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“Beyond the edge of the world there’s a space where emptiness and substance neatly

overlap, where past and future form a continuous, endless loop. And, hovering about,

there are signs no one has ever read, chords no one has ever heard.”

Haruki Murakami





Abstract

Since the discovery of two-dimensional topological insulators a decade ago, their one-

dimensional edge states have attracted significant attention due to their unique properties.

For example due to time-reversal symmetry, they are protected against elastic backscat-

tering and they propagate such that electrons with opposite spins move in opposite di-

rections. In fact, the only necessary symmetry to sustain the edge states is time-reversal

symmetry. Moreover in experimental setups, the axial spin symmetry seems to be absent.

This absence allows new processes to appear such as inelastic backscattering. However,

these consequences were neglected in most theoretical works where the spins are conside-

red to be polarized in the z direction.

The aim of this thesis is to provide a more realistic model taking into account a broken

axial spin symmetry. In this scheme, we show that a rotation of the spin quantization

axis as a function of momentum always appears. This observation leads us to develop a

deeper understanding of the size of the rotation related to the material parameters and

material models, using also realistic values. It also leads us to understand the implications

in real space in cases where translation invariance is lost and how to quantify the rotation

in such systems.

The new processes which arise when the axial spin symmetry is broken have important

consequences for transport in real materials. To see this, we consider a Hall bar with a

hole in its middle, i.e. an antidot. This enables us to create two tunneling regions in

order to probe the effect of this generic model. We also consider the effect of Coulomb

interactions around the hole, as they can be important in such geometry. We discover

that it is possible to probe directly the absence of axial spin symmetry. As experimental

evidence is important to investigate our theoretical findings, we propose spectroscopic

means to probe the spin texture.

Finally, we also consider one of the experimentally-known candidate materials, namely

InAS/GaSb heterostructures. From the k ·p Hamiltonian, it is possible to show that their

bandstructure shows some anisotropies. The latter is also reflected in the spin texture of

their edge states.
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1 | Introduction:

Topological insulators

Low dimensional systems (i.e. systems in one or two dimensions) have attracted a lot

of attention and research throughout the second half of the 20th century. They continue

to be an active and fascinating field of research. New processes occur in these systems

where their quantum nature becomes more apparent, and exotic states and phases can

emerge. One famous example is spin-charge separation in a one-dimensional system [1]:

the electrons can form particular quasiparticles whose quantum numbers cannot be traced

back to the original electrons and holes. One of the quasiparticles named the spinon has

a spin-1/2, but no charge, whereas another of these quasiparticles is called the holon. It

has no spin, but the charge of an electron. These two quasiparticles propagate at different

velocities and behave independently from the other. They were experimentally measured

in SrCuO2 crystals [2, 3] and in quantum wires made by electron-beam lithography on

the upper layer of a GaAs-AlGaAs double quantum well [4].

With the fast pace of new materials discoveries and new technical opportunities, we

must be able to explore this area of condensed matter physics theoretically and expe-

rimentally. Examples of such low dimensional systems include nanowires, the ballistic

edge states of a quantum Hall bar or Bose-Einstein condensates using cold atoms in one-

dimensional optical lattice in one dimension. In two dimensions, we have the two dimensi-

onal electron gas, graphene or high-temperature cuprate superconductors. Theoretically,

the progresses in the ab initio methods and the explosion of computing power enable us

to probe numerically the stability and the physical properties of new compounds before

they can be synthesized. On the experimental side, the development of nanotechnologies

and more recently cold atoms created a new playground for condensed matter physicists

to explore these previously unusual systems.

The discovery of graphene [5], a free standing two-dimensional material, opened new

opportunities and brought new hopes for these exotic systems. Graphene hosts peculiar

properties: its bandstructure has a gapless linear dispersion relation. In the absence

of impurities, graphene is a semimetal, i.e. the overlap between the valence and the
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Introduction: Topological insulators

conduction bands is pointlike. Moreover, the linearity of the dispersion means that the

electrons can be described by spinless fermions with no mass term. They satisfy Dirac

equation and they are therefore called Dirac fermions. In addition, graphene can be

produced by exfoliation [5]. Graphene also features unique optical, thermal, electrical

and mechanical properties. Early in its discovery, about a decade ago, graphene also

inspired Kane and Mele to theoretically propose a new class of materials, which is called

two-dimensional topological insulators [6–8]. The generalization to a three-dimensional

version was made the year after [9–11].

Two-dimensional topological insulators differ from normal or also called “trivial in-

sulators” as they are predicted to be bulk insulators with gapless states located at their

edges. These edge channels are related to the topological nature of the band structure,

and should always exist at the interface with a trivial insulator. A few years later, topo-

logical insulators made of HgTe [12] and InAs/GaSb heterostructures [13] revealed their

unique properties in different experimental laboratories using transport setups. These

discoveries created a new vivid field of research as topological insulators may be useful in

other fields such as spintronics or quantum computing. This thesis hopes to contribute

to the understanding of these peculiar materials.

One focus point of the field is the study of the edge channels. They are characterized

by their helical nature [14]. This means that they always come in a counterpropagating

pair with opposite spin orientation. This property comes from the protection afforded to

the edge states by time-reversal symmetry, which is preserved in such system, as long as

there is not any magnetic field or magnetic impurities. In most theoretical works, the spin

orientation of the edge states is considered to be polarized in the z direction. However,

the axial spin symmetry is not essential for the existence of this topological phase. Only

time-reversal symmetry is crucial. Moreover in experimental devices, effects may arise

such as Rashba spin-orbit coupling or bulk inversion asymmetry [7, 15, 16] which do not

break time-reversal symmetry, but break the axial spin symmetry. The source of the spin

quantization axis symmetry-breaking can originate directly from the bulk material as bulk

inversion asymmetry, or in the case of Rasbha spin-orbit coupling, it can be induced by

an electric field or the substrate on top of which the topological insulator is grown.

In the absence of spin axis symmetry, the edge states remain helical, i.e. the states

counterpropagate. However, they do not now have a well-defined spin as they form a

combination of spin-up and spin-down. In momentum space, it was realized that close to

the Dirac point, i.e. the point where the edge states are crossing, the spin axis of the edge

states is rotating [17]. The aim of this thesis is to better understand the consequences

and the applications of a broken spin quantization axis. We will first try to quantify this

rotation as a function of the materials’ parameters and see how it is possible to enhance

2



1.1. Topology in condensed matter physics

this effect. We will also extend the understanding of this rotation in real space and how it

could appear in experimental setups. Another aim of this thesis is to explain how to detect

the breaking of the spin axis symmetry through physical measurements and quantities.

It was pointed out that the broken spin axis symmetry should give some correction to

the conductance at finite temperature [17], but we will use transport and spectroscopic

setups to propose other means to detect it.

In this introductory chapter, we will start with the trending topic of topology in

condensed matter physics, a subject which resulted in the 2016 Nobel Prize in physics

being given to Thouless, Haldane and Kosterlitz. We will then focus our discussion on the

particular topic of two-dimensional insulators. We will then investigate the mechanisms

triggering such a phase as well as the subsequent models and possible materials. We will

conclude this chapter in introducing the concept of generic helical edge states, a central

notion to understanding the spin texture in two-dimensional topological insulators. It can

be noted that several reviews [18–23] and books [24–26] on this introductory theme and

beyond have already been written.

1.1 Topology in condensed matter physics

The study of phases of matter and the properties that characterize them are an impor-

tant topic in condensed matter physics. Usually, the classification is done through Landau

theory [27], involving the symmetries that are spontaneously broken in each phase. These

symmetries can be either discrete or continuous. One typical example is liquid water

becoming ice. From one phase to the other, the translational and rotational symmetries

become spontaneously broken, as the ice forms a crystalline order. Nonetheless, this

description of phases of matter does not give a complete classification.

One of the first hints appeared in 1980 when von Klitzing et al. performed the first

measurement of the Integer Quantum Hall Effect (IQHE) in a two-dimensional electron

gas (2DEG) at low temperature and high magnetic field [28]. It was discovered that

the current is carried by the edge whereas the bulk remains insulating, resulting in a

longitudinal resistance of 0. The edge current leads to a quantized Hall conductance at

some particular values

σH = n
e2

h
, (1.1)

where n is an integer, e the elementary charge and h the Planck constant. The first

experimental evidence of IQHE is shown in Fig. 1.1 [28]. We indeed observe drops in the

longitudinal voltage each time the Hall voltage reaches a plateau value. The measured

Hall voltages at the plateaus are determined by the value of the applied current multiplied

by the values of the Hall resistance. The latter is precisely quantized independently of the

3



Introduction: Topological insulators

Figure 1.1: Hall voltage UH and longitudinal voltage UPP measured as a function of the
gate voltage Vg at a temperature of 1.5K and a magnetic field of 18T, figure taken from
Ref. [28].

geometric details of the measured sample or of the disorder on the mesa. This originates

from the topological nature of the conductance. In a semiclassical interpretation [29], the

electrons are localized on cyclotron orbits due to the high magnetic field. These orbits

are quantized, forming Landau levels. On the edge, the electrons cannot complete the full

orbit, but instead move along the edge in a skipping motion. The topological origin of the

Hall conductance quantization cannot be understood through the conventional Landau

theory in terms of an order parameter, but rather through a topological invariant, the

first Chern number, which can only be an integer independently of the details of the

setup [30, 31]. The system exists in a different phase at each different value of n, without

breaking any symmetry. Therefore, the system should go through a quantum phase

transition, each time the value of n is changed by an integer number.

Before continuing further in the direction of IQHE, we can focus on the consequences of

the appearance of this topological invariant. First, we should define what topology in the

context of condensed matter physics means. In mathematics, topology can be introduced

to classify a space by the properties that are preserved under a “smooth transformation”.

Smooth in this context that the transformation can be carried out continuously. Therefore,

the global properties of a space are those of interest, not the particular geometric details.
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1.1. Topology in condensed matter physics

As an example of the use of topology in mathematics, we can roughly say that we can

classify a space by the number of “holes” it has – the genus. A torus has a different

genus compared to a sphere. In a physical context, the meaning of topology is related by

analogy to this “smooth transformation”. We consider only Hamiltonians with a bulk gap.

Two Hamiltonians are considered as topologically equivalent, if we can change smoothly

one Hamiltonian into the other without closing this bulk band gap. A phase transition

between two distinct topological phases is only possible when the gap closes.

To characterize the different physical phases, we need a topological invariant, the

Chern invariant. Berry introduced in Ref. [32] the concept of a geometrical phase which

appears during the time-evolution of the wave function during adiabatic transport in

slowly varying fields. This “Berry” phase is distinct from the usual dynamical phase

eiEt. On a closed loop, the Berry phase cannot be removed unless it happens to take

an integer value multiplied by 2π. On a closed loop in the Brillouin zone, the Berry

phase appears as the k momentum is adiabatically varied [33]. Simon [34] pointed out

the equivalence between the invariant proposed by Thouless et al. in Ref. [31], namely

the Chern number and the Berry phase divided by 2π, when the surface bounded by the

closed loop corresponds to the full Brillouin zone. The link with the mathematics of fiber

bundles was also clearly stated [35, 36].

At the interface between two systems in different topological phases, the gap has to

close in order to move from one topological phase to the other. This change of phase is

also characterized by a change in the topological invariant. Moreover, the gap closing is

mediated by gapless chiral edge modes. Here the meaning of chiral is that they propagate

only in one direction. They are bound to the edge of the two systems, where the gap

closes. In fact, these edge modes are a manifestation of the bulk topological invariant.

The first link between topology and edge modes was proposed in 1976 in Ref. [37] and is

called the bulk-boundary correspondence [18, 26].

Finally, if we return to the IQHE, we can present a model, which was introduced

by Haldane in Ref. [38]. This model inspired the theoretical discovery of topological

insulators, as we will see later. Haldane realized that the key ingredient in the observation

of the IQHE is not the external magnetic field but the breaking of time-reversal (TR)

symmetry. We will come back to the importance of this symmetry in the next section.

The Haldane model consists of spinless fermions on a honeycomb lattice. It is composed of

a hexagonal lattice, where the unit cells contain two sites and hence the lattice is formed

of two sublattices. The magnetic field is chosen such that in one hexagonal plaquette, the

total magnetic flux cancels. The tight-binding Hamiltonian can be written as [24]

H = t1
∑
〈ij〉

c†icj + t2
∑
〈〈ij〉〉

e−iνijφc†icj +M
∑
i

εic
†
ici, (1.2)

5



Introduction: Topological insulators

where t1 is the nearest-neighbor hopping. The second term describes the next-nearest-

neighbor hopping t2 which acquires an additional phase e−iνijφ. This phase originates from

the flux acquired during the hopping and νij = ±1 will change depending on the hopping

rotation direction. We will discuss about this phase in more detail in Sec. 1.4.1. Finally,

the last term is the inversion-breaking mass term [39], where εi = ±1 if the particle is

on the sublattice A or on the sublattice B. The interplay between the inversion breaking

mass term and the broken TR-symmetry due to the flux enables us to compute a nonzero

Hall conductance.

1.2 Topological insulators

Haldane described a nontrivial topological state where TR-symmetry is absent. The

key idea was to have an internal magnetic field which resulted in a vanishing total magnetic

flux. Although it remained relatively forgotten for more than 15 years, it paved the

way to the discovery of topological insulators (TIs) [6], where TR-symmetry is this time

preserved. To preserve TR-symmetry, the idea is to have a magnetic field which points

in opposite directions for each spin orientation. This can be achieved in the presence of

spin-orbit coupling (SOC) which acts as an effective magnetic field and depending on the

spin orientation, but at the same time preserves TR-symmetry. We will come back to

SOC and its origin in the next section. Finally, note the deep link of TI with IQHE: they

are both members of the Hall effect family; indeed two-dimensional TIs are also called

Quantum Spin Hall Effect (QSHE). Moreover, QSHE can be seen as copies of IQHE

states, one for each spin direction, which feel opposite effective magnetic fields. We will

only discuss two-dimensional TIs throughout this thesis.

The presence of TR-symmetry has a crucial impact and important consequences on

fermionic particles, i.e. in particular on electrons. The effect of TR is to reverse the

arrow of time, namely t→ −t. Its operator Θ acts on space and momentum operators as

ΘxΘ−1 = x and ΘpΘ−1 = −p respectively. This means that Θ can be generally written

as the combination of a unitary operator U and complex conjugation K: Θ = UK. It

leads to the fact that Θ2 = ±1. For spin operators, TR-symmetry acts as Θ~SΘ−1 = −~S.

By historical convention, the TR-operator rotates the spin by π around the y axis, leading

to the following expression

Θ = eiπSyK, (1.3)

such that Θ2 = ±1 for bosonic and fermionic particles respectively. Furthermore, Kramers

theorem [40] states that fermionic particles are at least doubly degenerate under TR-

symmetry. For example if we take one eigenfunction |ψ〉 of H and [H,Θ] = 0, then Θ|ψ〉
is also an eigenfunction of H. Moreover, it has the same eigenenergy and it is orthogonal

6



1.3. Spin-orbit coupling

to |ψ〉. One important consequence of Kramers theorem is that in a translation symmetric

space (e.g. in a crystal) it implies that the eigenstates of the Hamiltonian with momenta

k and −k have the same energy. Only at some special points of the Brillouin zone, named

Time-Reveral Invariant Momenta (TRIM), we have a pair of degenerate states. As an

example, in a two-dimensional Brillouin zone for a square lattice, the TRIM are located

at (0, 0), (0,±π/a), (±π/a, 0) and (±π/a,±π/a), where a is the lattice constant.

That the TI preserves TR-symmetry leads to a Chern number of n = 0. Nonetheless,

it is still in another topological class to the trivial insulator, a class which is characterized

by a Z2 invariant, i.e. either ν = 0 or ν = 1 [6]. We can understand this result using

bulk-boundary correspondence. Note that now, due to Kramers theorem, the edge states

necessarily come in pairs, as they are Kramers partners. Moreover, these pairs are defined

as helical [14], as they must propagate in opposite directions with opposite spin axis. If

we have an odd number of pairs of edge states in the gap, it is not possible to eliminate all

of the edge states by gapping them out without violating TR-symmetry. However, if we

have an even number of pairs of edge states, we can eliminate them completely without

violating TR-symmetry, by gapping them out. We can then relate the difference between

two values of the Z2 invariant to the number of edge states appearing at the interface

through the following equation

∆ν = NK mod 2, (1.4)

where NK is the number of Kramers pairs [18, 26]. As the Hamiltonian has to remain TR-

invariant, some terms such as elastic backscattering or magnetic impurities are forbidden.

This then leads to a protection of the edge states against such mechanisms, making them

robust against small perturbations.

1.3 Spin-orbit coupling

We saw that SOC plays an important role in the physics of TIs. It enables us to have

an effective momentum-dependent magnetic field, which does not break TR-symmetry.

Nonetheless, the presence of SOC in a material does not necessarily lead to a TI phase

and in most cases, no such phase will occur. SOC arises from the relativistic effects.

We can first distinguish two origins: one originating directly from the atoms and their

intrinsic structure and the other from the crystal structure. If we start with the atomic

part of SOC, we can consider the relativistic hydrogen-like model. Even though this

model is quite simplified, it gives already the first insights for the atomic origin of SOC.

7



Introduction: Topological insulators

The nonrelativistic hydrogen model [41–43] has Hamiltonian

H =
p2

2me

− Ze2

r
, (1.5)

where the first term is the nonrelativistic kinetic energy of the electron and the second

term is the Coulomb potential of the atomic nucleus felt by the electron. Z is the atomic

number. As the electron moves in the nuclear electric field, the electron experiences an

effective magnetic field. A coupling between the electron spin S and the orbital momentum

L = r× p appears [41–43], such that there is an additional term

HSO =
1

2m2
ec

2

1

r

dV

dr
L · S =

1

2m2
ec

2

Ze2

r3
L · S. (1.6)

There is then a coupling between the orbital angular momentum and the spin orientation

of the electron. We observe that the atomic number Z enters in the evaluation of the SOC

energy contribution. If we compute the energy difference induced by SOC, we get a Z4/n3

dependence, where n is the principal quantum number, indicating the electron’s shell.

Therefore, heavier atoms will present stronger SOC effects. In atoms, one consequence of

SOC is the appearance of the fine structure.

A very important consequence of atomic SOC for TIs appears in the inversion of

the bandstructure. The order of the valence and the conduction bands can get inverted

leading to a negative mass gap. To adiabatically connect a Hamiltonian with an inverted

mass gap to a normal insulator which has a positive mass gap, it is necessary to close the

gap. Therefore in case of a strong SOC which enables a band inversion, a TI phase can

emerge [8, 44].

If we consider crystalline structures, additional SOC arises if there is a lack of inversion

symmetry [43, 45]. This lack of inversion symmetry appears

� at the interface of the crystal, or

� if the crystal lattice does not have a center of inversion, or

� if there is locally a lack of inversion symmetry.

In the two first cases, the additional SOC is not responsible for creating a TI phase,

but are important sources for breaking the axial spin symmetry. The lack of inversion

symmetry at the interface is called Structural Inversion Asymmetry (SIA), which can

in some systems lead to (Bychkov-)Rashba SOC [46, 47]. If the crystal is grown in the

z-direction, there is an effective electric field E pointing in the z-direction at the interface

such that E = Ezz. The electron moving at the surface will “feel” an effective magnetic

8



1.3. Spin-orbit coupling

Figure 1.2: Sketch of the Fermi surface and of the spin orientation in case of the absence
of inversion symmetry. Panel (a) shows the spin orientation in the presence of Rashba
SOC and panel (b) shows the spin orientation in the presence of linear Dresselhaus SOC.

field due to this electric field. The Rashba SOC term can then be expressed as

HR = αR(z× p) · σ, (1.7)

where αR is the Rashba SOC constant. This constant is material dependent. Rashba SOC

locks the electron’s spin to lie in the plane perpendicular to z and it imposes that the

spin axis is also perpendicular to the momentum. This is called spin-momentum locking

and its effect at the Fermi surface is shown in Fig. 1.2(a).

The lack of a center of inversion, typically in III-V semiconductors like GaAs or InSb,

is called Bulk Inversion Asymmetry (BIA), which can lead to Dresselhaus SOC [48]. It

was first noticed by Dresselhaus that close to the Γ point, SOC can be expressed as

H3D
D = γD

[
(p2
y − p2

z)pxσx + (p2
z − p2

x)pyσy + (p2
x − p2

y)pzσz
]
, (1.8)

where γD is the Dresselhaus SOC constant. For a crystal grown in the z-direction, which

exhibit a 2DEG, it is possible to simplify the expression above [49]. We can estimate the

expectation values 〈kz〉 = 0 and βD = γD〈k2
z〉 . Moreover, we can only keep the linear

term in kx and ky. The Hamiltionian now becomes

HD = βD [pyσy − pxσx] . (1.9)

The linear term also locks the spin in the surface plane perpendicular to z. However this

time, it imposes that the spin axis is parallel to the momentum. Its effect at the Fermi

surface is shown in Fig. 1.2(b). Note that at the interface of semiconductors without a

center of inversion, we will see the appearance of both SIA and BIA, and both effects will

combine resulting in a particular spin orientation at the Fermi surface. Moreover, they

will break the spin quantization axis symmetry. This will have important consequence for

9



Introduction: Topological insulators

the appearance of a nontrivial spin texture.

Finally, we can also consider when inversion symmetry is locally absent in the crystal.

In this case, SOC can also arise and we will define it as “intrinsic SOC”. This type of SOC

is very important in relation to TI phases, as it can open a nontrivial gap at the Fermi

energy [7]. This gap will differ from the inversion-breaking mass term defined for example

in Haldane Hamiltonian in Eq. (1.2) or in Ref. [39], as the system becomes gapless at

some point to smoothly connect the states in these two types of gaps [7]. We will see an

example in Sec. 1.4.1.

1.4 Proposed models and materials

In the previous section, we introduced the concept of topology in condensed matter

physics, which led to the discovery of TIs. We pointed out the main features of TIs and

we stressed the importance of SOC in such systems. We have now enough knowledge

to move on to a more practical and realistic examination, where we explore the different

proposed models as well as the material candidates.

