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Abstract
-

The development, maintenance and documentation of complex systems is
commonly supported by model-driven approaches where system properties
are captured by visual models at different layers of abstraction and from dif-
ferent perspectives as proposed by the Object Management Group (OMG)
and its model-driven architecture. Generally, a model is a concrete view
on the system from a specific perspective in a particular domain. We focus
on visual models in the form of diagrams and whose syntax is defined by
domain-specific modelling languages (DSLs). Different models may repre-
sent different views on a system, i.e., they may be linked to each other by
sharing a common set of information. Therefore, models that are expressed
in one DSL may be transformed to interlinked models in other DSLs and fur-
thermore, model updates may be synchronised between different domains.
Concretely, this thesis presents the transformation and synchronisation of
source code (abstract syntax trees, ASTs) written in the Satellite-Procedure
& Execution Language (SPELL) to flow charts (code visualisation) and vice
versa (code generation) as the result of an industrial case study. The trans-
formation and synchronisation are performed based on existing approaches
for model transformations and synchronisations between two domains in the
theoretic framework of graph transformation where models are represented
by graphs. Furthermore, extensions to existing approaches are presented for
treating non-determinism in concurrent model synchronisations. Finally,
the existing results for model transformations and synchronisations between
two domains are lifted to the more general case of an arbitrary number of
domains or models containing views, i.e., a model in one domain may be
transformed to models in several domains or to all other views, respectively,
and model updates in one domain may be synchronised to several other
domains or to all other views, respectively.
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Introduction & Problem Statement

Model-driven engineering (MDE) [SVCO06] is commonly used to support the
software and systems development process on a higher abstraction level
[HWRKT11]. It is proposed and supported by the Object Management Group
(OMG) [OMG16], which was founded in 1989 as an international consortium
of different leading industrial companies (e.g., IBM, Sun, Apple). Up to now,
many partners entered the consortium leading to a total number of around
800 members. The OMG pushes forward the development of standards in
the area of object-oriented software and systems development to which the
MDE belongs to. One development of the OMG consortium is the Uni-
fied Modeling Language (UML) [UML16] which became a standard tool in
model-driven software and systems engineering [Sel12].

Models form the basis in MDE which are used for the description and
the generation of software systems [EEGH15]. Models, especially UML di-
agrams, form an abstraction of the system which is represented by models.
Models can be any kind of representation: visual or textual, but also in any
other form [Mah09]. In the current work, we focus on visual models that are
used to represent source code, i.e., software. Within the applied industrial
project (cf. Sec. 1.1), we focus on flow chart models [FC169] that were ex-
tended by specific needs of our industrial partner. The theoretical concepts
that we developed in this work are not bound to any specific model type
and therefore can be applied to any kind of (visual) model.

Model Transformation Approaches

Model-2-Text Approaches Model-2-Model Approaches

Figure 1.1: Short Overview on Model Transformation Approaches [CHOG]

Model transformations define how to transform a model into another
model. Fig. 1.1 illustrates a distinction of different model transformation

1




2 CHAPTER 1. INTRODUCTION & PROBLEM STATEMENT

approaches. It is based on [CHO06]. Model transformation approaches can
be categorised into model-2-model approaches and model-2-text approaches.
In the model-2-model approach, a model that corresponds to a meta-model
is transfomred to another model that corresponds to another meta-model.
In contrast, in the model-2-text approach, a model that corresponds to a
meta-model is translated into strings, i.e., text. In general, the model-2-text
approach can be seen as a special case of the model-2-model approach, but
due to the fact that current compilers usually work on text files, the dif-
ferentiation of both cases is usefull [CH06]. In Chap. 7, we will discuss the
model transformation approaches of this figure in greater detail and enumer-
ate model transformation tools for each category of model transformation
approach.

Let us consider Fig. 1.2 which depicts a scheme of each source and target
instance that will be translated by model transformations. In model trans-
formation, a source instance shall be transformed into a target instance. An
Instance (MO) is usually a visual model describing a software artifact, e.g.,
flow chart, UML class diagram, entity relationship diagram, etc., but also a
text, e.g., source code, XMI code, etc.. each instance is described by a model
(M1), which is again defined by a meta-model. The meta-model itself con-
forms to a meta-meta-model (M4). The meta-meta-model again conforms to
a meta-meta-meta-model. This can be continued endlessly, but in general,
the meta-meta-model conforms to itself, i.e., it follows the structure defined
by itself.

conforms to

Meta-Meta-
Model

Instance

conforms to conforms to described by

Figure 1.2: Instance, Model and (Meta-)Meta-Models

Fig. 1.3 illustrates the model transformation process: One or more source
models that conform to a source meta-model shall be transformed to one or
more target models that conform to a target meta-model. The transforma-
tion engine executes the model transformation in following the transforma-
tion specification. The transformation specification defines ways, i.e., rules,
according to which the model transformation will be executed. The trans-
formation specification conforms to a given transformation language, i.e., it
is no arbitrary specification. The source meta-model, the target meta-model
and the transformation language conform to the meta-meta-model (cf. (M4)
in Fig. 1.2).

Note, the model transformation can be either executed wunidirectional
from a source model to a target model or vice versa, but also bidirectional,
i.e., from source model to target model and back. The model transformation
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Figure 1.3: Model Transformations

is either executed horizontal or vertical which is illustrated in Fig. 1.4. A
horizontal model transformation means that a model in a domain D1 is
transformed into a model in domain D2, i.e., a model that conforms to
a certain meta-model is transformed into a model of another meta-model.
The transformation is performed on the same abstraction level. In contrast,
the vertical model transformation translates a model in one domain to a
model in the same domain, but the transformation is performed between
different abstraction layers, e.g., from a platform-independent model to a
platform-specific model. It is also possible to transform models in the same
domain to the same abstraction level, as well as the transformation from
one abstraction level in one domain to another abstraction level to another
domain (vertical+horizontal).

Domain 1 Domain 2
—

Model M1 | Model M2

- -

Abstract
(platform
independent)

Concrete

(platform
specific)

Figure 1.4: Model Transformation Specification
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M 1.1. Background on the Industrial Project

In the framework of the ongoing cooperation between the Center of Security,
Reliability and Trust (SnT) and SES which is a world-leading satellite oper-
ator [SES16], an automated translation called “PIL2SPELL” from the satel-
lite control language PIL to the satellite control language SPELL was de-
veloped based on triple graph grammars [HGNT13, HGN " 14a, HGN T 14b].
This project was applied successfully in practice with the satellite “A2F”
being the first satellite operating in space using this automated translation
[PIL12], but more satellites followed already [PIL14].

Due to the success of PIL2SPELL, 38 out of 53 satellites are operated
with the satellite control language SPELL, which is a unified and open-
source satellite control language based on Python usable for each satellite
vendor [SPE15, CNB15]. Therefore, new aims came up which will enhance
the work of satellite operators and developers using SPELL: In detail, the
idea is to develop and use a visualisation for SPELL source code which is
similar to flow charts [FC169] but adapted to the domain of satellite control
languages. This visual language which we developed during this project is
called “SPELL-Flow”. Then, it is desired to develop an automated trans-
lation from SPELL to SPELL-Flow (visualisation) in order to provide the
visualisation to the satellite controllers. It is also interesting to provide a
backward direction, i.e., the code generation out of the visual model which
can be used by satellite control procedure devolopers. In that case, a bidirec-
tional approach is desired so that coding in SPELL but also in SPELL-Flow
is possible for the developers.

B 1.2. Research Questions

In this work, we will answer the following resaerch questions formally with
regard to the chosen formal modelling technique, namely triple graph gram-
mars which is based on algebraic graph transformation (cf. Chap. 2). In
Fig. 1.5, we give a graphical overview of the research questions and we clas-
sify the questions to the corresponding research area with regard to model
transformations.

In Chap. 3 “Methodology”, we want to analyse two questions regarding
the unidirectional model transformation from one language into another:

According to which concept is it possible to transform model L1 to model
L£2? (Q1).

Based on the results we worked out regarding Q1, we will extend this
methodology so that we take the bidirectional translation between two lan-
guages into account, i.e., the translation from one language to another and
back.

According to which concept is it possible to transform model L1 to model
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MODEL TRANSFORMATIONS ‘

TheoreticallFramework:

Concepts Uni-/Bidirectional Transformations

Model-to- View-Model-to-
Model View-Model

3 According to which concept is it possible to transform
L1to L2?

According to which concept is it possible to transform
L1 to L2 and vice versa?

In which way is it possible to treat a non-deterministic
set of rules in concurrent model synchronisations?

If a model update in one view is performed, then how is
it possible to consistently propagate this model update
to all other views (A) and also to the other domain (B)?

Figure 1.5: Research Questions: Summary & Classification to Research
Areas

L2 and vice versa? (Q2).

The next chapter “Model Synchronisation” in Chap. 4 will review the
formalisation of the model synchronisation framework based on triple graph
grammars which was published in [HEO™15]. During the work, questions
referring conflicts in the concurrent model synchronisation process occured
which we will discuss in this chapter, especially in the case of a non-
deterministic set of triple triple rules. So, we will answer the following
research question:

In which way is it possible to treat a non-deterministic set of rules in
concurrent model synchronisations? (Q3)

Chap. 5 “Propagation of Model Updates in Multi-View Models” presents
a new framework for propagating model updates in multi-view models. A
multi-view model is a model, which contains redundant information repre-
sented in different view models. This information is connected with each
other, i.e., if a manual update is performed, then an update of correspond-
ing information in a different view of the same model might become neces-
sary. The presented derived propagation framework is based on triple graph
grammars. Therefore, our approach also includes a solution on the consis-
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tent propagation of the model update to the corresponding model in the
other domain. We formulate the research question as follows:

If a model update in one view is performed, then how is it possible to
consistently propagate this model update to all other views (Q4-A) and also
to the other domain? (Q4-B).

M 1.3. Running Example

The running example of this thesis is derived out of real examples used in
the industrial project SPELL < SPELL-Flow which is a cooperation with
SES. Due to a Non-disclosure agreement (NDA), we are not allowed to show
real SPELL code in this thesis, instead we modified real code in order to
derive a running example which is closely related to real SPELL code (but
without any “realistic” meaning).

Example 1.3.1 (SPELL code - source language). We use the following
SPELL source code, given in Listing 1.1. This example is derived and de-
familiarised out of a real SPELL procedure that originally contained about
2000 lines of code (LOC).

Listing 1.1: Running example: SPELL code

#

# NAME : RUNNING_EXAMPLE

# FILE : RUNNING_EXAMPLE. py
#

ARGS|[ '$ARG1’]=Var( Type=ABSTIME, Confirm=False)
ARGS[ "$ARG2’|=Var( Type=ABSTIME, Confirm=False)
ARGS/[ "$ARG3’]=Var( Type=ABSTIME, Confirm=False)
ARGS|[ "$ARG/ ’|=Var( Type=ABSTIME, Confirm=False)
IVARS|[ '$VAR1’]=Var( Type=LONG)

IVARS|[ '$VAR2’]=Var( Type=LONG)

IVARS|[ $VARS3’]=Var( Type=LONG)

IVARS|[ $VAR/ ’]=Var( Type=LONG)

IVARS|[ $VARS5’]=Var( Type=ABSTIME)

IVARS|[ $VARG6’]=Var( Type=ABSTIME)

IVARS|[ $VAR7’]=Var( Type=STRING, Default="YES’)
IVARS|[ $VARS ’]=Var( Type=STRING, Default="NO_MONIT’)

3 %k Sk

#
#
# Main Procedure
#
#
S

tep( 'INIT’, ’Confirm procedure exzecution )
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1.3. RUNNING EXAMPLE

if mnot Prompt( ’Do you really want to execute this
procedure?’, YES_NO):
Finish( ’Ezecution aborted by user’)
#ENDIF
Step(’1’, 'DATA PRESENTATION’)

# Comments and infos about the wvariables defined above:
# ARGI! - ARG4 and VAR1 - VARS.

#

Step(’2’, ’INITIAL VERIFICATIONS’)
# Check wvalues

# - group A

GetTM( "TTEST13A (| TEST_GROUP_13A|) )
GetTM( "TTEST1/A (| TEST-GROUP-14A|) ")
GetTM( "TTEST15A (| TEST-GROUP-15A]) ’)
# - group B
GetTM( "TTEST13B
GetTM( "TTEST1/B
GetTM( "TTEST15B

(| TEST_GROUP_13B| ) ’
(
(
# - Special group
(
(

)

| TEST_GROUP_14B|) °)

| TEST-GROUP- 15B| ) *
)

GelTM( "TTEST12A (| TEST-GROUP.12A|) ’
GelTM( "TTEST12B (| TEST_-GROUP.12B|) ’)
Prompt( '"WARNING: Some warning. ’, OK)
Pause ()

Prompt( 'WARNING: Another warning.’, OK)
Pause()

# Check something else
GetTM( 'TTESTCHECK1 (|AL1|) ’)
GetTM( 'TTESTCHECK? (| AL2|) )
GetTM( 'TTESTCHECK3 (| AL3|) )
GetTM( "TTESTCHECK) (|ALj|) )
Prompt( 'WARNING: Again o warning. ’, OK)
Pause ()

#

)

)

Step(’3’, ’'GET SOME INFORMATION)
IVARS[ '$VAR3’], IVARS[ $VAR/’]=SomeFunctionCall ()
#

Step(’4’, 'ACTION SELECTION’)

# This stage allows to select the required action

user_ Choice=Prompt( ’Choose an option:’, [ ’'Option 17,
"Option 27,
"Option 37],

LIST | ALPHA )
if (user_Choice == ’Option 1°):
# GOTO Step of option 1
Goto('’57)
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elif (user_Choice == ’Option 27):
# GOTO Step of option 2
Goto(’67)

elif (user_Choice == ’Option 3’):
# GOTO Step of option 3
Goto(’77)

AENDIF

Step(’5’, 'MANAGEMENT OF COMPONENT A’)
Prompt( '"WARNING: Check something before.’, OK)
Pause()
Prompt( 'WARNING: Check something else.’, OK)
Pause ()
Verify ([| 'TTEST13A (|TEST.-GROUP.13A|)’, eq, 'OFF’ |,
[ ’TTEST15A (|TEST.GROUP.15A|)’, eq, 'OFF’ ]])

Step(’6’, 'MANAGEMENT OF COMPONENT B’)
Prompt( '"WARNING: Check something before.’, OK)
Pause ()
Prompt( 'WARNING: Check something else.’, OK)
Pause()
Verify ([[ 'TTEST13B (|TEST_-GROUP-13B|)’, eq, ’'OFF’ ],
[ ’TTEST15B (|TEST.GROUP.15B|)’, eq, 'OFF’ ]])

Step (’7’, ’'FINAL VERIFICATIONS’)

# Final checks

# - group A

GetTM( "TTEST13A (| TEST_-GROUP_134]) "’
GetTM( "TTEST14/A (| TEST_GROUP_14A|) "’
GetTM( "TTEST15A (| TEST_GROUP_15A|) "’
# - group B
GetTM( "TTEST13B
GetTM( "TTEST14B
GetTM( "TTEST15B

(
(| TEST-GROUP-14B| )’
(
# - Special group
(
(

| TEST_GROUP_ 15B| ) ’

GetTM( *TTEST12A
GetTM( *TTEST12B

| TEST_GROUP- 1241 ) ’

)
)
)
| TEST_-GROUP_13B|) *)
)
)
)
| TEST_-GROUP-12B|) ’)

Block I: Declarations (Lines: 1-25) Lines I to 6 contain a multi-line
comment. In SPELL, comments start with a #-symbol and finish at the end
of the line. Lines 7 to 18 define variables and arguments. Those lines will
be omitted in the SPELL-Flow model, i.e., they will be ignored during the
translation from SPELL to SPELL-Flow (cf. Sec. 6.1.1). Lines 19 to 25
contain a multi-line comment. In the remainder of this description, we do
not explicitly indicate further comments anymore.
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Block II: Step INIT (Lines: 26-30) Line 26 indicates the actual
start of the SPELL procedure. It consists of a Step statement which can
be seen as jump label and structuring element of the code. A Step state-
ment has two parameters: A label (here: 'INIT') and a description (here:
'Confirm procedure execution’). The next lines (27 - 30) hold an if construc-
tion. In executing the condition, a Prompt will be invoked asking for a user
input. Depending on the user’s input (YES or NO ), the if statement branches
to line 29 and executes the Finish statement, i.e., the procedure ends. Oth-
erwise, the execution of the procedure continues with line 32, which holds a
Step statement.

Block III: Step 1 (Lines: 31-36) This Step statement only structures
the code, because it only encompasses comments (lines 33 -36). It is followed
by another Step in line 37.

Block IV: Step 2 (Lines: 37-60) The Step statement in line 37 com-
prises a list of GetTM statements (lines 38-60) followed by Prompt and Pause
statements and again a list of GetTM statements followed by a Prompt and
a Pause. A GetTM statement holds a parameter and is used for retrieving
engineering telemetry data with the name indicated by the parameter from
the satellite. The Prompt statements invoke prompts to the user that need to
be answered. In this block, Prompts only offer the option OK, i.e., the user
has to confirm that she has read this message. The Pause statement pauses
the execution of the procedure.

Block V: Step 3 (Lines: 61-64) The next part (lines 61 to 64) contains
a Step statement. It is followed by the assignment of the resulting values
from the function SomeFunctionCall() to two variables (IVARS). The names

of the variables are provided by parameters, e.g., the first variable is called
$VAR3.

Block VI: Step 4 (Lines: 65-82) Lines 65 to 82 encompass the next
block that starts again with a Step statement. In this block, the user is
prompted for selecting between three options in line 69. The selection result
1s assigned to variable user_choice. Afterwards, the value of user_choice will
be evaluated and according to the user’s decision, the execution pointer of
the procedure jumps to a different position of the SPELL source code using
the Goto statement. The target of the jump is always a Step statement, i.e.,
the parameter given in the Goto statement should correspond to a label of
an existing Step statement. Otherwise, jumping to another position in the
source code is not possible.
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Block VII: Steps 5 and 6 (Lines: 83-98) The following two blocks
(lines 83 - 90 and lines 91 - 98) are very similar. Each of them consists of
an introducing Step statement, followed by a list of Prompt, Pause and Verify
statements, i.e., a user prompt followed by a pause is evoked. Afterwards,
the Verify is used for retrieving and comparing telemetry parameters of the
satellite with the values given in the list of parameters. This statement is
able to handle a list of parameters and possible assignements (cf. page 39
in [CNB15]). In many cases, the comparisons can be executed in parallel.

Block VIII: Step 7 (Lines: 99-112) Finally, the last part starts at line
99 and ends at line 112. The Step statement in line 100 is followed by a
list of GetTM statements for retrieving different telemetry values from the
satellite. A

The SPELL source code that we provided in Ex. 1.3.1 was to be trans-
lated to a SPELL-Flow model, which we will now illustrate in Ex. 1.3.2. It
is a hierarchical model: The first layer is the most abstract layer. The un-
derlying layers contain more detailed information on the model. The model
also includes comments and SPELL source code snippets that are not di-
rectly visible in the SPELL-Flow model, i.e., this information is implicictly
available, but explicitly not shown in the screenshots we use in Ex. 1.3.2.
This implicit information will be shown as tooltips in the SPELL-Flow wvi-
sualisation tool, i.e., the tool-support we implemented for visualising the
SPELL-Flow models (cf. Sec. 6.1.3).

Example 1.3.2 (SPELL-Flow model - target model). The screenshot
in Fig. 1.6 illustrates the first (main) layer of the SPELL-Flow model that
corresponds to the SPELL code in Listing 1.1. The main layer contains:

e All Steps on the first indentation level (in general, this contains all
Steps in the source code).

o All if/elif/else conditions (also for or while loops, and try/catch ex-
pressions) on the first indentation level.

e All Goto statements (i.e., jumps).

The screenshots in Fig. 1.7 and Fig. 1.8 illustrate the second
layer which belongs to the first Step statement with parameters INIT,
Confirm procedure execution. In this case, the model in the second layer is
very similar to the part of the model that belongs to the same Step on the
first layer.

The screenshot in Fig. 1.8 contains only the Step statement, because only
this Step was used for structuring and includes just comments, which are not
displayed in the SPELL-Flow model.
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Figure 1.6: Screenshot of first layer of SPELL-Flow model

Figure 1.7:

Step INIT

O

Step INIT

next
|INIT : Confirm procedure execution ‘
o=
next
if
et true
Step1
=L [1: DATA PRESENTATION ] I
[«.> |
next
S [2:INTIAL VERIFICATIONS ]
[ |
next
imd [3:GET SOMEINFORMATION |
|<.‘.>
next
Stepil [+:ACTION SELECTION ]
[ |
next
user_Choic.
i i it
Step o true elit el elr
[5: MANAGEMENT OF COMPONE... | | user. Choic | | user_Choic... ‘
= | - -
i if
Step 6 next eli eli

|6: MANAGEMENT OF COMPONE...

=

Step 7

et

|T: FINAL VERIFICATIONS

|(m>

[

[INIT : Canfirm procedure execution |

[

b

11

Second layer of SPELL-Flow model - part that belongs to
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‘1 : DATA PRESENTATION

‘<..‘>

Figure 1.8: Second layer of SPELL-Flow model - part that belongs to Step 1

In Fig. 1.6 Step 2 is visualised by one shape on the main layer. In
contrast, the corresponding second layer of this Step statement includes all
underlying statements, i.e., all GetTM, Prompt and Pause statements, as
shown in Fig. 1.9.

[2: INITIAL VERIFICATIONS |
[ |

*m‘ *nex{

TTEST13A <[TEST_GROUP_12A]> Pause |

next next

TTEST 144 <|TEST_GROUP_144|>
WARNING: Anather waming. OK

next

next

TTEST15A <[TEST_GROUP_154|>

Pause |

next
next

TTEST138 <|TEST_GROUP_13B|=

TTESTCHECK1 <|ALT|>
next

next

TTEST 148 <[TEST_GROUP_14B|=>

TTESTCHECK2 <|AL2|>
next

next

TTEST158 <|TEST_GROUP_15B|=

TTESTCHECK3 <|AL3|>
next

next

TTEST12A <[TEST_GROUP_124]>

TTESTCHECK4 <JAL4)>
next

next

TTEST 128 <|TEST_GROUP_12B|>

next WARNING: Again m
* next
WARNING: Some m
‘ Pause ‘

l next

Figure 1.9: Second layer of SPELL-Flow model - part that belongs to Step 2

Step 3 comprises one assignment which is explicitly shown on the second
layer that belongs to this Step (c¢f. Fig. 1.10).

Fig. 1.11 shows the second layer that belongs to Step 4. The if-condition
1s also reflected on the main layer, because, according to the rules mentioned
above, it is on the first indentation level in the SPELL source code. Still,
the second layer is more detailed in the sense that assignment of the user
input (Prompt) to variable user_choice is reflected on this layer, whereas the
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[2: GET SOME INFORMATION |
‘4..)

next

‘\VARS: IVARS[ SVARS], IVARS[ SVA... ‘

Figure 1.10: Second layer of SPELL-Flow model - part that belongs to Step 3

same line of code is omitted on the main layer.

[4: ACTION SELECTION |
[ |

next

|user,crmi:a: Prompt: Choose an .. |

next

Figure 1.11: Second layer of SPELL-Flow model - part that belongs to Step 4

Fig. 1.12 shows the detailed list of statements that are contained in
Step 5, while the main level only represents the corresponding Step.

Fig. 1.12 represents Step 6 which is very similar to Step 5 due to very
similar code blocks (cf., Fx. 1.3.1).

Finally, Fig. 1.13 illustrates the detailed list of statements that belong to
Step 7. The main layer only contains the Step statement.

A

Example 1.3.3 (SPELL-Flow meta-model). The instance model of
Ez. 1.3.2 is typed over the meta-model in Fig. 1.14 (also called type graph).
We implemented this meta-model using Eclipse EMF [EMF16]. For a
screenshot showing a visual meta-model we refer to Appendix A.3.

The node Root is the container of the instance model. All other nodes
in the instance model are contained by this node or by its children. The
containment structure is determined by Eclipse EMF. The node Root pro-
vides several containment edges for different node types in the SPELL-
Flow meta-model (to_StartNode, to_EndNode, to_Element, to_Connector and
hasComment). The Root node contains one attribute valueXMIID.

Another special node is TargetSpellFlow, all other nodes (except node
Root) are derived from this node. This node contains an edge tgt_opp
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[5: MANAGEMENT OF COMPONE... | [6: MANAGEMENT OF COMPONE... |

B \ B \
next next

WARNING: Check something befo... WARNING: Check something befo...
next next

Pause ‘ Pause ‘
next next

WARNING: Chackm WARNING: Chackm
next next

Pause ‘ Pauee ‘
next next

TTEST13A <[TEST_GROUP_13A.. TTEST138 <[TEST_GROUP_138...

Figure 1.12: Second layer of SPELL-Flow model - part that belongs to Step 5
(left) and part that belongs to Step 6 (right)

[7: FINAL VERIFICATIONS |
[ |

next

TTEST13A <[TEST_GROUP_13A>

next

TTEST14A <[TEST_GROUP_14A|>

next

TTEST15A <|TEST_GROUP_15A]>

next

TTEST138 <[TEST_GROUP_138|>

next

TTEST148 <|TEST_GROUP_148|=

next

TTEST158 <[TEST_GROUP_158|>

next

TTEST12A <[TEST_GROUP_124]>

next

TTEST12B <[TEST_GROUP_128|>

Figure 1.13: Second layer of SPELL-Flow model - part that belongs to Step 7

which is used for the correspondence meta-model. We represent the cor-
respondence meta-model in Appendiz A.4. Node Statement is derived from
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v ) platform:/resource/lu.uni.snt.spellflow/model/SpellFlowModel.ecore

v ## SpellFlowLanguage
~ H Root

= expressionText : EString
= top : Element

5 to_StartMode : StartNode ~ [ Operator -» Element
£ to_EndMode: EndMode = second : Element
= to_Element : Element = first : Element
2 to_Connector : Connector = type: EString
= hasComment : Comment w [ Parenthesis -» Element
= to_FirstElement : Elerment = typeleft: EString
= valueXMIID : EString = typeRight : EString
~ [ TargetSpellFlow & parenthesises : Element
= tgt_opp: CORR_TGT = top: Element
v [ Statement -> TargetSpellFlow v H SimpleElement -> Element
= isActive: EBoolean = nameS: EString
= iskxecuted : Elnt w [ Stephctivity -> Activity
= startLineMumber: Elnt = number: EString
= endLineMumber : Elnt w [ Paragraphfctivity -» Activity
= XMID: EString = number: EString
= sourceCode : EString H VerifyActivity -» Activity
w [ Element -> Statement, Root H Promptactivity -> Activity
= next : Element E PauseActivity -> Activity
5 tobnd @ EndMode H GetTMActivity -> Activity
S group : Elnt H WaitForActivity - > Activity
~w [ Activity -> Element H SendActivity -> Activity
= id: EString H DisplayStepActivity -» Activity
= description : EString w [ Comment -> TargetSpellFlow
=+ arguments : Argument = content: EString
= comments : EString £ tgtemt_opp : CORRCMT_TGT
v [ StartMode -» Statement, Root = nextC : Comment
=+ firstElement : Element H OtherActivity -> Activity
= procedureMame : EString E DatabaseActivity -> Activity
+ H EndMeode -> Element H InputOutputhctivity -> Activity
o infotext : EString v [ Gotohctivity -» Activity
H FinishMode -» EndMNode = toStepMumber: EString
H AbortMode -> EndMode = toStepConnector: Connector
H ReturnMode -> EndMade v [ SpellFunctionCallActivity -> Activity
v [ Loop -» ComplexElement = toFunctionMame : EString
= executeloop: Element = toFunction : Connector
H WhileLoop -= Leop w [ MativeFunctionCallActivity -» Activity
H FerLoop -> Loop = nameF : EString
~ [ ifCondition -» ComplexElement w [H Connector -> TargetSpellFlow

= yes : Element
= no : Element
= glse: Element
£ elif : ifElifCondition

v [ tryStatement -» ComplexElement
=+ try : Element
= catch : Element

v [ AssignmentActivity -> Activity
= complexExpression : Expression
= fstValue : EString
= hinaryQperator : EString

= toElement: Activity

= toeMNumber: EString
ComplexElement -> Activity
= simpleExpression : EString
= complexExpression : Expression
Argument -> Element

= value: EString

= nexthrg : Argument

= split: EBoolean

= splitsymbol : EString

= list: Parenthesis

= sndValue : EString v [ CORR_TGT
= simpleExpression : EString 52 tgt: TargetSpellFlow
~w [ Expression -> Element ~w [ CORRCMT_TGT

= has: Element

&3 tgtemt : Comment

o expressionText : EString

<

H ifElifCondition -> ComplexElement

Figure 1.14: SPELL-Flow meta-model, screenshot of expanded Eclipse ecore
file



16 CHAPTER 1. INTRODUCTION & PROBLEM STATEMENT

TargetSpellFlow and provides general attributes for nearly all children nodes,
like e.g., startLineNumber, endLineNumber or the corresponding sourceCode.
The Element node is parent of all nodes that are visible in the SPELL-Flow
instance model, except for the StartNode which uses a different set of at-
tributes and edges than the element provided by node Element. All other
nodes are specialisations (or in-between-nodes used for further specialisa-
tions) which are finally used within the instance model, e.g., StepActivity,
VerifyActivity, GotoActivity, ForLoop, ifCondition.

Nodes CORR_TGT and CORRCMT_TGT are helper nodes which are nec-
essary for the correspondence meta-model which is used in the triple graph
transformation step, i.e., the main part of the unidirectional and also the
bidirectional translation. A

B 1.4. Overview of the Thesis

The thesis is structured as described below: We will introduce the underly-
ing formal graph transformation framework in Chap. 2. In that chapter, we
will address the following main points in order to be able to intorduce model
transformations based on triple graph grammars: First, we will repeat the
general concepts of graphs so that we are able to extend them to attributed
graphs, typed graphs, typed attributed graphs and the corresponding graph
transformation concepts. Furthermore, we will discuss (negative) applica-
tion conditions. Then, we are able to introduce triple graphs, triple graph
grammars and model transformations based on triple graph grammars.

In Chap. 3, we will present the methodology for unidirectional and bidi-
rectional model translations which evolved out of the practical work on the
industrial projects. We will show its applicability on both industrial case
studies.

In the next chaper (Chap. 4), we will review the model synchronisation
framework based on triple graph grammars and the extensions regarding
concurrency and the semi-automated conflict resolution which we elaborated
during the work on this PhD project.

In Chap. 5 the derived propagation framework for propagating model
updates in multi-view models, which is an extension of the model synchro-
nisation framework based on triple graph grammars, is presented in detail.

During the work on the PhD project, the model synchronisation frame-
work based on TGGs was applied to the industrial case study at SES. In
Chap. 6, we summarise the work on that project and present and evaluate
the developed prototypes.

Finally, we analyse related work in Chap. 7, conclude the thesis and
discuss perspectives for future work in Chap. 8.

For better clarity, the following Table 1.1 summarises which chapter is
based on which research articles and books. (For a full list of all publications
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we refer to Appendix A.7.)

Chapter Articles / Books Pages

Chap. 2 o Fundamentals of Algebraic Graph Transformation | 34

Formal by Hartmut Ehrig et al. [EEPT06]

Framework | o Graph and Model Transformation - General Frame-
work and Applications by Hartmut Ehrig et al.
[EEGH15]

Chap. 3 o On an Automated Translation of Satellite Procedures | 10

Methodol- Using Triple Graph Grammars by Frank Hermann et

ogy for al. [HGN"13]

Model o Triple Graph Grammars in the Large for Trans-

Translations | lating Satellite Procedures by Frank Hermann et al.
[HGNT14a, HGNT14b].
o Towards Bidirectional Engineering of Satellite Con-
trol Procedures Using Triple Graph Grammars by Su-
sann Gottmann et al. [GHET13]

Chap. 4 o Model synchronization based on triple graph gram- | 40

Model mars: correctness, completeness and invertibility by

Synchro- Frank Hermann et al. [HEO"15]

nisation o Correctness and Completeness of Generalised Con-
current Model Synchronisation Based on Triple Graph
Grammars by Susann Gottmann et al. [GHNT13a]
o Optimisation and Customisation of Concurrent
Model Synchronisation Based on Triple Graph Gram-
mars - Fxtended Version by Susann Gottmann et al.
[GHNT13b]

Chap. 5 | o Towards the Propagation of Model Updates along | 56

Derived different Views in Multi-View Models by Susann

Propa- Gottmann et al. [GNET16b]

gation

Framework

Chap. 6 o Towards Bidirectional Engineering of Satellite Con- | 48

Case Study | trol Procedures Using Triple Graph Grammars by Su-

at SES sann Gottmann et al. [GHE13]

o On an Automated Translation of Satellite Procedures
Using Triple Graph Grammars by Frank Hermann et
al. [HGN*13]

o Triple Graph Grammars in the Large for Trans-
lating Satellite Procedures by Frank Hermann et al.
[HGNT14a, HGNT14b].

Table 1.1: Structure of the Thesis Related to Publications
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Formal Framework

The model transformation approach we use in this work is based on the
(extended) formal algebraic graph transformation framework, which we will
introduce in this chapter. Our comprehension of the formal framework and
the definitions that we present in this chapter are mainly based on [EEPT06]
and [EEGH15].

For further reading on algebraic (typed) (attributed) graph transforma-
tion, we refer to the handbook series of Rozenberg et al. [Roz97, EEKR99]
and also to [RS97]. A more actual overview of the state of the art in 2006 is
given in [Hec06] and also an introduction to graph transformation is available
[BHO2]. For details on algebraic specification we refer to [EMCT01, EMS5].

First, we will define graphs and the algebraic graph transformation
approach which forms the basis for the following sections. Using this,
we are able to define typed graphs and typed graph transformation
[EEPT06, EEGH15], then we define typed attributed graphs and typed at-
tributed graph transformation (TAGT) [GLEO12a] and some further con-
structions based on TAGT. In order to control the transformation, our trans-
formation rules may be equipped with nested application conditions, which
we will describe in a separate section [EEHP06, HP05]. Finally, we intro-
duce all formal details to be able to draw the line to triple graph gram-
mars (TGGs), that is the underlying concept of the subsequent chapters
[Sch95, SK08, HEGO14]. We conclude this chapter with the formalisation
of transformation units that are used for structuring model transforma-
tions [Kus00, KKRO8] which were used for implementing the case study
(cf. Sec. 6.1).

19
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B 2.1. (Typed) (Attributed) Graphs and Algebraic
(Typed) (Attributed) Graph Transformation

The theory on algebraic graph transformation emerged in the late 1960s
and in the the early 1970s. In the USA the first works on algebraic graphs
and algebraic graph transformation were published by Rosenfeld and Pfaltz
[PR69]. In Europe, the first works on that theory emerged by Ehrig, Pfender
and Schneider [EPS73, SE77, Ehr79]. The idea behind algebraic graph trans-
formation is inspired by Chomsky grammars that were developed in the late
1950s [Cho59]. We will now review the notions of graphs, graph morphisms,
and of constructions like pushouts in order to define the term of algebraic
graph transformations.

BM21.1 Graphs

In the algebraic approach, a graph consists of a set of nodes and a set of
edges (as sorts of the algebra) and two mapping functions (as operations of
the algebra). Both mapping functions define the source and target nodes of
each edge (cf. Sec. 1.1.2 in [EEGH15]). The following definitions considers
directed edges, i.e., the source and target node of each edge is indicated.

Definition 2.1.1 (Graph (cf. Def. 2.1 in [EEPTO06] or in [EEGH15])).

A graph G = (V, E, s,t) consists of a set V of nodes (also s
called vertices), a set E of edges, and two functions s,t :
E — V mapping source and target nodes to each edge. A
Example 2.1.1 (Graph). We have given graph G = (V, E,s,t), that we
visualised below, with the following:

set of nodes V. ={A,B,C,D,E, F}

v

t

e set Of 6dg€$ E = {61762763764765766767768}

e source mapping s : E — V with e1,es — A, e3 — B, ey4,e5,e6 — C,
er— D and eg— E

e target mapping t: E — V with ey — B, ea,e3—> C, eq— D, e5,e7 —

E and eg,eg — F A

A graph morphisms between two graphs maps the edges and nodes from

one graph to the other while preserving the source and target functions

(i.e., s and t). Graph morphisms that are special kinds of algebra homo-

morphisms, and with graphs form the category Graphs (cf. Sec. 1.1.2 in

[EEGH15]). According to Fact 2.5 in [EEPTO06], graph morphisms g and f

can be composed and will result again in a graph morphism g o f which also
preserves the source and target functions.

Definition 2.1.2 (Graph Morphism (cf. Def. 2.4 in [EEPT06] or Def. 2.1
in [EEGH15])). Given graphs G1,Go with G; = (V;, E;, s, t;) fori=1,2.
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Ae

Figure 2.1: Example Graph G

A graph morphism Gy = Go.f = (v fe) _m
consists of two functions fy : Vg, — Vg, and I— V1
fe : Eq, = Eg, that preserve the source and target i h Iy
functions, i.e., fyrosy = soo fg and fiyoty =tg0 fg

(i.e., the diagram on the right commutes). A By 3V
t2

52

M 212 Typed Graphs

We will now extend the definitions of graphs and of graph morphisms to
typed graphs and typed graph morphims. It introduces the typing of models.
For that, a special graph, called type graph is introduced (which is also called
meta-model) and special morphism, called type graph morphism. A type
graph defines types for nodes and edges that can be used by typed graphs
in order to assign types to its nodes and edges. The typed graph is also
called instance graph. A type graph morpism is a graph morphism that is
additionally type preserving. That means, nodes and edges are mapped to
nodes and edges of the same type.

Definition 2.1.3 (Typed Graph and Typed Graph Morphism (cf. Def. 2.6
in [EEPTO06] or Def. 2.2 in [EEGHI15])). A type graph is a distinguished
graph TG = (Vpa, Era, sta,tra). Vra and Epg are called the vertex and
the edge type alphabets, respectively. A

A tuple (G,type) of a graph G together with a

TG
graph morphism type : G — TG is then called a typec, / 1\ \typec,
typed graph. Given typed graphs G1 = (Gy,typer) =)
G1 ; Go

and GI = (Go,types). A typed graph morphism
f: G — GT is a graph morphism f : G1 — Gy
such that typeg, o f = typeq, (i.e., the diagram on the right commutes).

Example 2.1.2 (Type Graph). In Ez. 1.3.3 we introduce the complete
meta-model, i.e., type graph, of our running example. It is much more
complex than a type graph which is possible due to Def. 2.1.3, because it also
contains attributes, inheritance, different kinds of edges (e.g., containment
edges vs. “normal” edges), cardinalities, etc.. If we shrink this type graph
so that it corresponds to our definition, we obtain a type graph which only
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defines types for nodes and edges. In the example type graph, which we il-
lustrate below, we also reduced the number of types of our running example
to five different types for nodes in order to increase readability. (Note, in
contrast to the SPELL-Flow meta-model in Ezx. 1.3.3, we add indicies to
edges next and to_Element for better readability.)

Type graph TG = (Vrq, Era, STa,tra) consists of the following:

e set of nodes Vg = { Root, StartNode, StepActivity, PromptActivity,
PauseActivity }

e set of edges Epg = { to_StartNode, firstElement, to_Element,
to_Elementy, to_Elements, to_Elementy, next;, nexty, nexts, nexty }

e source mapping stq : Erg — Vrg with

— to_StartNode, to_Element, — Root,
firstElement — StartN ode,

— nexts — PromptActivity,
— nexty — PauseActivity and
— to_Elementsy, to_Elements, to_Elementy, next), nexts —
StepActivity
e target mapping tra : Erg — Vg with

— to_StartNode — StartNode,
firstElement, to_Elementy, to_Elements — StepActivity,

— nexty, nexty, to_Elements — PromptActivity and

— nexty, nexts, to_Elementy — PauseActivity A

to_StartNod . .
w‘ StartNode / ’ PI"OHIptACthlty‘
nexty / Y

to_Element; firstElement

\ i to_Elements

StepActivity ‘ nexty ’ PauseActivity ‘
to_Elementy U to_Elementy

nexts nextq

Figure 2.2: Example Type Graph / Meta-Model

Example 2.1.3 (Typed Graph). We extend graph G from Fig. 2.1 by types.
The graph morphism type has the following mappings:

o typey : V. — Vpg with A — Root, B — StartNode, C,D +—
StepActivity, E — PromptActivity and F — PauseActivity
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A :Root — to-StartNode B :StartNode ’D :StepACtiVity‘
}\ ]

e2 :to_Element es :firstElement  e4 :to_Elemento er7 nexty

\ i | e :to_Elementgs

’C :StepActivity[ ,{ E :PromptActivity‘

|

eg :to_Elementy eg :nexto

T

’ F :PauseActivity ‘

Figure 2.3: Example Instance Graph / Typed Graph GT = (G, type)

o typep : E — FEpg with e — to_StartNode, ey — to_Elementy,
e3 — firstElement, eq — to_Elements, es +— to_Elements, eg —
to_Element,, er — next; and eg — nexts

The resulting graph GT = (G, type) is shown in Fig. 2.3. AN

Remark 2.1.1 (Visual Notation for Typing). The visual notation uses
x : TYPE, where : TYPE denotes the type of the corresponding node or edge.
x denotes the name of the element. We often omit node and edge names,
because they are formally irrelevant. A

M 2.1.3. Typed Attributed Graphs

The graphs we want to use in practice contain attributes, too. Thus, we
extend the definitions of typed graphs and typed graph morphisms to typed
attributed graphs and typed attributed graph morphisms [EPT04]. First,
we introduce typed graphs and typed graph morphisms. Then, both defini-
tions can be merged to typed attributed graphs and tpyed attributed graph
morphisms. The definition is based on E-graphs, that are extended kinds
of graphs. E-graphs include the definitions of graphs but are expanded by
nodes, source and target functions that describe attributes and their data.

Definition 2.1.4 (E-graph and E-graph Morphism (cf. Def. 24
in [EEGHI15] or Def. 8.1 in [EEPTO06])). An E-graph GF =
(Va, Vb, Eg, Ena, Ega, (i ti)ic{a,nA,EA}) consists of graph nodes Vg, data
nodes Vp, graph edges Eg, node attribute edges Ena, edge attribute edges
Era, and the source and target functions sq : Eq — Vg and tg : Eq — Vo
for graph edges, sya : Ena — Vg and tya : Ena — Vp for node attribute
edges, and spa : Ega — FEg and tga : Epa — Vp for edge attribute edges.
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G
/\
tg
SEA SNA

Ega ~Vp < Ena
tpA tNA

For E-graphs G¥ and G¥, an E-graph morphism f : G¥ — GF is a tuple

f = ((fvZ : ‘/Z-Gl — V;;GQ)I-E{GyD}, (ij : Ele — EJ'GQ)]'E{G,NA,EA}) such that
f commutes with all source and target functions. A

Attributed graphs are E-graphs that are extended by a data structure
that is provided by an algebra. The underlying algebra includes a data
signature (DSIG) for defining the sorts that are necessary for the attribution.
An attributed graph uses attribute values that belong to the carrier sets
of the algebra, i.e., that correspond to the data signature (cf. [EEPT06,
EMCT01]).

Definition 2.1.5 (Attributed Graph and Attributed Graph Morphism (cf.
Def. 2.4 in [EEGH15] or Def. 8.4 in [EEPT06])). An attributed graph G over
a data signature DSIG = (Sp, OPp) with attribute value sorts S, C Sp is
given by G = (G¥, Dg), where G¥ is an E-graph and D¢ is a DSIG-algebra
such that Usegr D, = Vs,

For attributed graphs G1 = (G¥,Dg,) and Gy = (G¥,Dg,), an at-
tributed graph morphism f : Gy — Gq is a pair f = (fq, fp) with an E-graph
morphism fg : G¥ — GF and an algebra homomorphism fp : Dg, — Dg,
such that fa v, (z) = fps(x) for allz € Dg, 5,8 € Sp. AN

For the definition of typed attributed graphs, the term of a final DSIG-
algebra is used. It is defined in Def. B.11 in [EEPTO06].

Definition 2.1.6 (Typed Attributed Graph and Typed Attributed Graph
Morphism (cf. Def. 2.5 in [EEGHI15] or Def. 8.7 in [EEPT06])). An at-
tributed type graph is a distinguished attributed graph ATG = (TG, Z),
where Z is the final DSIG-algebra. A tuple GT = (G, typeg) of an attributed
graph G together with an attributed graph morphism typeq : G — ATG is
then called a typed attributed graph.

Given typed attributed graphs G1 = (G1, typeg,) ATG
and G?T = (G2at£‘FJP6G2)7 Ta 'typed attmibuted graph wec, /(=) \iwmecs
morphism f : G — G5 1is an attributed graph
morphism f : Gi1 — Ga such that typeg, o f = G1 Gy
typeg, - A

Example 2.1.4 (Typed Attributed Graph: Explicit Notation). The at-
tributed type graph ATG, which we visualise in Fig. 2.4 (top) is the type
graph from Fig. 2.2 plus nodes that represent the attribute types and edges
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to_StartNode S tartNode / ’ PromptActNlty }
next1

to_Element;  firstElement nexts nexty \\
\ i to_. Elementg ‘\
> Y \
StepActivity nexta ’ PauseActivity ‘ |
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Figure 2.4: Example Typed Attributed Graph GT = (G, type) (bottom)
with Attributed Type Graph ATG (top)

that refer to the attribute types. In the current example, we added one type
node string. In addition, three edges pointing to that tye were added: Two
edges named description and number from the StepActivity node and one edge
named description from the PromptActivity node. This extended type graph
defines that StepActivity nodes my be equipped with two attributes description
and number. Values assigned to both attributes are of type string. Further-
more, nodes of type PromptActivity may be equipped one attribute description
of type string.

The example instance graph (attributed typed graph GT ) that we
show in Fig. 2.4 (bottom) is typed over type graph ATG. It is the

graph from Fig. 2.3 but extended by the following attributes: Both
: StepActivity nodes are equipped with two attributes description and
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number. Both description attributes are assigned with string attributes
MANAGEMENT OF COMPONENT A and 5, respectively. Furthermore,
node E : PromptActivity is extended by attribute description that holds the
string value WARNING : Check something before. OK.

In ATG as well as in GT, we visualise attribute nodes and edges in blue
and dashed lines to improve readability. A

Remark 2.1.2 (Visual Notation for Attributes). In Fig. 2.4 we visualise
the attributed type graph ATG as well as the typed attributed graph G*
i explicit notation that corresponds to the E-graph notation. This means
that attributes are represented by separate nodes and the attribute names
are represented by edges that carry the attribute names. Furthermore, every
configuration of all attributes, i.e., all elements of the carrier sets defined by
the underlying algebra are available in the typed attributed graph, too. The
concrete assignment of an attribute is denoted by an edge. Elements of the
carrier sets that are not target of an attribute edge are not assigned. The
number of elements from the carrier sets can be infinite. Therefore, we omit
elements that are not assigned in the visualisation of the typed attributed
graph GT.

In Fig. 2.5 we illustrate graph GT in compact visualisation. There, the
attributes and the concrete assignments are part of the graph node, e.g., node
C : StepActivity also includes both attributes and their current assignment.
In the remainder of this work, we will use this compact notation. A

Example 2.1.5 (Typed Attributed Graph: Compact Notation). In Fig. 2.5
we visualise the same typed attributed graph GT which is shown in Fig. 2.4
in compact notation. A

e1 :to_StartNode

A :Root = B :StartNode D :StepActivity

description=MAN. ..
number=>5

e2 :to_Elementq es3 ﬁrstElement / ‘

\ e4 :to_Elemento €7 :rleth

C:S A e5 :to_Elements E :Pl“OmptActiVjty
S thlty —— | description=WAR. ..

description=MAN. .. ‘

number=>5 [ eg :to_Elementy eg :nexto

T }
’ F :PauseActivity ‘

Figure 2.5: Example Typed Attributed Graph GT = (G, type)
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M 214 M-adhesive Categories and Pushouts & Pullbacks

Eilenberg and Mac Lane established the foundation of the category theory
in 1945 as result on their research in the mathematical field of algebraic
topology (cf. [EM45]). They introduced the concepts of categories, functors
and natural transformations. Since then, these concepts were refined and
extended in many research papers and books and category theory became
an important field in mathematics, logics and theoretic computer science.

