
RESEARCH ARTICLE

BacArena: Individual-based metabolic

modeling of heterogeneous microbes in

complex communities

Eugen Bauer1☯, Johannes Zimmermann2☯, Federico Baldini1, Ines Thiele1‡*,

Christoph Kaleta2‡*

1 Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, Esch-sur-Alzette, Luxembourg,
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Abstract

Recent advances focusing on the metabolic interactions within and between cellular popula-

tions have emphasized the importance of microbial communities for human health. Con-

straint-based modeling, with flux balance analysis in particular, has been established as a

key approach for studying microbial metabolism, whereas individual-based modeling has

been commonly used to study complex dynamics between interacting organisms. In this

study, we combine both techniques into the R package BacArena (https://cran.r-project.org/

package=BacArena) to generate novel biological insights into Pseudomonas aeruginosa

biofilm formation as well as a seven species model community of the human gut. For our P.

aeruginosa model, we found that cross-feeding of fermentation products cause a spatial dif-

ferentiation of emerging metabolic phenotypes in the biofilm over time. In the human gut

model community, we found that spatial gradients of mucus glycans are important for niche

formations which shape the overall community structure. Additionally, we could provide

novel hypothesis concerning the metabolic interactions between the microbes. These

results demonstrate the importance of spatial and temporal multi-scale modeling

approaches such as BacArena.

Author summary

In nature, organisms are typically found in near proximity to each other, forming symbi-

otic relationships. Particularly bacteria are often part of highly organized communities

such as biofilms. In this study, we integrate the detailed knowledge about the metabolic

capabilities of individual organisms into an individual-based modeling approach for sim-

ulating the dynamics of local interactions. We provide a fast and flexible framework, in

which established computational models for individual organisms can be simulated in

communities. Nutrients can diffuse in an area where cells move, divide, and die. The

resulting spatial as well as temporal dynamics and metabolic interactions can be analyzed
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as well as visualized and subsequently compared to experimental findings. We demon-

strate how our approach can be used to gain novel insights on dynamics in single species

biofilm formation and multi-species intestinal microbial communities.

Introduction

A major goal in microbial systems biology is to understand metabolic mechanisms underlying

the emergence and organization of microbial communities [1]. Metabolic processes have been

suggested to modulate and organize complex community structures by cross-feeding interac-

tions (exchange of nutrients) [2, 3]. The human gut microbiota, for instance, consists of hun-

dreds of species [4], whose compositions is strongly influenced by metabolic factors such as

diet and microbial physiology [5]. Especially the metabolic interactions of multi-species com-

munities within the gut have been found to support human well-being by the supplementation

of nutrients via fermentation of otherwise indigestible dietary components [6]. One of the

most important hallmarks in determining a healthy gut structure is the integrity of the mucus

layer, which covers the epithelium, acts as a protective barrier against intruding pathogens,

and enriches beneficial bacteria by providing nutritional compounds such as glycans [7].

Therefore, concentration gradients of substrates induce a spatial differentiation of the micro-

bial community.

In biofilms, spatial concentration gradients of metabolites lead to a differential nutrient

availability and therefore govern the distribution of species and phenotypes [2, 3]. Therefore,

considering the processes that generate chemical gradients is essential when studying physio-

logical heterogeneity in biofilms [3, 8, 9]. Individuals of the same or different species can sup-

port each other’s growth by metabolic cross-feeding interactions [10]. Conversely,

competition for nutrients can induce a division of metabolic tasks within the community

which spatially differentiates the population in different sections, e.g. metabolically active and

inactive microbe cells [11]. Such self-organizing processes have important implications in bio-

medical applications since single-species biofilms of pathogens are associated with a higher

resistance against antibiotics [12] and thus obstructing potential treatments for diseases. In

particular, most antibiotics are targeted at growing bacteria and not metabolically inactive dor-

mant cell, which could re-initiate the biofilm after antibiotic treatment [11]. Furthermore, due

to the physical structure of biofilms, antibiotics could poorly penetrate and often remain inef-

fective [13].

Constraint-based reconstruction and analysis (COBRA) is a key approach for the in silico
study of microbial metablism [14]. Metabolic reconstructions comprise the complete set of bio-

chemical reactions derived from a genome annotation in a stoichiometric accurate manner

[15]. Through the application of specific constraints (e.g. nutrient availability) they can be con-

verted into condition-specific models. With flux balance analysis (FBA), these models are used

to optimize a given objective, such as the growth yield under a metabolic steady state [16]. To

model metabolic interactions within microbial communities, different COBRA-based

approaches have been developed [17]. First approaches modeled bacterial communities by

combining the reconstructions of single microbes into a metabolic model, where metabolites

can be exchanged and community growth is maximized using FBA [18, 19]. This concept has

been recently expanded to allow integration of experimental data and modeling of distributed

community growth [20]. Additional approaches have included temporal dynamics, in which

microbial growth is simulated [21–23]. Recent advances incorporated spatial dynamics by

enabling the distribution of microbes and metabolites, assuming homogeneous species
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populations [24]. Spatial environments were also used in an approach called MatNet [25] which

combines FBA with individual-based modeling to simulate the metabolism of single species

biofilms. Unlike population modeling, individual-based approaches allow to analyze popula-

tions as aggregations of autonomous individuals that interact by a set of rules. Accordingly,

complex dynamics arise as emergent properties of locally interacting individuals [26–28].