1.4.1 Kane-Mele model for graphene

Chronologically, the first model for TIs was designed for graphene. Kane and Mele [6,

7] generalized the model developed by Haldane [38], where the phase-dependent hopping

now originates from an intrinsic SOC. It leads to an opening of the gap at the K and K ′

points which, is of opposite sign at these two points. As noted in the previous section, this

gap cannot be adiabatically traced to a simple inversion-breaking mass [7]. The phase-

dependent hopping comes from the fact that the electron hopping to the next-nearest

neighbor site feels the electric field emitted from the intermediate site. The electric field

induces an effective magnetic field on the moving electron. This effective magnetic field

generates a phase for the electron, which depends on the spin of the electron and on

the position of the intermediate site, as shown in Fig. 1.3. The Hamiltonian is fully TR

invariant. Moreover, if there is a perpendicular electric field or a substrate, Rashba SOC

appears due to the breaking of inversion symmetry. As explained before, this term does

not break TR symmetry either, but it does break spin axis symmetry. Nevertheless, the

Z2 invariant is stable as long as the Rashba term is not sufficiently large to close the gap

[7, 50]. The Kane-Mele (KM) model can be written in a tight-binding form as

HKM = −t
∑
〈ij〉

c†icj + iλSO

∑
〈〈ij〉〉

νijc
†
is
zcj + iλR,1

∑
〈ij〉

c†i (s× d̂ij)zcj, (1.10)

10



1.4. Proposed models and materials

+
+

+ --
-

Figure 1.3: Sign of the phases resulting from the intrinsic SOC.

where cj = (cj↑, cj↓)
T is a spinor. t is the nearest-neighbor hopping, λSO is the intrinsic

SOC and λR,1 is the Rashba SOC. νij = ±1 is the phase described above, resulting from

the induced effective magnetic field when the electron hops to its next-nearest-neighbor.

This is the same phase presented in the Haldane model in Eq. (1.2). It will take the value

±1 if the electron makes a “left turn” (resp. “right turn”), as indicated in Fig. 1.3. s is

the physical spin and d̂ij is the unit vector between the site j and the site i. We define

the translation vectors between neighboring sites as

δ1 =
a√
3

(
−1

0

)
, δ2 =

a

2
√

3

(
1√
3

)
, δ3 =

a

2
√

3

(
1

−
√

3

)
, (1.11)

where a is the lattice constant. The unit cell is formed by two equivalent atoms (a & b)

represented in red and in blue respectively in Fig 1.3. We can describe the spinor cj in

terms of elements of the sublattice aj and bj. We must consistently take into account the

hopping to the nearest and to the next-nearest neighbors. The lattice unit vectors are

a1 = δ2 − δ1 and a2 = δ3 − δ1.

We Fourier transform the Hamiltonian into momentum space, such that the operators

become

c†k =
∑
j

eikajc†j , ck =
∑
j

e−ikajcj. (1.12)

The Hamiltonian can be rewritten as

HKM =
∑
k

Ψ†(k)HKM(k)Ψ(k), (1.13)

where Ψ(k) = (a↑(k), b↑(k), a↓(k), b↓(k))T . The Hamiltonian is now expressed in terms of

the Bloch matrix

HKM(k) =


ε(k) −τ(k) 0 ρ1(k)

−τ ∗(k) −ε(k) ρ2(k) 0

0 ρ∗2(k) −ε(k) −τ(k)

ρ∗1(k) 0 −τ ∗(k) ε(k)

 , (1.14)

11



Introduction: Topological insulators

Figure 1.4: Sketch of a TI nanorribon of length L. The inside is hollow. At each end,
there are two edge states propagating in opposite directions and are characterized by their
momenta.

where the different terms appearing in the Hamiltonian are k-dependent

τ(k) = t
[
1 + e

√
3iakx/2eiaky/2 + eiaky

]
, (1.15)

ε(k) = 2λSO

[
sin(aky)− 2 sin(aky/2) cos(

√
3akx/2)

]
, (1.16)

ρ1(k) =
iλR,1

2

[
(−
√

3− i) + eiaky(
√

3− i) + 2ie
√

3iakx/2eiaky/2
]
, (1.17)

ρ2(k) =
iλR,1

2

[
(
√

3 + i) + e−iaky(−
√

3 + i)− 2ie−
√

3iakx/2e−iaky/2
]
. (1.18)

We would like to model a TI nanoribbon, i.e. a hollow cylinder. As the nanoribbon is

surrounded by vacuum, edge states will appear localized at both ends of the nanoribbon,

as shown in Fig. 1.4. We can understand this using bulk-boundary correspondence in

Eq. (1.4), as vacuum is a trivial insulator. We partially Fourier transform Eq. (1.10) in

the y-direction using

c†l,ky =
∑
j

eikyajc†l,j , cl,ky =
∑
j

e−ikyajcl,j. (1.19)

It is possible to plot the band energy spectrum as a function of momentum, because there

is still one periodic direction. Note that the there are two pairs of edge states due to the

finite length of the ribbon, i.e. there are two states at x = 0 and two states at x = L. An

example of such nanoribbon using KM model is shown on Fig. 1.5. We set a = 1, t = 1,

λSO = 0.2 and λR,1 = 0.05. The gap ∆ is determined by the strength of the intrinsic SOC,

∆/2 = 3
√

3λSO. Note that the edge states start at the K and K ′ points where the Dirac

cones open and cross at the TRIM ky = π. Rashba SOC breaks particle-hole symmetry

(E(k)→ −E(k)).

12



1.4. Proposed models and materials

Figure 1.5: The energy spectrum of the KM Hamiltonian for a nanoribbon of L=32 unit
cells. We set a = 1, t = 1, λSO = 0.2 and λR,1 = 0.05.

1.4.1.1 Silicene, Germanene & Stanene

It was soon noted that SOC in graphene is too small to generate a measurable gap

[51, 52]. In order to increase SOC, we can use heavier elements than carbon as we saw

in Sec. 1.3. We replace the carbon atoms by silicon, germanium or tin atoms to form

silicene, germanene or stanene respectively. From first principles calculations [53, 54], the

gap is large enough to hope for room-temperature experiments due to the enhanced SOC.

Due to buckling of the structure, an additional intrinsic Rashba SOC term appears in

these non-graphene systems [54]. It is expressed as

HR,2 = −i2
3
λR,2

∑
〈〈ij〉〉

µij c
†
i (s× d̂ij)z cj, (1.20)

where µij = ±1 is a phase for the sublattice a and b respectively and d̂ij is the unit

vector between the site i and the site j. It is still possible to apply an electric field or use

the substrate to induce a tunable Rashba interaction like in Eq. (1.10) [55]. We can also

Fourier transform this Hamiltonian, to have the Bloch matrix

HR,2(k) =


0 0 −ρ3(k) 0

0 0 0 ρ3(k)

−ρ∗3(k) 0 0 0

0 ρ∗3(k) 0 0

 , (1.21)

13



Introduction: Topological insulators

Figure 1.6: The energy spectrum of silicene described by the KM Hamiltonian and λR,2-
term, for a nanoribbon of L=32 unit cells. We set a = 1, t = 1, λSO = 0.2, λR,1 = 0 and
λR,2 = 0.5.

where ρ3(k) is given by

ρ3(k) =
4

3
λR,2

[
sin(aky) + cos(

√
3akx/2) sin(aky/2)

+
√

3i sin(
√

3akx/2) cos(aky/2)
]
.

(1.22)

As for the KM model, we can partially Fourier transform the Hamiltonian and produce

a plot for the energy spectrum of a nanoribbon as shown in Fig. 1.6. We set a = 1

and t = 1 such that λSO = 0.2, λR,1 = 0 and λR,2 = 0.5. There are a few differences

compared to the case of extrinsic Rashba SOC: the intrinsic Rashba SOC preserves the

particle-hole symmetry but its effect is weaker (between Fig. 1.5 and Fig 1.6, there is a

factor 10 between the two Rashba SOC strengths).

1.4.2 Bernevig-Hughes-Zhang model for HgTe heterostructures

Soon after KM, Bernevig, Hughes & Zhang [8] (BHZ) developed another model for

two-dimensional TI. They used the zinc blende structure of a heterostructure formed by

a layer of HgTe sandwiched between two layers of CdTe. Zinc blende lattices are two

interpenetrating face-centered cubic lattices, and they are a common crystal structure for

binary compound semiconductors. Due to the strong SOC, the s-band and the p-bands

get inverted near the Γ-point in the HgTe layer. This is not the case for the CdTe layer,

as the SOC effect is weaker. We see the band structure of the two layers near the Γ-point

14



1.4. Proposed models and materials

Figure 1.7: In panel (A), the bandstructure is plotted in each layer near the Γ-point.
On the left, we have the bandstructure for HgTe, which has an inversion of the Γ6 and
Γ8 bands. On the right, we have the bandstructure for CdTe. Panel (B) shows the
band inversion in the effective model. If the length is shorter the critical value (left), the
insulator remains trivial. Otherwise (right), it becomes a TI. Taken from Ref. [8].

in panel A of Fig. 1.7 [8], where Γ7 and Γ8 are p-bands and Γ6 is an s-band.

It is possible to describe this system as an effective 2D system from k · p theory

[49, 56] with only two spin-degenerate bands: one electron band {|E1,+〉, |E1,−〉} and

one hole band {|H1,+〉, |H1,−〉}. The states are confined to the HgTe layer. The inversion

of these two effective bands, and thus also the topological phase transition occurs at a

critical length dc = 6.3nm. Below that critical value, the system is a trivial insulator and

above it, it becomes a TI as shown in panel B of Fig. 1.7 [8]. More about zinc blende

heterostructures and k · p theory will be presented in Chap. 4.

The effective two-dimensional Hamiltonian is expressed in the following manner

HBHZ =
∑
k

Φ†(k)HBHZ(k)Φ(k) =
∑
k

Φ†(k)

(
h(k) 0

0 h∗(−k)

)
Φ(k), (1.23)

where Φ(k) = (E+(k), H+(k), E−(k), H−(k))T . h(k) is a massive Dirac Hamiltonian

h(k) = ε(k) + d(k) · σ, (1.24)

where ε(k) = C−D(k2
x+k2

y), d(k) = (Akx,−Aky,M−B(k2
x+k2

y))
T and σ = (σx, σy, σz)T
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Introduction: Topological insulators

are the Pauli matrices acting on the pseudospin of the subbands. A, B, C, and D are

parameters that depend on the original layers. M is the band gap at the Γ-point, so

that when M is negative there is a band inversion. The system is in a TI regime if

0 < M/(2B) < 2. With this notation we can rewrite the Bloch matrices as

HBHZ(k) = ε(k)14x4 + d1(k) · σx ⊗ sz + d2(k) · σy ⊗ 12x2 + d3(k) · σz ⊗ 12x2, (1.25)

where s is the physical spin. This continuous model can be regularized on a square lattice,

such that ki ≈ sin(ki) and k2
i ≈ 2−2 cos(ki). It is interesting to note that the Hamiltonian

is still block diagonal. Nonetheless, as the lattice is now formed of two types of atoms,

inversion symmetry in the bulk is not preserved [57]. This leads to an additional term

HBIA(k) =


0 0 0 −∆

0 0 ∆ 0

0 ∆ 0 0

−∆ 0 0 0

 , (1.26)

where ∆ is a material parameter. We now observe a term coupling the spin compo-

nents. Structural asymmetry can be induced by an electric field, leading to k-dependent

correction terms [16]. We Fourier transform the Hamiltonian back to real space,

HBHZ =(C − 4D

a2
)
∑
ijσ

(
e†ijσeijσ + h†ijσhijσ

)
+ (M − 4B

a2
)
∑
ijσ

(
e†ijσeijσ − h

†
ijσhijσ

)
+

[
D

a2

∑
ijσ

(
e†i+1,jσeijσ + e†i,j+1σeijσ + h†i+1,jσhijσ + h†i,j+1σhijσ

)
+
B

a2

∑
ijσ

(
e†i+1,jσeijσ + e†i,j+1σeijσ − h

†
i+1,jσhijσ − h

†
i,j+1σhijσ

)
+
A

2a

∑
ij

(
−ie†i+1,j↑hij↑ + ie†i−1,j↑hij↑ + ie†i+1,j↓hij↓ − ie

†
i−1,j↓hij↓

)
+
A

2a

∑
ijσ

(
e†i,j+1σhijσ − e

†
i,j−1σhijσ

)
+ ∆

∑
ij

(
e†ij↑hij↓ − h

†
ij↑eij↓

)
+ h.c.

]
,

(1.27)

where each site (i, j) has two orbitals: the electron-like orbital eijσ and the hole-like

orbital hijσ. This enables us, after partially transforming the Hamiltonian, to plot the

band structure on a nanoribbon, as we observed for the KM model and silicene as shown

in Fig. 1.8. We set a = 1, A = 5, B = −1, M = −2, C = D = 0 and ∆ = 0.3. Note that

the crossing of the edge states occurs at the TRIM ky = 0 and BIA does not break the

particle-hole symmetry.
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1.4. Proposed models and materials

Figure 1.8: The energy spectrum of the BHZ Hamiltonian and BIA for a nanoribbon of
L=32 unit cells. We set a = 1, A = 5, B = −1, M = −2, C = D = 0 and ∆ = 0.3.

Historically, the HgTe heterostructure was the first experimental realization of 2D TI

in 2007 [12]. König et al. manufactured different sizes and thicknesses of heterostructures

by molecular beam epitaxy. They measured the resistance for a four terminal Hall bar

when the Fermi energy is tuned by the gate voltage Vg into the bulk gap. The results can

be seen in Fig. 1.9 [12]. If the system is in the trivial regime (I), d < dc, and the resistance

is very high, which is what is expected of a normal insulator. If the system is larger than

the critical width (III) & (IV), the resistance is quantized to R = h/(2e2), which is what

we expect for ballistic edge states. It is also the case in the inset for different temperatures.

Nonetheless if the length is longer than the mean free path (II), the resistance deviates

from the quantized value due to the disorder. Other transport measurements, including

non-local resistance measurements, were performed confirming the presence of edge modes

[57–60]. Finally, another proof of the existence of edge states in the TI regime was provided

by experiments unsig a superconducting quantum interference device (SQUID) [61, 62].

A superconducting loop scans the device, and measures the magnetic field induced by the

current. Inverting the Biot-Savart law, the current density can be extracted enabling us

to image of the current in the sample. It is also possible to spatially visualize the edge

states via scanning gate microscopy [63].

1.4.2.1 InAs/GaSb heterostructures

Another similar structure to HgTe heterostructure is the one formed from a layer of

InAs and a layer of GaSb sandwiched between two layers of AlSb. This heterostructure

was theoretically proposed in 2008 [15]. It is possible to derive an effective Hamiltonian
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Introduction: Topological insulators

Figure 1.9: Resistance (conductance) measurements in the trivial regime (I), where the
resistance is maximal showing a gap and in the inverted regime (II, III & IV), where the
conductance should always be G = 2e2/h. In the insert, several resistance measurements
at different temperature. Taken from Ref. [12].

similar to the BHZ Hamiltonian (1.23). In this case, the trivial and non-trivial regimes

are not only governed by the width of the central layer(s), but also the back voltage

which enables us to switch between the two regimes, creating a more versatile tool for

studying a topological phase transition. Secondly, neither of the two central layers have

a band inversion in the central layer as shown in Fig. 1.10. It is the broken gap of the

heterojunction which creates an inversion of the band. This leads to a spatial separation

between the two bands, where the electron-like band is more localized in the InAs layer

whereas the hole-like band is more localized in the GaSb layer. Additional terms appear

due to the lack of structural and bulk inversion symmetry [15], which couples again the

two spin blocks.

HBIA(k) =


0 0 ∆e(kx + iky) −∆0

0 0 ∆0 ∆e(kx − iky)
∆e(kx − iky) ∆0 0 0

−∆0 ∆h(kx + iky) 0 0

 , (1.28)

HSIA(k) =


0 0 iξe(kx − iky) 0

0 0 0 0

−iξ∗e (kx + iky) 0 0 0

0 0 0 0

 , (1.29)
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1.5. Generic helical edge states

Figure 1.10: Band structure in the z-direction. The conduction band is indicated in each
layer in green and the valence band is indicated in red. The (dashed) blue line shows the
effective inverted bands representing electron-like and hole-like behavior near the Γ-point.

where ∆0, ∆e, ∆h and ξe are material parameters. Note that BIA is nearly negligible in

such a heterostructure [64], but the Rashba SOC seems to play an important role [65],

More on this topic and on InAs/GaSb heterostructures will be presented in Chap. 4. After

this theoretical prediction, experimental evidence of QSHE through transport measure-

ments were first found in 2011 [13]. In the following years, other transport measurements

were made on this heterostructure to confirm the presence of edge states [66–73]. In a

similar manner as in the HgTe heterostructures, SQUID measurements were able to image

current densities [74]. Very recently, evidence of trivial edge states, i.e. edge states remai-

ning also in the trivial regime appeared using both transport and SQUID measurements

[75, 76].

1.5 Generic helical edge states

In the models and materials presented above, several mechanisms were responsible

for breaking the axial spin symmetry either intrinsically or extrinsically. It is therefore

necessary to develop a more general framework, where only time-reversal symmetry is

assumed. In this framework, the edge states are called generic helical edge states [17].

They are still characterized by their helicity, but they are no longer eigenstates of the

spin operator. Using time-reversal symmetry, the right-moving edge state ψ+(k) in a

translation-invariant system is linked to the left-moving edge states ψ−(k) through:

Tψ+(k)T−1 = ψ−(−k),

Tψ−(k)T−1 = −ψ+(−k),
(1.30)
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Introduction: Topological insulators

Figure 1.11: A sketch of the edge state dispersions plotted with respect to momentum. In
panel (a), the axial spin symmetry is preserved, leading to orthogonal edge states at any
momenta. In panel (b), the axial spin symmetry is broken, leading to a possible overlap
for the edge states when their momenta differ.

where T is the anti-unitary time-reversal operator. Elastic backscattering is still not allo-

wed: a term such as ψ†+(k)ψ−(k) + h.c. would violate time-reversal symmetry. Moreover,

due to Kramers’ theorem, any overlap at the same energy would vanish, for example

〈ψ−(−k)|ψ+(k)〉 = 0.

Nevertheless, new processes such as inelastic scattering induced by electron-electron

interactions are now allowed. The overlap for states with different momenta can be finite

[17, 77, 78], even if time-reversal symmetry is preserved. An example of such a case

can be seen in Fig. 1.11. In panel (a), the edge states are indeed spin eigenvalues. The

overlap is zero by construction, independent of momentum and inelastic backscattering

is forbidden. In panel (b), the edge states no longer have any axial spin symmetry.

Therefore, the overlap vanishes if the modulus of their momenta is equal due to TR-

symmetry, i.e. 〈ψ−(±k)|ψ+(k)〉 = 0, but it might not be the case at other momenta.

Such a finite overlap between states of different momenta, such as those joined by the

dashed blue line in Fig. 1.11 enables new processes. It can lead to new phenomena, such

as a correction of the conductance at finite temperature [17, 79] or new interference effects

in transport calculations [80, 81].

It is possible to relate the chiral basis (ψ+(k), ψ−(k))T to the spin basis (ψ↑(k), ψ↓(k))T

at any momentum k through a SU(2) momentum-dependent matrix Bk,(
ψ↑(k)

ψ↓(k)

)
= Bk

(
ψ+(k)

ψ−(k)

)
. (1.31)
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Bk is only determined by unitarity and time-reversal symmetry. Its most generic form is

Bk =

(
cos(θk) − sin(θk)

sin(θk) cos(θk)

)
, (1.32)

where θk measures the rotation of the spin axis at the value of k. θk should be even in

k, due to time-reversal symmetry. We can set the direction of the spin axis, such that

B0 = 12×2 at the Dirac point k = 0. If we expand Bk up to k2, we find

Bk ≈

(
1 −(k/k0)2

(k/k0)2 1

)
, (1.33)

where k0 can be understood as the characteristic scale for the rotation of the spin quantiza-

tion axis. k0 is a central concept in this thesis as it enables us to obtain some information

about the spin texture and it can be quantified. Here, the spin texture describes the spin

axis orientations in the edge states.

1.6 Outline

The remaining parts of this thesis are organized in the following manner. In the next

chapter, we will start by describing how to extract the spin texture in a translational inva-

riant system. As the system needs some boundary with a trivial system to get edge states,

we focus our study on nanoribbons. This will enable us to extract the first information

about nontrivial spin textures. Nonetheless, nanoribbons and translation invariant sys-

tems are not very realistic systems for more concrete measurements. We go on to probe

how the nontrivial spin texture is expressed in real space. We will start by considering

a rotationally invariant disk. We discover that in such system we can replace the lattice

momentum by the total angular momentum. It is still possible to argue that such systems

still preserve some spatial symmetry. Therefore, the last step will be to explore the spin

texture in the absence of any spatial symmetry, i.e. in flakes. We will be able to show

that the spin textures in nanoribbons and in disks or flakes coincide. Finally, as the spin

texture can be extracted locally, we will investigate its spectroscopic properties.

In chapter 3, we study a Hall bar transport setup using our prior knowledge of the

spin texture in (angular) momentum space. With the help of an antidot (i.e. a hole in

the middle of the Hall bar), we will probe the spin texture in two cases: either neglecting

Coulomb interaction for the electrons located on the antidot, or considering the Coulomb

blockade regime. In the first case, we will use Landauer-Büttiker formalism to compute

the (non)local resistance and understand the role of the spin texture. The results will
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be compared to numeric calculations. In the second case, we will use Fermi’s golden rule

to compute the current flowing through the antidot in the sequential and cotunneling

regimes. We will be able to detect a direct change of the tunneling current due to the

nontrivial spin texture if the antidot is in the cotunneling regime.