The categorial foundation of the algebaric graph transformation ap-
proaches, that form the basis for this work, are M-adhesive categories, which
are based on a class of M-morphisms and that fulfill a the so-called van Kam-
pen property (cf. Def. 4.1 in [EEGH15]). In this abstract class of categories,
the rule-based transformation of structures is possible for which numer-
ous desireable theoretical properties hold. (Typed) (attributed) graphs and
(typed) (attributed) triple graphs have shown to be M-adhesive categories.

In this section, we will give a short introduction into M-adhesive cate-
gories and related concepts, like pushouts and pullbacks, that are necessary
in this work. Thus, we omit the categorial foundations and deeper infor-
mation on M-adhesive categories. For more details on algebraic category
theory and M-adhesive categories we refer to [AHS90, EGRW96, Lac05,
EEPTO06, EEGH15].

We will now cite the general definition of a category. For a short formal
introduction to category theory we recommend Appendix A in [EEPT06] or
Appendix A in [EEGH15].

Definition 2.1.7 (Category (cf. Def. A.1 in [EEPTO06] or Def. A.l in
[EEGH15])). A category C = (Obc, Morc, o,id) is defined by

e a class Obc of objects;
e for each pair of objects A, B € Obc, a set Morc(A, B) of morphisms;

e for all objects A,B,C € Obc, a composition operation o(A, B,C) :
Morc(B,C) x Morc(A,B) — Morc(A,C); and

e for each object A € Obc, an identity morphism ida € Morc(A, A),
such that the following conditions hold:

1. Associativity. For all objects A, B,C,D € Obc and morphisms f :
A—B,g:B—Candh:C — D, it holds that (hog)o f = ho(go f).

2. Identity. For all objects A, B € Obc and morphisms f : A — B, it
holds that foida = f and idgo f = f. A

The category Sets is a category with object class of all sets and with
all functions as morphisms (cf. Ex. A.3 [EEGH15]). The composition for
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functions f : A — B and g : B — C is defined by (g o f)(z) = g(f(z)) for
all x € A. The identity is the identical mapping id(z) = x with id : A — A.

We will now regard special morphisms of a category C: monomorphisms,
epimorphisms and isomorphisms. In all categories that we regard in this
work, e.g., the categories of typed attributed graphs and their typed at-
tributed graph morphisms (AGraphsarg) or triple graphs and their triple
graph morphisms (TrGraphs), the following statements hold, because the
categories we use in this work are based on Sets.

e monomorphisms are componentwise injective,
e epimorphisms are componentwise surjective, and
e isomorphisms are componentwise bijective.

In general, monomorphisms, epimorphisms and isomorphisms do not corre-
spond to injective, surjective or bijective morphisms, respectively. We will
now cite their definitions.

Definition 2.1.8 (Epimorphism (cf. Def. A.12 in [EEGH15] or Def. 2.13
in [EEPTO06])). Given a category C, a morphism e : A — B is called a
epimorphism if, for all morphisms f,g : B — C € Morg, it holds that
foe=goe implies f =g. A

A

Definition 2.1.9 (Monomorphism (cf. Def. A.12 in [EEGH15] or Def. 2.13
in [EEPTO06])). Given a category C, a morphism m : B — C s called a
monomorphism if, for all morphisms f,g : A = B € Morc, it holds that
mo f=mo g implies f = g. A

A B

Definition 2.1.10 (Isomorphism (cf. Def. A.9 in [EEGH15] or Def. 2.13
in [EEPTO06])). A morphism i : A — B is called an isomorphism if there
exists a morphism i~' : B — A such that i oi™' = idp and i~ oi = id4.
Two objects A and B are isomorphic, written A = B, if there exists an
isomorphism i : A — B. A
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Intuitively, a pushout (PO) is obtained by gluing two objects via a com-
mon subobject. The resulting object is unique up to isomorphism. It is
written as D = B +4 C, where D is the unique pushout object which is ob-
tained by gluing B and C over a common A. The dual construction is called
pullback (PB). Intuitively, it is the intersection of two objects via a common
object. It is written as D = B+ C, where D is the pushout object which is
obtained by gluing B and C' over a common A. We will now present the def-
initions of both constructions according to [EEPT06, EEGH15]. For more
details on the pushout construction and a comparison between the single and
the double pushout approach and their results in graph transformations, we
refer to [EHK97].

Definition 2.1.11 (Pushout (cf. Def. A.17 in [EEGH15] or Def. 2.16 in

[EEPTO06])). Given morphisms f: A — B and g: A — C in a category C.
A pushout (D, f',g') over f and g is defined by ~A— f— B

a pushout object D and morphisms ' : C — D | |

and ¢ : B — D with f'og = ¢ o f, such that

g

the following universal property is fulfilled: for all évi f ng h
objects X with morphisms h: B — X and k: C — L w\
X with ko g = ho f, there is a unique morphisms \:X

x:D — X such thatrog =h andxo f' =k. A
Definition 2.1.12 (Pullback (cf. Def. A.22 in [EEGH15] or Def. 2.22 in

[EEPTO06])). Given morphisms f:C — D and g: B — D in a category C.

A pullback (A, f',g') over f and g is defined by X\\
a pullback object A and morphisms f': A — B and \l“ h

g : A — C with gof' = fog', such that the following . ‘Aff’\ﬁB
universal property is fulfilled: for all objects X with ‘/

morphisms h: X — B and k: X — C with fok = \‘[i i
goh, there is a unique morphisms x : X — A such C— f—D
that f'ox =h and ¢’ ox = k. A

According to Lemma A.21 in [EEGH15] or Fact 2.20 in [EEPT06],
pushouts can be composed and decomposed if a commutative diagram like
the one on the bottom is given and the following conditions hold:

e If (1) and (2) are pushouts, then the composition of both (1)+(2) is
also a pushout.

e If (1) and (1)+(2) are pushouts, then (2) is also a pushout as a result
of the decomposition.
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Similarly, pullbacks can be composed and decomposed in the following way:

e If (1) and (2) are pullbacks, then the composition of both (1)4(2) is
also a pullback.

e If (2) and (1)+(2) are pullbakes, then (1) is also a pullback as a result
of the decomposition.

The composition and decomposition of pullbacks is shown in Lemma A.24
in [EEGH15] or in Fact 2.27 in [EEPT06].

An important property which is part of the definition of M-adhesive
categories is the van Kampern square property. It defines special com-
patibilities of pushouts and pullbacks in a commutative cube. The main
idea is that a pushout shall be stable under pullbacks and vice versa, i.e.,
that pullbacks shall be stable under combined pushouts and pullbacks (cf.
[EEPT06, EEGH15]). For more details on the van Kampen square property,
we refer to Def. 4.1 in [EEPTO06] or Def. 4.1 in [EEGH15].

Another property that is necessary for the introduction of M-adhesive
categories is the pushout-pullback compatibility property. Its definition is
provided in the following. Finally, we are able to define M-adhesive cate-
gories.

Definition 2.1.13 (PO-PB Compatibility (cf. Def. 4.2 in [EEGH15])). A
morphism class M in a category C is called POPB compatible if

1. M is a class of monomorphisms, contains all identities, and is closed
under composition (f: A— BeM,g: B—-Ce€M=gofeM).

2. C has pushouts and pullbacks along M-morphisms, and M-morphisms
are closed under pushouts and pullbacks. A

Definition 2.1.14 (M-adhesive Category (cf. Def. 4.4 in [EEGH15))).
A category C with a POPB compatible morphism class M is called an M-
adhesive category if pushouts in C along M-morphisms are M-van Kampen
squares. A

For more details, examples and more properties of M-adhesivce cate-
gories, we refer to Chapters 4 and 5 in [EEGH15].

A special type of pushout which we use within this work, especially in
Chap. 5, is the effective pushout. As also visualised in Fig. 2.6, intuitively
in Sets, an effective pushout E is the union of B and C over a common D,
whereas D is the intersection of B and C over a common A. For further
reading and more details on effective pushouts, we refer to [Lac05, Golll,
SEM*12, EEGH15].
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Figure 2.6: Example Effective Pushout in Sets

Definition 2.1.15 (Effective Pushout (cf. Def. 2.3 in [SEMT12] or Def.
4.23 in [EEGH15])). Given M-morphisms h : B — X, k : C — X in an
M-adhesive category (C, M) and let (A, f,g) be obtained by the pullback (4)
of h and k. Then pushout (3) of f and g is called effective, if the unique

morphism x : D — X induced by pushout (3) is an M-morphism. A
1‘47 f HI? Af f H11‘3
9 (4 n g \
} v '
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B 215 (Negative) Application Conditions

Before we define algebraic typed attributed graph transformation (TAGT),
we introduce graph conditions. Transformation rules form the basis of the
TAGT. Each rule define a change on the graph. In practice, many rules shall
be applied, if a certain context exist in the graph, or if a given context is not
part of the graph. Those restrictions of the rule application are provided
by application conditions (AC) (cf. [Wag95, EH86]. If a single application
condition forbids a certain context in a graph, then it is called negative
application condition (NAC) (cf. [HHT96, HP05]. Application conditions
can be nested, i.e., different application conditions can be combined via
logical operators. If a graph condition is combined with a graph rule, then
it is called application condition (cf. Def. 2.1.18).

In the following, we cite the definition of graph conditions and the sat-
isfaction of graph conditions. A graph condition is satisfied, if a morphism
from the graph condition to a graph exists.

Definition 2.1.16 (Graph Condition (cf. Def. 2.7 in [EEGH15])). A
(nested) graph condition ac over a graph P is of the form

e ac = true,
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e ac = —ac,

e ac = I(a,ac”),

® ac = Njezac;, or
® ac = V;ezac;,

where ac is a graph condition over P, a : P — C is a morphism, ac’ is a
graph condition over C, and (ac;);ct with an index set T are graph conditions
over P. A

Definition 2.1.17 (Satisfaction of Graph Conditions (cf. Def. 2.8 in
[EEGH15])). Given a graph condition ac over P, a morphismp: P — G
satisfies ac, written p = ac, if

a

ac>Pp

C<acd

e ac = true
’ P q

e ac = —acd and p }- ad,

e ac = J(a,ac’) and there exists an injective morphism q with goa = p
and q = ad,

e ac = Njezac; and Vi €L : p = acy, or

e ac = Viezac; and Fi € L : p | ac;. AN

B 2.16. Algebraic (Typed) (Attributed) Graph Transformation & Graph
Grammar

First ideas for algebraic typed attributed graph transformation was devel-
oped in [EKMR99] (among others), which was later formalised in [EPT04].
We will now present the formalisation of algebraic graph transformation
based on typed attributed graps. Similar definitions exist for attributed
graphs, typed graphs or graphs in general (cf. [EEPT06, EEGH15]).

A graph transformation rule consists of three graphs: A left-hand side
(LHS) which describes a pattern that shall be found in a graph. The gluing
part (middle) shows, which elements will be deleted by the rule, i.e., it is
a real subset of the LHS if the rule shall delete something, or it is equal to
the LHS, if the rule deletes nothing. The right-hand side (RHS) indicates
the result of the rule application, i.e., if we compare the gluing part with
the RHS, we will notice that if the RHS and the gluing part are equal, then
nothing will be added by the rule. If the gluing part is a real subset of the
RHS, then elements will be added by the rule. Rules might be equipped
with application conditions, in order to restrict the rule application. Graph
transformation rules are also called graph productions.
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Definition 2.1.18 (Rule (cf. Def. 2.9 in [EEGHI15] or Def. 3.1 in
[EEPTO06])). A rule p = (L L R;ac) consists of graphs L, K, and
R, called left-hand side, gluing, and right-hand side, respectively, two injec-

tive morphisms | and r, and a graph condition ac over L, called application
condition. A

l T

ac> L+ K R

The gluing condition prevents rule applications, if the application will,
result in dangling edges. Dangling edges are edges with a missing source
node or a missing target node or both. Note, edges without a source or
target node cannot exist in a graph.

Definition 2.1.19 (Gluing Condition (cf. Def. 3.9 in [EEPT06])). Given
a (typed) graph production p = (L LKL R), a (typed) graph G, and a
match m : L — G with X = (Vx, Ex,sx,tx) for all X € {L,K,R,G}, we
can state the following definitions:

o The gluing points GP are those nodes and edges in L that are not
deleted by p, i.e., GP =y (Vi) Ulg(Fg) = l(K).

e The identification points 1P are those nodes and edges in L that are
identified by m, i.e., IP = {v € VL | 3w € V,w # v : my(v) =
my(w)}U{e € EL | 3f € Er, f #e:mp(e) =mge(f)}

o The dangling points DP are those nodes in L whose images under m
are the source or target of an edge in G that does not belong to m(L),
i.e., DP ={v eV, |Je € Eg\ mg(EL) : sa(e) = my(v) or tg(e) =
my (v)}.

p and m satisfy the gluing condition if all identification points and all dan-
gling points are also gluing points, i.e., IP U DP C GP. AN

The graph transformation defines the process of applying a rule to a
graph. Morphism m : L — G is called match. Morphism n : R — H
is called comatch. The direct transformation of a graph via one rule is
constructed using the double-pushout approach (cf. [EHK ™97, EEPTO06]).

Definition 2.1.20 (Algebraic (Typed) (Attributed) Graph Transformation
(cf. Def. 2.10 in [EEGHI15] or cf. Def. 3.2 in [EEPTO06))). Given a rule

p = (L LKL R;ac) , a graph G, and a match m : L — G such that
m |= ac then a direct transformation G 22 H from G to a graph H is
given by the pushouts (1) and (2). A sequence of direct transformations is
called a transformation. AN
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ac>[ K R
G+ 7 D 7 ~H

Example 2.1.6 (Rule with Negative Application Condition). In
Fig. 6.13 we illustrate the typed attributed graph transformation rule
P2_merge empty Argument node with SimpleElement in Parenthesis_case 2.
In the screenshot taken in Henshin [Henl16b], the gluing graph is not il-
lustrated. It is illustrated implicitly by colors: If an element is marked with
red in the LHS, then it will be deleted by the rule. If an element is marked
in green in the RHS, then it will be created by the rule. In both cases, the
colored elements are not available in the gluing part of the rule.

The example rule in Fig. 6.13 is equipped with one mnegative appli-
cation condition ACO which forbids the application of the rule, if node
: SimpleElement is followed by a node : Element.

The mapping from node : SimpleElement to the same element in the NAC
is visualised by mapping number [2].

Note, in theory, this Tule is not applicable in the case described by the
NAC, even if the NAC is missing, due to a violation of the gluing condi-
tion: If node : SimpleElement will be deleted, then edge : next would be a
dangling edge. In the implementation of Henshin, the developers had differ-
ent options in dealing with violations of the gluing conditions, e.g., abort the
transformation if the gluing condition is not fulfilled or another possibility is
to delete the dangling edge automatically. For this example rule, the current

implementation would lead to an undesired effect, which is the reason why
we defined this NAC. A

Example 2.1.7 (Rule with Nested Application Condition). The
graph transformation rule set to_Element Step next which is illustrated in
Fig. 6.30, contains a nested application condition: ~(ACO A AC1), i.e., if
a morphism from ACO or AC1 (or from both) can be found to the current
graph, then the rule is not applicable (because of the —). A

Finally, we review the terms of algebraic (typed) (attributed) graph
transformation system, graph grammar and language.

Definition 2.1.21 (Graph Transformation System, Graph Grammar and
Language (cf. Def. 7 in [EPTO04] or Def. 3.4 in [EEPTO06])). A typed
attributed graph transformation system GT'S = (DSIG, ATG, S, P) based on
(AGraphsarg, M) consists of a data type signature DSIG, an attributed
type graph ATG, a typed attributed graph S, called start graph, and a set P
of productions, where
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1. a production p = (L Ly gt R;ac) consists of typed attributed graphs
L, K and R attributed over the term algebra Tpsi(X) with variables
X, called left hand side L, gluing object K and right hand side R
respectively, and morphisms l,r € M, i.e., | and r are injective and
isomorphisms on the data type Tpsra(X),

2. a direct transformation G 225 H wvia a production p and a morphism
m: L — G is given by the double pushout diagram (cf. Def. 2.1.20),
where (1) and (2) are pushouts in AGraphsara,

3. a typed attributed graph transformation (short transformation) is a

sequence Gop = G1 = ... = G, of direct transformations, written
GO :*> Gn7

4. the language L(GTS) is defined by
L(GTS) = {G | I(typed) graph transformation S = G}. A

M 2.1.7. Additions: Inheritance & Edge Types

Inheritance and different edge typed, e.g., containment edges vs. “normal”
edges are interesting concepts for algebraic typed attributed graph transfor-
mation, especially, when the theoretical concepts shall be applied in prac-
tice. For the practical implementaion of case studies and industrial projects,
many tools supporting algebraic typed attributed graph transformation were
implemented [ABJ*10, EHGB12, Tae04, NNZ00, LAS14, VBH"16].

Inheritance for graph transformation approaches was introduced, for-
malised and extended in [BELT03, TR05, LBET07, GLEO12b]. In [BELT03,
TRO5], a concept for type graphs with inheritance was introduced which
leads to a new concept of typed graphs with inheritance. The algebraic
graph transformation rules were divided into abstract rules and derived
concrete rules. Consequently, the graph transformation approach was ex-
tended to the new notation of inheritance. In addition, multiplicities of
edges in graphs were introduced and formalised. These concepts were ex-
tended and formal analysis techniques were applied in later research work,
e.g. in [LBE1T07, GLEO12b].

The distinction between different kinds of edges, i.e., between normal
edges and containment edges was introduced in [BETO08] and extended in
[BET12]. The authors developed a new kind of graph, called C-graph, for
graphs with containment edges. In addition, the term rooted graph was
defined which fulfills the EMF-specification (cf. [EMF16]), that each graph
has to contain a root node and each other node in this graph has to be
derived from the root node.
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M 2.2. Triple Graph Grammars

Triple graph grammars (TGGs) were introduced in 1994 by Schiurr et al.
[Sch95] as a new technique for specifying graph translators. They are used
for determining a pair of models that are in relationship with each other.
The relationship between both models is given by means of an intermediate
model, the correspondence model. Therefore, TGGs provide a bidirectional
model transformation language [SK08, ALS15] that are used for uni- and
bidirectional model transformations between two models, for model inte-
grations and for model synchronisations (cf. [KWO07]). Model integration
means, given two models and a TGG, then the correspondence part will
be derived, in order to relate both models with each other. Given a triple
grah and a TGG, then model synchronisation describes the process of prop-
agating changes perfromed in the source model to the target model, or vice
versa, respectively.

According to the algebraic definition Def. 3.3 in [HEO'15], a TGG is
defined by a set of triple rules, a triple start graph, which is usually empty,
and a triple type graph. The language L(TGG) of triple graphs is generated
by the TGG, i.e., L(TGG) is the set of all possible triple graphs that can
be derived out of the start graph in applying the set of triple rules. Each
triple graph of L(TGG) can be typed over the triple type graph.

A triple graph consists of three graphs: A source graph, a target graph
and a correspondence graph which establishes links between nodes of the
source graph and nodes of the target graph. A triple graph is typed over
a three-component meta-model. A triple graph morphism from one triple
graph to another is composed of three morphisms: one between the source,
one between the target and one between the correspondece graphs.

TGGs are formalised using the set-theoretical approach in [KS06]. This
formalisation was extended in [EEET07, EEHO8] to typed attributed graphs.
In Thm. 7.2 of [EEGH15], it is shown that the categories of triple
graphs TrGraphs (triple graphs), TrGraphstqg (typed triple graphs),
ATrGraphs (attributed triple graphs), and ATrGraphstg (typed at-
tributed tryiple graphs) are M-adhesive, i.e., the properties of M-adhesive
categories also hold for those triple graph categories.

In the following, we will provide the formal definitions of the terms we
introduced informally above. The definitions are mainly based on [EEGH15].
In our work, we use typed attributed triple graphs.

Definition 2.2.1 (Triple Graph (cf. Sec. 3.3 [EEGHI15] or Def. 1 in
[EEH08])). A triple graph G = (G5 & G© q GT) consists of graphs G,
GY, and GT, called source, correspondence, and target graphs, and two graph
morphisms sq : G¢ — G and tg : G — GT mapping the correspondence
to the source and target graphs. G is called empty, if G°, G, and GT are
empty graphs. A
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Definition 2.2.2 (Triple Graph Morphism (cf. Sec. 3.3 [EEGH15] or Def. 1
in [EEHO08])). Given triple graphs G = (G° & G¢ ‘q GT) and H = (H5 &
HC ™ HT). A triple graph morphism m = (mg, m¢c, mr) : G — H consists
of graph morphisms mg : G — H®, m¢ : G — HC and mp : GT — HT
such that mg o sq = sg omc and mp otg = tg o me, i.e., both parts of
the diagram commute (annotated in the diagram with (=)). The triple graph
morphism m is injective, if morphisms mg, mg, and myp are injective. A\

G = (GsﬁGCi,GT)
| \ \
m mg (:) mge (:) mr
' v 5 #C *T
H= (H o H —>tH H")

Definition 2.2.3 (Typed Triple Graph and Typed Triple Graph Morphism
(cf. Sec. 3.3 [EEGH15))). A typed triple graph (G,typeg) is given by a
typing morphism typeg : G — TG from the triple graph G into a given
triple type graph TG.

¢
Given triple graphs G1 = (GY pat GY¢ 4 GT) TG
t
and G = (G5 & GY % GT). A typed triple typeG/((:N’PGQ
graph morphism f : (G1,typec,) — (Ga, typeg,) is G e
a triple graph morphism f such that typeg, o f = ! f 2
typeq, , i.e., the diagram on the right commutes. /A

Example 2.2.1 (Triple Type Graph and Triple Graph). The triple type
graph of our running example consists of the following three components:

e the source meta-model (SPELL meta-model), which is explicitly given
in Appendiz A.2,

e the target meta-model (SPELL-Flow meta-model), which is explicitly
given in Appendiz A.3, and

e the correspondence meta-model (CORR meta-model), which is explic-
itly given in Appendiz A.4.

In Ezx. 5.1.8, we present a reduced version of the triple graph of our run-
ning example. A detailed example triple graph is given in Appendiz A.6. The
example triple graph is typed over the type graph that is given by the SPELL
meta-model, the SPELL-Flow meta-model and the CORR meta-model. A

Triple rules extend the triple graph in creating elements in the source,
target and correspondence part simultaneously. They are non-deleting and
therefore, the triple rule ¢r can be applied using the single pushout approach,
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ie., tr: L — R. If we apply the general definition of rules to triple rules,

i.e., the double-pushout approach, then we obtain tr : L LKL R, where
[ is the identical morphisms and thus, L = K. Hence, the double pushout
approach and single pushout approach are equivalent for triple rules. Triple
rules can be equipped with application conditions ac that demand for a
certain context (positive application condition) or forbid a specified context
(negative application condition) in a triple graph in order to be applicable.
In the following, the definitions for triple rules, triple rule transformation and
negative application conditions for triple rules are given. Finally, we are able
to define triple graph grammars (TGGs) and the language L(T'GG) formed
by the TGG. The language L£(TGG)® denotes the source language, i.e.,
L(TGQG), but restricted to the source component. Dually, £L(TGG)T denotes
the target language, i.e., L(T'GG), but restricted to the target component.

Definition 2.2.4 (Triple Rule and Transformation (cf. Def. 3.7 in
[EEGH15] or Def. 2 in [EEHO08)])). A triple rule tr = (tr : L — R,ac) con-
sists of triple graphs L and R, an M-morphism tr = (trg,trc,trr) : L — R,
i.e., trg: LS — R%, trc : LY — RC, and trp : LT — R (see upper part of
the diagram below) and an application condition ac over L. The morphism
tr = (trg,tro, try) is injective on the graph component and isomorphic on
the data part.

L Lo = LC——t——LT
‘ tr - ‘ trS - | tr¢ -~ | trT -

R RS — SR RC — tp 'RT
m 1 ‘ mS ‘ mC ‘ mT ‘
i (1) i ns 'l nC vl nT
G | GSa--:sc i———GC;i——C— ta fff*GTm ;

F o < T
H HS<7 SH HC ti 'HT

Given a triple graph G, a triple rule tr = (tr,ac) and a match m : L — G

with m = ac, then a direct triple transformation G BN of G wvia tr
and m is given by pushout (1) in the diagram above, which is constructed
as the component-wise pushouts in the S -, C-, and T -components, where
the morphisms sy and ty are induced by the pushout of the correspondence
component. In addition to H, we obtain comatch n : R — H and transfor-
mation inclusion f : G — H. A direct transformation is also called triple
graph transformation (TGT) step. A

Definition 2.2.5 (Negative Application Conditions in Triple Rules (cf. Def.
1 in [EEHPO09))). Given a triple graph G and a triple rule tr : L — R.
A general negative application condition (NAC) (N,n) consists of a triple
graph N and an injective triple graph morphism n: L — N.
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A NAC with n = (n%idr,id,) is N+—n—L—tr —R
called source NAC and a NAC with n = N | ,
(idpg,idr.,nT) is called target NAC. This .. T "
means that source-target NACs, i.e. either \‘G*” f ”>}v]

source or target NACSs, prohibit the existence

of certain structures either in the source or in the target part only. A match
m: L — G is NAC consistent if there is no injective ¢ : N — G such that
gon =m. A triple transformation G= H is NAC consistent if all matches
are NAC consistent. A

Definition 2.2.6 (Triple Graph Grammar ( Def. 3.3 in [HEO™15] or Def.
3.11 in [EEGH15))). A triple graph grammar TGG = (TG, TR, S) consists
of a triple type graph TG, a set TR of triple rules and a triple graph S called
triple start graph. (Note that usually, S is empty, i.e., S = @.)

A language of triple graphs generated by TGG is given by L(TGG) =
{G | 3 triple transformation S = G via rules in TR}. The source language
L(TGG)Y = {G% | (G5 & G© g GT) € L(TGG)} contains all graphs that
are the source component of a derived triple graph. Similarly, the target
language L(TGG)T = {GT | (G° & G¢ g GT) € L(TGG)} contains all
derivable target components. The model transformation relation MTr =
{(G5,GT) € L(TGR)S x LITGG)T | 3G = ((GS &€ G° 1S GT) € L(TGG)}
defines the set of all consistent pairs (G°,GT) of source and target models.

A

Example 2.2.2 (Triple Graph Grammar and Triple Rules). The triple graph
grammar of our running example is given by:

e The triple type graph (cf. Ex. 2.2.1),
e an empty start graph &, and

o the set of triple rules. In Ex. 4.1.6 and Fx. 6.1.1, we present a small
subset of the triple rules of our running example and of our case study.

to_StartMode

file_input =44 “el StartMode <4

Figure 2.7: Triple Rule T file_input-2-StartNode

We show explicitly the screenshot of one triple rule, which we will use
as basis erxample in the remainder of this sub-section. The triple rule
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T_file_input-2-StartNode in Fig. 2.7 contains one node file_input in the source
domain, i.e., the SPELL domain, and two nodes Root and StartNode con-
nected by edge to_StartNode in the target domain, i.e., the SPELL-Flow do-
main. The correspondence part establishes a relation between nodes file_input
and StartNode. This triple rule creates all elements in all three domains
(indicated by green < 4+ > symbols), thus it does not imply any existing
structures. A

Remark 2.2.1 (Visual Notation for Rules). In the examples and screen-
shots we illustrate within this thesis, we use a compact visual notation. For
triple and operational rules it means that we will not show the left-hand side
and the right-hand side of the rule separately. Instead, they are visualised
together. There, the following notation is used:

o A green < ++ > marker indicates that the corresponding element shall
be created by the rule. Consequently, the LHS of that rule is the given
rule without the elements marked with < ++ >. The RHS of that rule
1s identical to the LHS plus all elements marked with < ++ >.

In Chap. 6, we also include screenshots of plain graph rules taken in Henshin.
Those screenshots visualise the LHS and the RHS of the rule. Elements
marked in red indicate that they will be deleted by the plain graph rule.
Elements marked in green indicate additions. A

M 2.2.1. Operational Rules for Model Transformations via TGGs

In the practical part of our work (cf. Chap. 6), we use TGGs for unidirec-
tional and bidirectional model transformations. In future work, it is also
desired to extend this approach to model synchronisations (cf. Chap. 4). In
detail uni- or bidirectional model transformations using TGGs means, that
given a source model (or target model, repectively), we derive the target
model (or source model, respectively) using the given TGG. In order to be
able to derive a model in another domain, we need special kinds of triple
rules: the so-called operational rules. They are derived out of the given set
of triple rules. We distinuguish between the following kinds of operational
rules that are derived out of a triple rule tr:

e source rule trg,

e forward rule trp,

target rule trg,

backward rule trp,

source-target rule trgr,

integration rule try,
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e forward transformation rule trpp,

e backward transformation rule trgp,
e integration translation rule tryp, and
e consistency creating rule troc.

The concept of operational rules is presented in [KS06] and formalised
and extended in [EEET07, EEHP09]. In the following, we will define the
above-mentioned operational rules. The given definitions are taken from
[EEET07, EEHP09, EEGH15]. Note, in this work, we illustrate the defini-
tions of operational rules without application conditions. For the definitions
of operational rules with application conditions, we refer to Sec. 7.2 in
[EEGH15], (especially Defs. 7.6, 7.7., 7.8, 7.12 and Lemma 7.9).

Definition 2.2.7 (Derived Operational Rules Without Application Condi-
tions (cf. Def. 7.11 in [EEGH15])). Given a triple rule tr = (tr : L — R, ac).
We derive its operational rules trg , trr , trgr, trr, trpg, tr; without appli-
cation conditions according to the diagram below. The data component for
each inclusion @ — X for a triple graph X is given by an identity, i.e., the

construction does not change the data component. A
triple rule tr source rule trg target rule tro
Set yo_t .1 Se— g @ g— T
J trs J tr€ l trT { trs J trT
SR tr
RS+—RC——RT RS+—0© (%) %) g—RT
source-target rule trgr
{ trS { trT
forward rule trg backward rule trp integration rule try
trsosL tr, L trTotL trsosL trTotL

RS+—[C—— T [S s I.¢ T [Se——g—T

J id J tr¢ trT { trS tr¢ { id J id tr¢ J id
SR tr SR tr SR tr

RS%RCHRT RS%RCHRT RS%@%RT

It is obvious, that the construction of source and target rules, as well as of
forward and backward rules is symmetric. Hence, it is sufficient to explicitly
show the definition of forward model transformations based on source and
forward rules. The backward case is dually. In definition Def. 2.2.8, we
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use the term source consistency. First, we need to explain the term match
consistency. Given a sequence of source rule and a sequence of forward rules
that are both derived from the same triple rules. Then, match consistency
means that the match of each forward rule is determined by the comatch of
the corresponding source rule, i.e., the forward rule matches and extends the
same structure in the source component of the triple graph that was built
up by its corresponding source rule. Then, source consistency means that
if we have a source transformation sequence, i.e., a graph was created using
source rules, only. Then, the forward transformation sequence is match
consistent. For more detailed definitions we refer to Def. 4 (which includes
source consistency) and Def. 3 (match consistency) in [EEHO0S].

Definition 2.2.8 (Model Transformations Based on Source and Forward
Rules (cf. Def. 2 in [EEHP09] or Def. 7.23 in [EEGH15])). A model transfor-

mation sequence (G°, Gy BILTN G, GT) is given by a source graph G°, a tar-
get graph GT, and a source consistent forward transformation Gy E G
with Gy = (G5 & 2 5 @) and GT = G7.

A (forward) model transformation MTp : L(TGG)® = L(TGG)T is
defined by all (forward) model transformation sequences. A

The model integration is defined similarily: Given a source and a target
model, then the integrated model, i.e., the correspondence graph, is created
using the set of source-target rules and model integration rules that are
generated out of the set of triple rules. For a detailed definition, we refer to
Sec. 4 in [EEHO08S].

Based on the model transformation using source and forward rules an
extension to forward and backward translation rules, respectively, was de-
veloped in [HEOG10] and extended in [HEGO10a, HEGO14]. The main
idea is to combine the source and forward rule into one rule: the forward
translation rule. The backward case is similar. In order to keep track of ele-
ments in the source model that were already translated, so-called translation
attributes were introduced. These are markers that indicate the translation
status of each element, i.e., if the marker is set to F (false), then the element
is not translated. If the element is set to T (true), then this element has
been translated and shall not be translated, again. In [HEOG10] it is ad-
ditionally shown, that the model transformation using source and forward
rules is equivalent to the model transformation using forward translation
rules. The latter is also implemented in HenshinTGG, that we were using
in the applied part of this work (cf. Chap. 6).

Definition 2.2.9 (Graph with Translation Attributes (cf. Def. 2 in
[HEOG10])). Given an attributed graph AG = (G,D) and a subgraph
Go C G we call AG" a graph with translation attributes over AG if it ex-
tends AG with one boolean-valued attribute try for each element x (node,
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edge or attribute) in Go and one boolean-valued attribute try, for each at-
tribute associated to such an element x in Gog. The set of all these additional
translation attributes is denoted by Attg,. Attgo, where v =T orv =F,
denotes a translation graph where all the attributes in Attg, are set to v.
By AG' = AG @ Attg, we specify that AG is extended by the attributes in
Attg,. Moreover, we define Att"(AG) := AG @ Attg,. A

In the definition we provide above, the translation markers belong to
the set of data structures. In [HEGO14], a separation of translation mark-
ers from the data structures was worked out. For definitions of this so-called
family with translation attributes and a modification of the above-mentioned
definition of a graph with translation attributes according to the new devel-
opments, we refer to Defs. 2.11 and 2.12 in [HEGO14] or also to Defs. 7.25
and 7.26 in [EEGH15].

Example 2.2.3 (Graph with Translation Attributes). In Fig. 2.8 we il-
lustrate a screenshot of the SPELL abstract syntax graph (ASG) that we
translated using HenshinTGG. It is an excerpt of our running example in
FEz. 1.3.1. It visualises the sub-tree of Step 5 that belongs to source code
lines 84 - 90. The following figure shows a screenshot of the same ASG but
extended by translation markers. In this screenshot, all elements are marked
with translation markers that are set to T, except for all NEWLINE nodes
and edges nl_post that are connected to those nodes. They are equipped with
F-markers. In HenshinTGG, the notation is as follows: Elements with green
bozes, lines and green textcolors and that contain marker [tr] are equipped
with translation markers that are set to T. FElements with red bozxes, lines
and red text color and that contain marker [Itr] are equipped with translation
markers that are set to F. A

A forward translation rule is an operational rule that includes transla-
tion attributes. It can be seen as a combination of the corresponding source
rule and forward rule. In the source domain, the forward translation rule
is equipped with translation attributes, i.e., it does not create any element
in the source domain. Similar to the forward rule, it creates elements in
the correspondence and the target domain. Due to the use of translation
attributes that change markers in the mapped model from F to T, forward
translation rules are deleting, but only for translation attributes. This mean
that the value F will be deleted and replaced by T. The following defini-
tions of operational rules are based on [HEOG10]. Due to the extensions
of family with translation attributes (as described above), those definitions
were adapted, too. For the updated definitions, we refer to [HEGO14] or
[EEGH15].

Definition 2.2.10 (Forward Transformation Rule (cf. Def. 3 in
[HEOG10])). Given a triple rule tr = (L — R). The forward translation
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file_input [t
fine._start=1 [1]
fine_end=1 [
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line_start=1 [t] line_start=2 [ir] line_start=2 [u]
line_end=1 [tr] line_end=2 [ir] line_end=2 [i]
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eniryS=WARNING: Check something befors. []

SPELL_Constant [t]
line_start=2 [u]
line:_end=2 [tr]
sourceCodeText= (1]
nameC=0K. [t]

Figure 2.8: Example SPELL ASG with Translation Markers

rule of tr is given by trpr = (Lpr T Kpp 2 Rpr) defined as follows

using the forward rule (Lp A Rp) and the source rule (Lg s Rg) of tr,
where we assume w.l.o.g. that tr is an inclusion:

o Kpp=1Lp @Att%‘s,

— T F
[ ] LFT = LF D Atth D AttRs\Ls’

_ T T _ T
e Rer = Rp & AttLS &) AttRS\LS =Rp® AttRS,
o lpr and rpr are the induced inclusions. A

Note that the gluing condition for all kinds of operational rules with
translation attributes, (i.e., forward translation rules backward translation
rules, integration translation rules and consistency creating rules) is always
fulfilled, because they are only deleting for translation attributes and there-

fore, no dangling edges will occur. For the formal proof we refer to Fact 7.31
in [EEGH15].
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Example 2.2.4 (Forward Transformation Rule). The forward transforma-
tion rule FT_T file_input-2-StartNode (c¢f. Fig. 2.9) is derived from triple
rule T_file_input-2-StartNode (c¢f. Fig. 2.7). The node in the source domain
is equipped with translation attribute tree inpue = F — T. This means that
a match from this FT-rule is only possible to a source model which con-
tains a node file_input that hasn’t been translated, yet. Then, in applying
this FT-rule, the structures in the correspondence and target domains will
be created. A

to_StartMode

_~H.sIC

file_input <t

Figure 2.9: Forward Translation Rule FT_T file_input-2-StartNode

Definition 2.2.11 (Model Transformation Based on Forward Transla-
tion Rules (cf. Def. 5 in [HEOGI10])). A model transformation sequence

(Gs, G, LI G.,,Gr) based on forward translation rules consists of
a source graph Gg, a target graph Gr, and a complete TGT-sequence
Gy ZEET. Q! with almost injective matches, Gy = (AtF (Gg) + @ — @)
and G, = (AttT(GS) +— Go — Grp).

A model transformation MT : L(TGG)%® = L(TGG)™ based on for-
ward translation rules is defined by all model transformation sequences
(Gs, G, i) G.,,Gr) based on forward translation rules with Gg € Ls
and Gt € L(T0). All these pairs (Gg,Gr) define the model transformation
relation MTRpr C L(TGG)%° x L(TGG)™ . The model transformation is
terminating if there are no infinite TGT- sequences via forward translation
rules and almost injective matches starting with Go = (AttF (Gg) < @ — @)
for some source graph Gg. A

The language £(TGG)? is the set of models that can be generated out
of (and parsed by) the set of source rules T Rg, i.e., L(TGG)*® = {Gs | & =
(Gs < @ — @)viaTRs}. LITGG) is possibly larger than £L(TGG)?®, still
the following relation holds: £(TGG) C L(TGG)%°. The similar relation
L(TGG)T C L(TGG)T? holds for L(TGG)T® which is the language that is
generated out of (and parsed by) the set of target rules TRy .

In Thm. 1 in [HEOGI10] or in Fact 7.36 in [EEGH15], it is shown,
that both model transformation concepts, i.e., model transformation using
forward rules and model transformation based on forward translation rules,
are equivalent. The backward transformation rules are definied dually to
forward translation rules. Hence, we will not present the definitions for
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the backward transformation case based on backward transformation rules,
explicitly.

In Thm. 2 in [HEOGI10] it is shown that each model transformation
based on forward transformation rules is terminating, correct and complete.
Termination means that each FT-rule changes at least one translation at-
tribute. Correctness means that each triple graph resulting out of the TGT-
sequence belongs to the language £L(T'GG). Completeness means that if we
have a source model being element of the source language £(TGG)®, then
there exists also a triple graph being element of the language generated by
all triple rules £L(T'GG) with the source model in the source domain of the
triple graph. In addition, the triple graph can be generated out of the source
model by a TGT-sequence based on FT-rules.

For better clarity on completeness of a forward translation sequence, we
cite the following definition:

Definition 2.2.12 (Complete Forward Translation Sequence (cf. Def. 3.11

in [GHNT13b])). A forward translation sequence Gy N G, with almost
injective matches is called complete if G, is completely translated, i.e., all
translation attributes of G, are set to true (“T'”). A

Example 2.2.5 (Backward Transformation Rule). The backward transfor-
mation rule BT_T file_input-2-StartNode (cf. Fig. 2.10) that is generated
out of triple rule T _file_input-2-StartNode (c¢f. Fig. 2.7), is dual to the cor-
responding forward translation rule. A

fo_StartMode

file_inpuk =4 “el StartMode <tr>

Figure 2.10: Backward Translation Rule BT_T file_input-2-StartNode

The set of model integration translation rules are gernerated out of the
set of triple rules. Given a source model and a target model, then the
correspondence model will be derived using the set of integration translation
rules (IT-rules, TR;r). IT-rules are operational rules that are equipped
with translation attributes in the source and target domains. Thus, they
are similar to forward and backward rules. The model transformation based
on IT-rules is defined analogously to the model transformation based on
FT-rules or BT-rules, respectively (cf. Remark 7.43 in [EEGH15]).

Example 2.2.6 (Integration Translation Rule). We visualise a screenshot
of the integration translation rule IT_T file_input-2-StartNode in Fig. 2.11.
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It is again generated out of triple rule T file_input-2-StartNode (cf. Fig. 2.7).
The generation of the IT-rule is similar to the generation of F'T- or BT-rules.
The elements in the source and target domain are equipped with translation
markers, whereas the correspondence part will be created by this rule. A

to_Starthode

file_input <tr=

Figure 2.11: Integration Translation Rule IT_T file_input-2-StartNode

The last type of operational rules that we want to introduce are con-
cistency creating rules (CC-rules). They are defined formally in Def. 7.44
in [EEGH15]. The set of consistency creating rules (T'Rc¢) is generated
out of the set of triple rules. All consistency creating rules are equipped
with translation markers in all three domains, i.e., in the soucre, target and
correspondence domain. Therefore, they only change translation markers
from F to T, and do not create any elements in the triple graph. They are
used for checking the consistency of a triple graph, i.e., given a triple graph
(= integrated model), then can all markers of the triple graph be changed
from F to T7 If all markers of the triple graph are set to T after applying
the set of CC-rule, i.e., after executing the model transformation based on
CC-rules, then the triple graph is consistent. Otherwise, it is not consistent.
For formal details we refer to Sec. 7.5.3 in [EEGH15].

Example 2.2.7 (Consistency Creating Rule). The consistency creating
rule CC_T file_input-2-StartNode in Fig. 2.12 is generated out of triple rule
T _file_input-2-StartNode (¢f. Fig. 2.7). It contains translation markers
tr, = F — T for all elements in all domains. This rule does not create any
element, instead it only changes the translation attributes in order to check
whether the given triple graph is consistent. A

fo_StartMade

T BT

Hle_input <t |

Figure 2.12: Consistency Creating Rule CC_T _file_input-2-StartNode
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Remark 2.2.2 (Visual Notation for Rules: Translation Attributes). A blue
< tr > marker (or violet [F > T| marker, e.g., in Fig. 4.15) in operational
rules indicates translation attributes, i.e., the translation attribute shall be
changed from F to T when applying this rule. A

In general, during the model transformation, it might occur, that there
exist different paths for the translation. Due to non-determinism of rule
applications, it cannot be ensured that the path will be chosen that results
into a completely translated model. If the model transformation results in
a partially translated graph, backtracking may be necessary to reverse ap-
plied rules and to be able to use other rules in order to get a fully translated
graph. Paths, which lead to a model which cannot be fully translated are
called misleading. In order to minimise or even prevent the occurence of
misleading paths, filter NACs were developed. Filter NACs are NACs that
are only valid for operational rules, e.g., a filter NAC for a forward transla-
tion rule may include content in the source domain, that will be created by
the corresponding triple rule, i.e., that cannot be matched by the triple rule
(cf. Ex. 2.2.8).

In Fact 3.7 [HEGO14] (or in Fact 8.18 in [EEGH15]), an algorithm is
presented for the automatic generation of filter NACs. Note, the automated
generation of filter NACs is not implemented in HenshinTGG. Therefore,
we had to create all filter NACs in our application scenario manually (cf.
Sec. 6.1). Thus, the set of filter NACs is not complete, in the sense of Fact
3.7.

In the following, we will only cite the definitions of misleading graphs
and filter NACs. For more details on filter NACs, the generation of filter
NACs, or formal analysis results of model transformations with filter NACs,
we refer to [HEGO14, HEGO10a, EEGH15].

Definition 2.2.13 (Translatable and Misleading Graphs (cf. Def. 8.14
in [EEGH15] or Def. 3.3 in [HEGO14])). A triple graph with translation
attributes G is translatable if there is a transformation sequence G treer, g
via forward translation rules such that H is completely translated.

A triple graph with translation attributes G is misleading, if every triple
graph G' with translation attributes that contains G(G C G') we have that
G’ is not translatable. A

Definition 2.2.14 (Filter NACs (cf. Def. 8 in [HEGO10a] or Def. 8.16 in
[EEGH15))). A filter NAC n for a forward translation rule trpp : Lpp <
Kprr — Rpr is given by a morphism n : Lpr — N, such that there is a
TGT step N LETR N with M being misleading. The extension of trpr

by some set of filter NACs is called forward translation rule trpy with filter
NACS. A
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Example 2.2.8 (Filter NAC of Forward Rule). The forward rule
FT_T_NEWLINE_expr_stmt-2-empty_POST that we describe and illustrate in
Fig. 6.6 is extended by a filter NAC. A

M 222 Additions: Inheritance & Edge Types

Similar additions which we introduced in Sec. 2.1.7, can be applied to triple
graph grammars. In [GLO06], the node type inheritance for TGGs is defined
in explicit.

M 223 Analysis

Model transformations based on triple graph grammars provide a wide vari-
ety of analysis techniques and also techniques for verifying certain properties.
In this section, we will introduce the most relevant properties for this work,
because in Chap. 5, we will show that certain gerneral properties for TGGs
still hold in our newly developed construction (cf. Thm. 5.6.1).

We will present the properties of functional behaviour of model trans-
formations (cf. [HEGO10a, HEOG10]), syntactical correctness and com-
pleteness (cf. [EEHPO09]) and termination (cf. [EEHP09]) for TGGs. Note
that we will cite the definitions in [EEGH15], even if we still mention other
references.

Syntactical correctness means that, if we have a model transformation
sequence via forward rules that lead to an integrated model, then this in-
tegrated model belongs to L(T'GG), i.e., the language set up by the triple
graph grammar. Completeness means that, if we have an integrated model
which belongs to L(T'GG), then there exists a forward model transformation
sequence that builds up this integrated model. The same properties hold
for backward transformations.

Definition 2.2.15 (Syntactical Correctness and Completeness (cf. Def. 8.3
in [EEGH15] or Thm. 2 in [EEHP09])). A model transformation MT :
L(TG®) = L(TGT) based on forward rules is

e syntactically correct, if for each model transformation sequence
(G, Gy 22£, G, GT) there is G € L(TGG) with G = (G° « G —
GT) implying further that G° € L(TGG)® and GT € L(TGG)T, and
1t 18

o complete, if for each G° € L(TGG)® there is G = (G° + G —
GT) € L(TGG) with a model transformation sequence (G5, Gy £
Gn,GT) and G, = GT. Vice versa, for each GT € L(TGG)T there

is G = (G% «+ G¢ — GT) € L(TGG) with a model transformation
sequence (G°, Gy L G, GT) and G, =G A
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According to Corollary 8.5 in [EEGH15], the syntactical correctness and
completeness is also valid for model transformations using forward transla-
tion rules. Similarily, according to Def. 8.8 in [EEGH15], the syntactical
correctness and completeness is also valid for model integrations.

The next important property that we want to define in the following is
called functional behaviour. Intuitively functinal behaviour includes termi-
nation and local confluence. Termination means that each transformation
sequence will terminate, i.e., the transformation system is designed so that
no endless loops will occur. Local confluence describes the property that if
a graph K can be transformed in one step into two graphs P; and P5, then,
both graphs can be transformed to K’, i.e., each transformation leads to
the same result graph. In the remainder of this subsection, we will cite the
definitions for functional behaviour, termination and local confluence. For
a more detailed view on these terms, we refer to Sec. 5.2.4 in [EEGH15].

Definition 2.2.16 (Functional Behaviour of a Transformation System (cf.
Def. 8.10 in [EEGH15])). A transformation system T'S = (R) with transfor-
mation rules R has functional behaviour, if for each two terminated trans-
formation sequences G = Hy and G = Hs via T'S and starting at G the
resulting graphs are isomorphic, i.e., Hi = Hs. A

Definition 2.2.17 (Functional Behaviour of Model Transformations (cf.
Def. 8.11 in [EEGH15] or Def. 6 in [HEGO10a] or Thm. 3 in [HEOG10])).
Given a source domain specific language (DSL) Lg € L(TGG)g, then a
model transformation MT based on forward translation rules has functional
behaviour if each execution of MT starting at a source model G° € Lg leads
to a unique (up to isomorphism) target model GT € L(TGG)r. A

Definition 2.2.18 (Termination (cf. Def. 8.12 in [EEGH15] or Thm.
3 in [EEHP09])). A system of operational translation rules TRx with
X € Feoc.rr,BT s terminating, if each transformation sequence via T Rx

is terminating, i.e., the sequence ends at a graph to which no further trans-
lation rule (FT; BT; CC) is applicable. A

According to Fact 8.13 in [EEGH15], termination is ensured for all op-
erational rules using translation markers, if and only if all input graphs are
finite on the graph part and each operational rule using translation markers
changes at least one translation attribute from F to T. Note that the data
part of the graph is possibly infinite (cf. Def. 2.1.4 and Rem. 2.1.2).