In this study, we develop and apply BacArena, a community modeling tool which extends

the integration of FBA and individual based modeling proposed by MatNet to model multi-

species communities. Essentially, we model populations as aggregations of heterogeneous indi-

viduals that have their own metabolism and interact spatially as well as temporarily according

to biologically relevant rules (e.g., movement, chemotaxis, and lysis). Furthermore, by model-

ing such metabolic heterogeneity, we can generate novel hypothesis concerning cross-feeding

interactions within and between species. In particular, we applied BacArena to model Pseudo-
monas aeruginosa biofilm formation on the level of metabolic phenotypes. We could show

how individuals are spatially arranged with different phenotypes according to nutrient avail-

ability. Furthermore, we identified phenotypes whose fermentation products contributed to

growth of other biofilm members. In an application of a simplified human gut consortium

consisting of seven species, we found that spatial gradients of mucus glycans are important to

shape the community structure by forming a niche for glycan degrading bacteria. Additionally,

short chain fatty acids were exchanged between the community members and contributed to

concentration levels which were similar to published experimental values. These results under-

line the increasing relevance of multi-scale modeling tools such as BacArena.

Results and discussion

With BacArena we provide a modular and extendable R package for modeling and analyzing

microbial communities (S1 and S2 Text). In BacArena each organism is represented individu-

ally on a two-dimensional grid to model a spatial environment (Fig 1). Temporal dynamics are

modeled by including time steps in which the state of each individual and the environment is

updated. In each time step metabolites diffuse in the environment and can be exchanged

between the individuals. Individuals can move to and duplicate within the neighboring grid

positions. The metabolism of each individual is modeled by flux balance analysis on the under-

lying genome-scale metabolic model of the particular species. Using the biomass as an objec-

tive for the FBA and the metabolite concentrations in the corresponding grid position as

constraints, the growth and metabolic turn over is determined. Accordingly, the duplication

rate is obtained from the growth rate and the metabolite concentration is updated according

to the secreted and consumed metabolites. Since a FBA is computed for each individual, every

microbial cell can be heterogeneous in its metabolism and has therefore its own metabolic pro-

file. These profiles are recorded as metabolic phenotypes in BacArena and can be used to infer

cross-feeding interactions.

Comparison to other methods

Established methods in community modeling can be roughly divided into two groups: Equa-

tion based, continuous methods modeling populations (e.g. COMETS, dOptCom) and rule-

based methods focusing on individuals (MatNet, BacArena) (Table 1).

BacArena extends the individual-based modeling approach of MatNet [25] to include more

features (Table 1) and simulation of up to hundreds species (Fig 2). The runtime of BacArena

simulations is linearly dependent on the number of individuals (Fig 2A) and increases till an

addition of about 50 species (Fig 2B). Afterwards the runtime remains approximately stable

because the diffusion of metabolites is computationally expensive and if including more than
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50 species only few new metabolites need to be added. BacArena was developed to run effi-

ciently even with large data sets due to R’s capacity to integrate C++ code into time-consuming

routines [29]. Additionally, computations can be executed in parallel to accelerate runtime.

To illustrate the difference between continuous and rule-based population modeling

approaches, we compared BacArena and COMETS [24] in the context of a two-species syn-

trophic community of the methanogenic archeum Methanosarcina barkeri and the hydrogen

producing bacterium Clostridium beijerinckii (Fig 3). The hydrogen produced by C. beijerinckii
is taken up as an electron donor by M. barkeri to reduce carbon dioxide to methane, which is

secreted into the environment. This is in concordance with experimental knowledge, showing

the metabolic exchange between hydrogen producing bacteria and methanogenic archaea

Fig 1. Schematic overview of BacArena. Microbial species are shown in different colors. Fluxes of

exchange reactions are indicated as uni-directional arrows, movement and replication as bi-directional

arrows.

https://doi.org/10.1371/journal.pcbi.1005544.g001

Table 1. Comparison of BacArena with other community modeling approaches involving metabolic models.

Method Approach Time Kinetics Space Phenotypes Parallel GUI Species

BacArena FBA/ABM ✔ ✔ ✔ ✔ ✔ > 2

MatNet [25] FBA/ABM ✔ ✔ ✔ 1

COMETS [24] dFBA ✔ ✔ ✔ ✔ ✔ > 2

dOptCom [23] Multi-objective ✔ ✔ > 2

MCM [22] dFBA ✔ ✔ ✔ > 2

DyMMM [21] dFBA ✔ ✔ 2

https://doi.org/10.1371/journal.pcbi.1005544.t001
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[31]. Notably, COMETS and BacArena produce similar results in terms of these predicted

cross-feeding interactions and are therefore consistent. Based on the quantitative biomass pro-

duction, both methods predict a smaller growth of M.barkeri compared to C.beijerinckii, how-

ever, the biomass production is higher in COMETS compared to BacArena. For the

exponential phase of each simulation COMETS predicted a doubling time of 0.5h, BacArena

predicted 1.1h, and the experimentally measured value is 4.3h [32]. The reason for this differ-

ence can be attributed to the underlying growth model of both methods. COMETS models col-

ony growth as a 2D diffusion while BacArena models individual cell behavior and replication

which causes the population to grow slower in the initial phase to reach a certain number of

individuals. In BacArena populations consist of heterogeneous individuals (bottom-up) which

have their own characteristics, e.g. movement and metabolic phenotypes. COMETS, on the

other hand, is a top-down approach describing colonies on the population level (Fig 3). Both

approaches differ concerning the representation of the spatial scale. In BacArena one individ-

ual is represented per grid position, whereas COMETS represents a population of multiple

cells per position. Both, BacArena and COMETS, can predict heterogeneous growth rates

according to spatial concentration gradients. By focusing on individuals, BacArena can be

used to model additional heterogeneity of cells by accounting for their history and by integra-

tion of further rules such as cellular lysis. The explicit consideration of heterogeneous individ-

uals has been regarded as especially helpful for addressing the complexity of biological

systems, because local species interactions can represent biological systems more realistically