Finally in chapter 4, we will focus on InAs/GaSb heterostructures. We will start with

a small introduction about k · p theory and how to apply it to heterostructures. From the

k · p Hamiltonian, we will derive an effective two-dimensional Hamiltonian, considering

perturbatively the terms with components perpendicular to the growth direction. This

Hamiltonian will exhibit anisotropies, therefore we expect that the band structure will be

influenced by the crystallographic direction of measurement. We then compute the band

structure for nanoribbons in different orientations. From there, we will apply the same

method as in chapter 2 and extract the spin texture. We show that the spin texture will

depend explicitly on the crystallographic orientation of the nanoribbons.

We summarize the findings presented in this thesis and propose new possible avenues

of research and remaining open questions in chapter 5.
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2 | Spin texture of generic helical

edge states

After presenting the essential concepts relevant for this thesis, we first focus on the

notion of generic helical edge states. We realized in Eq. (1.31) that it was possible to relate

the chiral basis to a spin basis through a momentum-dependent matrix Bk. Therefore, Bk

enables us to extract information about the spin texture. However, it is not possible to

extract directly the matrix numerically, but we can extract k0. To do so, one approach is to

consider the scattering of edge states propagating in opposite directions on a nanoribbon

similar to the one in Fig. 1.4, where the edges are parallel to the y direction. In the case of

an impurity localized at (x0, y0), which generates a potential that has a wavelength shorter

than the Fermi wavelength, but larger than the penetration length, the backscattering

Hamiltonian can be expressed as V0δ(y − y0). By comparing it in the chiral basis with

the Hamiltonian which originates from an impurity violating translation invariance, we

get [17] [
B†k2Bk1

]−+

=

∫
dxψ∗−,k2(x, y0)ψ+,k1(x, y0). (2.1)

Near the Dirac point, the low-momentum expansion from Eq. (1.33) enables us to make

the following approximation [
B†k2Bk1

]−+

≈ k−2
0

(
k2

1 − k2
2

)
. (2.2)

We have now means of obtaining some information about the spin texture. Most of the

results presented in this chapter were published in Ref. [77].
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2.1 Extracting the spin texture in momentum space

In order to extract the numerical value of k0, we have to modify slightly our expression

for the spin texture by adding the modulus

K(k1, k2) =

∣∣∣∣∫ dxψ†−,k2(x, y0)ψ+,k1(x, y0)

∣∣∣∣ ≈ k−2
0

∣∣k2
1 − k2

2

∣∣ . (2.3)

The absolute value makes this expression gauge invariant. When we extract the wave

function of the edge states in our nanoribbon geometry, we need to diagonalize the Ha-

miltonian at each momentum k. This adds an overall U(1) phase for each eigenfunction:

this phase will be the same for the eigenfunctions at a given momentum, but the dia-

gonalization procedure does not set the phase between two eigenfunctions at different

momenta. We expect the spin texture to have the following properties:

� If there is no term mixing the spins, such as structural or bulk inversion asymmetry,

the spin texture cannot be found, i.e. K(k1, k2) = 0 for all k1, k2.

� Its strength will be determined by the value taken by k−2
0 .

� At k1 = k2, the spin texture vanishes, i.e. K(k1, k1) = 0 for all k1. The two eigen-

functions come from the same diagonalization procedure, they will be orthogonal

by construction.

� At k1 = −k2, the spin texture also vanishes, i.e. K(k1,−k1) = 0 for all k1. The two

eigenfunctions are TR-partners, thus they are orthogonal due to Kramers’ theorem.

� Near the Dirac point (E = 0), the spin texture should behave as K(k1, k2) ≈
k−2

0 |k2
1 − k2

2|.

We will see in the next sections how to generalize the spin texture K(k1, k2), when we lose

translation invariance.

Practically, we implement the KM model (1.10) or BHZ model with BIA (1.27) on

a nanoribbon in the same manner we already did for Figs. 1.5 and 1.8. During the

diagonalization procedure, we get the energy and the eigenvalues ψ±,ki(x, y0). We can

assume that y0 = 0, since the system is translation symmetric. Then the integral (2.3) can

be directly computed by summing each overlap along the x-axis (the integral is changed

to a sum, as there are a finite number of sites in the x-direction). The spin texture for

the BHZ model is shown in Fig. 2.1. We use the same parameters as in Fig. 1.8 except for

the BIA parameter set at ∆ = 0.5. It is totally symmetric with respect to momentum,

showing a hyperbolic structure. This symmetry is not surprising, as the BHZ Hamiltonian

with BIA preserves particle-hole symmetry.
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2.1. Extracting the spin texture in momentum space

Figure 2.1: The spin texture of the BHZ Hamiltonian including BIA for a nanoribbon of
L=32 unit cells. We set a = 1, A = 5, B = −1, M = −2, C = D = 0 and ∆ = 0.5. In
panel (a), we have the three-dimensional plot and in panel (b), the corresponding contour
plot.

We can extract in the same manner the spin texture for the KM Hamiltonian, where

the spin mixing is created by Rashba SOC λR,1. In this case, the texture is shown in

Fig. 2.2. We use the same parameters as in Fig. 1.5. We observe a small asymmetry

where the spin texture deviates at large k from the perfect hyperbolic structure. Note

that the full Hamiltonian is not particle-hole symmetric. Nonetheless, at low energy, the

quadratic structure of the spin texture remains a good approximation and can still be

used to evaluate the value of k−2
0 .

The effect of the intrinsic Rashba SOC term written in Eq. (1.20), which appears

in materials such as silicene, can also lead to a nontrivial spin texture. From the same

parameters used in Fig. 1.6, we can plot the spin texture. They are shown in Fig. 2.3

and in contrast to the spin texture with the extrinsic Rashba SOC λR,1, it is this time

symmetric, as the full Hamiltonian preserves particle-hole symmetry. Nonetheless, the

intrinsic Rashba SOC has a weaker effect, as there is a factor of 10 between the magnitudes

of the two Rashba SOC in Figs. 2.2 and 2.3.

To extract the spin texture, we need to get the numerical value of k−2
0 . We used two

methods, which led to similar conclusions and parameter values. The first method is

to take the fits at constant value of k1 (or k2), where the only fitting parameter is the

constant in front of |k2
1−k2

2| and we average the fitting values to get k0. The other method

is to directly perform a two-dimensional fit on the spin texture. If we start with the BHZ

Hamiltonian, we can get the scaling of k−2
0 with respect to the BIA parameter ∆,

k−2
0 ∝ |∆|, (2.4)

which is independent of the length of the ribbon as we can see in Fig. 2.4. We used same
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Spin texture of generic helical edge states

Figure 2.2: The spin texture of the KM Hamiltonian for a nanoribbon of L=32 unit
cells. We set a = 1, t = 1, λSO = 0.2 and λR,1 = 0.05. In panel (a), we have the
three-dimensional plot and in panel (b), the corresponding contour plot.

Figure 2.3: The spin texture of silicene, i.e. the KM Hamiltonian with the λR,2-term, for a
nanoribbon of L=32 unit cells. We set a = 1, t = 1, λSO = 0.2, λR,1 = 0 and λR,2 = 0.5. In
panel (a), we have the three-dimensional plot and in panel (b), the corresponding contour
plot.
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2.1. Extracting the spin texture in momentum space

Figure 2.4: Parameter dependence for k−2
0 in the BHZ Hamiltonian including BIA for a

nanoribbon of L=32 unit cells. We set a = 1, A = 5, B = −1, M = −2, C = D = 0.

Figure 2.5: Parameter dependence for k−2
0 in the KM Hamiltonian for nanoribbons of

L=32 as function of λSO (a) and λR,1 (b). We set a = 1, t = 1.

parameters as before (a = 1, A = 5, B = −1, M = −2, C = D = 0).

Regarding the KM Hamiltonian, we have two parameters which can influence the

extracted value of k−2
0 : the intrinsic SOC and the extrinsic Rashba SOC. k0 scales with

the modulus of Rashba SOC and as the inverse square root of the intrinsic SOC modulus

k−2
0 ∝

|λR,1|√
|λSO|

. (2.5)

This scaling can be seen in Fig. 2.5, where the parameters are kept similar in comparison

to the previous plots ( a = 1, and t = 1).

For silicene, germanene and stanene, we decide to compute realistic values of k−2
0 , but

we exclude the extrinsic Rashba SOC. This can be justified as the extrinsic one can be

tuned with an external electric field and its maximal value remains much weaker [55]. If

we use the parameters from first principles computations [54], we get the results which

are summarized on Table 2.1. We can see that for heavier elements such as germanium
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Spin texture of generic helical edge states

k−2
0 ã−2 k0ã

Silicene 2.4341 · 10−7 2027

Germanene 6.8594 · 10−5 121

Stanene 1.0282 · 10−4 99

Table 2.1: Values of k−2
0 and k0 multiplied with ã =

√
3a, the distance between two unit

cells, for silicene, germanene and stanene. The system parameters are taken from Ref. [54]
and the effect of extrinsic Rashba SOC is not considered.

or tin, the full rotation happens for a length of about 100 Brillouin zones.

We have now a good understanding of the spin texture on a nanoribbon, where the

dependence on momentum is clearly stated. We have an explicit procedure to extract this

information. We also determined the dependence on material parameters for different

models and offered some realistic values of the spin texture. Note that results for the

BHZ model with structural inversion asymmetry, Eq. (1.29), were published in Ref. [78].

2.2 Extracting the spin texture in a real space: con-

tinuum disks

Nonetheless, the notion of nanoribbon and momentum is not clear in an experimental

realization. As we saw in Sec. 1.4, most of the experiments were made to measure some

transport properties using Hall bars. Translation symmetry is lost and there is not neces-

sarily any other spatial symmetry. The first step is to understand the spin texture when

the rotational symmetry is still preserved, using disks.

To analyze these TIs disks, we use the continuous version of the BHZ model from

Eq. (1.23) and bulk inversion asymmetry from Eq. (1.26). The latter is responsible for

the nontrivial spin texture as we realized in the previous section. To have no penetration

of the edge states in the surrounding media [82], we assume that the disk is surrounded

by vacuum (i.e. the TI is surrounded by an infinite potential) as shown in Fig. 2.6. The

edge states then counterpropagate at the radius R, the boundary between the TI disk

and the infinite potential.

Circular geometry for TI was also studied in other works. In Ref. [83], Michetti and

Recher investigated the energy spectrum as well as the wave functions for Aharonov-Bohm

rings and disks using the BHZ model, Eq. (1.23), and structural inversion asymmetry,

Eq. (1.29). The case of an antidot (an infinite TI with a circular hole in its middle)

using only the BHZ model was also studied in Ref. [84]. Ref. [85] used the KM model

for silicene where disks with and without intrinsic spin-orbit coupling were investigated

under a magnetic field. Finally, short cylinders of three-dimensional TI were investigated
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2.2. Extracting the spin texture in a real space: continuum disks

Figure 2.6: Sketch of the TI disk, surrounded by an infinite potential. R labels the radius
of the disk, whereas r denotes the radial distance. The edge states are (counter)clockwise
propagating at the boundary between the two media.

in Ref. [86].

As mentioned above, we use the BHZ model, Eq. (1.23), with bulk inversion asymme-

try, Eq. (1.26). We set C = D = 0 as these material parameters do not interfere with the

topological nature of the TI disk, but merely break the particle-hole symmetry. We need

to transform from the momentum space representation of the Hamiltonian to real space

by replacing kx = −i∂x and ky = −i∂y. The Hamiltonian becomes

H = HBHZ +HBIA

= −iA(∂xσx ⊗ sz − ∂yσy ⊗ 12x2) + (M +B∂2
x +B∂2

y)σz ⊗ 12x2 + ∆σy ⊗ sy.
(2.6)

As the system is rotationally invariant, it is advantageous to transform the coordinates into

the polar ones x = r cos(φ), y = r sin(φ). The partial derivatives become ∂x = cos(φ)∂r−
i sin(φ)

r
lz, ∂y = sin(φ)∂r + i cos(φ)

r
lz, where lz = −i∂φ is the orbital angular momentum. The

bulk inversion asymmetry term is not affected by this change of coordinate, but the BHZ

Hamiltonian now reads

HBHZ = −A
(
eiφσz⊗sz i∂rσx ⊗ sz + eiφσz⊗sz

lz
r
σy ⊗ 12x2

)
+

(
M +B∂2

r −B
l2z
r2

+B
∂r
r

)
σz ⊗ 12x2.

(2.7)

Note that the system does not commute with the orbital angular momentum lz. We define

a total angular momentum jz, such that

jz = lz −
1

2
(σzsz). (2.8)

This angular momentum commutes with the Hamiltonian [H, jz] = 0, therefore there
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Spin texture of generic helical edge states

exists a basis where the elements are both eigenstates of the Hamiltonian and of the total

angular momentum operator. This basis fulfills

jzΨj(r, φ) = jΨj(r, φ). (2.9)

When this differential equation is solved and the periodicity is set, the angular part of

the wave function is completely established. The differential equation leads to


ΨjE1+(r, φ)

ΨjH1+(r, φ)

ΨjE1−(r, φ)

ΨjH1−(r, φ)

 = eijφ


ΨjE1+(r)eiφ/2

ΨjH1+(r)e−iφ/2

ΨjE1−(r)e−iφ/2

ΨjH1−(r)eiφ/2

 . (2.10)

The periodicity of the wave function imposes Ψj(r, φ) = Ψj(r, φ + 2π), such that j is a

half-integer, j + 1/2 ∈ Z.

Solving the radial part requires more sophistry. To start with, we apply the Hamilto-

nian to the wave function HΨj(r, φ) = EΨj(r, φ), creating the following set of equations:(
M +B∂2

r −B
(j + 1/2)2

r2
+B

1

r
∂r − E

)
ΨjE1+(r)

+ Ai

(
−∂r +

j − 1/2

r

)
ΨjH1+(r)−∆ΨjH1−(r) = 0

Ai

(
−∂r −

j + 1/2

r

)
ΨjE1+(r) + ∆ΨjE1−(r)

+

(
−M −B∂2

r +B
(j − 1/2)2

r2
−B 1

r
∂r − E

)
ΨjH1+(r) = 0

∆ΨjH1+(r) + Ai

(
∂r +

j + 1/2

r

)
ΨjH1−(r)

+

(
M +B∂2

r −B
(j − 1/2)2

r2
+B

1

r
∂r − E

)
ΨjE1−(r) = 0

−∆ΨjH1−(r) + Ai

(
∂r −

j − 1/2

r

)
ΨjE1−(r)

+ (−M −B∂2
r +B

(j + 1/2)2

r2
−B 1

r
∂r − E)ΨjH1−(r) = 0.

(2.11)

The ansatz for each radial component is

Ψjα(r) = ΨjαZj(
√
pr), (2.12)

where Zj is a Bessel function of the first or second kind, or a Hankel function, depending
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2.2. Extracting the spin texture in a real space: continuum disks

on the boundary conditions. α encodes the subband and the spin degrees of freedom

α = {E1/H1,±}. The Bessel functions above obey the following useful recursion relation

[87]
√
pZj±1(

√
pr) =

j

r
Zj(
√
pr)∓ ∂rZj(

√
pr). (2.13)

It enables us to eliminate all the differential parts from the coupled equations as(
∂2
r −

j2

r2
+

1

r
∂r

)
Zj(
√
pr) =

(
∂r +

j + 1

r

)(
∂r −

j

r

)
Zj(
√
pr) = −pZj(

√
pr). (2.14)

We have now only linear coupled equations, which can be compactly rewritten into a

matrix equation.
M −Bp− E Ai

√
p 0 −∆

−Ai√p −M +Bp− E ∆ 0

0 ∆ M −Bp− E Ai
√
p

−∆ 0 −Ai√p −M +Bp− E




ΨjE1+

ΨjH1+

ΨjE1−

ΨjH1−

 ≡ H̃~Ψ = 0.

(2.15)

Our solutions appear when the determinant of the matrix vanishes, det(H̃) = 0. It yields

the following characteristic polynomial:

[
(M −Bp)2 − E2 + ∆2 + A2p

]2 − 4∆2A2p = 0 . (2.16)

The four roots of this quartic polynomial equation are labeled pn, n = 1, 2, 3, 4. Note

that if ∆ = 0, H̃ is now formed of two identical blocks and pn is doubly degenerate. The

closed form of these roots can be expressed as functions of A, B, M , ∆ and E, but we

omit them here as the expressions are very lengthy.

One of the boundary condition should be that the wave function should not diverge

at r = 0. This constraint requires a Bessel function of the first kind, labeled Jj(
√
pr).

The full wave function can be expressed as

Ψj(r, φ) =
∑
n

Ane
ijφ



i
(M −Bpn)2 − E2 + ∆2 − A2pn

2A
√
pn(M −Bpn − E)

Jj+1/2(
√
pnr)e

iφ/2

Jj−1/2(
√
pnr)e

−iφ/2

(M −Bpn)2 − E2 −∆2 + A2pn
2∆(M −Bpn − E)

Jj−1/2(
√
pnr)e

−iφ/2

i
(M −Bpn)2 − E2 + ∆2 + A2pn

2∆A
√
pn

Jj+1/2(
√
pnr)e

iφ/2


, (2.17)

where An are constant parameters to ensure the normalization of the wave function. The
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Spin texture of generic helical edge states

TI regime is respected by the chosen values of the parameters A, B, M and ∆. Moreover,

E should be smaller than M to have solutions for the edge states. The second boundary

condition enables us to find the energy: the wave function should vanish at the boundary

between the TI disk and the vacuum Ψj(r = R, φ) = 0. This condition on the wave

function leads to a null determinant for the following coefficient matrix:

det


ζ1Jj+1/2(

√
p1R) ζ2Jj+1/2(

√
p2R) ζ3Jj+1/2(

√
p3R) ζ4Jj+1/2(

√
p4R)

Jj−1/2(
√
p1R) Jj−1/2(

√
p2R) Jj−1/2(

√
p3R) Jj−1/2(

√
p4R)

η1Jj−1/2(
√
p1R) η2Jj−1/2(

√
p2R) η3Jj−1/2(

√
p3R) η4Jj−1/2(

√
p4R)

ξ1Jj+1/2(
√
p1R) ξ2Jj+1/2(

√
p2R) ξ3Jj+1/2(

√
p3R) ξ4Jj+1/2(

√
p4R)

 = 0,

(2.18)

where the coefficients are

ζn =
(M −Bpn)2 − E2 + ∆2 − A2pn√

pn(M −Bpn − E)
, (2.19)

ηn =
(M −Bpn)2 − E2 −∆2 + A2pn

(M −Bpn − E)
, (2.20)

ξn =
(M −Bpn)2 − E2 + ∆2 + A2pn√

pn
. (2.21)

By substituting numerical values of the parameters A, B, M and ∆, and choosing a disk

size R as well as the value of the total angular momentum j, the determinant (2.18)

gives only two solutions for the energy: one for +E and one for −E. This is in perfect

agreement with the particle-hole symmetry of the Hamiltonian. Using this energy and the

numerical values of the parameters, we are able to plot the wave function. If the radius

of the disk R increases, there are more energy levels with higher total angular momentum

j in the bulk gap.

We plot the energy spectrum for several disk sizes R, two examples can be seen in

Fig. 2.7. Each energy is doubly degenerate, as required by Kramers’ theorem. For clarity,

we focused only on clockwise-moving edge states in Fig. 2.7, where the highest energy level

is labeled by j = −13/2 and the lowest one is labeled by j = 13/2. The counterclockwise

edge states have the same spectrum, except that the value of the total angular momentum

has the opposite sign. We observe that the levels are determined by the value of the energy

as well as the value of the total angular momentum. When the disk is large enough, we

find that the energy levels seem to increase with the same energy spacing. In contrast

to an antidot [84], there is a minimal radius R where edge states start to appear. This

behavior is reasonable, when the size of the disk is too small (of the order of the edge state

penetration length) the edge states can overlap and gap out [88]. When the bulk inversion

asymmetry is increased, we observe that the energy levels appear for smaller radii and
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2.2. Extracting the spin texture in a real space: continuum disks

Figure 2.7: Energy spectrum of the clockwise-moving edge states as a function of R, for
the parameters: A = 5, B = −1 and M = −2. In panel (a), we set ∆ = 0.5, whereas in
panel (b), we have ∆ = 0.

the energy spacing is also smaller, as shown in Fig. 2.7. To check the consistency of our

results, we also recovered the limit ∆ → 0 shown in panel (b) of Fig. 2.7, in agreement

what is expressed in Ref. [83].

Now that the energy level spectra are fully understood, we can focus on the wave

functions and on their spatial distribution. The radial density |Ψj(r, φ = 0)|2 is directly

obtained from Eq. (2.17), where the normalization is taken into account. Due to rotational

symmetry, the value of the angle can be set to φ = 0, since there is no preferred angular

direction. The wave function should also vanish at the boundary and should be rather

localized at the edge. The radial density for a disk size of R = 30 can be observed on

Fig. 2.7. Surprisingly it has a rather significant penetration length. Note that we plot only

the clockwise-moving wave functions, because the counterclockwise-moving eigenfunctions

will be similar to those plotted. The only difference will come from the change of sign of

the total angular momentum (j → −j).

It is also possible to plot the spin-resolved radial densities, where the spin-resolved

clockwise-moving eigenfunctions are shown in Fig. 2.9. The major component (on panel

(a) in Fig. 2.9) of the wave function is the up-spin sector, whereas the minor component

(on panel (b) in Fig. 2.9) is the down-spin sector. In the case of counterclockwise-moving

edge states, the sign of the total angular momentum will be switched. Moreover, the

major/minor component will switch spins, i.e. the major or minor component will now

be the down-spin or the up-spin sector respectively. We can see that the total radial

density is mainly composed by the majority spin density: there are 2 orders of magnitude

in comparison with the minority spin density. Nevertheless, the latter penetrates deeper

into the disk and its shape is rather different compared to the majority spin, as there is
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Spin texture of generic helical edge states

Figure 2.8: Probability density of the clockwise-moving edge states as a function of r for
a disk size R = 30. The parameters are A = 5, B = −1, M = −2 and ∆ = 0.5.