In order to define local confluence, the term of strict AC-confluence needs
to be clarified. It uses the notion of critical pairs. A critical pair denotes a
minimal conflict between two rules w.r.t. a graph. This means that critical
pairs describe overlappings between two rules but only in the context of a
concrete graph (cf. Def. 5.39 in [EEGH15]).
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Definition 2.2.19 (Strict AC-Confluence (cf. Def. 5.42 in [EEGH15])). A
critical pair Py <2222 K 222 P)) with induced application conditions acy
is strictly AC-confluent if it is

1. confluent without application conditions, i.e., there are plain transfor-
mations P, = K’ and P» = K’,

2. strict, i.e., given derived spans der(P; 2225 K;) = K E N B P;)
and der(P; = K') = P, e Niio g2 K') for i = 1,2 and pullback
(1) then there exist morphisms 23, z4 such that diagrams (2), (3), and
(4) commute, and

3. fort;: K =P po %K't holds that acy = ac(t;) fori=1,2. A

Theorem 2.2.1 (Local Confluence Theorem (cf. Thm 5.43 in [EEGH15])).
A transformation system is locally confluent if all its critical pairs are strictly

AC-confluent. A

M 2.3. Transformation Units

In general, the rule-base graph transformation is not structured, i.e., out
of the set of transformation rules, one rule will be selected and checked,
if it is applicable to the current graph, or not. If it is applicable, then
the direct transformation will be executed. Then, the next rule will be
arbitrarily selected, and so on. The graph transformation will finish, if no
rule is applicable anymore.

Therefore, the aim came up to introduce structures that will be layed
above of the set of rules for guiding the rule application and for dividing the
set of rules into separate units in order to structure the rule application or
reuse different components. These structures are called transformation units
which were introduced in [KK96]. For detailed overviews on transformation
units, we recommend [Kus00] and [KKRO08]. Transformation units can be
nested, i.e., a transformation unit can contain one or a set of transformation
units, again.
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Transformation units are implemented in EMF Henshin [Hen16b] and a
very limited implementation was included in HenshinTGG [Henl6a] for the
industrial case study (Sec. 6.1.2).

In the following, we will informally review those transformation units,
that are implemented in EMF Henshin and describe their functionality.

Rules Transformation rules (cf. Def. 2.1.18 for plain graph rules and
Def. 2.2.4 for triple rules) form the smallest transformation unit. They con-
tain no other units. Thus, rules are the only type of unit that is applicable
during the model transformation.

Independent Unit An independent unit contains a set of subunits. Out
of all subunits, one is selected arbitrarily and will be applied.

SequentialUnit All subunits of a sequential unit will be applied after
each other with regard to the given order. If one subunit is not applicable,
the application of the sequential unit is aborted and all changes performed
by this unit will be rolled back.

LoopUnit All subunits of a loop unit will be applied as long as possible.

ConditionalUnit A conditional unit is similar to an if-condition. It con-
sists of a condition (if), a then-branch and an else-branch. According to the
evaluation of the condition, either the then-branch will be applied or the
else-branch. If the else-branch is empty, then nothing will be applied, if the
condition is not satisfied. In Henshin, the condition is usually defined by
means of a transformation rule which evaluates to true if applicable.

PriorityUnit Subunits of a priority unit are listed according to their pri-
orities, i.e., the subunit which comes first in the list has the highest priority,
the last subunit has the lowest priority. The subunit with the highest pri-
ority and which is applicable, will be applied next.

Example 2.3.1 (Transformation Unit). In Fig. 6.8 a screenshot is given
which illustrates the structure of the main transformation unit of the graph
grammar Refactor SPELL-Flow which we developed for the industrial case
study (cf. Chap. 6). The following screenshots taken in Henshin illustrate
the structure of the corresponding subunits:

o Fig. 6.9 shows sequential unit PreProcessing,
e Fig. 6.10 shows sequential unit Refactoring, and

o Fig. 6.11 shows sequential unit CleanUp.
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Fig. 6.21 is a screenshot of the main transformation unit and its di-
rect subunits of graph grammar SPELL-Flow-2-Hierarchy. The subunits are
provided in the following screenshots:

o Fig. 6.22 shows sequential unit PreProcessing,
o Fig. 6.23 shows sequential unit Hierarchies,
o Fig. 6.2/ shows sequential unit PostProcessing, and

o Fig. 6.25 shows sequential unit CleanUp. A
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Methodology for Model Translations
]

This chapter presents a methodology for unidirectional software transla-
tions, which will be later extended to a methodology for bidirectional soft-
ware translations. Both kinds of methodologies are based on the following
papers about two industrial projects with SES, in which we discussed both
methodologies and in which we applied them in practice:

e Unidirectional translation (project PIL2SPELL):

— On an Automated Translation of Satellite Procedures Using Triple
Graph Grammars [HGN'13]

— Triple Graph Grammars in the Large for Translating Satellite
Procedures [HGN*14a, HGN ' 14b].

e Bidirectional translation (project SPELL-2-SPELL-Flow):

— Towards Bidirectional Engineering of Satellite Control Procedures
Using Triple Graph Grammars [GHE'13]

At the end of this chapter, we will show the application of both method-
ologies in practice in referring to the industrial project in which we applied
those methodologies for a prototype software translation of from SPELL to
SPELL-Flow (unidirectional) and vice versa (bidirectional).

M 3.1. Methodology for General Software Transla-
tions

First, we discuss the unidirectional software transformation methodology,
i.e., given a source language £1 and a target language £2, then the question
which we want to answer is: According to which concept is it possible to
transform model L1 to model L272.

55
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Figure 3.1: Concept for software translation (adapted from [HGNT14a])

We consider Fig. 3.1. The left box on the top row represent an instance
(e.g., source code) given in the source language L1, i.e., the concrete syntax
of the instances is given. For the transformation from the instance in the
source language L1 to an instance in the target language £2, we undergo
the following main phases: parsing, abstract syntax graph conversion (main
phase) and serialisation.

In detail, in the first phase parsing the concrete syntax in L1 is parsed to
an abstract syntax graph (ASG) by means of a predefined parser. The pars-
ing phase is followed by the main phase, i.e., the abstract syntax graph con-
version, which is again divided into three sub-phases: initialisation, transla-
tion and refactoring, wheras the two sub-phases initialisation and refactoring
are optional.

During the initialisation phase, the abstract syntax graph is enriched
by additional elements in order to perform a pre-processing of elements or
in order to add further helper strutures which store additional information
locally in the abstract syntax tree. Both help to reduce the complexity
and to simplyify the specification of the rules used in the next phase - the
translation phase. For the initialisation phase an in-place transformation
technique is used, namely plain graph transformation (GT) (cf. Sec. 2.1.3).

The translation phase is executed using a triple graph grammar (TGG)
(cf. Sec. 2.2). It iteratively applies its translation rules to a substructure
the source ASG in order to translate this substructure to a substructure in
the target ASG. Furthermore traceability links are created between corre-
sponding substructures of the source and the target model. Finally, all sub-
structures in the target ASG are connected according to the source ASG. To
ensure, that each element will be translated exactely once, TGGs use trans-
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lation attributes. They mark all untranslated elements with F. During the
translation step, the marking of the elements that are translated is changed
to T. The translation finishes, when no triple rule is applicable anymore or
when all translation markers are set to 'T. Due to the fact that TGGs are
non-deleting, the complete source ASG is preserved.

During the refactoring phase, the target ASG is enriched or reduced by
elements in order to fullfil given guidelines required in the target language.
Again, the refactoring phase uses in-place transformation, i.e., plain graph
transformation, also because it may contain deleting operations on the target
ASG.

The last phase is the serialisation phase in which the target ASG is
converted to an instance of the target language £2, i.e., the target ASG is
serialised to concrete syntax. This target instance given in language L£2 is
the final result of the translation that started at the source instance given
in language L1.

Ml 3.2. Methodology for Bidirectional Software Trans-
lations

The methodology for bidirectional software translations is an extension of
the unidirectional approach. Given a source language £1 and a target lan-
guage L£2, the research question is extended to the following one: According
to which concept is it possible to transform model L1 to model L2 and vice
versa¥?.

Sec. 3.2 illustrates the scheme for bidirectional software translations.
It includes the scheme for unidirectional software translations in Fig. 3.1.
In detail, the forward translation from an instance in language £1 to an
instance in language £2 is identical to Sec. 3.1. The backward direction,
i.e., the translation from an instance in langauge £2 to an instance in £1 is
equivalent, i.e., it is performed in three phases: the initialisation phase, the
abstract syntax graph conversion and the serialisation phase. The abstract
syntax graph conversion is again divided into the sub-phases: initialisation,
translation and refactoring.

The main difference between unidirectional and bidirectional software
translations is that they use different sets of graph transformation rules for
the initialisation and refactoring phases because both phases are based on
different meta-models. In the forward translation, the initialisation phase
is performed on an ASG that is typed over a meta-model that belongs to
L1. The refactoring step is executed on an ASG that is typed over a meta-
model that belongs to £2. In contrast, during the backward translation,
the initisalisation phase is executed on an ASG that is typed over a meta-
model that belongs to £2, wheras the basis for the refactoring phase is an
ASG that is typed over a meta-model of £1. In general, the translation
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Figure 3.2: Concept for bidirectional software translation (adapted and
merged from [HGN ' 14a, GHE"13])

Extended Abstract
Syntax Graph of

phase is based on the same TGG for both, the forward and the backward
direction, because TGGs are defined simultaneously for the whole triple
model, i.e., for the forward and backward translation the same rules are

used as basis to derive the corresponding forward and backward translation
rules (cf. Sec. 2.2).

M 3.3. Industrial Case Study: SPELL < SPELL-Flow

We will now show the application of the unidirectional software translation
methodology to the industrial case study which was executed in cooperation
with SES [GHE"13]. The unidirectional approach is used for the software
translation from SPELL to SPELL-Flow. This forward direction deals with
the wvisulisation of source code. The bidirectional approach is applied to the
translation from SPELL to SPELL-Flow and back. The backward transla-
tion can also be seen as code generation.

M 3.3.1. Unidirectional: SPELL to SPELL-Flow

During the case study with our industrial partner SES, we developed a
prototype for the software translation of a sub-set of SPELL statements
into their visualisation, i.e., to a SPELL-Flow model. It is desired to extend
this to a software translation of all SPELL statements in order to be able to
translate an arbitrary SPELL procedure into its SPELL-Flow models. This
can then be integrated into the SPELL GUI, which can be seen as the SPELL
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Figure 3.3: Software translation in SPELL to SPELL-Flow (adapted from
[GHE13])

execution environment. The SPELL GUI is an application at SES used
by satellite operators. It contains different views on a SPELL procedure,
e.g., the source code view or a view containing all execution statuses. The
visualisation of the SPELL source code shall be integrated as additional view
to the SPELL GUI in order to improve the work of the satellite operators.
Note that the SPELL GUI is not a development environment. This means
that the satellite operators do not change existing SPELL procedures. As
a consequence, the visualisation will not change at runtime. The software
translation from SPELL to SPELL-Flow will be executed offline.

We illustrate the application of the methodology for unidirectional soft-
ware translations from Sec. 3.1 in Fig. 3.3. The box on the top of this image
is labeled with SPELL GUI - tool support, i.e., it represents the SPELL GUI
application. The SPELL source code view and the SPELL-Flow visualisa-
tion are illustrated explicitly, too. They are indicated by small icons: The
SPELL source code view is on the left and the corresponding SPELL-Flow
visualisation is on the right.

Parsing

For the software translation from SPELL source code to a SPELL-Flow
model, we start with a SPELL source code instance that is in addition illus-
trated using the box Concrete Syntax - SPELL. As a first step, this SPELL



60 CHAPTER 3. METHODOLOGY

source code instance is parsed (see arrow Parsing. In our case study, we used
Xtext [xtel6] for deriving a parser and a serialiser for SPELL (cf. Sec. 6.1.3
for a more detailed introduction to Xtext). In order to be able to generate
a parser and a serialiser, Xtext needs a grammar definition. For that, we
reused the SPELL grammar which was defined for the PIL2SPELL project
[HGNT13] and adapted it slightly to the needs of the current case study. The
adaptions mainly concern redefinitions of newlines and multi-line comments.
In Appendix A.1 we will show the definition of the SPELL grammar. The
syntax is very related to the EBNF notation (extended backus naur form).
The parsing step results in an abstract syntax graph (ASG) of the given
SPELL source code. It is stored in a separate XMI file. Note, due to the
fact that the SPELL source code file is a text file and the parsing is per-
formed line-by-line, the abstract syntax graph is an abstract syntax tree
(AST) in reality, i.e., it contains no cycles.

Translation

In our general methodology, the next step is possibly the initialisation phase.
This step is omitted in our case study. Consequently, the next step is the
translation step. For that, we applied triple graph transformation which
was possible due to the use of HenshinTGG [Henl6a], an Eclipse-based tool
for applying triple graph transformation (cf. Sec. 6.1.2 for more details on
HenshinTGG). In practice, the SPELL ASG file is imported to HenshinTGG
and the set of forward translation rules are applied to the SPELL ASG in
order to derive a SPELL-Flow ASG. Again, in reality, the SPELL-Flow ASG
is an AST, which is ensured by our specification of the triple rules, i.e, we
omitted to create cycles. Due to the missing initialisation step and due to
different requirements set up by SES (e.g., mark elements that cannot be
translated), the triple graph transformation step is divided into several sub-
steps which is realised by transformation units. For details on that phase
we refer to Sec. 6.1.2.

Refactoring

The next step in Fig. 3.3 is the refactoring phase. The refactoring phase uses
plain graph transformation. The graph transformation rules are defined in
and will be executed using the Henshin-Editor for plain graph transforma-
tion [Henl6b] (cf. Sec. 6.1.2 for an introduction into the Henshin-Editor we
used). For the refactoring phase, we defined two different plain graph gram-
mars. Note, in Fig. 3.3 we illustrated the use of more than one refactoring
graph grammar by means of a double arrow. We use the technique of plain
graph transformation, because both refactoring grammars include deletion
operations on the abstract syntax graph (ASG).

e The first graph grammar performs general refactoring, e.g., it merges
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shapes which belong together (e.g., multi-line comments, list of at-
tributes). It removes nodes that remain empty, i.e., statements that
have no benefit for the SPELL-Flow instance model, e.g., statement
without arguments. Furthermore, this grammar reduces the number
of FIXME statements in merging those together that belong to the
same SPELL statement.

e The second graph grammar introduces the hierarchical model. The
hierarchical model will be created in copying nodes that shall occur on
the next level of abstraction and creating containment edges between
corresponding nodes. In detail, containment edges will be created
between the parent node on the more abstract layer to all children
nodes on the more detailed layer.

Serialisation and generation of views

The resulting ASG of the refactoring phase is serialised in order to store it
into an XMI file. The serialiser which is used in that step is provided by
Xtext. The serialisation step is illustrated in Fig. 3.3. The final XMI file will
be opened within the SPELL-Flow visualisation tool, which we implemented
in the PhD project (cf. Sec. 6.1.3). This tool is based on Eclipse GMF,
which includes Eclipse EMF. In opening the final XMI file, the visualisation
will be generated by EMF. This visualisation is called SPELL-Flow conrete
syntar and is visualised in the box with the same label in Fig. 3.3. As
already mentioned at the beginning of this section, it is desired to include
this visualisation in the SPELL GUI application of SES (box on top of
Fig. 3.3).

B 3.3.2. Bidirectional: SPELL to SPELL-Flow and vice versa

The bidirectional implementation of a prototype software translation be-
tween SPELL source code instances and SPELL-Flow visualisations shall
be integrated into the SPELL development environment. It is the environ-
ment used by SES engineers for developing SPELL procedures. In contrast
to the application area of the unidirectional approach, which is read-only,
the bidirectional software translation takes place “online”, i.e., when a devel-
oper changes the SPELL source code, then the changes shall be propagated
in real-time to the corresponding SPELL-Flow visualisation, and vice versa.
Note, the SPELL-Flow visualisation is more abstract and less detailed than
the SPELL source code. Thus, the software translation from a SPELL-Flow
model to SPELL source code derives a skeletton of the source code which
needs manual completion performed by the SPELL developer.

The bidirectional implementation of a prototype includes the unidirec-
tional approach from Sec. 3.3.1 and is illustrated in Fig. 3.4. Thus, the
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Figure 3.4: Bidirectional software translation between SPELL and SPELL-
Flow (adapted from [GHE"13])

forward direction is nearly identical to the unidirectional approach for soft-
ware translation of SPELL source code to a SPELL-Flow visualisation. Due
to the changed application environment, i.e., the usage within the SPELL
development environment, we allow edit operations. This is illustrated on
top of Fig. 3.4 by the changed box, which is now labeled with SPELL de-
velopment environment - tool support and also by the new incoming and
outgoing arrows edit and load of that box.

Nevertheless, the backward direction is similar to the forward direction,
too. It is divided into the following steps:

e An edit operation changes the SPELL-Flow model resulting an a mod-
ified concrete syntax of a SPELL-Flow visualisation. This change shall
be propagated to the corresponding SPELL source code instance.

e As next step, a new XMI file will be generated using EMF resulting
in a new SPELL-Flow XMI file.

e The XMI file will be parsed using EMF resulting in an abstract syntax
graph (ASG) of the SPELL-Flow visualisation.

e To the SPELL-Flow ASG, refactorings will be applied which remove
the hierarchies so that we finally obtain an ASG representing the most
detailled level of the SPELL-Flow model. For the refactoring step(s),
we apply plain graph transformation using Henshin.
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e The main step is the translation phase which is applied via TGGs using
HenshinTGG. It transforms the SPELL-Flow ASG into a SPELL ASG.

e Finally, the new SPELL ASG is serialised via Xtext so that the new
SPELL source code can be loaded to and executed in the SPELL de-
velopment environment, i.e., the view containing the corresponding
SPELL source code instance will be updated.
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Model Synchronisation

In this chapter, we will review the model synchronisation framework based
on triple graph grammars (TGGs) [HEO'15, HEOT11b]. After the formal
introduction of this model synchronisation framework, we will introduce an
extension of this framework regarding concurrency. Afterwards, we present
a generalisation of the concurrent approach to the non-deterministic case.
In general, the triple rules in a TGG can be non-deterministic. This means
that different triple rules may cover similar contexts. Consequently, the
derived operational rules may be applicable to the same graph which lead to
different results. One result may be that the graph cannot be fully translated
so that backtracking is necessary. We introduce an optimisation of this
non-deterministic concurrent model synchronisation framework in which we
use filter NACs Def. 2.2.14 for reducing the necessary backtracking steps.
Summarising, we discuss the following research question:

In which way is it possible to treat a mon-deterministic set of rules in
concurrent model synchronisations? (Q3)

During the whole chapter, we use the running example in Listing 4.1 for
illustrating the formal model synchronisation framework based on TGGs as
well as for illustrating the following section in which we discuss the different
kinds of conflicts and the strategies for solving them semi-automatically.

The first and second part of this chapter, i.e., the model synchronisation
framework based on TGGs and the concurrent model synchronisation frame-
work based on TGGs, is mainly based on [HEO™15, HEO"11b]. The third
part, i.e., the extension of the concurrent model synchronisation framework
to the non-deterministic case, is mainly based on [GHN*13a, GHN"13b].
In addition, we refer to the other related articles and books discussing these
research areas, like [HEEO12, EEGH15].
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M 4.1. Introduction of the Running Example

In this chapter, we use a small excerpt of the running example for illus-
trating the functionality of the model synchronisation framework and its
extensions presented in this chapter. The excerpt is taken from the running
example which we introduced in Ex. 1.3.1 and Ex. 1.3.2. We introduce the
SPELL source code and its corresponding SPELL abstract syntax graph
(ASG) in this subsection, first. Then, we show the corresponding hierarchi-
cal SPELL-Flow visualisation and its ASG. In order to propagate (domain)
model updates along different views, we present our example domain model
update in the target domain, i.e., in the SPELL-Flow visualisation. Finally,
we illustrate relevant triple rules which we need for propagating the given
(domain) model update.

Example 4.1.1 (SPELL source code and corresponding ASG). The fol-
lowing SPELL source code snippet illustrates the running example of this
chapter.

Listing 4.1: Running example: SPELL code (source instance)

ARGS[ '$ARG1’]=Var( Type=ABSTIME, Confirm=False)
ARGS/[ "$ARG2’|=Var( Type=ABSTIME, Confirm=False)

/. /.
7/ 7/

Step (5’7, ’'MANAGEMENT OF COMPONENT A’ )
Prompt( 'WARNING: Check something before.’, OK)
Pause ()

In the next screenshot (Fig. 4.1), we visualise the abstract syntax graph
(ASG) that corresponds to the listing above. The screenshot is taken from
the tool HenshinTGG.

The node : file_input is the topmost node in each SPELL ASG. It is
the main container of all SPELL ASG nodes. In the illustration, we high-
lighted the the main container part in red. The node file_input is followed
by a : stmt_LST _Elem node via containment edge fst. This : stmt_LST_Elem
node is the starting mode of an :expr_stmt structure, which represents
SPELL source code line 1. We highlighted this subtree in blue. The first
: stmt_LST _Elem is followed by another : stmt_LST _Elem via edge : next which
is again the starting node of an : expr_stmt structure. This structure repre-
sents SPELL source code line 2. The comment in line 8 is connected to the
second : expr_stmt node. We highlighted the corresponding subtree in green,
which reflects the assignment of the ARGS-structure. Note, the assignment
ARGS|...] = Var(...) shall be omitted during the translation from SPELL to
SPELL-Flow (cf. Sec. 6.1.1).

The second : stmt_LST_Elem node is connected with a Step statement
via edge :next. The whole set of elements that reflect the Step state-
ment in source code line 4 from Listing 4.1 is highlighted with yellow. It
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Figure 4.1: Running example: Snippet of SPELL ASG (source ASG)

is the biggest part containing eight nodes. The first node which is con-
tained by the stmt_LST_ELem node, is a node called : Step. It has three at-
tributes containing the corresponing lines numbers in the source code and
the source code text of that node. Fach node in the SPELL ASG has
those three attributes with corresponding assignments. Node : NEWLINE
indicates a linebreak in the corresponding SPELL source code. The argu-
ments of the Step statement are stored in a list of nodes which are con-
tained by the : Step node (cf. node : argument_list. The first argument is
the Step number which is of type string. This is indicated by the node
:argument_LST _Elem followed by the leaf node : string_LST_Elem with at-
tribute entryS =5. The second argument is the description of the Step
statement which again is of type string. This is represented by the second
node : argument_LST_Elem and its leaf node : string_LST _Elem with attribute
entryS = MANAGEMENT OF COMPONENT A.

The fifth SPELL source code line of Listing 4.1 is reflected by the ele-
ments highlighted in grey in the SPELL ASG (Fig. 5.2). Again, the topmost
node of this block is the node : stmt_LST_Elem which is contained by the
: stmt_LST _Elem of the previous statement (i.e., Step) via containment edge
next. The first node contained by : stmt_LST_Elem is node : Prompt which
has two arguments. This is also visible in SPELL source code line 5 in List-
ing 4.1. In the SPELL ASG, both arqguments are represented as argument
list (- argument_list) with two entries: The first entry is a : string_LST_Elem
node which is contained by :argument_list via containment edge fst to
: argument_LST_Elem and via entry edge to the : string_LST _Elem leaf node.
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The leaf node contains the string WARNING : Check something before. as-
signed to attribute entryS. The second argument is a : SPELL_Constant with
attribute nameC = OK. This node is connected to the : argument_list node
via the previous : argument_LST _Elem node to its own : argument_LST _Elem
via containment edge next and finally to the leaf node via edge entry.

The SPELL source code line 6 contains the Pause statement. It is rep-
resented in the SPELL ASG by the four nodes highlighted in violet. The
corresponding : stmt_LST _Elem which is connected to the previous statement
via containment edge : next has one entry, the node : Pause. Due to the
Pause statement having no arguments, the node : argument_list has no suc-
cessors. A

Example 4.1.2 (SPELL-Flow visualisation and corresponding ASG). The
screenshot in Fig. 4.2, which is taken in the SPELL-Flow visualisation tool
(cf. Sec. 6.1.3), shows the hierarchical SPELL-Flow visualisation of the
SPELL source code in Listing 4.1. On the left, the first layer of the SPELL-
Flow visualisation is given, i.e., the main layer, which is the most abstract
one. On the right side, the second layer is visualised which is contained by
the : Step node on the first layer.

[5: MANAGEMENT OF COMPONE... |

next

next

[5: MANAGEMENT OF COMPONE... |
[ |
WARNING: Check something befo..

next

| Pause |

Figure 4.2: Running example: Snippet of SPELL-Flow model (target in-
stance)

The following graph illustrates the SPELL-Flow ASG which corresponds
to the visualisation in Fig. 4.2. This screenshot is taken in Henshin.

The SPELL-Flow ASG has a different structure than the SPELL ASG:
It has a node : Root which is the main container which contains all other
nodes, either directly, or by children nodes. In contrast to the SPELL ASG,
successive nodes are connected via normal edges and mot by containment
edges.

The structure of the SPELL-Flow ASG as depicted in Fig. 4.3 is very
similar to the final visualisation in Fig. 4.2. The two nodes connected di-
rectly via containment edge with node : Root (the first is highlighted in red,
the second one is one of both nodes highlighted in yellow) are the ASG nodes
that correspond to both elements on the main layer of the SPELL-Flow vi-
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:Root ]
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- endLineNumber = 13
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- SULICELOUE = Pdusey)
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Figure 4.3: Running example: Snippet of SPELL-Flow ASG (target ASG)

sualisation. The first node corresponds to the start node (i.e., the circle)
in the visualisation, wheras the second node is the topmost node of the Step
statement in the ASG.

All other nodes constitute the second hierarchy level, which consists of a
: StepActivity node (the second node highlighted in yellow), a : PromptActivity
node (highlighted in grey) and a : PauseActivity node (highlighted in violet).
The list of attributes of each node determine the details that will be shown in
the SPELL-Flow visualisation. All nodes have the same types of attributes:

e startLineNumber and endLineNumber contain the line numbers of the
original SPELL statement.

o XMIID is an internal ID of each element.

This is necessary for the
visualisation using GMF' (cf. Sec. 6.1.3).

o Attribute sourceCode gets the original SPELL source code line.

e The description attribute contains the list of parameters. It is of type
string and all original parameters are concatenated into one string.
This is an example of an element in which detailed information got

69
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lost during the software translation process. It is not possible anymore
to restore the correct number of attributes and the correct split of the
string into the correct attributes.

Note, the first three SPELL source code lines (cf. Listing 4.1) are not re-
flected in the SPELL-Flow model. A

Example 4.1.3 (SPELL < SPELL-Flow Triple Graph). The illustration
in Fig. 4.4 shows the triple graph which contains a reduced version of the
SPELL ASG (left, source model) from Fig. 4.1 as well as a reduced version of
the SPELL-Flow ASG (right, target model) from Fig. 4.3 and the correspon-
dence model which connects the SPELL ASG with the SPELL-Flow ASG.
The triple graph is typed over a reduced SPELL < SPELL-Flow meta-model.
The full meta-model consiste of the meta-models in Appendiz A.2 to A.4.
The target model is only reduced by some attributes w.r.t. the SPELL-Flow
ASG which we described above. In contrast, the source model is reduced by
nodes, edges and attributes that do not have further semantic meaning in
order to increase readability. We provide a detailed list of omitted elements
in the following. In the correspondence model, it is obvious, that the ARGS
subtree has no connection to the SPELL-Flow model, i.c., those elements
are not reflected in the target model.

string_LST_Elem
=1

?traylsr,fsx ? varType
sstring_(ST_Elem :SPELL Constant
entryS=SARG1 nameC=ABSTIME

:atom

Cod
ription=MANA...
ber=5

fst

:atom
atom_name=ARGS

trailer_fst f varType
[ string 15T Elem | [ :SPELL_constant |
entryS=$ARG2 nameC=ABSTIVE Pause

satom

line_end=2
sourceCodeText=
nfirm nameC=0K

:assignr ment _E:
symbol==

r

Figure 4.4: Running example: Triple Graph

1. In the SPELL domain (source domain) we omitted:

o All attributes, except the ones of the three : string_LST_Elem nodes
and of the : SPELL_Constant node. The XMIID attribute is miss-
ing in all nodes.

e The SPELL model contains many nodes which are in-between
“relevant” mnodes, e.g., :stmt_LST_Elem, :argument_list or
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:argument_LST _Elem. We removed those nodes and correspond-
ing containment edges whereas the structure of the ASG has been
preserved.

o : NEWLINE nodes and their : nl_post edge will not be translated,
i.e., we left them out in Fig. 5.5.

2. In the SPELL-Flow domain (target domain) we omitted:

e Similar to the SPELL domain, we removed all attributes, except
the ones in both : StepActivity nodes, which are relevant for the
running example in this chapter. The XMIID does not appear in
any node.

3. In the CORR domain (correspondence domain) we omitted:

o Helper nodes.

o Due to the reduced SPELL ASG, many correspondence nodes and
their links to the source and target domain are missing. In addi-
tion, the correspondence nodes are of type : C in our illustration.
In reality, we have to use different types of correspondence nodes,
due to some implementation details (cf. Sec. 6.1.3, but they do
not differ in their semantics. A

The domain model update which is used for illustrating the basic model
synchronisation framework based on triple graph grammars (Sec. 4.2) is
the source model update presented below. In contrast, the model update
for illustrating the concurrent model synchronisation framework, which is
an extension of the basic version (Sec. 4.3), consists of two parts which
are executed simultaneously. It consists of a source model update which
changes the SPELL domain and a target model update that modifies the
SPELL-Flow domain of the model.

Example 4.1.4 (Source Model Update). The source model update is visu-
alised in the following figure. In the SPELL model, the statement Pause()
will be deleted, i.e., source code line 6 will be deleted in Listing 4.1. In the
SPELL ASG (c¢f. Fig. 4.1), the Pause() statement is highlighted in violet.
The following figure shows the reduced SPELL ASG from that was described
m Fig. 4.4. The components to be deleted are marked with a red border and
with markers ——. A

Example 4.1.5 (Target Model Update). The target model update which
1s part of the whole model update adds a comment as attribute to the node
: Prompt in the SPELL-Flow domain. This node belongs to the second layer
of the visual SPELL-Flow model. Therefore, Fig. 4.6 only shows the second
layer of the SPELL-Flow model. The attribute to be added is marked with a
green border and with marker ++. A
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The propagation of the source and target model updates is executed us-
ing the underlying triple graph grammar. In the following, we will introduce
a subset of triple rules that are relevance for this chapter and for the next
chapter.

Example 4.1.6 (Relevant Triple Rules). The first triple rule, which we want
to mention explicitly, is T_Step-2-StepActivity. It simultaneously creates a
: Step node in the SPELL domain (source domain) and two : StepActivity
nodes in the SPELL-Flow domain (target domain). Both : StepActivity
nodes are connected via the containment edge : to_Element. Another triple
rule, which we do mot mention here in detail, is creating the containment
edge of the corresponing root node to the parent : StepActivity node in the
SPELL-Flow domain. The corresponding root node is either node : Root,
if the parent : StepActivity node is situated on the first layer, or it is an-
other activity (in most cases another : StepActivity ). Furthermore, triple rule
T_Step-2-StepActivity creates two correspondence nodes: one from the : Step
to the parent : StepActivity and one from the : Step to the child : StepActivity.

In gerneral, each : Step node is followed by two : string_LST_Elem nodes
in the SPELL domain which indicate the Step number and description.
They are of type string. The second triple rule T _Step_args-2-attrs cre-
ates those nodes with attributes indicating the step number description,
and the corresponding containment edges. At the same time, the descrip-
tion and number will be added in the target domain to both corresponding

! :next
assgnmen_entry Sen
args
[ :atom | [ :assignment_Expr | :string_LST_Elem
|atom_name=ARGS | |symbol== IWarConﬁr h | line_start=1
line_end=1
trail T: T sourceCodeText=S... :next —
triler_fst vaType entryses [ Fomet Jo—"
| :string_LST_Elem | | :SPELL_Constant | T
[entrys=$ARG1 | [namec=ABsTIVE | next args
:string_LST_Elem :string_LST_Elem
:atom line_start=1 line_start=2
T line_end=1 line_end=2
sourceCodeText=S... sourceCodeText="..."
entryS=MANAGEM... entryS=WARNING...
‘next :next
:assignment_entry T:next
:SPELL_Constant
fst line_start=2
N T line_end=2
:atom :assignment_Expr e B
atom_name=ARGS symbo == :varClonfirm nameC=0K
ttmiler_fst T wvarType
| :string_LST_Elem | | :SPELL_Constant | _
[entrys=5ARG2 | [namec=ABsTIVE | v ]
:atom

Figure 4.5: Running example: Source Model Update
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2nd Layer

:Step Activity
startLineNumber=1 |-
” endLi 1 | A

t-| sourceCode=Step(...)
© " | description=MANA... |-
"~ | number=5

adextl
:PromptActivity .,
A comment=TEXT ++]

< 4" #6_Element

Figure 4.6: Running Example: Target Model Update

T_Step-2-StepActivity

1st Layer
+ P s S
(O :Step Activity cmra i

_____ +

+ IF e i
0 13 11P__stepActvi o Elementl

Figure 4.7: Triple rule: T_Step-2-StepActivity

: StepActivity nodes. This triple rule also adds correspondence nodes between
both : string_LST _Elem nodes and the corresponding : StepActivity nodes.

T_Step_args-2-attrs(string:n, string:d)
Sm .- @ — 1st Layer S
] tm@t‘:.; StepActiviy |

- + | description=d ++

:string LST_Elem &+ @ LES number=n ++
R 34

entryS=n b e :

A 2nd Layer

++ [mext 4. @ —
:string LST _Elem N SN :Step Activity o
SUNE o H+ 1) — “to-Element.
entry5=d [} description=d ++ |75

;3@34 -

> number=n _ ++

Figure 4.8: Triple rule: T_Step_args-2-attrs

The third triple rule, which we want to introduce, s
T_Pause-2-PauseActivity. It creates a : Pause statement connected via con-
tainment edge to another statement (= stmt) in the SPELL domain. Simul-
taneously, a : PauseActivity is created in the SPELL-Flow domain, whereas
the : PauseActivity is created in a sub-layer, which is the same layer as the
one of the : Activity which corresponds to the : stmt. The superjacent layer
of : Activity contains a : Root node (or another node derived from : Root, e.g.
another : Activity ). The new : PauseActivity shall be contained by this : Root
node via the newly created containment edge : to_Element. In addition, triple
rule T_Pause-2-PauseActivity creates the necessary correspondence node : C
and edges.

The fourth triple rule, which we use explicitly within this chapter is
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T_Pause-2-PauseActivity

n. Layer
n+1. Layer

‘to Element.
++ | :next

++
[ pawse ] ;;@++

:+0_Efement

Figure 4.9: Triple rule: T_Pause-2-PauseActivity

T_Comment_LST_Elem-2-comments. It creates two comments attributes in
the SPELL-Flow domain: One within an : StepActivity on the first layer,
one within a corresponding : StepActivity on the second layer, i.e., this triple
rule requires two : StepActivity nodes in the SPELL-Flow domain which are
connected with each other via a : to_Element edge. Simultaneously, this triple
rule creates the necessary : Comment_LST _Elem node in the SPELL domain
and connects it to the : stmt node which corresponds to the two : StepActivity
nodes in the SPELL-Flow domain. In addition, the necessary correspon-
dence part is created, too.

T_Comment_LST_Elem-2-comments(string:c)

..@\. 1st Layer
~ K | Step Activity
oL :StepActivi

= - comments=c +4+ IO—

++|:comment

:Comment_LST_Elem <

2nd Layer

:++ ; StepActivity
> ‘te” Elémeént;
++< O)tt comments=c_++ =

Figure 4.10: Triple rule: T_Comment_LST_Elem-2-comments

The next triple rule called T_Comment_LST_Elem-2-comment_2L is very
similar to the previous one. The difference is that it creates only one
comments attribute in the SPELL-Flow domain. It will be created in
an : Activity node which is situated on the second layer. Note, for this
rule and the previous one, the correct sequence must be maintained, i.e.,
triple rule T_Comment_LST_Elem-2-comment must be applied before triple
rule T_Comment_LST_Elem-2-comment_2L. Otherwise, it is possible that
T_Comment_LST_Elem-2-comment_2L will be applied to a : StepActivity node
on the second layer and then, the corresponding : StepActivity on layer 1 will
not be equipped with the comments attribute. Another solution would be the
introduction of a NAC, but it would slow down the model transformation.

Triple rule T_sourceCodeText-2-sourceCode creates one sourceCodeText
attribute in the SPELL domain as part of an existing : argument node. This
node is an abstraction of, e.g., node : string_LST_Elem. Furthermore, this
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T_Comment_LST_Elem-2-comment_2L(string:c)

- @ 2nd Layer

++|:comment ++ . ‘Activity
”@H’ comments=c_++

:Comment_LST Elem [<™~

Figure 4.11: Triple rule: T_Comment_LST _Elem-2-comment_2L

triple rule sets two sourceCode attributes in the SPELL-Flow domain for
already existing two : Activity nodes that represent the same statement but
in different layers. This dependency is given by the correspondence nodes
and the containment edge : to_Element.

T_sourceCodeText-2-sourceCode(string:c)

@ 1st Layer
‘ ‘Activity
.- GC) sourceCode=c ++
-
i
‘ e Vit o  Elémeént,
<:C> sourceCode=c_++ o

Figure 4.12: Triple rule: T_sourceCodeText-2-sourceCode

The next triple rule, which we want to address explicitly is
T_lines-2-lineNumbers. It is similar to the previous triple rule but creates a
line_start and a line_end attribute for node : argument in the SPELL domain
as well as the corresponding startLineNumber and endLineNumber attributes
for both existing corresponding : Activity nodes in the SPELL-Flow domain.

T_lines-2-lineNumbers(string:11,string:12)

sstmt e
-args A :Activity ey
startLineN umber=I1+ -
:argument endLineNumber=12 ++ - +* .
line_start=I1 ++ —_—

line_end=12 ++ |\, 2nd Layer

ST
TP startLineNumber=I1++“v, R
| endLineNumber=12 +4 ara

Figure 4.13: Triple rule: T_lines-2-lineNumbers

The last triple rule to be presented is named T_ARGS-2-nothing. It con-
tains all elements that describe an ARGS structure in the SPELL domain,
as it is used in the example SPELL source code lines 1 or 2. The corre-
spondence as well as the SPELL-Flow domains are empty. This means that
this kind of ARGS structure has no relation in the target domain, i.e., it is
not reflected in the SPELL-Flow domain. Note, this rule only creates the



76 CHAPTER 4. MODEL SYNCHRONISATION

ARGS structure in the SPELL domain. It does not create any connection
to other elements in the SPELL domain, e.g., via : next or : fst edges. For
that, the set of triple rules contain other rules which we will not visualise
and describe in explicit, here. A

T_ARGS-2-nothing(string s1,s2,s3,s4, bool b)

++

asigomen_entry
++ -
++ fst ++ ++

[ :atom

] | :assignment_Expr ]

| atom_name=s1

] | symbol=s3

++

++$trai\er_fst -+

++T wvarType

| :string LST_Elem ]l

‘SPELL_Constant |

|entry5=52

] | nameC=s4

:atom
:varConfirm | basic=b
++

Figure 4.14: Triple rule: T_ARGS-2-nothing

Example 4.1.7 (Triple Graph Grammar TGG and Language L(TGGQ)).
Given the TGG = (MM, @, TR) over triple type graph MM in Ex. 2.2.1 and
with triple rules TR. A subset of the whole set of triple rules is presented
in Bx. 4.1.6. Then the triple graph in Ex. 4.1.3 is contained in L(TGG). A

Example 4.1.8 (Forward Translation Rules). The corresponding forward
translation rules of the triple rules in FEx. 4.1.6 are shown explicitly in
Fig. 4.15. Within the FT-rules, the correspondence and SPELL-Flow do-
mains are identical to the same domains in the triple rules. In the SPELL
domain, the translation markers are modified in the sense that elements with
marker < ++ > in the triple rule received translation attribute tr = F > T
in the corresponding FT rule (cf. Sec. 2.2). A

M 4.2. Formal Background on Basic Model Synchro-
nisation Framework Based on Triple Graph Grammars

The model synchronisation framework based on triple graph grammars was
introduced by Hermann et al. in [HEO"11b, HEEO12, HEOT 15, EEGH15].
It was inspired by the replica framework presented in [Dis11].

The main idea of the model synchronisation framewok which we will
introduce in this section is as follows: Given a consistent triple graph that
includes a source and a target model and correspondences between them.
The triple graph is also called integrated model. We will use the following
notation: G° < GT, whereas G° is the source model, GT is the target
model and r defines the relation between source and target model, i.e.,
r is given explicitly by the correspondence model. Furthermore, given a
consistent domain model update u, whereas the model update might be a
source model update or a target model update.
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Then, the synchronisation problem deals with the question, how to prop-
agate the consistent domain model update to the other domain? This means,
how is it possible to obtain a consistent integrated model G"* 4 G'"? Based
on the domain model update u, a new consistent domain model update v’
will be derived that will reflect the changes in the opposite domain. In gen-
eral, the forward model synchronsiation process is called fPpg which stands
for forward propagation operation. The dual construction is the backward
propagation operation (bPpg). Both operations are total and determinis-
tic. total means, that both operations derive results for all inputs. Deter-
mism means that each operation will allways return unique results for all
inputs. Note, we generalised an extended version of this framework to non-
deterministic propagatin operations [GHN'13a, GHN'13b] which we will
review in Sec. 4.4.

A formal definition of the synchronisation problem and framework is

FT_T_Step-2-StepActivity FT_T_Step_args-2-attrs(string:n, string:d)
e | v o S —T
(O {_stepActiviy [bTmargs S 13@1_* ) ‘Step Activity
- oz _— — Im + | description=d ++
2nd Layer [P>T] string_LST_Ele S +t®++ > imbe=n
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Figure 4.15: Forward Translation Rules of Triple Rules in Ex. 4.1.6
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given in Def. 4.2.1. Note, it uses symbol C, which is the correspondence
relation of all consistently integrated models, i.e., C = L(T'GG).

T s

GS GT GS GT
ul &:prg{u/ uw [/:prgJu
G/S ” G/T G/S " G/T

Figure 4.16: fPpg and bPpg

Definition 4.2.1 (Synchronisation Problem and Framework (cf. Def.
3.3 in [HEO'15]) or Def. 9.7 in [EEGH15]). Let MF =
(L(TG®),L(TGT), R,C, As, Ar) be a TGG model framework. The forward
synchronisation problem is to construct an operation fPpg : R ® Ag —
R x Arp leading to the left diagram in Fig. 4.16, where R® Ag = {(r,a) €
RxAg|r:G% & Gl u: G5 = G'SY, i.e., u and r coincide on G°. The
pair (r,u) € R® Ag is called premise and (r,u') € R x A is called solution
of the forward synchronisation problem, written fPpg(r,a) = (r',u'). The
backward synchronisation problem is to construct an operation bPpg lead-
ing to the right diagram of Fig. 4.16. Operation fPpg is called correct with
respect to C, if axioms (al) and (a2) in Fig. 4.17 are satisfied and, sym-
metrically, bPpg is called correct with respect to C, if axioms (b1) and (b2)
are satisfied. A

The axioms that we mention in Def. 4.2.1 are illustrated in Fig. 4.17.
Axiom (a2) means that the fPpg operation always generates a consistent
correspondence relation 7/ from G’S which is a consistent model resulting
out of the source model update u. Axiom (al) describes the situation, if the
source model update is the identity. Then, fPpg changes nothing. Axioms
(bl) and (b2) describe similar situations w.r.t. the dual operation bPpg.

The forward propagation operation (fPpg) consists of a composition of
the following auxiliary operations (cf. Def. 4.2.2 and diagrams in Figs. 4.18
and 4.19). Note that the backward model synchronisation process bPpg is
dual.

1. The first step is called forward alignment (fAln), where the deletion
part of the source model update is performed. The fAln operation in-
cludes the deletion of the correspondence components that are affected
by deleted elements in G'S.

2. The next step named Deletion (Del), the maximal consistent subgraphs
GY C G and GE C GT are calculated, so that Gy, = (G} < G%) are
consistent, i.e., G, € L(T'GG). Gy, is calculated so that it takes source
model update v into account. GZ is the new target model. In this
step consistence creating rules are used.
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Figure 4.17: Axioms for fPpg and bPpg

3. The last auxiliary operation is the addition step (fAdd). G% is ex-
tended to G'T so that the resulting triple graph G'S < G'T is con-
sistent. In detail, the extension is performed in the sense that all
elements in G"¥ that extend Gf are used for the forward transforma-
tion to G'T. This step of the propagation applies forward translation
rules (cf. Def. 2.2.10)

In general, graph transformation is non-deterministic. In order to be
deterministic, we require that all operational translation rules are deter-
ministic, so that unique resuts can be ensured for the fPpg operation (cf.
[EEGH15]). The bPpg is defined analogously. The fPpg operation is now
defined formally in Def. 4.2.2.

Definition 4.2.2 (Auxiliary TGG Operations (cf. Def. 7.1 in [HEO'15])
or Def. 9.13 in [EEGH15]). Let TGG = (T'G,9,TR) be a TGG with deter-

ministic sets T Roc, TRpr and T Rpr of operational translation rules and
let further M F(TGGQG) be the derived TGG model framework.

1. The auxiliary operation fAIn computing the forward alignment remain-
der is given by fAIn(r,a) = 1’, as specified in the upper part of Fig. 4.18.
The square marked by (PB) is a pullback, meaning that D€ is the in-
tersection of DS and GC.

2. Letr = (s,t) : G° <> GT be a correspondence relation, then the result
of the auxiliary operation Del is the mazimal consistent subgraph Gf
GT of r, given by Del(r) = (u,r’,u’), which is specified in the middle
part of Fig. 4.18.

3. Letr = (s,t) : G® < GT be a consistent correspondence relation, u =
(ul,u2) : G° = G be a source modification and G'* € L(TGG)".
The result of the auziliary operation fAdd, for propagating the addi-
tions of source modification u, is a consistent model G'° < G'T ea-
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Figure 4.19: Synchronization operation fPpg - formal definition
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Figure 4.20: Running Example: Forward Alignment (: fAln)

tending G° < GT, and is given by fAdd(r,u) = (r', '), according to
the lower part of Fig. 4.18. AN

In applying the source model update from Ex. 4.1.4 to the triple graph
in Ex. 4.1.3, we are able to demonstrate the basic model synchronisation
framework.

Example 4.2.1 (Running Example: Model Synchronisation). The source
model update u is deleting the Pause statement in the SPELL domain, which
1s the source domain.

Fig. 4.20 illustrates the initial situation (top), i.e., the triple graph in
Ez. 4.1.3. On the bottom, the situation after executing the auziliary opera-
tion fAIn is visualised. There, the : Pause node is deleted in the source model
as well as the : next edge between nodes : Prompt and : Pause. In addition,
the correspondence node which created a relation between the : Pause node
and the corresponding node in the target model is removed. In addition, both
edges that were connected to this correspondence node are deleted, too.

In the deletion step (Del), a consistent integrated model is derived with
regard to the model on top of Fig. 4.21. The consistent intergated model is
tllustrated on the bottom of Fig. 4.21, where the source and the correspon-
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Figure 4.21: Running Example: Deletion (: Del)

dence model stay unchanged, but node : PauseActivity and edge : next are
omitted in the SPELL-Flow domain.

Finally, the auxiliary operation fAdd is applied to the resulting model
of step Del. There, forward translation rules will be applied in order to
propagate additions performed by the source model update. In our example,
the fAdd step changes nothing, because there are no additions performed in
the source model update. The resulting triple graph is illustrated in Fig. 4.22
(bottom,). A

The basic model synchronisation framework based on TGGs that we
introduced in this section, ensures correctness and completeness if the TGG
fulfills certain properties. For details, we refer to Sec. 9.2.3, and especially
to Thm. 9.25 in [EEGH15].