[28, 33, 34]. In particular, the heterogenic movement in BacArena can be relevant when

modeling an aqueous or viscose environment, such as the human gut, in which the movement

is accelerated. Furthermore, by combining individual-based modeling with FBA, BacArena

can model the metabolic state of each individual cell to investigate metabolic heterogeneity

within a population of cells. This metabolic heterogeneity is captured by our definition of met-

abolic phenotypes, whose applicability and biological relevance we show in the next section on

the basis of a biofilm model of Pseudomonas aeruginosa.

Fig 2. Runtime of BacArena in relation to the number of added individuals and species. A Runtime

based on an example draft metabolic model (Clostridium sp. SY8519 model taken from [30]) with an

increasing number of individuals added to an environment with a dimension of 50 times 50 grid cells. B

Runtime based on an increasing number of species (301 draft metabolic models taken from [30]) added to an

environment with a dimension of 50 times 50 grid cells and one simulation step. All simulations were run on a

windows machine with 32GB of RAM and a 3.5GHz processor with four physical cores.

https://doi.org/10.1371/journal.pcbi.1005544.g002
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P. aeruginosa single-species biofilm model

To demonstrate the applicability of BacArena to biofilm formation, we constructed a single

species biofilm model of P. aeruginosa. We used a glucose-minimal medium with oxygen as

electron acceptor to investigate the metabolic behavior of individual cells of the biofilm com-

munity. We found spatial and temporal differences within the community which could be

attributed to distinct emergent metabolic phenotypes. The observed phenotypes (P1-P9) were

classified according to the usage or production of glucose, oxygen, acetate, succinate, and CO2

(Fig 4C). The phenotypes occurred in all replicate simulations (n = 10) with similar temporal

dynamics (S2 Fig). Additionally, the phenotype appearance was stable with respect to varia-

tions in initial glucose and oxygen levels (S3 Text). Finally, we validated the growth model

with experimental data [37] and correctly predicted a higher population size under rich condi-

tions compared to a minimal medium (Fig 4E).

In the beginning of the simulation, we observed only a glucose oxidation phenotype (P3)

that constituted the whole population (Fig 4A). After two hours the individuals got more meta-

bolically diverse and a division of metabolic tasks and cooperation between phenotypes

Fig 3. Comparison between COMETS and BacArena based on a simple two-species syntrophic community. The

community is based on the published metabolic model for the hydrogen producing Clostridium beijerinckii [35] and the

methanogen Methanosarcina barkeri [36]. Both simulations were carried out on a 100 times 100 grid environment. As initial

concentrations, 1 mmol of glucose, carbon dioxide, and several co-factors were added per grid position. Grey cells in the

phenotype plot of BacArena (lower half of the population plot) represent metabolically inactive cells.

https://doi.org/10.1371/journal.pcbi.1005544.g003
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Fig 4. Single species biofilm model of P. aeruginosa. A Spatial distribution of individuals and key metabolites at different time points (2

h, 10 h, 15.5 h, 16.5 h). Different metabolic phenotypes are colored and represent community members with distinct production and

consumption of metabolites. A metabolic inactive core was formed after 16 h and several fermentative phenotypes occurred in the outer

layer of the biofilm (see subfigure C for description of phenotypes). Glucose and oxygen were consumed and CO2, acetate, succinate were

produced. B Time curve of key Metabolites. Metabolites are given in mmol. Oxygen was consumed in total and some glucose remained in

the end. Acetate and succinate levels increased after 15h. C Characterization of eight metabolic phenotypes (P1,P3-P9). Only phenotypes

which occurred consistently in all replicates were considered. Therefore, P2 (growth with CO2 and acetate) and P10 (acetate and succinate

production, glucose and oxygen consumption without CO2 release) were not considered. In the table, a plus sign ‘+’ indicates production

and a minus sign ‘-’ indicates consumption of metabolites. D The growth curve of P. aeruginosa colored in black. Additionally, for all

phenotypes (P1, P3-P9) the growth curve is shown. To distinguish the different times when a certain phenotype did occur, an integrated

boxplot is given below. E Comparison of predicted doubling times with experimental findings. Minimal medium and rich medium doubling

times were shown.

https://doi.org/10.1371/journal.pcbi.1005544.g004
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occurred. Coupled with decreased oxygen levels in the center, a fermenting phenotype (P4)

appeared and the produced acetate was consumed by phenotype P5, which appeared subse-

quently (Fig 4D). The core of the mature biofilm consisted mainly of acetate producers (P4)

and metabolically inactive cells that had zero flux through the biomass reaction (P1). The next

phase of biofilm formation was characterized by a highly dynamic cooperation and competi-

tion between phenotypes. Succinate was released, in addition to acetate, by a new phenotype