Figure 2.9: Spin-resolved probability densities of the clockwise-moving edge states as a
function of r for a disk size R = 30. The parameters are A = 5, B = −1, M = −2 and
∆ = 0.5.

a second maximum situated more deeply in the TI. The effect of this second maximum

on the total density is still weak (there is a very small broadening seen in Fig. 2.8). We

will see in the next section that this behavior appears to be generic and is not due to any

approximation or to the model.

We now have enough knowledge about the wave function and how to classify it com-

pletely. We know which wave function is clockwise- or counterclockwise-moving. We are

thus able to compute the spin texture for different values of the total angular momentum

j. An example can be seen in Fig. 2.10. As we can see, the structure is very similar

to what we observed for the nanoribbon in Figs. 2.1, 2.2 and 2.3. We assume that the

spin texture should follow a structure very close to Eq. (2.3): we have rotation invariance

instead of translation invariance, therefore the momentum should be replaced by the total

angular momentum. The edge is parametrized by the angular direction and the rotation
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2.2. Extracting the spin texture in a real space: continuum disks

Figure 2.10: The spin texture of the continuous BHZ Hamiltonian including BIA for a
disk of R=50. We set A = 5, B = −1, M = −2 and ∆ = 0.5. In panel (a), we have the
three-dimensional plot and in panel (b), the corresponding contour plot.

of the spin axis is characterized by some parameter j−2
0 . By analogy, we can make the

ansatz

K(j1, j2) =

∣∣∣∣∫ drψ†−,j2(r, φ0)ψ+,j1(r, φ0)

∣∣∣∣ ≈ j−2
0

∣∣j2
1 − j2

2

∣∣ , (2.22)

where ψ+,j1(r, φ0) is the clockwise-moving eigenstate with a total angular momentum of j1

and ψ−,j2(r, φ0) is the counterclockwise-moving eigenstate with a total angular momentum

of j2. We perform the integral in the radial direction and without loss of generality, we

set φ0 = 0. We observe that the diagonal terms of the spin texture vanish. If j1 = j2, the

eigenstates are orthogonal by construction. If j1 = −j2, the eigenstates are TR-partners

and should be orthogonal following Kramers’ theorem.

Finally, we investigate the spin texture dependence on the BIA parameter, as we did

for the nanoribbon. We notice that the parameter j−2
0 is dependent upon the size of the

disk R. When the spin texture parameter is multiplied by R2, the dependence disappears

as can be seen in Fig. 2.11. Moreover, the engineering dimension of j−2
0 R2 is similar to

the one of k−2
0 . Nonetheless, the dependence on ∆ seems to differ from the one for a

nanoribbon as written in Eq. (2.4) (and shown with dashed lines in Fig. 2.11). It appears

to scale as

j−2
0 R2 ∝ |∆|3/2. (2.23)

Even if the two systems are described by the same model, the geometry is rather different.

More importantly, the nanoribbon is based on a tight-binding model regularized on a

lattice, whereas the disk relies on a continuous model. All these points make it surprising

that the two parameters agree so well.
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Figure 2.11: Dependence of j−2
0 R2 on BIA ∆ for disks of, R=30, R=50 and R=70. The

dashed lines are the results of Fig. 2.4 to enables us to compare the two approaches. We
had for the disks and for the nanoribbons A = 5, B = −1 and M = −2.

2.3 Extracting the spin texture in real space: dis-

crete disks

Up to now, there was always a symmetry in the model to describe the spin texture:

either translation symmetry or rotation symmetry. Nonetheless, it is possible to observe

a non-trivial spin texture in a more general case, where we do not have any spatial

symmetry. We study the tight-binding version of the KM Hamiltonian (1.10) for disks

and flakes (rectangles). We encode the position of the sites during the construction of

the Hamiltonian. We can exactly diagonalize it and directly get the energies and the

eigenfunctions. An example of the energy spectrum and the density of states can be seen

in Fig. 2.12. We observe an asymmetry in the density of states, due to Rashba SOC. In

the bulk gap, the states are doubly degenerate and are nearly at equal spacing (a feature

that we also observed in our continuum disks). At E/t = ±1, we observe some traces of

a Van Hove singularity, that is usually seen in graphene [89].

If we select one energy level located inside the gap, the eigenfunction can be directly

accessed and its density distribution over the lattice is expressed as

ρσ(i, j) = |Ψσ(i, j)|2, (2.24)

where σ stands for the spin-sector (the wave function at site (i, j) has always two com-

ponents: one for spin-up and the other one for spin-down). One example of the wave

function is shown in Fig. 2.13. The mixing is done by Rashba SOC and the minority spin

density is again about two orders of magnitude smaller than the majority spin density.

The states are indeed localized at the edge, but the minority spin density has the same

behavior as in the continuum disk: it penetrates slightly deeper into the bulk.
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Figure 2.12: Energy levels (a) and density of states (b) for the KM model in the case of
a rectangular flake of N = 400 sites (20× 20 sites) for t = 1, λSO = 0.2 and λR,1 = 0.1.

Figure 2.13: Example of a spin-resolved density distribution for the KM model in the case
of a rectangular flake of N = 800 sites (20× 40 sites) for t = 1, λSO = 0.2 and λR,1 = 0.1.
The size of the dots is proportional to the density on the site. Panel (a) shows the density
distribution for the majority spin whereas panel (b) shows the density distribution for the
minority spin. Note that the minority spin was amplified by a factor of 20.
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Spin texture of generic helical edge states

Figure 2.14: Example of a “disk” (having a hexagonal shape). We define the radius “r”
with the different color. The set Λ of sites, which are highlighted in yellow, are those used
to compute the spin texture as described in the text.

We will now consider the tight-binding disks as shown on Fig. 2.14. They are made

in a hexagonal shape, as it is convenient to use the symmetries of the lattice. The

rotational symmetry is lost, but we remain relatively close to a circle (we still have a 6-

fold symmetry). The radius is defined such that all the sites on the same “rings” (defined

by the color coding in Fig. 2.14) are considered at the same radius, as their distance from

the center is approximately the same.

In the same way that we set φ0 = 0 for the continuum disks, we set here φ0 = 0

and only consider the sites on the highlighted yellow path in Fig. 2.14 to contribute to

the radial density. In this manner, the outer sites do not have more weight compared

to the inner sites, just because there are more outer sites than inner sites. Such radial

density can also be spin-resolved and an example is shown on Fig. 2.15. The majority

spin will be spin-up for clockwise-moving or spin-down for counterclockwise moving edge

states, whereas the minority spin will be spin-down for clockwise-moving or spin-up for

counterclockwise-moving edge states. Note that the lattice is finite and the maximal radius

is relatively small. That is the reason why the wave functions appear less smooth than

in Fig. 2.8. Nonetheless, their behavior is quite similar to what we observed previously.

The majority spin is quite localized on the outermost sites and is the main component

of the density. The minority spin penetrates deeper into the bulk, in perfect agreement

with the continuum disks.

With the wave functions, we can compute the overlap. In analogy to the continuum

disks and the nanoribbons, we compute the overlap along the highlighted path in Fig. 2.14

(the direction where φ0 ' 0). We cannot directly apply the formula (2.22): the total

angular momentum cannot be defined in our tight-binding disks, because the continuous
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2.3. Extracting the spin texture in real space: discrete disks

Figure 2.15: Representative examples of the spin-resolved densities with t = 1, λSO = 0.2
and λR,1 = 0.1. The densities are extracted along the path highlighted in Fig. 2.14. In
panel (a), we have the majority spin and in panel (b), the minority spin.

rotational symmetry is not preserved. Moreover, if we consider the rectangular flakes

presented above, we are even further from a rotationally symmetric arrangement. The

characterizing quantity for the edge states is still the energy. As we observed in Fig. 2.12,

the energy levels of the edge states are well defined, each being doubly degenerate with

one edge state moving clockwise and the other one moving counterclockwise. Thus we

can generalize our spin texture expression with labeling the edge states with their energy

such that

K(E1, E2) =

∣∣∣∣∣∣
∑

(i,j)∈Λ

ψ†−,E2
(i, j)ψ+,E1(i, j)

∣∣∣∣∣∣ ≈ ε−2
0

∣∣E2
1 − E2

2

∣∣ , (2.25)

where Λ is the highlighted path as shown in Fig. 2.14 and ψ±,Ek(i, j) is the wave function

moving clockwise (counterclockwise) at the energy Ek at the site (i, j) on the lattice. Such

a spin texture is plotted in Fig 2.16. We see the same similar features as in the previous

setups: the diagonals vanish and the same hyperbolic shape is observed, agreeing with

the low energy expression.

The spin texture is now characterized by ε−2
0 . It has the same engineering dimension

as j−2
0 , therefore if we would like to compare with k−2

0 we also need to multiply all the

extracted data by R2. We can extract ε−2
0 for different disk sizes and different (Rashba)

SOCs. The dependence should be the same as presented in Eq. (2.5), when it is properly

rescaled. The results are shown on Fig. 2.17, where they agree well with the previous data

from Fig. 2.5 (red dashed line). Note that the data of the nanoribbon had to be rescaled

by a factor of 3, because the translation vector was considered as the unit vector, such

that the Brillouin zone spanned from 0 to 2π. In the tight-binding disks, the distance
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Spin texture of generic helical edge states

Figure 2.16: The spin texture of the tight-binding KM Hamiltonian for a disk of R=15
(1350 lattice sites). We set t = 1, λSO = 0.2 and λR,1 = 0.05. In panel (a), we have the
three-dimensional plot and in panel (b), the corresponding contour plot.

between unit cells is
√

3. As the spin texture scales as the momentum squared at low

energy, we need to multiply it by a factor of 3.

It is possible to argue that the shape of the hexagonal disks is still close to the one of

the continuum disks, that it is just the discrete version. The correspondence is therefore

not surprising. Nonetheless, we also extracted the spin texture on a rectangular flake as

shown in Fig. 2.18. The highlighted path is again the sites where the spin structure was

extracted and we observe no qualitative difference with the discrete disks. This enables

us to conclude that the spin texture will be observed for any generic helical edge states

with broken spin axis symmetry, independently of the considered model and of the chosen

geometry.

2.3.1 Spectroscopic aspect of the spin texture

As the spin texture can be found in real space, independently of the considered geo-

metry, this means that the spin texture can be extracted locally. We noticed that it was

sufficient to sum all the contribution coming from the highlighted yellow path in Figs. 2.14

and 2.18. The notion of edge states suggests that the information should be located at

the outermost sites, näıvely at the outermost site. The numerical evidence (see Figs. 2.13

and 2.15) indicates that indeed the outermost sites support most of the wave function.

We could imagine that in an idealized case, the spin texture could be extracted on a single

site using spectroscopic energy-resolved measurements. Thus, we need to understand how

many sites from the edges are involved to be able to observe a non-trivial spin texture.
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2.3. Extracting the spin texture in real space: discrete disks

Figure 2.17: Dependence of ε−2
0 R2 on the intrinsic SOC (a) and Rashba SOC (b) for disks

of R=10 (600 lattice sites), R=12 (864 lattice sites) and R=15 (1350 lattice sites). We
set t = 1. The dashed line in (a) and (b) corresponds to k−2

0 from Fig. 2.5, which has
been rescaled by a factor 3 (see text for details).

Figure 2.18: Example of a rectangular flake, the set of highlighted sites are those used to
compute the spin texture as described in the text.
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Spin texture of generic helical edge states

Figure 2.19: The partial spin texture of the tight-binding KM Hamiltonian for a disk of
R=15 (1350 lattice sites). We only measure the overlap between the wave function for
the n = 1, . . . , 6 outermost sites. Panel (a) corresponds to the outermost site, (b) to the
two outermost sites, (c) to the three outermost sites, (d) to the four outermost sites, (e)
to the five outermost sites and (f) to the six outermost sites. We set t = 1, λSO = 0.2 and
λR,1 = 0.05.

We slightly modify Eq. (2.25) in the following manner

K(E1, E2) =

∣∣∣∣∣∣
∑

(i,j)∈Λn

ψ†−,E2
(i, j)ψ+,E1(i, j)

∣∣∣∣∣∣ , (2.26)

where Λn is the subset of the n outermost sites from the set Λ highlighted in yellow in

Fig. 2.14. For example, Λ1 corresponds to the outermost site of Λ, Λ2 corresponds to the

two outermost sites of Λ and so on. We can see the resulting depiction in Fig. 2.19, where

we used a disk of size R = 15 (1350 lattice sites), which is relatively small. We observe

that the non-trivial spin texture starts to emerge at n = 4 and is very close to the total

one at n = 6 (i.e. the one plotted in Fig. 2.16). In comparison to experimental devices,

the disk modeled here is several orders of magnitude smaller. We could imagine that in

the experimental cases, it is just necessary to probe the two or three outermost sites to

get the full spin texture. The spectroscopic measurements would be a direct way to probe

the spin texture.
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3 | Transport and spectroscopic

measurements of the spin

texture

We managed in the previous chapter to characterize the non-trivial spin texture in

several geometries, even when no spatial symmetry was present. We can now use this

knowledge to extract some additional information in a transport setup and spectrosco-

pically investigate the spin texture. Investigating transport properties is reasonable as

most of the experimental setups for proving the existence of TIs and edge states are done

within transport experiments as described in Sec. 1.4. To be able to do some transport

and spectroscopic measurements, we studied a TI Hall bar with an embedded antidot (i.e.

a hole in the middle of the Hall bar). We have then two quantum point contacts between

the antidot and the border of the Hall bar, where the edge states can tunnel onto the

antidot and propagate around the circumference of the hole.

This kind of setup has been investigated for a long time in the context of the IQHE [90–

93]. Antidot systems were also studied in two-dimensional TIs to produce spin-polarized

currents [94], nonlinear thermoelectric effects [95, 96], entanglement [97], or Kondo physics

[98–100]. Quantum percolation was induced in TI nanorribons and Hall bars by the bound

states of multiple antidots [101]. As antidots can be small, the confinement of the edge

states is then important and the charging energy induced by Coulomb interaction might

not be negligible. From a technological point of view, antidots can be engineered by

lithographically etching Hall bars. If the TI is made of an InAs/GaSb heterostructure,

the antidot can be created by locally gating the central region to the trivial regime. Some

of the results presented in this chapter were already published in Ref. [80].

3.1 Transport model

The model we consider is sketched in Fig. 3.1. We have three pairs of helical edge

states: one is located around the antidot (d), two pairs at the upper (U) and at the lower
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Transport and spectroscopic measurements of the spin texture

(L) edges of the Hall bar. The tunneling regions between the outer edges and the antidot

appear when the wave functions of the edge states overlap. The total Hamiltonian can

written as

H = HU +HL +Hd +HdU +HdL, (3.1)

where HU(L) is the Dirac Hamiltonian describing the upper (lower) edge states, Hd is the

Hamiltonian representing the edge channels of the antidot, and HdU(dL) is the tunneling

Hamiltonian between the upper (lower) edge and the antidot. The Hamiltonian of the

upper and lower edges given by

Hs = −isvF
∑
α=±

α

∫ l/2

−l/2
dxΨ†sα(x)∂xΨsα(x), (3.2)

where s = U,L ≡ +,− and α = ± is the chirality of the edge state. vF is the Fermi

velocity and l is the length of the Hall bar. We will mostly consider l→∞, therefore the

edge states on the outer edges will be considered as continuous. This is not the case for the

antidot: the energy levels are discrete and are characterized by the radius R of the antidot,

leading to an energy spacing of ∆E ≈ vF/R. If the axial spin symmetry is not broken,

the chiral direction will also correspond to the spin axis projection: the spin-up states will

propagate along the upper (lower) edge to the right (left) and vice versa for the spin-down

states. However, we are not interested in this limit, but in the more general scheme of

generic helical edge states. To do so, we need to go to momentum space, where it is clear,

as shown in Secs. 1.5 and 2.1, how to relate the chiral and the spin basis. The operators

in momentum space are written for the chiral basis as csαk =
∫
dxe−ikxΨsα(x)/

√
l, where

α = ± and for the spin basis as csσk =
∫
dxe−ikxΨsσ(x)/

√
l where σ =↑, ↓. Using the form

of Bk as given in Eq. (1.32), we are able to relate the two bases. Note that the rotation

on the two edges are not necessarily identical and are characterized by the parameters

θUk and θLk.

The antidot Hamiltonian is very similar to those of the outer edges

Hd = −ivF
∑
α=±

α

∫ 2πR

0

drΨ†dα(r)∂rΨdα(r) + E(n). (3.3)

As we have to consider the confinement of the electron on the antidot through the charging

energy, we have an additional term

E(n) =
Ec
2

(
n− eVg

Ec

)2

, (3.4)

where Vg is the gate voltage, Ec is the Coulomb energy and n =
∑

α

∫ 2πR

0
Ψ†dα(r)Ψdα(r)
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3.1. Transport model

Figure 3.1: Sketch of the model. The light gray area is the QSH bar, where in its middle
an antidot with a radius R is embedded. The leads are symbolized by the dark gray areas.
The tunnelings point contacts (black dashed lines) are located at x = 0, r = 0 and x = 0,
r = πR. The chirality of the edge states is either ” + ” (red color) or ”− ” (green color).

is the number operator on the antidot. The charging energy varies with the number

of electrons on the antidot as well as with the gate voltage applied on it. The wave

functions are not eigenstates of the spin operator, but they remain chiral, propagating

clockwise/counterclockwise around the antidot. As we saw in Sec. 2.2, we can replace

the momentum by the angular momentum to describe the spin texture. By analogy, we

can relate the chiral basis dαj =
∫
dre−ijr/RΨ†dα(r)/

√
2πR, with α = ± to the spin basis

dσj =
∫
dre−ijr/RΨ†dσ(r)/

√
2πR, with σ =↑, ↓ using the following rotation matrix

B̃j =

(
cos(θj) − sin(θj)

sin(θj) cos(θj)

)
. (3.5)

The tunneling processes occur for the upper edge near x = 0 and r = 0 ≡ rU and

for the lower edge x = 0 and r = πR ≡ rL as shown in Fig. 3.1. We consider the most

general form of the tunneling Hamiltonian containing spin-preserving and spin-flipping

terms [102]

Hds =
∑
σσ′

∫
dxdr

[
Ψ†sσ(x)γsσσ′(x, r)Ψdσ′(rs + sr) + h.c.

]
, (3.6)

where s = U,L ≡ +,− and σ, σ′ = {↑, ↓}. We can notice that the Hall bar has a reflection

symmetry around the x-axis: (x, y) → (x,−y) and (px, py) → (px,−py). Since spin has

the same structure as the angular momentum, such a reflection symmetry leads to the

transformation of σz → −σz. This means that the wave functions must transform as

ΨUσ(x) → ΨLσ̄(x) and Ψdσ(r) → Ψdσ̄(πR − r). Note that HdU +HdL remains invariant

under this symmetry, which leads to the following equivalences γUσσ′ = γLσ̄σ̄′ . It enables us
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Transport and spectroscopic measurements of the spin texture

to eliminate the tunneling coefficient from the antidot to the lower edge and we define

γσσ′ = γUσσ′ . Moreover, the tunneling Hamiltonian is assumed to preserve TR-symmetry,

this symmetry acts locally in space on the edge states Ψsσ(x) → σΨsσ̄(x), where here

s = {U,L, d} and σ = {↑, ↓} = +,−. In addition to the behavior of the wave function,

the tunneling amplitudes also respect TR-symmetry: γ↑↑ = γ↓↓ and γ↑↓ = −γ↓↑, such that

we define only the spin-preserving amplitude γsp ≡ γ↑↑ and the spin-flipping amplitude

γsf ≡ γ↑↓ [103, 104]. We can rewrite the Hamiltonian now as

Hds =
∑
σ

∫
dxdr

[
Ψ†sσ(x)γsc(x, r)Ψdσ(rs + sr) + sσΨ†sσ(x)γsf(x, r)Ψdσ̄(rs + sr) + h.c.

]
.

(3.7)

Note that the symmetry used here is reflection symmetry and not inversion symmetry

(x, y)→ (−x,−y). We will see later that inversion symmetry is not preserved in the KM

model, Eq. (1.10), due to the Rashba SOC. Rashba SOC indeed appears at the interface

due to the lack of inversion symmetry, see Sec. 1.3.

The tunneling Hamiltonian is currently expressed in terms of spin eigenstates. Ho-

wever, we would like to express it in the chiral eigenstate basis. We Fourier transform

our tunneling Hamiltonian into momentum and angular momentum space, and use the

rotation matrices described in Eqs. (1.32) and (3.5). It becomes

Hds =
1√

2πRl

∑
σ

∑
k,j

∑
αα′

[
eijrs/Rγ̃sp(k, sj)(B†s,k)

ασB̃σα′

j c†sαkdα′j

+ eijrs/Rγ̃sf(k, sj)(B
†
s,k)

ασB̃σ̄α′

j sσc†sαkdα′j + h.c.
]
.

(3.8)

To simplify the above expression, we assume that the Fourier transformed tunneling am-

plitudes γ̃{sp,sf}(k, j) are slow-varying functions of k and j. We can justify this assumption

when the tunneling region can be considered to be small compared to the Fermi wave-

length. This is the case when the temperature and the bias voltage are small compared

to vFk0{U,L}. We are then able to replace the (angular) momentum dependent tunnelings

as well as the (angular) momentum rotation matrices by their values at the Fermi energy

such that

γT cos(θT ) = γ̃sp(kF , jF )

γT sin(θT ) = γ̃sf(kF , jF )

B̃ = B̃jF

Bs = Bs,kF for s ∈ {U,L},

(3.9)

where kF = µ/vF and jF = µR/vF are evaluated at the chemical potential µ. The

ratio between the tunneling amplitudes for spin-preserving and spin-flipping tunnelings
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3.2. Probing the spin texture with a non-interacting antidot

is defined as θT , such that θT = tan−1(γ̃sp(kF , jF )/γ̃sf(kF , jF )). If we Fourier transform

back to real space, we get

Hds = γT
∑
αα′

Ψ†sα(0)φsαα′Ψdα′(rs) + h.c.,

φsαα′ =
∑
σ

(B†s)
ασ
(

cos θT B̃
σα′

+ sσ sin θT B̃
σ̄α′
)
.

(3.10)

The Hamiltonian H is now fully described in terms of chiral eigenstates. We can proceed

to evaluate the transport properties of this Hamiltonian.

