1 +V /U + z (z + 1)

)
= 0.

Both z = 0 and z = 1 are obviously solutions. In fact, they are the only ones ifV = U .
Let us suppose thatV , U . The term (z2 + z + 1+V /U ) can be equal to 0 if and only
if Tr (V /U ) = 1, meaning that the linearized equation has 2 solutions if Tr (V /U ) = 0
and 4 otherwise. �

14.4.2.1 The Non-apn Cases

Theorem 14.4.3 (Di�erential uniformity). Let n > 1 be an odd integer and (α ,β ) be
a pair of nonzero elements in F2n . If β , (1 + α )3 then the generalized butter�y with
parameters α and β has di�erential uniformity at most 4. Moreover, it has di�erential
uniformity exactly 4 unless β ∈ {(α + α3), (α−1 + α3)}.

If β = (1 + α )3, the generalized butter�y with parameters α and β has di�erential
uniformity 2n+1.

Proof. In order to bound the di�erential uniformity of Vα ,β , we must bound the num-
ber of solutions (x ,y) of the following system:




R (x ,y) + R (x + a,y + b) = c

R (y,x ) + R (y + b,x + a) = d

for any tuple (a,b,c,d ) of F2n with (a,b) , (0,0). It holds that

R (x ,y) + R (x + a,y + b) =

(ax2 + a2x ) + α (bx2 + a2y) + α2 (b2x + ay2) + (α3 + β ) (by2 + b2y) + R (a,b) .

Let u = a + αb. Then this expression is simpli�ed into

R (x ,y) + R (x + a,y + b) =

ux2 + u2x + (α2u + bβ )y2 + (αu2 + b2β )y + R (a,b) .
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Similarly, for v = αa + b, we have

R (y,x ) + R (y + b,x + a) =

(α2v + aβ )x2 + (αv2 + a2β )x +vy2 +v2y + R (b,a) ,

implying that we search for the solutions of




ux2 + u2x + (α2u + bβ )y2 + (αu2 + b2β )y = c ′

(α2v + aβ )x2 + (αv2 + a2β )x +vy2 +v2y = d ′ .
(14.5)

Special cases. We �rst focus on three special cases, namely b = α−1a,b = αa and
b = 0. The rest of the proof will be dedicated to the general case, when b di�ers
from these three values. We also consider a fourth special case corresponding to
β = (1 + α )3 and b = a in which the result is di�erent.

• b = α−1a, or equivalently u = 0. Note that neither a nor b vanishes, since it
would imply a = b = 0, which has been excluded. In this case, Equation (14.5)
can be written as




(bβ )y2 + (b2β )y = c ′

(α2v + aβ )x2 + (αv2 + a2β )x +vy2 +v2y = d ′ .

Since β , 0 and b , 0, we deduce that the �rst equation has at most two so-
lutions y0 and y1. For each of these two solutions, the second equation has at
most two solutions because the coe�cients of x2 and of x cannot simultane-
ously vanish. Indeed

(α2v + aβ ) = (αv2 + a2β ) = 0 (14.6)

implies that
a2β = αv2 = α2av ,

leading to
αv (v + aα ) = αvb = 0 ,

which is impossible since v = 0 together with Equation (14.6) would imply
that a = 0. Therefore, Equation (14.5) has at most four solutions when u = 0.

• b = αa, or equivalentlyv = 0. This case is similar to the previous one. Indeed,
Equation (14.5) now corresponds to




ux2 + u2x + (α2u + bβ )y2 + (αu2 + b2β )y = c ′

aβx2 + a2βx = d ′

Since aβ , 0, the second equation has at most two solutions x0 and x1. For each
of these solutions, the �rst equation has at most two solutions for y since the
coe�cients of y2 and y cannot simultaneously vanish. Otherwise, we would
have

b2β = αu2 = α2bu ,

implying αua = 0.
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• b = 0. In this case, System (14.5) corresponds to




ax2 + a2x + α2ay2 + αa2y = c ′

(α3a + aβ )x2 + (α3a2 + a2β )x + αay2 + α2a2y = d ′ .

By summing the �rst equation and the second one multiplied by α , we get that

yαa2 (1 + α2) = (a + aα4 + aαβ ) (x2 + ax ) + д

for some constant д. Let us �rst consider the case when α = 1. Then, we get

aβ (x2 + ax ) = д .

Since aβ , 0, this equation has at most two solutions x0 and x1. Then, for
each xi , the �rst equation in the system provides at most two solutions for y,
leading to at most four solutions (x ,y) for the whole system.
Let us now assume that α , 1. Then, we replace y by its value, i.e. y =
µ (x2 + ax ) + д′ in the �rst equation of the system, and we get

α2aµ2x4 +
[
a + α2a3µ2 + αa2µ

]
x2 +

[
a2 + αa3µ

]
x = c ′ ,

where
µ =

(1 + α4 + αβ )

αa(1 + α2)
.

By replacing x = ax ′, we deduce that

Ux ′4 +Vx ′2 + (U +V )x ′ = c ′ (14.7)

with
U = α2a5µ2 and V = a3 + α2a5µ2 + αa4µ .

This equation has at most four solutions xi , and each xi leads to a single y,
implying that the whole system has at most four solutions.
We now show that the whole system has at most two solutions for any a , 0
for two values of β only. The case α = 1 can be excluded: V1,β cannot be
apn because any three-round Feistel network has di�erential uniformity at
least 4 [LW14b].
If Vα ,β is apn, then the previous Equation (14.7) has at most two solutions for
any a , 0 and any c ′. We derive from Lemma 14.4.2 that this happens if and
only if, for all a , 0,(

U = 0,V , 0
)

or
(
U , 0,V = U

)
or

(
U , 0,Tr (V /U ) = 0

)
.

We �rst observe that V , 0, otherwise

α2a2µ2 + αaµ + 1 = 0

which would mean that (αaµ ) is a root of X 2 +X + 1 while this polynomial is
irreducible over F2n , n odd. Then, the �rst condition means that

µ =
(1 + α4 + αβ )

αa(1 + α2)
= 0
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or equivalently
β = α−1 + α3 .

The second condition corresponds to

αaµ = 1⇔ 1 + α4 + αβ = 1 + α2 ,

which is equivalent to
β = α + α3 .

The last condition corresponds to

Tr(V /U ) = Tr(1) + Tr
(

1 + αaµ
a2α2µ2

)
= 1 + Tr

(
1

a2α2µ2

)
+ Tr

(
1

aαµ

)
= 1 = 0 ,

which is impossible, Therefore, the only values of β for which Vα ,β can be apn
are β = α−1 + α3 and β = α + α3.

• b = a and β = (1 + α )3. Note that β = (1+α )3 , 0 implies that α , 1. In this
case, Equation (14.5) is equal to




b (1 + α )x2 + b2 (1 + α )2x + b (1 + α )y2 + b2 (1 + α )2y = c ′

b (1 + α )x2 + b2 (1 + α )2x + b (1 + α )y2 + b2 (1 + α )2y = d ′ .

Thus, it has no solution if c ′ , d ′. If c ′ = d ′, it is equivalent to the single
equation

(x + y)2 + b (1 + α ) (x + y) = c ′b−1 (1 + α )−1 ,

since α , 1 and b , 0. Thus, either System (14.5) has no solution or its so-
lutions are of the form x + y = ε for two values of ε , depending on (b,c ′). In
particular, System (14.5) has exactly 2n+1 solutions when c ′ = d ′ = 0.

General case. Let us now assume that u, v and b are all nonzero. We also suppose
that a = b and β = (1 + α )3 do not hold simultaneously. Let `1 and `2 respectively
denote the two equations in (14.5). Then the following expression must be constant:

v`1 + u`2 =
(
uv (α2 + 1) + auβ

)
x2 +

(
uv (u + αv ) + a2uβ

)
x

+
(
uv (α2 + 1) + bvβ

)
y2 +

(
uv (αu +v ) + b2vβ

)
y

=
(
uv (α2 + 1) + auβ

)
(x2 + ax ) +

(
uv (α2 + 1) + bvβ

)
(y2 + by) ,

where the last equality comes from the fact that (u +αv ) = a(α2 + 1) and (αu +v ) =
b (α2 + 1). We have obtained a relation of the form

λ0 (x
2 + ax ) + λ1 (y

2 + by) = ε (14.8)

for some constant ε . We �rst prove that λ0 and λ1 cannot simultaneously vanish. Let
us �rst consider the case α = 1. Then it holds that

λ0 = (a + b)aβ and λ1 = (a + b)bβ .
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Since u = a + b , 0, b , 0 and β , 0, λ1 does not vanish. Let us now assume that
α , 1. Then we can write

β = (1 + α2) (α + β ′) .

It follows that

λ0 = uv (α2 + 1) + auβ = u (α2 + 1) (b + aβ ′)
λ1 = uv (α2 + 1) + bvβ = v (α2 + 1) (a + bβ ′) .

Then Equation (14.8) holds with

λ0 = u (b + aβ
′) and λ1 = v (a + bβ

′) .

These two coe�cients cannot simultaneously vanish, otherwise, it would lead to

aβ ′ = b and bβ ′ = a

implying that
abβ ′ = a2 = b2 and β ′ = 1 ,

which has been excluded since it implies that β = (1 + α )3 and a = b.
We now combine Equation (14.8) with one of the equations in System (14.5). We

need to consider two di�erent cases:

• If λ0 = 0, then Equation (14.8), which can be written as

y2 + by = ε ′ ,

has at most two solutions y0 and y1. By replacing y by these two values in the
�rst equation in (14.5), we get at most two solutions for x for each yi since
u , 0.

• If λ0 , 0, then Equation (14.8) can be written as

x2 = ax + λ−1
0 λ1 (y

2 + by) + ε ′ .

We replace x2 by this expression in the �rst equation in Equation (14.5), and
we get

(ua + u2)x + (uλ−1
0 λ1 + α

2u + bβ )y2 + (uλ−1
0 λ1b + αu

2 + b2β )y = c ′ .

The coe�cient of x does not vanish since u = a is equivalent to b = 0. Then x
can be written as a degree-2 polynomial in y, i.e.

x = µ2y
2 + µ1y + µ0 . (14.9)

By replacing x by its value in Equation (14.8), we derive that

λ1 (y
2 + by) = λ0

(
µ2

2y
4 + µ2

1y
2 + aµ2y

2 + aµ1y
)
+ ε ′′

leading to

λ0µ
2
2y

4 +
(
λ1 + λ0µ

2
1 + λ0aµ2

)
y2 + (λ1b + λ0aµ1)y + ε

′′ . (14.10)

Let us �rst assume that the three coe�cients of y4, y2 and y do not simultane-
ously vanish. Then Equation (14.10) has at most four solutions,yi for 0 ≤ i < 4.
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Moreover, we know from Equation (14.9) that x is entirely determined by y. It
follows that System (14.5) has at most four solutions (x ,y).
Let us now suppose that all coe�cients of Equation (14.10) vanish. Then we
have µ2 = 0 and

λ1 + λ0µ
2
1 = 0 and λ1b + λ0aµ1 = 0 .

This may occur in one of the following two situations:

– µ1 = 0 and λ1 = 0. Using that λ1 cannot vanish only when α , 1, the
de�nitions of λ1 and µ1 imply that

αu2 + b2β = 0 and u (α2 + 1) + bβ = 0 ,

leading to
αu2 = u (α2 + 1)b ,

that is,
αa + b = v = 0 ,

which has been excluded.
– bµ1 = a and b2λ1 = a2λ0. From the de�nition of µ2, we deduce that µ2 = 0

together with this last relation implies that

0 = uλ−1
0 λ1 + α

2u + bβ

= b−2
(
ua2 + uα2b2 + b3β

)
= b−2 (u3 + b3β )

i.e.,
β = (ub−1)3 . (14.11)

Since µ2 = 0 and µ1 = ab−1, Equation (14.9) can be written

ay = bx + µ ′0 .