P6. Fermenting phenotypes, P4 and P6, were most abundant and therefore quantities of ace-

tate and succinate began to rise (Fig 4A and 4D). The newly available succinate was used again

by the emerging phenotypes P7 and P8. The production and consumption of different

amounts of acetate and succinate under varying oxygen conditions are due to difference in

nutrient availability, as shown by independent FBA simulations (see S3 Text). Experimentally

it has been shown that P. aeruginosa cultures are able to produce acetate, and succinate as fer-

mentation products which also contribute to biofilm survival [38]. Additionally, it has been

reported that P. aeruginosa is able to use succinate as a carbon source and that the addition of

acetate or succinate increased the growth rate [39, 40]. In addition to experimental findings,

our simulation identifies fermenting (P4, P6, P7) and absorbing phenotypes (P5, P7, P8)

whose interactions contributes to community stability. After about 16.5 hours of simulation,

only very small concentrations of oxygen remained and the mature biofilm could be divided

into three layers: a metabolic inactive core and two fermenting outer layers (Fig 4A and 4B).

Both fermenting layers consisted of acetate and succinate producers (P6, P9). First the outer

fermenting layer was formed out of phenotype P6 which grew towards the edges in which the

glucose concentration was still high. Afterwards the inner fermenting layer with phenotype P9

showed an additional fixation of CO2 by the anaplerotic pyruvate carboxylase reaction. In this

context it is known that CO2 can exert both a positive or negative effect on growth of Pseudo-
monas [41, 42] and thus carbon fixation could be possible (more detailed discussion in S3

Text). Our simulation further suggests that CO2 fixation can have a positive effect on late

phase biofilm survival.

Finally the inactive core increased in size and dominated the population after 20 hours with

cell death and population decrease. We found oxygen to be the limiting factor (Fig 4B and

4D). Concerning anaerobic physiology, it has been reported that P. aeruginosa can grow in

microaerobic and anoxic environments [43]. Anoxic growth has been shown either with

nitrate or nitrite as alternative electron acceptors [44], or via arginine [45] and pyruvate [38]

fermentation by which the former allowed only minor growth and the latter supported survival

only [43]. We tested the influence of nitrate as alternative electron acceptor in an additional

simulation. When the population consisted mostly of metabolic inactive cells after 20 hours,

0.1 mM nitrate was added. Shortly afterwards a new nitrate respiring phenotype P11 replaced

the former dominant, metabolic inactive phenotype P1. Therefore, the almost dissolving bio-

film culture could be reactivated by adding another terminal electron acceptor instead of oxy-

gen (S3 Fig, [46]).

BacArena demonstrates how emergent metabolic phenotypes could contribute to commu-

nity formation. We were able to make novel predictions on how these different phenotypes

could contribute to biofilm integrity within a spatio-temporal context. Recently a role of meta-

bolic co-dependence between interior and peripheral cells for community stability, resilience,

and antibiotic resistance has been described for B. subtilis biofilms [11]. Our simulation shows

that a similar metabolic cooperation could be possible in P. aeruginosa biofilms between

micro-aerobically fermenting and aerobic phenotypes. Novel treatments could try to first elim-

inate the protective outer layer and then target the metabolic cross-feeding of the inner layer to

disrupt the overall biofilm structure, by targeting specific metabolic pathways particular to the

corresponding phenotypes.
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Integrated multi-species model of a human gut community

We used BacArena to model the multi-species community of the human gut (Fig 5). Since the

human gut microbiota typically comprises 500-1000 species [4], we implemented a simplified

human intestinal microbiota (SIHUMI) of seven species that has previously been characterized

experimentally [47]. In a first condition (Fig 5A), we added all metabolites which can be con-

sumed by at least one species to the environment except mucus glycans. E. coli dominated the

community after the population reached a stable state at 16 h (Fig 5B). This condition could

correspond to a dysbiotic gut environment with intestinal bacterial overgrowth, in which E.
coli dominates the human gut flora [48]. Interestingly, by adding a more realistic mucus glycan

gradient to our model, we could revert the E. coli dominance (Fig 5D) and a spatial differentia-

tion of the community between gut lumen and mucus layer emerged. The mucus layer was

mostly dominated by B. thetaiotaomicron, which is well known to degrade glycans [49]. This

result is in accordance with experimental data, which showed the same niche separation

between mucus degrading bacteria close to the gut epithelial layer and other microbes in the

Fig 5. Multi-species community of a minimal human intestinal microbiota (SIHUMI) in rich medium. A Spatial population structure in

the exponential phase after simulating 8 hours under a uniformly distributed rich medium (all possible metabolites that can be taken up are

added to the environment), with B the growth curves of each species. C Spatial population structure in the exponential phase after 8 hours

simulation time under a uniformly distributed rich medium with a spatial gradient of mucus glycans, with D the growth curves of each species.

The curve range shows the standard deviation of 10 replicate simulations.

https://doi.org/10.1371/journal.pcbi.1005544.g005
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lumen [50]. Moreover, this spatial differentiation is indicative for a healthy gut microbiota

since mucus degrading bacteria can occupy and defend the space close to the epithelium and

consequently out-compete intruding pathogens [51]. An impaired mucus secretion can lead to

inflammatory bowel disease, where the epithelial barrier is infiltrated by bacteria [52] which

cause an inflammation of the gut wall. In this context, our results support recent evidence sug-

gesting that metabolite secretion by the host may play a more important role in shaping the

gut microbiome than the immune system itself [53]. Our model therefore predicts that meta-

bolic gradients are relevant in shaping the gut community structure and ecology. This has

some important implications in understanding the mucus barrier and indicates that dietary or

metabolic treatments might be more relevant than immunosupressors in case of a disrupted

mucosal microbiota.