3.2 Probing the spin texture with a non-interacting

antidot

We first investigate the transport properties without considering the interaction be-

tween the electrons using the scattering matrix formalism [105]. To evaluate the scat-

tering matrix, we compute the Heisenberg equations of motion i∂tΨsα = [Ψsα,H] and

i∂tΨdα = [Ψdα,H], where H is the full Hamiltonian written in Eq. (3.1). The wave

functions are plane-waves

ΨU± =
e−iµt√
2πvF

a1(b2)e±ikF x x < 0

b1(a2)e±ikF x x > 0
,

ΨL± =
e−iµt√
2πvF

a4(b3)e∓ikF x x < 0

b4(a3)e∓ikF x x > 0
,

(3.11)

for the states emerging from the contact i (with amplitude ai) and entering the contact j

(with amplitude bj), i, j = 1, ..., 4 as written in Fig. 3.1. The aim of this computation is

to find the scattering matrix Sij that relates the incoming to the outgoing states

bi =
∑
j

Sijaj. (3.12)

The details of the computation for obtaining the scattering matrix can be found in ap-

pendix A. We consider first when the chemical potential in the leads µ corresponds to

one of the energy levels of the antidot. From these results, we were able to generalize

it, when the antidot energy level does not coincide with chemical potential in the leads.

The full scattering matrix depends then on the chemical potential µ in the leads as well

as on difference in energy with the closest energy level in the antidot. It can therefore be
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Transport and spectroscopic measurements of the spin texture

expressed as

S =
1

(1 + Γ2) sinφ+ 2iΓ cosφ

×


0 (1− Γ2) sinφ 2iΓ sin Θ −2iΓ cos Θ

(1− Γ2) sinφ 0 −2iΓ cos Θ −2iΓ sin Θ

−2iΓ sin Θ −2iΓ cos Θ 0 (1− Γ2) sinφ

−2iΓ cos Θ 2iΓ sin Θ (1− Γ2) sinφ 0

 ,

(3.13)

where the dimensionless tunneling coefficient is defined as Γ = |γT |2/(4v2
F ). The chemical

potential sets the value of the phase in the scattering matrix φ = πRµ/vF and we define

the parameter Θ = θUkF − θLkF + 2θT . Landauer-Büttiker formalism [106–110] enables us

to evaluate from Eq. (3.13) the current at the ith contact

Ii =
G0

e

∑
j

∫ µ+eVi

µ+eVj

dE Tij(E), (3.14)

where the conductance quantum is G0 = e2/(2π). The transmission elements are given

by Tij = |Sij|2 and {Vj} are the bias potentials applied at the four contacts. Note that

the spin texture of the antidot does not influence the transport calculations, but that

transport measurements can be affected by the spin texture of the outer edges through

Θ. This means that if we can separately tune the spin textures on the lower and upper

edges, for example using an electric field gradient, current measurements can resolve them,

even without interactions. This is analogous to what was described for a tunnel junction

between two edges [81]. In the case of a homogeneous spin texture over the whole Hall

bar, i.e. θUkF = θLkF , we have Θ = 2θT . Therefore, the ratio between spin-preserving

and spin-flipping tunneling is the only determining quantity in the transport calculations.

We assume that we are at resonance, when the chemical potential corresponds to one

energy level of the antidot µ = vF j/R. In this case, the phase factor becomes φ = πj

and the electrons are fully transmitted across the antidot to the leads on the opposite

edge. If we are away from one of the eigenenergies of the antidot, we get a Lorentzian for

the transmission coefficient. This results in what we expect for transport measurements

across a quantum (anti)dot [111].

These analytical results are confirmed numerically using the python-based package

kwant [112], which is designed to perform quantum transport calculations using tight-

binding models. To investigate the spin texture, we studied mainly the KM model, such

as written in Eq. (1.10), but also the BHZ model with BIA, as in Eq. (1.27). We will only

consider numerically the homogeneous case when θUkF = θLkF .

Due to Rashba SOC, inversion symmetry (x, y) → (−x,−y) is not preserved in the
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3.2. Probing the spin texture with a non-interacting antidot

KM model [113]. Spin is a pseudovector, so it is unaffected by inversion. However,

the sublattices (a & b) are exchanged, but the phase νij remains the same. Therefore,

inversion symmetry leaves the kinetic and the intrinsic SOC terms invariant. Rashba

SOC gets a minus sign under inversion, which ensures that inversion symmetry is not a

symmetry of the full Hamiltonian. On the other hand, reflection symmetry around the x

axis (x, y) → (x,−y) is preserved by the full Hamiltonian. The y and z components of

the spin are changing signs and the sublattices are also exchanged. Therefore, the kinetic

part is invariant. For the intrinsic SOC part, the phase νij changes sign, which implies

preservation of the reflection symmetry. For the Rashba SOC part, the y component

of the lattice vectors switches sign, whereas the x component does not switch. Taking

into account the changes of sign for the spin, we observe that the whole Hamiltonian is

invariant. It confirms that the symmetry to consider for the Hall bar is the reflection

symmetry.

Numerically, we are able to represent the finite-size lattice of the Hall bar connected

to the four leads as shown in Fig. 3.2. We have chosen the antidot to be hexagonal, in

order to avoid dangling bonds. The numerical simulation enables us to have access to the

full scattering matrix and we can focus, without loss of generality, on electrons originating

from lead 1. As the lattice has a finite size, there are additional pairs of edge states along

the vertical edges. These channels are fully ballistic as they are further away from the

antidot, and so are not able to tunnel to it, making them easy to identify. The spin-

resolved density is shown in Fig. 3.2 where the weight of each spin sector is characterized

by the size of the points and we are investigating their propagation around the antidot

and along the edges for small Rashba SOC (θskF � 1).

Spin flips at the tunneling contacts are enabled by Rashba SOC only. Its amplitude

can be quantified by the taken values of the transmission probabilities as we will explain

below. Without loss of generality as the four leads are equivalent, we can compute the

transmission probability from lead 1 to lead i Ti1 evaluated at a given potential µ (ex-

cept T11, which is always 0, as backscattering is forbidden). The different transmission

probabilities are given in Fig. 3.3 for different strengths of the Rasbha SOC. We find in

Fig. 3.3(a) that the transmission T21 disappears each time the chemical potential corre-

sponds to an energy level of the antidot. This agrees with the results obtained analytically

in Eqs. (3.13), (A.7) and (A.11) (i.e. when φ = πj). As T11 is always zero, the electrons

are fully transmitted across the antidot to the opposite sites. If we focus now on the leads

on the opposite side, we can first conclude that T31 is only present when Rashba SOC

is turned on (i.e. spin flips are now enabled) as shown in Fig. 3.3(b). Fig 3.3(c) shows

that in the absence of Rashba SOC, the electrons are only transmitted to lead 4, when

the chemical potential reaches one of the energy levels of the antidot. This is in perfect
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Transport and spectroscopic measurements of the spin texture

40 20 0 20 4

Figure 3.2: Representative example of the spin-resolved densities close to resonance, when
they originate from lead 1. On panel (a), we have the propagation for the spin-up sector
of the density and on panel (b), we have the propagation for the spin-down sector of the
density. The lattice is 60 unit cells long and 34 unit cells wide and the leads are 10 unit
cells wide. We used the following parameters a = 1, t = 1, λSO = 0.2, λR,1 = 0.1 and
µ = 0.157.

agreement from our analytical results. Finally, we can note that the transmission probabi-

lity is symmetric with respect to the value of the chemical potential, i.e. Tij(µ) = Tij(−µ),

when there is no Rashba SOC. Once Rashba SOC is turned on, we lose this symmetry as

we can see in the different panels of Fig. 3.3. Moreover, we already noticed the breaking

of the particle-hole symmetry due to Rashba SOC in Chap. 2.

We observe that the shape of the peaks in the transmission probabilities are following

a Lorentzian near resonance. This was also predicted analytically, but their widths are

energy-dependent. With the height of the peaks for the extracted T31(µ) or T41(µ), θT (µ)

can be evaluated numerically, as shown in Fig. 3.4(a). γT (µ) can be similarly evaluated

using the width of the peaks for T31(µ) or T41(µ). The transmission probabilities in Fig. 3.3

show that that θT (µ) and γT (µ) evolve slowly enough with respect to the antidot energy

level spacing for considering them constant at each peak. Moreover, the peaks follow

well the Lorentzian shape. Therefore, our numerical results enable us to estimate θT (µ)

and γT (µ) as well as their dependence on the model parameters. The only unknown is

the Fermi velocity, which can be calculated via the band structure obtained in the semi-

infinite leads. The numerical simulations allow us to give estimates of all the variables

entering into the analytical model.

As stated before, the calculations were also performed for the BHZ model with BIA,
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3.2. Probing the spin texture with a non-interacting antidot

Figure 3.3: Transmission probabilites Ti1 computed from lead 1 to lead i as a function of
the chemical potential and for different values of the Rashba SOC. We have the trans-
mission to lead 2 in panel (a), lead 3 in panel (b), and lead 4 in panel (c). We used the
following parameters a = 1, t = 1 and λSO = 0.2.
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Figure 3.4: Evaluation of θT (µ) when the chemical potential corresponds to one of the
resonance energies. We evaluated it for the KM model (a) and for the BHZ model with
BIA (b). The white crosses are located at the resonances, where θT is extracted. We used
the following parameters a = 1, t = 1 and λSO = 0.2 for the KM model (a) and a = 1,
A = 3, B = −1, M = −2 and C = D = 0 for the BHZ model (b).

Eq. (1.27). The effect of BIA is quite similar to that of Rashba SOC in the KM model.

There is no major qualitative difference between the two models as one would expect.

The main difference comes from the fact that the BHZ model when BIA is also included

remains particle-hole symmetric as shown in Fig. 3.4(b).

We are also able to compute the (non)local resistance. Using Eq. (3.14) in the linear

regime (such that Tij is considered as constant in the bias window), we can compare the

analytic outcomes with our numerical simulations. Note that we consider the additional

purely ballistic channels along the edges from lead 1 to lead 4 (and vice versa) and from

lead 2 to lead 3 (and vice versa). These ballistic channels appear on Fig. 3.2. We find the

following transmission matrix

T =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

+
1

(1− Γ2)2 sin2 φ+ 4Γ2


0 (1− Γ2)

2
sin2 φ 4Γ2 sin2 Θ 4Γ2 cos2 Θ

(1− Γ2)
2

sin2 φ 0 4Γ2 cos2 Θ 4Γ2 sin2 Θ

4Γ2 sin2 Θ 4Γ2 cos2 Θ 0 (1− Γ2)
2

sin2 φ

4Γ2 cos2 Θ 4Γ2 sin2 Θ (1− Γ2)
2

sin2 φ 0

 .

(3.15)

To compute the (non)local resistance [105], we need to inverse the matrix relating the
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3.2. Probing the spin texture with a non-interacting antidot

current and the voltage.
I1

I2

I3

I4

 =G0


2 0 0 −1

0 2 −1 0

0 −1 2 0

−1 0 0 2



V1

V2

V3

V4

− G0

(1− Γ2)2 sin2 φ+ 4Γ2


0 (1− Γ2)

2
sin2 φ 4Γ2 sin2 Θ 4Γ2 cos2 Θ

(1− Γ2)
2

sin2 φ 0 4Γ2 cos2 Θ 4Γ2 sin2 Θ

4Γ2 sin2 Θ 4Γ2 cos2 Θ 0 (1− Γ2)
2

sin2 φ

4Γ2 cos2 Θ 4Γ2 sin2 Θ (1− Γ2)
2

sin2 φ 0



V1

V2

V3

V4


(3.16)

This matrix is singular (i.e. the determinant is zero), but we can eliminate one voltage by

setting it to zero, as the current is determined by the difference of voltages. One current

can be eliminated using Kirchhoff’s current law. This enables us to eliminate one row

and one column of the conductance matrix presented in Eq. (3.14), creating a new matrix

which is invertible.

I1

I2

I3

 =G0


2 − (1−Γ2)

2
sin2 φ

(1−Γ2)2 sin2 φ+4Γ2 − 4Γ2 sin2 Θ
(1−Γ2)2 sin2 φ+4Γ2

− (1−Γ2)
2

sin2 φ

(1−Γ2)2 sin2 φ+4Γ2 2 −1− 4Γ2 cos2 Θ
(1−Γ2)2 sin2 φ+4Γ2

− 4Γ2 sin2 Θ
(1−Γ2)2 sin2 φ+4Γ2 −1− 4Γ2 cos2 Θ

(1−Γ2)2 sin2 φ+4Γ2 2


V1

V2

V3


(3.17)

The resistance matrix R is then obtained by inverting the matrix above. For example, if

we would like to compute the resistance when the current is flowing from lead 1 to lead

4 and the voltage is biased between the same leads we have

R14,14 =
V1 − V4

I1

∣∣∣∣
I4=−I1,I2=I3

(3.18)

such that at resonance (φ = 0) and when the Hall bar is homogeneous (θUk = θLk), we

get

R14,14 = G−1
0

[
1

cos(4θT ) + 3
+

1

4

]
. (3.19)

The numerical outcome is shown on Fig. 3.5. We can distinguish the two limiting cases:

if the tunneling is entirely spin-preserving or enterily spin-flipping (θT = 0 or θT = π/2),

we get R14,14 = (2G0)−1, if the tunneling is equally composed of spin-preserving and spin-

flipping terms (θT = π/4), we have in this case R14,14 = 3/(4G0). The minima correspond

to the resonance energies, where their values are given by the value of θT (µ). If we are
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Figure 3.5: The resistance R14,14 with respect to the chemical potential µ. We used the
following parameters a = 1, t = 1, λSO = 0.2 and λR,1. The continuous (blue) line
corresponds to the numerical results from the tight-binding model. The dashed (green)
line corresponds to the fitting from the analytic model assuming that θT (µ) ≈ αµ2 + β.

further away from resonance, the resistance corresponds to the value of a normal Hall

bar without an antidot: R14,14 = 3/(4G0). We find that around µ = 0 there is a small

dip, deviating from the quantized value (it is already seen in the transmission plots of

Fig. 3.3). Its origin is in the finite length of the tunneling region, which tends to open a

small spectral gap [114, 115]. We are able to evaluate the behavior of θT (µ) at small µ

by fitting Eq. (3.19) (green dashed line), such that θT (µ)− θT (0) ∝ µ2.

To summarize this section, the spin texture is expressed explicitly by the difference

of spin texture between the two external edges if the Hall bar has an inhomogeneous

Rashba SOC. In the case of a homogeneous Rashba SOC, the spin texture is implicitly

expressed by θT . The numerical simulations enable us to evaluate the analytic parameters

as functions of the chemical potential and extract their dependence on the tight-binding

parameters.

3.3 Probing the spin texture with an interacting an-

tidot

To complete the discussion about spin texture in a Hall bar, we need to take into

account the interactions between the electrons and how they affect the transport cal-

culations. Due to the interactions, computing the transport quantities with scattering
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3.3. Probing the spin texture with an interacting antidot

matrices are no longer possible any more. Moreover, if the strength of the tunneling is

arbitrary, it is not possible to obtain an analytic and exact expression for the transport

quantities. Hence, only the lowest-order contributions to the tunneling current across the

antidot are computed. The first-order contribution gives sequential tunneling and the

second-order contribution gives cotunneling [116].

3.3.1 Sequential tunneling regime

In the sequential tunneling regime, we assume single-electron transfers between the

outer edges and the antidot to dominate the transport processes. This happens when the

dwell time τ is the largest time scale involved, 1/τ � {eVi, kBT}. In this regime we are

able to evaluate the transport quantities as a first-order perturbation expansion in |γT |2.

We make the assumption that the antidot has a ground state containing N electrons and

without loss of generality, N is even. In the leads, the initial state contains an electron in

one of the s leads. It has a certain momentum k and certain chirality α. We can describe

the total initial state, which includes the leads and the antidot as:

|isα(N, k)〉 = |N〉 ⊗ c†sαk|vac〉. (3.20)

The final state can be described as the state where an electron from the s edge with

momentum k and chirality α tunnels to the antidot with a final chirality α′ and an

angular momentum j. It can be expressed as

|f sαα′
(N + 1, k, j)〉 = d†α′jcsαk|i

sα(N, k)〉. (3.21)

We can then compute the transmission probability from the initial to the final state using

Fermi’s golden rule [116]

Γsαα
′

N+1,N(k, j) = 2π|〈f |Hd,s|i〉|2Fiδ(Ef − Ei), (3.22)

where the energy is conserved between the final and initial state Ef − Ei = E(N + 1)−
E(N) + εdα′(j) − εsα(k) and Fi is the Fermi function, which indicates the probability to

have the initial state |i〉. The eigenenergy of the antidot with angular momentum j and

chirality α′ is denoted εdα′(j), and εsα(k) is the eigenenergy of the s edge with chirality

α and momentum k. One transmission process can be seen for example in Fig. 3.6. We

obtain the total transmission probability by summing over all initial and final states

Γsαα
′

N+1,N =
∑
j,k

Γsαα
′

N+1,N(k, j). (3.23)
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Figure 3.6: Sketch of a possible sequential tunneling process from the upper edge to the
lower edge. There is an even number of electrons on the antidot, such that the electron
from the upper edge can tunnel to the antidot with an arbitrary chirality.

We can compute the sequential tunneling current using a rate-equation approach.

We can consider two occupation numbers only: N and N + 1 and the dc limit, these

approximations are valid as long as the charging energy is large enough to forbid other

occupation numbers. At the steady state, it yields the following recursion relation

ΓN+1,NP (N) = ΓN,N+1P (N + 1), (3.24)

where ΓN+1,N =
∑

s,α,α′ Γsαα
′

N+1,N and similarly for ΓN,N+1. As N is even, there is only one

possible occupation probability, namely P (N). However, the probability of an occupation

of N + 1 electrons is two-fold degenerate due to the two possible chiralities. Conservation

of probability then requires that P (N) + 2P (N + 1) = 1. With the help of the recursion

relation and the conservation of probability constraint, the occupation probabilities can

be computed in terms of the transition rates as

P (N) =
ΓN,N+1

ΓN,N+1 + 2ΓN+1,N

,

P (N + 1) =
ΓN+1,N

ΓN,N+1 + 2ΓN+1,N

.

(3.25)

The transitions between the N and the N + 1 occupations are only allowed near the

resonance condition ∆E(N + 1) ≡ E(N + 1)− E(N) = 0. This condition happens when

the gate voltage is tuned such that ng ≈ N + 1/2, with ng = eVg/Ec. Note that the

charging energy Ec also influences the occupation number. The total current can be

expressed in terms of probabilities and transition rates as

I = −e
[
P (N)ΓUN+1,N − P (N + 1)ΓUN,N+1

]
, (3.26)

where ΓUN+1,N =
∑

α,α′ ΓUαα
′

N+1,N and similarly for ΓUN,N+1. The current expression is still
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3.3. Probing the spin texture with an interacting antidot

complicated as it can involve, as many levels as can be found in the bias window. If

we restrict the width of the bias window sufficiently, there is only one energy level εd(j)

located near the chemical potential µ. We get the following current

I = −e2ΓT
πR

nF (εd(j)− µU)− nF (εd(j)− µL)

2 + [nF (εd(j)− µU) + nF (εd(j)− µL)]
, (3.27)

with ΓT = |γT |2/(2vF ) and nF (ε) is the Fermi-Dirac distribution. We set the chemical

potentials to µU = µ + eV/2 and µL = µ − eV/2, where V is the bias voltage between

upper and lower edges. At zero temperature and finite voltage, the current becomes

IT=0 = −2eΓT
3πR

. (3.28)

Whereas at finite temperature and at small voltage eV � kBT , the current in the linear

regime becomes

IT 6=0 = − 1

4kBT

ΓT
πR

e2V

1 + nF (ε̃d)

1

cosh2(ε̃d/(2kBT ))
, (3.29)

with ε̃d = εd(j)−µ. Note that these two different results are not contradicting, as the two

limits eV → 0 and kBT → 0 do not commute in the sequential tunneling regime [117].

The rate-equation approach assumes that the electrons relax to the ground state be-

tween two tunneling events so that we have two well separated time scales: the fast

relaxation time and the slow tunneling time. Nonetheless due to time-reversal symmetry,

we have either an initial state |N〉 or a twofold degenerate final state |N + 1〉. We are

not able to keep track of the chirality of the electrons in the antidot using this approach,

and then to compute chirality-resolved currents. Therefore, we are only able to compute

the total current I, which contains no information about the spin texture. We continue

to second order perturbation theory in order to explore coherent transport across the

antidot.

3.3.2 Cotunneling regime

If the bias window is chosen such that there is no energy level in it, the sequential

tunneling is forbidden. Still a current can be created through the antidot, via a virtual

state: this is what we call the cotunneling regime. A sketch of a possible process is shown

in Fig. 3.7. We will consider elastic cotunneling, i.e. the initial and the final states of

the antidot are the same. As the antidot has a discrete number of levels, such process

becomes more relevant in this regime, compared to the inelastic one [116].

The initial state |isα(N, k)〉 is similar to what we described in the sequential regime:
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Figure 3.7: Sketch of a possible cotunneling tunneling process from lead 1 to lead 4. The
antidot energy level is fully occupied. One electron of the antidot escape towards lead 4,
creating a virtual hole on the antidot. The final state is attained when the energy level
of the antidot is again filled by an electron originating from lead 1.

the antidot has N electrons and on the s edge, there is an electron with momentum k

and chirality α. Analogously, the final state |f s′α′
(N, k′)〉 has N electrons in the antidot

and an electron on the s′ edge with momentum k′ and chirality α′. The cotunneling rate

is defined as

Γi→f = 2πδ(Ef − Ei)Fi
∣∣∣∣〈f ∣∣∣∣Hd,L

1

Ei −H0

Hd,U +Hd,U
1

Ei −H0

Hd,L

∣∣∣∣ i〉∣∣∣∣2 , (3.30)

where H0 = HU +HL +Hd, and Ei (Ef ) is the initial (final) energy. Fi represents again

the Fermi distribution, which describes the probability to have the initial state |isα(N, k)〉.
Note that the electrons in the antidot N remain in the ground state in the initial and in

the final states.