By replacing ay by its value in the second equation of System (14.5) mul-
tiplied by a2, we get

x2
[
vb2 + α2a2v + a3β

]
+ x

[
v2ab + αa2v2 + a4β

]
= d ′′

⇔ (v3 + a3β ) (x2 + ax ) = d ′′ .(14.12)

The coe�cients of this equation do not vanish. Otherwise, combined
with Equation (14.11), it would yield

v3 + a3β = (αa + b)3 + (a2b−1 + αa)3 = 0

which implies
b = a2b−1

i.e., a = b and β = (α + 1)3 which has been excluded.
It follows that Equation(14.12) has at most two solutions x0 and x1. Since
y is entirely determined by x (or constant), it follows that System (14.5)
has at most two solutions in this case.

�
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14.4.2.2 On Apn Bu�erflies

We �rst derive a necessary and su�cient condition for a generalized butter�y to
be apn in Theorem 14.4.4. Then, we simplify these conditions in Corollary 14.4.1.
Finally, we show in Proposition 14.4.1 that this condition can only be satis�ed if
n = 3.

Theorem 14.4.4 (Apn Condition). Let α , 0,1. A generalized butter�y with param-
eters α and β is apn if and only if:

β ∈ {α + α3,α−1 + α3} and Tr (Aα (e )) = 1, ∀ e < {0,α ,1/α } ,

where

Aα (e ) =
eα (1 + α )2

(1 + αe ) (α + e )2 .

Proof. Since we have proved in Section 14.4.1.2 that generalized butter�ies with pa-
rameters (α ,β0) and (α ,β1) where β1 = β−1

0 (1 + α )6 are a�ne-equivalent, we only
need to prove the result for β = α + α3. As before, we need to count the number of
solutions of




R (x ,y) + R (x + a,y + b) = c

R (y,x ) + R (y + b,x + a) = d
(14.13)

for any tuple (a,b,c,d ) of F2n with (a,b) , (0,0). This system is equivalent to




ax2 + a2x + α (bx2 + a2y) + α2 (b2x + ay2) + (α3 + β ) (by2 + b2y) = c0

by2 + b2y + α (ay2 + b2x ) + α2 (a2y + bx2) + (α3 + β ) (ax2 + a2x ) = d0 .

As α , 1, we can replace the lines `1 and `2 of this system by `1 + α`2 and α`1 + `2
to obtain a system with the exact same number of solutions. We obtain




(ax2 + a2x ) (1 + αβ + α4) + (α + α3) (bx2 + a2y) + (α3 + α + β ) (by2 + b2y) = c0

(by2 + b2y) (1 + αβ + α4) + (α + α3) (ay2 + b2x ) + (α3 + α + β ) (ax2 + a2x ) = d0 .

For β = α +α3, the system is further simpli�ed using that 1+αβ +α4 = (1+α2) and
α + α3 + β = 0:




(ax2 + a2x ) + α (bx2 + a2y) = c1

(by2 + b2y) + α (ay2 + b2x ) = d1 .
(14.14)

We �rst consider the cases a = 0 and b = 0. Recall that a = b = 0 is excluded. If
a = 0, then the �rst line of the system is equivalent to

x =
( c1
αb

)2n−1

.

Replacing x by this value in the second line of System (14.14) yields a degree-2 equa-
tion in y with nonzero coe�cients since b , 0, implying that (14.14) has at most two
solutions (x ,y). The case b = 0 is similar.

We now suppose a , 0 and b , 0, which allows us to set x = ax ′ and y = by ′. In
this context, System (14.14) has as many solutions as




a3 (x ′2 + x ′) + αa2b (x ′2 + y ′) = c1

b3 (y ′2 + y ′) + αab2 (y ′2 + x ′) = d1 ,
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which we rewrite using e = a/b as




e (x ′2 + x ′) + α (x ′2 + y ′) = c2

e−1 (y ′2 + y ′) + α (y ′2 + x ′) = d2 .
(14.15)

Summing its lines yields

(x ′2 + x ′) (e + α ) + (y ′2 + y ′) (e−1 + α ) = c2 + d2 .

If e = α , then y ′ is �xed to either y ′0 or y ′1 with y ′0 + y
′
1 = 1. The �rst line of the

system implies in this case that x ′ = y ′i + c2/α as the terms in x2 cancel each other,
meaning that the system has at most two solutions. The case e = α−1 is similar. We
now suppose e , α ,α−1.

The �rst line of System (14.15) allows us to express y ′ as a function of x ′:

y ′ = x ′2
( e
α
+ 1

)
+ x ′

e

α
+
c2
α
.

We replace y ′ by this expression in the second line of System (14.15) and obtain

d3 = y
′2
(
e−1 + α

)
+ y ′e−1 + αx ′

=

(
x ′2

( e
α
+ 1

)
+ x ′

e

α

)2 (
e−1 + α

)
+

(
x ′2

( e
α
+ 1

)
+ x ′

e

α

)
e−1 + αx ′

= x ′4
(
1 + e

α

)2
(α + e−1) + x ′2

(
e2

α2 (e
−1 + α ) +

( e
α
+ 1

)
e−1

)
+ x ′

( 1
α
+ α

)
for some constant d3. If we let U = (1 + e/α )2 (α + 1/e ) and V = U + 1/α + α , then
the number of solutions of this equation can be computed using Lemma 14.4.2. First,
U , 0 andU +V , 0 as α , 1. Therefore, the possible number of solutions is at most
equal to 4 and is given by the trace ofV /U : if Tr (V /U ) = 0 then the equation has at
most 2 solutions, otherwise it has 0 or 4 solutions. It holds that

V

U
= 1 + α−1 + α

(e−1 + α ) (1 + eα−1)2

= 1 + eα (1 + α )2
(1 + αe ) (α + e )2

so the function is apn if and only if

Tr (Aα (e )) = 1, ∀e < {0,α ,1/α }, with Aα (e ) =
eα (1 + α )2

(1 + αe ) (α + e )2 .

�

The condition provided by Theorem 14.4.4 is su�cient to describe all apn gen-
eralized butter�ies but it can be greatly simpli�ed. This is stated in the following
corollary.

Corollary 14.4.1. Let α , 1, β0 = α
3 + α and β1 = α

3 + 1/α . A generalized butter�y
with parameters α and β is apn if and only if β = β0 or β1 and

Tr (Cα (v )) = 1, ∀ u <
{
0,1,1/(1 + α−2)

}
,

with

Cα (v ) =
( 1

1 + α−1

)4 1
u + u3 .
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Proof of Corollary 14.4.1. We know from Theorem 14.4.4 that a generalized butter�y
with parameters α and β is apn if and only if β ∈ {β0,β1} and Tr (Aα (e )) = 1 for
all e not in {0,α ,1/α }. Suppose that α , 1 and let ` = (e + α ) (1 + α )2. Then we can
rewrite some of the expressions involved in Aα (e ) as follows:

e (1 + α )2 = ` + α + α3 and (1 + αe ) (1 + α )2 = α
(
` +

(1 + α )4
α

)
.

Recall that β0 = α + α
3 and β1 = (α + 1)4/α , so we can write:

Aα (e ) =
eα (1 + α )2

(1 + αe ) (α + e )2

=
α e (1 + α2)

(1 + αe ) (1 + α2) ((α+e ) (1+α )
2 )2

(1+α )6

= (1 + α )6 α (` + β0)

α (` + β1)`2

=
β0β1
`2
` + β0
` + β1

.

Let Bα (v ) = v2 (v + 1)/(v + β0/β1). Then the following equality holds:

Bα

(
β0
`

)
=
β0β1
`2
` + β0
` + β1

= Aα (e ) .

It is therefore su�cient to study the trace of Bα . The condition e < {0,α ,α−1} be-
comes ` < {β0,0,β1} respectively and, equivalently, β0/` < {0,1,β0/β1}. As a conse-
quence, the generalized butter�y with parameters α ,β is apn if and only if β = β0 or
β1 and

Tr (Bα (v )) = 1, ∀v <
{

0,1, α2

1 + α2

}

as β0/β1 = α
2/(1 + α2). Finally, we note that the trace of Bα (v ) can be simpli�ed:

Tr (Bα (v )) = Tr *
,
v2 1 +v
v + α 2

1+α 2

+
-

= Tr
(
v2 +

v2

(1 + α2)v + α2

)
= Tr

(
v +

v2

(1 + α2)v + α2

)
= Tr

(
(1 + α2)v2 + α2v +v2

(1 + α2)v + α2

)
= Tr

(
v2 +v

γv + 1

)
,
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where γ = 1 + α−2. We deduce the following:

Tr
(
Bα

(
u−1γ−1

))
= Tr *.

,

(
u−1γ−1

)2
+ u−1γ−1

u−1 + 1
+/
-

= Tr *.
,

(
u−1γ−1

)2

u−1 + 1 +

(
u−1γ−1

)2

u−2 + 1
+/
-

= Tr
(
(u−3 + u−2)γ−2 + u−2γ−2

u−2 + 1

)
= Tr

(
γ−2

u + u3

)
.

The condition u−1/γ < {0,1,γ−1} is equivalent to u < {0,γ−1,1}, the same set as
before. This proves the corollary. �

We now show that the last condition in Corollary 14.4.1 can hold only if n = 3.
In other words, apn generalized butter�ies exist for n = 3 only. The proof relies on
the following lemma.

Lemma 14.4.3. [BRS67] The cubic equation x3+ax+b = 0, where a ∈ F2n andb ∈ F∗2n
has a unique solution in F2n if and only if Tr(a3/b2) , Tr(1).

Proposition 14.4.1. Let n > 1 be an odd integer, and λ ∈ F∗2n . If

Tr
(

λ2

x + x3

)
= 1, ∀ x < {0,1,λ} , (14.16)

then n = 3.

Proof. Consider z in F∗2n with Tr(z) = 0. Then, there exists a unique x ∈ F2n \ F2
such that

1
x3 + x

= z .

Indeed, since z , 0, this equivalently means that

x3 + x +
1
z
= 0 .

We know from Lemma 14.4.3 that this equation has a unique solution when Tr(z2) =
Tr(z) = 0. Let us de�ne zλ as

zλ =
1

λ3 + λ
,

and
Z = {z ∈ F∗2n \ {zλ } : Tr(z) = 0} .

Obviously, Z is either a hyperplane without 0 or a hyperplane without 0 and zλ
(depending on the value of Tr(zλ )). Then, Condition (14.16) implies that, for any
z ∈ Z,

Tr(λ2z) = 1 .
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Suppose that n ≥ 5. Then, Z contains at least (2n−1 − 2) ≥ 14 elements and there
exists at least two distinct elements z0 and z1 inZ such that z0 + z1 ∈ Z. Therefore,
these two elements must satisfy

Tr(λ2z0) = Tr(λ2z1) = Tr(λ2 (z0 + z1)) = 1

which is impossible since

Tr(λ2 (z0 + z1)) = Tr(λ2z0) + Tr(λ2z1)

When n = 3, the situation is di�erent since the condition may be satis�ed when Z
contains 2 elements only, i.e. when Tr(zλ ) = 0. �

14.4.2.3 On the Feistel Case

In the case when α = β = 1, the generalized butter�y is equivalent to a 3-round
Feistel network with round functions x 7→ x3, x 7→ x1/3 and x 7→ x3. Theorem 4
in [LW14b] shows that, in this special case, the di�erence distribution table of the
corresponding butter�ies does not contain any 2. In other words, the number of
solutions (x ,y) of




R (x ,y) + R (x + a,y + b) = c

R (y,x ) + R (y + b,x + a) = d

for any tuple (a,b,c,d ) of F2n with (a,b) , (0,0) is either 0 or 4. We now give an
alternative proof of this result.