Next, we focused on the underlying metabolic mechanisms influencing the overall ecologi-

cal structure of our setup which includes the mucus glycans (Fig 5C). As expected from

human gut studies [54], we found the fermentation products succinate, acetate, lactate, propio-

nate, and butyrate (Fig 6B) to be produced and, in some cases, exchanged between the

microbes (Fig 6C). As for propionate, butyrate, and acetate, we could compare our predictions

(Fig 6A) to the initial experimental study which describes the SIHUMI microbiota and in vitro
co-culture experiments [47]. We found that the metabolite concentration ratios are compara-

ble to experimental values with minimal higher butyrate and lower propionate concentrations

(Fig 6A). Since BacArena allows to assess the metabolic phenotype of individual cells, we are

able to derive hypotheses concerning cross-feeding of fermentation products. In particular,

succinate was the metabolite with the most diverse metabolic exchange among the present

metabolites (Fig 6C). This observation is in concordance with experimental findings suggest-

ing an importance of succinate cross-feeding between human gut microbes [55]. In addition

to succinate, acetate was also a key component to cross-feeding interactions between the

microbes of our simplified community (Fig 6C). Acetate was produced by all species except B.
longum (Fig 6B). This might explain the experimentally observed high levels of acetate concen-

trations in the human large intestine [56], likely resulting from an over-production of acetate

compared to its consumption. Furthermore, the relatively high concentration of acetate is also

in concordance with experimental studies on the SIHUMI model microbiota (Fig 6A). As

expected, lactate was mainly produced by the lactic acid bacteria B. longum and L. plantarum,

and consumed by B. producta, C. ramosum, and E.coli (Fig 6B). Butyrate was released by A. cac-
cae and E.coli and was not part of any cross-feeding interactions (Fig 6C). The remaining buty-

rate could therefore be potentially absorbed by the host epithelium as a main metabolite for

energy conversion [10].

To investigate the impact of alternative optimal FBA solutions on the reproducibility of our

results, we randomized the selection of alternative optimal solutions and checked the simula-

tions against each other (S4 Fig). We found that growth curves did not change with differing

methods, which we expected since our simulated alternative optimal solutions have the same

objective value (in our case the growth rate). Despite some metabolite concentrations varia-

tions (S4 Fig), the general trend was consistent and thus we concluded our results to be stable.

The predicted metabolite concentrations and cross-feeding interactions of our model (Fig

6C) give novel insights into how the simultaneous exchange of multiple fermentation products

is relevant in shaping the human gut microbiota.

Conclusion

Following the systems biology paradigm, we presented a novel approach to study cellular com-

munities. BacArena enables the analysis of interaction dynamics on the level of individuals

BacArena: Metabolic modeling of microbes in communities
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Fig 6. Influence of mucus glycan gradients on community dynamics. A Comparison of simulated

metabolite concentrations with experimental values based on in vitro SIHUMI co-cultures [47]. B Metabolite

secretion rates of different microbes in our SIHUMI model, determined by the overall metabolic secretion flux

of the populations comprising all individuals. C Emerging metabolic interaction network of different

fermentation products that can be exchanged between the microbe population in our SIHUMI model. Nodes

represent species and edges represent exchanged metabolites, which are directed from the secreting species

to the consuming species. The secretion and uptake was determined by the overall metabolic flux of the

populations comprising all individuals.

https://doi.org/10.1371/journal.pcbi.1005544.g006
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and can therefore contribute to current efforts to move from correlative to functional

explanations.

In context of a single-species biofilm of P. aeruginosa, we could show how a dynamic series

of locally interacting metabolic phenotypes contributed to the emergence of an overall biofilm

structure. We found that within species metabolic heterogeneity is an important contributor

to community dynamics. The spatial differentiation in biofilms has been shown to have impor-

tant implication in biofilm stability and integrity since the outer layer can act as protective bar-

rier and the inner core can serve as a seed to initiate a new biofilm by supplying metabolites

after antibiotic treatment [11, 13].

Additionally, we used BacArena to study the dynamics of gut microbes interacting within

the epithelial mucus layer, which has important implications in inflammatory bowel disease

[52]. As multi-scale modeling approaches become more relevant in studying the gut micro-

biome [57], BacArena provides an important contribution since it allows explore the relevance

of metabolic interactions in the dynamics of such communities.

Methods

In principle, any genome-scale metabolic model in SBML or spreadsheet format can be

imported and manipulated via sybil [58] and then directly integrated in BacArena. A hands-on

tutorial for BacArena is available to illustrate specific use-cases and to get familiar with the

code (S1 Text).

Concept and basic implementation of BacArena

We combine flux balance analysis (FBA) with individual based modeling. Each metabolic

model belongs to an independent individual on a two-dimensional n × m grid environment

(Fig 1) and acts according to biologically relevant rules (Table 2).

Consequently, FBA is a complex rule defined for an individual to compute the flux through

all r biochemical reactions (flux vector v 2 Rn) by optimization of an objective function cT v
(e.g., maximization of biomass yield). The corresponding linear programming problem can be

written as follows:

Maximize cTv

Subject to S � v ¼ 0

l � v � u

ð1Þ

where S 2 Rm�n denotes the stoichiometric matrix (m number of metabolites in an individual)

Table 2. List of rules implemented in BacArena and their corresponding references obtained from experimental studies.