M 42.1. |Invertibility and Weak Invertibility

With the basic model synchronisation framework, another property of model
synchronisations was introduced: invertibility [HEO™15]. Intuitively, invert-
ibility means that the propagation operations fPpg and bPpg are inverse to
each other in the given context. A attenuated version of invertibility is the
weak invertibility. It means that the propagation operations fPpg and bPPg
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Figure 4.22: Running Example: Forward Addition (: fAdd)

are not directly inverse to each other, instead, the application of operations
(fPpg, bPpg, fPpg) or (bPpg, fPpg, bPpg), respectively, lead to the same inte-
grated model. Intuitively, it means that information might get lost during
the application of these operations.

Formally, weak invertibility is ensured, if laws (c1) or (c2) in Fig. 4.23
are fulfilled. Invertibility is ensured, if additionally axioms (d1) or (d2) are
satisfied.

Invertibility and weak invertibility are formalised by Thm. 8.6 in
[HEO™15] or by Thm. 1 in [HEOT11b]. The full proof is given in
[HEO™11b].

Example 4.2.2 (Invertible or Weakly Invertible?). Our running example is
not invertible in general, due to the fact that information get lost during the
forward model transformation from SPELL to SPELL-Flow, which cannot be
restored in the backward transformation process. Therefore, our TGG cannot
be invertible. Examples for the loss of information are: the ARGS statements
are omitted in the SPELL-Flow model or the merging of statements, e.g.,
comments or list of arguments.

In order to ensure weak invertibility, the TGG, among other properties,
has to be tight. Tightness means that oll triple rules of the TGG are creating
on the source and on the traget component, so that all derived operational



84 CHAPTER 4. MODEL SYNCHRONISATION

G r GT GS " el
(cl): url N:fPpg <uw XxbPpg .u2 X:APpg <’
GY < » G » G5 < yeu

1 9 )

GT r GS r GT r GS

(c2) : vl XbPpg <u X:fPpg _uj \cbPpg -u
GT« Neax »GT < Nes

1 T2 T2

Go . GT . G°
(dl) : urd X:fPpg  ~u' XxbPpg ~u2
G5« L e

/ /

GT r GS r GT
(d2) : uid XbPpg ~u NX:fPpg
G y G iy G

r/ r

Figure 4.23: Laws for (Weak) Invertible Synchronisation Frameworks

rules change at least one translation attribute. In our TGG, this is not
the case: Let us consider triple rule T_NEWLINE _expr_stmt-2-empty_POST
which is illustrated in Fig. 6.6 (top). This rule is only creating on the source
component and the target and correspondence domains are empty. Thus, the
corresponding backward transformation rule does not change any translation
attribute, because it is empty in the target domain.

To sum it up, the TGG we use in our running example is neither invert-
ible, nor weakly invertible in general. A

M 4.3. Concurrent Model Synchronistaion

An extension of the basic model synchronisation framework based on triple
graph grammars deals with concurrency and was formalised in [HEEO12].
Concurrency means, that we have a model update which performs changes
in the source and in the target model simultaneously. All changes shall
be propagated to the opposite domain models. Furthermore, the model
update does not need to be consistent anymore, because the concurrent
model synchronisation framework includes consistency creating operations.
They calculate a consistent model out of a possibly inconsistent one.

The general idea of this approach is to combine the forward propagation
operation and the backward propagation operation so that the changes in
one domain will be propagated to the second domain and then, both changes
of the update in the second domain will be “merged” and propagated back
to the first domain. In order to procduce consistent results and also in
order to reduce conflicts that may occur due to the complexity of model
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updates in two domains, the concurrent model synchronisation framework
defines new steps: source and target consistency creating operations as well
as a semi-automated conflict resolution strategy which will be applied when
both domain updates will be “merged” in the second domain. Finally, in
[HEEO12], the authors discussed results w.r.t. determinisms, correctness
and compatibility with the basic model synchronisation framework, that we
will review at the end of this section.

In the remainder of this section, we will introduce the corresponding
procedure formally and simulate it by means of our running example from
Sec. 4.1. This section is based on the following publications: [HEEO12,
GHN'13a, GHN"13b, EEGH15].

Let us consider a model update u which is a combination of the source
model update in Ex. 4.1.4 and the target model update Ex. 4.1.5. This
means that both domain model updates are performed simultaneously,
therefore, they both shall be propagated to our integrated model in Ex. 4.1.3
without any priority for one domain model update.

The concurrent model synchronisation framework provides a solution
for solving the question on how to propagate a consistent model update u
to a triple graph, so that a consistent integrated model is derived which
reflects the changes of u. The model update changes a the triple graph in
the source and in the target domain simultaneously. The concurrent model
synchronisation operation is called CSynch and reuses the fPpg and bPpg
operations.

The formal definition of the concurrent synchronisation problem and
framework is given below in Def. 4.3.1.

Definition 4.3.1 (Concurrent Synchronisation Problem and Framework
(cf. Def. 2.3 in [HEEO12] or Def. 9.33 in [EEGH15])). Given a triple graph
grammar TGG, the concurrent synchronisation problem s to construct a to-
tal and non-deterministic operation CSynch : (RQAgRAT) ~ (RxAgxAr)
leading to the signature diagram in Fig. 4.24 called concurrent synchroni-
sation tile with concurrent synchronisation operation CSynch. Given a pair
(prem, sol) € CSynch the triple prem = (ro,dy,d}) € R® Ag® Ar is called
premise and sol = (1, dg, dl) € R x Ag x Ar is called a solution of the syn-
chronisation problem, written sol € CSynch(p). The operation CSynch is
called correct with respect to consistency relation C, if laws (a) and (b) in
Fig. 4.24 are satisfied for all solutions. Given a concurrent synchronisa-
tion operation CSynch, the derived concurrent synchronisation framework
CSynch is given by CSynch = (TGG,CSynch). It is called correct, if oper-
ation CSynch is correct. A

Law (a) in Fig. 4.24 means that the concurrent model synchronisation
framework returns a consistent integrated model. Law (b) describes the
case that if the consistent integrated model stays unchanged, then CSynch
returns the identity, i.e., the same model which is given as input.
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Figure 4.24: Signature and Laws for Correct Concurrent Synchronisation
Frameworks

In detail, the concurrent synchronisation framework consists of the fol-

lowing auxiliary operations (cf. Fig. 4.25 and Fig. 4.26).

e CCS & CCT: Consistentcy creating operations of source and of target

model. Given a source model update uf : G5 — GY. The CCS
operation calculates a maximal consistent submodel Gi ¢ out of the
updated source model G7. For the submodel it holds that Gf,(] €
L(TGG)®. Operation CCT is dual to CCS and runs on the target
model.

e fPpg & bPpg: The forward and backward propagation operations are

reused from the basic model synchronisation framework. For details
we refer to the previous section Sec. 4.2.

e Res: The conflict resolution operation as it is proposed in [HEEO12]

is also called tentative merge construction. If both concurrent domain
model updates are conflict-free, then both can be merged to one update
in order to execute them at the same time. Otherwise, the authors
of [HEEO12] distinguish between two kinds of conflicts: delete-delete
and delete-insert conflicts. All conflicts can occur several times simul-
taneously. A delete-delete conflict is a conflict in which both concur-
rent domain updates delete the same element. A delete-insert conflict
describes the situation in which one domain model update deletes a
node, which is also the source or the target of an edge that will be
inserted by the other domain model update. Delte-insert conflicts can
be solved automatically in prioritising insertion over deletion. Any-
way, the resolution strategy is tentative, because the possible solution
will be proposed to the user who decides manually how the conflict
resolution will be applied.
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For more formal details introducing the basis of concurrent graph rules
and conflicting graph rules, we refer to Sec. 2.3 in [EEGH15].

Fact 4.3.1 (Conflict Resolution by Tentative Merge Construction (cf. Fact
4.1 in [HEEOI12] or Thm. 3 in [EET11a])). Given two conflicting graph
modifications m; = G =2 H, (i = 1,2) (i.e., they are not conflict-free).
The tentative merge construction yields the merged graph modification m =
(G + D — H)) and resolves conflicts as follows:

1. If (my,m2) are in delete-delete conflict, with both mi and mo deleting
x € G, then x is deleted by m.

2. If (m1,m2) are in delete-insert conflict, there is an edge es created
by mo with x = s(ez) of x = t(e2) preserved by mao, but deleted by
my. Then x is preserved by m (and vice versa for (mq,my) being in
delete-insert conflict). A

The construction of the derived concurrent synchronisation framework
is visulised by the diagrams Fig. 4.25 and Fig. 4.26. In the following, we
will cite the construction of the CSynch operation, as it was introduced in
[HEEO12].

Construction 4.3.1 (Operation fSynch and CSynch (cf. Constr. 5.2 in
[HEEO12] or Constr. 9.37 in [EET11al). In the first step (operation CCS),
a mazimal consistent subgraph Gic € E(TGG)S of Gls is computed. In step
2, the update uicc 1s forward propagated to the target domain via operation
fPpg. This leads to the pair (r1 g, ul ) and thus, to the pair (ul o, ul) of tar-
get updates, which may show conflz’éts. Step 3 applies the conﬂict resolution
operation Res including optional manual modifications. In order to ensure
consistency of the resulting target model G;Fc we apply the consistency cre-
ating operation CCT for the target domain and derive target model G;FCB €
L(TGG)T in step 4. Finally, the derived target update “2T,CC s backward
propagated to the source domain via operation bPpg leading to the source
model Gg,FCB and source update uiCB. Altogether, we have constructed a
nondeterministic solution (Tg,ug,ug) of operation fSynch for the premise
(ro,uy,ul) with (rg,us,ud) = (T’Q’FCB,’I,Lg’FCB,Ug:FCB) (see Fig. 4.25).
The concurrent synchronisation operation bSynch is executed analogously via
the dual constructions. Starting with CCT in step 1, it continues via bPpg
in step 2, Res in step 3, CCS in step 4, and finishes with fPpg in step 5.
The non-deterministic operation CSynch = (fSynch U bSynch) is obtained by
joining the two concurrent synchronisations operations fSynch bSynch. A

Finally, we are able to refer to the definition of the derived concurrent
triple graph grammar synchronisation framework.
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Figure 4.25: Concurrent Model Synchronization With Conflict Resolution
(Forward Case: fSynch)
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(Backward Case: bSynch)

Definition 4.3.2 (Derived Concurrent TGG Synchronisation Framework
(cf. Def. 5.5 in [HEEO12] or Def. 9.40 in [EEGHI15])). Let fPpg and bPpg

be correct basic synchronisation operations for a triple graph grammar TGG
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and let operation CSynch be derived from fPpg and bPpg according to Con-
str. 4.83.1. Then, the derived concurrent TGG synchronisation framework s

given by CSynch = (TGG; CSynch). A

In [HEEO12] as well as in [EEGH15], it was examined whether the fol-
lowing properties are met by the framework:

e determinism,
e correctness, and

e compatibility with the basic model synchronisation framework (cf.
Sec. 4.2)

For proofs and more details, we refer to Sec. 6 in [HEEO12] or Sec. 9.3.3 in
[EEGH15].

As already indicated in Constr. 4.3.1, operation CSynch is nondetermin-
istic in general. The reasons for this behaviour lie in the fact that the choice
of using fSynch or bSynch is not fixed and both may result in different in-
tegrated models. In addition, the consistiency creating steps CCS and CCT
may derive different submodels from the same domain model. Further, the
tentative conflict resolution step Res is not deterministic, too, due to the
manual user intervention being the solution strategy of the tentative merge
construction (cf. Fact 4.3.1).

The derived concurrent TGG synchronisation framework always yields
a consistent integrated model. Therefore, it ensures correctness, because it
fulfills laws (a) and (b) in Fig. 4.24 (cf. Thm. 6.3 in [HEEO12)).

The concurrent model synchronisation framework based on TGGs is
compatible with the basic model synchronisation framework which is shown
in Thm. 6.4 in [HEEO12]. In detail this means that both frameworks will
yield the same integrated models as result of the same domain model update
u. Note, in that case, update v changes only one domain, i.e., the update
on the other domain is the identity.

Example 4.3.1 (Running Example with Concurrent Model Update). We
demonstrate the concurrent model synchronisation framework by means of
the example introduced in Sec. 4.1. Given a concurrent model update u =
(uf,ul) in the source and target domain (cf. Examples 4.1.4 and 4.1.5)
which we want to apply to the triple graph Gy = (G(*? — Gg — G¥) in
Ex. 4.1.3.

For the current example, we decided to apply the forward case of CSynch
(fSynch, c¢f. Fig. 4.25). The first substep of the fSynch operation is the
application of the source model update uls to the source component Gg of
triple graph Go. The top row of Fig. 4.27 shows the application ofuf to GOS.
The source model update deletes node : Pause as well as the corresponding
: next edge from the source model. The resulting graph is G*lg.
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Figure 4.27: Source Model Update u‘lg and CCS Operation

Afterwards the source consistency creating operation : CCS is executed.
For that, a mazximal consistent source graph Gic will be derived, where
Gic C GY is mazimal, and Gf’c € L(TGG)®. Mazximal means that there
exists no bigger graph that is subgraph of GIS . In the current case, it is
true that Gf € E(TGG)S, therefore, the CCS step returns a graph which is
equal to the updated graph, i.e., ch = G‘f. The CCS step is visualised in
Fig. .27, too. ’

Using source model Gi ¢ and triple graph Go as input, the next auxiliary
operation, which is called fPpg (forward propagation), derives the corre-
sponding triple graph Gi p = (Gic — Glc:F — G{F) in using the forward
translation rules of the TGG. We depicted the most relevant ones for this
running example in Fx. 4.1.8. In detail, we applied the following forward
translation rules for translating Gf,c to G1p (cf. Fig. 4.15.

o FT_T _Step-2-StepActivity is used for translating the : Step node to both
StepActivityNodes.

e FT_T Step_args-2-attrs is applied for translating the desctiption and the
number of the Step statement.

o FT_T_sourceCodeText-2-sourceCode is applied in the SPELL-domain to
all attributes sourceCode that will be translated to sourceCodeText at-
tributes in the SPELL-Flow domain. In the current case, it translates
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Figure 4.28: fPpg Operation

all sourceCode attributes of node : string_LST_Elem connected to node
: Step.

o Rule FT_T_lines-2-lineNumbers is simuilar to the previous one, but it
translates the start— and endLineNumber.

o FT rule FT_T_ARGS-2-nothing will be applied twice. It changes mark-
ers of the ARGS subtree from F to T. This means, that both ARGS
statements are omitted in the SPELL-Flow domain.

o Other FT rules are used, which are not illustrated explicitly:

— For translating the : filejnput node to nodes : Root and

— For creating the correct connection of the : StepActivity node on
layer 1 with the : StartNode.

— For translating the : Prompt subtree. The F'T rule that translates
node : Prompt is similar to FT rule FT_T_Pause-2-PauseActivity.



92 CHAPTER 4. MODEL SYNCHRONISATION

The other rules that translate the arguments of the Prompt state-
ments resemble FT rule FT_T _Step_args-2-attrs.

— In order to get a fully-translated model, some further F'T rules are
necessary that translate attributes that were not translated, yet,
e.g., attributes sourceCode, line_end or line_start of node : Prompt.

— Some FT rules need to translate the edges, that were not touched,
yet, e.g., edge : fst in the SPELL domain. Those rules may create
connections of unattached elements in the SPELL-Flow domain.

After applying the target model update ul to the original target model
Gg, we receive target model G1. The target model update adds a comment
“TEXT?” to the : Prompt node. We illustrate the target model update appli-
cation in the top row of Fig. 4.29.

The next substep of fSynch is the conflict resolution step Res. We show
the Res step in Fig. 4.29. Source model update uf and target model update ulT
of model update u are not in conflict, because the deletion of node : Pause in
the SPELL domain does not affect the addition of the attribute comment for
node : PromptActivity in the SPELL-Flow domain. Therefore, both updates
can be merged into one update by the Res step. No manual interrogation is
necessary, therefore, the Res step is deterministic for the current example.
The Res step reuses target models G{F (result of fPpg) and GT (result of

target model update application). The outcome of Res is target model G;Fo.

After the execution of the conflict resolution step, target model Gg,FC
is used as input for the consistency creating step of the target model CCT.
It is executed similar to the CCS step on the target model. In the current
example, which is illustrated in Fig. 4.30, the CCT step returns target model
G;FCB c L(TGG)T. G2T7FCB is equal to G;Fc, because the latter graph is
already consistent, i.e., G¥ . € L(TGG)T.

Finally, the backward ];ropagation operation fPpg is applied using triple
graph G1 r and the target model G;FCB' The backward propagation step
uses the backward translation rules that were derived out of the set of triple
rules of the TGG (for examples of the triple rules, we refer to Ex. 4.1.6).
The BT-rules are not presented in explicit in this work. One example BT-
rule is given in Fx. 2.2.5.

The bPpg step results in triple graph Go pcp = (Gg,FCB — GgFCB —
G;FCB), which we illustrate on the bottom row of Fig. 4.51.

Note, the backward transformation rule that corresponds to triple rule
T_ARGS-2-nothing is empty on the correspondence and target component,
i.e., it changes no translation attributes. Therefore, it is applicable endlessly
during the backward transformation process. In order to achieve termina-
tion, we decided to remove this BT-rule from the set of backward transfor-
mation rules in practice. So, both ARGS structures cannot be restored during
the bPpg operation. Thus, they are missing in the source model Gg,FCB of
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triple graph G2 rcp-

For our running example, the whole forward synchronisation operation
fSynch returns triple graph Go pcp as result of the concurrent model syn-
chronisation process based on TGGs. A
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Figure 4.29: Target Model Update uf and Res Operation
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Figure 4.30: CCT Operation

B 4.4. Non-Deterministic Concurrent Model Syn-
chronisations and Efficiency Improvement

We generalised the concurrent model synchronisation framework that we
introduced in the prevoius section to the non-deterministic case [GHN*13a,
GHN™13b]. In addition, we applied optimisations to the (non-deterministic)
concurrent model synchronisation framework: The second main result of
those publications is the efficiency improvement in which we show the appli-
cability of filter NACs Def. 2.2.14 to the concurrent model synchronisation
framework. In this section, we will summarise the formalisations and the
results of the above-mentioned works.
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Figure 4.31: bPpg Operation

M 4.4.1. Non-Deterministic Concurrent Synchronisation Framework

The basic and concurrent model synchronisation framework that we intro-
duced in the previous sections is limited to deterministic propagation oper-
ations. In [GHNT13a], we generalised this framework to non-deterministic
propagation operations and also to arbitrary TGGs.

First, we define the non-deterministic concurrent synchronisation prob-
lem and framework which is the extension of Def. 4.3.1.

Definition 4.4.1 (Non-Deterministic Concurrent Synchronisation Problem
and Framework (cf. Def. 2.3 in [GHN"13a] or Def. 3.3 in [GHNT13Db])).
Given a triple type graph TG, the concurrent synchronisation problem is to
construct a non-deterministic operation CSync leading to the signature dia-
gram in Fig. 4.24 with concurrent synchronisation operation CSync. Given
a triple graph grammar TGG = (TG, TR) and a concurrent synchroni-
sation operation CSync, the non-deterministic concurrent synchronisation
framework CSynch(TGG,CSync) is called correct, if laws (a) and (b) in
Fig. 4.24 are satisfied and it is called complete, if operation CSync is a left
total relation. A

The difference between the concurrent synchronisation framework (cf.
Sec. 4.3) and the generalisation to the non-deterministic case is that we do
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not require deterministic TGGs. The propagation is executed via the same
auxiliary operations of CSynch Figs. 4.25 and 4.26. Due to non-determinism,
the each of the steps CCS, CCT and fPpg, bPpg may lead to different results
and may require backtracking (cf. Concept 1 in [GHNT13b]).

The non-deterministic concurrent synchronisation framework yields a
consistent result for every valid input. This is shown in the following theorem
regarding correctness and completeness (cf. Thm. 4.4.1). The theorem and
its proof are originally published in [GHN*13b, GHN"13a]. In addition,
the generalisation ensures termination, if each operational translation rule
changes at least one translation attribute Def. 2.2.18.

Theorem 4.4.1 (Correctness and Completeness of Non-Deterministic Con-
current Synchronisation Framework (cf. Thm. 1 in [GHNT13b] or Thm.
2.5 in [GHN"13a])). Given a triple graph grammar TGG, the derived non-
deterministic concurrent synchronisation framework CSynch(TGG,CSynch)
is correct and complete. A

Proof. By Thm. 1 in [HEEOI12] we know that the concurrent syn-
chronisation framework is correct and complete for deterministic sets
TRco, TRpp,TRpr of operational rules. We have to show that the
extended operations fPpg and bPpg based on non-deterministic sets
TRco,TRpp, T Rpr are correct and complete as well. Since operations fPpg
and bPpg are defined symmetrically, it is sufficient to show orrectness and
completeness of operation fPpg. By Rem. 3.1 in [GHN'13b] (we cited this
remark in Rem. A.8.1), we described the execution of operation fPpg and
defined the difference due to backtracking. Using the correctness and com-
pleteness result for model transformations based on forward rules (Thm. 1
in [EEHP09]), we know that there is a source consistent forward sequence
yielding a consistent integrated model G/ € L(TGG), if G'° € L(TGG)S.
According to the preconditions in laws (a) and (b) in Fig. 4.24 we have that
G e L(TGG)® holds and thus, operation fPpg is correct and complete. By
symmetry of the definitions, we derive that operation bPpg is correct and
complete.

We now consider the remaining steps in Fig. 4.25. Consistency check-
ing operations (CCS, CCT) compute maximal sub models. These operations
may also require backtracking, because the sets of operational rules are not
necessarily deterministic. Their execution is performed by constructing a
corresponding model transformation sequence. Hence, as in the determin-
istic case, these operations lead to the consistent models Gic € VLg and
G2T7FCB € L(TGG)T as required for operations fPpg and bPpg. Moreover, if
the given models are consistent already, then there is a corresponding model
transformation sequence that translates this model due to the completeness
result of model transformations based on TGGs (Thm. 1 in [EEHP09]). This
ensures law (b) in Fig. 4.24. Finally, operation Res does not have to ensure
special properties. All together, operation fSynch always yields a consistent
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integrated model G (correctness law (a) in Fig. 4.24), does not change any-
thing for consistent inputs with identical updates (correctness law (b) in
Fig. 4.24). and it provides an output for any input (completeness).

By symmetry of the definitions, we can also conclude that operation
bSynch is correct an complete (Fig. 4.26), such that operation CSynch =
bSynch U bSynch is correct and complete. O

M 4.4.2. Efficiency Improvement via Filter NACs

The generalisation of the concurrent model synchronisation framework to
the non-deterministic case allows arbitrary TGGs. This may lead to the sit-
uation where backtracking is necessary because the framework will produce
several possible results. In order to reduce the backtracking steps and there-
fore reduce conflicts between the operational rules of the underlying TGG,
we propose using filter NACs, that we already introduced in Def. 2.2.14.

In [GHN"13a, GHN'13b] we extended the non-deterministic concurrent
model synchronisation framework by filter NACs for the following kinds of
operational translation rules: forward translation rules, backward transla-
tion rules and concistency creating rules. Thus, we are able to improve the
efficiency of the model synchronisation in reducing the backtracking steps.
Consequently, the synchronisation operations needed to be extended so that
they are compatible with filter NACs. Afterwards, it is shown that the cor-
rectness and completeness results in Thm. 4.4.1 still hold for the extension
by filter NACs.

Intuitively, a filter NAC specifies a pattern of an operational translation
rule which will lead to an incomplete translation and therefore require back-
tracking. Thus, a filter NAC prevents the application of the translation rule
in such situations, in order to reduce the backtracking steps.

We will now review the details and illustrate this extension be means of
an example at the end of this section.

If we consider the forward propagation operation fPpg in Fig. 4.19 and
its sub-steps in Def. 4.2.2. In the basic model synchronisation framework
and in the concurrent model synchronisation framework, the second sub-
step Del is defined so that it calculates a maximal consistent subgraph w.r.t.
GS and GT (cf. Sec. 4.2). In the generalisation, we require the Del sub-step
to be terminating without necessarily deriving the maximal sub-graph. The
reason for this is that operational translation rules that are equipped with
filter NACs may reduce the possible triple sequences. Thus, the same triple
sequence without filter NACs may not satisfy the maximality condition.

For ensuring consistency of a triple graph ¢’ that was derived with the
aid of forward (or backward) translation rules, the set of consistency creating
rules TR will be equipped with filter NACs, too. If consistency creating
rules would not contain the corresponding filter NACs, then the consistency
check of G’ may fail or backtracking would be necessary, because other CC-
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rules would be applicable in contrast to the corresponding FT- (or BT-)
rules that were setting up G'.

In the following, we review the definition of filter NACs for the non-
deterministic concurrent model synchronisation framework CSynch. Note,
we restrict filter NACs to be domain-specific, i.e., they forbid structure on
the target domain or on the source domain only. In detail it means, that a
domain-specific NAC of a forward translation rule extends the LHS in the
source domain and a domain-specific NAC of a backward translation rule
extends the LHS in the target domain.

Definition 4.4.2 (Filter NACs for CSynch (cf. Def. 4.5 in [GHNT13Db])).
Let tr be a triple rule, trpp be its derived forward translation, troc its de-
rived consistency creating rule and i : Lpr — Loc be the corresponding in-
clusion of the left hand sides. Let (npn: Lpp < Npy) be a domain specific
filter NAC, i.e., with Npp = (N&p < LGy — LE.). Then, the consistency
creating rule with propagated filter NAC tron extends troco by the addi-
tional NAC (ncn: Loc — Neon) with: Noy = (N}‘C%'N <i/ LgC i) LCCT),
s’ =500t =tr,, ngN =nPy, ngN = id, nLy = id. In the case of a
backward translation rule, the construction is performed symmetrically. Let
TGG be a triple graph grammar and T Rpy and T Rpn be the derived sets
of forward and backward translation rules possibly extended by filter NACs.
Then, CSynch(TGG, TRrpn, TRpN) is derived by extending the consistency
creating rules TRoc with all propagated filter NACs from TRpy and TRpN
leading to a set TRon and performing the construction as for CSynch(TGG)
on these sets of extended rules (TRon, TRpN, TRBN)- A

The following result in Thm. 4.4.2, shows that the correctness and
completeness results from the concurrent model synchronisation framework
(Sec. 4.3) still hold for the non-deterministic case that is extended by filter
NACs.

Theorem 4.4.2 (Correctness of Concurrent Synchronization Frameworks
with Efficiency Improvement by Filter NACs (cf. Thm. 2 in [GHN"13D])).
Given a triple graph grammar TGG and o set of domain specific filter
NACs for the operational translation rules that have been propagated to
the consistency creating rules TRoc. Then, the derived non-deterministic
concurrent synchronisation framework with domain specific filter NACs
CSync(TGG, CSynchpy) is correct and complete. A

Proof Idea 4.4.1 (Thm. 4.4.2 (cf. Thm. 2 in [GHNT13b])). Accord-
ing to Thm. 2 in [GHN'13b], the proof of the theorem uses Thm. 1 in
[HEO™ 15] by which we know that the deterministic concurrent model syn-
chronisation framework (Sec. 4.3) is correct, complete and invertible. The
proof of Thm. 4.4.2 is similar but it must be shown that the operational trans-
lation rules that are equipped with filter NACs do not affect the correctness
property. The full proof is recited in the following [GHNT 13b]. A
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First, the following facts need to be defined because they are used in the
full proof of Thm. 4.4.2.

Fact 4.4.1 (Equivalence of Triple and Extended Consistency Creating Se-
quences (cf. Fact 10 in [HEOT11b))). Let TGG = (TG, 2, TR) be a triple
graph grammar with derived consistency creating rules TRcoco and given
G € L(TG). Then, the following are equivalent for almost injective matches

1. There is a TGT-sequence s = (& = G}) via TR with injective
embedding f : G — G.

2. There is a consistency creating sequence s' = (G, Lee, G}.) via TRcc
with Gy = Att¥ (Q@).

Moreover, the sequences correspond via G, = H @ Attgk &) AttE\Gk. A

Proof of Fact 4.4.1. For the full proof we refer to Fact 10 in [HEO*11b]. O

Fact 4.4.2 (Induced Triple Sequence of Consistency Creating Sequence with
Additinal NACs (cf. Fact 4.2 in [GHNT13b))). Let TGG = (TG, o, TR) be
a triple graph grammar with derived consistency creating rules TRoc and
let TRy be obtained from TRcc by possibly adding some NACs to some

t *
of the rules. Then, each consistency creating sequence s' = (Gj, —ccy G}.)

via TR with Gy = Att* (G) induces a triple sequence s = (2 = Gy,)
via TR with G, C G. A

Proof of Fact 4.4.2 (cf. Fact 4.2 in [GHNT 13b]). Consistency creating se-
quence s’ via TRy is also a consistency creating sequence via TRc¢, be-
cause disregarding NACs the sets TRy and TRcoc are the same and all
NAC:s of a rule trcc in TReoc are also NACs of the corresponding rule tri
in TRy . Thus, we can apply Fact 4.4.1 to the sequence s’ via TRo¢ and

derive the corresponding triple sequence s = (& £:> Gy) via TR. ]

Fact 4.4.3 (Consistency Creating Sequence with Propagated Filter NACs
and Induced Forward Translation Sequence with Filter NACs (cf. Fact 4.3 in
[GHN"13b])). Let TGG be a triple graph grammar and TRry and TRpN be
the derived sets of forward and backward translation rules possibly extended
by domain specific filter NACs, and let TRon be the set of consistency
creating rules derived from TRoc by propagating all filter NACs of TRpy
and TRBN.

Let s = (H| :tré—%> H}) via TRoy with Hy = Att¥ (H). Then, there is a
triple graph G C H and a forward translation sequence spy = (I}, E;Fi> I;)
via TRpy, such that I, = (H'§ « @ — @) and I, = (H? + G° —
GT). A
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Figure 4.32: Constructions for the proof of Fact 4.4.3

Proof of Fact 4.4.3 (cf. Fact 4.8 in [GHN' 13b]). Consistency creating se-
quence s = (H} —C%, H!) via TRoy with H, = Att¥(H) implies a
corresponding triple sequence s = (& LN G) via TR by Fact 4.4.2. By

the composition and decomposition result for TGGs with application con-
ditions (Thm. 1 in [GEH11]) this implies a source consistent forward se-

quence sp = (Gp N Gy) via TRp with Gy = (G° + @ — @). By
Fact 1 in [HEGO10b] (Equivalence of complete forward translation se-
quences with source consistent forward sequences), there is a correspond-

ing forward translation sequence sppr = (G g G}.) via TRpr with
b= (Attp(G®) « @ — @) and G}, = (Attp(G°) + GC — GT).

By Fact 6 in [HEO"11b] (Extension of FT-sequences), this sequence
implies the existence of the corresponding extended sequence via forward
translation rules s, = (I N Il) via TRpr with I} = (Attp(H%) +
o — @) and I} = (H® ® AttSs ® Att]s gs < GC = GT).

It remains to show that sequence s}, satisfies in each step also the
additional filter NACs in TRpy. We show this by contraposition. Assume

that there is a domain specific filter NAC (npn: Li py — Npn) of rule

. tr; ,My; . .
tri py and there is a step I] T4 FT T FT I], | not satisfying NAC npy.

This means that there is an almost injective morphism ¢py: Npn — I



4.4. NON-DETERMINISTIC CONCURRENT SYNCHRONISATION101

compatible with m; pr, i.e., qpny o nEN = My Fr.
We extend morphism ¢py as shown in the two diagrams above. On the
source component, we obtain qg N = i%o qg y using the inclusion ¢: I; — H;
On the correspondence and target components we can take the match
m;.cnN, because the NAC is domain specific concerning the source domain.
Morphism qcp is a triple graph morphism, because all diagrams above
commute. It is almost injective, because ¢py is almost injective and
i: I; < H; is an inclusion. Finally, gcn o nocy = m;cn as depicted in
the diagrams above, where the source component is depicted right and
commutativity on the correspondence and target component holds by:
g&y onSy = mly oid = m&y and gLy o nky = mby oid = mky. Thus,
tri cNHit1

morphism gon: Nony — H; violates a NAC of the step H;

. try .
that corresponds to forward translation step spy = () —EN_ T +). This
is a contraction to the given NAC-consistent consistency creating sequence

tr . . :
s = (H, =< H ) via TRcoy. Therefore, the assumption that there is
a forward translation step is invalid. Thus, forward translation sequence

sep = (I ”% I}.) via TRp7 is NAC consistent for all NACs of TRpy
and therefore, it is a consistent sequence via TRpy. ]

Proof of Thm. 4.4.2 (cf. Fact 4.3 in [GHN'13b]). Operations
fAln and bAln are defined for all inputs, because they are based on pull-
back constructions. Operation Del is given by a terminating execution of a
consistency creating sequence via TRcpy. This condition is ensured by the
precondition that the set TRopn ensures termination. Finally, operations
fAdd and bAadd are not ensured to yield the required results for all possi-
ble inputs, because the additional NACs may cut off some transformation
seuqences, i.e. they become shorter. Thus, we need to show that the com-
posed operation fPpg is still defined for all inputs and the resulting output
is as required.

From the computed consistency creating sequence via operation Del, we

. . . try .
derive the corresponding forward translation sequence G, LEN G}, via
TRpyn using Fact 4.4.3. This sequence can be extended to a terminated

forward translation sequence Gj, Ll G, il G! via TRpy. In the
general case, we may have to backtrack till we derive a complete forward
translation sequence. But, due to the completeness result for forward trans-
lation sequences with filter NACs [HEGO10a], we know that there is at least
one such sequence. This ensures completeness for the synchronisation oper-
ation using the completeness result for concurrent synchronisation without
filter NACs [HEEO12].

By Def. 6 in [HEGO10a], a model transformation based on forward trans-
lation rules is based on complete forward translation sequences. Thus, by
Thm. 1 in [HEGO10a] (correctness), we can conclude that G = (G° <
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Figure 4.33: Example Triple Graph

B¢ — GT) € VL. Therefore, operation fPpg is correct and symmetrically,
we derive that operation bPpg is correct. This implies that the concurrent
synchronization operation CSynch is correct as well. O

The forward propagation operation fPpg does not require backtracking,
if the sets TRon and TRpn do not require backtracking, according to the
proof mentioned above. The similar case holds for the backward propagation
operation bPpg. In Thm. 4.4.2, we have shown that the correctness and
completness results still hold for the generalised approach, i.e., the non-
deterministic concurrent model synchronisation framework.

We will now illustrate the effect by means of the following example
(Ex. 4.4.1).

Example 4.4.1 (Filter NACs). If we consider the triple graph in
Fig. 4.33, which is an excerpt taken from the abstract syntax graph of
the SPELL running example (cf. Fig. 5.2). Nodes : file_input and : Step
as well as edge :fst between both nodes, are already translated during
the fPpg step. Now, the forward translation operation is able to apply
on of the following FT-rules: Fither FT_T_argument_list-2-Argument or
FT_T_argument_list_fst_argument_LST _Elem-2-Argument. Both are depicted
i Fig. 4.88 and are taken out of the set of triple and FT-rules of our case
study (Chap. 6).

The choice which FT-rule will be applied is non-dterministic.
If FT-rule FT_T_argument_list_fst_argument_LST_Elem-2-Argument s ap-
plied, then the translation can be completed. In contrast, if FT-
rule FT_T_argument_list-2-Argument is applied, then, the fPpg opera-
tion will lead to a non-consistent model, 1i.e., a model which can-
not be translated completely, because there exists no FT-rule in our
set which translates only node argument_LST_Elem. Thus, in case
FT-rule FT_T_argument_list_fst_argument_LST_Elem-2-Argument is applied,
backtracking is necessary. If we add a filter NAC for FT-rule
FT_T_argument_list-2-Argument, which prevents the application of that rule
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Figure 4.34: Triple Rules
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Figure 4.35: Forward Translation Rules

in the given context, then we are able to achieve determinism for the given
case. Note, the case study in Chap. 6 does not use generated filter NACs,
instead, we created each filter NAC manually. A
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Propagation of Model Updates in Multi-View
Models

In the previous chapter, we presented the bidirectional model synchronisa-
tion framework for triple graphs which is defined for 1:1 models. During
the work on the bidirectional SPELL < SPELL-Flow software translation
project in cooperation with the industrial partner SES, we realised that the
underlying model in this project can be seen as 1:m model. Furthermore,
the different levels of hierarchy in the SPELL-Flow model contain duplicates
of the same data, due to the different abstraction layers. We decided to call
the different abstraction layers in the SPELL-Flow domain wviews. Thus,
we extended this model synchronisation framework in order to answer the
following research question:

If a model update in one view is performed, then how is it possible to

4 SPELL ) f SPELL-Flow \

— SPELL-Flow
,/ — ¥ \layer 2

[ SPELL-Flow

Layer 1
-Flow

Layer 2
SPELL-Flow

Layer 1

- U

Figure 5.1: The bidirectional software translation between SPELL and
SPELL-Flow uses views in the target model
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consistently propagate this model update to all other views and also to the
other domain?.

This section is structured as follows: First, we will introduce the derived
propagation framework in presenting the formal details and in using our
running example from Chap. 5.

This chapter is based on the article in [GNE*16b] and the corresponding
technical report [GNET16a]. The derived propagation framework we devel-
oped takes a 1:1 model as input, i.e., a triple graph. The structure of this
triple graph is not relevant. As already mentioned at the beginning, we want
to define a new propagation framework for n:m models. In detail, we realise
this fact in our running example by a 1:1 model that may contain different
sub-models. In the running example, the sub-models are represented by the
different views in the SPELL-Flow model.

M 5.1. Introduction of Running Example

In the current section, we present an excerpt of the running example in
Sec. 1.3 which we use throughout the current chapter. The excerpt is similar
to the one in Sec. 4.1, i.e., the SPELL-Flow model is identical, whereas the
SPELL source code is slightly smaller, because the first three source code
lines are omitted here.

Example 5.1.1 (SPELL source code and corresponding ASG). The follow-
ing listing shows the excerpt of the SPELL source code. It is the same source
code as in Ex. 4.1.1, but the first three source code lines are missing.

Listing 5.1: Running example: SPELL code, part of Step 5 (source instance)

Step(’5’, 'MANAGEMENT OF COMPONENT A’)
Prompt( "WARNING: Check something before.’, OK)
Pause ()

The corresponding SPELL abstract syntaz graph (ASG) of the given
source code is visualised in the following Fig. 5.2. This screenshot is taken
in HenshinTGG.

The SPELL ASG in this chapter is a very similar to the SPELL ASG
in Fig. 4.1. The big difference is that the subtrees representing the ARGS
assignments (and the comment in line 8) are missing. In the current visu-
alisation of the SPELL ASG, we use the same highlighting as in Fig. 4.1:
The topmost node file_input, i.e., the main container of this ASG, is high-
lighted in red. In contrast to Fig. 4.1, the file_input node is followed by the
subtree that represents the Step statement (highlighted in yellow). The Step
is followed by the Prompt structure (highlighted in grey) and finally followed
by the Pause subtree (highlighted in violet). A
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Figure 5.2: Running example: SPELL ASG, part of Step 5 (source instance)

Example 5.1.2 (SPELL-Flow visualisation and corresponding ASG). The
screenshot taken in HenshinTGG of the SPELL-Flow visualisation that cor-
responds to the SPELL model in FEx. 5.1.1, is identical to the SPELL-Flow
visualisation in Fx. 4.1.2. Consequently, the SPELL-Flow ASG depicted in
Fig. 5.4 is identic to the one in Fx. 4.1.2, too.

[5: MANAGEMENT OF COMPONE... |
|<..‘>
next
next
[5: MANAGEMENT OF COMPONE... |
‘< N | WARNING: Check something befo...
next
Pause |

Figure 5.3: Running example: SPELL-Flow visulisation, part of Step 5
(target instance)



108 CHAPTER 5.

:Root
- valueXMIID = _146167261817160056
L

to_StartNode

DERIVED PROPAGATION FRAMEWORK

“StepActivity

- startLineNumber = 1

- endLineNumber = 2

- XMIID = _146167261816452037

- SOUILELGUE = 1SR, 2, MANAUCIVICN | UF CUMFUINGIN A )

- description = MANAGEMENT OF COMPONENT A

- number =
\ g L
to_Element = i
T :StartNode ==
- startlineNumber = 1 v
\ - endLineNumber = 1 PromptActivi
\| [ XMID = _146167261816577206 - e Earfle ATl
\ (R lement - endLineNumber = 3
AN firstElement 7 D O v Uitk sy peiones, Uy
N v - | iption = : Check ing before. OK
:StepActivity oi0 Element” |
- startLineNumber = 1 nl =
- endLineNumber = 2 =
-XMIID = 14616726181 6451.037_(0& Y
= SUUICECOUE = JIEP 0, MANADLIVICN | UF CUIVIFUINEIN T A ) e PauseActivity
- description = MANAGEMENT OF COMPONENT A | to_Element__ - startlineNumber = 3
- number=5 ~—| - endLineNumber = 4

- XMIID = _146167261816140344
- SvurceLous = rause )

- description =

Figure 5.4: Running example: SPELL-Flow model, part of Step 5 (target

ASG)
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Figure 5.5: Running Example: Triple Graph

The two nodes highlighted in green are the ASG nodes that correspond
to both elements on the main layer of the SPELL-Flow visualisation. The
nodes highlighted in blue constitute the second hierarchy level. A

Example 5.1.3 (SPELL < SPELL-Flow Triple Graph). The following fig-
ure shows the triple graph M that is typed over a reduced SPELL ASG and
over the SPELL-Flow ASG. Moreover, this triple graph includes important
correspondences. In order to improve the readability, we omitted elements
in this image. Note, the whole running example in this chapter uses the
reduced version, similar to the example in Ex. 4.1.8. The full triple graph,
which is still reduced by attributes, that are not important in this chapter, is
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[5: MANAGEMENT OF COMPONE... |

[ |

next

[5: COMPONENT A |
B |

[ Properties 2
A StepActivity

Core Property Value
Arguments

Appearance
Comments '= something

Figure 5.6: Running Example: Result of Target Domain Model Update in
Visualisation

illustrated in Appendiz A.6. A

Example 5.1.4 (Domain model update in target domain). We want to
execute the following model update in the target domain, i.e., in the visual
model of SPELL-Flow:

o Delete Pause node in the second layer of the SPELL-Flow visualisation.

e Change the description of the Step node in the main layer (1st layer)
from 5, MANAGEMENT OF COMPONENT A to 5, COMPONENT
A.

e Add a comment “something” to the : Step node on first layer.

In Fig. 5.6 the intermediate result of the target model update in the
SPELL-Flow visaulisation tool is illustrated. The left side of the screen-
shot shows the first (main) layer. The right side illustrates the second layer
which belongs to the Step statement. In the screenshot, the additional com-
ment is only visible in the properties view of the corresponding Step node
(bottom,). A

Example 5.1.5 (Relevant Triple Rules). The subset of relevant triple rules
that we use in this chapter is already described in detail in Fx. 4.1.6. A

Example 5.1.6 (Triple Graph Grammar TGG and Language L(TGGQ)).
Given the TGG = (MM, 2, TR) over triple type graph MM in Ez. 2.2.1

and with triple rules TR. Then the triple graph in Fig. 5.5 is contained in
L(TGG). A

B 5.2. (Domain) Model Update

We focus on consistent propagations of model updates. Therefore, we
clarify the notion of consistency first. Given a TGG over type graph
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MM = (MMp, & MM¢ -t MM p,), then all graphs in £L(TGG) are called
consistent integrated models. All graphs in £(TGG)P! are called consis-
tent models of domain D; and all graphs in £(TGG)P? are called consistent
models of domain Ds. A model update leads to state changes in models and
is given by a span of inclusions u: M < Mp “25 M’'. Equivalent to rules,
all elements in M \ u;(Mp) are deleted, all elements in Mp are preserved
and all elements in M’ \ ua(Mp) are created. An update is consistent, if
M' is a consistent model. An update is called Di-update, if it leads to
changes in models of domain D; only and it is called Do-update, if it leads
to changes in models of domain Dy only. If the model update is unknown,
existing methods of difference compution [EEGH15] can be used to obtain
the update from the state-changes of models.

Definition 5.2.1 ((Consistent) (Domain) Model Update). Given models
M, M’, then the update u = (uy,uz) between M and M’ is given by a
span of inclusions u: M &L Mp 25 M’ with uj,us € M. Given a
TGG over triple type-graph MM = (MM p, <~ MM¢c L MMp,), then u
is called a D;-domain update, short D;-update, if M, Mp,M' € L(MM p,)
(i =1,2). A Dj;-update is consistent, if M’ € L(TGG)Pi. With Ap, = {u |
u is a Dj-update} we denote all updates in domain D;. A

Example 5.2.1 (Domain Model Update). We already informally introduced
the model update which is performed in the SPELL-Flow domain (target
domain) in Ex. 5.1.4. In Fig. 5.7 (top) we illustrate the target model update
u: M < Mp — M with model M = Mgsprri—Fiow using the SPELL-
Flow graph representation. Due to readability, we illustrate only the SPELL-
Flow domain, i.e., the target domain, but implicitly assume the whole model.
Furthermore, the image uses the compact notation (cf. Rem. 2.2.1). Parts
that are deleted, are marked in red and with ——. They are contained in M,
but not in Mp and M. Parts that will be added by the update, are marked
in green and with ++. Those elements are contained in M', but not in M
and Mp. All unmarked parts are contained in all, M, Mp and M’.

Note that the update is not consistent w.r.t. the TGG (c¢f. Fx. 5.1.6),
i.e., M’ g ,C(TGG)SPELL_Flow.

The result which we want to obtain using the derived propagation frame-
work shall be consistent in the language L(TGG) of the whole triple graph
grammar. Then, the final triple graph shall be changed as listed below:

o The deletion of the : PauseActivity shall be reflected in the SPELL do-
main (source domain), i.e., the : Pause node with its containment edge
: next meeds to be removed. Furthermore, the cooresponding : C node
with edges have to be deleted, too.

e The change of the description in the : StepActivity on first layer needs
to be reflected in the : StepActivity on second layer and also in the
corresponding : string_LST _Elem that contains this description, too.
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Figure 5.7: SPELL-Flow Domain Model Update (u), Delta (d,) & Creating
Delta (4,,)

e The addition of a comment for the : StepActivity on the first layer shall
be propagated to the corresponding : StepActivity node on the second
layer and also to the SPELL domain. A

The delta d, of an update u is u but restricted to those elements only
that are touched by the update. This includes all elements that are created
and deleted by u as well as the elements that are directly connected to them.
Therefore, the delta is minimal in the sense that there exists no smaller rule
that reflects the update. This concept is based on the concept of minimal
rules (cf. Def. 6 in [EET11b]). The creating delta d,, of an update u is delta
0, but restricted to the created elements of u only. We will now define the
update delta ¢, in Def. 5.2.2 and the creating delta ¢§,, in Def. 5.2.3.

Definition 5.2.2 (Update Delta). Given a model update u: M &+ Mp *2,
M, then the delta &, = (p,my) of u is given by a rule p: L < K Iy R with
l,7 € M and match my: L — M € M whose application to M via my leads
to M’ with pushouts (1), (2) such that for all rules L' &£ K' s R’ with
U, r" € M and match m\: L' — M € M whose application to M wvia m)
also leads to M’ with pushouts (3), (4) it is true that there exists inclusions
i1, 42,13 with (mj =mj; 0i;)cq1.3- A
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P L : K¢ - -
mllj = (3) méj L’" (4) mgj L’"
[+—"t——K "R

Definition 5.2.3 (Creating Update Delta). Given the delta §,, of u, the cre-
ating delta 6, = (p,my) of u is given by the delta (p: L LK R,mi: L —

K) of update K &% K s R with m; = my olom]. A
P: L+ L K¢ L ~R
, [aN [aN [aN
m‘l}{ \\ id );{(\\ T % \\
| i, iy
p: L /I mo /I ms /I
mll /l // //
u: ]\4" L2 )MI’:‘ L M7

Remark 5.2.1 ((Creating) Update Delta). In M-adhesive categories, mor-
phisms mo: K — Mp and mz: R — M’ for the update delta as well as
morphisms mq: K — Mp and ms: R — M’ for the creating update delta
are uniquely induced by the uniqueness of pushout complements and pushout
objects (cf. Thm. 4.22 in [EEGH15]). A

Example 5.2.2 (Delta & Creating Delta). The rule p: L < K — R
in Fig. 5.7 (middle) illustrates the delta 6, = (p,m) of model update u
(cf. Ex. 5.2.1). It contains only those elements, that are touched by w. In
detail these are:

e : StepActivity on the first layer with attributes description and
comments.

e : PromptActivity and : PauseActivity on the second layer with edges
: to_Element and : next.