Proposition 14.4.2. [LW14b, Theorem 4] For α = β = 1, the di�erence distribution
tables of the butter�ies V1,1 and H1,1 contain the values 0 and 4 only.

Proof. As in the proof of Theorem 14.4.3, we have to count the number of solutions
of System (14.5), which simpli�es to




(a + b)x2 + (a + b)2x + ay2 + a2y = c ′

bx2 + b2x + (a + b)y2 + (a + b)2y = d ′ .
(14.17)

• If a = 0, the �rst line of the system equals b (x2 + bx ) = c ′ which has either
0 or 2 solutions, x0 and x1 (recall that a and b cannot simultaneously vanish).
The second line of the system can be rewritten as

b
(
(x + y)2 + b (x + y)

)
= d ′

which has either 0 or 2 solutions, implying y ∈ {x + z0,x + z1}. Therefore, if
the �rst line has two solutions, the second one has either 0 or 4 solutions. The
case b = 0 is similar.

• If a = b, the system is composed of two independent degree-2 equations, one
in x and the second one in y. If one of these equations has no solution, then
the whole system does not have any solution. Otherwise, each equation has
two solutions, and the system has 4 solutions.
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• If ab (a + b) , 0. Then, the �rst line `1 of System (14.17) can be replaced by
b`1 + (a + b)`2, leading to




ab (a + b)x + (ab + a2 + b2)y2 + (a3 + b3 + ab2)y = ε

bx2 + b2x + (a + b)y2 + (a + b)2y = d ′ .
(14.18)

We now multiply the second line by a2b (a + b)2 and replace ab (a + b)x by the
value given by the �rst line and get

y4 (ab + a2 + b2)2 + y2
(
a6 + b6 + ab5 + a5b + a3b3

)
+ y

(
a6b + a5b2 + a4b3 + a3b4 + a2b5 + ab6

)
= ε ′ .

Replacing y ′ = by, we equivalently obtain

Uy ′4 +Vy ′2 +Wy ′ = b−8ε ′ (14.19)

where the coe�cients U , V andW depend on e = a/b:

U = e4 + e2 + 1 = (e2 + e + 1)2

V = e6 + e5 + e3 + e + 1 = (e2 + e + 1)3

W = e6 + e5 + e4 + e3 + e2 + e = U +V .

Lemma 14.4.2 then applies. ClearlyU , 0 since the polynomial X 2 +X + 1 has
no root in F2n when n is odd. Also, U , V , otherwise e2 + e + 1 = 1 which is
not possible since the cases e ∈ {0,1} (i.e., a = 0 or a = b) have been excluded.
Then, Equation (14.19) has two solutions only if Tr(V /U ) = 0. But,

Tr
(V
U

)
= Tr(e2 + e + 1) = Tr(1) = 1 ,

implying that Equation (14.19) has 0 or 4 solutions yi , and each yi leads to a
unique value of x . Therefore, the whole system has either 0 or 4 solutions.

�

14.4.3 Algebraic Degree of Generalized Bu�erflies

Theorem 14.4.5. Let α and β be two nonzero elements in F2n . The generalized open
butter�y Hα ,β has an algebraic degree equal to n or n + 1. It is equal to n if and only if

(1 + αβ + α4)3 = β (β + α + α3)3.

The closed butter�y Vα ,β has algebraic degree 2.

The condition (1 + αβ + α4)3 = β (β + α + α3)3 can alternatively be written
Z (α ,β ) = 0, where:

Z (α ,β ) = β4 + αβ3 + α (α + 1)6β + (1 + α )12.

Furthermore, Z can be factorized as follows:

Z (α ,β ) = β4 + αβ3 + α (α + 1)6β + (1 + α )12

=
(
β2 + (1 + α )6

) (
β2 + αβ + (1 + α )6

)
=

(
β2 + (1 + α )6

) (
1 + αβ + α4 + (β + α + α3)2

)
.
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Hence, if β , (1 + α )3 then Z (α ,β ) = 0 if and only if 1 + αβ + α4 = (β + α + α3)2.
It follows that Z (α ,β ) is equal to 0 when β = (1 + α )3 and, if Tr(α−1) = 1, for two
additional values of β . This includes the Feistel case, when α = β = 1.

Proof of Theorem 14.4.5. Obviously, Vα (x ,y) has algebraic degree 2. We then focus
on the generalized open butter�y Hα ,β . The right side of the output of such an open
butter�y is equal to (x + βy3)1/3 + αy, where (x ,y) is the input. We deduce from
Theorem 1 of [KS12] (or equivalently from Proposition 5 of [Nyb94]) that the inverse
of 3 modulo (2n − 1) for odd n is

1/3 ≡
(n−1)/2∑
i=0

22i mod (2n − 1),

which implies in particular that the algebraic degree of x 7→ x1/3 is equal to (n+1)/2.
We deduce from this expression that the function t (x ,y) = (x + βy3)1/3 is equal to∏(n−1)/2

i=0 (x + βy3)2
2k . This sum can be developed as follows:

t (x ,y) = (x + βy3)1/3 =
∑

J ⊆[0, (n−1)/2]

∏
j ∈J

β22j
y3×22j

︸          ︷︷          ︸
deg<2 | J |

∏
j ∈J

x22j

︸  ︷︷  ︸
deg=(n+1)/2−| J |

,

where J is the complement of J in [0, (n−1)/2], i.e. J ∩ J = ∅ and J ∪ J = [0, (n−1)/2].
The algebraic degree of each term in this sum is at most equal to |J |+ (n+1)/2. Thus,
if |J | < (n−1)/2, then the degree of the corresponding term is smaller than n. If J = ∅
then the corresponding term is equal to β1/3y and has degree 1. If J = {j} for some j,
then the term is equal to

x22j
× β1/3y × (βy3)2

n−1−22j
= β1/3−22j

× x22j
× y (2

n−1)−(22j+1+22j−1) .

If j , (n − 1)/2, then its algebraic degree is

1 + n −wt (22j+1 + 22j − 1) = n − 2j .

If j = (n − 1)/2, then the term (omitting the constant factor) is equal to

x2n−1
× y × y2n−1−(2n−2n−1 ) = x2n−1

y2n−1−1 .

and has degreen. Therefore, t (x ,y) has two terms of degreen, corresponding to j = 0
and j = (n − 1)/2 namely

m0 (x ,y) = β
−2/3xy2n−3 andm1 (x ,y) = β

(2n−1−1)/3x2n−1
y2n−1−1 .

Thus, the right side of the output has an algebraic degree equal to n.
The left side is equal to

L(x ,y) =
(
y + α

(
(x + βy3)1/3 + αy

))3
+ β

(
(x + βy3)1/3 + αy

)3
,

which we can re-write using the function t (x ,y) = (x + βy3)1/3 as

L(x ,y) =
(
(α2 + 1)y + αt (x ,y)

)3
+ β

(
t (x ,y) + αy

)3
,
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which we expand into

L(x ,y) = t (x ,y)3 (α3 + β ) + y3
(
(α2 + 1)3 + α3

)
+ yt (x ,y)2

(
(α2 + 1)α2 + βα

)
+ y2t (x ,y)

(
(α2 + 1)2α + βα2

)
.

The terms on the �rst line have degree at most 3. Let us focus on those of the second
line and denote their sum L′(x ,y). First, we can simplify this expression as follows:

L′(x ,y)

α
= C0yt (x ,y)

2 + C1y
2t (x ,y)

where C0 = (β + α + α3) and C1 = (1 + αβ + α4).
Since t (x ,y) has algebraic degree n, we deduce that L′(x ,y) — and thus the left

side of the output of Hα ,β — has algebraic degree at most (n + 1), while the whole
function has degree at least n because of the right side. Moreover, this upper bound
is reached if and only if the terms of degree (n + 1) in L′(x ,y) do not cancel each
other. The only terms in L′(x ,y) which may have degree (n+ 1) correspond to terms
of degree n in t (x ,y), namely (omitting the constant factors):

y2m0 (x ,y) = xy2n−1, y2m1 (x ,y) = x2n−1
y2n−1+1,

ym0 (x ,y)
2 = x2y (2

n−1)−3, ym1 (x ,y)
2 = xy2n−1 .

Only the �rst and the last terms actually have degree (n + 1). Therefore, the term of
degree (n + 1) in L′(x ,y) is:

C0ym1 (x ,y)
2 +C1y

2m0 (x ,y) = xy2n−1
(
C0β

−1/3 +C1β
−2/3

)
= xy2n−1β−1/3

(
C0 +C1β

−1/3
)
.

It follows that Hα ,β has algebraic degree (n + 1) if and only if

βC3
0 , C

3
1 .

�
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Chapter15

Symmetric and Asymmetric

Hardness

Intuitively, a cryptographic primitive should have an implementation as e�cient as
possible. As discussed in the context of lightweight cryptography in Chapter 2 (p. 29),
the e�ciency of an algorithm is de�ned along three axes: time, memory and code
size.

However, there are scenarios in which it is desirable to use primitives that are
purposefully ine�cient for one or several of these metrics. This can be done to
slow down the attackers, provide di�erent levels of service to privileged and non-
privileged users, adjust cost of operation in proof-of-work schemes, etc.. The sim-
plest illustration of functions designed to be time consuming to compute is that of
key derivation functions (kdf). A kdf is typically built by iterating a one-way func-
tion (ex. a cryptographic hash function), multiple times. Such functions are intended
to prevent an adversary from brute-forcing a small set of keys (corresponding to, say
12 letter strings) by making each attempt very costly.

Time, however, is not the only form of hardness for which an arti�cial complex-
ity increase can be bene�cial. Memory-hardness was one of the design goals of the
winner of the Password Hashing Competition, Argon2 [BDK16], the aim being to
prevent hardware optimization of the primitive. As another example, one research
direction in white-box cryptography is nowadays focusing on designing block ci-
phers such that the code implementing them is very large in order to prevent dupli-
cation and distribution of their functionality [BBK14, BI15, FKKM16, BIT16, BKR16].
In this case, the aim could be to implement some form of Digital Rights Management
or to prevent the ex�ltration of a block cipher key by malware.

Since hardness is an inherently expensive property, there are cases where a trap-
door could be welcome. This is the case for the most recent weak white-box block
ciphers [BBK14, BI15, FKKM16]: while the white-box implementation requires a sig-
ni�cant code size, there exists a functionally equivalent implementation which is
much smaller but cannot be obtained unless a secret is known. That way, two classes
of users are created: those who know the secret and can evaluate the block cipher
e�ciently and those who do not and thus are forced to use the code-hard implemen-
tation. The di�erent forms of hardness, their applications and instances from the
literature are summarized in Table 15.1.