Name Description Implementation Ref

Metabolism Computation of reactions speeds (fluxes) Flux balance analysis (FBA) [16]

Metabolism Computing fluxes while minimizing enzyme usage Parsimonious FBA [59]

Kinetics Defined metabolite uptake Michaelis-Menten kinetics [60]

Movement Movement of individual cells Random position change [61]

Chemotaxis Directed movement towards concentration gradient Position change according to concentrations [61]

Lysis Cellular lysis after death Secretion of biomass compounds [62]

Growth Biomass increase of each organism Exponential and linear biomass increase [63]

Death Death of each organism Organism death according to biomass threshold [63]

Diffusion Distribution of metabolites Diffusion by partial differential equation [64]

https://doi.org/10.1371/journal.pcbi.1005544.t002
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and the vectors l and u represent the lower and upper bounds on n reactions respectively. The

lower bounds of the external metabolite exchange are constrained according to the metabolite

concentrations ½Ci;j� 2 R
m available at an individual’s position (i, j) on the grid. All metabolites

are initialized according to a initial concentration. Computed fluxes update the concentrations

in every time step. Concentrations could be used as flux constraints because they represent the

availability of the metabolites in the environment and therefore represent the uptake limit.

Alternatively, if kinetic parameters are defined by the user, the lower bounds can be con-

strained according to Michaelis-Menten kinetics

l ¼
vmax � ½Ci;j�

KM þ ½Ci;j�
ð2Þ

where vmax represents the maximal uptake rate and KM the Michaelis-Menten constant, which

can be obtained from public databases [65] or experimental data. The lower bound is con-

strained because exchange reactions are defined from the inside to the outside.

By default, FBA is used to calculate the metabolic fluxes given the metabolite concentrations

of the local grid cells. Since most metabolic models are undetermined by having more reac-

tions than metabolites, alternative optimal solutions (different flux distributions with the same

objective value) occur during the simulations. To deal with this issue, we devised several alter-

natives to standard FBA calculations, which can be chosen by the user. For instance, parsimo-

nious FBA can be used to minimize the total flux through all reactions of a metabolic model.

In this case, the primary objective (e.g. biomass) is optimized first and afterwards a secondary

objective (total flux) is minimized using the first optimal objective value as a constraint. The

second optimization acts as a proxy for minimal enzyme usage to simulate a more realistic

behavior of cells in the exponential growth phase [59]. Additionally, the secondary objective

can be chosen as a single reaction, which is picked randomly for each individual in each opti-

mization, while enforcing the same biomass objective, pre-computed by FBA. The randomiza-

tion of alternative optimal solutions can also be performed on the level of exchange reactions

exclusively to get a better representation of secreted and consumed metabolites. The resulting

flux distribution of the respective simulation strategy is then used to calculate and update the

secretion or uptake for each individual in each simulation step. The linear programming prob-

lems can be solved using different solvers, such as GLPK [66], CLP [67], CPLEX [68], and Gur-

obi [69].

Based on the resulting FBA solution for each individual, exchange fluxes are used to update

metabolite quantities [C] in each grid cell. Moreover, the biomass Bt accumulated by an indi-

vidual at time step t is updated according to an exponential growth model utilizing the optimal

biomass yield vbiomass computed by FBA with

Btþ1 ¼ Bt � vbiomass þ Bt ð3Þ

for each individual in each time step. The initial biomass (B0) is selected according to the

reported and experimentally determined median dry weight of one cell (Table 3). If multiple

individuals are inserted in the environment, then a normally distributed random value is

assigned to each individual, using the median and cell dry weight deviation (Table 3) as param-

eters for the normal distribution. When the total biomass of an individual reaches a duplica-

tion threshold, a daughter cell is spawned and placed at a free position in the Moore

neighborhood (i.e. all surrounding grid positions in the direct neighborhood). The duplication

threshold was chosen according to the experimentally determined maximum dry weight

(Table 3), which represents the largest observed dry weight of one bacterial cell. To restrict

growth to physiological feasible conditions, the accumulation of biomass is limited to 50%
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above the maximal cell weight. During optimization the upper bound of the objective function

is set accordingly. If the biomass of an individual falls below a defined growth threshold, the

corresponding individual dies (i.e. it is removed from the grid cell). If lysis is enabled, the bio-

mass components can diffuse to neighboring grind cells. The growth threshold was chosen

according to the experimentally determined minimum dry weight (Table 3), which represents

the smallest observed dry weight of one bacterial cell.

Movement is implemented as a random walk of individuals using unoccupied grid posi-

tions in the Moore neighborhood. Different movement velocities can be imposed by setting

the number of grid positions to which an individual can move. Individuals can also perform

chemotaxis by moving towards a concentration gradient of a particular metabolite of interest.

Diffusion of the metabolite concentration [C] in the two-dimensional x, y environment is

implemented using Fick’s second law of diffusion which in two dimensions reads

@½C�
@t
¼ D �

@
2
½C�
@x2
þ
@

2
½C�
@y2

� �

ð4Þ

where D 2 Rs is a vector of diffusion constants. Zero-gradient boundary conditions are set to

ensure mass conservation. The diffusion model is defined using the R package ReacTran [70]

and is solved by the integrator lsodes (R package deSolve [71]). Additional diffusion functional-

ities, such as advection or different boundary conditions, are available and additional ones can

be implemented with ReacTran.