Analogously to the update, all elements not marked with ++ are contained
in L, all unmarked elements are contained in K and all elements not marked
with —— are contained in R. The match m: L — M 1is uniquely determined.

The image on the bottom shows the corresponding creating delta §,, =
(p,m) of uw with p: L + K — R. The creating delta is 9, but restricted
to the created elements of w. In detail, this is the : StepActivity on the first
layer with its attributes description and comments. A

Note that the delta of a model update is unique up to isomorphism.
Therefore, in the following, with the delta ¢, of an update u we implicitly
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refer to the equivalence class of all isomorphic deltas of u with J, being a
representant of this class. The same holds for the creating update delta §,,.
Two deltas (6%, = (p': L' + K' — R',m!));—1 2 are isomorphic if both rules
p' with matches m} are isomorphic, i.e., both rule applications via matches
m! delete, preserve and create the same elements.

Definition 5.2.4 (Isomorphic Rules with Matches). Given a model M and

T

two tuples (p",m")i:m of rules p': L' & K s R' with corresponding

matches m': L' — M. Tuple (p',m') is isomorphic to (p*,m?), written

(pt,m') = (p%,m?), if there exists isomorphisms iy: L' — L% iy: K' — K?

and iz: R' — R? such that iy ol' = 1?0y, izort = 1204y and m' =
2

meoiy. A

Proposition 5.2.1 (Uniqueness of Update Delta). Given a model update
u: M &2 Mp 22 M’ in an M-adhesive category, then delta 6, of u is
unique up to isomorphism, i.e., for any two deltas (0%)i=12 of u it is true
that 6} = §2. JAN

Proof. Let (8% = (p': L LAY SN Ri,mi: L* — M));—12 be two deltas of
u. By the definition of deltas, there exists inclusions i}: L' — L2,i}: K' —

K?ii: R — R? with (m? o zjl = mjl-)je{lng}. Conversely, there exists inclu-

g a2 T2 1 ;2. 52 1,2, p2 1 i 1gi2 _ .02
sions ¢: L* — L*,i5: K* — K" ,i5: R* — R with (mj 015 = mj)je{l_.g)}.
By mioidy = m2oij = mloifoil and mi € M, m} being a monomorphism

implies that id;1 = i3 oii. Conversely, by m? o id;2 = mi 0i? = m$oif 042

and m? € M, m? being a monomorphism implies that id 2 = i1 047. Thus,
it: L' — L? is an isomorphism. Analogously, it is shown that il: K! — K?
and i3: R — R? are isomorphisms. Furthermore, by the commutativity of
pushouts (1) and (3) it follows that m? o it oI = m2 0?0 il. By m? € M
being a monomorphism it follows that i} o I = [? 0 id. Analogously, the

commutativity of pushouts (2) and (4) implies that i3 o 7! = 72 0 i1. Thus,

1 1\ ~ (2 2
(p',m*) = (p°, m?). O
id;1 id g1 idp1
1. (11 I > Olt rt 1
p L+ sy y
PRASTIAN 1™ A TIAN
;M il o2y L My L
Ll Ul ! u2 ! |
u: <+ — S . A7
o M o Mp| M
1 et Q\mQJ" 3\ 2}/
2 \\)1 » l2 \\) » T2 \\) »
P LQA )K2c ~R2
Ry U Ry
idy2 id o2 idp2

O

Corollary 5.2.1 (Uniqueness of Creating Update Delta). By Prop. 5.2.1,
it directly follows that given a model update u, then also the creating delta
9, of u is unique up to isomorphism. A
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— ———
Marking | Ext (CCaqa)

/ u /

Deletion Addition

Figure 5.8: Propagation of Domain Model Updates: (a) - (f) illustrating
sub-steps

M 5.3. Propagation Problem & Framework

The problem of propagating domain updates according to a given TGG,
is to extend them such that they “fit” to the TGG. In our running exam-
ple, this means that the target model update in the SPELL-Flow domain
should also cover the change of the description of the : StepActivity in the
second layer as demanded by triple rule T_Step_args-2-attrs. In addition,
the deletion of : PauseActivity shall be reflected in the source domain, too,
as demanded by triple rule T_Pause-2-PauseActivity. Both triple rules are
provided in Ex. 4.1.6.

The extension is performed by applying propagation operations. The
propagation framework according to a given TGG is given by two total and
deterministic propagation operations, one for each domain of the TGG. An
operation is total, if for each valid input it leads to a result. An operation
is determistic, if it has functional behaviour, i.e., it terminates and leads to
an unique result for each valid input, and the operation does not require
backtracking.

We outline the sub-steps of the derived propagation framework of model
updates Ppg(TGG) in Fig. 5.8 that we will introduce in detail in the re-
mainder of this chapter. Note, Ppg(TGG) = Ppg(MM ,u, TR), where MM
is the triple meta-model, TR the set of triple rules and u describes the
model update which shall be propagated. The general idea behind the de-
rived propagation framework is: First, the framework gets a model M and
a model update u: M &L Mp 2, M’ as input. Then, the deleting part
will be applied to model M and out of the result, a consistent model that
includes thoses changes will be derived. Afterwards, the creating part of the
update will be applied and then, all necessary elements will be added and
recreated (out of M), that are necessary to finally derive a consistent model.

In the following, we summarise all steps of Fig. 5.8:

(a) This image illustrates the initial situation, i.e., triple graph M.

(b) The deletion part up.; of the update u is executed on M, i.e., M \ upe;.
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(c) The deletion may affect more elements ', so that a consistent inter-
mediate model can be derived. Those elements will be deleted, too,
ie., M\ up,.

(d) Creates all elements that are created by the model update, i.e., (M \
) U uagq. This step may recreate elements that were previously
deleted (D).

(e) The model will be marked in order to guide the extension sub-step -
the next step. (The marking is not explicitly visible, here. For details
see Sec. 5.5.2.)

(f) In order to derive a consistent model, the model from (e) will be ex-
tended according to the TGG, i.e., (M \ u)p,;) U uads U upy. Note,
upt 18 not part of the model update, anymore.

In detail, the formalisation of the derived propagation framework is
summarised in Listing 5.2 and defined in Def. 5.6.10. Note, the derived
propagation framework is based on the model synchronisation framework
[HEEO12, HEO™15] that we introduced in Chap. 4. The propagation op-
eration Ppgp,. consists of two main steps. Fig. 5.9 formally illustrates both
steps Del and Add of operation Ppgp, for propagating model updates in
domain Dj. Operation Ppgp, for propagating model updates in domain D
is defined analogously. We will now summarise both main steps.

e Step Deletion (Del): Given a model M and a model update u, then
the Del step deletes everything from M that is deleted by update u,
first. Then, Del deletes everything that is related to the update in order
to obtain a maximal consistent integrated sub-model (namely M’) of
M w.r.t. the given TGG. Thus, step Del propagates the deletion of
elements along different views.

e Step Addition (Add): The Add step works with two models: Model
M (no deletion performed) and M’ (the result of the Del step). First
of all, the Add step adds everything to M and M’ that is created by
update u. Then, markings are added to both models. Each element
that is added by update u is marked with F (False). All other (un-
touched) elements are marked with T (True). Afterwards, in the Ext
sub-step, two special kinds of triple rules, are iteratively applied to M’
and M, in order to change the F markers to T. At the same time, ele-
ments may be reconstructed that were deleted during the Del step, but
that are necessary to derive a consistent model. The special kinds of
rules we use are called shifted rules and consistency creating rules (CC
rules). The latter are a special kind of shifted rules, which only change
markers. The iteration stops when no F marker is available anymore
(successful), or when no shifted (or CC) rule could be found that is
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Propagation Operation Ppgp), Steps of the Propagation
Del 7 Add
Mp, = Y
M= ngH Ti@\vi@b >>>§ = A >UH A‘N&Q\v Umv »\gxb 3 R
4 K J ! , uy ) 1:(PB) ﬁS 2 TN
! @UH IDel o,Sum i &UH” N&Q\\\viﬁ At e ﬁ my ﬁ //
| ' 5 Y ! | sQ‘+ dy Yo N—»@u ugﬂ —K %
Ewh Q&bH h \gQ\\vgbmv b, Q&rm di Ngrw d3 .\grw w | / ] B
, ! I M?2= -« - — - | i 0 \
¢ epig  JAdd D2 = 2:CC :?* b 1 ‘D2 H.Eu,omv f2:(PO)
\4 v \ : | I |
iw” 3 .A\gw .\Viw . @HAQA 1] ) v L 2 &m &w 2 QWA (<~ﬂf&w~ 4@
= Mp, 5~ Mc;~Mp, ) Pﬁ” (Mp, ~Mg=Mp y-=~Mp, <=~ Mf,
1%} %v M? is_ maximal A oo X A
wrt. M2C M € €D1,j €cyJ 3:Ext |1 E@) €Dy,j
T e W
Mj= Mp, j-Mgj----- dj - )Mp, ;
Properties of the Propagation
Identity: Ppg(_,id,_) = {id}
Consistency: v’ € Ppg(_,u,_) = u' is consistent D;-update for D;-update u
C-Preservation: If u = (M &L Mp 22, M') is consistent D;-update, and v’ € Ppg(_,u, )
with o/ = (M % M? 2, M?) then M’ = M?
Single Result: |Ppg(_,u, )| =1 for D;~update u

Figure 5.9: Propagation operation Ppgp, (left), Steps of the Propagation (right, top) and Properties of the Propagation
(right, bottom)
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applicable (abort). The derived propagation framework Ppg(TGG)
returns the modified model M’. If the derived propagation framework
finishes successfully, then it returns a consistent model, otherwise the
propagation aborts.

Definition 5.3.1 (Propagation Problem & Framework). Let TGG =
(MM ,o, TR) be a triple graph grammar over triple type-graph MM =
(MM p, <& MMc L MMp,) for domains Dy, Ds. A triple graph M =
(Mp, < Mc — Mp,) € L(MM) coincides with an update u: M < Mp —
M € Ap,, if M = Mp, (i = 1,2). The D;-propagation problem is to
construct an operation Ppgp.: UD — Ap, from tuples UD = {(M,u,d,) |
u € Ap,, M coincides with u,d,, is delta of u} of D;-updates Ap, on triple
graphs with corresponding deltas to extended D;-updates (i = 1,2). The
propagation framework Ppg(TGG) = (Ap,, Ap,, Ppgp,, Ppgp,) is given by
all updates Ap,, Ap, of domains Dy and Dy as well as total and determin-
istic propagation operations Ppgp, , Ppgp, for both domains. A

Listing 5.2 describes the algorithm of the derived propagation framework
by means of pseudocode. Both main steps Add and Del are described in
greater detail in the following sections and in Listings 5.3 and 5.4.

/* --- Propagation Framework (Ppg) --- */
operation Ppg:
Input:

Given triple graph grammar TGG = (MM,,TR) with
- triple type graph (meta model)
MM = MMp, < MMg — MMp,
- a set of triple rules TR
- an empty start graph @
Given a triple graph M = Mp, <= M¢c — Mp,
Given a set of domain updates Ap, (i €{1,2}), containing
updates w = (u1,us) € Ap,
Output :
consistent triple graph

foreach ue Ap,
// Calculate update delta
0, < minimal rule out of TR restricted to all elements
that are touched by u

// Calculate creating update delta
J, <= 0, restricted to creating elements only

// Apply both steps of Ppg
perform operation Del on M

perform operation Add on M
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Listing 5.2: Propagation Framework - Ppg operation

M 5.4. Step Deletion (Del) (Sub-steps (a - c))

As illustrated in Fig. 5.8 (a+b), intuitively, given a model M and a model
update u: M &4 Mp 22y M’, then step Del first deletes everything upe =
M\ ui(Mp) from M that is deleted by u. Then, Del additionally deletes
everything ulDel from M that is related to up,; in order to obtain a maximal
consistent integrated sub-model M \ v/, ; of M w.r.t. the given TGG. Thus,
step Del propagates the deletion of elements along different views.

We will now present the algorithm of the Del step in Listing 5.3.

o]

/* --- Deletion (Del) --- */
operation Del:

Input:

Given triple graph M = Mp, <> M¢c — Mp,
// M before propagation: see Fig. 5.8 (a)
Given a domain update u = (u1,u2) (i € {1,2})

Output:

triple graph (M?)

// Perform deleting part of update
// Scheme illustrating this step: Fig. 5.8 (b)
M < M\upe, i.e., delete everything that is deleted by u

// We want to obtain a mazimal consistent

// sub-model of M

/) M? < M\up,, i.e., delete everything that

// is interweaved with w and that is

// inconsistent w.r.t. TGG

// Scheme illustrating this step: Fig.5.8 (c¢)

M*< o

while M2C M and a triple rule tr € TR is applicable to
M?2:
M? < apply tr€ TR to M?

return triple graph M?

Listing 5.3: Deletion operation Del

In Fig. 5.9 (middle) the formal construction of step Del is visualised.

Using this diagram, we are able to describe the technical details of the Del
step in Rem. 5.4.1.
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M= (Mspe E Mc t Mp)

1st Layer
L
----------------- @ - :Roof ;to_StartNede’

fst

-0 :StartNode
- firstElement
#o_Element

:Step Activity

:string_LST_Elem @ - startLineN umber=1
Tine_start=1 _ endLineNumber=1
¥ -2 sourceCode=Step(...)

line_end=1 R

sourceCodeText=S... ke

entryS=5 -
9
T:next args-e.

:string_LST_Elem :string -LST Elem
line_start=1 14~ [line_start=2
line_end=1 line_end=2
sourceCodeText=S... ““sourceCodeText="..." :Step Activity

entryS=MANAGEM... entryS=WARNING::: -j.. e -1 < _, # 5 startlineN umber=1
B L endLineNumber=1
:next = i ¥6_Elerert| sourceCode=Step...)

:SPELL_Constant description=MANA...
line_start=2
line_end=2
sourceCodeText=  [S---.____
nameC=0K

description=MANA..-|
number=5

2nd Layer

A :PauseActivit:

:to_Element’-,
:Pause < @ I I e

Figure 5.10: Intermediate model M of Del step

Remark 5.4.1 (Construction of Del Step). Technically, the Del step is
identical to the fAln and Del steps in the model synchronisation frame-
work [HEO'15].  Given a Da-update uw: Mp, < Mp “2, Mp  ap-
plied to model M = (Mp, <X Mg 5 Mp,), then model M is com-
puted at first as intersection of Mc and Mp via common Mp, by pull-
back (PB) construction (cf. Fig. 5.9 (middle)). This leads to triple graph

M = (Mp, & Mo d—2> Mp) where all correspondences have been deleted

from Mc to M that are related to those elements Mp, \ ui(Mp) that have
been deleted by the update. The construction for Di-updates is defined anal-
ogously. Afterwards, in the consistency creating (CC) step, the mazimal
consistent integrated sub-model M? = (M,%1 — M2 — M%Q) of the pos-
sibly inconsistent model M is computed with inclusion i: M? — M,i =
(ip,: M1271 — Mp,,ic: MZ — Me,ip,: M]%2 — Mp) by step-wise applica-
tion of triple rules tr € TR starting at the empty model . Mazximal means
that there is no larger model M (M? C M) that is also a consistent
integrated sub-model of M (M C M). A

Scheme (c) in Fig. 5.8 illustrates the state of the propagation framework
after performing the Del step. It is visible, that the Del step might delete
more elements u/,,, from model M than indicated in model the update upe;,
Le., upe C up,.

Finally, we will show the application of the Del step by means of our
running example in Ex. 5.4.1.

Example 5.4.1 (Del Step). Applying the SPELL-Flow domain model update
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2_ 2 2 2
M”=(M"speLt S M%c t M°speLL-Flow)

1st Layer
sfile_input LTI e
e --@--| Root fo$taftNode

fst

:Step Activity
startLlineNumber=1 4

@ :StartNode
: -firstElemient
#o_Element

:string_LST_Elem
line_start=1
line_end=1

endLineNumber=1 4

sourceCode=Step(...)