Regardless of the form of hardness, the aim of the designer of a hard primitive is to
prevent an attacker from by-passing this complexity, even if the attacker is allowed

303
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Time Memory Code size

Applications
kdf, Password hashing, White-box crypto

time-lock egalitarian computing big-key encryption

Symmetrically
PBKDF2 [Kal00]

Argon2 [BDK16], XKEY2 [BKR16],
hard functions Balloon Hashing [BCS16] Whale (Sec. 15.4.2)

Asymmetrically rsa-lock [RSW96]
Diodon [BP17]

White-box block ciphers
hard functions Skipper (Sec. 15.4.1) [BBK14, BI15, FKKM16, BIT16]

Table 15.1: Six types of hardness and their applications.

signi�cant precomputation time. Informally, a user cannot decrease the hardness
of the computation below a certain threshold. We took inspiration from the formal
de�nitions of hardness used in white-box cryptography to build a uni�ed framework
to study and design cryptographic algorithms with all forms of hardness.

This chapter is structured as follows. First, Section 15.1 provides more details
about the di�erent forms of hardness and their current usage. Then, Section 15.2
presents our generic approach for dealing with all forms of hardness at once. Using
this framework, we deduce practical modes of operation for building hard block ci-
phers and hard sponges which are described in Section 15.3. Our concrete proposals,
called Skipper and Whale, are introduced in Section 15.4.

15.1 Enforcing Hardness

In this section, we argue that many recent ideas in symmetric cryptography can be
interpreted as particular cases of a single general concept. The aim of several a priori
di�erent research areas can be seen as imposing the use of important resources for
performing basic operations or in other words, bind an operation to a speci�c form of
hardness. We restrict ourselves to the basic case of a well-de�ned function mapping
each input to a unique output. It means in particular that protocols needing several
rounds of communication or randomized algorithms which may return any of the
many valid solutions to a given problem such as HashCash (see below) are out of our
scope.

The three main metrics for assessing the e�ciency of an algorithm are its time
complexity, its ram usage and its code size. As we explain below, di�erent lines of
research in symmetric cryptography can be interpreted as investigating the design of
algorithms such that one of these metrics is abnormally high and cannot be reduced
while limiting the impact on the other two as much as possible.

Time-hardness is discussed in Section 15.1.1, memory-hardness in Section 15.1.2
and code-hardness in Section 15.1.3. Finally, in Section 15.1.4, we present the general
notion of asymmetric hardness.

It is also worth mentioning that the three forms of hardness are not completely
independent of another. For example, due to the number of memory accesses needed
in order for a function to be memory-hard, it cannot be arbitrarily fast.
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15.1.1 Time Hardness

While the time e�ciency of cryptographic primitives is usually one of the main de-
sign criteria, there are cases where the opposite is needed. That is, algorithms which
can be made arbitrarily slow in a controlled fashion.

One of the most simple approaches is the one used for instance by the key deriva-
tion function PBKDF2 [Kal00]. This function derives a cryptographic key from a salt
and a password by iterating a hash function multiple times, the aim being to frustrate
brute-force attacks. Indeed, while the password may be from a space small enough
to be brute-forced, evaluating the key derivation function for each possible password
is made infeasible by its time-hardness.

Somewhat similarly, proofs-of-work such as HashCash — used by Bitcoin [Nak08]
— search for at least one of many solutions to a given problem. The hardness in this
case comes from luck. Miners must �nd a value such that the hash of this value and
the previous block satis�es the di�culty constraint. However, the subset of such
valid values is sparse and thus miners have to try many random ones. Two di�erent
miners may �nd two di�erent but equally valid values. Because of this randomness,
such puzzles are out of our scope. In this chapter, we only consider functions which
are equally hard to evaluate on all possible inputs, not puzzles for which �nding a
solution is hard on average.

Furthermore, in order to mitigate the impact of adversaries with vast number of
processors at their disposal, we consider sequential time-hardness. Using a parallel
computer should not help an attacker to evaluate the function much more quickly.
Formalizing parallel time hardness the way we do it for sequential time-hardness is
left as future work.

Overall, the goal of time-hardness is to prevent an adversary from computing
a function in a time signi�cantly smaller than the one intended. In other words, it
must be impossible to compress the amount of time needed to evaluate the function
on a random input.

15.1.2 Memory Hardness

Informally, a function is memory-hard if even an optimized implementation requires
a signi�cant amount of memory. For each evaluation, a large amount of informa-
tion is written and queried throughout the computation. A function requiring large
amounts of ram for its computation prevents an attacker from building asics �lled
with a huge number of cores for parallel computations.

This implies that memory-hard functions make good password hashing functions
and proofs-of-work. One of the �rst to leverage this insight was the hash function
scrypt [Per09] which was recently formally proved to be memory-hard in [ACP+16].
It gave rise to several other memory-hard algorithms such as the password hash-
ing competition winner Argon2 [BDK16] as well as the more recent Balloon Hash-
ing [BCS16] and Equihash [BK16b]. Those can be used as building blocks to cre-
ate memory-hard proofs-of-work which can o�set the advantage of cryptocurrency
miners using dedicated asics.

The idea of using memory-hard functions for general purpose computations was
further explored in the context of egalitarian computing [BK16a]. Similarly, proofs of
space [DFKP15, ABFG14] are protocols which cannot be run by users if they are not
able to both read and write a large amount of data. However, those are interactive
protocols and not functions.
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The recent research investigating memory-hardness has lead to several advances
in our understanding of this property. For example, the di�erence between amortized
and peak memory hardness was highlighted in [AS15]. However, for the sake of
clarity, we restrict ourselves to peak memory hardness; i.e. that at least at one point
in the evaluation of a function, a large amount of memory is necessary.

15.1.3 Code Hardness

First of all, let us clarify the distinction we make betweenmemory and code-hardness.
With code-hardness, we want to increase the space needed to store information that
is needed to evaluate a function on all possible inputs. However, the information
itself does not depend on said input. During evaluation of the function, it is only
necessary to read the memory in which the code is stored. In contrast, memory-
hardness deals with the case where we need to store a large amount of information
which depends on the function input and which is thus di�erent during each eval-
uation of the function. In this case, one must be able to both read and write to the
memory. Furthermore, in a typical code-hard function, only a small fraction of the
whole information stored in the implementation is read during each call to the func-
tion. On the other hand, if a memory-hard function uses M bytes of memory, then
all of those bytes will be written and read at least once.

Code-hardness is very close to one of the goals of the most recent white-box
block cipher proposals such as ASASA [BBK14], Space [BI15], SPNBox [BIT16] and
PuppyCipher/Hound [FKKM16] as well as the more general de�nition in [DLPR14].
This notion is formalized under di�erent names in each paper: weak white-box en-
cryption for Biryukov et al., (M ,z)-space hardness for Bogdanov et al. or incom-
pressibility for both Fouque et al. and Delarablée et al.. In all cases, the aim is the
same: the block cipher implementation must be such that it is impossible to write a
functionally equivalent implementation with a smaller code. This stands in contrast
to strong white-box cryptography (as de�ned in [BBK14]) where inverting a function
given its white-box implementation should be impossible. We do not consider this
case in this chapter.

As was pointed out in [FKKM16], what we call code-hardness is also the goal
of so-called big-key encryption. The XKEY2 scheme introduced in [BKR16] achieves
this goal: it uses a huge table and a nonce to derive a key of regular size (say, 128
bits) to be used in a standard encryption algorithm, e.g. a stream cipher. Bellare et
al. show that even if an attacker manages to obtain half of the huge table, i.e. half
of the code needed to implement the scheme, then they are still unable to compute
the actual encryption key with non-negligible probability. Using our terminology,
XKEY2 can be seen as a code-hard key derivation function. The concept of proof of
storage can also be interpreted as a particular type of code-hard protocols. Indeed,
in such algorithms, challengers must prove that they have stored a given �le.

15.1.4 Asymmetric Hardness

In this section, we discuss the concept of asymmetric hardness which introduces two
classes of users. Common users evaluate a hard function but privileged users, who
know a secret key, can evaluate a functionally equivalent function which is not hard.
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15.1.4.1 Asymmetric Code-Hardness

The most recent White-Box block ciphers such as ASASA [BBK14], Space [BI15], the
PuppyCipher [FKKM16] and SPNbox [BIT16] can be seen as providing asymmetric
code-hardness. Indeed, while the �rst aim of these algorithms is to provide regular
code-hardness, referred to as “space-hardness” for the former and “incompressibility”
for the latter, they both allow the construction of far more code-e�cient implemen-
tations. For both Space and the PuppyCipher, the idea is to compute a large table
containing the encryptions of the �rst 2t integers with Aes-128 for t in {8,16,24,32}.
These tables are then used as the code-hard part of the encryption which cannot be
compressed because doing so would require a break of the Aes. However, a user
knowing the 128-bit Aes key can get rid of these tables and merely recompute the
entries needed on the �y, thus drastically decreasing the code-hardness of the imple-
mentation.

In fact, both constructions can be seen as structures intended to turn an asym-
metrically code-hard function into an asymmetrically code-hard block cipher. In both
cases, the asymmetrically code-hard function consists of the evaluation of the Aes
on a small input using either the secret key, in which case the implementation is not
code-hard, or using only the public partial codebook which, because of its size, is
code-hard.

15.1.4.2 Asymmetric Time-Hardness

While the asymmetry of its hardness was not insisted upon, there is a known asym-
metrically time-hard function, which we call rsa-lock. It was proposed as a time-lock
in [RSW96], that is, a function whose output cannot be known before a certain date.

It is based on the Rsa cryptosystem [RSA78]. It consists of iterating squarings in
a Rsa modular ring: a user who does not know the prime factor decomposition of
the modulus N must perform t squarings while a user who knows that N = pq can
�rst compute e = 2t mod (p − 1) (q − 1) and then raise the input to the power e . If t
is large enough, the second approach is much faster.

15.1.4.3 Asymmetric Memory-Hardness

The only asymmetrically memory-hard function we are aware of is Diodon which
we very recently1 presented in an eprint submission [BP17]. It is a variant of the
memory-hard function scrypt [Per09] which replaces some of the hash function calls
used in the original design by squarings in an Rsa modular group. More precisely,
given an input x , it �rst �lls a large array V by setting V0 = x and Vi+1 = V 2η

i
mod N where η is a parameter of the computation and N = qq′ is an Rsa modulus.
It then goes through another loop querying random entries in this table. Basic users
are forced to store the whole array while privileged users can recompute each Vi
directly by �rst reducing 2η×(i−1) modulo (q − 1) (q′ − 1) and then raise x to the
resulting exponent, as would be done in the Rsa-based time-lock presented above in
Section 15.1.4.2.

However, unlike Argon2, Diodon only gives a linear penalty to users trying to
reduce its memory complexity. It is possible to evaluate Diodon using c times less

1We designed it between the defence of this thesis and the submission of its �nal version. Therefore,
I only mention it in this manuscript.
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memory at the cost of a multiplication by c of the time complexity. Thus, the follow-
ing problem remains open.

Open Problem 15.1.1. Is it possible to design an asymmetrically memory-hard (but
code-e�cient) function with superlinear penalties?

15.2 A Generic Framework

As we have seen, all the techniques presented in the sections above are intended
to enforce some form of computational hardness. In this section, we present a uni-
�ed framework for building any symmetric algorithm with some form of guaranteed
hardness. We describe our aim in Section 15.2.1 and our design strategy with the
generic hardness de�nition it is based on in Section 15.2.2. Our constructions need
small functions with the intended hardness type to be bootstrapped. We provide
examples of those in Section 15.2.3.

15.2.1 Design Strategy

Our aim is to design a general approach to build any cryptographic primitive with
any form of hardness. To achieve this, we will build modes of operations allowing us
to combine secure cryptographic primitives, such as the Aes [DR02] block cipher or
the Keccak sponge [BDPVA09], with small functions called plugs. These plugs are
simple functions with the desired form of hardness.