To analyze population heterogeneity in terms of the metabolic turn-over, we defined meta-

bolic phenotypes p by

p ¼

1; if vex > y:

� 1; if vex < � y:

0; otherwise:

8
><

>:
ð5Þ

according to an adjustable threshold θ (default value is θ = 10−6) and considering the exchange

reaction flux vex of each individual. The metabolic phenotypes represent the metabolic signa-

ture of all secreted and consumed metabolites for each individual. The metabolic phenotypes

track the metabolism of each individual during each simulation step and thus indicate how

each microbial cell changes the environment and interacts with other species. In addition,

Table 3. Default parameters of BacArena with references and the name of the variable set for the respective function.

Description Variable Function/Class Value Unit Bionumber [72] Ref

Cell space occupation cellarea Organism 4.42 μm2 105026 [73]

Maximal dry weight cellweigth Organism 1.172 pg 106615 [74]

Minimal dry weight growthlimit Organism 0.083 pg 106615 [74]

Biomass decrease deathrate Organism 0.210 pg - [74]

Median cell dry weight cellweight_mean Organism 0.489 pg - [74]

Dry weight deviation cellweight_sd Organism 0.132 pg - [74]

Oxygen diffusion (aqueous) difspeed Substance 20 × 10−6 cm2 s−1 104440 [64]

Glucose diffusion (aqueous) difspeed Substance 6.7 × 10−6 cm2 s−1 104089 [64]

Oxygen diffusion (biofilm) difspeed Substance 12 × 10−6 cm2 s−1 - [64]

Glucose diffusion (biofilm) difspeed Substance 1.675 × 10−6 cm2 s−1 - [64]

Glucose uptake Km Km setKinetics 0.01 mM - [75]

Glucose uptake Vmax vmax setKinetics 7.56 mmol g−1 h−1 - [75]

https://doi.org/10.1371/journal.pcbi.1005544.t003
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BacArena provides a range of different data analysis techniques within the R environment to

investigate the emergence of complex phenotypes on the population level (see reference man-

ual in S2 Text).

Parameters, units, and integration of experimental data

BacArena permits fine tuning of simulations through adjustment of parameters which are

incorporated in the different classes (S1 Fig). The default parameters of BacArena are taken

from various experimental data sets (Table 3). Based on the user defined length of the environ-

ment dimensions (in cm) and the number of grid cells, these parameters are automatically

adjusted to represent physically meaningful results. Given the corresponding size of a grid cell

(cm2) and the occupied space of the organism of interest (μm2), the maximal number of indi-

viduals per grid cell is computed and the maximum possible biomass per grid cell is calculated

accordingly. Metabolite concentrations are integrated by converting molar concentrations (in

mM) into metabolite amounts per grid cell based on the above defined geometry. Fluxes are

calculated in fmol � (pgdryweight h)−1.

Syntrophic two-species community model

Manual curated genome-scale metabolic models were retrieved for the hydrogen producing

bacterium Clostridium beijerinckii [35] and the methanogenic archaeon Methanosarcina bar-
keri [36]. The M. barkeri model was modified to ensure methane production with hydrogen

and carbon dioxide by blocking the uptake of acetate and only allowing unidirectional uptake

of hydrogen, hydrogen sulfide, and sulfur trioxide. The C. beijerinckii model was modified to

block the secretion of acetate in order to ensure hydrogen production. To model metabolic

exchanges between the microbes and compare the results of BacArena, we performed the sim-

ulations with our method and COMETS [24]. For both methods, simulations were carried out

on a 100 times 100 grid environment for 24 hours. In both setups, a minimal medium was

added to the environment with 1 mmol of glucose per grid position, carbon dioxide, and sev-

eral co-factors (4 aminobenzoate, cobalt, nicotinic acid, water, protons, ammonium, nickel,

phosphate, sulfur trioxide, cysteine, and sulfate). To ensure the growth of M. barkeri before C.
beijerinckii produces a sufficient concentration of hydrogen, an initial amount of 10−10 mmol

hydrogen was added to each grid position. The diffusion of metabolites was calibrated to the

standard diffusion of glucose (Table 3). For COMETS the diffusion was executed one time per

iteration to create a similar setting as in BacArena.

Pseudomonas aeruginosa single-species biofilm model

Biofilm formation of Pseudomonas aeruginosa was simulated using the genome-scale recon-

struction iMO1056 [76] retrieved from [25]. The reconstruction was modified to enable lactate

fermentation (see S1 Text, S1 File). All growth parameters were set to default values (Table 3).

The environment was initiated to represent one individual per grid cell and 100 × 100 grid

cells, and therefore defining the spacial extent by 0.025mm × 0.025mm. Simulations were

repeated ten times. For the starting condition, 900 individuals (9% inoculation) were placed

into the center of the environment. Minimal medium, as described in [25], was used for each

grid cell (S1 Table). 50 μM of glucose were added and all other metabolites of the minimal

medium were initialized with a concentration of 100μM. Glucose uptake of each individual

(i.e. P. aeruginosa metabolic model) was constrained according to Michaelis-Menten kinetics

based on published values (Table 3). All remaining exchange reactions were unconstrained.

Metabolites were allowed to diffuse freely with particular diffusion rates for gaseous and

organic compounds in biofilms (Table 3). The simulation was performed for 48 time steps
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totaling to a simulation time of 2 days. The code and the model to reproduce the results of the

simulations is provided in S1 and S2 Files. To model the influence of nitrate as additional elec-

tron acceptor, we used the results of the first 20 hours to resume the simulation after adding

0.01mM of nitrate. All simulations were performed using pFBA to generate the flux distribu-

tions of each individual.