sourceCodeText=S... f T next— )
entrys=5 ('“-[..‘ :Prom number=5
~~~~~ . B
T:next - _ f:EP§~"* g O

:string_LST_Elem string-tST-Elem

line_start=1 --="[Tine_start=2
line_end=1 line_end=2
sourceCodeText=S... “*IsourceCodeText=".."

entryS=MANAGEM... entryS=WARNING:z:-je...
inext .

:SPELL_Constant
line_start=2
line_end=2
sourceCodeText=
nameC=0K

2nd Layer

:Step Activity
a 3 startlineNumber=1
Z 2222 endLineNumber=1
¥o_Element| sourceCode=Step(...)
description=MANA....
number=!

:PromptActivity

Figure 5.11: Resulting model M? of Del step M?

in Ez. 5.2.1 and Fig. 5.7 (top) to model M Fig. 5.5 will delete the description
of node : StepActivity in the first layer. Moreover, it will delete the : Pause
node in the second layer and all edges that are connected to this node, i.e.,
: to_Element, : next and the edge from the correspondence node to this ac-
tivity, because the gluing condition is violated, otherwise due to a dangling
edge ([EEPTO06], Def. 3.9 for graph structures; and Def. 6.3 for an abstract
definition on categories). Finally, triple graph M = (Mgpprr <M — Mp)
reflects the effect of applying the deleting part of the SPELL-Flow domain
model update u to the triple graph. We denoted the deleting part of u with
Upe; tn Sec. 5.3. Triple graph is not necessarily consistent w.r.t. the given
TGG (M ¢ L(TGG)). We visualise this intermediate model M in Fig. 5.10.
Note, the graph in the SPELL domain stays unchanged (Mspgrr,), whereas
the target model and the correspondence model changed.

Considering Fig. 5.9 (middle), then the second sub-step of Del is to de-
rive a consistent triple graph M? C I which reflects upy (cf. Sec. 5.3).
That means, u'Del includes upe; but it might be extended by more elements,
so that a consistent triple graph can be derived. In our running exam-
ple, triple graph M? is illustrated in Fig. 5.11. Here, M? C I because the
two : string_LST_Elem nodes that are connected to the : Step node, all con-
nected edges and the correspondence part that is directly connected to those
nodes will be deleted, due to the deletion of the corresponding attributes
in the SPELL-Flow domain, according to triple rules Fig. 4.8, Fig. 4.12
and Fig. 4.13. Furthermore, node : PauseActivity was deleted that leads to
the deletion of the corresponding : Pause node, all connected edges and the
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corresponding elements in the correspondence domain according to triple
rule Fig. 4.9. Model M? can be created by a terminating sequence of rule
applications with the triple rules. Thus, the sub-model is consistent w.r.t.
the given TGG (M? € L(TGG)). Note, only three triple rules out of the
comprehensive set of all triple rules are given in Ex. 4.1.6. A

M 5.5. Step Addition (Add) (Sub-steps (d - f))

The result of Del serves as input for step Add. The Add step is illustrated
intuitively in Fig. 5.8 (c¢-f), and the corresponding pseudo-code of the whole
Add step is given in Listing 5.4.

The Add step is divided into three sub-steps: The first sub-step extends
the model M (intermediate result from Del) and M? (result from Del) by
the update delta §, resulting in models M and M’

Afterwards, in the second sub-step, the extended model MF and M’
will be marked via graph M. This results in a model M’ that contains the
model update u and all elements that were not deleted by the update, but,
in general, this model is inconsistent.

In the third sub-step, we will continue working on model M) . . and
Mﬁark g~ Then, the framework iteratively extends both models according to
the given set of triple rules T'R in order to derive a consistent model out of
Mﬁarked satisfying the model update u and the corresponding triple graph
grammar. The second graph which is based on M/ . . will be discarded.
It was used as “helper” triple graph for deriving a consistent model. Note
that it may occur, that no consistent model can be derived. Then, the
propagation will abort returning an inconsistent model.

The following Listing 5.4 shows all sub-steps of the Add step in pseudo-
code, which we will introduce in detail in the subsequent sub-sections.

/* --- Addition (Add) --- */
operation Add:
Input:
Given consistent integrated triple graph M? (result of
Del)

// Scheme in Fig. 5.8 (c¢)

Given a domain update u = (u1,u2) (i € {1,2})

Given update delta §, derived from wu

Given creating delta ¢, derived from 4,
Output:

(consistent) triple graph

A
// --- Add sub-step 1 ---
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// Add user update: first sub-step

M’ <= M? Uugqq

// Add those elements to triple graph M? that are created
by update u

M¥ < (M3 ,M& ME ), where MJ is obtained via effective
pushout over Mp,M,Q32 and K

// cf. Fig. 5.9 (Step Add, 1:(ePO))

// For effective pushout: cf. Fig. 2.6

MR<:(M12)1,M%,M§2), where M& is obtained via pushout
over MgQ,E and K

// cf. Fig. 5.9 (Step Add, 2:(PO))

// Intuitively: in sets a pushout is a union

A
// --- Add sub-step 2: Marking ---

// Scheme illustrating this step in Fig. 5.8 (d).
// Part D contains those elements that were
// deleted previously but recreated by this

// step.

// Extend MY by markings
M'r};arked<:MR

// e is an element in model ME . ..
// i.e., e is an edge, node or attribute

// if e has a making ma, then a tuple (e,ma)
// exists, otherwise ma = @, i.e., e has no
// second component

while Je e ME . .= without marking

if 3 morphism from an fé& M? to ec M%E:

ma < T
else:

ma < F
// Add marking for e to ME_, .
replace e by tuple (e,ma) in ME, . .

// The same for M| . .
M/narked<:M/
while Je e M/ . 1.q Wwithout marking
if 3 morphism from an f& M? to ec M':

ma < T
else:
ma < F
replace e by tuple (e,ma) in M . 1.a
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62| // --- Add sub-step 8: Extension ---
63
6a| // Calculate consistency creating rules
65 Calculate all CC rules out of TR

66

67 while elements in MZE 4 still have flag F and

marke
68 3r € CC rules that is applicable to MZ . .-
69
70 // case 1: standard extension match
71 sr <= Calculate a maximal relevant shifted rule w.r.t.
R
Mmarked
2 [/ if #1
3 if sr# @ and

3 morphism from sr— M/ . .-
MRmked<: apply sr to ME

s

I B S B S BTN B |

m marked
6 M;narked<: apply sr to Mrlnarked
7 else
8 // case 2: guided extension match
9 /) if #2
80 if sr#o:

o}

sro < calculate maximal relevant shifted rule sro w.r
.t. sr and M’

marked
82 /) if #3
83 if sro#9:
84 // For details cf. Rem. 5.6.6
85 Offmrked<: construct ePO via Mﬁarked, sro and M:narked
86 ‘Zw-’rlr:‘;arkedC apply srg to Ovlr%mrk:ed
87 M'r/narked<: apply sry to M7/71arked
88 else:
89 // case 3: CC extension match
90 for all CC rules:
/) if #
92 if 3r € CC rules that is applicable to Mﬁmked:
93 remember match m
o4 Mgarked<: a‘pply r to Mfmrked
99 M;narked<: a‘pply r to Mrlnarked
96 // end if #4
07 // end for
98 // end if #3
99 // end if #2
100 // end if #1
101

2| // end while
103
wi| // The resulting triple graph is illustrated
105 // in Fig.5.8 (e)

ws| // Note: If the resulting triple graph ME_. .
7| // still contains F markings, then we cannot
ws| // derive a consistent model.
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// Otherwise the model is consistent w.r.t.
// the given TGG.
return triple graph after Add (ME_, .)

Listing 5.4: Addition operation Add

B 551 First Sub-Step of Add (Sub-step (d))

Given the maximal consistent integrated model M? = M \ u),,,;, from Del
(cf. Fig. 5.11) and the creating update delta d,, = (p, m) of update u with
p: L+ K — R (cf. Fig. 5.7). B

~ Then in a first sub-step, step Add adds those elements uaqq = R\ (M \
up,;) to the model that are created by the update leading to model M’ =
(M \ up,;) Uuaga. Note that previously deleted elements D = uaqq N v/,
by Del may be recreated by this sub-step of Add. This sub-step of Add is
illustrated in diagram Fig. 5.9 (d).

In detail, the first sub-step of Add consists of the following graph opera-
tions: Given the model M? that is obtained by the Del step in Ex. 5.4.1 and
the update with corresponding creating update delta ¢,, from Fig. 5.7. Then,
Add adds those elements to the model M? that are created by the update re-
sulting in model M’. The diagram Fig. 5.9 (right) mentions explicitly model
2\41’)27 i.e., in our running example this is the SPELL-Flow domain of triple
graph M'. Tmplicitly, the whole model M" = (Mp, <~ M¢c — Mp,)) is avail-
able, where M ;32 is resulting out of the application of update u = (u1, us2).
Model M¥ is the triple graph (M%l,M%,M 52), where graph M 52 is ob-
tained via effective pushout using Mp (obtained in Del as part of M),
M12)2 and K. The latter is the graph that is part of §, = (p,m;) with
p: L+ K — R. Afterwards, M% = (M%I,M%, MEQ) is derived where MgQ
results out of a pushout construction via M 52, R and K.

Example 5.5.1 (Add Step - Sub-Step I). In Ez. 5.2.2 we already described
the creating update delta, which creates the attribute description of node
: StepActivity with new value COMPONENT A as well as attribute comments
with new value something on the first layer of the model in the SPELL-Flow
domain.

First, the creating upadte delta 6, = (p,m; is applied to M =
(Mspprr, <+ Mo — Mp) resulting in M' = Mgpgprr, <~ Mo —
MSppri—riow- Note, p = R «— K — R, i.e., it is the production

which reflects the chang;es of the creating update delta. We illustrate
triple graph M' in Fig. 5.12. M’ differs from M in the additional at-
tributes description = COMPONENT A and comments = something of node
: StepActivity on the first layer, i.e., triple graph M' includes the changes of
3,

The next triple graph which we derive in the first sub-step of Add is
M*® = (MgppL, <ME— MSppL_piow): wheras Mgpp, = Mipgy, and
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M‘= (Mspgr, s Mc M’ spetL-Flow)

1st Layer
| sfile_input I‘._._... — ——

Afst

L

:Step Activity

:string_LST_Elem . startLineN umber=1
line_start=1 = . endLineNumber=1 E
line_end=1 “Srass . sourceCode=Step(...) [

I description=CO MP 4
sourceCodeText=S... ke G next f
entryS=5 T — ' N

T:next :a
:string_LST_Elem :string -LST Elem
line_start=1 14~ [line_start=2

line_end=1 < line_end=2
sourceCodeText=S... [+ ~~|sourceCodeText="..."

entryS=MANAGEM... entryS=WARNING::. - fr
:next

:SPELL_Constant
line_start=2
line_end=2
sourceCodeText=  [<-
nameC=0K

2nd Layer

:Step Activity )
startLineNumber=1 |
endLineNumber=1 |
sourceCode=Step(...) |-
description=MANA... | -
number=5

-
®

Figure 5.12: Triple Graph M’

K K K K
M"= (M speur s M"c t M speLL-Flow)

1st Layer
| sfile_input l‘._._._. — ——

Afst

:StartNode
:next

:Prompt

args ..
:string LST_Elem | ™.
line_start=2

line_end=2
sourceCodeText="..."

entryS=WARNING... |
:next

:SPELL_Constant
line_start=2
line_end=2
sourceCodeText=
nameC=0K

Figure 5.13: Triple Graph M¥

Mg = M% The third part of this triple graph, i.e., MéngLL_Flow, is con-
structed via effective pushout using M2per i riows Mp and K (cf. Fig. 5.9).
In the given running example, Mé{PELL—Flow equals MgPELL—Flouﬂ but this
is not the general case. Thus, in the current example, MX = M?. We
illustrate model MY in  Fig. 5.13. (In the running example which we use
in [GNE" 16a], ME, differs from M?, and therefore, M¥ # M?.)
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R R R R
M"= (M spevi S M~ t M spELL-Flow)

1st Layer

sfile_input nmnnnne et o
e — @

fst

:Step Activity

description=CO P+

:Prompt.
e comments=somet. 4.
sargs .. P R I Pt Ly e

:string_LST_Elem [~

line_start=2 T
line_end=2 @ =

sourceCodeText=".."
entryS=WARNING... v

:next

:SPELL_Constant
line_start=2
line_end=2
sourceCodeText=  [<---
nameC=0K

968

Figure 5.14: Triple Graph M%

The last model which is calculated in the current sub-step of Add is
model M7 = (MgPELL <~ Mg - MSEPELL—Flow)' Again, MSEPELL
equals MéPELL and Mg equals Mg Component Mé?PELLFlow 1§ con-
structed as pushout via graphs Mé(PELL_ Flow: & and R. The resulting
model is shown in Fig. 5.14. MSBpell—Flow ] M§<PELL—Fl0w extended by
attributes description = COMPONENT A and comments = something within
node : StepActivity which is contained in the first layer, i.e., MSI'{PELL—Flow C

R
MSPELL—Flow' A

Remark 5.5.1 (Add Step - Sub-Step I). Technically, the first sub-step of

Add is defined as follows. Given the consistent integrated model M?* =
2 2

(M3, & M2 N M3p,) from Del with inclusion ip,: M%Q — Mp, the

Dy-update u: Mp, <+ Mp “2, M}, (cf. Rem. 5.4.1) and the correspond-

ing creating delta 9,, = (]_), my) with p: L (iK Ly R and induced morphisms

my: K — Mp and mg: R — Mp, (cf. Rem. 5.2.1).
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- M’
¢ U1 u2 A
M= Mp—Mj, ‘
K l
my my |\ mg |
\ 5:(PO)
L br i
L~ "K——R K
r
| //6 \P //
[ i\ 4
[ | s
\ % 2 \4

In a first sub-step, those elements are added to M? that are created by
update u. As, the preserved elements of the update delta in K may be deleted
by the previous Del step, all deleted elements of K are recreated at first. This
is done by an effective pushout (ePO) construction over my,ip, leading to
model MgQ with morphisms f, d%( and induced morphism e: Mg2 — Mp €
M (cf. diagram above that is taken from cf. Fig. 5.9 (right) and extended).

Afterwards, the remaining elements of the delta that are created by the
update are added. This is done by a pushout (PO) construction over r, f
leading to model MgQ with morphisms d> ,f- This results in triple graph
M = (Mf «MF— ME ) with Mf; = M7, and MF = MZ..

The construction for Di-updates is defined analogously. Note that we
explicitly use the creating delta of update u and not the delta with deleted
elements in order to avoid that elements are added in this first sub-step that
only refer to deleted elements of u.

The application of the creation delta extension d,, to the “original” model
M s performed via PO (3) and (4), i.e., the rule p is applied to M via match
my resulting in M'. The details of the applz'catz’oniofp to M via match m, s
depicted in the diagram below. The diagram is an excerpt from the diagram
abowve.

!
ds U1 0 Mg

dl
M = (MbliMé,Mb2)<”)E
' 3 (4) J‘z

j ME <--3K

\
M = (MD1¢MC>MD2)<—)L

If we consider the first diagram, again. 5 : PO (also marked in blue) can
be constructed via morphisms: eouy oj = d% o k with interface graph ng
whereas morphisms j and k are M morphisms (due to unchanged graphs in
the correspondence and Dy domain in both triple graphs M and M?). We
will reuse this property in Prop. 5.5.1. AN
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B 552 Second Sub-Step of Add: Marking (Sub-step (e))

The second sub-step of Add marks the relevant models M%® and M’ via in-
terface triple graph M?2. In both models, all elements from w444 are marked
with F (False - not extended). All other elements are marked with T (True
- extended). In the following, we define the marking operation mark.

Definition 5.5.1 (Markings). Given models M, M' and I and mor-
phisms @ : I — M and ¢ : I — M'. The marking operation is defined
mark(X) =X @Attfg\x(l) @ AttY . where (X, x) € {(M,i)(M',i")}. Tech-

z(I)’
nically, the marking is performed via PO construction, as defined in Def.
7.26 in [EEGH15]. A
mark(M) F T
/M ———————— >M @ AttM\’L([) @ Attl([)
I,
K
mark(M’) F T
M'------- M’ @ Att N (I) D Atti’([)

Note, that the interface graph I is given by M? in the right diagram of
Add in Fig. 5.9. Furthermore, models M* and M’ will be marked. Both are
constructed in the first sub-step of Add. The resulting models of the second
Add sub-step are:

_ F T
[ ] M;narked = M/ D AttM’\(ugOi)(MQ) D Att(ugoi)(M2)
R _ R F T : . K
® Myarhea = M7 @Ay 1y (40,00 (102) DA (d oy (aaz) With dr - M —

MPE and di : M? — MK

Example 5.5.2 (Sub-step 2: Markings). Let us consider Fig. 5.15. Triple
graphs M’ and M are marked via interface graph M? that is illustrated on
the top.

During marking, graph M' is enriched by the following markers: all el-
ements that can be mapped by M? are marked with T all other elments
are marked with ¥. We denote the marked triple graph with M) . .
(cf. Fig. 5.15 (middle)). In detail, the following nodes, edges and attributes
are marked with T in the SPELL domain:

e Nodes: : file_input, : Step, : Prompt, : string_LST_Elem which is directly
connected to : Prompt and : SPELL_Constant.

o Attributes: All attributes of the nodes we mentioned in the item before
are marked with T.

e Edges: :fst, the : next edge between nodes : Step and : Prompt, and
the : next edge between nodes : string_LST _Elem and : SPELL_Constant,
and edge : args which has node : Prompt as source node.
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Interface for Marking:

MZ

“SPELL_Constant
Tine_start=2
line_end=2

® -

:StepActivity

[_[F sstring LST_Elem

Tine_start=1

[F] line_end=1

[F] sourceCodeText=S...
entry5=5

T] :Step Activif

[F] :next

£ string LST_Elem
-

[TF) Tine_start=1

[F] line_end=1

[F] sourceCodeText=s... [
[F] entryS=MANAGEM...

:SPELL_Constant
Tine_start=2
[T] line_end=2
[T] sourceCodeText=
nameC=0K

startlineNumber=1 | |
endLineNumber=1

3

@ 5
“| [F] sourceCode=Step...) |-
o [F tion=COMP... [

i

G

number=5
comments=somet.

[T Stephciviy ]

StartLineNumber=1 | |
‘endLil g

F]

E ]
"| I7] sourceCode=Step(... |

F)

F|

description=MANA... |

ile_input  J¢---.

7] :next

[T] string_LST_Elem
7] line_start=2
1] line_end=2

[T] sourceCodeText="..
entryS=WARNING..
AR
[T] :next -

[T] :SPELL_Constant
7] line_start=2
1] line_end=2
sourceCodeText=
meC=0K

“Prom e
Marg

129

Figure 5.15: Models M’ and M % are marked resulting in M/ . . (middle)

and Mﬁarked (bottom) via Interface Triple Graph M? (top)

In the SPELL-Flow domain, the following elements are marked with T':

e Nodes: All nodes on both layers are marked with T.

o Attributes: No attributes are marked with T.
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e Edges: All edges in all layers.

In the correspondence domain, seven correspondence nodes and the corre-
sponding edges get marker T. Those nodes point to those modes in the
SPELL domain (and also SPELL-Flow domain) that get marker T, too. For
better readability, we omitted the markers for all edges which have a corre-
spondence node in their source within the visualisation provided in Fig. 5.15.
Those edges are marked with the same marker as their source node. All other
elements of M’ are marked with F.

Triple graph M?% is enriched by the T and F markers accordingly
(cf. Fig. 5.15 (bottom)). In detail: All elements in all domains of the triple
graph Mﬁarked are marked with T except attributes description and comments
contained in node : StepActivity on the first layer of the SPELL-Flow model.
Those attributes get marker F. A

Both triple graphs that were marked are required for the third sub-step
of Add: The extension step Ext. Still, we need a morphisms from M T]r%zark ed
to M/ . .. This is achieved with the aid of M-morphism k : M® — M’

resulting out of PO (5) in Rem. 5.5.1. In the following propsition, we will
review the details.

Proposition 5.5.1 (Morphism Between Marked Triple Graphs). Given
triple graphs M’ and MT with M-morphism k : MT — M. Fur-
thermore, given marked triple graphs M. . . and Mﬁwked obtained via
marking operation mark defined in Def. 5.5.1. Then, the M-morphism

. R / .
kM veqd = M) keq €TISES, too.

/ !
M AMmarked
k 'k
TR mark(M%) 1~
M Mmarked

A

Proof. The M-morphism k : M — M’ is given (see PO (5) in Rem. 5.5.1)
and a commuting triangle (=) with k o dg o dg = ug o i. According to
Def. 7.26 in [EEGH15], the marking of graphs is technically defined using
pushouts. In the diagram below, the marking of M’ is constructed via PO
(1) and the marking of M ¥ via PO (2). Triple graph M2 is triple graph M?
extended by markers T for each element, i.e., true : M? — M%
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2
MT my,
true 3:(PO)
mark(M")
e LM/
ug 0 mark‘?d
1700
M2 = |k 2) 3k
dpodg R mark(MT) A
M marked

By construction of the marking according to Def. 7.26 in [EEGH15], the
following two POs exist:
e 3 PO (mhy, mark(M')) over (true,up oi) with PO object M/ . . (in
the diagram, this PO is marked with (3))

e 3 PO (mar, mark(M®)) over (true,drodg) with PO object ME__ .

(in the diagram, this PO is marked with (4))
Due to the universal property of PO (4), a morphism £k : MRarked —

T
M) req €Xists with commuting (1) and (2). O

O

Bl 5.6. Third Sub-Step of Add: Extension (Ext) (Sub-
step (f))

The third sub-step Ext extends the given domain update u such that the
update fits to the given TGG. Therefore, Ext takes models Mﬁarked and
M/ .q from the second sub-step of Add as input. Note, triple graph
M) .q Teflects the user update. In contrast, the unmarked triple graph
M* that corresponds to ME . is consistent w.r.t. the given TGG.

Sub-step Ext analyses the applicability of the triple rules tr € TR from
the given TGG to Mﬁarked such that each application maximally overlaps
with that part of Mﬁarked which is marked with F. From each overlapping
triple rule that is applicable via a match, an operational rule, called shifted
rule sri, with extended match is derived which creates only those elements
of the triple rule that do not overlap. Afterwards, Ext extend the maximal
overlapping to M/ . . and a second shifted rule sry is derived, in order
to recreate necessary elements. With the help of the shifted rule sro and
models M! . . and ME . . an intermediate model ME . . is derived.
Finally, sro will be applied to Mﬁzarked and also to M/ . . leading to
models Mﬁ;rk oq and M . where the markings of overlapping elements
will be changed from F to T ([F > T]). Furthermore, shifted rules create
missing elements. (For details, see Ex. 5.6.2).

If such a shifted rule cannot be found, then the Ext step checks for
complete overlappings, i.e., no elements will be created. In that case, a

special kind of operational rule is applied which is called consistency creating
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rule (CC rule) (cf. Def. 7.44 in [EEGH15]). Those rules only change markers
from F to T.

Applications with empty overlappings are omitted unless they completely
overlap with previously deleted elements D C M \ M*. If the overlapping
contains previously deleted elements, then the application is additionally
maximally overlapped with previously deleted elements D C M \ Mgarked
in order to guide the search for applicable matches.

Example 5.6.1 (Triple Graph D). Triple graph D of our running ezample
is given in the diagram below (cf. Fig. 5.16). It represents all elements
which were deleted by the domain model update u. Note, in our example, D
contains also node : StepActivity even if it is not deleted by w. It is contained
i D, because the attributes of that node which were deleted, cannot be part
of a graph without a containing node. The same holds for nodes : Prompt,
: PromptActivity and : Step which need to be part of D because of dangling
edges, otherwise. A

1st Layer

-3 ; ‘Step Activity
-------------------------- | description=MANA...
117 number=5

:string_LST_Elem
line_start=1
line_end=1
sourceCodeText=S...
entryS=5

2nd Layer

x :Step Activity
s description=MANA...
it6_Element | number=5

:Prom ptActivity
Mext|
“to-Element.

B B R S :PauseActivity

:next
:string_LST_Elem
line_start=1
line_end=1
sourceCodeText=S...
entryS=MANAGEM...

Figure 5.16: Model D C M \ M%

/

Models Mﬁarked and M . . are taken as input for sub-step Ext again,
as long as all elements are not marked with T or no rules are applicable any
more. In Sec. 5.6.1, we illustrate the Add step in great detail by means of
our running example.

Note that previously deleted elements by Del are not explicitly recreated
as part of the matches itself. Previously deleted elements are only used to
guide the search for matches or to find complete overlappings and therefore,
may be recreated in the extension process. As, in all sub-steps of Add,
previously deleted elements may be recreated, the proposed propagation
framework prioritises creation over deletion. In contrast to propagating the
deletion of elements by Del, step Add propagates the creation of elements
along different views.

For defining the Ext sub-step of Add we introduce the notion of shifted
rules as operational rules. Based on the application of shifted rules the
notions of the update extension step and the update extension sequence
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are defined. Given a triple rule tr : L — R, then a shifted rule of ¢r is
a rule try: L < K — R where L not only contains all elements of L but
also elements of R. R contains the remaining elements of R that are not
contained in L. Therefore, a shifted rule is derived from a triple rule by
shifting elements from R to L resulting in new left- and right-hand sides
L and R. All elements of L in L and all elements of R are marked with
T while the markings of the shifted elements is changed from F to T, i.e.,
K is L without F-markings. Thus, in contrast to the underlying triple
rule tr: L — R, the match from a shifted rule of tr to a model not only
involves elements of L but also the shifted elements of R (extended match)
while only the remaining elements of R that were not shifted are created by
applying the shifted rule. The successive application of shifted rules extends
an update step-wise in the sense that the elements which are created by the
update are complemented by those elements of the underlying triple rules
which do not overlap with the update and therefore, could not be shifted
but would also be created when applying the triple rules. The markings
T and F are introduced in order to control which part (elements) of an
update already have been extended. Technically, the shifting of elements in
a triple rule ¢r: L — R is controlled by a decomposition of morphism ¢r.
As, in the example of attributed graphs we are only interested in shifting
structural graph elements without altering data elements, we restrict the
decompositions from general decompositions to M-decompositions only.

Definition 5.6.1 (M-decomposition). An M-decomposition d of an M-
morphism tr: L — R, in short tr-decomposition, consists of two M-
morphisms d: L iy L' 2y R with trq o tr1 = tr and try, try € M. AN

In the following, with decompositions we implicitly refer to M-
decompositions. Based on M-decompositions, shifted rules are defined.

Definition 5.6.2 (Shifted Rule). Let (tr: L — R,acr) be a triple rule
tr with application condition acy, and d: L 1y L' %2, R be a tr-

decomposition. The shifted rule trq = (try, acp) of tr w.r.t. d is given
by rule try: L & K 5 R with L = I' & AT @ A}, , K = L' ® A},
R = R® AttY and application condition acy = tExt(acr,L,{Dy,C, Da}).
The morphisms I, € M are induced by morphism tro € M. A

Similar to all kinds of operational rules [EEGH15], shifted rules (and
their application conditions (ac)) are extended by markings, too. The fol-
lowing Rem. 5.6.1 describes the technical details.

Remark 5.6.1 (Marking of Shifted Rules). Given a graph L' with sub-graph
L C L, then L' ® Atty is L' but extended by a marking v € {T,F} for each
element of L in L'. For technical details we refer to Def. 7.26 in [EEGH15].
By tExt(acyp, L, {D1,C, Dy}) application condition acy, is extended by the
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additional elements and markings of L via morphism L iy L' ™y L where

morphism m is derived by the marking of L'. Furthermore, all additional
elements in acy, that are not in L are all marked with T. The marking
considers elements of both domains D1 and Do as well as the correspondence
part C. For technical details we refer to Def. 7.28 in [EEGH15]. A

Shifted rules are a generalisation of consistency creating (CC) rules. CC
rules were defined in the theory of model synchronisations to mark consistent
integrated sub-models of possibly inconsistent models [HEOT15]. Given a
triple rule tr: L — R, the CC rule of t¢r is derived by shifting all elements
from R to L. CC rules are used for applications (update extensions) based on
complete overlappings of the underlying triple rule with previously deleted
elements, i.e., CC rules only change markings from F (not translated) to T
(translated).

Definition 5.6.3 (Consistency Creating (CC) Rule). Let (tr: L — R, acr)
be a triple rule tr with application condition acy. The consistency creating
rule troc of tr is given by the shifted rule of tr w.r.t. decomposition d: L s
R Xy R. Given a set of triple rules TR, with TRcc we denote the set of
all consistency creating rules of TR. A

For update extensions, only shifted rules are of relevance where at least
one element is shifted. This omits applications of shifted rules which do not
overlap with the elements that are created by the update and therefore are
of no importance concerning the update.

Definition 5.6.4 (Relevant Shifted Rule). Given try being a shifted rule

w.r.t. decomposition d: L Yy L' Y2, R. Then, try is relevant, if L %

L. A

Furthermore, shifted rules have to be maximal in the sense that they
should shift and match as many elements as possible such that the overlap-
pings are maximal and only the non-existing (non-overlapping) elements of
the underlying triple rules are created by their application.

Definition 5.6.5 (Maximal Shifted (Applicable) Rule). Given a model M,
a triple rule (tr: L — R, acy), a tr-decomposition d: L Ly L' 2, R and
the corresponding shifted rule try = (try: L LKL R, acr). Then, trp is
maximal shifted w.r.t. M, if there exists a match m: L — M and there does
not exist a tro-decomposition L' fil?_) L —t1/2/—> R withd : L im L —til2/—> R,
and relevant shifted rule try = (try: L' + K' — R,acp/) w.r.t. d and
match m': L' — M. Rule trp is applicable, if additionally, matches m and
m’ are applicable. A

Remark 5.6.2 (Relevant Maximal Shifted Rule & CC Rule). The mazimal
shifted rule of tr w.r.t. decompositiond: L s Ry R and some model M is
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the CC rule of tr. Conversely, assuming a non-trivial triple rule tr: L — R
such that tr creates at least one element (tr is not an epimorphism). Then,
the CC rule troc of tr with a match m from troc to some model M is
a relevant mazximal shifted rule w.r.t. M, as, trcc has already shifted all
elements of tr and thus, no further elements can be shifted such that a new
“extended” match is obtained. A

Given a triple rule tr, then maximal shifted applicable rules of tr w.r.t.
some model M are maximally shifted concerning rules that are only appli-
cable to M. This is defined by the fact that not only match m but also
match m’ in Def. 5.6.5 needs to be an applicable match. Thus, there may
exist (maximal) shifted rules of ¢r (w.r.t. M) with more shifted elements
but each of these rules is not applicable to M, since, either there does not
exist a match from the rule to M or the match does not satisfy the appli-
cation condition of the rule. Conversely, given a shifted rule of ¢r which is
applicable to M, then also all shifted rules of ¢r with less shifted elements
are applicable to M as shown in Prop. 5.6.1.

Proposition 5.6.1 (Applicability of Shifted Rules). Given a model M, a
triple rule tr = (tr: L — R, acr), a tr-decomposition d: L Ly [/ 2, R a
tro-decomposition L' oy [ M2 Rowith d': L 220 17 T2y R and shifted
rules trq = (try: L LK IR acp) and trg = (try: L' L K R, acp)
in an M-adhesive category with match m’: L' — M. If rule try is applicable

via m’, then there exists a match m: L — M such that try is applicable via
m. A

Proof. Let m’ be an applicable match, i.e., m’ satisfies the gluing condition
w.r.t. trg and m’ |= acys. By the construction of shifted rules, there exists
a morphism m: L — L' and match m = m’ om,m: L — M (') as shown
in the following.

Aﬁfb
z/ <1>> A= (I \ try(L)
AN B =c/(L"\ try(tri(L)))
L/
Lo

Models L and L' are constructed by pushouts (1), (2) and (3), (4) (cf.
Def. 5.6.2 and Rem. 5.6.1). By the universal pushout property of (1) and
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b oa=c otrhotry (by pushout (3)) it follows that there exists morphism
m: L — g . Morphism m induces morphisms h: A — B and j: Attg —

*3
At with ¢ oh = moe ) and jod = doh ). By flojod =

PO (4 2
flod oh ALY goeoh ) g’ omoe and the universal pushout property of

(2) it follows that there exists aTmorphism m: L — L'. Tt remains to show
that try is applicable via m. Match m satisfies the gluing condition w.r.t.
trq, as, only attributes are deleted along [: K — L by the construction
of shifted rules. It remains to show that m |= acy by induction over the
structure of application conditions (cf. Defs. 5.1 & 5.2 in [EEGH15]).

L e M~
la /// / ™ R
m m/ N ,
70%‘ z% i MZ’\\

by =gocotr

1. For acy, = true, acy, = true and m |= acg.

2. For acy, = ac}, = 3(a: L — C,acc), acy = acy = 3(a: L — C, acc)

and acy = ac, = 3(a’: L — ), acer) are constructed by pushouts

(5), (6) and (7) over condition acy, (cf. Def. 5.6.2 and Rem. 5.6.1). By
m’ }= acpy it follows that there exists morphism ¢': C' — M,q € M

with ¢ oad’ = m/ (), By the universal pushout property of (6) and

PO (7
a omob :( ) b3 o ag o a it follows that there exists morphism

q: [e=Yei Withgogzg’om(*5). By m € M it follows that ¢ € M
By M-composition (cf. Defs. 4.2 & 4.4 in [EEGHI15]), ¢ = ¢'oq € M.

(*1) / (*4) / / (*5 /
Furthermore, m =" m'om = ¢'oad’om =" ¢’ogoa = gqoa. Therefore,

m = acy, for acc = true.

3. Conversely, for ac;, = —acp,ac, = —acp and acy = ﬁac’! with
acy,ac and ac’, from item 2, assume that there exists morphism

q: C - M with m = qgoa (), By the universal pushout property

1 6
of (7) and m' om o by (:)mobl (:)qogobl PO:(G)qobgoagoa,

there exists ¢': C' — M with m’ = ¢ od’ and ¢ € M. Therefore,
m = acp & m fE —acy = acy implies that m' |= ac’y =
ﬁac’g = acy for acc = true. Assume that m % acp, then the im-
plication m' [~ acy/ contradicts with assumption m’ |= acy/. Thus,
m = acy, for acc = true.
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4. For acp = Nieracr; (Vieracr), m' = acy = Nieracy; (Vieracy ;)
implies that Vi € I (3i € I): m' = acp ;. By item 1 to item 3, Vi € [
(3i € I): m |= acp;. Thus, m = acy = Ajeracr; (Vieracy;) for
acc = true.

The case for acc # true is shown inductively over the nestings of the
condition by item 1 to item 4. O

Example 5.6.2 (Relevant Maximal Shifted Rule & CC Rule). Given
model Mﬁarked as illustrated in Fig. 5.15 (bottom, right), triple rule
T_Step_args-2-attrs from Fig. 4.8 and a decomposition dl of triple rule
T _Step_args-2-attrs. The triple rule is again illustrated in Fig. 5.17 (1).

Intuitively, the shifted rule that results out of the decomposition dl
shall “fit” to triple graph Mﬁarked, i.e., additionally to all elements
from the LHS of triple rule T_Step_args-2-attrs, it shall contain the
description = COMPONENT A attribute on the first layer.

Technically, this is achieved in the following way: Let d1: L — L' — R
be given by the LHS L of triple rule T _Step_args-2-attrs and L' which ad-
ditionally contains attribute description on the first layer. Therefore, de-
composition d1 controls the shifting of elements from R towards L. The
rule T_Step_args-2-attrsq;: L + K — R in Fig. 5.17 (3) is a relevant maz-
imal shifted applicable rule of triple rule T_Step_args-2-attrs w.r.t. dl and

M . .. Itis an operational rule derived from the corresponding triple rule

(cf. Fig. 5.17 (1)).
Graph L contains all elements of L' where the shifted attribute in L' is
marked with F. The remaining elements L in L' are marked with T. Graph

0 T_Step_args-2-attrs(string:n, string:d) e CC_Step_args-2-attrs(string:n, string:d)
. ~@- = i - 1t ver
K SN __ﬂ@,f g Sweonciviy ‘ [ [ stepacivin
- + description=d ++ |5 - 2N [F>T] description=d
sstring LST_Elem ‘(#+ @&1 P number=n  ++ h {3 [F>T] number=n

[F>T] entryS=n

Ve 2nd Layer

e

2nd Layer

++ |:next LT @ o - [F>T] :next g

5 1 + R o ; - 5
istring_LST_Elem | ++ ++‘<?_é>++ Stephciviy L F>T] sstring LST_Elem

entryS=d 3 description=d ++ - F>T] entrys=d

>{ number=n ++

= = ey
[T] :Step Activity T_Element

4 [F>T] description=d

> [F>T] number=n

3!
o
Y Y.

sacaes

o
4

1(string:n, string:d) 0 T_Step_args-2-

1st Layer

sq2(string:n, string:d)

1st Layer

A mstepactiviy .
21 [F>T] description=d |@——
=4t number=n ++

[T] :Step Activity
[F>T] description=d |[@——
A [F>T] number=n

[F>T] :string_LST_Elem L

[F>T] entryS=n

++

TS b

> 2nd Layer 2nd Layer
++|:next ST - F>T]|:next K
oo T ko [ 1T sepacivi Tl [F T]'t- 5T teml” A 11 stepActivity o AT)
:string em o [ ] t P ty o Element, >T] :string em R Lt “to, Elemént
entryS=d ++ . 2N description=d  ++ o entrys=d + e S description=d  ++ |7 =
T +11 > number=n ++ ] 2 [F>T] number=n i

Figure 5.17: Triple Rule T _Step_args-2-attrs (1), the Corresponding CC Rule
(2), and two Relevant Maximal Shifted Rules (3) and (4)
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K is L except for the shifted attribute which is unmarked in K (the marking
is going to be updated to T ). All elements of R are marked with T. Graph
R is K. Additionally it contains the remaining elements of the RHS R of
triple rule T_Step_args-2-attrs that were not shifted and therefore, are created
with markings T by applying the shifted rule as indicated by markings ++.
Furthermore, the application of the shifted rule updates the markings of the
two shifted elements from ¥ to T (F > T). The shifted rule is relevant, as,
one elements is shifted, i.e., L and L' are not isomorphic (L % L'). Beyond,
the rule is maximal shifted and applicable w.r.t. Mn]zarked’ as, there exists an
applicable match from L to Mﬁarked and no further elements can be shifted
such that a new “extended” applicable match is obtained.

In Fig. 5.17 (4) a second shifted rule T_Step_args-2-attrsgz: L <= K —

R is illustrated. It is a relevant mazimal shifted rule w.r.t. Oﬁ;rked
(cf. Fig. 5.24) and a decomposition d2: L — L" — R. There, elements
were shifted to L, except attribute description of node : StepActivity which
is part of the second layer of the SPELL-Flow domain and attribute entryS
which belongs to the second : string_LST _Elem node of the list in the SPELL
domain. Again, the RHS R of shifted rule T_Step_args-2-attrsgs is K, but
extended by both aforementioned attributes that were not shifted.

The rule CC_Step_args-2-attrs in Fig. 5.17 (2) is the corresponding con-
sistency creating (CC) rule of triple rule T _Step_args-2-attrs. All elements
are shifted from the RHS towards the LHS. Therefore, when applying a CC
rule no elements are created but the markings of the shifted elements are up-
dated from F to T while the markings of all other elements remain T. A

Update extensions are performed by applying relevant maximal shifted
applicable rules and CC rules via extension matches. We distinguish between
the following three notions of extension matches in order to technically define
the intuition of sub-step Ext (cf. Ex. 5.6.5).

1. A match from a relevant maximal shifted applicable rule to a model
M where the match (overlapping) does not contain previously deleted
elements is called a standard extension match.

2. If the match contains previously deleted elements, then it is addition-
ally guided. We call denote this kind of match as guided extension
match.

3. If no relevant maximal shifted applicable rule exists for a triple rule tr
and w.r.t. model M, then complete overlappings of ¢r with previously
deleted elements may exist with corresponding induced matches from

the CC rule of tr. These matches are called CC extension matches.
Matches that do not contain previously deleted (i.e., recreated) elements are

defined in terms of non-recreating matches (cf. Def. 5.6.6) which in turn are
defined based on the notion of recreation correlations which we introduce
formally in Rem. 5.6.3.



5.6. THIRD SUB-STEP OF ADD: EXTENSION (EXT) (SUB-STEP (F))139

Remark 5.6.3 (Recreation Correlation). A recreation correlation is given
by three morphisms (a: A — B,b: B — M,c: B — M') and outlines the
following situation (see illustration on the right).

Model A is derived from M' by deleting some ele-
ments. Model B is derived from A by recreating some
deleted elements B' = B\ a(A). These recreated ele-
ments together with the elements of A are also present q»
in a fourth model M. Therefore, for each pair of ele-
ments (z,y), where x = b(e) € M and y = c(e) € M’
with e € B', elements x and y are said to be in a
recreation correlation via common B. A

In using the formalisation of the recreation correlation, we are now able
to define the term of the non-creating match, i.e., matches that do not
contain elements that were deleted previously.

Definition 5.6.6 (Non-Recreating Match).

Given a shifted rule trq = (L < K — R, acy)
with match m: L — M and recreation correlation \
(a: A = B,b: B — M,c: B — M'). Matchm is > (=) (1) *
non-recreating w.r.t. {(a,b,c), if there exists a mor- m’
phism o: O — A € M for the pullback (1) over b,m SN/
such that aoo =m'. AN 0

Aoy
I » 4

Remark 5.6.4 (Non-Recreating Match). Model B is derived from A by
recreating some previously deleted elements of M (cf. Rem. 5.6.3). Model
O is obtained by intersection of B and L via common M. Therefore, O
contains those elements of B that are matched by m in M. Thus, if there
exists a morphism o: O — A with commuting aco = m’, then match m does
not contain previously deleted (i.e. recreated) elements. A

Based on non-recreating matches, standard, guided and CC extension
matches are defined.

Definition 5.6.7 ((CC & Guided) Extension Match). Given a triple
rule (tr: L — R,acr) and a recreation correlation (a: A — B,b: B —
M,c: B— M').

d /
S s - - ~Qz---"o--L
RN FEAS (2) e
RO 1 b Iy
Y oV ( ) ! > ‘m
VO c [ 0/~ KM g
b Y -0 ‘
a - ‘
A B M~ L

1. Let trq = (tr: L < K — R,acy) be a relevant mazimal shifted ap-
plicable rule of tr w.r.t. M with match m: L — M € M. If m is
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a non-recreating match w.r.t. {(a,b,c), then m is called a standard
extension match.

2. Let O be obtained by pushout (1) over b,c. Given a relevant maximal
shifted applicable rule tr'; = (tr!;: L' < K' — R', ac;/) of tr w.r.t. O
with match m’: L' — O € M and inclusion iy: L — L'. Furthermore,
let O' be obtained by an effective pushout (2) over e,m’ with induced
morphisms ior: O — O € M and m: L' — O" with iorom = m/. If
m is not a non-recreating match w.r.t. (a,b,c) and eom =m'oir,
then m is called o guided extension match.

3. Considering item 2. If trq with m does not exist and tr); is a CC rule
of tr, then m is called a CC extension match. A

In Def. 5.6.7, PO (2) is required to be an effective pushout, since, induced
morphism i needs to be an M-morphism for the recursive application of
Def. 5.6.7 as performed by the update extension sequences (cf. Def. 5.6.9). In
a recursive step with ¢ = ipr € M, it is true that e € M and ¢’: M — O’ €
M, because M-morphisms are closed under pushouts and pullbacks. This
allows M-traces of update extension steps in Def. 5.6.8, with ¢’oboa € M by
M-composition which leads to valid model updates (span of M-morphisms)
as the result of the update propagation (cf. Def. 5.2.1).

Example 5.6.3 (Standard, Guided and CC Extension Match). Consider-
ing Sec. 5.6.1, which discusses a detailed execution of the Ext sub-step on
our running example, we are able to find all three kinds of matches. For
details we refer to the detailed description in the aforemetioned section.

e In the first iteration, we discuss the application of a stan-
dard extension match wusing models in Fig. 5.22 and shifted rule
T_Comment_LST _Elem-2-commentsy (cf. Fig. 5.18).

e The second iteration uses a guided extension match with shifted rules
T Step_args-2-attrsq; w.r.t. model M . . and T Step args-2-attrsqy
w.r.t. model OF (cf. Fig. 5.17 (3) + (4) for both shifted rules

marked

and cf. Figs. 5.23 and 5.2/ for both models).

o An example for a CC extension match is provided in the third iteration.
There, the CC rule CC_sourceCodeText-2-sourceCode (cf. Fig. 5.19) is
applied to triple graphs M) . . and Or"” 4 in Fig. 5.26. A

marke marke

The application of shifted rules can be embedded into a bigger context:
In detail that means: If a shifted rule try is applicable to model M, i.e., a
morphism from the LHS of try; to M exists and the application condition
(if it exists) is fullfiled. Then trq is also applicable to a model M’, if a M-
morphism from M to M’ exists, i.e., M can be embedded into the bigger
model M’ and all elements in M’ that are not part of M get marker F.
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Proposition 5.6.2 (Shifted Rules along M-Morphisms). Leti: M — N €
M be an M-morphism and trq = (try: L < K — R, acy) be a shifted rule.
If the extension M = N \ i(M) of M along i is exclusively marked with F
(M = G & AttE for some unmarked G), then

1. There exists an applicable match m: L — M if and only if there exists
an applicable match m': L — N with m' = iom, AND

2. The transformation step M ram),

trqg,m’
(trg,m)

M’ leads to extension diagram (1)

with transformation step N N andi: M — N'.

A

Proof. We split the proof of Prop. 5.6.2 in two cases. In the first case the
shifted rule trg has no application condition trqy = (try, @). Shifted rules
only add elements and change trasnlation attributes from F to T, i.e., only
translation attributes are deleted. Thus, the gluing condition (cf. Def. 6.3
in [EEPTO06]) is also fulfilled for the application of the shifted rule ¢try via
match m’ : L — N.

The second case considers shifted rules with application conditions
trqg = (trg,acr). The construction of shifted rules marks all elements
in the application condition acy to T that are not in L (cf. Def. 5.6.2
and Rem. 5.6.1). Therefore, the match m’ : L — N exists, too, because rule
trq is applicable to M, and thus, the morphism from acy, to an extended N
maps the same elements as the one to M. So, the shifted rule try can be
applied to N. ]

An update extension step can be seen as one iteration step of the update
propagation. It defines the application of one shifted rule to the model.

Definition 5.6.8 (Update Extension Step). An update extension step sg =
(N, M % M',N') from M to M' w.r.t. an extension relevant sub-

graph G C N is given by a transformation step M % M’ via extension

match m: L — M w.r.t. G from shifted rule trq = (tr: L LK I R, acyp) to
M with recreating morphism r: M — M € M where M = M’ & Att}},\G $)
AttE and N = N' @ Attﬁl\a/ © Atty, for some G' C N' (cf. diagram
(1)+(2)). Furthermore, by the construction of recreating extension matches
M =Mw H & AttY, for some elements H (cf. Def. 5.6.7).
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r

l
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The trace trace(sqg,) = (sior) € M of a step sq, is given by the recre-
ating morphism r composed with the induced morphism s;: N; — Njx1. A

The trace morphism is a morphism to the “original” model, i.e., the
model on which we applied the shifted rule (CC rule). It keeps track of the
changes that were applied to the “original” model.

Remark 5.6.5 (Trace M-Morphism). The trace morpism trace(sg,) = sior
of an update extension step is an M-morphism, as, pushout (2) preserves
M-morphism r € M with s; € M and by the composition of M-morphisms
s; and r it follows that s;or € M (cf. Def. 4.4 & Def 4.2 in [EEGH15]). A

We will now combine all update extension steps to a sequence, which
is called update extension sequence. In order to get functional behaviour
(cf. Thm. 5.6.1), we demand termination of the sequence.

Definition 5.6.9 ((Terminating) Update Extension Sequence). Let M be a
sequence start model with G C M. An update extension sequence w.r.t. G
is inductively defined as follows.

1. Each empty sequence sq = (M KUTN M) is an update extension se-
quence from M to M.

2. Each update extension step sg = (M U™y M"Y (¢f. Def. 5.6.8) is
an update extension sequence from M to M’.

1 1
3. The composition of update extension steps s%; = (M M M"Y o
2 _ 1 (trﬁymz) 2 n __ n (trlf,m") ny ,
s = (M"—2—2 M?)o...osk = (M" —4—2 M") is an update
extension sequence from M to M™. A

The order of applying CC and non-CC rules (i.e., general shifted rules) in
an update extension sequence is irrelevant when assuming appropriate suffi-
cient conditions as shown by Prop. 5.6.1. Thus, finding applicable matches
does not need to be ordered in Def. 5.6.7.

Example 5.6.4 (Extension Step & Sequence). The application of a shifted
rule or CC rule, respcetively, represents one extension step of the update
from FEx. 5.2.1 Ex. 5.6.5 in the sense that the elements which are created by
the update are extended by those elements of the shifted rule (or CC rule)
that do not overlap with the update and therefore, would also be created when
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applying the shifted rule (or CC rule). The update of markings from F to T
are introduced in order to control which elements of the update already have
been extended. A

Now, we are able to determine the Ext sub-step based on the details
defined before in this section. Finally, the complete derived propagation
framework Ppg can be defined.

Remark 5.6.6 (Add Step - Sub-Step III). Given marked triple graphs M
and M and a morphism k : M — M between them resulting out of the second
sub-step of Add, i.e., the Marking sub-step (cf. Sec. 5.5.2). Furthermore,
given a set of triple rules TR.

Case 1: standard extension match (using shifted rule) The Ext
sub-step computes a mazximal relevant shifted rule sr: L +— K — R
w.r.t. triple graph M, i.e., Im: L — M. Then, morphism m will be
extended to M, i.e., m=kom: L — M.

sriLeK+R
m, m
¥
M M
k

If m is a standard extension match, then we can apply the shifted rule
sr to models M and M resulting in models O' and M'.

=

e
-—

O/
¥
T

=

Case 2: guided extension match (using shifted rule) In case, no
standard extension match can be found, the Ext sub-step checks for a
guided extension match in the following way. The Ext sub-step com-
putes a mazximal relevant shifted rule sri: Ly < K, — Ry w.r.t. triple
graph M, i.e., 3m: L; — M (similar to case 1). Afterwards, the mor-
phism m will be extended to M, i.e., m = kom: L; — M. Based on
morphism m, a new relevant mamimalgm'fted rule sry: Ly +— Koy — R,
will be com?uted w.r.t. model M. Hence, a morphism [: Ly — Ly ezx-
ists and also m: Ly — M, as illustrated in the diagram below.
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In the next step, a pullback via (m, M, k) needs to be constructed first
(also highlighted in blue). Then, a pushout via (p, P,p’) is derived
(red). So, the effective pushout construction is used (cf. Def. 2.1.15).

L
\ =<
/I ‘o P P\
\
m/l \ /\\ m
/ Y P
' n_ Qe o
7‘/ \\\1
M - M

The result is triple graph O that contains all necessary elements to
apply shifted rule sry to O. The match is given by o: Ly — O. Fur-
thermore, an M-morphism n: O — M with n € M exists, due to
construction of effective pushouts.

Finally, we apply the relevant maximal shifted rule sro as well on model
O as on model M resulting in triple graphs O' and M', respectively.

812

0 o’
o
M M’

Case 3: CC extension match (using CC rule) If no relevant maximal

shifted rule can be derived, then a CC rule rcc: L < K — R might
be applicable to model M wvia CC extension match. In that case, a
match m from a CC rule out of the set of all CC rules (cf. Def. 5.6.3)
to model M is given, i.e., m: L — M. Consequently, rule roc is
applicable to M. In order to also apply that rule to M, we need to
“add” the necessary elements to M, so that rcc is applicable. For
that, an effective pushout is constructed resulting in an enriched model
O (see the following diagram). Then, a match o: L — M is available
so that roc can be applied to O. In addition, M-morphismn : O — M
follows out of the construction of effective pushouts.
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L<-_"_
\

\

i
I
\\\
I

I

m

a0
Q
<

n,Y v o

v
M

Finally, CC rule rcc can be applied to M and O resulting in new
models O and M.

0] o’
n n'
M L, M/

If one of the three cases mentioned above is has been executable, then the
Ext sub-step starts another iteration. For the next iteration, graphs O’ and
M’ are provided as input.

At the end, the Ext sub-step returns a model MF = Mt \ (Att};,i &

Attﬂ,i). i.e., the last model M'" without markers. A
Note, the following diagram summarises the three cases of Rem. 5.6.6 in

one diagram illustrating the difference between the three kinds of extension
matches.

standard extension match (case 1)

guided & CC extension match (case 2 & 3)

Finally, the derived propagation framework returns a model update
u': M — N if each marker in N,,qkeq is set to T. N is model Ny,arked
but the markers are omitted, i.e., this is the resulting model of the derived
propagation framework. If the derived propagation framework is not able to
derive a consistent model, i.e., if it is not able to derive a model that only
contains T-markers, then it returns update u': M — &.
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T_Comment_LST_Elem-2-commentsq(string:c)

@[ astlaver

++|:comment ++{ :}ﬂ g :Step Activity
e Z [F>T] comments=c @
:Comment_LST_Elem \ " ——————— -

valC=c ++

o ++ I :Step Activity
HEOTHES comments=c ++

Figure 5.18: Shifted Rule T_Comment_LST_Elem-2-commentsy

CC_sourceCodeText-2-sourceCode(string:c)

:stmt N S p—— ‘”:I.ss‘lavy‘er.l
e ®- \ ‘Activity
:argument ‘< @ [ [Ii?T].vsot“Jrc?Co‘(‘ieic i
[F>T] sourceCodeText=c Y‘@ ) S an Eav:ar —
- :Activity
@-- —~> [F>T] sourceCode=c |-

Figure 5.19: CC Rule CC_sourceCodeText-2-sourceCode

CC_lines-2-lineNumbers(string:I1,string:12)

T e
args :Activity ;

s [F>T] startlineN umber=I1
:argument “[ [F>T] endLineNumber=I2 |~

[F>T] line_start=I1
[F>T] line_end=I2

:Activity
[F>T] startLineN umber=I1
[F>T] endLineNumber=12

Y-

‘,fQ'_E:lé‘HjEﬁ";

Figure 5.20: CC Rule CC_lines-2-lineNumbers

M 56.1. Running Example: Ext sub-step in great detail

After defining the formal construction of the Ext sub-step, we illustrate the

execution of the extension sub-step Ext on our running example in great
detail.

Example 5.6.5 (Sub-step Ext of Add in Great Detail). The Ext sub-
step uses the marked models from the second sub-step of Add as input
(cf. Fig. 5.15). This initial situation is also illustrated in Fig. 5.21. As
described in Rem. 5.6.6, the Ext sub-step successively checks if one of the
mentioned cases is applicable, i.e., if a standard extension match, a guided
extension match or a CC extension match can be found. We will now show
all iterations of this process in detail. Note, if we include matches within
the following gigures explicitly, we illustrate them by means of gray dots.
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[T] :file_input I.((

[T]:fst

[T] :next

" [T] StepActivity
[F] startLineN umber=1
[F] endLineNumber=1 |
sourceCode=Step(...) |-
description=COMP... |

] :string_LST_Elem

[ line_start=1 N
[F] line_end=1 <2

[F] sourceCodeTexts=S...

[T] :SPELL_Constant

\"‘u_ F] :next
L] entrys=5 - m :PromT‘.—Ih_—
T[F] :next ??ér@:‘:_ -~
F] :string_LST_Elem [T].:string [ST_Elem

[F] line_start=1 1<~ [T] line_start=2
[F] line_end=1 [T] line_end=2 S
[F] sourceCodeText=s... [< - [T]sourceCodeText="..." [T] :Step Activity
LLF] entryS=MANAGEM... entryS=WARNING:.... TFT startlineN umber=1

1 :next [F] endLineNumber=1

[F] sourceCode=Step(...) ||

[F] description=MANA... ||
number=5 1

[T] line_start=2
[T] line_end=2
[T] sourceCodeText= (<. G
[TlnameC=0K | =l N
......... G PromptActivity
[F] :Pause l( .
R
M marked
1st Layer
[T] :file_input |1( ________________________ Q A

[T] :StartNode

Mt e ..
[T] :next D

[T] :Step Activity

[F] description=COMP... | |

:Prompt
Mearg
:string LST_Elem
[T] line_start=2
[T] line_end=2

[T] sourceCodeText="..."
entryS=WARNING... .

[T] :next

[T] :SPELL_Constant
[T] line_start=2
[T] line_end=2
[T] sourceCodeText=
[T] nameC=0K

Figure 5.21: Initial Situation, Including Match

1st iteration: First of all, Ext checks, if a shifted rule with standard
match can be found with regard to the models M) . . and Mnlzm,ked. This is
possible w.r.t. to attribute comments in the SPELL-Flow domain. If we con-
sider triple rule T_Comment_LST _Elem-2-comments in Fig. 4.10 then we can
derive the maximal relevant shifted rule T_Comment_LST_Elem-2-commentsy
(cf. Fig. 5.18) w.r.t. model ME . . which is applicable to both models
! vheq Ond ME . (cf. Rem. 5.6.6). The application of this relevant

maximal shifted rule leads to models M) . . and Oﬁbarked which are il-
lustarted in Fig. 5.22. Finally, both models are extended by the new com-
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1st Layer

m [T] :fst
:comment [T] :next

[T] :Step Activity

F] :string_LST_Elem +{ [F] startlineNumber=1 |
F] line_start=1 F] endLineNumber=1
£] line_end=1 F] sourceCode=Step(...) |
F| sourceCodeText=S... F] description=COMP... E
F| entryS=5 F] number=5
— - T] comments=som
[F] :next -

F] :string_LST_Elem -
line_start=1 ==|'[T] line_start=2 - ™ ayer
line_end=1 [T] line_end=2 - B ” —
sourceCodeText=s... [< [T]-sourceCodeText="..."

entryS=MANAGEM... 2

T
E==5

[T] :Step Activity

startlineNumber=1 | .
endLineNumber=1 [
sourceCode=Step(...) [
description=MANA... |
number=5
comments

.4 TT] :SPELL_Constant
+ == [ [T] line_start=2

- < [T] line_end=2
[T] :Com ment_L?T_EIem [T] sourceCodeText= ICeee
[T] valC=something . |[namec=ok | e

somet.. [’

[T] :StartNode

:commen [T] :next

[T] :Step Activity

[F] description=COMP...

[T] :Prompt
|m arg
[T] :string _LST_Elem
[T] line_start=2
[T] line_end=2
[T] sourceCodeText="..."
entryS=WARNING.....

e [T] line_start=2

4 [T] line_end=2
:Comment L?T Elem [7] sourceCodeText=
[T] valC=something < [T] nameC=0K

Figure 5.22: Standard Extension Match: Result of Shifted Rule Application

ment. In explicit these are: node : Comment_LST_Elem with its attribute
valC = something and with the containment edge : comment in the SPELL
domain. Furthermore, the : StepActivity node on the second layer of the
SPELL-Flow domain is enriched by a new attribute comments = something.
Finally, the necessary correspondence nodes and edges are added, too. The
markers of all created elements are set to T. The marker of the comments
attribute being part of the : StepActivitiy node on the first layer is changed
from F to T.

2nd iteration: Both models M) . . and Ofmmed are taken as input
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1st Layer

| [T] :file_input I.((
m [T] fst

:comment

" [T] StepActivity

[F] :string_LST_Elem > [F] startLineN umber=1
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Figure 5.23: New Input to next Ext Iteration with Guided Extension Match

to the next iteration of the Ext sub-step. Again, it is checked, if a stan-
dard extension match can be found. This is not possible. Instead, a guided
extension match can be found w.r.t. model M arked. This situation is
illustrated in Fig. 5.23. The corresponding mazimal relevant shifted rule
w.r.t. M arked is rule T_Step_args-2-attrsqy visualised in Fig. 5.17 (3).
According to Rem. 5.6.6, a new intermediate model Oﬁlarked s calculated
via effective pushout construction which is shown in Fig. 5.24. With regatd
to this mew triple graph, another relevant maximal shifted rule is derived:

T _Step_args-2-attrsgp which is shown in Fig. 5.17 (4). This shifted rule is
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Figure 5.24: Guided Extension Match: Result of Effective Pushout, Includ-
ing Match

finally applicable to triple graphs Oﬁ;rked and M) .. It guides the recon-
struction of elements that got lost during the deletion step (Del, cf. Sec. 5.4).
Finally, the application of shifted rule T_Step_args-2-attrsqs leads to models
N ked ONd Mggﬂced that are given in Fig. 5.25.
3rd iteration: In the next iteration step, Ext checks again, if a stan-
dard extension match or a guided extension match w.r.t. triple graph
Mﬁgrked can be found, which is not possible. Then, according to Rem. 5.6.6,

the Ext sub-step searches for a CC extension match w.r.t. o ked:
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Figure 5.25: Result of Shifted Rule Application, New Input to Next Iteration

This kind of match is possible. In Fig. 5.25 the CC extension match
1s illustrated, i.e., both line_start attributes and both line_end attributes in
the SPELL domain, as well as both startLineNumber attributes and both
endLineNumber attributes in the SPELL-Flow domain. The corresponding
CC rule CC_lines-2-lineNumbers is illustrated in Fig. 5.20 which is derived
out of the triple rule T_lines-2-lineNumbers in Fig. 4.13. Then, an effec-
tive pushout is constructed in order to add those missing attributes to model
M R;/,rked resulting in model Oﬁlzlwked that is given in Fig. 5.26. This picture

m

contains the match also for model OF! The application of the CC rule

marked*
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Figure 5.26: CC Extension Match: Result of Effective Pushout, Including
Match

CCllines-2-lineNumbers sets the F markes of the mentioned attributes to T.
The resulting triple graphs Mﬁmrked and Mﬁg;ked are shown in Fig. 5.27.
4th iteration: The next iteration step is similar to the third itera-
tion. No standard extension match and no guided extension match can be
found. Instead, a CC match w.r.t. model Mn41a7"k:ed exists which is also
illustrated in Fig. 5.27. Both attribute sourceCodeText in the SPELL do-
main and both sourceCode attributes in the SPELL-Flow domain are tar-
get of the CC extension match to Mﬁlarked' We illustrate the relevant
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Figure 5.27: Result of CC Rule Application, New Input to Next Iteration

CC rule CC_sourceCodeText-2-sourceCode that is derived out of triple rule
T _sourceCodeText-2-sourceCode (cf. Fig. 4.12) in Fig. 5.19. Again, an ef-

" . . "
marked which is marked

extended by the aforementioned attributes so that the CC rule is applicable

(cf. Fig. 5.28). The application of the CC rule yield in models M? . . and
Mn%rked, where the F markers of those attributes are changed to T. Both
models are shown in Fig. 5.29.

Final result: The Ext sub-step finishes successfully with models

Mgmrked and Mrﬁfwked, because neither a standard extension match, a guided

fective pushout is constructed resulting in model
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Figure 5.28: CC Extension Match: Result of Effective Pushout, Including
Match

extension match, nor a CC extension match can be found according to the
given TGG. Besides, the extended model Mr%rked only contains T mark-
ers. This model is also the relevant one, i.e., it will be returned as part
of an update u' : M — MT* by the derived propagatz'on framework, where
MF = Mmarked © Att i © AttMR4, i.e., model Mmarked without markers.
The second triple gmph mmked can be understood as a helper model for the
recreation of elements that were deleted during the Del step. This model will

be discarded at the end of the Ext sub-step. A
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Figure 5.29: Final Result

M 56.2. Derived Propagation Framework