Our modes of operations, which are presented in Section 15.3, are all based on
the same principle: ensuring that enough plug calls with a non-predictable input
are performed so as to guarantee that, with overwhelming probability, an adversary
cannot bypass all plug evaluation. This ensures that the full complexity of a plug
evaluation is paid for at least once.

Indeed, regardless of the hardness form considered, the strategy of a generic ad-
versary will always be the same. Provided that the plugs are indeed hard to evaluate,
the only strategy allowing an adversary to bypass their hardness consists of storing
a (feasibly) large number of plug outputs in a database and then querying them.

If 2p outputs of a plug P : {0,1}t → {0,1}v have been stored, the plug can be
evaluated successfully without paying for its hardness with probability 2p−t .

An alternative strategy using the same space consists of storing 2p (v/d ) partial
outputs of length d . In this case, the success probability becomes 2p−t (v/d ) × 2d−v :
the input is partially known with a higher probability 2p−t (v/d ) but (v − d ) bits of
the output remain to be guessed. This method is (v/d )×2d−v more e�cient than the
basic one but, for 1 ≥ d ≥ v , this quantity is always smaller than one. The strategy
consisting of storing full outputs is therefore the best.

However, if the output size of the plug is small enough, it might be e�cient
enough for the adversary to directly guess the whole output. The probability that
an adversary merely guessing the output of the plug gets it right is 2−v .

Our aim is therefore to guard our constructions from the adversary de�ned below.
Protecting our structure against them is su�cient to reduce their hardness to that of
the plug they use.

De�nition 15.2.1 (2p -adversary). Let f be a time-, memory- or code-hard function.
A 2p -adversary is an adversary trying to generate a function f ′ which does not have
the hardness of f but which does not have access to more memory than needed to store
2p outputs of f .
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A 2p -adversary can perform more than 2p calls to the function it is trying to
approximate when generating f ′, although f ′ itself cannot have access to more than
2p of those. Still, f ′ can perform additional computations using the information
stored during its generation.

However, the computational power of this adversary is not unbounded. More
precisely, in the remainder of this chapter, we consider that all 2p -adversaries cannot
perform more than 2100 operations. This means for example that recovering a 128-
bit Aes key is out of their reach. We are not interested in guarding ourselves against
computationally unbounded adversaries.

15.2.2 Theoretical Framework

15.2.2.1 Generic Symmetric Hardness

We are now ready to formally de�ne hardness. We generalize the incompressibility
notion from [FKKM16] to all forms of hardness.

De�nition 15.2.2 (R-hardness). We say that a function f : X → Y is R-hard against
2p -adversaries for some tuple R = (ρ,u,ϵ (p)) with ρ ∈ {Time,Code,ram} if evaluating
the function f using less thanu units of the resource ρ and at most 2p units of storage is
possible only with probability ϵ (p). More formally, the probability for a 2p - adversary
to win the e�cient approximation game, which is described below, must be upper-
bounded by ϵ (p).

1. The challenger chooses a function f from a prede�ned set of functions requiring
more than u units of ρ to be evaluated.

2. The challenger sends f to the adversary.

3. The adversary computes an approximation f ′ of f which, unlike f , can be com-
puted using less than u units of the resource ρ.

4. The challenger picks an input x of X uniformly at random and sends it to the
adversary.

5. The adversary wins if f ′(x ) = f (x ).

This game is also represented in Figure 15.1. The approximation f ′ computed by the
adversary must be evaluated using signi�cantly less than u units of the resource ρ,
although the precomputation may have been more expensive.

In order for this de�nition to be relevant, the power of the adversary must be
estimated. For example, preventing attacks from 2512-adversaries would most de�-
nitely be over engineering and, conversely, preventing attacks from 220-adversaries
would be useless since such precomputation is always feasible.

Our de�nition is not the strongest in the sense that it does not encompass e.g.
“strong space-hardness” [BI15]. This de�nition of code-hardness aims at preventing
the attacker from encrypting a plaintext of their choosing, a far stronger requirement
than preventing the encryption of a random plaintext.

In the e�cient approximation game described above, f ′ must be less hard than f
along the appropriate axis. For example, if f is code-hard then the code implementing
f ′ must be signi�cantly smaller than that implementing f , meaning that the game
corresponding to code-hardness when f is an encryption algorithm is essentially the
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challenger adversary

Choose f

f

f ′ ← Precompute( f )

x
$
←− X

x

f ′(x )

f (x ) = f ′(x )?

Figure 15.1: The game corresponding to the de�nition of (R,s,ϵ )-hardness: ϵ bounds
the probability of success of the adversary and s bounds the R-hardness of f ′.

same as the one used in the de�nition of encryption incompressibility [FKKM16].
Indeed, the computation of f ′ and its use by the adversary corresponds in this case
to the computation of the leakage function on the secret large table and its use by
the adversary to approximate the original table.

In the case of code-hardness the maximum code size of the implementation of
f ′ must coincide with the power of the 2p -adversary. Indeed, the implementation of
the approximation f ′ needs at least enough space to store 2p outputs of the plug.

15.2.2.2 Generic Asymmetric Hardness

This generic de�nition is easily generalized to encompass asymmetric hardness.

De�nition 15.2.3 (Asymmetric R-hardness). We say that a function f : X → Y
is asymmetrically R-hard against 2p -adversaries for some tuple R = (ρ,u,ϵ (p)) with
ρ ∈ {Time,Code,ram} if it is impossible for a 2p -adversary to win the approximation
game of De�nition 15.2.2 with probability higher than ϵ (p), unless a secret K is known.

If this secret is known, then it is possible to evaluate fK which is functionally equiv-
alent to f but does not have its hardness.

An immediate consequence of this de�nition is that extracting the secret key K
from the description of f must be computationally infeasible. Otherwise, the adver-
sary could simply recover K during the precomputation step, use fK as their approx-
imation and then win the approximation game with probability 1. This observation
is reminiscent of the unbreakability notion presented in [DLPR14]

White-box block ciphers are simple example of asymmetrically code-hard func-
tions. This concept can also be linked to the proof of work or knowledge presented
in [BKZZ16]. It is a proof of work where a solution can be found in a more e�cient
way if a secret is known.

Asymmetric hardness is a di�erent notion from public key encryption. Indeed,
in the latter case, the whole decryption functionality is secret. In our case, the func-
tionality is public. What is secret is a method to evaluate it e�ciently.
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15.2.2.3 A Counter-Example

The inversion of a one-way function may seem like a natural example of a time-hard
function. However, as described below, it may not satisfy the requirements of our
de�nition of (Time,u,ϵ (p))-hardness.

Let h : {0,1}50 → {0,1}50 be the function mapping a 50-bit string to the �rst 50
bits of their Sha-256 digest and let f be the inverse of h. In other words, f returns
a preimage of a given digest. This function may seem time-hard at �rst glance as
Sha-256 is preimage resistant. More speci�cally, it might be expected to be about
(Time,250,2−20)-hard against a 230-adversary. However, as is well known, such con-
structions can be attacked using Hellman’s tradeo� [Hel80] in the form of rainbow-
tables allowing an attacker to recover a preimage in far less time at the cost of signif-
icant but practical pre-computation and storage. If M is the size of this table andT is
the time complexity of an inversion using this table then, as explained in [BS00], it
must hold thatMT 2 = N 2 where N = 250 in our case. The failure of f to be time-hard
in the sense of De�nition 15.2.2 can be seen in the approximation game.

1. The challenger chooses a secure hash function (Sha-256) and sends its descrip-
tion to the adversary.

2. The 230-adversary precomputes Hellman-type rainbow tables with in total 230

entries using about 250 calls to h. This adversary chooses M = 230 and T =
N /
√
M = 235.

3. The challenger chooses a random value x ∈ {0,1}50 and sends it to the adver-
sary.

4. With high probability, the adversary computes f (x ) using their precomputed
table in timeT = 235 which is 215 times smaller than the time needed for brute-
force.

Thus, such a function is not time-hard in the sense of De�nition 15.2.2.

15.2.3 Examples of Plugs

As our modes rely on smaller R-hard function to achieve their goal, we describe an
array of such components, one for each hardness goal. A summary of all the plugs we
describe, along with what we consider to be their hardness against 2p -adversaries, is
given in Table 15.2.

While we provide an intuition on why we assume these plugs to have the hard-
nesses we claim, we do not prove that it is the case.

If the output it is too large to be used in a higher level construction then it is
possible to truncate it to v bits. If we denote Tv the function discarding all but the
�rst v bits of output and if P is a plug with a t-bit input which is (ρ,u,ϵ (p))-hard
against 2p -adversaries, then x 7→ Tm (P (x )) is (

ρ,u,max(ϵ (p),2p−t ))-hard against
2p -adversaries. Overall, the probability of success of an approximation made by a
2p -adversary of a plug mapping t to v bits is lower-bounded by max(2−v ,2p−t ).

15.2.3.1 Time-Hard plug

This hardness has been considered in previous works for instance in the context of
key stretching and key derivation or for time-lock encryption. In fact, the construc-
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Hardness Symmetric Asymmetric

Time IterHashtη RSAlocktη
(Time,η,2p−t ) (Time,η,2p−t )

Memory Argon2 Diodon
(ram,M/5,2p−t ) (ram,M/10,2p−t )

Code BigLUTtv BcCountertv
(Code,2p ,2p−t ) (Code,2p ,2p−t )

Table 15.2: Possible plugs, i.e. sub-components for our constructions which we as-
sume to be R-hard against 2p -adversaries.

tions proposed for each use case can be used to provide time-hardness and asymmet-
ric time-hardness respectively.

Symmetric Hardness. IterHashtη iterates a t-bit hash function on a t-bit input
block η times where η must be much smaller than 2t/2 to avoid issues related to
the presence of cycles in the functional graph of the hash function. If we denote
by H the hash function used, then IterHashtη (x ) = Hη (x ). Evaluating this function
requires at least η hash function calls and, provided that the hash function iterated is
cryptographically secure, it is impossible for an adversary to guess what the output
is after η iterations with probability higher than 2−t/2.

We consider that this function is (Time,η,2p−t )-hard against 2p -adversaries, as
long as p � t/2.

Asymmetric Hardness. RSAlocktη is a function performing η squaring in a RSA
modular ring of size N = qq′ ≈ 2t , where q and q′ are secret primes. Using these no-
tations, RSAlocktη (x ) = x2η mod N . The common user therefore needs to perform
η squarings in the modular ring.

However, a user who knows the prime decomposition of the RSA modulo can
�rst compute e = 2η mod (q − 1) (q′ − 1) and thus compute RSAlocktη (x ) = xe

mod N . Furthermore, such a user can also use the Chinese remainder theorem to
further speed up the computation which increases their advantage over common
users. Thus, as long as t > n, the privileged user has an advantage over the com-
mon. We consider that RSAlocktη is asymmetrically (Time,η,2p−t )-hard against 2p -
adversaries.

15.2.3.2 Memory-Hard plug

Several recent functions are intended to provide memory-hardness. The main moti-
vation was the Password Hashing Competition (PHC) which favored candidates en-
forcing memory-hardness to thwart the attacks of adversaries using ASICs to speed
up password cracking.

Symmetric Hardness. The winner of the PHC competition, Argon2 [BDK16],
uses M bytes of memory to hash a password, where M can be chosen by the user.
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It was designed so that an adversary trying to use less than M/5 bytes of memory
would have to pay a signi�cant increase in time-hardness. Using our de�nition, if t
is the size of a digest (this quantity can also be chosen by the user) andv is the size of
the input, then Argon2 is about (ram,M/5,2p−t )-hard against 2p -adversaries as long
as enough passes are used to prevent ranking and sandwich attacks [AB16a, AB16b]
and as long as 2p−t > 2−v .