To obtain the chirality-resolved cotunneling rates Γαα
′

U→L and Γαα
′

L→U , we need to sum

over all possible initial and final momenta. We need as well to sum over all angular

momenta and chiralities of the intermediate state in the antidot. With these chirality-

resolved cotunneling rates, we are able to express a chirality-resolved current

Iαα
′
= (−e)

[
Γαα

′

U→L − Γα
′α
L→U

]
. (3.31)

To connect these chirality-resolved currents with the ones described in the previous section

and in the setup in Fig. 3.1, we are able to identify I++ as the current flowing from lead

1 to lead 4, I+− the current flowing from lead 1 to lead 3, I−+ the current flowing from

lead 2 to lead 4, and I−− the current flowing from lead 2 to lead 3. The final results for

these currents are strongly influenced by the initial antidot occupation, i.e. if the antidot

has an even or an odd number of electrons.

We can start with an even occupation consisting of N electrons on the antidot. This

means that all the energy levels up to the chemical potential are doubly occupied, similarly
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to what is shown in Fig. 3.7. We get the following chirality-resolved tunnelings

Γαα
′

U→L = − eΓ2
T

2π3R2

∑
j

∫
dεnF (ε− µUα)[1− nF (ε− µLα′)]

cos2(2θT )δα′α + sin2(2θT )δᾱ′α

[ε− εd(j)−∆E]2
,

Γα
′α
L→U = − eΓ2

T

2π3R2

∑
j

∫
dεnF (ε− µLα′)[1− nF (ε− µUα)]

cos2(2θT )δαα′ + sin2(2θT )δᾱα′

[ε− εd(j)−∆E]2
,

(3.32)

where εd(j) + ∆E is the energy of the intermediate virtual state. If the intermediate

state is an additional hole at the jth energy level, then ∆E = ∆E(N). Otherwise, if

the intermediate state is an additional electron, then ∆E = ∆E(N + 1). The two cases

can be differentiated by the value of the gate voltage. Using Eq. (3.31), and taking into

account the properties of Fermi-Dirac distributions, we get

Iαα
′

N even = − eΓ2
T

2π3R2

∑
j

∫
dε[nF (ε− µUα)− nF (ε− µLα′)]

cos2(2θT )δα′α + sin2(2θT )δᾱ′α

[ε− εd(j)−∆E]2
.

(3.33)

In the linear response limit for the bias voltage, the Fermi functions can be expanded near

the chemical potential µ. Moreover, we consider that the j0th energy level of the antidot,

the one which is the closest to the chemical potential, contributes to the cotunneling

current and ∆E + εd(j0)� µU/L,α/α′ . The current then becomes

Iαα
′

N even ≈ −
e2(Vα − Vα′)Γ2

T

2π3R2

cos2(2θT )δα′α + sin2(2θT )δᾱ′α

[µ− εd(j0)−∆E]2
, (3.34)

where θT is estimated at the chemical potential µ. We observe that the spin texture is

again implicitly encoded in the value of θT . The effect of the interactions is to shift the

energy in the denominator by the Coulomb charging energy. By inverting the expression

for the current, we are able to extract the value of θT and its dependence on the current,

voltage and charging energy. It would then be in theory an easy manner to implicitly

compare the effect of interaction and its absence on the spin texture.

We can now calculate the current in the case of an odd occupation number. This

means that all the energy levels up to the chemical potential are doubly occupied, except

the last one. We will see that the behavior is quite different from the previous case. An

example of such a process can be seen in Fig. 3.8. We have to take into account now the

degeneracy of the antidot energy level in our computations. The initial state |isαβ(N, k)〉
includes the chirality β of the antidot and the final state |f s′α′β′

(N, k′)〉 also depends upon

the chirality β′ of the antidot [118]. The cotunneling rates are obtained using Eq. (3.30),

where Fi takes also into account the additional degree of freedom due to the chirality of
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Figure 3.8: Sketch of a possible cotunneling tunneling process occurring between lead
1 and lead 4. The antidot energy level is considered to be half occupied. Initially, one
electron from lead 1 tunnels to the half occupied antidot level. The final state is attained
when one of the electron tunnels towards lead 4.

the antidot. We get 16 different transition rates

ΓααββU→L =
Γ2
T

8π3R2

∑
j

∫
dεnF (ε− µUα)[1− nF (ε− µLα)]

[
cos(2θT ) + αβ cos(2θk − 2θj)

εd(j) + ∆E(N)− ε
+

cos(2θT )− αβ cos(2θk − 2θj)

ε− εd(j)−∆E(N + 1)

]2

,

(3.35)

Γααββ̄U→L =
Γ2
T

8π3R2

∑
j

∫
dεnF (ε− µUα)[1− nF (ε− µLα)]

[
sin(2θT ) + αβ sin(2θk − 2θj)

εd(j) + ∆E(N)− ε
+

sin(2θT ) + αβ sin(2θk − 2θj)

ε− εd(j)−∆E(N + 1)

]2

,

(3.36)

ΓαᾱββU→L =
Γ2
T

8π3R2

∑
j

∫
dεnF (ε− µUα)[1− nF (ε− µLᾱ)]

[
sin(2θT )− αβ sin(2θk − 2θj)

εd(j) + ∆E(N)− ε
+

sin(2θT ) + αβ sin(2θk − 2θj)

ε− εd(j)−∆E(N + 1)

]2

,

(3.37)

Γαᾱββ̄U→L =
Γ2
T

8π3R2

∑
j

∫
dεnF (ε− µUα)[1− nF (ε− µLᾱ)]

[
cos(2θT )− αβ cos(2θk − 2θj)

εd(j) + ∆E(N)− ε
+

cos(2θT )− αβ cos(2θk − 2θj)

ε− εd −∆E(N + 1)

]2

.

(3.38)

The other transition rates Γα
′αββ′

L→U are obtained by detailed balance. Moreover due to the
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chirality degree of freedom, the current is now

Iαα
′
= (−e)

∑
β,β′

[
Γαα

′ββ′

U→L − Γα
′αββ′

L→U

]
pβ. (3.39)

The probabilities pβ correspond to the probabilities of the highest level of the antidot to

have an electron with chirality β. The conservation of probability requires that p++p− = 1

and the rate equation gives

dpβ
dt

= −Γββ̄pβ + Γβ̄βpβ̄ = 0, (3.40)

with Γββ̄ =
∑

αα′ Γαα
′ββ̄

U→L + Γαα
′ββ̄

L→U determining them. If we can compute the tunneling

rates at the chosen chemical potentials, we are able to evaluate the cotunneling currents.

We will look for two different chemical potential configurations. If we start with having

a difference of voltage between the upper and the lower leads, we get the following chemical

potentials: µU+ = µU− = µ+ eV
2

and µL+ = µL− = µ− eV
2

. The chirality probabilities are

evaluated to be p+ = p− = 1/2. The current is then evaluated in the linear regime and

we assume that only the closest j0th level contribute by being half occupied, such that

Iαα
′

N odd ≈ −
2Γ2

TG0V

v2
F

[
1

ξ2(N)
+

1

ξ2(N + 1)
+
αα′ cos (4θkF − 4θj0)− 1

ξ(N)ξ(N + 1)

]
, (3.41)

with ξ(N) = 2πR[εd(j0) + ∆E(N) − µ]/vF . Note that we supposed that the rotation is

slow enough to approximate the spin texture of the outer edges as the one evaluated at the

chemical potential, before we perform the integrals over the energy. This approximation is

consistent with the values obtained in Tab. 2.1. We observe that the current is explicitly

dependent on the spin texture through θkF and θj0 , even in the case of homogeneous

Rashba SOC. In this cotunneling configuration, a current measurement would enable us

to gain some information about the relative difference of spin texture between the antidot

and the outer edges. As the intermediate state is virtual, i.e. the energy is not conserved,

the spin texture measured by θkF will in principle differ from the one measured on the

antidot, θj0 . In particular, if we study the difference of current between the lower contacts,

we will get

I+−
N odd − I

++
N odd ≈ G0V

(
2ΓT
vF

)2
cos (4θkF − 4θj0)

ξ(N)ξ(N + 1)
, (3.42)

which gives us a direct means to obtain the spin texture.

The second configuration is when only one lead is biased, for example lead 1. The

chemical potentials are set to µU+ = µ + eV and µU− = µL+ = µL− = µ. The chirality

probabilities are now slightly more complicated p+ ≈ cos2(θkF − θj0 + θT ) and p− ≈
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sin2(θkF − θj0 + θT ). Two of the currents I−+ and I−− are zero, as there is no voltage bias

between their leads. We are also able to evaluate the two other chirality-resolved currents

I+−
N odd ≈ −

2Γ2
TG0V

v2
F

(
1

ξ(N + 1)ξ(N)

)2 {
ξ2(N + 1) + ξ2(N)

−ξ(N + 1)ξ(N) [1 + cos (4θkF − 4θj0)]

− [ξ(N + 1)− ξ(N)] cos (2θkF − 2θj0 + 2θT )

× [ξ(N + 1) cos (2θkF − 2θj0 − 2θT )− ξ(N) cos (2θkF + 2θj0 + 2θT )]} ,

(3.43)

I++
N odd ≈ −

2Γ2
TG0V

v2
F

(
1

ξ(N + 1)ξ(N)

)2 {
ξ2(N + 1) + ξ2(N)

−ξ(N + 1)ξ(N) [1− cos (4θkF − 4θj0)]

+ [ξ(N + 1)− ξ(N)] cos (2θkF − 2θj0 + 2θT )

× [ξ(N + 1) cos (2θkF − 2θj0 − 2θT ) + ξ(N) cos (2θkF + 2θj0 + 2θT )]} .

(3.44)

The current expressions are more complicated than the ones in the previous example. To

check the consistency of our result, we compute the case in the absence of Rashba SOC,

i.e. θk = θj = θT = 0. The chirality probabilities become p+ = 1 and p− = 0. Only

electrons with + chirality can tunnel in to and out of the antidot. Moreover, the currents

become

I+−
N odd = 0, (3.45)

I++
N odd ≈ −

4Γ2
TG0V

v2
F

1

ξ(N)2
. (3.46)

The current flowing to lead 3 vanishes as expected. The current flowing to lead 4 can be

understood as a spin-up polarized current, leading to an occupation of the last level of

the antidot to be up-spin only. The current will then be the same (up to a shift of the

charging energy) as in the even case. The cotunneling process will be: first, the electron

enters lead 4 from the antidot and then an electron from lead 1 enters the antidot. Such

a current distribution is schematically shown in Fig. 3.9(a). On the contrary, if Rashba

SOC is important, we could reach a regime where the spin-flipping current is the dominant

current contribution. This would mean that most of the electrons entering in lead 1 would

exit the setup in lead 3. Such a process is also schematically shown in Fig. 3.9(b).

To summarize this exploration of the interacting sector, the transport measurements

are strongly influenced by the occupation of the antidot in the cotunneling regime. This

occupation can be tuned by the gate voltage. If we have an even number of electrons

on the antidot, the spin texture will appear implicitly by enabling spin-flipping currents

and its strength will be measured by the value of θT . We recover a behavior on the spin

texture relatively similar to what we observed in the non-interacting regime. On the other
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Figure 3.9: Schematic picture of the two current processes I+−
N odd and I++

N odd when the
bias configuration is set to µU+ = µ + eV and µU− = µL+ = µL− = µ. In panel (a), we
have weak Rashba SOC, which implies that most of the electrons are transmitted to lead
4. On the other hand, if Rashba SOC is large enough, the majority of the electrons can
flow to lead 3 as shown in panel (b).

hand, if we have an odd number of electrons on the antidot, there is this time an explicit

dependence on the spin texture. By tuning the chemical potential configurations, we are

able to probe the behavior of the spin texture via the implicit dependence on θT and also

via the explicit dependence on θkF and θj0 .
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Transport and spectroscopic measurements of the spin texture
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4 | Spin texture in InAs/GaSb he-

terostructures

Up to now, we characterized the spin texture and developed spectroscopic frameworks

to extract information about the spin texture. One of the key ingredients to measure

the spin texture is to have either bulk and/or structural inversion asymmetries. It was

pointed out recently [65], that in the presence of SOC, the bandstructure shows anisotropic

behavior, which makes it spatially dependent on the crystallographical orientation. To

analyze the spin texture, we will start from the k ·p Hamiltonian presented in [65] and we

will derive an effective two-dimensional Hamiltonian similar to the BHZ model, Eq. (1.23).

We will restore ~ and c in this chapter for dimensional purposes.

4.1 Basics about k · p theory

k ·p theory is a method used to describe the band structure of semiconductors. Several

books, for example [49, 56], introduce k·p theory and provide more details than the present

introduction. Here, we will only present the most relevant derivations and features of the

theory.

The idea behind the k ·p approach is to apply perturbation theory near one extremum

of the energy at momentum k0 to obtain the band structure. We will start by considering

the nth band. As the electrons are located in a lattice, we can use Bloch’s theorem to

describe the wave function

ψnk(r) = eikrunk(r). (4.1)

This wave function should also satisfy the Schrödinger equation Hψnk(r) = En(k)ψnk(r).

We consider the Hamiltonian

H =
p2

2m0

+ V (r) +
~

4m2
0c

2
(σ ×∇V ) · p, (4.2)

where the first term is the kinetic term and m0 is the free electron mass. The second term

of the Hamiltonian is the external potential and the last term is the SOC. It leads to the
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following equation for the functions unk[
p2

2m0

+
~2k2

2m0

+ V +
~
m0

k · π +
~

4m2
0c

2
(σ ×∇V ) · p

]
unk(r) = En(k)unk(r), (4.3)

where π = p + ~
4m2

0c
2σ×∇V . Note that we distinguish the lattice momentum k, which is

a number from the momentum operator p. Moreover, the functions unk form a complete

basis, such that they exactly diagonalize the (infinite) Hamiltonian.

To simplify the calculation, we apply a canonical transformation [49, 56, 119, 120] to

get an approximate solution at small k near one extremum of energy

∂En(k0)

∂ki
= 0. (4.4)

If we assume that the energy extremum is at k0 = 0, the unperturbed Hamiltonian

becomes

H0 =
p2

2m0

+ V +
~

4m2
0c

2
(σ ×∇V ) · p. (4.5)

The solutions of this Hamiltonian are given by un0 and their energy is En(0). The

perturbation is then

H1 =
~2k2

2m0

+
~
m0

k · π. (4.6)

We can decompose the functions unk as

unk =
∑
n′

bnn′(k)un′0, (4.7)

where the un′0 functions still form a complete set of orthogonal functions. We replace unk

in Eq. (4.3) by this decomposition and use (2π)3

Ω

∫
d3ru∗n0(r)un′0(r) = δnn′ to get

bnn(k)En(0) +
~2k2

2m0

bnn(k) +
~
m0

k ·
∑
n′

bnn′(k)
(2π)3

Ω

∫
d3ru∗n0(r)πun′0(r) = bnn(k)En(k),

bnn(k)En(0) +
~2k2

2m0

bnn(k) +
~
m0

k ·
∑
n′

bnn′(k)πnn′ = bnn(k)En(k),

(4.8)

where πnn′ = (2π)3

Ω

∫
d3ru∗n0(r)πun′0(r). The equation above is more complicated than the

previous version as there is now a coupling term between the different bands. The solution

is to apply a canonical transformation, namely the Schrieffer-Wolff transformation. We

can define a new Hamiltonian using the following transformation, H̃ = T−1HT . T = eS

decouples the nth band from the n′ bands. We define now H̃0 = H0+ ~2k2
2m0

and H̃1 = ~
m0

k·π,

66



4.1. Basics about k.p theory

the latter being the term coupling the bands. We expand T in terms of S, such that

H̃ = H̃0 + H̃1 + [H̃0, S] + [H̃1, S] +
1

2
[[H̃0, S], S] +O(k3) (4.9)

Since the coupling with the other bands is induced by H̃1, we can cleverly choose S such

that H̃1 + [H̃0, S] = 0, so that H̃ = H̃0 + 1
2
[H̃1, S] +O(k3). When n 6= n′, the elements of

S are then determined as

〈un0|S|un′0〉 = − ~
m0

k · πnn′

En(0)− En′(0)
. (4.10)

We are able to express, up to second order in k, the matrix elements of the Hamiltonian

H̃

〈un0|H̃|un′0〉 ≈
(
En(0) +

~2k2

2m0

)
δnn′+

~2

2m2
0

∑
n′′ 6=n′

k · πnn′′k · πn′′n′

En′(0)− En′′(0)
+
∑
n′′ 6=n

k · πnn′′k · πn′′n′

En(0)− En′′(0)
.

(4.11)

We can directly notice that the more distant bands will then have weaker corrections

compared to the closest ones, as the energy difference is in the denominator. We can then

approximate the Hamiltonian with only the contribution of the closest bands. Moreover,

we are able to compute a correction of the band mass as

m0

m∗n
≈ 1 +

2

m0

∑
n′ 6=n

|π|2nn′

En(0)− En′(0)
. (4.12)

Up to now, we considered the effect on a single band, labelled by n. However, we

would like to approximate the complete bandstructure of the zinc blende lattice using its

space group symmetries near the Γ point (k = 0). We focus on only the four bands near

the Fermi energy: one conduction band and three valence bands. Due to TR-symmetry,

these bands are always doubly-degenerate. We have the s-like conduction band (l = 0),

with total angular momentum j = 1/2. Its irreducible representation is Γ6. The p-like

valence band (l = 1) splits into three subbands. Two subbands remain degenerate at

k = 0 and have a total angular momentum of j = 3/2. These are the heavy and light hole

bands and their irreducible representation is Γ8. The last subband is also split at k = 0

by an energy ∆ due to SOC, and has a total angular momentum j = 1/2. It is called the

spin-orbit split-off valence band and has a Γ7 irreducible representation. The gap at k = 0

between the Γ8 and Γ6 bands is given by Eg = Ec − Ev. The band structure is shown

in Fig. 4.1. When the other bands are perturbatively included to this 8 band model, it

is called the Kane model [121]. Due to the symmetry of the bands, we can rewrite them

as combination of |S〉, |X〉, |Y 〉 and |Z〉, the elements forming s-like and p-like orbitals
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Figure 4.1: Sketch of the bandstructure considered in the Kane model. We classify the
band by their irreducible representation and their total angular momentum.

respectively. We are able to rewrite the bands using Clebsch-Gordan coefficients in the

following manner [49, 56]: ∣∣∣∣Γ6,±
1

2

〉
= |S〉

∣∣∣∣±1

2

〉
(4.13)

∣∣∣∣Γ8,±
3

2

〉
=

1√
2

(|X〉 ± i |Y 〉)
∣∣∣∣±1

2

〉
(4.14)

∣∣∣∣Γ8,±
1

2

〉
= ± 1√

6
(|X〉 ± i |Y 〉)

∣∣∣∣∓1

2

〉
−
√

2

3
|Z〉
∣∣∣∣±1

2

〉
(4.15)

∣∣∣∣Γ7,±
1

2

〉
= ± 1√

3
(|X〉 ± i |Y 〉)

∣∣∣∣∓1

2

〉
+

1√
3
|Z〉
∣∣∣∣±1

2

〉
(4.16)

As the bands we would like to consider might be quasi degenerate, we apply a cano-

nical transformation to separate them from the others, and treat the other bands as a

perturbation. The structure is similar to what we showed above with a single band. If

the 8 bands correspond to the A set and the other bands correspond to the B set, we can

use the variational principle [56, 119, 122] to obtain the new matrix elements as

〈un0|H̃|un′0〉 = 〈un0|H|un′0〉+
∑
|uk0〉∈B

〈un0|H|uk0〉〈uk0|H|un′0〉
En − Ek

, (4.17)

where |un0〉 and |un′0〉 are in the A set. We can now describe the coupled the coupled
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differential equations for elements of the set A as [120]

∑
n′∈A

(
Dij
nn′kikj + πinn′ki +

~
4m2

0c
2
[(σ ×∇V )p]nn′ + E ′nδnn′

)
un′0 = Eun0, (4.18)

where Dij
nn′ = ~2

2m0

{
δnn′δij + 1

m0

∑
α∈B π

i
nαπ

j
αn′

[
1

En−Eα + 1
En′−Eα

]}
is the correction due

to the remote bands. For example, if we neglect for now this correction term, we can

compute the element〈
Γ6,

1

2

∣∣∣∣ H̃ ∣∣∣∣Γ8,
3

2

〉
=

1√
2

〈
S,

1

2

∣∣∣∣ H̃ ∣∣∣∣X + iY,
1

2

〉
. (4.19)

The SOC term ~
4m2

0c
2 (σ×∇V ) ·p does not contribute in this case, due to symmetry. The

only part of the Hamiltonian entering the computation is ~
m0

k ·π. The k-dependent SOC

term is much weaker compared to the first SOC term, as the electron momentum p is

larger than the lattice momentum k. The second term can be therefore neglected [123].

The matrix element is then

1√
2

~
m0

〈
S,

1

2

∣∣∣∣k · p ∣∣∣∣X + iY,
1

2

〉
= − 1√

2
P (kx + iky), (4.20)

where P = − ~
m0
〈S|px|X〉 is the “Kane momentum” [123]. Note that due to symmetry,

we expect that 〈S|px|X〉 = 〈S|py|Y 〉 = 〈S|pz|Z〉. The Kane momentum can be found

in experimental measurements or from first principles computations and it describes the

coupling between the conduction and the valence bands. Similarly, we can define the

Kane energy as EP = 2m0P 2

~2 .

We repeat the same procedure for all the other terms contributing to the 8× 8 Hamil-

tonian. We use the symmetries of the lattice to restrict the number of elements composing

the k · p Hamiltonian. If we also take into account the contribution of the remote bands,

we can define the dimensionless Luttinger parameters γ1, γ2 and γ3 [124]. γ1 and γ2 split

the Γ8 at k 6= 0. γ3 introduces anisotropies in the valence bands if γ3 6= γ2. Note that

the Luttinger parameters were introduced in a model where the conduction band is con-

sidered as one of the remote bands. If we introduce the conduction band explicitly, we

need to renormalize accordingly these parameters [125]. The advantage of the Luttinger

parameters is that they are measureable in experiments, or calculable in first principles

computations.