Integrated multi-species model of the human gut

A model for the human gut was assembled using seven recently reconstructed genome-scale

metabolic models of human gut bacteria [77]. In this study, the models were manually curated

and checked using published experimental data. The bacterial species were selected according

to their relevance and abundance within the human gut microbiota to represent a simplified

human intestinal microbiota (SIHUMI) [47]. The following microbial reconstructions were

used Anaerostipes caccae DSM 14662, Bacteroides thetaiotaomicron VPI-5482, Blautia producta
DSM 2950, Escherichia coli str. K-12 substr. MG1655, Clostridium ramosum VPI 0427, DSM

1402, Lactobacillus plantarum subsp. plantarum ATCC 14917, Bifidobacterium longum
NCC2705, and Akkermansia muciniphila ATCC BAA-835. The models used for the simula-

tions are available on vmh.uni.lu as well as S2 File.

Growth parameters and movement were set to the default values (Table 3) and the environ-

ment was initialized with a 100 × 100 grid corresponding to a side length of 0.025mm. Simula-

tions were repeated five times, each time simulating 16h with time steps of 1h. In a first

condition, the intestinal lumen was initialized with 200 individuals of each species in an envi-

ronment which was devoid of mucin glycans. All remaining metabolites were set to a concen-

tration of 0.1 μM except essential nutrients They were set to 1 μM to ensure that all bacteria

were able to grow. The essential metabolites were determined using flux variability analysis

[78] on all unbounded exchange reactions for each metabolic model, while enforcing a mini-

mal biomass rate of 0.01h−1. The exact diet definition with the predicted essential metabolites

can be found in S2 Table. To investigate the importance of spatial concentration gradients, we

devised a second condition, in which mucus glycans (1 μM) were added as a linear gradient

with decreasing concentrations from the bottom to the middle of the environment. Metabo-

lites were allowed to diffuse according to diffusion rates for gaseous and organic compounds

in aqueous solutions [64]. Mucin glycans were not allowed to diffuse, since they are known to

be tightly associated with the epithelium in form of a mucous layer [79]. The code and the

models to reproduce the results of the simulations are provided in S3 and S4 Files. All simula-

tions were performed using pFBA to generate the flux distributions of each individual.

Supporting information

S1 Text. Tutorial for BacArena. This tutorial includes a basic hands-on description of all

main classes and functions of BacArena.

(PDF)

S2 Text. Reference manual of BacArena. All methods and parameters are explained with

words and example codes in the documentation.

(PDF)

S3 Text. P. aeruginosa single-species biofilm. Documentation of changes in metabolic model

of P. aeruginosa and additional figures from replicates.

(PDF)
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S1 File. R Data file of modified P. aeruginosa model. Metabolic model of P. aeruginosa used

in simulation.

(ZIP)

S2 File. R script to reproduce P. aeruginosa simulation. This R script reproduces the biofilm

simulation of P. aeruginosa simulation (to be used with S1 File).

(R)

S3 File. R Data file with all 7 species used for the gut simulation. Metabolic models of A. cac-
cae, B. thetaiotaomicron, B. producta, E. coli, C. ramosum, L. plantarum, B. longum, and A.
muciniphila used for the simulation of a simplified human gut model.

(ZIP)

S4 File. R script to reproduce gut simulation. The R script can be used to reproduce the gut-

community simulation (needs models from S2 file).

(R)

S1 Table. Table with the defined diet for Pseudomonas aeruginosa biofilm model. Table of

all exchange reactions with their respective concentrations that were added to the environment.

(CSV)

S2 Table. Table with the defined diet for the gut model. Table of all exchange reactions of

the defined essential metabolites, mucus glycans, and remaining metabolites with their respec-

tive concentrations.

(CSV)

S1 Fig. Class diagram of all main classes, functions, and variables in BacArena. Simplified

class diagram displaying the inheritance hierarchy.

(TIF)

S2 Fig. Comparison of P. aeruginosa phenotypes growth curve. For each phenotype (P2,

P3,. . .,P9) of the P. aeruginosa biofilm simulation the time curves for all replicates are shown.

While the overall dynamics were stable, the occurrences of P3, P7 and P8 showed some minor

variance.

(TIF)

S3 Fig. Influence of the addition of nitrate on P. aeruginosa biofilm growth. Alternative sce-

nario of P. aeruginosa biofilm simulation with 0.1 mM nitrate added after 20 hours simulation

time. A Spatial distribution of phenotypes and nitrate. The presence of nitrate after 20 hours

was accomplished by a new nitrate consuming phenotype P11. B Comparison of phenotypes.

C Time curve of core metabolites. The addition of nitrate after 20 hours lead to further glucose

usage and CO2 production. The former produced acetate and succinate were used again. D

Phenotypes growth curve. After the addition of nitrate, the metabolic inactive phenotype P1

vanished and the new nitrate consuming phenotype P11 emerged.

(TIF)

S4 Fig. Growth curves and metabolite concentrations for the simplified human microbiota

(SIHUMI) under different optimization strategies. The first row represents the species

growth and the second row the concentration change of the 25 most variable metabolites. The

first columns shows a default flux balance analysis and the second column the optimization of

a random exchange reaction as a secondary objective. The curve range shows a standard devia-

tion of 10 replicate simulations each simulating 16 hours.

(TIF)
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