The construction of memory-hard functions is a very recent topic. Only a few
such functions are known, which is why Argon2 is far more complex than the other
plugs proposed in this section. It is an interesting research problem to build a simpler
memory hard function with the relaxed constraint that it might be cheap to compute
on a part of its domain, a �aw which would easily be factored into the ϵ (p) probability.

Asymmetric Hardness. Diodon is, to the best of our knowledge, the only pos-
sibility for asymmetric memory-hardness. Much like Argon2, we consider that it is
(ram,M/10,2p−t )-hard against 2p -adversaries for basic users, although the penalty
for decreasing the memory complexity is only linear in the case of Diodon.

15.2.3.3 Code-Hard plug

As explained in Section 15.1.3, the main goals of code-hardness are white-box and
big-key encryption. The structures used for both purposes rely on the same building
block, namely a large look-up table where the entries are chosen uniformly at random
or as the encryption of small integers. The former, BigLUTtv , is code-hard. The latter,
BcCountertv , is asymmetrically code-hard. Furthermore, an identical heuristic can
be applied to both of them to increase the input size of the plug while retaining a
practical code size. It is described at the end of this section.

Symmetric Hardness. BigLUTtv uses a table K consisting in 2t entries, each be-
ing a v-bit integer picked uniformly at random. Evaluating BigLUTtv then consists
simply in querying this table: BigLUTtv is the function mapping a t-bit integer x to
the v-bit integer K[x].

This function is (Code,2p ,2p−t )-hard against 2p -adversaries. Indeed, an adver-
sary who has access to 2p outputs of the function cannot evaluate it e�ciently on a
random input with probability more than 2p−t . Simply guessing the output succeeds
with probability 2−v which is usually much smaller than 2p−t . Thus, we consider
that BigLUTtv is (Code,2p ,2p−t )-hard against 2p -adversaries.

Asymmetric Hardness. BcCountertv is the function mapping a t-bit integer x to
the v-bit block Ek (0v−t | |x ), where Ek is a v-bit block cipher with a secret key k of
length at least v . A common user would be given the codebook of this function as
a table of 2t integers while a privileged user would use the secret key k to evaluate
this function.

The hardness of BcCountertv is the same as that of BigLUTtv for a common user.
The contrary would imply the existence of a distinguisher for the block cipher, which
we assume does not exist. However, a privileged user with knowledge of the secret
key used to build the table can bypass this complexity.

Furthermore, as the key size is at least as big as the block size in modern block
ciphers, an adversary guessing the key is not more e�cient than one who merely
guesses the output of the cipher. Thus, we consider that BigLUTtv is asymmetrically
(Code,2p ,2p−t )-hard.
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Increasing the input size. Both BigLUTtv and BcCountertv have a low input size
and leave a fairly high success probability for an attacker trying to win the e�cient
approximation game without using a lot of resource. An easy way to work around
this limitation is to use ` > 1 distinct instances of a given function in parallel and
XOR their outputs. For example, x 7→ f (x ) where

f (x0 | |...| |x`−1) = ⊕
`−1
i=0 Ek (byte(i ) | |0n−t−8 | |xi )

and where byte(i ) denotes the 8-bit representation of the integer i combines ` dif-
ferent instances of BcCountertv . We consider that this function is asymmetrically(
Code,2p ,max(2p−v , (2p−t/`)` )

)
-hard.

Indeed, an attacker could store 2p/` entries of each of the ` distinct tables, in
which case they can evaluate the whole function if and only if all the table entries
they need are among those they know. This happens with probability (2p−t/`)` .
Alternatively, they could store the output of the whole function for about 2p values
of the complete input. In that case, they can evaluate the function if and only if
the whole input is one that was precomputed, which happens with probability 2p−v .
We assume that there is not better attack for a 2p -adversary than the ones we just
described, hence the hardness we claimed.

It is also possible to use a white-box block cipher as an asymmetrically code-hard
function as this complexity is precisely the one they are designed to achieve.

15.3 Modes of Operations for Building Hard Primitives

As said above, our strategy is to combine hard plugs with secure cryptographic prim-
itives in such a way that the input of the plugs are randomized and that enough such
calls are performed to ensure that at least one plug evaluation was hard with a high
enough probability. The method we use is nicknamed plug-then-randomize. It is for-
malized in Section 15.3.1. Then, the block cipher and the sponge mode of operation
based on it are introduced respectively in Sections 15.3.2 and 15.3.3.

15.3.1 Plug-Then-Randomize

De�nition 15.3.1 (Plugged Function). Let P : {0,1}t → {0,1}v be a plug and let
F : {0,1}n → {0,1}n be a function, where t + v ≤ n. The plugged function (F · P ) :
{0,1}n → {0,1}n maps x = xt | |xv | |x

′ with |xt | = t , |xv | = v and |x ′ | =m − t −v to y
de�ned by:

(F · P ) (xt | | xv | | x
′) = y = F

(
xt | | xv ⊕ P (xt ) | | x

′) .
This computation is summarized in Figure 15.2.

Lemma 15.3.1 (Plugged Function Hardness). If P : {0,1}t → {0,1}v is a plug
(ρ,u,ϵ (p))-hard against 2p -adversaries and if F : {0,1}n → {0,1}n is a public ran-
dom (permutation) oracle then the plugged function (F · P ) is (ρ,u,ϵ (p))-hard.

Proof. First, the adversary could try and store 2p outputs of (F · P ). However, such
an approximation would work only with probability 2p−n < 2p−v ≤ ϵ , so that it is
less successful than an approximation based on an approximation of the plug.

Without knowledge of the full input of F , it is impossible to predict its output
because F is a random (permutation) oracle. Therefore, we simply need to show that
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F

P ⊕

t v n −v − t

n

Figure 15.2: Evaluating the plugged function (F · P ).

the function FP mapping (x ,y,z) of {0,1}t × {0,1}v × {0,1}n−t−v to (x ,y ⊕ P (x ),z) is
as hard as P itself.

By contradiction, suppose that there is an adversary A capable of winning the
approximation game for FP . That is, A can compute an approximation F ′P of FP
using less thanu units of the resource ρ which works with probability strictly higher
than ϵ (p). Then A can win the approximation game for P itself as follows. When
given P ,A computes the approximation F ′P of the corresponding function FP . Then,
when given a random input of P of length t ,A concatenates with random bitstrings
y and z of length v and n − t −v respectively. The output of P is then approximated
as thev center bits of F ′P (x | |y | |z) ⊕ (x | |y | |z) = 0t | |P (x ) | |0n−t−v . Thus,A can violate
the (ρ,u,ϵ (p))-hardness of P .

We deduce that if P is (ρ,u,ϵ (p))-hard, then so is FP and thus (F · P ). �

Using this lemma, we can prove the following theorem which will play a key role
in justifying the R-hardness of our later constructions.

Theorem 15.3.1 (Iterated Plugged Function Hardness). Let Fi , i < r be a family of
r di�erent random oracles (or random permutation oracles) mapping n bits to n. Let
P : {0,1}t → {0,1}v with t + v ≤ n be a plug (ρ,u,ϵ (p))-hard against 2p -adversaries.
Then the function f : {0,1}n → {0,1}n de�ned by

f : x 7→
(
(Fr−1 · P ) ◦ ... ◦ (F0 · P )

)
(x )

is (ρ,u,max(ϵ (p)r ,2p−n ))-hard against 2p -adversaries.

Proof. We denote fi the function de�ned by f : x 7→
(
(Fi−1 · P ) ◦ ... ◦ (F0 · P )

)
(x ),

so that f = fr . We proceed by induction on the number of rounds i , our induction
hypothesis being that the theorem holds for r ≤ i .

Initialization. If i = 1 i.e. for f1 = (F · P ), Lemma 15.3.1 tells us that this function
is (ρ,u,ϵ )-hard. As ϵ ≥ 2p−v > 2p−n , the induction holds for i = 1.

Inductive Step. Suppose that the theorem holds for i rounds. The attack based
on pre-querying 2p outputs of fi+1 and then approximating fi+1 using the content of
this table would still work. Thus, if ϵ i+1 ≤ 2n−p then this strategy is the optimal one.
Suppose now that ϵ i+1 > 2n−p , which also implies that ϵ i > 2n−p .

As Fi+1 is a random (permutation) oracle, the only way to evaluate the output of
fi+1 is to �rst evaluate fi and then to evaluate (Fi+1 · P ). The existence of another
e�cient computation method would violate the assumption that Fi+1 is a random
oracle. The attack strategy consisting in precomputing several outputs of the random
oracles is limited by the fact that we consider only 2p -adversaries.
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Thus, the adversary needs �rst to evaluate fi and then (Fi+1 · P ). Let f ′j be an
approximation of the function fj computed by a 2p -adversary and letдj be an approx-
imation of (Fj ·F ) computed by the same adversary. The probability of the successful
evaluation of f ′i+1 is:

Pr
[
f ′i+1 (x ) = fi+1 (x ), x

$
← {0,1}n

]

= Pr [дi+1 (y) = (Fi+1 · P ) (y) | y = fi (x )
]

× Pr
[
f ′i (x ) = fi (x ),x

$
← {0,1}n

]
.

Because of the induction hypothesis, we know that

Pr
[
f ′i (x ) = fi (x ),x

$
← {0,1}n

]
≤ ϵ i

On the other hand, the �rst term is equal to

Pr [дi+1 (y) = (Fi+1 · P ) (y) | y = fi (x )
]

= Pr
[
дi+1 (y) = (Fi+1 · P ) (y),y

$
← {0,1}n

] (15.1)

which, because of Lemma 15.3.1, is at most equal to ϵ .
Equation (15.1) is true. Were it not the case, then Fi+1 would not be behaving like

a random oracle. Indeed, y = fi (x ) is the output of a sequence of random oracle calls
sandwiched with simple bijections consisting in the plug calls that are independent
from said oracle. Therefore, since x is picked uniformly at random, y must take any
value with equal probability. Furthermore, the events fi (x ) = y and дi+1 (y) = (Fi+1 ·
P ) (y) are independent: the latter depends only on the last random (permutation)
oracle Fi+1 while the former depends on all other random (permutation) oracles. As
a consequence, the probability that f ′i+1 (x ) = fi (x ) for x picked uniformly at random
and for any approximation f ′i+1 obtained by a 2p -adversary is upper-bounded by
ϵ i+1. �

15.3.2 Hard Block Cipher Mode (HBC)

Let Ek be a block cipher operating onn-bit blocks using a key of lengthκ ≥ n. Let P be
a plug (ρ,u,ϵ (p))-hard against 2p -adversaries. The HBC mode of operation iterates
these two elements to create an n-bit block cipher with a κ-bit secret key which is
(ρ,u,max(ϵ (p)r ,2p−n ))-hard against 2p -adversaries. This construction, when keyed
by the κ-bit key k , is the permutation HBC[Ek ,P ,r ] which transforms an n-bit input
x as described in Algorithm 15.1. This process is also summarized in Figure 15.3.
Below, we describe the hardness (Theorem 15.3.2) such a HBC instance achieves. We
also reiterate that if an asymmetrically hard plug is used then the block cipher thus
built is also asymmetrically hard.

Our proof is in the ideal cipher model, a rather heavy handed assumption. We
leave as future work to prove the hardness of this mode of operation in simpler
settings.