We are then able to write the 8 × 8 Kane Hamiltonian in the basis {|Γ6,+1/2〉,
|Γ6,−1/2〉, |Γ8,+3/2〉, |Γ8,+1/2〉, |Γ8,−1/2〉, |Γ8,−3/2〉, |Γ7,+1/2〉, |Γ7,−1/2〉}, see Tab.

C.8 of Ref. [49]. There are a few more terms appearing in this Hamiltonian, which were

not described up to now: the coefficient C appears due to the inversion asymmetry [126],
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and B±8v and B7v come from the second order perturbation corrections, as written in

Eq. (4.17) [127].

4.1.1 k · p theory for heterostructures

We are now able to describe the band structure near the Γ point for a homogeneous

zinc blende lattice, made of only one crystal structure. Nonetheless, it is possible to

use k · p theory to describe more complex geometries such as heterostructures using the

envelope-function theory. The idea is to consider that the heterostructure is grown along

the z direction, such that kx and ky remain good quantum numbers. kz is then replaced

by −i∂z. This is the method developed by Burt [128, 129] and Foreman [130, 131]. More

details are present in Chap. 12 of Ref. [56]. The key point is to write the wave function

as

ψ(r) =
∑
n

Fn(r)un(r), (4.21)

where Fn(r) is the envelope function. This function should be smooth, slowly varying and

continuous in the z direction. Moreover, it can be expanded in plane waves in the x and

y direction:

Fn(r) =
1√
S
ei(kxx+kyy)fn(z). (4.22)

un(r) forms a complete set of periodic functions, which are expressed over the whole

heterostructure, i.e. the functions now are not only defined over one layer of the hetere-

ostructure. At the boundary between two different material layers, we assume that the

potential change is step-like, leading to fn(z) and Dfn(z) being continuous at the boun-

dary. D is the differential operator defined after integrating the differential equations of

the wave function near the boundary [128, 129, 131, 132] and ensures the continuity of the

probability current. We will see later an explicit example of such a differential operator.

We are able to apply k · p theory to solve the multiband system [132]. We get a set of

coupled differential equations, which is very similar to Eq. (4.18),

∑
n′∈A

(
kiD

ij
nn′kj + πinn′ki +

~
4m2

0c
2
[(σ ×∇V )p]nn′ + E ′n(z)δnn′

)
fn′(z) = Efn(z). (4.23)

When we generalize Foreman model [130] to include also the conduction band, we get a

full 8× 8 Hamiltonian for a heterostructure grown along the z direction [65, 132, 133], in

the basis {|Γ6,+1/2〉, |Γ6,−1/2〉, |Γ8,+3/2〉, |Γ8,+1/2〉, |Γ8,−1/2〉, |Γ8,−3/2〉, |Γ7,+1/2〉,
|Γ7,−1/2〉}. This Hamiltonian is very close to the Kane Hamiltonian and takes the
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following form

H =

T 0 − 1√
2
Pk+

√
2
3
Pkz

1√
6
Pk− 0 − 1√

3
Pkz − 1√

3
Pk−

0 T 0 − 1√
6
Pk+

√
2
3
Pkz

1√
2
Pk− − 1√

3
Pk+

1√
3
Pkz

− 1√
2
k−P 0 U + V −S̄− R 0 1√

2
S̄− −

√
2R√

2
3
kzP − 1√

6
k−P −S̄†− U − V C R

√
2V −

√
3
2
S̃−

− 1√
6
k−P

√
2
3
kzP R† C† U − V S̄†+ −

√
3
2
S̃+ −

√
2V

0 1√
2
k+P 0 R† S̄+ U + V

√
2R† 1√

2
S̄+

− 1√
3
kzP − 1√

3
k−P

1√
2
S̄†−

√
2V −

√
3
2
S̃†+

√
2R U −∆ C

− 1√
3
k+P

1√
3
kzP −

√
2R† −

√
3
2
S̃†− −

√
2V 1√

2
S̄†+ C† U −∆



,

(4.24)

where k2
‖ = k2

x + k2
y, k± = kx ± iky and kz = −i∂z and P is the Kane momentum as

before. Note the ordering of the momentum operators, which ensures the hermiticity of

the Hamiltonian. The different terms of the Hamiltonian are

T = Ec +
~2

2m0

(
γ′0k

2
‖ + kzγ

′
0kz
)
, U = Ev −

~2

2m0

(
γ′1k

2
‖ + kzγ

′
1kz
)
,

V = − ~2

2m0

(
γ′2k

2
‖ − 2kzγ

′
2kz
)
, R = −

√
3~2

4m0

[
(γ′3 − γ′2)k2

+ − (γ′3 + γ′2)k2
−
]
,

S̄± = −
√

3~2

2m0

k± ({γ′3, kz}+ [κ′, kz]) , S̃± = −
√

3~2

2m0

k±

(
{γ′3, kz} −

1

3
[κ′, kz]

)
,

C =
~2

m0

k−[κ′, kz],

(4.25)

where [A,B] = AB − BA and {A,B} = AB + BA. As it was mentioned before, the

Luttinger parameters (as well as κ and the mass of the conduction band mc) need to be

renormalized. They become now [123, 125]

γ′0 =
m0

mc

− EP
Eg

Eg + 2/3∆

Eg + ∆
γ′1 = γ1 −

1

3

EP
Eg

γ′2 = γ2 −
1

6

EP
Eg

γ′3 = γ3 −
1

6

EP
Eg

κ′ = κ− 1

6

EP
Eg

(4.26)

Note that these parameters are all position dependent, as they are material dependent.
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The differential operator D is

D =



t 0 0 0 0 0 0 0

0 t 0 0 0 0 0 0

0 0 u+ v −s̄− 0 0 1√
2
s̄− 0√

2
3
P 0 −s̄′+ u− v c 0

√
2v −

√
3
2
s̃−

0
√

2
3
P 0 c∗ u− v s̄′− −

√
3
2
s̃+ −

√
2v

0 0 0 0 s̄+ u+ v 0 1√
2
s̄+

− 1√
3
P 1√

2
s̄′+

√
2v −

√
3
2
s̃′− 0 u c

0 1√
3
P 0 −

√
3
2
s̃′+ −

√
2v 1√

2
s̄′− c∗ u


, (4.27)

such that Df is continuous across the interface [132]. The parameters are now defined as

t = − ~2

2m0

γ′0∂z, u =
~2

2m0

γ′1∂z, v =
~2

m0

γ′2∂z,

s̄± =

√
3~2

2m0

ik± (γ′3 − κ′) , s̄′± =

√
3~2

2m0

ik± (γ′3 + κ′) ,

s̃± =

√
3~2

2m0

ik±

(
γ′3 +

κ′

3

)
s̃′± =

√
3~2

2m0

ik±

(
γ′3 −

κ′

3

)
,

c =
~2

m0

ik−κ
′.

(4.28)

We have now enough understanding about the origins of the k.p Hamiltonian presented

in Eq. (4.24) to apply it to our heterostructure.

4.2 Effective model for InAs/GaSb heterostructures

We will mainly use the same technique as described in [8]. We want to create a

two-dimensional effective model to describe the heterostructure. We will first neglect the

split-off valence band, as it lies far enough from the other bands at k = 0 and thus has little

influence on the remaining bands [65]. We will use the same layered system as presented

in Fig. 1.10 and repeated in Fig. 4.2. The structure is such that the InAs and the GaSb

layers are sandwiched between two layers of AlSb. We consider the data presented in [65],

in particular that the layer of InAs is 12.5 nm-thick (d1 = 12.5 nm) and the layer of GaSb

is 5 nm-thick (d2 = 5 nm). The different material-dependent constants are presented in

Tab. 4.1, and are taken from Refs. [65, 134, 135]. We take into account the valence offsets

between the layers such that EAlSb
v − EInAs

v = 0.18 eV, EInAs
v − EGaSb

v = −0.56 eV, and
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Figure 4.2: Band structure in the z-direction. The conduction band is indicated in each
layer in green and the valence band is indicated in red. In dashed (blue), the effective
inverted bands representing electron-like and hole-like behavior near the Γ-point.

Eg [eV] ∆ [eV] EP [eV] mc/m0 γ1 γ2 γ3 κ

InAs 0.41 0.38 22.2 0.024 19.67 8.37 9.29 7.68

GaSb 0.8128 0.752 22.4 0.042 11.80 4.03 5.26 3.18

AlSb 2.32 0.75 18.7 0.18 4.15 1.01 1.75 0.31

Table 4.1: Values of the parameters for the different materials entering the Hamiltonian
presented in Eq. (4.24). Data taken from Refs. [134, 135].

EGaSb
v − EAlSb

v = 0.38 eV [65, 134].

We will first start by considering the case kx = ky = 0. We will introduce nonzero kx

and ky later using perturbation theory. The Hamiltonian in Eq. (4.24) becomes

H0 =



T 0 0 −i
√

2
3
P (z)∂z 0 0

0 T 0 0 −i
√

2
3
P (z)∂z 0

0 0 U + V 0 0 0

−i
√

2
3
∂zP (z) 0 0 U − V 0 0

0 −i
√

2
3
∂zP (z) 0 0 U − V 0

0 0 0 0 0 U + V


.

(4.29)

We can rewrite the diagonal terms as

T = Ec(z)− ~2

2m0

∂zγ0(z)∂z, U = Ev(z) +
~2

2m0

∂zγ1(z)∂z,

V = −2
~2

2m0

∂zγ2(z)∂z.

(4.30)
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Moreover if we reorder the above Hamiltonian by the sign of the band spin, we obtain two

blocks related by time-reversal symmetry. As the two blocks are totally decoupled, we

can focus without loss of generality on the block with the states defined with a positive

spin. We call this block “+”. We also need to set the Fermi energy: εF = 0, such that

EInAs
v = −0.41 eV. Using the ansatz presented in Eq. (4.22), we can write the wave

function of the block as

Ψ(kx, ky, z) = ei(kxx+kyy)

f1(z)

f3(z)

f4(z)

 . (4.31)

We get the following set of equations to solve
T 0 −i

√
2
3
P (z)∂z

0 U + V 0

−i
√

2
3
∂zP (z) 0 U − V


f1(z)

f3(z)

f4(z)

 = E

f1(z)

f3(z)

f4(z)

 . (4.32)

Applying the boundary conditions, we also need that
− ~2

2m0
γ′0(z)∂z 0 0

0 ~2
2m0

[γ′1(z)− 2γ′2(z)] ∂z 0

−i
√

2
3
P (z) 0 ~2

2m0
[γ′1(z) + 2γ′2(z)] ∂z


f1(z)

f3(z)

f4(z)

 (4.33)

must be continuous at the boundary of each layer. We are now fully equipped to find the

solutions for this asymmetric potential well.

From the Hamiltonian in Eq. (4.32), we notice that the heavy hole band is decoupled

from the other bands. In our effective model, it will lead to a hole band that we will call

H1. From the Hamiltonian, we obtain the following differential equation:(
Ev(z) +

~2

2m0

∂z [γ′1(z)− 2γ′2(z)] ∂z

)
f3(z) = Ef3(z). (4.34)

Inside each layer, all the material-dependent parameters are constant in each material,

they are then not affected by the derivative. We make the following ansatz for this band

f3(z) =



Aeα̃z z ≤ −d1

B cosh(β̃z) + C sinh(β̃z) −d1 ≤ z ≤ 0 nm

D cos(δ̃z) + F sin(δ̃z) 0 nm ≤ z ≤ d2

Ge−α̃z z ≥ d2

, (4.35)

74



4.2. Effective model for InAs/GaSb heterostructures

where α̃ =
√

2m0

~

√
E−EAlSbv

γ′AlSb1 −2γ′AlSb2
, β̃ =

√
2m0

~

√
E−EInAsv

γ′InAs1 −2γ′InAs2
, and δ̃ =

√
2m0

~

√
EGaSbv −E

γ′GaSb1 −2γ′GaSb2
.

This ansatz must respect the boundary conditions, such that

Ae−α̃d1 = B cosh(β̃d1)− C sinh(β̃d1),

B = D,

D cos(δ̃d2) + F sin(δ̃d2) = Ge−α̃d2 ,

(4.36)

α̃(γ′AlSb1 − 2γ′AlSb2 )Ae−α̃d1 = β̃(γ′InAs1 − 2γ′InAs2 )(−B sinh(β̃d1) + C cosh(β̃d1)),

β̃(γ′InAs1 − 2γ′InAs2 )C = δ̃(γ′GaSb1 − 2γ′GaSb2 )F,

δ̃(γ′GaSb1 − 2γ′GaSb2 )(−D sin(δ̃d2) + F cos(δ̃d2)) = −α̃(γ′AlSb1 − 2γ′AlSb2 )Ge−α̃d2 .

(4.37)

Solving these linear equations enables us to find an implicit equation for the energy of the

hole band. This equation is

β̃′

δ̃′
α̃′ + β̃′ tanh(β̃d1)

α̃′ tanh(β̃d1) + β̃′
=
δ̃′ tan(δ̃d2)− α̃′

α̃′ tan(δ̃d2) + δ̃′
, (4.38)

where α̃′ = α̃(γ′AlSb1 −2γ′AlSb2 ), β̃′ = β̃(γ′InAs1 −2γ′InAs2 ), and δ̃′ = δ̃(γ′GaSb1 −2γ′GaSb2 ). If we

numerically solve this implicit equation with the data given in Tab. 4.1 and the widths

d1 = 12.5 nm and d2 = 5 nm, we are able to find the energy of the hole band at

EH1 = 0.1154 eV. (4.39)

With the energy of the hole band, we are able to evaluate all the constants entering in

the wave function. If we take into account its normalization, we are able to plot it in

the z direction. The result is shown in Fig. 4.3. We observe that the wave function is

well localized in the GaSb layer. It is exponentially suppressed when it penetrates in

the neighboring layers. Note that this is consistent with what was already observed in

Refs. [134, 136, 137].

We can repeat the same procedure for the equations for f1(z) and f4(z). This time,

we note the coupling of the electron band and the light hole band. The effective band in

the z direction will then mostly be an electron band or a light-hole band. We obtain the

following set of differential equations in each layerEc(z)− ~2
2m0

γ′0(z)∂2
z −i

√
2
3
P (z)∂z

−i
√

2
3
P (z)∂z Ev(z) + ~2

2m0
[γ′1(z) + γ′2(z)] ∂2

z

(f1(z)

f4(z)

)
= E

(
f1(z)

f4(z)

)
. (4.40)

To solve these differential equations, we will use the trick defined in Ref. [131] as explained

below. If we use the data given in Tab. 4.1, we find that γ′0 can even be negative. However,
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Figure 4.3: Wave function in the z direction for the H1 band. The dashed (grey) lines
indicate the boundaries of the layers.

if we set γ′0 = 1, it enables us to avoid unphysical solutions, but does not change band

structure near k = 0 [65, 131]. The consequence is that the value of P needs to be

renormalized by inverting the equation of γ′0 in Eq. (4.26). We have then

EP =

(
m0

mc

− γ′0
)
Eg(Eg + ∆)

Eg + 2/3∆
, (4.41)

which changes the values of the other Luttinger parameters in Eq. (4.26) accordingly. If

we neglect for now the term with γ′0, we are then able to express f1(z) as function of f4(z),

such that

f1(z) =
i

Ec − E

√
2

3
P∂zf4(z) = i

√
2

3

√
~2

2m0

√
EP

Ec − E
∂zf4(z). (4.42)

The light hole band differential equation becomes{
Ev(z)− E +

~2

2m0

[
γ′1(z) + γ′2(z) +

2EP (z)

3(Ec(z)− E)

]
∂2
z

}
f4(z) = 0. (4.43)

Using this technique, f1(z) is no longer continuous at the interface, as pointed out in

Refs. [128, 131]. We can propose an ansatz for the wave function and check the boundary

conditions for f4(z). Once we know the numerical solution of f4(z), we can get f1(z), by

using Eq. (4.42). The ansatz is then

f4(z) =



A2e
αz z ≤ −d1

B2 cos(βz) + C2 sin(βz) −d1 ≤ z ≤ 0 nm

D2 cos(δz) + F2 sin(δz) 0 nm ≤ z ≤ d2

G2e
−αz z ≥ d2

, (4.44)
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where now the coefficents are

α =

√
2m0

~2

√
3(EAlSb

c − E)(E − EAlSb
v )

3(EAlSb
c − E)(γ′AlSb1 + 2γ′AlSb2 ) + 2EAlSb

P

,

β =

√
2m0

~2

√
3(E − EInAs

c )(E − EInAs
v )

3(EInAs
c − E)(γ′InAs1 + 2γ′InAs2 ) + 2EInAs

P

,

δ =

√
2m0

~2

√
3(EGaSb

c − E)(EGaSb
v − E)

3(EGaSb
c − E)(γ′GaSb1 + 2γ′GaSb2 ) + 2EGaSb

P

.

(4.45)

The boundary conditions are then defined such that for f4(z), we have

A2e
−αd1 = B2 cos(βd1)− C2 sin(βd1),

B2 = D2,

D2 cos(δd2) + F2 sin(δd2) = G2e
−αd2 ,

(4.46)

α′A2e
−αd1 = β′ (B2 sin(βd1) + C2 cos(βd1)) ,

β′C2 = δ′F2,

δ′ (−D2 sin(δd2) + F2 cos(δd2)) = −α′G2e
−αd2 ,

(4.47)

where α′ =
[
γ′AlSb1 + 2γ′AlSb2 +

2EAlSbP

3(EAlSbc −E)

]
α, β′ =

[
γ′InAs1 + 2γ′InAs2 +

2EInAsP

3(EInAsc −E)

]
β and

δ′ =
[
γ′GaSb1 + 2γ′GaSb2 +

2EGaSbP

3(EGaSbc −E)

]
δ. We find again an implicit equation in order to get

the energy
β′

δ′
α′ − β′ tan(βd1)

β′ + α′ tan(βd1)
=
δ′ tan(δd2)− α′

α′ tan(δd2) + δ′
. (4.48)

If we solve numerically this equation, we get the following energy

EE1 = 0.0647 eV. (4.49)

We evaluate all the coefficients entering in the wave function computation using the data

presented in Tab. 4.1 and by using Eq. (4.42), we get the second component of the wave

function. Once it is renormalized, the wave function in the z-direction is shown in Fig. 4.4.

We find this time that even if the wave function is mostly localized in the InAs layer, there

is still a non-negligible component in the GaSb layer due to the interband coupling. As

most of the wave function is in the InAs layer, it will behave mostly as an electron band,

so we call it E1. We plot the two different components of the wave function in Fig. 4.4.

We notice that the light hole component (f4) is indeed located mostly in the GaSb layer,

whereas the electron component (f1) is mostly located in the InAs layer. Moreover, the

latter has the largest weight on the wave function. It reinforces the electron-like behavior
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Figure 4.4: Wave function in the z direction for the E1 band. The dashed (grey) lines
indicate the boundaries of the layers.

of the band. The wave function and its components are again consistent with the results

published in Refs. [134, 136, 137]. For the “−” block, we get the same wave functions as

presented above.

We now introduce perturbatively the remaining elements. The perturbation Hamilto-

nian is defined as

H1 =

T1 0 − 1√
2
Pk+ 0 1√

6
Pk− 0

0 T1 0 − 1√
6
Pk+ 0 1√

2
Pk−

− 1√
2
Pk− 0 U1 + V1 −S− R 0

0 − 1√
6
Pk− −S†− U1 − V1 C R

1√
6
Pk+ 0 R† C† U1 − V1 S†+

0 1√
2
Pk+ 0 R† S+ U1 + V1


,

(4.50)

where the parameters are T1 = ~2
2m0

γ′0k
2
‖, U1 = − ~2

2m0
γ′1k

2
‖, and V1 = − ~2

2m0
γ′2k

2
‖. As well

as computing the energy of the H1 and E1 bands, we obtain other bound states at lower

energy, namely a second hole band H2 and a band with predominantly light hole band

characteristics L1. These additional bands are consistent with the results published in

Ref. [134]. As they are located at lower energies and as we compute only the first order

perturbation terms, we neglect them in our effective model. If we want to compute higher

order terms, we also need to take into account the H1 and L1 energy levels, and we

would apply a canonical transformation as in the previous section [16, 49]. The canonical

transformation would enable us decouple the E1 and H1 bands from the H2 and L1

bands. To get the elements of the effective 4 × 4 Hamiltonian, we need to perform the
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4.2. Effective model for InAs/GaSb heterostructures

following integrals

Heff
ij = Eiδi,j +

∫ ∞
−∞

dz
6∑
αβ

〈
Ψα
i (kx, ky, z)|H1,αβ|Ψβ

j (kx, ky, z)
〉

(4.51)

where E1 = E3 = EE1 and E2 = E4 = EH1. We will show one term of the matrix as an

example to make the procedure explicit. The other terms are obtained in the same way.

We compute Heff
14 :

Heff
14 =

∫ ∞
−∞

dz
6∑
αβ

〈
Ψα

1 (kx, ky, z)|H1,αβ|Ψβ
4 (kx, ky, z)

〉
=

∫ ∞
−∞

dzf ∗4 (z)Rf6(z)

= −
√

3~2

4m0

k2
+

∫ ∞
−∞

dzf ∗4 (z) [γ′3(z)− γ′2(z)] f6(z)

+

√
3~2

4m0

k2
−

∫ ∞
−∞

dzf ∗4 (z) [γ′3(z) + γ′2(z)] f6(z).