By combining all steps we obtain the derived propagation framework
Ppg(TGG) in Def. 5.6.10 with main properties in Thm. 5.6.1 and full proofs
in Sec. 5.7.

Definition 5.6.10 (Derived Propagation Framework). Given a TGG over
domains Dy and Do, then each propagation operation (Ppgp,)i=1,2 of the
derived propagation framework Ppg(TGG) applying update u on M and de-
riving a consistent model M’ is defined by the following sequence of steps:
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Del step, cf. Rem. 5.4.1,

2. Add step consisting of sub-steps:

(a) sub-step first addition, cf. Rem. 5.5.1,
(b) sub-step marking, cf. Def. 5.5.1,

(c) sub-step extension Ext is executed iteratively, cf. Rem. 5.6.6.

A

The proposed propagation framework is defined formally and fulfills
the following properties. The proofs showing that these properties hold,
are summarised afterwards. Note, we defined the propagation framework
Ppg(TGG) to be within the category of attributed (triple) graphs, i.e., it is
within a M-adhesive category.

Theorem 5.6.1 (Properties of Ppg(TGG)). The derived propagation frame-
work Ppg(TGG) fulfills the following properties.

1.

2.

The propagation preserves identity: Ppg(_,id,_) = {id}.

If the propagation finishes successfully, then it always yields consis-
tent results: v € Ppg(_,u,_) = ' is consistent D;-update for D;-
update u.

If the given update u = (M &2 Mp 22, M') is consistent, then
the propagation yields a consistent result u' = (M <u—/1 N? % N3)
where the resulting models are isomorphic to each other M' = N3
(C-preservation).

The propagation always returns a unique result: |Ppg(_,u,_ )] = 1
for Di-update u.

Functional behaviour: The propagation terminates, if models and
grammars are finite (i.e., we have a finite number of rules, and the
model is finite) and if all triple rules of the grammar are relevant (cf.
e.g., Def. 5.6.4). Furthermore, the propagation is deterministic, if
triple rules are local confluent (Thm 2.43 in [EEPTO06], Sec. 2.2.3),
i.e., two parallel dependent rules can be applied, so that they lead to
the same result. Termination and determinism lead to functional be-
haviour, i.e., for the same model M, the propagation will always pro-
duce the same result.

As in both sub-steps of Add previously deleted elements may be recre-
ated, the proposed propagation framework prioritises creation over
deletion.
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B 5.7. Proofs & Proof Ideas of Thm. 5.6.1

In the following, we will present the proofs and proof ideas of the properties
of the derived propagation framework listed in Thm. 5.6.1.

M 5.7.1. Proof: Preservation of Identity

Proof. Given a consistent model M w.r.t. a given TGG and an identical
update u = M <= M < M. In explicit u = (u1,u2) = (id,id) and id : M —
M.

Then, the update delta §, and also the creating update delta §, are
empty, i.e. 0, = 0,, = (& +> & — &). Informally, this means that if update
u does not change anything, then §, (4,,) is empty, because it only reflect
changes (creations) in update u.

In order to show that the propagation framework Ppg(TGG) preserves
identity, we will apply all steps and show that each step (and sub-step)
preserves identity. According to Chap. 5, we will show the preservation on
domain Ds, first. The proof for Dy is dual.

The first step is the Del step: If we consider diagram Fig. 5.9, then an
identical update leads to the following situation:

d d:
M = (MDl <;A]WC’42’]\4D2)

A A

; i id1 1:(PB) ‘LidDQ
|

lid ilel Mgo--->Mp

[ ! 4 d2 A,

\ [ o lidp,

L di U dy L

In the Del step, an identical update u leads to model Mp in domain
Dy which is identic to the original model Mp, in that domain, because if
nothing is deleted, then the model stays unchanged. Furthermore, pullback
(1) preserves identity, because in general, pushouts and pullbacks in M-
adhesive categories preserve identity (cf. Def. 4.2 in [EEGH15]). The
resulting model of that sub-step is M.

Afterwards, the consistency creating step (2) will be applied, but due
to model M being consistent (see assumption) and the resulting model M?
of the CC step being equal to M, this CC sub-step will result in the same
model M, again. Consequently, the Del step preserves identity.

d d
M =M2= (Mp, <+ -Mc- =" Mp,)
2:CC ﬂtr*
o= (D~ %) )

Now, we will consider Fig. 5.9, again, for the Add step. Note, the result-
ing model of the Del step is M? = M.
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In the first sub-step of Add, we apply the creating delta d,, : @ <~ @ — &
of update u to model Mp resulting in model Mj’j2 = Mp, (top row of the
diagram), i.e., the identity, because Mp = Mp, (see above).

The effective pushout construction (1) will lead to M 52 which is, again,
Mp,. Finally, the pushout (2) leads to Mgz being equal to Mp,. For both,
we use the property that pushouts and pullbacks in M-adhesive categories
preserve identity (cf. Def. 4.2 in [EEGH15]). The resulting triple graphs
are MR = M and M’ = M.

In the next sub-step of Add, we mark M’ and M via M? according
to Def. 5.5.1. All models are identic, i.e., M = M’ = M = M?. This leads
to the marked models M/ . . = Mﬁmked, where all elements are marked
with T. Consequently, the third sub-step Ext of Add is not applicable any-
more. Therefore, the propagation framework does not change the original
model, but returns the same model.

So, the propagation framework Ppg(TGG) preserves identity:
Ppg(_,id, ) = {id}. O O

B 572 Proof Idea: Consistent Results

ProofIdea 5.7.1. Given a consistent model M w.r.t. a given TGG and D;-
model update uw = (u1,ug) with M & Mp 22 M’ in domain D; (i € {1,2}).

We will show that, if u' € Ppg(_,u,_) then, u’ is a consistent D;-update
for D;-update u.

The Ext step extends the model via shifted rules/CC rules. If all markers
are set to true, then resulting model M’ is automatically consistent, because
only shifted rules/CC rules were applied. Le., M' € L(TGG). If no con-
sistent model can be derived, i.e., the application of shifted rules/CC rules
will stop, even if some markes are still F, then the propagation aborts (cf.
Extstep). That means, we have no result. = If we get a result, then it is
consistent. (|

B 573. Proof: C-Preservation

Proof. Given a consistent model M w.r.t. a given TGG and a consistent
model update v = (u1,ug) with M &L Mp 225 M'. Update u = (M &+
Mp 22, M') being consistent means that M’ € L(TGG).
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In the following, we will show, that if model update u = (M < Mp 22,
M) is consistent and v’ = (M & N? M2y N3), then M’ = N3. For that,
we will propagate update u on M. We will consider u being an update in
domain Dsy. The proof for u being an update in domain D is equivalent.

The first step is the Del step: If we consider diagram Fig. 5.9, then
applying the deletion part u; of the consistent update u lead to the following
situation, where Mp is not necessarily consistent.

d d
M = (MD1 ‘L]\{CLMDJ
21: lz(PB) T,UJ

Meo----Mp
[£3)

Afterwards, the consistency creating step (2) will be applied leading to
consistent model M?2, due to the construction of the CCpe sub-step.

Me---~Mp

2 Ct 6;22 tiD

M= (M, M-}
2:CC || tr*

= (T~ %) -3 )

M~ )Mp<—’K .
A )\ r i
i ip, | 1:(2O) f 2:(pO)

I
I
I
I
I
I
L

2 d% d% 2 dr \)VK R
_ 2 M
M?= (Mp, «Mg~Mp f--~Mp,<-~Mp,

In applying ug, model My, is consistent, i.e., ...

In the first sub-step of Add, we apply the creating delta d, : @ < @ — &
of update u to model Mp resulting in model M’D2 = Mp, (top row of the
diagram), i.e., the identity, because Mp = Mp, (see above).

The effective pushout construction (1) will lead to MJ; which is, again,
Mp,. Finally, the pushout (2) leads to M 52 being equal to Mp,. For both,
we use the property that pushouts and pullbacks in M-adhesive categories
preserve identity (cf. Def. 4.2 in [EEGH15]). The resulting triple graphs
are M = M and M’ = M.

In the next sub-step of Add, we mark M’ and M% via M? according
to Def. 5.5.1. All models are identic, i.e., M = M’ = M*® = M?. This leads
to the marked models M/ . . = MZE

m marieqs Where all elements are marked
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with T. Consequently, the third sub-step Ext of Add is not applicable any-
more. Therefore, the propagation framework does not change the original
model, but returns the same model.
So, the propagation framework Ppg(TGG) preserves identity:
Ppy(-,id, ) = {id}.
O O

M 5.7.4. Proof Idea: Unique Result

Proof Idea 5.7.2. Given model M w.r.t. a given TGG and model update
u= (M & Mp 22, M').

We will show that the propagation always returns a unique result for an
update u: |Ppg(_,u,_ )| =1 for D;-update u.

The propagation returns exactly one result: Follows out of the Ext sub-
step: We do not backtrack, i.e., if the Ext sub-step finishes successfully, i.e.,
all markers are set to T, then it returns this result v’ without trying to derive
another solution.

The result is unique: This follows out of the property “propaga-
tion returns exactly one result” and out of the property “functional be-
haviour” Proof Idea 5.7.3. O

B 575 Proof Idea: Functional Behaviour

Proof Idea 5.7.3. Given model M w.r.t. a given TGG and model update
u= (M & Mp 22y M').

We will show functional behaviour, similar to the proof in [HEOG10)].
As sub-steps for functional behaviour, we need to show:

1. Termination: If TGG and models are finite and rules are relevant (i.e.,
LHS # RHS). Proof is similar to proof of termination of forward
translation / backward translation in model synchronisation framework
in [HEOG10] and [EEHP0Y].

2. Determinism: Definition of confluence from [EEPT06] need to be ap-
plied to construction, similar to [HEOG10] and [EEHP0Y].

B 5.7.6. Proof Idea: Priorisation of Creation over Deletion

Proof Idea 5.7.4. Given model M w.r.t. a given TGG and model update
u= (M & Mp 22, M').

We will show that creation has higher priority than deletion.

This property follows directly out of the construction of the derived prop-
agation framework of model updates in Chap. 5. O



Case Study at SES

In Chap. 1 we already gave an introduction to the case study with our
industrial partner SES and to the running example which was taken from
this case study. In this chapter, we will present the outcomes of the practical
part of the PhD research project. In short, they are:

e A visual environment for SPELL-Flow as Eclipse plugin [ecl16a].

e A prototype translation from a subset of SPELL statements to SPELL-
Flow.

e A plugin in Eclipse for an automated translation, i.e., in executing this
functionality, all steps of the translation are performed automatically.

In Sec. 3.3, we gave a detailed introduction in the unidirectional transla-
tion from SPELL to SPELL-Flow and the bidirectional translation between
SPELL and SPELL-Flow by means of the methodology which was also de-
veloped and presented in Chap. 3. The practical implementation of the uni-
directional and bidirectional translation between SPELL and SPELL-Flow
follows this methodologies directly.

M 6.1. Implementation

The industrial project in cooperation with SES was part of the PhD project.
The tasks of the applied part were to develop an automated prototype trans-
lation from SPELL to SPELL-Flow (and vice versa) using TGGs and as sup-
plement to the translation, to develop an Eclipse plugin which performes all
translation steps automatically. Moreover, a tool for visualising the result-
ing SPELL-Flow model was implemented which is based on Eclipse GMF'.
In the following section, we will present the implementation details of the
tasks mentioned above.

161
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M 6.1.1. Guidelines for the Translation set up by SES

At the beginning of the industrial cooperation, requirements were set up
by SES, which need to be fulfilled by the automated translation and also
by the desired visualisation. The first requirement was that the resulting
visualisation of SPELL source code shall be a flowchart which is adapted
to the needs of SES, i.e., some special statements get special shapes in
order to attract more attention of the satellite operator. Table 6.1 lists the
specification of node shape types and their corresponding SPELL statements
that was set up by SES.

Node Type Shape

start node

end nodes (finish, abort, end)

step node

branching nodes (if, while, for, try)

elif nodes

gettm and verify nodes

prompt node

goto node

expression node

ERNGH| N

function call node

other nodes not mentioned explicitly

Table 6.1: Node types as defined by SES

Another specification which was set by SES is that the SPELL-Flow
model shall be divided into different hierarchies. Thus, the (possibly) com-
plex SPELL-Flow model will be divided into different abstraction layers in
order to separate the most important information from less important ones
and in order to keep the first view of the SPELL-Flow model as concise as
possible.
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We will now list the rules for the separation of information into different
hierarchical layers of the SPELL-Flow model as it was provided by SES in
the following enumeration. In addition, some information will be omitted
during the translation. The rules for defining which statements in which
context will be excluded, are contained in that list, too.

1.

The translation from SPELL to SPELL-Flow shall preserve as much
information as possible, i.e., on the most detailed level, the SPELL-
Flow model shall be nearly identical to the SPELL source code. Still,
many SPELL procedures contain a list of initialisations at the begin-
ning apparent from IVARS and ARGS keywords.

. The SPELL-Flow model shall fullfil the mapping from SPELL state-

ments to SPELL-Flow shapes as given in Table 6.1.

Comments shall not be represented by a separate shape but may be
included in tooltip of the corresponding statement, as well as the cor-
responding source code snippet.

The different hierarchies shall be built up according to the following
rules:

(a) Each “branching” statement shall be on the first layer but if and
only if it is situated on the first indentation level. Branching
statements are: if, if /elif conditions, loops (for, while), try /except
blocks, and goto statements.

(b) Each Step statement shall appear on the first layer if and only if
it is on the first indentation level.

. For underlying layers, i.e., layer > 1: If nodes of the same type follow

each other, then they shall be merged into one shape. This will lead to
a new layer which is below of the layer with the merged shapes which
will show all nodes as separate shapes.

Function calls will be treated differently, depending on the fact, if it
calls build-in code or if the underlying source code is available. If the
source code is available, then a link shall be established between the
node representing the function call and the block which represents the
body of the function. If the function call calls built-in code, then the
link to the function body shall be omitted.

Expressions shall be converted into “pretty Python” in order to in-
crease the readability, e.g., expressions like A == B shall be replaced
by A = B or lists (usually surrounded by many brackets) shall be re-
placed by an enumeration.
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M 6.1.2. Model Synchronrisation via TGGs and GGs

The unidirectional model transformation from SPELL source code to a
SPELL-Flow model as well as the bidirectional model transformation which
includes also the backward direction are based on the model synchronisation
framework that is based on triple graph grammars Sec. 2.2 and that was
introduced formally in Chap. 4. Practically, the unidirectional and bidi-
rectional model transformation is performed using HenshinTGG. For the
refactoring steps, we use flat algebraic graph transformation (cf. Sec. 2.1.3)
that will be applied in practice using Henshin.

In the following section, we will introduce the Multi-View Henshin-Editor
and HenshinTGG@G, so that we are able to give details on the graph grammars
and the triple graph grammar that were developed for realising a prototype
transformation. This description includes some explicit example rules taken
from all grammars.

Multi-View Henshin-Editor

Henshin is a development environment based on Eclipse EMF and GEF. It
supports the visual modelling of EMF-based rules and the execution of model
transformations using those EMF rules [Ecl16b]. The integrated graphical
interface of the Henshin development environment can be replaced by the
Multi-View Henshin-Editor [Henl6b]. In the framework of this project, we
used this alternative. This visual multi-view editor was developed in 2010
at the Technische Universitdt Berlin. It is based on the Muvitor framework
which provides a multi-view interface, i.e., editors using Muvitor provide a
tree-view of the transformation system, as well as different graphical views
for rules and graphs of the transformation system. Another special feature
of Muvitor is that the graphical views include different views of the rule: one
for the LHS and one for the RHS, and also one for the application conditions
(ACs) of a rule that are displayed at the same time, i.e., rules are visualised
simultaneously by two views or even by three different views, if the rule
contains ACs.

The Multi-View Henshin-Editor supports the following formal frame-
works and techniques:

e Definition of typed attributed graphs and typed attributed graph rules,

e Typed attributed graph rules can contain (complex) application con-
ditions (cf. Sec. 2.1.5)

e In-place typed attributed graph transformation (cf. Sec. 2.1.3), i.e.,
the transformation is executed on the same graph directly and changes
the graph.
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e The graph transformation can be structured by transformation units
(cf. Sec. 2.3), whereas the smallest transformation unit is the graph
rule. Depending on the type of the transformation unit, it may contain
one or more other units, i.e., units can be nested [ABJ"10].

HenshinTGG

HenshinTGG is an extension of the Henshin-Editor [Henl16a] to be able to
perform triple graph transformation, an exogenous transformation (or out-
place transformation). HenshinTGG is used for unidirectional model trans-
formations from one model to another model, bidirectional model trans-
formations, model integration, concistentcy checks of the triple graph, in-
cremental model synchronisation (delta-based and state-based model syn-
chronisation). It is based on the formal background which we introduced
in Sec. 2.2 and Chap. 4.

HenshinTGG supports the following formal frameworks and techniques
[EHGB12]:

e Specification of triple rules that may contain negative application con-
ditions (NACs), and defintion of triple graphs.

e Generation of the following types of operational rules, i.e., forward
(FT), backward (BT), consistentcy creating (CC) and integration rules
(IT).

e Execution of exogenous model transformations, i.e., forward transfor-
mations and backward transformations using FT and BT rules, respec-
tively. Execution of model integrations using I'T rules and performing
concistency checks of a triple graph using CC rules.

e Execution of incremental model synchronisations. HenshinTGG sup-
ports delta-based and state-based forward and backward transforma-
tions [Kirl4].

In the framework of the industrial project in cooperation with SES, Hensh-
inTGG needed to be extended by a basic implementation of sequential units
in order to determine execution sequence of the triple rules or operational
rules of the triple graph transformation. As illustrated in the pseudo code
in Listing 6.1, the existing implementation in HenshinTGG allows the ap-
plication of all forward rules in one list, which will be executed from top
to bottom. Each rule will be applied as long as possible. After the list is
processed, the algorithm starts again to iterate through the list. This is
done as long as possible, i.e., as long as a forward rule is still applicable.

[
1\terminate = false

)

while (! terminate)
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terminate = true
for(r : FT-rules)
while(r is applicable)
apply r
terminate = false

Listing 6.1: Existing application of FT-rules in HenshinTGG

We extended the implementation in HenshinTGG by a very limited im-
plementation of sequential units. They allow us to structure the application
order of all forward rules more precisely. The effect of the sequential unit
is given in pseudo code Listing 6.2. Sequential units usually contain a list
of rules or sub-units. This list will be iterated once and it will be checked
if the current rule or sub-unit is applicable. If it is applicable, it will be
applied temporarily. Otherwise, the whole previous application sequence of
that sequential unit will be rolled back. If the whole sequence was applica-
ble, then, the temporary graph will be returned, i.e., the whole application
sequence is reflected in the current graph.

-

temp = current triple graph
for (r : FT-rules or sub-units in sequential unit)
success = false
while(r is applicable)
apply r to temp
success = true
// a rule / sub-unit was not applicable: rollback
if (!success) return current triple graph
// successful application of whole sequence
return temp

Listing 6.2: Application of FT-rules in case study

Realisation

First, we will consider Fig. 1.2 from Chap. 1 in which we illustrated a scheme
which shows the correlation of an instance, a model and the corresponding
(meta-)meta-models. This scheme can be directly applied to the industrial
case study, which is shown in Fig. 6.1.

In the SPELL domain, the instance is given by the SPELL source code
files. A SPELL source code files are described by the cooresponding SPELL
abstract syntax graph (SPELL ASG), which is the model. The SPELL ASG
conforms to the SPELL grammar, i.e., it is typed over the SPELL grammar.
The SPELL grammar conforms to the EMF specification.

The similar case holds for the SPELL-Flow domain. Each SPELL-Flow
visualisation, which is stored in an XMI file, is an instance. Each SPELL-
Flow visualisation is represeted by a SPELL-Flow abstract syntax graph
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conforms to

SPELL
Grammar

SPELL
Source Code

SPELL ASG

conforms to conforms to described by

conforms to

SPELL-Flow
Meta-
conforms to Model

SPELL-Flow
ASG

SPELL-Flow
Visualisation

conforms to described by

Figure 6.1: Models and Meta-Models in SPELL-2-Flow

(SPELL-Flow ASG). Each SPELL-Flow ASG conforms to the SPELL-Flow
meta-model. The latter conforms to the EMF specification. In both cases,
the EMF specification conforms to itself, too.

In detail, this means that for SPELL and SPELL-Flow EMF meta-
models were specified. For SPELL, we reused the meta-model that was
developed for the PIL2SPELL project [HGNT13] and modified it slightly
(mainly with regard to NEWLINE nodes, the structure of comments and by
internal elements that help to store the corresponding source code and line
numbers in the SPELL instance graph (which is the SPELL ASG)). The full
meta-model in Xtext syntax as well as the corresponding EMF model are
provided in Appendix A.1 and A.2. The SPELL-Flow model was created
using EMF. It is much more slimmer than the SPELL grammar. We refer
to Sec. 6.2 for details on the complexity of all meta-models that were used
with regard to their number of nodes. The full SPELL-Flow grammar is
attached to Appendix A.3. Furthermore, two correspondence models were
created: the CORR meta-model defines nodes that mediate between the
SPELL model and the SPELL-Flow model (cf. Appendix A.4). In contrast,
meta-model CORRFlow2Flow can be seen as a helper meta-model for the
flat graph grammars: Its source and target meta-model is the SPELL-Flow
meta-model (cf. Appendix A.5).

Graph Grammar Meta-Model

SPELL | SPELL-Flow | CORR | CF2F!
SPELL-2-FlowFlat X X ble -
Refactor SPELL-Flow - X - X
SPELL-Flow-2-Hierarchy - X - X

Table 6.2: Meta-models in graph grammars

For realising a prototype translation from SPELL source code files to
SPELL-Flow models, the specification of three graph grammars was neces-
sary:

! Abbreviation CF2F stands for CORRFlow2Flow.
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1. Triple graph grammar SPELL-2-FlowFlat for executing the model
transformation from SPELL ASGs to SPELL-Flow ASGs.

2. Flat graph grammar Refactor SPELL-Flow for refactorings.

3. Flat graph grammar SPELL-Flow-2-Hierarchy for the transformation
into a model containing the demanded hierarchy structure.

Table 6.2 gives an overview of all three grammars and the meta-models
that were used in each grammar. The triple graph grammar uses the SPELL
meta-model, the SPELL-Flow meta-model and the correspondence model
CORR, because it translates from the SPELL AST to a (flat) SPELL-Flow
AST. In contrast, both refactoring grammars use the SPELL-Flow meta-
model and the helper model CORRFlow2Flow, because both change the
SPELL-Flow AST.

In the following paragraphs, we will describe all three graph grammars
in detail and illustrate some example rules from all three graph grammars,
in order to give an overview of the structure of the translation and also of
the complexity of the rules. We will start with a small set of triple rules
and the corresponding forward translation that were generated out of this
triple rules. In some cases, the generated forward rules needed manual
modification, especially in cases where those rules contained filter NACs
(cf. Def. 2.2.14). Afterwards, we present some flat graph transformation
rules from the graph grammar Refactor SPELL-Flow. We finish this part
with some example graph transformation rules from the flat graph grammar
SPELL-Flow-2-Hierarchy.

Translation with SPELL-2-FlowFlat The translation from a SPELL ASG
to a SPELL-Flow ASG is executed using the forward translation (FT) rules
that are derived out of the triple rules of the triple graph grammar (TGG)
SPELL-2-FlowFlat.

Fig. 6.2 shows a screenshot of the FT rules of our TGG in HenshinTGG
for the case study. The uppermost folder F'TRuleFolder is the main folder for
all forward translation rules and units. In our case, it contains the sequential
unit folder FT_SequentialFolder on top. This unit again contains the given
transformation units that we described above in Sec. 6.1.2 and especially in
Listing 6.1.

In our case study, we divided the application of the forward rules in the
following steps, wheras the content of the uppermost unit, i.e., the sequential
unit FT_SequentialFolder is only iterated once, i.e., we do not repeat the
application of all underlying units.

FT_SequentialFolder.

e PreProcessing: This sub-unit contains rules which execute preprocess-
ing steps, e.g., some helper nodes will be created, and the topmost
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v 43 FTRuleFolder
A 15“,:! FT_SequentialFolder
v % PreProcessing

€3 FT_T file_input-2-StartNode

ﬂ} FT_T_IVARSorARGS file_input-2-nothing
ﬁ} FT_T_IVARSorARGS-2-nothing

ﬁ} FT_T_IMARSorARGS file_input-2-nothing2
{;} FT_T_IVARSorARGS-2-nothingd

{:} FT_T_IWARSorARGS-2-nothing3

'?-:} FT_T_IVARSorARGS file_input-2-nothing3

"::! Patterns

% normal

% FIXMEs

I'I‘J‘ .

%} connectors and attributes

L

%} connectors part 2

Figure 6.2: Screenshot from HenshinTGG: structuring FT-rules

parent node of the SPELL instance graph (filejnput) is translated into
a StartNode and a RootNode in the SPELL-Flow model. The RootNode
is the main container of all nodes in the SPELL-Flow model. It won’t
be visualised. The StartNode is the starting node of the diagram and
will be shown in the SPELL-Flow model. Furthermore, IVARS and
ARGS statements that are at the beginning of the source code will be
translated into nothing, i.e., the translation markers will be changed
from F to T.

e Patterns: Patterns are larger structures. After the pre processing
phase is finished patterns will be translated, because they may contain
nodes that will be translated separately by the next sub-unit. Due to
this sub-unit, we will prevent undesired results.

e normal: This is the largest sub-unit containing the main part of the
forward translation rules.

e FIXMFEs: We already mentioned above, that the current state of the
case study is only a prototype, i.e., we are not able to translate all
existing SPELL statements. In case the SPELL source code which we
want to translate contains SPELL statements which do not already
have a corresponding rule / set of rules, then we will translate this
statement into a FIXME node in order to show, which SPELL state-
ment has no specific triple rule in our TGG.

e connection and attributes: Finally, we will restore connectors in the
SPELL-Flow domain (target domain) and translate attributes which
are not translated, yet.
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e connectors part 2: For the restoration of connectors, we need a second
sub-unit which will try to restore edges that could not be restored
at the stage of the previous sub-unit. The last two sub-units contain
similar rules, because if we remember the description of sequential
units (also cf. Fig. 6.2), sequential units iterate through each sub-unit
only once. In our case study, we need to iterate through this set of
rules twice, so we “duplicated” the previous sub-unit.

As a result of the translation phase, a SPELL-Flow abstract syntax graph
will be returned. The ASG contains the whole corresponding SPELL-Flow
model in largest detail, without any abstractions into hierarchies. This will
be done in the next phase, the refactoring phase.

Example 6.1.1 (FT Rules (& Triple Rules) from SPELL-2-FlowFlat). We
will now give examples of some forward translation rules and their corre-
sponding triple rules. Note, we will only describe the F'T rules in explicit.
For triple rules it holds that they are applied in all three domains at the same
time, i.e., they are used for building up the triple graph. This means also,
that they do not include translation markers, but instead, all elements to be
created are marked with < 4++ >, whereas all other elements are unmarked
(cf. Sec. 2.2).

Each SPELL AST has node : file_input as topmost node, i.e., it is the root
node of each SPELL AST. This node is the topmost container of all other
nodes of that SPELL AST. The cause of this property can be found within
the Xtext source file of SPELL, which is provided in explicit in Appendix A.1.
We repeat the line in question in Listing 6.5. It is observable that : file_input
is defined to be the first node which is addressed in the Xtext grammar. No
other node calls : file_input, wheras : file_input calls two nodes: : NEWLINE
and : stmt_LST_Elem. Starting from the latter node, all other nodes are
called.

file _input: {file_input} nl=NEWLINE? (fst=stmt_LST_Elem) ?;

T_file_input-2-StartNode '
to_StartNode
e __'____..-_---'.H'.‘___Ppp e
~ gt )H)....
FT_T_file_input-2-StartNpde '

to_SteriNode

<t
< o G ACee
“file_inpuit <tr>ac— el Lo <ren|d” = crn™wl StatMode <+
(Do <ol v Stathiode <ve>

] ]

Figure 6.3: Triple rule T file_input-2-StartNode (top) and its forward rule
(bottom)
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Listing 6.3: Snippet of line 6 from SPELL Xtext grammar

Due to the fact that :fileinput s always the root mnode in the
SPELL AST and also in considering Fig. 6.2, i.e., the forward rule
FT_T file_input-2-StartNode (F'ig. 6.3 (bottom)) is the first rule within the
first sub-unit of FT_SequentialFolder, this forward rule is usually the first F'T
rule that is executed. It translates a : file_input node to a : Root node that
contains a : StartNode in the SPELL-Flow AST (cf. screenshot on bottom
of Fig. 6.3). The : Root node will be the topmost node in the SPELL-Flow
AST which contains all other nodes, i.e., it is the root node. : StartNode is
the start node of the SPELL-Flow flow chart diagram, which appears only
on the first layer. The FT rule also creates a correspondence part which
consist of one node : Corr and edges : src,: src_opp, : tgt and : tgt_opp. The
corresponding triple rule is also shown in Fig. 6.3 (top).

The next forward rule is illustrated in Fig. 6.4 (bottom) and is named
FT_T fst_stmt_LST_Elem_file_input_stmt-2-firstElement_StartNode_Activity_Root.
It assumes that nodes : file_input and stmt_LST_Elem in the SPELL domain
are already translated into nodes : StartNode that is contained by a Root node
and an : Activity node in the SPELI-Flow domain. Two : Corr nodes in the
CORR domain and their required edges need to be available, too. Edge : fst
in the SPELL domain is still untranslated in the SPELL AST. Elements
that are already translated as prerequisite are marked with a green [tr]. Ele-
ments that will be translated with this FT rule are denoted with a blue < tr >
marker. In applying this F'T rule, edge : fst will be translated into two edges:
: firstElement as connection from : StartNode to : Activity and containment
edge : to_Element from node : Root to node : Activity. Note, code : Activity

T _fst_stmt_LS _Elem__fi_l__e[_input_stmt-z-firstEIe

& kot —
file_input (4= SE.opp = :Corr_[a— g2.op —:Starthode 0_JEMNO0E
fat ‘ frstElement  to_Element

<t e
-

rc -
e Carr =

FT_T_fst_strr_lthST_E_lerp'_fi le_input_stmt-2-firs

e
—~5IC_opp ™

H- — ot — to_StartMod
—p|' :Carr_|e— g2.oep) — :StatMode 0O -

firstElement LD_E|E!'_TBI'1L..

T

sstmt_LST_Elem [t]j&———=

Figure  6.4: Triple rule  T_fst.stmt_LST_Elem_file_input_stmt-2-
firstElement_StartNode_Activity_Root (top) and its forward rule (bottom)
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is the parent node of a variety of children nodes. We refer to the ECORE-
model in Appendix A.3 to verify this relationship. This means that the FT
rule is able to find a match also to kinds of children nodes of Activity, i.e.,
we do not need to write rules for each kind of children node. The triple rule
out of which this F'T rule is generated, is also provided in Fig. 6.4 (top).

Forward translation rule FT_T_IVARSorARGS file_input-2-nothing

m

Fig. 6.5 is interesting from several points of view: First, it is an example F'T
rule for one rule that only changes markers from from F to T without cre-

T_IVARSorARGS_file_input-2-nothi

ng

\
<

. e —
sstmt_LST_Elem <#+> — so_orp —s
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ating anything in the SPELL-Flow domain in the forward translation step,
because it is one FT rule that omits the IVARS and ARGS statements that
are at the beginning of the source code. Nevertheless, this F'T rule creates
a : Corr node in the correspondence part and the necessary edges. Secondly,
this F'T rule can be also seen as pattern, because it translates a larger block
in the SPELL AST. This block will always have the same structure. Dif-
ferent values of attributes of the several nodes in the SPELL domain are
handled by means of rule parameters. This is possible for this FT rule be-
cause each manifestation of that block shall be processed the same way, i.e.,
it shall be excluded. Thirdly, this F'T rule (and also the corresponding triple
rule) contains an attribute condition. The attribute condition for this rule
is ((an ==" IVARY')||(an ==’ ARGS)), wheras an as a parameter that will
be evaluated in the matching process. If attribute atom_name of node : atom
in the SPELL domain holds value 'IVARS' or 'ARGS’, then this FT rule is
applicable. Otherwise, do not apply this FT rule. The corresponding triple
rule is shown on top of Fig. 6.5.

The next rule which we want to discuss is the forward translation rule
FT_T_NEWLINE _expr_stmt-2-empty_POST which is visualised in Fig. 6.6
(bottom). This FT rule contains a filter NAC (cf. Def. 2.2.14). If we con-

PREPARE Filter NAC: No com/nent
[EwLIE |

col =Nt

:Comment_LST_Elem

T_NEWLINE_expr| stmt-2-empty_POST

nl_post

Filter NAC: No comment

=5
FT_T_NEWLINE_dxpr_stmt-2-¢mpty_POST

nl_post
<tr>
|

[0] :MEWLINE <tr>

Figure 6.6: Triple rule T_NEWLINE expr_stmt-2-empty_POST (top) and its
forward rule (bottom)
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sider the corresponding triple rule T_NEWLINE _expr_stmt-2-empty_POST,
then we observe that the NAC has no mapping. In the the case without any
mapping this would mean, that it will be checked, if none of all : NEWLINE
nodes in the instance graph is connected to a : Comment_LST _Elem node via
edge : comment in the SPELL domain. This is not desired. Instead, we
want a NAC for the forward translation that checks, if the : NEWLINE node
to be translated is not connected to a : Comment_LST_Elem node via edge
: comment. This cannot be checked in the triple graph transformation step,
because node : NEWLINE is not available in the matching process and this
case cannot occur. Consequently, for the triple graph transformation and
also for all other operational rules, we do not want to have a NAC. There-
fore, after generation of the FT rule out of the triple rule, manual editing
is mecessary in which the correct mapping is set. For all other operational
rules (and also for the triple graph transformation case), this NAC shall be
deleted manually. Note also, that this FT rule will only change markers in
the SPELL domain, wheras the correspondence and SPELL-Flow domain
stay unchanged. The generated backward translation rule (BT rule) will be
identical to the triple rule, i.e., it will create elements in the SPELL domain
but will do nothing in all other components. For the backward transfor-
mation, this BT rule will result into an endless loop, because it is always
applicable. So, it needs to be taken care that this BT rule is not part of the
backward transformation process.

The last F'T rule which we illustrate explcitly is FIXME_untranslated_Root
i Fig. 6.7. It belongs to transformation unit FIXMEs and trans-
lates nodes in the SPELL domain that there not translated in
that stage into an : OtherActivity node that holds the specified value
FIXME : Untranslated Element for attribute description. Furthermore, the
line numbers and the corresponding source code text is taken over to the
: OtherActivity node in the SPELL-Flow domain. Listing 6.4 shows the
JavaScript code which is assigned to attribute sourceCode in the newly cre-
ated node : OtherActivity. In line 2, a local variable returntext is created

NAC only new nojjes o:Dtherfctivit

L —
deseription="FI=ME: Untranslated Element”
statLineMurmber=1 ﬂ FIXME_untranslated_Root
endlineMumber=|2 “3 Ihs
FIXME_untranslated |Root 3%
untransiate 00 NAC Ont d
- Dtherdctivity <=+ o nly new nodes
desoiiption="FIAME  Unansiated Element” <+, n
:SourceSPELL <+s> e gt startLineMumber=l <+ 12
line_slarl=I <+> _—EC_0pET . A Tgopp [l ineNumber—l2 <ss>
sl Cor <+2> S PR T | endLineMumber.
ineengel2 <12x el W oot ot
sourceCodeT extstent <++>| returntest = text; text?
P E— 13
sl <> tgt || 1Bt opp—" ihen? containdle Condition: 13 <= 12

lirve_start=[1 <++>
line_end=I3 <++>

s
_—Sc_oppr
e T
sourceCodeT ent=test? <+ =3 I Eoukekes

AT

Figure 6.7: Triple rule FIXME _untranslated_Root (top) and its forward rule
(bottom)
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and the wvalue of attribute sourceCodeText of mode : SourceSPELL is as-
signed to this variable. Afterwards (lines 4-6), it is checked, if attribute
sourceCodeText of node : stmt contains the same or a bigger source code
snippet that includes the other source code snippet. If it is true, then the
source code snippet of : stmt is assigned to variable returntext. Otherwise,
nothing is done. Finally, the value of returntext is returned, so that it can
be assigned to attribute sourceCode of node : OtherActivity. A

{

returntext = text;

if(text2.contains(text)) {
returntext = text?2;

}

returntext ;

Listing 6.4: JavaScript in sourceCodeText attribute

In Ex. 4.1.8 we already introduced a subset of reduced forward transla-
tion rules. The extended version of these FT-rules is also part of the set of
FT-rules in the SEPLL-2-FlowFlat triple graph grammar.

Refactoring Phase with Refactor SPELL-Flow The refactoring phase is
defined within the plain graph grammar Refactor SPELL-Flow using plain
graph transformation. The grammar is created with the help of Henshin and
will be executed using the Henshin engine for plain graph transformation
(cf. Sec. 6.1.2).

In Henshin, it is possible to use different kinds of transformation units
(cf. Sec. 2.3). The screenshot in Fig. 6.8 shows the main transformation
unit Main, which is a sequential unit containing three sequential units: Pre-
Processing (Fig. 6.9), Refactoring (Fig. 6.10) and CleanUp (Fig. 6.11).

During the forward transformation using triple graph grammar
SPELL-2-FlowFlat, each : Activity might be equipped with a list of : Argument
nodes that reflect the list of arguments that were available in the SPELL
ASG. For displaying the SPELL-Flow model using the SPELL-Flow visuali-
sation tool, it is necessary to merge those : Argument nodes into one attribute
being part of the parent : Activity node. The first set of transformation units
within the pre-processing sub-phase deals with the merging of the list of
: Argument nodes of : Step nodes, because they always have the same struc-
ture, i.e., exactly two arguments, the step number and step description. In
addition, empty : Argument nodes will be simply removed.

The second set of transformation units in the pre-processing unit equip
all : Argument, : Activity, and : Expression nodes with : Helper nodes that
are necessary to perform the next step, the Refactoring sub-phase. The
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structures for equipping the SPELL-Flow model with helper nodes is avail-
able due to the use of CORRFlow2Flow meta-model within this flat graph
grammar. The meta-model is visualised explicitly in Appendix A.5.

In the refactoring sub-phase, all remaining : Argument nodes will be
merged into one node starting with the last node and adding its value to
the value of the predecessor node until the list of nodes is reduced to one
: Argument node. In processing the list of arguments from bottom to top, we
are able to keep the correct order of arguments. For merging the : Argument
nodes, the helper structures from meta-model CORRFlow2Flow are used.
Furthermore, : Comment nodes as well as nodes describing a “FIXME” struc-
ture are merged in a similar way.

In order to draw a connection between the nodes in the final SPELL-

W I Main
I [Used] PreProcessing
I [Used] Refactoring

T (used] CleanUp

Figure 6.8: Screenshot from Henshin: Main Transformation Unit

W I [Used] PreProcessing
E;- [Used] alap P_Step_mergefrguments
6 [Used] alap P_merge empty Argument node with Parenthesis in Root
v I [Used] P_merge empty Argument node with SimpleElement in Parenthesis_all cases
6 [Used] alap P2_merge empty Argument node with SimpleElement in Parenthesis_case 1
E; [Used] alap P2_merge empty Argument node with SimpleElement in Parenthesis_case 2
6 [Used] alap P2_merge empty Argument node with SimpleElement in Parenthesis_case 3
i} Parameters
6 [Used] alap P2_merge empty Argument node with SimpleElement in Root_case 2
6 [Used] alap Activity_getsHelper
6 [Used] alap P_Parenthesis_addToHelper
W 6 [Used] alap addToHelper
v [ #% [Used] addToHelper
. [Used] P_Argument_addToHelper1
. [Used] P_Argument_addToHelper2
. [Used] P_Argument_addToHelperd
. [Used] P_Argument_addToHelpers
i} Parameters
i} Parameters
6 [Used] alap P_Expression_addHelper
E; [Used] alap P_Expression_Operator_addToHelper
6 [Used] alap P_Expression_SimpleElement_addToHelper
6 [Used] alap P_find and mark last Argument

Figure 6.9: Transformation Unit for Preprocessing Sub-Phase



6.1. IMPLEMENTATION 177

W I [Used] Refactoring
v {3« [Used] alap pric both R_Argument_valuedHelper cases SUB
W @' [Used] pric both B_Argument_value2Helper cases SUB
. [Used] R_Argument_value2Helper_value_addToFront_SUB
. [Used] R_Argument_value_LASTARG2Helper_value_addToFront_newline_SUB
i Parameters
i} Parameters
6 [Used] alap R_merge_Helper_Argument_next_Argurnent
{3« [Used] alap R_merge_Helper_with_Helper
W 6 [Used] alap pric both B_Argurment_value2Helper_value_addToFront cases
w @' [Used] pric both B_Argument_value2Helper_value_addToFront cases
.. [Used] R_Argument_value2Helper_value_addToFront
. [Used] R_Argument_value_LASTARG2Helper_value_addToFront_newline
i} Parameters
i Paramneters
{3« [Used] alap R_type_Parenthesis2Activity_description
{3« [Used] alap R_Argument_value_next?Helper_value_addToEnd
6 [Used] alap R_Helper_value2Activity_description
6 [Used] alap R_del_CORR_Argurment
W I [Used] mergeComments
6 [Used] R_mergeComments 1_alap
6 [Used] R_mergeComments 2_alap
6 [Used] R_mergeComment_intoActivity_alap
{E; [Used] alap R_mergeComments_intoStartMode
i} Pararneters
(=a [Used] alap R_SetXMIIDs
6 [Used] alap R_set¥MIID5_Root_tmp
{3« [Used] alap R_Goto_descriptionZtoStepMumber
6 [Used] alap R_merge_FIXMEs
{3« [Used] alap R_expressionText 2 ifCondition
{3« [Used] alap R_expressionText 2 ifElifCondition

Figure 6.10: Transformation Unit for Refactoring Sub-Phase
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v I [Used] CleanUp
A 6 [Used] alap removeCORR

v [ [Used] removeCORR
.. [Used] D_Parenthesis_removeCORRtoHelper
.y [Used] D_Argument_removeCORRtoHelper
. [Used] D_Activity_removeCORRtoHelper
.. [Used] D_SimpleElement_removeCORRtoHelper
. [Used] D_Expression_removeCORRtoHelper
.., [Used] D_Operator_removeCORRtoHelper
i} Parameters

W Parameters

'E; [Used] alap D_removeCORRCMT

B [Used] alap D_removeHelper

6 [Used] alap D_TEMP removeComment

{E; [Used] alap D_TEMP remove Comment node 1

6 [Used] alap D_TEMP remove Comment node 2

v 'E;- [Used] alap Remove Argument and Parenthesis

A .-:t [Used] Remowve Argument and Parenthesis
. [Used] D_TEMP remove Argument node 1
.. [Used] D_TEMP remove Argument node 2
.y [Used] D_TEMP remowve Argument node 3
. [Used] D_TEMP rernove Argument node 4
.. [Used] D_TEMP remove Argument node 3
. [Used] D_TEMP rernove Argument node &
.. [Used] D_TEMP remove Argument node 7
. [Used] D_TEMP remove Parenthesis 1
.. [Used] D_TEMP remove Argument node 8
i} Parameters

| Parameters
6 [Used] alap D_Delete_Uncontained_Modes
{E; [Used] alap D_ELIF remove complexExpression

Figure 6.11: Main Transformation for Clean Up Sub-Phase
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Flow model and the design elements that will be created in the last step of
the whole translation: the enrichment by design elements (cf. Sec. 6.1.4),
each node shall be equipped with a unique id. This id is already defined by
default as attribute xmiid for each node by EMF. Thus, it is not explicitly
defined as attribute within the meta-models (cf. Appendix A.1 and A.3
to A.5). The unique id is also generted within the refactoring sub-phase.

The last sub-phase is called CleanUp and removes all helper structures
as well as all nodes that are not contained by the root node anymore from
the SPELL-Flow model.

Example 6.1.2 (Rules from Refactor SPELL-Flow). We will now
present some plain graph rules in explicit from the graph grammar
Refactor SPELL-Flow.

The first graph rule that we want to illustrate explicitly is named
P2_merge empty Argument node with SimpleElement in Parenthesis_case 1
and s given in screenshot Fig. 6.12. It removes an empty : Argument
which is situated between two : SimpleElement nodes being both contained
by a : Parenthesis node. The check for emptyness of the node is executed
using the following attribute condition:

if(a.getValue () == null)

Listing 6.5: Attribute condition for parameter a

The node : Argument is assigned to parameter a. In calling a.getValue() the
current value of the attribute named value is fetched. It will be checked if it
is empty, i.e., if it is null.

The second graph rule P2_merge empty Argument node
with SimpleElement in Parenthesis_case 2 (Fig. 6.13) is applied, when the pre-
vious one is not applicable anymore. It merges a : SimpleElement node that
follows an : Argument node and that are both contained by a : Parenthesis
node, but only if the : Argument node is empty. The emptyness is again
checked by an attribute condition that is identical to the one given in List-
ing 6.5. The negative application condition (NAC) forbids the application of
that graph rule, if : SimpleElement is followed by another node, i.e., this rule
is only applicable, if : SimpleElement is a leaf node. The merge is performed
in copying the value of attribute valE of : SimpleElement into the attribute
value of node : Argument and in deleting the : SimpleElement node at the
same time.

Plain graph rule P2_merge empty Argument node with SimpleElement in
Parenthesis_case 3 (Fig. 6.1/ is applied if the previous two rules are not ap-
plicable anymore. It merges a : SimpleElement node which is followed by an
arbitrary : Element node into its predecessor : Argument node. The merge is
performed, only if the : Argument node is empty. Again, this is checked by
an attribute condition, which is identical to Listing 6.5.
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Rule P2_merge empty Argument node with SimpleElement in

The enrichment of helper structures that is also part of the pre-processing

sub-step is wisualised on the basis of graph rule P_Activity_getsHelper
Fig. 6.15. The helper structure is given by two : CORR nodes and one
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: Helper node that connect two nodes that belong to each other. In the given
rule, an : Argument node belongs to an : Activity node which is indicated by
edge arguments. The enrichment shall be executed only once for each com-
bination of nodes. Therefore, a NAC is necessary which is equal to the RHS
of the rule.

The next graph rules that we want to discuss are part of the next sub-
phase that is called Refactoring.

Rule R_Argument_value_next2Helper_value_addToEnd (F'ig. 6.16) copies
the value of an : Argument node into the corresponding : Helper node. In
addition, it removes the connection between this : Argument node and its
: Helper node in deleting the connecting : CORR node with its edges. The
copying of attribute value from : Argument to attribute value or node : Helper
1s executed using the JavaScript script assigned to attribute value of the
: Helper node. Due to readability, we croped the script in Fig. 6.16. In-
stead, we listed and formatted the script in Listing 6.6. Line 2 defines the
variable tmp. The condition in line 8 checks, if attribute value of node
: Helper (h.getValue()) is empty. If this is true, then the value val assigned
to attribute value of node : Argument is assigned to tmp directly. Otherwise,
h.getValue(), a linebreak (\n) and the content of val are assigned to tmp. Fi-
nally, the content of tmp will be returned, i.e., it will be assigned to attribute
value of node : Helper. In short: the current value of attribute value of node
: Helper is extended by the value of attribute value of node : Argument.

!

{

if(h.getValue () == null) {

|
var tmp; ‘
|

tmp = wval; ‘

[1]:Parenthesis [1]:Parenthesis
aa’ejt"e;'ses parenthesizas
[0]asArgurment  |parenthesises [0]a:Argument
‘\\ - value = valSE
next |
) Y next
:SimpleElernent
- name5 = valSE [2]:Element
next
[2):Element

Figure 6.14: Rule P2_merge empty Argument node with SimpleElement in
Parenthesis_case 3
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} else {
tmp = h.getValue() + 7“n” + wval;

tmp

Listing 6.6: Script assigned to attribute value

Refactoring  rule  R_Helper_value2Activity_description  in  screen-
shot fig : applied : ref6 shows, how the value of node : Helper is copied to the
corresponding : Activity node. Furthermore, it deletes the necessary helper
structure, i.e., nodes : CORR and : Helper and the corresponding edges. The
NAC is necessary in order to apply this rule only if all : Argument nodes of
the parent activity are handled, before. This is visible, if no : Argument node
connected via edge arguments to the : Activity node is connected via : CORR
node to the corresponding : Helper node.

The last rule which we want to illustrate explcitly out of the set of refac-

[ ]:Acltmty [l:Activi arguments »| [0l:Argument
MOT \ A
arguments 3 ™

g tgt_opp A
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[ [0:Argument | gt fgtoee /

p — — ,
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=] Condition: Lhs -> NAC Apply only once 2

[1]: Activi
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Orgumert AN igtep >

A

| / toHe per taHe per gt

CORR

Figure 6.15: Rule P_Activity_getsHelper
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Figure 6.16: Rule R_Argument_value_next2Helper_value_addToEnd
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3 AC argu...

tgt [1]:Helper
NOT [0]:Activity Iétgt_ooa—q :CORR '—tGHe per [0]: Activi

7 Condition: Lhs -> AC arguments handled 2

< Lol
[OFActv gt_opp :CORR toHelper [D]'AT'V' [T:Helper

arguments N toHelper
tgt |
‘gt opp->ICORR

Figure 6.17: Rule R_Helper_value2Activity_description

[0]:5tatement [0]:5tatement
- KMIID = id - AMIID = { var time; time = new Date().getTime(); rand = Math.flo

Figure 6.18: Rule R_setXMIID

toring rules is rule R.setXMIID visualised in Fig. 6.18. It generates a new
unique id for each node that is derived from : Statement in the SPELL-Flow
model, i.e., for each node in the SPELL-Flow model that was generated via
triple graph grammar SPELL-2-FlowFlat. The script in Listing 6.7 is as-
signed to attribute XMIID of node : Statement. The unique id starts with a
“7 and is combined with the current timestamp which is concatenated with
a random number between 1 and 100000. This rule shall be applied only once

for each mode. This requirement is fulfilled in using the attribute condition

id == null, i.e., this rule will only be applied to nodes that do not have any
unique id, yet.
{
var time;
time = new Date().getTime();
rand = Math. floor ((Math.random () * 100000) + 1);
var tmp = 7.7 + time.toString () + rand.toString();
tmp
¥

Listing 6.7: Script for generting a unique id

The last two rules, which we want to present, are taken out of the set
of rules that are contained by the sequential unit CleanUp. The first rule
D_RemoveHelper (Fig. 6.19) simply removes all : Helper nodes. The second
rule D_Delete_Uncontained_Nodes which is illustrated with the aid of screen-
shot Fig. 6.20, removes all : Element nodes that are not contained by any
other node. The NAC forbids the deletion of nodes that are contained by
another node. Note, this rule will not be applied to all nodes recursively,
starting with node : Root, because uncontained nodes of type : Element will be
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deleted. Node : Root is not derived from : Element (cf. Appendiz A.3). A

Introduce Hierarchies with SPELL-Flow-2-Hierarchy The second plain
graph grammar we use for the translation from SPELL source code to a
SPELL-Flow viusal model is called SPELL-Flow-2-Hierarchy. It gets a flat
SPELL-Flow model as input and returns a hierarchical model. The hierar-
chies are created according to the rules set up by SES which we introduced
in Sec. 6.1.1.

Similar to the refactoring grammar Refactor_.SPELL-Flow, the process-
ing is executed using the sequential transformation unit Main. It is divided
into four different sequential sub-units (see screenshot Fig. 6.21).

The first sequential sub-unit contains rules that perform pre-processing
operations. During the pre-processing sub-phase, helper structures are cre-
ated in order to find parent nodes for branchings, e.g., all activities below
an if-structure get a link to this if-structure, because if-structures will be on
layer n, whereas all activities that follow this if will be later arranged on layer
n—+ 1, i.e., on the underlying layer. Similar helper structures are created to
goto statements. The helper structures are defined in the meta-model COR-
RFlow2Flow (cf. Appendix A.5). Furthermore, in the pre-processing step,
some further merging operations are executed.

The second sub-unit of Main is called Hierarchies. It introduces the

| ‘Helper | H ‘

Figure 6.19: Rule D_RemoveHelper

[ [0:Element |
NOT
3 aco
7 Condition: Lhs -= ACD 23
[ [0:Element | | :Root
t:I_EE|”|E"T
[ [01:Element |

Figure 6.20: Rule D_Delete_Uncontained_Nodes
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hierarchical structure as desired by SES. In general, the hierarchical struc-
ture is created in copying the node which shall occur on layer n as well as
on layer n+ 1. Then, the : next edges as well as the first edge from node
: StartNode to its first predecessor will be rerouted, so that on layer n, i.e.,
the overlying and more abstract layer, the correct structure will be reflected,
again. In the underlying layer (n + 1), the correct order of statements will
be kept, because they will be shifted to the underlying layer in removing
the old containment edges and setting new containment edges between the
node that stays on layer n and the set of underlying statements. Usually,

v I Main
I [Used] Preprocessing
I [Used] Hierachies
I [Used] Postprocessing
I (Used] CleanUp

Figure 6.21: Screenshot from Henshin: Main Transformation Unit

v I [Used] Preprocessing

{E; [Used] alap P if_set_Helper_BelongsTo

{E; [Used] alap P if_Helper_BelongsTo_create_Prev

6 [Used] alap P if_Helper_BelongsTo_go_up

{E} [Used] alap P goto_set_Helper_BelongsTo

v {E; [Used] alap goto create prev next yes no

W .-'.‘- [Used] inde P goto_Helper_BelongsTo_create_Prev
. [Used] P goto_Helper_BelongsTo_create_Prev
. [Used] P goto_Helper_BelongsTo_create_Prev_no
. [Used] P goto_Helper_BelongsTo_create_Prev_yes
. [Used] P goto_Helper_BelongsTo_create_Prev_elif_content
i} Parameters

i} Parameters
W {E} [Used] alap goto go up next yes no

L .-‘.'- [Used] inde P goto_Helper_BelengsTo_go_up
. [Used] P goto_Helper_BelongsTo_go_up
. [Used] P goto_Helper_BelongsTo_go_up_no
. [Used] P goto_Helper_BelongsTo_go_up_yes
. [Used] P goto_Helper_BelongsTo_go_up_elif_content
. [Used] P goto_Helper_BelongsTe_go_up_elif
i Parameters

i} Parameters

6 [Used] alap P delete Parenthesis on Expression

{E; [Used] alap P delete second Activity on Operator

6 [Used] alap P delete first Activity on Operator

Figure 6.22: Transformation Unit for Preprocessing Phase
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w I [Used] Hierachies
W I [Used] Hierarchies Part 1 Step
6 [Used] alap Step2StepContainer
{E; [Used] alap Step_copyéttributes
v 6 [Used] alap set to_Elernent Step
v [ [Used] set to_Element Step
. [Used] set to_Element Step next
. [Used] set to_Element Step elif
. [Used] set to_Element Step elif_content
. [Used] set to_Element Step no
. [Used] set to_Elerment Step yes
i Parameters
i} Parameters
i Parameters
w I [Used] Hierarchies Part 2 Goto
6 [Used] alap GotolGotoContainer
i} Parameters
W I [Used] Hierarchies Part 3 if_elif
(=4 [Used] alap if2ifContainer
{E; [Used] alap elif ifElif Condition_hack due to malfunction of multirule
6 [Used] alap ifCondition yes Goto
{E; [Used] alap ifCondition yes general
6 [Used] alap fCondition else Goto
6 [Used] alap ifCondition else general
6 [Used] alap fENfCondition elif_content Goto
6 [Used] alap ifElifCondition elif_content general
i} Parameters
. [Used] reset_firstElement
{E; [Used] alap reset next between two Steps
v 6 [Used] alap set next pric
W @' [Used] set next prio
. [Used] Set next part 3
. [Used] Set next part 1
o [Used] Set next inde

Figure 6.23: Transformation Unit for Introducing Hierarchies



6.1. IMPLEMENTATION 187

v I [Used] Postprocessing
6 [Used] alap Set missing Root_to_Element edge

Figure 6.24: Transformation Unit for Postprocessing Phase

v [ [Used] CleanUp
6 [Used] alap rernove toHelper edge
6 [Used] alap remove tgt edges
{3- [Used] alap remove Helper
{E;- [Used] alap rernove CORR
{3- [Used] alap C delete double edges elif
6 [Used] alap C delete double edges yes
6 [Used] alap C delete double edges no
6 [Used] alap C delete double edges else

Figure 6.25: Transformation Unit for Clean Up Phase

the : next edges (and similar types of edges that define the correct order of
statements) stay unchanged.

The next sub-unit is the post-processing step which contains only one
rule that will be applied as long as possible. It is possible, that during the
previous operations the containment edges between some elements and the
: Root node will be removed. Those edges will be recreated by this post-
processing step.

Finally, the helper structures out of meta-model CORRFlow2Flow will
be removed. Furthermore, more than one identical edges may occur between
the same statements. This will be corrected within this last transformation
unit.

Example 6.1.3 (Rules from SPELL-Flow-2-Hierarchy). We will now illus-
trate and describe some example graph rules out of each sequential trans-
formation sub-unit of graph grammar SPELL-Flow-2-Hierarchy that we dis-
cussed in the previous part.

The first graph rule P if_set_Helper_BelongsTo (Fig. 6.26) creates the
helper structure for an : ifCondition node, but only if this structure does not
exist for this node (cf. NAC). Note, : ifElifCondition nodes are derived from
. ifCondition, therefore this holds also for : ifElifCondition nodes. The same
structure is created for : GotoActivity nodes. This helper structure is used for
defining the new order of statements on the first layer, i.e., on the most ab-
stract layer. According to Sec. 6.1.1, this layer only contains : StepActivitys,
conditions and loops if they are on the first indentation level and gotos.

The : Helper node is created with two attributes value = BelongsTo and
number = 1. Within this graph grammar, different kinds of : Helper nodes
are used. To distinguish those types of nodes, the attribute value is used.
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Attribute number is initially set to one. This number will be increased using
rules like P if _set_Helper_BelongsTo_go_up, i.e., the rule that we will describe
next. The number is used for numbering conditions, gotos and loops on the
first indentation level but that still belong to a : Step node. In the current
case, number describes the distance between the : ifCondition node and its
predecessing : StepActivity node. Currently, similar rules exist for gotos (and
are planned for loops). Thus, each statement of a : StepActivity node that
shall occur on the first layer will have a different number.

The next graph rule P if _set_Helper_BelongsTo_go_up (Fig. 6.27) illus-
trates the increase of attribute number of node : Helper. The helper struc-
ture includes correspondences between the : ifCondition node and an : Element
node. The connection between the current : Element node will be reset to
the previous : Element node in order to “walk up” to the right predecessing

[1]:Root [1]:Root l,"'__—tgt— ] ;CQRR

MCT Py ____.___.--"' \
to_Element to_Element - taHelper
3 AC0 0_ el"ne ',----__.__.___tgt_ooo .*
[0):ifCondition [D]:ifCondition- :Helper
- value = "BelongsTo"
- number = 1