The role of the round counter xored in the key is merely to make the block cipher
calls independent of one another. If the block cipher had a tweak, these counter
additions could be replaced by the use of the counter as a tweak with a �xed key. It
is possible to use block ciphers which are not secure in the related-key setting and
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Algorithm 15.1 HBC[Ek ,P ,r ] encryption
Inputs: n-bit plaintext x ; κ-bit key k
Output: n-bit ciphertext y
y ← Ek (x )
for all i ∈ {1, ...,r } do

yt | | yn−t ← y, where |yt | = t and |yn−t | = n − t
yn−t ← yn−t ⊕ P (yt )
y ← Ek⊕i (yt | |yn−t )

end for

return y

Ek Ek⊕iP

⊕

i times

Figure 15.3: The HBC block cipher mode.

still retain the properties of HBC by replacing the keys k ⊕ i by the outputs of a key
derivation function.

Theorem 15.3.2 (Hardness of HBC). If the block cipher Ek used to build HBC[Ek ,P ,r ]
is an ideal block cipher and if the plug P is (ρ,u,ϵ (p))-hard against 2p -adversaries, then
the block cipher HBC[Ek ,P ,r ] is (ρ,u,max(ϵ (p)r ,2n−p ))-hard against 2p -adversaries.

Proof. As Ek is an ideal cipher, Ek and Ek⊕i cannot be distinguished from two in-
dependent random permutation oracles using less than 2κ operations. As a conse-
quence Theorem 15.3.1 immediately gives us the theorem. �

We used the HBC structure to build an asymmetrically time-hard block cipher,
Skipper, which we describe in Section 15.4.1.

15.3.3 Hard Sponge Mode (HSp)

The sponge construction was introduced by Bertoni et al. as a possible method to
build a hash function [BDPVA07]. They used it to design Keccak [BDPVA09] which
later won the Sha-3 competition. It is a versatile structure which can be used to
implement hash functions, stream ciphers, message authentication codes (mac), au-
thenticated ciphers as described in [BDPV12], pseudo-random number generators
(prng) and key derivation functions (kdf) as explained for example in [GT16]. In
this section, we �rst provide a brief reminder on the sponge construction as this
object is relatively recent compared to block ciphers and hash functions. Then, we
show how plugs can be combined with secure sponge transformation to buildR-hard
sponges, thus providing a R-hard hash function, mac, etc.
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15.3.3.1 The Sponge Construction

A sponge construction uses an n-bit public permutation д and is parametrized by its
capacity c and its rate r which are such that r + c = n. This information is su�cient
to build a hash function, as was described in Section 1.2.1.3 (p. 7). Let us brie�y
recall how it works. The two higher level operations provided by a sponge object
parametrized by the function д, the rate r and the capacity c are listed below.

• Absorption. The r -bit block mi of the padded message m is xored into the
�rst r bits of the internal state of the sponge and the function д is applied.

• Squeezing. The �rst r bits of the internal state are output and the function д
is applied on the internal state.

This process is summarized in Figure 15.4. The internal state of the sponge obvi-
ously needs to be initialized. It can be set to a �xed string to create a hash function.
However, if the initial value is a secret key, we obtain a mac. Similarly, if the initial
value is a secret key/initialization pair, we can generate a pseudo-random keystream
by iterating the squeezing operation.

д д д
⊕ ⊕0

IV

m0 m1 h0 h1
r

c

Initialization Absorption Squeezing

Figure 15.4: A sponge-based hash function.

As explained in [BDPV12], this structure can be modi�ed to allow single-pass
authenticated encryption. This is achieved by using the sponge object to gener-
ate a stream with the added modi�cation that, between the generation of the r -
bit keystream block and the application of д to the internal state, the r -bit block
of padded message is xored into the internal state, just like during the absorption
phase. In this case, there is no distinction between the absorption and squeezing
phase. Once the whole padded message has been absorbed and encrypted using the
keystream, the sponge object is squeezed to obtain the tag.

Finally, a sponge object can also be used to build a kdf or a prng using a similar
strategy in both cases, as proposed in [GT16]. The general principle is to absorb the
output of the low-entropy source and follow the absorption of each block by many
iterations of x 7→ 0r | |Tc (д(x )) on the internal state, whereTc (x ) is equal to the last c
bits of x . Setting the �rst r bits of the internal state to zero prevents the inversion of
the update function.

Sponge constructions are known to be secure as long as the public update func-
tion д has no structural distinguishers such as high probability di�erentials or linear
approximation with a high bias.

The main advantages of the sponge structure are its simplicity and its versatility.
It is simple because it only needs a public permutation and it is versatile because
all symmetric primitives except block ciphers can be built from it with very little
overhead. As we will show below, the fact that its internal state is larger than that
of a usual block cipher also means that attacks based on precomputations are far
weaker.
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д

P ⊕

t v r

capacity (c bits) rate

Figure 15.5: The hard sponge transformation (д · P ).

15.3.4 The HSp Mode and its Hardness

Given that a sponge object is fully de�ned by its rate r , capacity c and public update
functionд, we intuitively expect that building aR-hard sponge object can be reduced
to building a R-hard update function. As stated in the theorem below, this intuition
is correct provided that the family of functions дk : {0,1}c → {0,1}c indexed by
k ∈ {0,1}r and de�ned as the capacity bits of д(x | |k ) is assumed to be a family of
independent random oracles.

We call HSp the mode of operation described in this section. It is super�cially
similar to a round of the HBC block cipher mode.

An update function д can be made R-hard using the R-hardness of a plug P :
{0,1}t → {0,1}v to obtain a new update function (д·P ) as described in Algorithm 15.2.

Algorithm 15.2 (д · P ) sponge transformation
Inputs: n-bit block x ;
Output: n-bit block y
xt | | xv | | x

′ ← x , where |xt | = t , |xv | = v, |x
′ | = n − t −v

xv ← xv ⊕ P (xt )
y ← д(xt | | xv | | x

′)
return y

This process is summarized in Figure 15.5. In order to prevent the adversary from
reaching either the input or the output of P , which could make some attacks possible,
we impose that t +v ≤ c so that the whole plug input and output are located in the
capacity.

Theorem 15.3.3 (HSp absorption hardness). Consider a sponge de�ned by the n-bit
transformation (д · P ), a rate r and a capacity c so that r + c = n and r > c . Let (д · P )
be de�ned as in Algorithm 15.2, where P : {0,1}t → {0,1}v is a plug (ρ,u,ϵ (p))-hard
against 2p -adversaries.

Let Absorb : {0,1}`×r → {0,1}c be the function mapping an un-padded messagem
of ` r -bit blocks to the capacity bits of the internal state of the sponge after it absorbed
m.

Furthermore, suppose that then-bit transformationд is such that the family of func-
tions дk : {0,1}c → {0,1}c indexed by k ∈ {0,1}r and de�ned as дk (x ) = Tc ((д(x | |k ))
can be modeled as a family of random oracles.

Then Absorb is
(
ρ,u,max(ϵ (p)`−1,2p−c )

)
-hard against 2p -adversaries.

This theorem deals with un-padded messages. The padding of such a message
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д д⊕ ⊕IVv

IVt
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Figure 15.6: An alternative representation of the absorption procedure.

imposes the creation of a new block with a particular shape which cannot be consid-
ered to be random.

Proof. Let дk : {0,1}c → {0,1}c be as de�ned in the theorem. Let the message m be
picked uniformly at random.

The �rst call to (д · P ) is not (ρ,u,ϵ (p))-hard. Indeed, the content of the message
has not a�ected the content of the capacity yet. However, the capacity bits of the
internal state after this �rst call to (д · P ) are uniformly distributed as they are the
image of a constant by the function indexed by m0 from a family of 2r di�erent
random oracles.

Letm′i =mi ⊕ zi , wheremi is the message block with index i > 1 and where zi is
the �rst r bits of the content of the sponge after the absorption ofm0, ...,mi−1. That is,
zi is the content of the rate just before the call to (д · P ) following the addition of the
message block mi . We can therefore represent the absorption function as described
in Figure 15.6.

Since the message blocks mi have been picked uniformly at random, so are the
values zi . We can therefore apply Theorem 15.3.1, where the independent random
oracles are дzi , the plug is P , the random message is (дm0 · P ) (0| |IV ), the block size
is c and the number of rounds is ` − 1. �

As c is typically much larger than a usual block cipher size of 128 bits, the prob-
ability of the success of a 2p adversary can be made much smaller when a sponge is
built rather than a block cipher.

Note that if a sponge is used to provide e.g. authenticated encryption, the same
bound should be used as the message is absorbed into the state in the same fashion
in this case.

The following claim describes the hardness of the squeezing operation.

Claim 1 (HSp squeezing hardness). Consider a sponge de�ned by the n-bit transfor-
mation (д ·P ), a rate r and a capacity c so that r +c = n and r > c . Let (д ·P ) be de�ned
as in Algorithm 15.2, where P : {0,1}t → {0,1}v is a plug (ρ,u,ϵ (p))-hard against
2p -adversaries.

Let Squeeze` : {0,1}n → {0,1}`×r be the function mapping an internal state of n
bits to a stream of ` r -bit blocks obtained by iterating ` times the Squeeze operation.

Then Squeeze` is
(
ρ,u,max(ϵ (p)` ,2p−(c+r ) )

)
-hard against 2p -adversaries.
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We cannot prove this hardness using Theorem 15.3.1 because the transformations
called in each round are all identical. In particular, they cannot be independent. This
situation can however be interpreted as a variant of the one in the proof of Theo-
rem 1 where zi is not formally picked uniformly at random as there is no message
absorption but can be interpreted as such because it is the output of the sponge func-
tion.

The claimed probability of success bound comes from the hardness of approxi-
mating all ` calls to the plug composed with the sponge transformation (ϵ (p)`) and
the hardness of using a precomputation of the image of 2p possible internal states
(2p−(c+r ) )).

If the sponge is used to provide a simple stream cipher, this claimed bound should
be used. Since there is no message absorption in this case, Theorem 1 cannot be used.

15.4 Practical Instances: Skipper and Whale

We illustrate the versatility and simplicity of the modes of operation described in the
previous section by presenting an instance of each. The �rst is an asymmetrically
time-hard block cipher called Skipper and the second is a code-hard sponge called
Whale.

15.4.1 The Skipper Block Cipher

One possible application for egalitarian computing which is mentioned but not ex-
plored in the original paper [BK16a] is obfuscation. The idea is to modify a program
in such a way that a memory-hard function must be computed in parallel to the ex-
ecution of the program. Using this very general approach, any program or function
could be made memory-hard, not just cryptographic ones. However, a shortcoming
in this case is the fact that the compiler returning the obfuscated code must also pay
the full price of running this parallel memory-hard function.

Solving this issue requires a primitive with asymmetric hardness. While we do
not have an asymmetrically memory-hard plug, we do have an asymmetrically time-
hard and a code-hard one. Using the HBC mode, we combine the Aes and the rsa-
lock plug to create a block cipher with asymmetric time-hardness, Skipper. It could
be used to create an e�cient obfuscator. The obfuscator would use the fast imple-
mentation of the plug to create an obfuscated program which forces common users
to evaluate its slow version to run the program. That way, the computational hard-
ness is only paid by the users of the program and not by the compiler. While this
cost might be o�set through the use of dedicated hardware for the computation of
rsa-lock, we note that this function cannot be parallelized.

Our proposal Skipper is HBC[AES − 128,RSAlocknpη ,2], that is, a 128-bit block
cipher using a 128-bit secret key k , an RSAlock

np
η instance truncated to 40 bits as a

plug and 3 calls to Aes-128 sandwiching 2 calls to the plug. The plug operates modulo
N ≥ 2np . The Skipper encryption procedure is described in Algorithm 15.3.