(4.52)

We are able to evaluate all the terms of the Hamiltonian, by computing all the remaining

integrals. The effective Hamiltonian can then be written as

Heff
0 =

∑
k

Φ†(k)Heff
0 (k)Φ(k), (4.53)

where Φ(k) = (E1+(k), H1+(k), E1−(k), H1−(k))T . The Bloch matrix is

Heff
0 (k)

=


ε(k) +M(k) Ak+ iTk− −i(R1k

2
+ +R2k

2
−)

Ak− ε(k)−M(k) i(R1k
2
+ +R2k

2
−) 0

−iTk+ −i(R1k
2
− +R2k

2
+) ε(k) +M(k) −Ak−

i(R1k
2
− +R2k

2
+) 0 −Ak+ ε(k)−M(k)

 ,

(4.54)

where ε(k) = C −Dk2 and M(k) = M −Bk2. All the parameters are given in Tab. 4.2.

However, using the literature values stated in Tab. 4.1, the value for R1 becomes too

large, which leads to a phase transition to a trivial insulator. As we are interested in the

effect of SOC in the topological phase, we decide therefore to choose a smaller value for

R1, which enables us to remain in the nontrivial phase. In the end, we recover the BHZ

Hamiltonian [8], this time with a Rashba term T and some anisotropic terms R1 and R2.

Our results are consistent with previous results obtained in Refs. [65, 137–139]. All these
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A [eV nm] B [eV nm2] C [eV] D [eV nm2] M [eV]

0.0081 −0.0434 0.0901 0.0428 −0.0254

R1(*) [eV nm2] R2 [eV nm2] T [eV nm]

0.0044 −0.0034 0.004

Table 4.2: Values of the parameters for the effective Hamiltonian presented in Eq. (4.54).
They are evaluated when the layer of InAs is d1 = 12.5 nm and the layer of GaSb is d2 = 5
nm. (*) R1 is not the numerical value extracted from the integral – see main text.

references noticed some anisotropies in the band structure, but that it kept a four-fold

symmetry. We would therefore like to understand the effect of the anisotropy on the edge

states. The first step is to rotate the lattice by an angle θ in the kx, ky plane, such that

k̃x = cos(θ)kx − sin(θ)ky and k̃y = sin(θ)kx + cos(θ)ky. If we set θ = π/4, the effective

Hamiltonian can now be written as

Heff
π/4 =

∑
k̃

Φ†(k̃)Heff
π/4(k̃)Φ(k̃), (4.55)

where Φ(k̃) = (E1+(k̃), H1+(k̃), E1−(k̃), H1−(k̃))T . The Bloch matrix is now

Heff
π/4(k̃) =


ε(k̃) +M(k̃) Ae−iπ/4k̃+ iTeiπ/4k̃− −(R1k̃

2
+ −R2k̃

2
−)

Aeiπ/4k̃− ε(k̃)−M(k̃) (R1k̃
2
+ −R2k̃

2
−) 0

−iTe−iπ/4k̃+ (R1k̃
2
− −R2k̃

2
+) ε(k̃) +M(k̃) −Aeiπ/4k̃−

−(R1k̃
2
− −R2k̃

2
+) 0 −Ae−iπ/4k̃+ ε(k̃)−M(k̃)

 ,

(4.56)

where ε(k̃) = C −Dk̃2 andM(k̃) = M −Bk̃2. We can observe that the terms which are

responsible for changing the bandstructure are the anisotropic ones.

4.3 Spin texture for InAs/GaSb heterostructures

We want to extract the spin texture from our effective model in Eq. (4.54) or in

Eq. (4.56), so we need to regularize it over a square lattice. Some anisotropic terms, as

well as a Rashba SOC, appear in our effective model and transform the band structure.

The band structure is also influenced by the crystallographic direction of measurement,

but keeps a four-fold rotation symmetry [65, 138, 139]. We would like then to see if this

also affects the spin texture. We use two orientations: either if the nanoribbon is in the

x or y direction or if it is rotated by π/4.

If we start with the system oriented in the x or y direction, we regularize our continuous

model to a lattice model such that kx,y ≈ sin(akx,y)/a and k2
x,y ≈ (2 − 2 cos(akx,y))/a

2,
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where a is the lattice spacing (a ' 0.61 nm [134]). We obtain the effective Bloch matrix

H̃eff
0 (k) =


ε̃(k) + M̃(k) A(k) T (k) iR(k)

A∗(k) ε̃(k)− M̃(k) −iR(k) 0

T ∗(k) iR∗(k) ε̃(k) + M̃(k) −A∗(k)

−iR∗(k) 0 −A(k) ε̃(k)− M̃(k)

 . (4.57)

The different terms entering in the Hamiltonian are

ε̃(k) =C − 2D

a2
[2− cos(akx)− cos(aky)],

M̃(k) =M − 2B

a2
[2− cos(akx)− cos(aky)],

A(k) =
A

a
(sin(akx) + i sin(aky)),

T (k) =
T

a
(i sin(akx) + sin(aky)),

R(k) =
2R1

a2
[cos(akx)− cos(aky)− i sin(akx) sin(aky)]

+
2R2

a2
[cos(akx)− cos(aky) + i sin(akx) sin(aky)] .

(4.58)

We first compute the Hamiltonian on a nanoribbon, so we have to partially Fourier

transform it in one direction, say the y direction. We obtain a Hamiltonian which is in

k space for the x direction and in real space for the y direction. We repeat the same

tricks as in Chaps. 1 and 2. First, we obtain the band structure as shown in Fig. 4.5.

We observe the existence of edge states which link the conduction band to the valence

band. These edge states are doubly degenerate: each edge has two counterpropagating

edge states. The momentum scale of the bandstructure coincides with the values obtained

using the full k · p model in Ref. [65]. On a technical note, the gap is relatively small

using our model parameters. This is why we need a rather large ribbon for our numerical

simulations (L = 200a = 122 nm – 200 unit cells).

With the wave functions, we can then extract the spin texture as shown in Fig. 4.6. The

spin texture is non-symmetric, especially due to the anisotropic coefficients. Rashba SOC

also contributes to it, but to a smaller extent. Nonetheless, the main features remain close

to what we saw in Chap. 2. K(k1, k1) = 0, because the wave functions are orthogonal by

construction, and K(k1,−k1) = 0, because the wave functions are orthogonal by Kramers’

theorem. Moreover, the shape is still very close to what we observed in the other plots in

Chap. 2. We can estimate the value of k0 by fitting the two-dimensional data. We obtain

k0 ≈ 1.16 nm−1. This value is very small compared to the other values of k0 we computed

in Tab. 2.1.
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Figure 4.5: The energy spectrum of the effective Hamiltonian in Eq. (4.54) for a nano-
ribbon of L = 200a = 122 nm (200 unit cells). We set a = 0.61 nm, the spacing in the
periodic direction kx = π/(400a) and the other parameters are defined in Tab. 4.2.

Figure 4.6: The spin texture of the effective Hamiltonian in Eq. (4.54) for a nanoribbon of
L = 122 nm. We set a = 0.61 nm, the spacing in the periodic direction kx = π/(400a) and
the other parameters are defined in Tab. 4.2. In panel (a), we have the three-dimensional
plot and in panel (b), the corresponding contour plot.
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4.3. Spin texture for InAs/GaSb heterostructures

If we now look to the ribbon rotated by π/4, we can now repeat the same procedure

for the k̃x,y plane. We can regularize the model using k̃x,y ≈ sin(ak̃x,y)/a and k̃2
x,y ≈

(2−2 cos(ak̃x,y))/a
2. The regularization implies that the effective Bloch matrix transforms

as

H̃eff
π/4 (k̃) =


ε̃(k̃) + M̃(k̃) A(k̃) T (k̃) R(k̃)

A∗(k̃) ε̃(k̃)− M̃(k̃) −R(k̃) 0

T ∗(k̃) −R∗(k̃) ε̃(k̃) + M̃(k̃) −A∗(k̃)

R∗(k̃) 0 −A(k̃) ε̃(k̃)− M̃(k̃)

 , (4.59)

where the different terms of the Hamiltonian are

ε̃(k̃) =C − 2D

a2
[2− cos(ak̃x)− cos(ak̃y)],

M̃(k̃) =M − 2B

a2
[2− cos(ak̃x)− cos(ak̃y)],

A(k̃) =e−iπ/4
A

a
(sin(ak̃x) + i sin(ak̃y)),

T (k̃) =eiπ/4
T

a
(i sin(ak̃x) + sin(ak̃y)),

R(k̃) =
2R1

a2

[
cos(ak̃x)− cos(ak̃y)− i sin(ak̃x) sin(ak̃y)

]
+

2R2

a2

[
cos(ak̃y)− cos(ak̃x)− i sin(akx) sin(aky)

]
.

(4.60)

We compute the Hamiltonian on a nanoribbon after partially Fourier transforming it.

We choose to partially Fourier transform it along the ỹ direction. The band structure is

then shown in Fig. 4.7. We observe in comparison to Fig 4.5 a different bandstructure

near the gap and also a different energy dispersion for the edge states. This change is due

to the anisotropy terms. For a consistency check, we also plot the bandstructure in the

absence of anisotropy in both orientations, which give identical results.

Finally, we plot the spin texture in the same manner as before. The result is shown

in Fig. 4.8. The main features of the spin texture are again present: vanishing diagonals

and a hyperbolic shape. Nevertheless, we observe that the spin texture is different in

comparison to what is shown in Fig. 4.6. The anisotropy of the spin texture is weaker and

its numerical values are changed. Moreover, we can estimate the value of k0 by fitting the

two-dimensional plot. We obtain k0 ≈ 0.99 nm−1. This value is close to what we observed

above in the other orientation. Nonetheless it seems better to measure the spin texture

in this rotated orientation, as k0 is easier to evaluate due to the smaller anisotropies,

and its numerical value is a little smaller. The latter means that the rotation of the spin

quantization axis happens on a slightly shorter momentum scale.

In Ref. [78], Ortiz et al. proposed a formula to analytically compute the value of
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Figure 4.7: The energy spectrum of the effective Hamiltonian in Eq. (4.56) for a nano-
ribbon of L = 200a = 122 nm (200 unit cells). We set a = 0.61 nm, the spacing in the
periodic direction kx = π/(400a) and the other parameters are defined in Tab. 4.2.

Figure 4.8: The spin texture of the effective Hamiltonian in Eq. (4.56) for a rotated
nanoribbon of L = 122 nm. We set a = 0.61 nm, the spacing in the periodic direction
kx = π/(400a) and the other parameters are defined in Tab. 4.2. In panel (a), we have
the three-dimensional plot and in panel (b), the corresponding contour plot.
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the spin texture in the BHZ Hamiltonian with Rashba SOC, but in the absence of any

anisotropic terms. If we use their formula, we obtain that k0 ≈ 1.15 nm−1, which is close

to the value of k0 in both orientations. Numerically, we also evaluated k0 in the absence

of anisotropies R1 and R2. It gives us a similar value: k0 ≈ 1.1 nm−1. It is interesting to

note that the value of k0 is in between the two values obtained for the two crystallographic

orientations and very close to their average. Moreover, this value sounds reasonable even

though it is relatively small, because we also evaluated k0 numerically and analytically

with the parameters given in Ref. [78]. We obtained in both computations a k0 of the

same order of magnitude, but larger.

To summarize our results, InAs/GaSb heterostructures give a very interesting candi-

date to experimentally understand and measure the spin texture for two main reasons.

Firstly, the bandstructure and the edge state dispersion are influenced by the crystallo-

graphic orientation of the nanoribbon. Therefore, we could imagine that this would also

lead to interesting features in a full real space system. Secondly, k0 is surprisingly small,

which means that its effect on the spin texture is large. Therefore, a full rotation of the

spin axis would then occur in a fraction of the Brillouin zone. The experimental scheme

presented in the previous chapters would then provide possible means to probe it. For

example, a local spectroscopic probe as presented at the end of Chap. 2 might be able to

measure the change of spin texture.
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5 | Summary and outlook

In this thesis we explored the nontrivial spin texture arising in two-dimensional insu-

lators. The main ingredient in generating such an outcome was the breaking of the spin

quantization axis symmetry. This can be achieved by introducing some structure and/or

bulk inversion asymmetry terms in the models. Such phenomena are observed in experi-

mental setups and thus validate the aim of understanding edge states in two-dimensional

topological insulators with an undefined spin quantization axis. This scheme was intro-

duced through the concept of generic helical edge states, which require only time-reversal

symmetry. The approach we took enabled us to find that the spin axis rotates at low

momenta, while preserving time-reversal symmetry. It also enables new processes like

inelastic scattering to occur.

We explored several avenues to generalize and understand the implication of the ab-

sence of spin quantization axis symmetry. The first section in chapter 2 generalized the

concept of spin texture and the observation of the spin quantization axis rotation in the

absence of translational symmetry. We realized in the presence of rotational symmetry

that the total angular momentum replaced the momentum in the evaluation of the spin

texture. Moreover, when we compared the scale at which the spin axis rotates in both

translation and rotation invariant systems, they appeared to be equivalent. Nonetheless,

the underlying requirement of some kind of spatial symmetry was always present. To

push the universality of our findings, we also investigated the spin texture in the absence

of some spatial symmetry, e.g. in flakes. It resulted again that the spin axis was rotating

when the counterpropagating wave functions were at different energy. This suggested to

us that the evaluation of the spin texture could be a rather “local” measure, where only

a few sites needed to be included. This led us to propose that the spin texture could be

experimentally detected using a spectroscopic probe.

Edge states and the nontrivial topological state of topological insulators are often

probed using transport experiments. This led us in chapter 3 to suggest a transport

setup made of a Hall bar with an embedded antidot. This Hall bar was connected to

four independent leads. We first examined the role of the spin texture in the absence of

interaction between the electrons on the antidot. If the spin texture is different between
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the Hall bar edges, the transmission rates were dependent on the difference between

the two spin textures. However, in the homogeneous case, we discovered that the spin

texture implicitly appeared in the nonzero spin-flipping tunnelings and thus modified the

transmission rates between the leads. To complete the exploration of the transport setup,

we also looked at the Coulomb blockade regime. We started with the help of Fermi’s golden

rule to compute the sequential tunneling. However as this regime assumes the relaxation

to the ground states between two tunneling events, the chirality of the electrons tunneling

could not be tracked. This led us to compute the next order tunneling term, namely

cotunneling. Here, the current distribution depended upon the initial occupation of the

antidot. If there was an even occupation, i.e. the electrons were doubly occupying the

energy levels on the antidot up to the Fermi energy, we recovered an implicit dependence

on the spin texture. However, if there was an odd occupation, the difference of spin

texture between the outer edge and the antidot appeared explicitly. As the process did

not conserve energy, this difference could be nonzero.

Finally, the last chapter studied in more detail InAs/GaSb heterostructures, which

exhibit large Rashba spin-orbit coupling. From the k · p Hamiltonian, we extracted an

effective model in two dimensions for one hole and one electron band, which is very close

to the Bernevig-Hughes-Zhang model. We observed that in addition to the Rashba spin-

orbit coupling term, there were two other anisotropic terms. These terms influence the

Fermi surface, but also the band structure. The latter changed, if they were not measured

in the same crystallographic orientation. This also implied some changes in the spin tex-

ture. It became orientation-dependent: the values of k0 as well as the anisotropies in the

measure of the rotation of the spin axis were affected by this. Moreover, k0 was relatively

small. This implies that the rotation is occurring rather fast in the band structure. As

InAs/GaSb heterostructres are already an active area of experimental investigation, this

system would be an interesting playground to probe the spin texture.

In this thesis, we found that spin-orbit coupling plays an important role in topological

insulators, which leads to an interesting spin texture. However, there are still some open

questions. If we stay focused on the last part of this thesis as InAs/GaSb heterostructures

are good candidates to experimentally probe the spin texture, an important point would

be to understand better the orientation dependent Fermi surface, which implies also a

change in the properties of the edge states. Up to now, the spin texture was considered

not to depend on the geometric shape of the edges. We could wonder what could be the

effect on a quantum (anti)dot for example. Moreover, as it was shown in this thesis that

the spin texture can be measured locally, this could be a first attempt to observe the

orientation dependent spin textures. We could also wonder what would be the influence

of an orientation dependent spin texture on the transport measurements.
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Another important open question is related to the fact that the edge states are usually

modeled as one dimensional systems, with an exponentially decaying wave function in the

perpendicular direction to the edge. We pointed out in this thesis that the edge states

had a spatial distribution in the growth direction of the heterostructure. There was also

a spatial separation between the states, with the hole states mainly localized in the GaSb

layer, whereas the electron states were mainly in the InAs layer. One could consider

the consequences for the full three dimensional wave function, in particular in the case of

interactions and impurities located only at the edge. We could wonder how the edge states

would then spread into the heterostructure, and in which material they would mainly be

localized, inheriting the properties of the layer they are located in.
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A | Scattering matrices

This appendix describes the details of how to compute the scattering matrix presented

in Eq. (3.13).

A.1 Scattering matrix at resonance

We will start when the system is at resonance, i.e. when the chemical potential µ

corresponds to one of the eigenenergies of the antidot. We make the ansatz that the wave

functions of the outer edges are represented as plane-waves as in Eq. (3.11), so that we

can similarly define the antidot wave functions near each tunneling regions to be

Ψd±0 =
e−iµt√
2πvF

c1(d2)e±ijF r/R r < 0

d1(c2)e±ijF r/R r > 0
,

Ψd±πR =
e−iµt√
2πvF

c3(d4)e±jF r/R r < πR

d3(c4)e±jF r/R r > πR
,

(A.1)

where we describe the incoming wave functions (with amplitude ci) and the outgoing wave

functions (with amplitude di). With such wave functions, we can evaluate the Heisenberg

equations of motion i∂tΨsα = [Ψsα,H] and i∂tΨdαβ = [Ψdαβ,H], where s = U,L, α = ±,

β = 0, πR, and H is the full Hamiltonian written in Eq. (3.1). We get for the upper part

the following scattering matrix which relates:
b1

b2

d1

d2

 = SU


a1

a2

c1

c2

 , (A.2)
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where

SU =


0 1−Γ

1+Γ
2i
√

Γ sin(θU )
1+Γ

−2i
√

Γ cos(θU )
1+Γ

1−Γ
1+Γ

0 −2i
√

Γ cos(θU )
1+Γ

−2i
√

Γ sin(θU )
1+Γ

−2i
√

Γ sin(θU )
1+Γ

−2i
√

Γ cos(θU )
1+Γ

0 1−Γ
1+Γ

−2i
√

Γ cos(θU )
1+Γ

2i
√

Γ sin(θU )
1+Γ

1−Γ
1+Γ

0

 , (A.3)

with Γ = |γT |2/(4v2
F ) and θU = θUkF − θjF + θT . We can repeat the same procedure for

the lower part. The scattering matrix relates
d3

d4

b3

b4

 = SL


c3

c4

a3

a4

 , (A.4)

where

SL = (−1)jF+1


0 (−1)jF+1 1−Γ

1+Γ
−2i

√
Γ sin(θL)
1+Γ

2i
√

Γ cos(θL)
1+Γ

(−1)jF+1 1−Γ
1+Γ

0 2i
√

Γ cos(θL)
1+Γ

2i
√

Γ sin(θL)
1+Γ

2i
√

Γ sin(θL)
1+Γ

2i
√

Γ cos(θL)
1+Γ

0 (−1)jF+1 1−Γ
1+Γ

2i
√

Γ cos(θL)
1+Γ

−2i
√

Γ sin(θL)
1+Γ

(−1)jF+1 1−Γ
1+Γ

0

 , (A.5)

with θL = θjF − θLkF + θT . If we assume that the structure of each tunneling matrix can

be decomposed into four blocks such that

SU,L =

(
rU,L t′U,L
tU,L r′U,L

)
, (A.6)

we are able to write the final scattering matrix, which contains only the amplitudes coming

from the leads [105, 140]. The total scattering matrix relates these amplitudes as shown

in Eq. (3.12). The effect of the phase, which appears when we want to equalize the two

forms of the wave function in Eq. (A.1), is accounted for by the factor (−1)jF in SL. The

final scattering matrix is then

S =

(r1 0

0 r′2

)
+

(
t′1 0

0 t2

)(
σx ⊗ σx −

(
r′1 0

0 r2

))−1(
t1 0

0 t′2

)

=(−1)jF+1


0 0 − sin(Θ) cos(Θ)

0 0 cos(Θ) sin(Θ)

sin(Θ) cos(Θ) 0 0

cos(Θ) − sin(Θ) 0 0

 ,

(A.7)
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A.2. Scattering matrix off resonance

where Θ = θU + θL = θUkF − θLkF + 2θT .

We can double-check our results using the transfer matrix formalism [140]. The trans-

fer matrix connects the tunneling region of the outer edge to the one of the antidot edge.

For example, we have 
d1

d2

c1

c2

 = MU


a1

a2

b1

b2

 (A.8)

It is connected to the scattering matrix by

MU,L =

(
tU,L − r′U,L(t′U,L)−1rU,L r′U,L(t′U,L)−1

−(t′U,L)−1rU,L (t′U,L)−1

)
. (A.9)

The total transfer matrix connects the upper contacts to the lower contacts in the following

manner 
b3

b4

a3

a4

 = M


a1

a2

b1

b2

 , (A.10)

where M = ML(1 ⊗ σx)MU . By inverting the total transfer matrix to recover the total

scattering matrix, we find that the transmission rates were identical.

A.2 Scattering matrix off resonance

We extend our description to when the tunneling is occurring off resonance. We will

follow the method described in Chap. 8 of Ref. [141]. We consider the phase acquired

by the electron along one half of the antidot to be φ = πRµ
vF

. We are then able to rewrite

the equivalence between the incoming and the outcoming states if the electrons originate

from the contact 1. 

b1

b2

d1

d2

d3

d4

b3

b4


= S̃



a1

0

d4e
iφ

d3e
iφ

d2e
iφ

d1e
iφ

0

0


, (A.11)
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where we use the definition that

S̃ =


rU t′U 0 0

tU r′U 0 0

0 0 rU t′U
0 0 tU r′U

 . (A.12)

We solve the coupled equations in Eq. (A.11) to obtain the first line of Eq. (3.13). We

repeat the same process for the other contacts to describe the full scattering matrix. We

can also use transfer matrix formalism, such that the total transfer matrix is

M̃ = MU(1⊗ σx)eiφσz⊗1MU , (A.13)

which enables us to double-check our results. Another double-check is done at the reso-

nance limit (φ = πjF ).
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