The Rsa-based plug we use is asymmetrically
(
Time,η,max(2p−88,2−40)

)
-hard.

As said before in Section 15.2.3, we assume that no adversary can evaluatex2t mod N
without performing η squarings in the modular ring. However, a 2p -adversary can
either guess all 40 bits of the output, which succeeds with probability 2−40, or store
2p out of the 288 possible outputs, in which case a successful evaluation is possible
with probability 2p−88.
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Algorithm 15.3 Skipper encryption
Inputs: n-bit plaintext x ; k-bit key k ; Rsa modulus N
Output: n-bit ciphertext y
y ← AESk (x )
for all i ∈ {1,2} do

y1 | | y2 ← y, where |y1 | = 88 and |y2 | = 40
y2 ← y2 ⊕ T40 (y

2η
1 mod N )

y ← AESk⊕i (y1 | |y2)
end for

return y

Merely guessing is the best strategy unless the adversary has access to at least
40 × 288−40 ≈ 253.3 bits of storage, i.e. more than a thousand terabytes. Furthermore,
the cost of such a pre-computation could only be amortized if more than 248/2 = 247

blocks are encrypted using the same plug, i.e. 254 bits (more than a thousand Tb).
We therefore consider 248-adversaries, that is, adversaries capable of pre-computing
248 values of RSAlocknpη (x ). Such an adversary is already quite powerful as it has
signi�cant computing power and storage in addition to knowing the secret key k .
Providing maximum security against more powerful adversaries would probably be
over-engineering. Thus, in our setting, the plug is asymmetrically (Time,η,2−40)-
hard.

Claim 2 (Properties of Skipper). The block cipher Skipper is asymmetrically (Time,η,
2−80)-hard and cannot be distinguished from a pseudo-random permutation using less
than 2128 operations.

Skipper is HBC[AES−128,RSAlocknpη ,2] and its plug is asymmetrically (Time,η,
2−40)-hard. Thus, by applying Theorem 15.3.2 we obtain that Skipper is asymmetri-
cally

(
Time,η,max

(
248−128, (2−40)2

))
-hard.

As there is to the best of our knowledge no related-key attack against full-round
AES-128 in the case where the related keys are linked by a simple XOR, we claim that
Skipper cannot be distinguished from a random permutation using much less than
2128 operations. Should such distinguishers be found, an alternative key schedule
such as the one from [Nik11] could be used.

We have implemented this block cipher using openssl (for AES) and the GMP li-
brary (for RSA). Speci�cally, modular exponentiation is performed with the function
mpz_powm_sec to minimize the threat of side-channel attacks, although this function
is about 20% slower than the basic mpz_powm.

To benchmark its speed, we have computed the average time taken to encrypt
20 blocks of data for all np ∈ {768,1024,1536,2048,4096} and all η = µ × np for
µ ∈ {2,10,100,1000}, each time being the average of 10 experiments performed with
a di�erent RSA modulus. These are just examples, in fact arbitrary slowdowns for
the non-privileged user are possible. We express the results as throughputs in blocks
per seconds. The results are given in Table 15.3; e.g. a common user using Skipper
with np = 768 and µ = 2 encrypts on average 750.1 blocks of 128 bits per second on
our benchmark machine.

In order to prevent attacks from 2p -adversaries who cannot perform more than
2100 operations, a modulus of 2048 bits is necessary according to Table 2 of [BBB+07].
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Otherwise, such adversaries could simply factorize the RSA modulus. However, as
we can see in Table 15.3, the performance penalty when increasing np is signi�cant.

np µ Tput. common Tput. privileged ratio

2 750.1 4234.4 5.6
20 76.5 4182.7 54.7768
500 3.0 4210.3 1401.8

2 357.6 2012.0 5.6
20 35.8 2062.1 57.61024
500 1.4 2106.8 1463.3

2 119.4 739.7 6.2
20 12.3 752.0 60.91536
500 0.5 754.9 1525.5

2 52.4 346.1 6.6
20 5.5 358.1 64.82048
500 0.22 359.4 1605.2

2 7.6 54.5 7.1
20 0.77 55.4 71.84096
500 0.03 55.4 1778.1

Table 15.3: Benchmark of the Skipper block cipher, wherenp is the RSA modulus, µ×
np is the number of squarings performed by the common user, and the throughputs
are given in block/second.

The tests were done on a regular desktop with an i7-3770 CPU clocked at 3.4 Ghz
and 8 Gb of RAM. The code was written in C++.

The ratio of the e�ciency of the encryption depending on whether the secret is
known or not is not equal to µ. This is because the common user performs exactly
µ×np squarings while the privileged one uses a smaller exponent. Further, privileged
user uses the Chinese Remainder Theorem to implement an even faster exponenti-
ation. Still, multiplying µ by 10 does divide the throughput by 10 for the common
user.

15.4.2 The Whale Hash Function

Preventing the leakage of encryption keys is a necessity in order for a system to be
secure. A possible method for preventing this was informally proposed by Shamir
in a talk at Rsa’2013 and then formalized by Bellare et al. in their crypto’16 paper.
As the throughput of the ex�ltration method used by the attacker is limited, using a
huge key would make their task all the harder. To use our terminology, an encryption
algorithm with signi�cant code-hardness would e�ectively be bound to the physical
device storing it: since the code cannot be compressed, an attacker would have to
duplicate the whole implementation to be able to decrypt the communications. Even
a partial leakage would be of little use.

The proposal of Bellare et al., XKEY2, is e�ectively a code-hard key derivation
algorithm which takes as input a random initialization vector and outputs a secret
key. Since it is code-hard, an attacker cannot evaluate this function without full
knowledge of the source code of the function and cannot extract a smaller (and thus
easier to leak) implementation.
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We propose the code-hard hash function Whale as an alternative to XKEY2. It
can indeed be used to derive a key by hashing a nonce, a process which cannot be
approximated by an attacker unless they duplicate the entirety of the implementation
of Whale. Whale is a simple sponge-based hash function which uses the xor of
d128/te instances of BigLUT128

t as a plug. Di�erent choices of t lead to di�erent
levels of code-hardness. It is only parametrized by the input length of the tables t .

It is based on Sha-3-256: it uses the Keccak − f [1600] permutation, the same
padding scheme, the same rate r = 1088, the same capacity c = 512 and the same
digest size of 256 bits. There are only two di�erences:

• the permutation Keccak− f [1600] is augmented with the code-hard plug con-
sisting of the xor of ` = d128/te distinct instances of BigLUT128

t , and

• t blank calls to the transformation are performed between absorption and
squeezing.

These parameters were chosen so as to prevent an adversary with access to at
most half of the implementation of Whale to compute the digest of a message with
probability higher than 2−128.

Claim 3 (Code-hardness of Whale). TheWhale hash function using tables with t-bit
inputs is (Code,2t+13/t ,2−128)-hard against an adversary trying to use only half of the
code-space used to implement Whale.

Whale uses d128/te tables of 2t 128-bit entries. Thus, about 2t × 128× d128/te ≈
2t+14/t bits are needed to store the implementation of its plug. An adversary trying to
compress it and divide its size by 2 therefore has access to 2t+13/t bits. Note however
that, since the entries in each instance of BigLUT128

t have been picked uniformly at
random, it is impossible to actually compress them. The best an attacker can do is
therefore to store as many entries as they can.

When hashing a message, at least t calls to the plug are performed during the
blank calls to the transformation between the absorption and the squeezing. There-
fore, the adversary needs to successfully compute t × d128/te ≥ 128 entries of the
big tables. If they only have half of them stored, then they succeed in computing the
digest of a message with probability at most 2−128.
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Final Words

On Part I

The �rst part of this thesis discussed lightweight cryptography. I argued that this
�eld had become too wide and that it should be split into two di�erent areas: ultra-
lightweight cryptography, dedicated to the tiniest of devices, and IoT cryptography,
aimed at low-power but network-enabled micro-controllers. I also presented several
attacks targeting such algorithms. They are based on a di�erent observation for each
primitive:

1. the update function of Gluon-64 looses too much information,

2. the linear layer of Prince causes the existence of families of di�erential pairs
following the same trail, and

3. the branch permutation used by Twine has a surprisingly structured di�usion.

Apart from Gluon-64, these observations are not detrimental to the security of the
full-round primitive. Nevertheless, they improve our understanding of the inner
workings of these algorithms.

The last two chapters of this part dealt with our own block cipher, Sparx, which
is one of the most e�cient on low-power micro-controllers. More importantly, it is
the �rst arx-based block cipher provably secure against simple di�erential and linear
cryptanalysis. I hope that the Long Trail Strategy it introduces will be the basis of
other designs.

On Part II

S-Boxes are some of the main components of many symmetric primitives. Under-
standing the construction of the S-Box used by a given algorithm is a crucial step in
assessing the security o�ered by said algorithm. In Part II, I presented a survey of
all the S-Boxes used by public algorithms. If an S-Box re-uses any of the structures
currently known, it is possible to recover it. The corresponding reverse-engineering
techniques were presented.

They were successfully applied to the S-Boxes of Skipjack, Kuznyechik and Cmea.
However, the results obtained raised more questions than answers: what is the mo-
tivation behind the structures and statistical artifacts hidden in these?
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They also lead to new results on Boolean functions. In particular, a structure was
identi�ed in the only known solution of the apn problem. Unfortunately, it was also
shown that a generalization of this structure to bigger �elds cannot yield an apn
permutation.

On Part III

It is possible to achieve a high time-, memory- or code-hardness using the same high
level structure. This insight is at the heart of this part. It also implies a simple gener-
alization of the concept of white-box cryptography. It can also be used to build block
ciphers and sponge permutation with any of these hardnesses. This was illustrated
by the design of the code-hard hash function Whale and of the asymmetrically time-
hard Skipper.

Conclusion

While working on S-Box reverse-engineering and on purposefully hard cryptogra-
phy, I identi�ed several open problems. They are recalled in the next page. As the
�nal word of this thesis, I will quote the conclusion of one of the �rst academic pa-
pers on symmetric cryptology which, despite being 41 years old [HMS+76], is still as
relevant today as it was back then.

[...] it is poor security practice to trust a system whose design and certi�-
cation will not be described — Hellman et al., 1976

Belval, May 16, 2017



Open Problems

• Open Problem 6.3.1 (p. 115). Is it possible to design a structure similar to Lax
in such a way that the maximum linear correlation after several rounds can be
upper bounded?

• Open Problem 8.5.1 (p. 158). What is the exact structure used by the designers
of the Des and the gost variants to build their S-Boxes?

• Open Problem 9.1.1 (p. 167). Is Conjecture 9.1.1 (p. 167) true?

• Open Problem 12.2.1 (p. 229). Is there an algorithm which, given a list of ele-
ments L of (Fn2 )2, can e�ciently �nd the largest vector spaces U ⊂ Fn2 and
V ⊂ Fn2 such that (u,v ) is in L for all u ∈ U and v ∈ V?

• Open Problem 12.2.2 (p. 232). What is the cause of the checkered pattern occur-
ring in both the ddt and the lat of a 3-round Feistel network (after composi-
tion with branch swaps)?

• Open Problem 12.3.1 (p. 242). Is there a decomposition of the mini-block ciphers
T and U ′ used to build the S-Box of Cmea?

• Open Problem 14.0.1 (p. 267). Is it possible to �nd an apn permutation of F2n
for n even and n ≥ 8?

• Open Problem 15.1.1 (p. 308). Is it possible to design an asymmetrically memory-
hard (but code-e�cient) function with superlinear penalties?
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