7 Condition: Lhs -> ACO &2
[1]:Root —tgt :CORB\
|I _// \\
to_Element ."I tgt opp Ekie s
- | ™
: L
[OECandition [OFifCondition | Helper ___|
| - value = "BelongsTo |
Figure 6.26: Rule P if_set_Helper_BelongsTo
nor {
wene/ RN
‘ v I N\ o
(] \! ‘

tgt_opp tgt

B0 o eiper

toHelper

[5]:Helper

~value = "BelongsTo
- number= n

gt toHelper

[SJHelper

GHCORR oHelper+] - value = "BelongsTo”

- number = n+1

7 Condition: Lhs -» ACO 2

TTEElement TOFfCendition
" ™. [TElement
1 \\‘ I
next tgtopp /
| | tot L
TP Element IAECORR [oStepActivi
B e ioHelper
4 [5):Helper
EECORR Fioticiper—+{“value = "BelangsTo"
- number = n

Figure 6.27: Rule P if _set_Helper_BelongsTo_go_up
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: StepActivity node. The NAC forbids to “walk up”, if the corresponding
: StepActivity node is already reached.

Graph rule Step2StepContainer in Fig. 6.28 belongs to sequential sub-unit
Hierarchies, the sub-unit in which the main operations of that grammar are
performed. This graph rule copies an existing : StepActivity node, creates
a containment between the original and the copy and creates the necessary
helper structure between both. Note, the corresponding : Helper node includes
attribute value = USED, which defines a second kind of : Helper node. In
order to have unique xmiids for both : StepActivities, the original id is over-
taken for the mew one and extended by a postfix string “top”. The NAC
forbids the application of that rule to the same : StepActivity nodes, again.

Graph rule Step_copyAttributes (c¢f. Fig. 6.29) follows graph rule
Step2StepContainer. It copies all necessary attributes from the original
: StepActivity node to its copy. The NAC forbids multiple applications on
the same nodes.

The next graph rule is called set to_Element Step next which is illustrated
in Fig. 6.30. It sets a missing containment edge : to_Element between a
conatiner node of type : StepActivity and an : Element node which is con-
nected via edge : next to an existing node of type : Element that is a child
node of : StepActivity. This rule owns an application condition which for-
bids the existence of pattern ACO or pattern AC1 (cf. Fig. 6.30 (bottom)).
In detail it is checked, if the second : Element node, i.e., the one that shall
be connected by a new container edge, is not already contained by another
node.

The post-processing step contains one graph rule Set missing

[1]:Root
NOT [1]:Root
to_Element
3 aco | _
to_Element [ ‘StepActivity 1 T [D]:StEACtIVI.
| [- XMIID = vabmiid+" top” |~ - - XMIID = vabmiid
[0]:StepActivi I"'\ ) | \\\
- XMIID = valmiid tgt opp > b ;3:33 N
I_,tgt' ) | tcxt"
:CORR 'COR;R
toHe =] toHe ::ue'-.--.
- value = "USED"
= Condition: Lhs -> ACO 2
i R
[1]:Root [0]:StepActivi “tgt_opp— CORR —oHepe— “value = "USED"
to_E el_"ne"t
[0]:StepActiv
- XMIID = valxmiid

Figure 6.28: Rule Step2StepContainer
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Figure 6.30: Rule set to_Element Step next

Root_to_Element edge (c¢f. Fig. 6.31) that will be applied as long as possible.
It sets a containment edge : to_Element from node : Root to an : Element
node, if the latter is not already contained by a : Root node (cf. NAC).

The last transformation unit is called CleanUp. It conatins graph rules
that remove all helper structures and that tidies up the SPELL-Flow model.
We will introduce two rules out of this sequential transformation unit: Graph
rule remove toHelper edge (cf. Fig. 6.32) deleted the incoming edge of a
: Helper node. The second rule remove Helper (cf. Fig. 6.33) deletes a
: Helper node. Both rules will be applied as long as possible. A
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[0]:Root [0]:Root

NOT - \ A ~
to_Element to_StartMode to_Element | to_StartNode
J aco o ~
| [2]:Element | | [3]:StartNode | | [2]:Element |to_Ee'ne"t | [3]:5tartMode |
\"‘ex‘t \."ex‘t
[1]:Element [1):Element
~ Condition: Lhs -> ACD &1
[0]:Root [0]:Root
r \
to_Element to_StartMode to_Element
- ,

[ [2IElement | [ [3]5tarthlode | [1]:Element

next

Figure 6.31: Rule Set missing Root_to_Element edge

B 6.1.3. SPELL-Flow Visualisation Tool

The implementation of a prototype SPELL-Flow visualisation tool was part
of the practical project in industrial cooperation with SES. In this sub-
section, we will present the implementaion details of the SPELL-Flow vi-
sualisation tool. First of all, we will give a brief outline of the software
development tools we used within the implementation.

Background on Software Development Tools

We will summarise the necessary development techniges in the following.
Java Java is a object-oriented programming language [jav16] which was
developed by Sun Microsystems and which appeared in 1995. It is platform-

independent, i.e., the same source code can be run on different machines. It
is independent from the underlying hardware. During compilation, Java is

[D]:CIORF! [0]:CORR [1]:Helper
toHelper

Figure 6.32: Rule remove toHelper edge

:Helper ‘H

Figure 6.33: Rule remove Helper
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converted into platform-independent bytecode which will be interpreted on
the target platform.

Eclipse Eclipse is an integrated development environment (IDE) [ecl16a]
mainly for the programming language Java (cf. Sec. 6.1.3). It is non-
commercial and open-source enabling the development and usage of a wide
varity of frameworks and tools. The pre-version of Eclipse was developed by
IBM that released the source code of Eclipse in 2001. Since 2004, the Eclipse
Foundation was founded (which is led by IBM) being the current developer
of Eclipse. Eclipse is based on Java and works on several platforms, e.g.,
Linux, Mac OS X or Windows.

GMF The Graphical Modeling Framework (GMF) [GMF16] is an Eclipse
framework which provides an environment for developing graphical editors.
GMF is based on the Eclipse Modeling Framework (EMF) and the Graph-
ical Editing Framework (GEF) [EMF16, GEF16, MDG"04]. GMF consists
of a generative component and a runtime infrastructure. The generative
component provides the possibility for the developer to define a tooling, a
graphical and a mapping specification. Based on those definitions, GMF
is able to generate a graphical editor in Eclipse. The runtime infrastruc-
ture provides pre-defined and complete features which will be automatically
integrated into each generated editor, e.g., components for printing, image
export, or toolbars, so that the manual implementation is not necessary.
The generated editor can be extended by the developer.

EMF is another Eclipse framework for defining a model specification.
Out of this specification, EMF is able to generate a set of Java classes
that represent the model, a set of adapter classes that support the viewing
and editing of the model, and a basic editor for defining instance models
that follow the specification. Ecore is the core meta-model of EMF and
specifies how models specified via EMF shall be constructed. If follows the
Meta Object Facility (MOF) specification that was set up by the Object
Management Group (OMG) [MOF16].

GEF is again an Eclipse framework. In using GEF, developers are able
to create visual editors for an arbitrary model, e.g., also for a model that
was defined using EMF.

Xtext Another open-source framework provided by Eclipse is Xtext
[xtel6] being part of the EMF project. It is used for defining domain-specific
languages (DSLs). The DSL is specified by the developer in a notation which
resembles the Extended Backus-Naur form (EBNF) [BBGT60, EBN96]. Out
of this specification, Xtext generates a parser, an EMF meta-modell and a
text editor which is integrated into Eclipse and provides syntax-highlighting.
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Furthermore, Xtext generates the infrastructure that is needed for further
developments based on the DSL.

The SPELL-Flow visualisation tool that was developed in the framework
of the industrial cooperation. The industrial partner SES demanded the
following requirements for the SPELL-Flow visualisation tool:

e The SPELL-Flow visualisation tool shall show the SPELL-Flow model,
which have to follow the guidelines from Sec. 6.1.1.

e The SPELL-Flow visualisation tool shall show the model in only one
tab, i.e., a special kind of navigation is necessary which opens under-
lying or overlying layers, respctively, in the same tab.

e Goto statements (and Step statements) shall provide the possibility to
jump to the corresponding Step (or Goto statements) by clicking on
the shape or via context menue entry.

e The first prototype of the tool shall be read-only.
e The SPELL-Flow model shall be layouted automatically.

e Fach statement shall provide a view on the source code via tooltip.
The source code shall be syntax-highlighted.

e The SPELL-Flow visualisation tool shall be a plugin which shall pro-
vide the possibility to be easily integrated into the SES satellite control
application for SPELL (SPELL GUI). At a later stage a SPELL-Flow
editor which is based on the SPELL-Flow visusalisation tool, shall pro-
vide the possibility to get easily integrated into the SES development
environment for SPELL (SPELL DEV).

e Due to the possibly large size of the SPELL-Flow model, zooming in
and out shall be possible as well as scrolling.

e An outline view is desired.

The prototype of the SPELL-Flow visualisation tool which was devel-
oped during the work on the industrial project fullfils the demanded re-
quirements. It is a non-editable Eclipse plugin which was created using
GMF and extended according to the requirements that were set up by SES.
Fig. 6.34 shows a screenshot of the SPELL-Flow visualisation plugin. We
will elaborate the prototype SPELL-Flow visualisation tool by means of this
screenshot.

In the current stage of development, the SPELL-Flow visualisation tool
will start with the following views that are marked with green balloons in
Fig. 6.34: the project explorer is usually situated on the left top side. There,
a xsfld file can be selected and opened in order to open a SPELL-Flow
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Figure 6.34: Overview SPELL-Flow visualisation tool

model. In addition, a toolbar is available at the top which provides some
default functionality that was already generated by GMF, like the possibility
to zoom in and out. If a model is opened, the SPELL-Flow visualisation
tool shows the main view containing the SPELL-Flow visusalisation (by
default the larges view, top right), an outline view, which is below of the
project explorer and a properties view, which is below of the main view. SES
demanded a read-only tool, therefore, it is not possible to edit any property
in the properties view. In addition, it is not possible to add or remove any
shapes from the model. It is not allowed to change the layout of the model
or the position of any shape on the canvas, respectively. Consequently, the
corresponding toolbar options are deactivated.

The main view displays the SPELL-Flow model and a headline on top,
which currently shows the name of the model and, if an underlying layer is
opened, the ID of that layer (indicated by # < id >). When the SPELL-
Flow model is loaded, an auto-layout action will be performed. The result
is a clean layouted picture which is displayed in the main view. If the model
is larger than the canvas, then scrollbars will be displayed.

If the user hovers the mouse over a node, a tooltip will be diplayed which
contains the following information, if it is available:

e A more detailed description will be shown, e.g., for Step statements
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Navigation: horizontal vs. vertical

Navigation
horizontal along Gotos
and Steps

Navigation
horizontal —_— along Gotos
— and Steps

Navigation Navigation
between layers between layers

Layer n+1

Figure 6.35: Navigation

both attribute values because, if both values are too long for the dis-
played node, they will be abbreviated. There, we do not overtake the
source code formatting. Instead a “pretty Python” version is displayed
(cf. item 7).

e The line numbers of the corresponding statement in the SPELL source
code file is given.

e The corresponding SPELL source code snippet of that statement is
displayed. The SPELL source code is syntax-highlighted.

The navigation in the SPELL-Flow visualisation is performed in two
directions, as is is also visualised in Fig. 6.35. The horizontal navigation
does not change the layer, i.e., the main view jumps to another position of
the model, but within the same layer. This case occurs when we navigate
between Step and Goto statements. The vertical navigation is performed
between different layers, i.e., the main view opens an underlying or the
overlying layer, repectively, of the current one.

Within the master’s thesis in [KKhal5], a basic version of the vertical nav-
igation was implemented. The SPELL-Flow visualisation tool uses slighly
more complex vertical navigation and also it contains an implementation of
the horizontal navigation. Both kinds of navigation options are available via
context menu entries of the nodes which allow this kinds of navigation. The
horizontal navigation option is only available for Step and Goto statements.
Note that not all nodes allow vertical navigation, too, because they do not
contain an underlying (or overlying) layer, e.g., Pause statements do not
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contain any children nodes, therfore they have no context menu entry for
navigating to an underlying layer.

Example 6.1.4 (Horizontal vs. vertical navigation). Fig. 6.36 includes
screenshots of the SPELL-Flow visualisation tool illustrating both kinds of
navigations. In the upper left screenshot, the user clicks on the Goto 5 node.
Then, the tool jumps to the corresponding Step statement, which is Step 5
(upper right screenshot). The tool also marks the corresponding node in blue,
which is not visualised, here.

If the user selects option Go deeper in the context menu of a node (here:
of node Step 5), then, the tool opens the underlying layer (screenshot on the
bottom right). In the underlying layer, the user is able to select option Go up
in any node. Then, the main view opens the overlying layer (screenshot on
the bottom left).

The last screenshot also illustrates the case where the user selects one
Goto statement that refers to this Step node from the list in the context
menu. Note, the list might contain more than one Goto references. After
selecting one reference, then the main view jumps to the corresponding Goto
statement and highlights it in blue (upper left screenshot). A

| Horizontal and vertical navigation the in SPELL-Flow visualisation tool I

—
ot elif elif l next elif
"COMPONE... user_Choic.. 5: MANAGEMENT OF COMPONE... 7'
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Figure 6.36: Navigation in SPELL-Flow visualisation tool
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M 6.1.4. Automated Translation (“Button”)

The task of implementing an automated translation is realised by an Eclipse-
plugin using Java, EMF, Xtext and the Henshin engine.

In practice, the Eclipse plugin is executed by the user as follows: The
corresponding Eclipse instance needs to be active. After selecting one or
more SPELL source code files,the user needs to click the button with icon
. Afterwards the automated translation is performed resulting in a new
folder containing the intermediate files and also the resulting *.sfld file which
can be opened with the SPELL-Flow visualisation tool (cf. Sec. 6.1.3).

Example 6.1.5. In the following screenshot we show the resulting files
for an automated translation of the example SPELL source code file
BOOST_EXAMPLE.py. After performing the automated translation, a new

o8- L F) & T6G-Ld TGG-Tr Q-
I Project Explorer &% == = =0
v [= BOOST_EXAMPLE A

= BOOST_EXAMPLE out_ref0.sfl
= BOOST_EXAMPLE out_ref1.sfl
j BOOST_EXAMPLE_out_ref1.sfl_final.sfld
& BOOST_EXAMPLE_out_ref1.sfl_final.xmi
= BOOST_EXAMPLE out_tgg0.sfl
=| Refactor.sfl
=| tgg.sfl
=| BOOST_EXAMPLE.py
(= Examples

= outort

Figure 6.37: Project view in Eclipse shoing newly created files after trans-
lating BOOST_EXAMPLE.py

folder with the name of the file to be translated is created. This folder con-
tains three intermediate files which have the file extension *.sfl, one final file
which can be opened with the SPELL-Flow visualisation tool x.sfld and one

x.xmi file which is identical to the x.sfld file and which can be regarded as
backuyp file. A

Technically, the automated translation executes the follwing steps that
we also illustrate by means of Fig. 6.38.

After selecting one or more files and clicking the corresponding button,
the SPELL source code file [filename].py will be parsed into the SPELL
abstract syntax graph (ASG) using Xtext. Xtext uses the SPELL grammar
for parsing (cf. Listing A.1).

The SPELL ASG will be provided as input to the next step: the trans-
lation via triple graph grammars using the Henshin engine. Currently, it
uses TGG SPELL2FlowFlat.henshin for the first translation step. The result
of the TGG translation is a flat SPELL-Flow ASG. Flat means, that no
hierarhical structures are available. It’s XMI representation is also stored
within the file [filename]_out_tgg0.sfl.
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- Add design elements
that are necessary for
visualisation in GMF

The flat SPELL-Flow ASG is taken as input to the second step, the
flat graph transformation using the Henshin engine. In the current ver-
sion, the software executes two flat graph grammars after each other, the
output of the first one is the input of the second one. The first graph
grammar is called Refactor SPELL-Flow.henshin. It is improving the flat
SPELL-Flow ASG in the sense that it merges lists and other compound
statements consisting of several nodes to one node. It returns a flat SPELL-
Flow ASG, which is “tidied up”. The second flat graph grammar is called
SPELL — Flow-2-Hierarchy.henshin. It introduces the hierarchical layers of
the flat SPELL-Flow ASG according to the rules we summarised in item 4
of Sec. 6.1.1. Both steps also output the intermediate result in separate files
[filename]_out_ref[i].sfl, where i € {0,1}.

The last result, i.e., the hierarchical SPELL-Flow ASG is provided as
input to the last step: the enrichment of design elements. In order to be able
to open the SPELL-Flow model, the GMF-based SPELL-Flow visualisation
tool needs design elements for each node of the final SPELL-Flow model.
This property is demanded by GMF. The enrichment is executed by means
of a Java script. This work was started in cooperation with a master’s thesis
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in [Gonl15]. For further details on the implementation during the master’s
thesis and for design decisions of that solution, we refer to [Gonl5]. The
full solution, which also considers hierarchical layers, was extended during
the work on this industrial project. The enrichment process finishes with
two new files that contain the same content: [filename|_out_refl.sfl¢inal.sfld
and [filename]_out_refl.sflsinal.xmi. The latter is just stored as backup file
for the first one. The *.sfld file can be finally imported into the Spell-Flow
visualisation tool.

The screenshot given in Fig. 6.39 illustrates the structure and the
source code files of the Eclipse project SPELL-2-SPELL-Flow-Button, which
is the project containing the automated translation plugin. The first

w [ SPELL-2-SPELL-Flow-Button
B\ JRE System Library [JavaSE-1.8]
=) Plug-in Dependencies
v [ src

w H spell_2_spell_flow_button
[4] Activatorjava

v f spell_2_spell_flow_button.command
[J] Executionlob.java
[J] Execution)obFlat.java
[J] Execution)obTGG java
[3] HenshinApplicationMonitor.java
[J] TranslateButton.java

~ Hi spell_2_spell_flow_button.parser
[4] Children.java
[J] DOMRead.java
[I] MedifyXmiFilejava

Figure 6.39: Project containing source code files for automated translation

package spell_2_spell_flow_button contains one source code which is re-
sponsible for activating the button as plugin. The second package
spell_2_spell_flow_button.command contains the main part of the plugin, i.e.,
all Java files that contain the source code for the automated translation. File
TranslateButton.java can be seen as the “main” source code file which calls
each of the steps we mentioned in the preceding part and in Fig. 6.38 in the
right order. The third package spell_2_spell_flow_button.parser includes all
source code files that are necessary for the enrichment of the final SPELL-
Flow model with design elements.

M 6.2. Evaluation

In this section, we will evaluate our implementation with regard to two
aspects: Firstly we will take a closer look to the implementation of the uni-
directional translation, i.e., we will analyse the size of the meta-models and
of the three graph grammars that were applied. Secondly, we performed
example translations and measured the duration of the full translation as
well as of the single steps of the translation. Finally, we will discuss the
unidirectional approach, point out drawbacks of the translation and argue
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about possible improvements. Finally, we review the possibilities of realis-
ing a backward translation which would lead to a functioning bidirectional
solution.

BM62.1. Numbers on Meta-Models and Grammars

The translation from SPELL source code to SPELL-Flow models and vice
versa is based triple graph transformations and plain graph transformations
using typed attributed (triple) graphs. Therefore, our model transforma-
tions need at least two meta-models that can be seen as type graphs for
the relevant instance: The first meta-model that is necessary shall describe
the structure of SPELL abstract syntax graphs (ASG) that will be parsed
out of SPELL source code. The second meta-model defines the SPELL-Flow
language. As already mentioned in Sec. 6.1.2, we also defined two correspon-
dence meta-models: CORR for characterising the mapping between SPELL
and SPELL-Flow models used in the triple graph transformation step, and
CORRFlow2Flow used as helper structure in the flat graph transformations.

The diagram given in Fig. 6.40 compares the sizes of all four meta-
models based on the number of nodes. The SPELL meta-model is by far
the largest meta-model containing 175 nodes. The SPELL-Flow model in-
cludes 42 nodes. Both correspondence models are much smaller: meta-model
CORR contains 10 nodes and meta-model has only 3 nodes.

As elaborated in Sec. 6.1.2, the translation from SPELL source code to
a visual SPELL-Flow model, uses three graph grammars: The triple graph
grammar SPELL-2-FlowFlat which is followed by two flat graph grammars
Refactor_.SPELL-Flow and SPELL-Flow-2-Hierarchies. Fig. 6.41 compares
the size of all three grammars in a diagram. The triple graph grammar is by

Comparison of Meta-Models: Number of Nodes

SPELL

B SPELL-Flow

@ CORR

@ CORRFlow2Flow

Figure 6.40: Meta-Models: Number of Nodes
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Translation Grammars: Number of Rules

@ Spell2FlowFlat (TGG)
W Refactor_SPELL-Flow

W SPELL-Flow-2-Hierarchy

Figure 6.41: Translation Grammars: Number of Rules

far the largest grammar consisting of 223 triple rules and additionally the
same number of forward rules, i.e., 446 rules in sum, for the translation from
SPELL source code to a SPELL-Flow model. The diagram only includes the
number of triple rules, because the operational rules are derived out of the
triple rules. Graph grammar Refactor_ SPELL-Flow includes 58 graph rules
whereas graph grammar SPELL-Flow-2-Hierarchies is the smallest with 33
graph rules.

M 6.2.2. Unidirectional Translation of similar examples but with different sizes

For the example translations in this sub-section, we used twelve SPELL
source code files that were derived out of our running example (Listing 1.1
introduced in Chap. 1). In order to achieve the corresponding lines of code
that we wanted to analyse, we deleted parts from Listing 1.1 or duplicated
parts. That means, that all example files are very similar to each other,
except their size with regard to the number of source code lines (LOC). We
analysed examples from 1 LOC to 350 LOC. A similar evaluation with differ-
ent files will produce different results, because the translation time heavily
depends on the complexity of the source code, and also on the diversity of
statements: the more different all statements are, the faster is the transla-
tion process, because the matching phase, especially during the application
of both flat graph grammars will speed up.

The time measurments were performed on a machine with the following
specifications:

e CPU: Intel Core 15-4200H with 2.80 GHz, 2 cores
e RAM: 8GB
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e OS: Microsoft Windows 10
e Development Environment:

— Eclipse Mars, Release 4.5.1
— Java Version 8

— Xtext 2.7.0

— GMF version 3.3.1

— GEF 3.10.1

— EMF 2.11.1

— Eclipse Modeling Tools 4.5.1

Table 6.3 lists size of the SPELL source code file with regard to the
number of nodes and the number of edges. Note, that the final SPELL-
Flow model is a hierarchical model, i.e., duplications of different parts exist
in the model. Fig. 6.42 compares the number of nodes and edges of the
SPELL ASG and of the final SPELL-Flow ASG. The first column of the
table identifies each dataset by means of the LOC of the original SPELL
source code file. This property for identifying the corresponding datasets
are used in all tables of this section.

LOC # Nodes | # Edges # Nodes # Edges
SPELL SPELL SPELL | SPELL-Flow | SPELL-Flow

ASG ASG ASG ASG
1 9 8 4 4
10 104 103 8 12
20 292 291 23 42
50 309 308 27 49
100 601 600 72 135
130 749 748 94 177
150 861 860 113 214
200 1112 1111 152 290
250 1446 1445 193 370
300 1712 1711 218 416
350 1939 1938 254 487
500 2823 2822 380 729

Table 6.3: Comparison SPELL ASG with SPELL-Flow ASG: # of nodes
and edges in source and target model

The diagram in Fig. 6.42 visualises the data of Table 6.3 in a diagram.
It is obvious, that the final SPELL-Flow model (i.e., SPELL-Flow ASG) is
much more smaller than the original SPELL model. Note that the resulting
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Comparison SPELL ASG vs. SPELL-Flow ASG

203

Figure 6.42: Comparison of examples: # of elements in SPELL ASG file vs.

# of elements in final SPELL-Flow model

SPELL-Flow ASG even contains duplications of elements because it is a
hierarchical model representing different layers of abstractions.

Table 6.4 presents the results of the time measurements of this evalua-
tion. The second row lists the complete translation time for all example files
in ms. The third row lists the same time in minutes. Those results are also
visualised in Fig. 6.42.

LOC Time for translation | Time for translation
SPELL in ms in min
1 5643 0.09
10 5644 0.09
20 6586 0.11
50 9183 0.15
100 22236 0.37
150 125517 2.09
200 381843 6.36
250 738429 12.31
300 1510998 25.18
350 2964126 49.4

Table 6.4: Time for unidirectional translation from SPELL to SPELL-Flow

If we take a closer look at the translation times for all three graph gram-
mars, as listed in Table 6.5 and visualised in Fig. 6.44, we observe that
the refactoring step is by far the most time-consuming step. The triple
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Figure 6.43: Diagram according to Table 6.3: Time for whole translation

LOC Time for TGG Time for Time for
SPELL translation | refactorings | hierarchies

in ms in ms in ms
1 2484 1241 1815
10 2569 1492 1471
20 3276 1028 2195
50 3464 3991 1600
100 3956 15098 3043
150 4351 117879 3140
200 4962 352227 24265
250 5383 661745 71137
300 5635 1338094 166785
350 6864 2753045 203993

Table 6.5: Detailed time for unidirectional translation from SPELL to
SPELL-Flow

graph transformation is the fastest transformation part. This is achieved
because the implementation of the triple graph transformation in Hensh-
inTGG is optimised with regard to the use of translation attributes. The
refactoring step requires so much time, because the matching is very time-
consuming. First of all, the plain graph transformation uses no translation
attributes. Therefore, the implementation of plain graph transformation in
the Henshin engine (used in the Henshin-Editor, cf. Sec. 6.1.2) differs from
the implementation for triple graph grammars in the Henshin engine (used
in HenshinTGG, cf. Sec. 6.1.2). For triple graph grammars, nodes that
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Comparison of translation steps
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Figure 6.44: Comparison of translation steps (via TGG and GGs)

have a translation marker which are set to T, are not conisdered anymore
in the matching phase. In contrast, the Henshin engine needs to consider
and check every node in the graph again for each match during plain graph
transformation.

For the refactoring phase, the input graph of this step is quite large
for the matching process for plain graphs. In the following examples, we
illustrate this fact.

Example 6.2.1 (Refactoring phase). For our example consisting of 100
LOCs, the triple graph transformation returns a flat SPELL-Flow model
with 122 nodes and 233 edges that will be used as input to the refactoring
phase. After the refactoring phase, the flat SPELL-Flow model is reduced to
a graph consisting of 63 nodes and 117 edges. The refactoring phase took 396
rule applications. Note, the final SPELL-Flow model consists of 72 nodes
and 135 edges.

In the example, which consists of 200 LOCSs, the triple graph transfor-
mation returns a flat SPELL-Flow model with 263 nodes and 510 edges that
will be used as input to the refactoring phase. After the refactoring phase,
the flat SPELL-Flow model is reduced to a graph consisting of 135 nodes
and 257 edges. The refactoring phase took 874 rule applications. Note, the
final SPELL-Flow model consists of 152 nodes and 290 edges.

In the example that had 300 LOCs, the triple graph transformation re-
turns a flat SPELL-Flow model with 377 nodes and 734 edges that will be
used as input to the refactoring phase. After the refactoring phase, the flat
SPELL-Flow model is reduced to a graph consisting of 196 nodes and 377
edges. The refactoring phase took 1212 rule applications. Note, the final
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SPELL-Flow model consists of 218 nodes and 416 edges. A

B 6.2.3. Discussion on Bidirectional Approach

As depicted in this chapter, a prototype implementation for the unidirec-
tional transformation from SPELL source code to a SPELL-Flow visual
model exists. It follows the methodology that we presented in Sec. 3.1. It
is up to future work to implement the backward direction in order to re-
alise a bidirectional solution. In general, triple graph grammars provide the
possibility to derive backward transformation rules directly out of the triple
rules in order to receive a solution for the backward transformation. If we
consider the existing translation from SPELL source code to a SPELL-Flow
visual model, we observe that the translation consist of four steps, i.e., it is
much more complex (for details compare with Fig. 6.38).

We will now answer the question: How can a backward transformation
be implemented? The input of the backward transformation is the SPELL-
Flow visual model provided as XMI file. In principle, we have to revert all
four steps, so that we are able to derive the corresponding SPELL source
code. Still, it follows the methodology that we introduced in Sec. 3.2.

The first step of the backward transformation is the rolling back of the
“enrichment of design elements”. There, the XMI tags that describe all
design elements simply needs to be deleted out of the XMI file. No further
adaptions are necessary.

In the second step of the backward transformation we have to revert the
changes that were perfromed by graph grammar SPELL-Flow-2-Hierarchy.
For that step, a new graph grammar needs to be written because in plain
graph transformations, we are not able to derive the set of “opposite graph
rules” out of the existing set of graph rules. In this new reversion graph
grammar the hierarchical model will be flattened, i.e., all elements from the
most detailed levels will be kept and connected correctly with each other
in order to reflect the proper execution sequence. All elements that reflect
the more abstract layers will be deleted, because duplicates of them will
be still available in the most detailed level. The resulting model is a flat
SPELL-Flow model.

It is hardly possible to undo the refactoring step that was executed using
graph grammar Refactor_.SPELL-Flow, because in the refactoring step, ele-
ments were merged with each other, e.g., a list of arguments or comments.
To derive the correct (original) structure is very difficult or even impossible.
So, we would propose to omit the reversion of this step in the backward
transformation.

The last step is the backward translation using backward rules that
can easily be derived out of the existing triple rules of TGG SPELL-2-
FlowFlat. The TGG already includes filter rules for the backward direction
that need manual adaption after the generation of backward rules. Fur-
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thermore, the developer needs to be aware, that some backward rules will
cause problems in the backward translation process and therefore, they
need to be excluded. Examples are the backward rules that were de-
rived out of triple rules T_IVARSorARGS file_input-2-nothing (cf. Fig. 6.3) or
T_NEWLINE expr_stmt-2-empty POST (cf. Fig. 6.6). The backward transla-
tion rule BT_T_NEWLINE_expr_stmt-2-empty_POST would be empty in the
SPELL-Flow domain, i.e., it will be applied endlessly during the back-
ward translation. Backward rule BT_T_IVARSorARGS file_input-2-nothing
causes two problems: In the SPELL-Flow domain, no translation mark-
ers are set, so that this rule can be applied endlessly, too. Furthermore,
it would create a tree of 13 elements in the SPELL-domain. Some nodes
also contain attributes. For all attributes, a value needs to be derived,
but the translation process is not able to “guess” valid values for all at-
tributes. Therefore, the developer needs to exclude those rules or imple-
ment some complex algorithm for guessing valid values. Still, the “ori-
gial” IVARS and ARGS statements cannot be generated. In contrast, the
backward rule BT_T file_input-2-StartNode that corresponds to triple rule
T _file_input-2-StartNode (cf. Fig. 6.3) is applicable in the backward transla-
tion step without any manual adaptions.

The reader may guess already that the final SPELL ASG from which a
valid SPELL source code file can be serialised using Xtext, still differs from
the original SPELL source code file, even if no changes were performed on
the corresponding SPELL-Flow visual model. The reason for this is obvious:
During the translation process from SPELL source code to a SPELL-Flow
model, information is omitted (e.g. IVARS, ARGS) that cannot be recon-
structed. Therefore, the SPELL source code that is created by the backward
translation can be seen as skelleton of the real SPELL source code. It needs
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SPELL Abstract Syntax

SPELL source code file

Xtext
SPELL.xtext

SPELL2FlowFlat.henshin
- Translate flat SPELL-
Flow AST to SPELLAST

Model
Java
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Figure 6.45: Automated Backward Translation
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manual checks and adaptions by a SPELL developer.

In oder to achieve an automated backward translation, we need a second
implementation similar to Sec. 6.1.4 which calls the relevant steps for the
backward translation as described in this subsection. For all single steps, the
existing technologies (Xtext, Henshin, HenshinTGG) as well as the meta-
models (cf. Sec. 6.1.2) can be reused without any modifications. Similar
to Fig. 6.38, the backward translation will follow the following steps as
illustrated in Fig. 6.45.

For implementing bidirectional model synchronisation, a suitable method
must be selected first, e.g., real-time synchronisation system vs. transaction-
based system (cf. discussion in Chap. 7). Then, depending on the method,
the implementation of the bidirectional solution stongly depends on the soft-
ware environment where it shall be integrated at SES, i.e., the SPELL devel-
opment environment, which is an Eclipse-based IDE for developing SPELL
procedures. HenshinTGG and its engine are also Eclipse-based, so that the
new implementaion may reuse the model synchronisation implementaion

from HenshinTGG (cf. Sec. 6.1.2).
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In this chapter we will review related work with regard to the following
two aspects: we will present approaches considering the translation between
domain specific languages, especially approaches that are more practical
and that are already applied in industrial projects. Then, we will discuss
related work in the area of model transformations and synchronisations from
a theoretical point of view.

M 7.1. Related Work with Regard to Practical Ap-
plications

In industrial projects, there is a wide acceptance to include concepts of MDE
in the development life cycle [HWRKI11], especially, in the form of agile
MDE where models and source code evolve in parallel in an incremental
and iterative form [Mat11].

Model transformations define how to transform a model into another
model. In Chap. 1, we introduced the distinction of model transformation
approaches based on [CH06]. We will now present greater details of the dif-
ferent approaches and give a short introduction in some tool support that is
used in practice. Fig. 7.1 illustrates a detailed distinction of different model
transformation approaches and is an extended version of Fig. 1.1. It is based
on [CHO6] and [DREP12]. In the following, we will give a short summary of
the sub-categories of the model-2-text and the model-2-model approaches.
Model-2-text approaches encompass the template-based approach as well as
the wisitor-based approach.

Visitor-Based Approach: In this easy approach to code generation the
internal structure of the model will be traversed and code will be
directly derived and written to a text. It is an unidirectional approach.
Tool support is avaialable, e.g., the Jamda framework [Bool6]. Jamda
is based on Java. It takes an UML model as input, enriches this model

209
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Figure 7.1: Model Transformation Approaches (cf. [CHO6])

with necessary classes in order to generate executable Java code out
of it.

Template-Based Approach: The template-based approach is the most
popular approach in the field of model-driven engineering (MDE). It
uses templates (text patterns) that include meta-tags. If a template
can be found in the source text or model, it will be replaced by a
defined target source code snippet. During this process, the meta-
tags will be replaced by elements of the source model. This approach
offers the integration of some execution logic, e.g., loops, conditions,
etc., in order to guide the translation. Tools using this approach are:
AndroMDA [and16, and14], JET [Ecl16¢], CodaGen [cod16], FUUT-je
[fuul6], MetaEdit+ [Met16], OptimalJ [Opt16], Rational Rose XDE
[I[BM16], Visual Paradigm for UML [vis16], and many more. We will
now take a closer look at AndroMDA and JET.

AndroMDA is an open source framework which takes one or more
models as input and generates source code and is also able to setup a
new project for it, e.g., a J2EE project. The model is a UML model
which is usually stored in XMI format. It is platform-independent.
The model will be created by modelling tools that are not part of
AndroMDA. The generated code is platform-specific and it depends
on the plugins and configurations the developer has chosen. Currently,
plugins for generating Java, .Net, HTML, PHP exist. Those plugins
can be adapted by the developer or it is even possible to define own
plugins for the translation.

JET generates source code or text, respectively, out of EMF models.
JET is able to generate Java, SQL, XML, HTML, text and many
more using templates. Templates are defined by the developer of the
translation.

Model-2-model approaches that we want to introduce in the following
are the direct manipulation approach, the operational approach, the relational
approach, the hybrid approach, and the graph transformation-based approach.
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Direct Manipulation Approach: The direct manipulation approach is
similar to the visitor-based approach of model-2-text. Frameworks
usually provida a minimal infrastructure in which the developer de-
fines the transformation rules and the execution logic completely by
herself. The Jamda framework [Bool6] supports the direct manipula-
tion approach, too.

Operational Approach: The operational approach is similar to the direct
manipulation approach, but extended by certain facilities that enhance
the model transformations, e.g., an extension for expressing computa-
tions in the meta-model. Tool support is provided by Kermeta [ker16],
or specified by QVT-Operational [qvt16a].

The latest version of Kermeta (K3) is built on top of Xtend. It is a
framework that supports the developer to extend Ecore meta-models
by new features and operations, i.e., the meta-model is equipped with
semantics. Kermeta also provides the possibility to define model trans-
formations and constraints on those models that will be executed.

Relational Approach: The main idea behind the relational approach is
to define relationships between source and target models using con-
straints. In general, constraints are non-executable, but they can be
equipped with executable semantics. Most relational approaches sep-
arate source and target models, i.e., in-place updates are not allowed.
Advantages of the relational approach are that they allow the specifi-
cation of bidirectional transformations, they preserve non-determinism
while backtracking is possible. The relational approach is specified or
implemented, respectively, in QVT-Relations [QVT16b], Tefkat [tef16]
or, AMW [amw16].

Tefkat is based on EMF models. It supports the specification and ex-
ecution of mappings between source and target models using transfor-
mation rules, transformation patterns and transformation templates.
Patterns are like rules that can only match elements, in contrast, tem-
plates are like rules that can only create or set elements. Rules, pat-
terns and templates are based on F-logic, an ontology language which
has a simple SQL-like syntax with logic-based semantics.

Hybrid Approach: Hybrid approaches combine different model-2-model
approaches. A prominent example tool support is ATL [at]16].

Graph Transformation-Based Approach: The graph transformation-
based approach summarises all kinds of transformation techniques
based on (typed) (attributed) graphs (with labels) Chap. 2. It is
sometimes also referred to as graph rewriting. The source model have
to be a graph and the resulting target model will be a graph, too.
The developer specifies the transformation in terms of graph rules.
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Triple graph grammars (TGGs) belong to the graph transformation-
based approach. Tool support for graph transformation-based ap-
proaches is given by GReAT [grel6], VIATRA [Lc¢16, VBH'16], Hen-
shin [Henl6b, 7, ABJ*10] (cf. Sec. 6.1.2), AGG [aggl6, Tae04], and
ATOMS3 [atol6]. An implementation of graph transformation based
on TGG is realised in HenshinTGG [Henl6a] (cf. Sec. 6.1.2), Fujaba
[Pad16, NNZ00], and MOFLON [DP16, LAS14]. For a survey on TGG
tool support, we refer to [HLG 13, KS06].

Based on the discussion in paper [CH06] we will give a short summary
of the applicability of the above-mentioned approaches. The model-2-text
template-based approach is the most popular approach in MDE. It is used
for code generation. The direct manipulation approach is the most low-
level approach. No guidance for the specification of the transformation is
available for the developer. In our industrial case study, we introduced
the enrichment of design elements (cf. Sec. 6.1.4). This implementation
can be seen as direct manipulation approach. The operational approach
is an extension of the direct manipulation approach by some computation
facilities. With the relational approach it is possible to implement bidirec-
tional transformations. Due to the use of constraints and the underlying
constraint solving techniques, the performance of the model transforma-
tion strongly depends on the complexity of constraints. Hybrid approaches
combine different approaches, so that it is possible to exploit the advan-
tages of the other approaches. Usually, most practical projects are likely
to be hybrid approaches. In our industrial case study, we applied mainly
the graph transformation-based approach (cf. Sec. 6.1, i.e., the triple graph
grammar approach, which is a well-studied area in theoretical computer
science. In general, graph transformation is based on graphs and in our
application, the source language (SPELL), as well as the visual target lan-
guage (SPELL-Flow) are represented by abstract syntax trees (ASTs). The
SPELL language is parsed to an AST using Xtext. In contrast, the SPELL-
Flow AST will be directly stored to an XMI file, i.e., no additional trans-
formation is necessary. Therefore, the source and target instances are rep-
resented in ASTSs, so that the translation form an AST to a visual diagram
(e.g., UML model) can be easily done. Using the ASTs forms the basis
for defining (triple) graph transformation rules. According to [CH06], graph
transformation and also triple graph transformation is an intuitive approach
due to the set of visual transformation rules and due to the declarative
character of this approach. The disadvantages, which were mentioned in
[CHO6], e.g., termination and non-determinism, and also analysis methods
using triple graph grammars were discussed in past works in the meantime
[KW07, HEO*11a, HEGO14, HEOG10, HEGO10a, EEHP09] and also in
this thesis solutions and optimisations for dealing with those problems were
presented (cf. Sec. 4.4). Furthermore, extensions for structuring and guid-
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ing the rule application process were developed and implemented in different
tools, so that this approach is getting more and more feasible for practical
projects like our industrial case study [KKS97, LAST15].

M 7.2. Related Work with Regard to Formal Frame-
work

The formal foundations of graph transformations and triple graph transfor-
mations are introduced in Chap. 2. Furthermore, we presented the model
((non-deterministic) concurrent) synchronisation approach based on TGGs
which we use as basis in this work, in Chap. 4. This model synchronisation
approach is inspired by the lens framework [FGMT'07]. The basic idea of
the lens framework is that one model is the view model of the other model,
i.e., the view can be seen as a subset of the other model or as a different
abstracion. In general, a view in our understanding describes a different ab-
straction level of a model, while the same information is possibly available
in the model and its corresponding view(s) [EEEP10]. As a consequence, we
require some explicit mapping which defines the dependency of elements in
the view(s) and elements in the corresponding model. In the lens framework,
model synchronisation is performed asymmetrically in state-based manner,
i.e., the framework takes the models before and after the model update as in-
put and calculates the output models. Another approach is the synchronous
case of the lens framework. There, one model cannot be a view of the other
model [HPW11]. An extension is the delta-lens framework [DXC*11] in
which the deltas, i.e., the changes of the model update, are taken as input
and output. The ((non-deterministic) concurrent) synchronisation approach
based on TGGs [HEO ™15, HEEO12, GHN"13a] is inspired by the delta-lens
framework and can be seen as a simplified solution with regard to the delta-
lens approach.

Several works discuss multi-view models. Another approach are view
triple graph grammars (ViewTGGs) [JKS06, JS08, ARDS14]. It is imag-
inable to interpret the multi-view model in one domain as ViewTGG. In
our running example, each abstraction layer can be considered as separate
views. In order to apply and compare the theory of ViewTGGs to exam-
ples which were treated by the proposed derived propagation framework (cf.
Chap. 5), e.g., the industrial case study. The multi-view model needs to
be split into separate TGGs: each abstraction (view) belongs to a new do-
main model, i.e., the modest detailed layer and each view will be reflected
by separate TGGs. Then, it is possible to apply the model synchronisation
techniques from [ARDS14]. However, the approach we propose in this thesis
is more flexible and is also able to deal with models, where the concept of
ViewTGGs cannot be applied, but where elements in one domain are still
strongly interweaved with each other.
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In [TA15, TA16] the authors introduce a new approach for handling
multiple models that also include multi-view models, called the graph dia-
grams approach. The graph diagrams approach is a generalisation of triple
graph grammars to an arbitrary number of models and relations. Rela-
tions can connect more than two models with each other. A diagram base
specifies which kind of models and relations are available and a graph dia-
gram is an instance. Thus, graph diagrams are able to reflect n:m relation-
ships. In addition the authors define translation rules and lift the concept
of the ((non-deterministic) concurrent) synchronisation approach based on
TGGs to graph diagrams in [TA15, TA16]. The propsed derived propaga-
tion framework (cf. Chap. 5) is equivalent to the graph diagrams approach
in cases where no elements will be recreated during the propagation, be-
cause the graph diagrams approach does not recreate elements, but still,
they discuss the necessity of recreations. It is very interesting to combine
both approaches, because the graph diagrams approach enebales to propa-
gate changes in multiple models which are in a kind of n:m relation with
each other. Furthermore, both approaches are based on the same model
synchronisation framework, i.e., the ((non-deterministic) concurrent) syn-
chronisation approach based on TGGs that we introduced and extended in
Chap. 4.
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-]

In the framework of the industrial case study, as introduced in Sec. 1.1, we
developed a prototype of an automated translation of satellite procedures
into their visual representations (visualisation) and discussed the possibility
of also applying the backward direction in order to generate code out of
visual models.

MODEL TRANSFORMATIONS ‘

TheoreticallFramework:

Concepts Uni-/Bidirectional Transformations

Model-to- View-Model-to-
1\ [oYe []] View-Model

3 Methodology for General Software Translation
. (cf. Sec. 3.1; Example given in Sec. 3.3.1)

Methodology for Bidirectional Software Translation
(cf. Sec. 3.2; Example given in Sec. 3.3.2)

Non-Deterministic Concurrent Model Synchronisations
and Efficiency Improvement using filter NACs (cf. Sec. 4.4)

Propagation of Model Updates in Multi-View Models
(cf. Chap. 5)

Figure 8.1: Research Questions: Summary, Solutions & Classification of
Research Areas
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The (bidirectional) translation is based on the formal framework of model
transformations using triple graph grammars (TGGs) [Sch95]. During the
development of the prototype, several theoretical research questions evolved
(cf. Sec. 1.2) which we answered within this thesis. Fig. 8.1 summarises the
research questions and the chapters and sections in which we discussed their
solutions. Research questions @1 and Q2 ask for a general methodology for
applying uni- and bidirectional model transformations, i.e., for translating
concrete syntax (e.g., source code) to another concrete syntax and vice versa.
In explicit, both questions are:

According to which concept is it possible to transform model L1 to model
L£2? (Q1).

According to which concept is it possible to transform model L1 to model
L2 and vice versa? (Q2).

We presented general concepts in Chap. 3 for the translation of con-
crete syntax or instances of language L1, respectively, to concrete syntax or
instances of language £2 (unidirectional, Q1) and also vice versa (bidirec-
tional, Q2). We have shown that both concepts are applicable in practice.
In Sec. 3.3 we applied the concept of unidirectional translation to the indus-
trial case study and discussed how the bidirectional approach will be applied
to the case study in order to achieve a bidirectional translation. In future
work, it would be interesting to extend the industrial case study so that
the backward direction (from visualisation to source code) is realised in a
prototype, too. Then, it is possible to show that the methodology for the
bidirectional translation is applicable, too.

Both research questions ask for concepts in the area of unidirectional as
well as bidirectional model transformations, which is illustrated in Fig. 8.1
by arranging both hexagons @1 and (2 in the close neighbourhood of the
Concepts box.

Research question Q3 deals with an extension of the theoretical frame-
work in the domain of concurrent model synchronisations. In Fig. 8.1 we
categorised this research question to the box of uni- and bidirectional 1:1
model transformations, i.e., currently, the concurrent model synchronisation
framework deals with default triple models, and does not consider recurring
elements in the same domain, as it is the case in layered models (cf. research
question @4 ). In explicit, @3 is formulated as follows:

In which way is it possible to treat a non-deterministic set of rules in
concurrent model synchronisations? (Q3)

After introducing the model synchronisation framework and the ex-
tension to the concurrent model synchronisation framework in Sects. 4.2
and 4.3, we are able to present our approach of a generalised concurrent
model synchronisation framework in Sec. 4.4. It is based on the concur-
rent model synchronisation framework, but extended by filter NACs (cf.
Def. 2.2.14) in order to reduce backtracking steps for conflicting rule appli-
cations and therefore improve the efficiency of the model synchronisation
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framework.

The last research question )4 which we discussed in this thesis is divided
in two parts:

If a model update in one view is performed, then how is it possible to
consistently propagate this model update to all other views (Q4-A) and also
to the other domain? ((Q4-B).

In Chap. 5, we present our new solution for both parts of the question,
i.e., we introduced our derived propagation framework which is able to prop-
agate a model update in one domain to the other domain, and also to other
elements in the same domain which repeat themselves in the same domain
or which are strongly interweaved with elements that are modified by the
domain model update and therefore need to be updated, too. In the thesis,
we use the terms views or layers to describe depending elements in the same
domain.

In Fig. 8.1, we classified @4 to the theoretical framework of m:n model
transformations.

We are confident that the derived propagation framework can be easily
applied to concurrent model updates in both domains. Necessary exten-
sions that treat conflicting domain model updates in the derived propaga-
tion framework will be similar to the extensions that were necessary for the
concurrent model synchronisation framework. It is up to future work to
investigate concurrent model updates in the conctext of the derived prop-
agation framework. Furthermore, different approaches exists that discuss
view-based model transformations, e.g. [TA15] and also view triple graph
grammars [JKS06, ARDS14]. It is also desired as future work to check the
compatibility of our approach with those concepts and to extend the derived
propagation framework so that those works will be covered, too.

Another solution for propagating model updates in multi view models is
based on the existing theory of model synchronisations Chap. 4 [EEPT06,
HEO™15]. If we assume a separate model and TGG for each view, then, a
domain model update in one view will be propagated to the source model
and also to all other view(s), i.e., the separate TGGs can be understood
as composition. This solution considers different models for each view as
a separate model which is the main difference with regard to the derived
propagation framework which we propose in Chap. 5. The split into separate
TGGs rises questions concerning the conflict resolution of simoultaneous
updates in several views. Another question to be discussed would be, how to
deal with model updates that consider only views and are not reflected by the
other domain model. Then, the propagation of the model update may get
lost due to the missing dependency. The development and discussion of this
solution and also the comparison with the derived propagation framework
is topic of future work.

In general, it is also desired to implement the theoretical findings that
resulted out of @3 and @4 in suitable triple graph transformation tools,
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like HenshinTGG, which already includes an implementation of the model
synchronisation framework [HEO™15]. Then, it is possible to apply those
frameworks in industrial case studies and real-world scenarios in order to
close the gap between theoretical concepts and their realisations, especially
in industrial contexts.
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Appendix
- 0000000000001}

Bl A.1. SPELL Xtext grammar

grammar lu.uni.snt.spell .SPELL
hidden (WS)

import "http://www. eclipse.org/emf/2002/Ecore” as ecore
generate sPELL ”http://www.uni.lu/snt/spell /SPELL”

/* according to Python v3.2 documentation */

file _input : {file _input} nl=NEWLINE? (fst=stmt_LST_
Elem) ?;
stmt _LST _Elem : entry=stmt (next=stmt_LST_Elem) ?;
decorator : '@’ dotted -name=dotted _name ( (7 (
arglist=arglist) ’)’ )? nl=NEWLINE;
decorator _LST _Elem : entry=decorator (next=decorator _LST
_Elem) ?;
decorated : decorators=decorator _.LST_Elem (classdef=
classdef | funcdef=funcdef);
funcdef : 'def’ def_name=NAME parameters=parameters
(7-)7 test=test)? ’:’ suite=suite
"#ENDDEF ” ;
parameters : {parameters} '(’ (typedargslist=
typedargslist)? 7)7;
7l typedargslist : {typedargslist}
( fst=typedarg LST_Elem
(7, (% (tfpdef_one_star=tfpdef)? (’,’
one_star _list=typedarg -LST_Elem)?
(7,7 ¥ tfpdef_two_stars=tfpdef)? | ***’
tfpdef _two_stars=tfpdef)? )?
| ’* (tfpdef_one_star=tfpdef)? (’,’ one_
star _list=typedarg LST_Elem)?
(7,7 7** tfpdef _two_stars=tfpdef)?
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| "** tfpdef_two_stars=tfpdef );

typedarg _LST_Elem : entry=typedarg (’,’ next=typedarg_
LST_Elem) 7;
typedarg : tfpdef=tfpdef (’=’ asg_test=test)?;
5| tfpdef : tfpdef _name=NAME (’:’ test=test)?;
varargslist : {varargslist} ( fst=vararg _LST_Elem (’,
»(’*7 (vfpdef_one_star=vipdef)? (’,’ ome_star_list=

vararg LST _Elem)?
>0 % yipdef _two_stars=
vipdef)? | ’**’ vipdef_two._
stars=vfpdef)? )?
| ’* (vipdef_one_star=vfpdef)? (’,”’
one_star _list=vararg LST _Elem)?

(7, % vipdef _two_stars=vfpdef
)?
| "** vipdef_two_stars=vfpdef );
vararg _LST _Elem : entry=vararg (’,’ next=vararg LST_
Elem) ?;
;| vararg : vipdef=vfipdef (’=’ test=test)?;
vipdef : NAME;
35| stmt : (simple_stmt | compound_stmt) (nl_post=
NEWLINE) ;
simple _stmt : small _stmt ( {simple_stmt.fst=current}
next=small _stmt _LST_Elem )?
(75775
small _stmt _LST_Elem : 737 entry=small _stmt next=small_
stmt _LST_Elem ?;
small _stmt : (expr_stmt | del_stmt | pass_stmt |
flow _stmt | import_stmt | global _stmt | nonlocal _stmt |
assert _stmt );
expr _stmt : testlist _star_expr ( {expr_stmt.fst=

current} ( augassign_symbol=augassign (snd=yield _expr |
snd=testlist)
| (assignments _

fst=
assignment _
Exp _LST _Elem
) ) )
assignment Exp_LST _Elem : entry=assignment _Exp (next=
assignment Exp _LST _Elem) ?;

;) assignment _Exp : symbol="=" (yield _expression=yield _
expr |testlist_star_expression=testlist_star_expr );
testlist _star _expr : test _Or_star_exp ( {testlist_star._
expr.fst=current} ’,’ next=test _Or_star_exp_LST_Elem )?

//(70)¢

test _Or_star _exp_LST_Elem: (nl=NEWLINE)? entry=test _Or_
star _exp (’,’ next=test_Or_star_exp_LST_Elem)?
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test _Or_star _exp : (test |star_expr );
augassign (= | = | = | = = | &
| = | = ] = | = | e | =)
del _stmt : 'del’ exprlist=exprlist
pass_stmt : {pass_stmt} ’'pass’;
flow _stmt : break _stmt | continue_stmt | return_stmt
| raise_stmt | yield _stmt;
break _stmt : {break_stmt} ’break’;
continue _stmt : {continue _stmt} ’continue’;
return _stmt : {return_stmt} ’return’ (testlist=
testlist)?;
yield _stmt : yield _expr=yield _expr;
raise _stmt : {raise_stmt} ’'raise’ (raise_test=test (
"from’ from_test=test)?)?;
import _stmt : import_name | import_from;
import _name : ’import’ dotted_as_names=dotted _as_
names;
import _from : (from’ ((dots+=dot_or_dots)* name_from
=dotted -name | (dots+=dot_or_dots)+)
‘import’ (import_star="*" | (’(’
import _as_names=import_as_names
’)’) | import_as_names=import_as
_names) ) ;
dot _or _dots T
import_as_name : name_import=NAME (’as’ name_as=NAME)
2.
5| dotted _as _name : dotted -name=dotted _name (’as’ name_as
=NAME) ?;
import _as _names : fst=import_as_name LST _Elem (’,’)?;
import_as_name_LST_Elem : entry=import_as_name (’,’ next=
import _as_name _LST _Elem) 7;
dotted _as _names : fst=dotted _as_name _LST _Elem;
dotted _as _name _LST _Elem : entry=dotted _as_name (’,’ next=
dotted _as _name _LST _Elem) ?;
dotted _name : name_fst=dotted _name _LST_Elem;
dotted _name_LST_Elem : entry=NAME (’.’ next=dotted -name._
LST_Elem) ?;
global _stmt : ’global’ fst=name LST_Elem;
name _LST _Elem : entry=NAME (’,’ next=name_LST_Elem) ?;
nonlocal _stmt : 'nonlocal’ fst=name_LST_Elem;
assert _stmt : ’assert’ test_fst=test (’,’ test_snd=
test) ?;
compound _stmt o (if _stmt | while_stmt | for_stmt |
try _stmt | with_stmt | funcdef | classdef | decorated) ;
if _stmt : Tif7 if _test=test ’:’ if_suite=suite (

else _if _exp_List=else_if _exp_LST_Elem)?
("else’ 7:7 last_else_suite=suite)?
"4ENDIF ’ ;
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else_if _exp LST_Elem : entry=else_if _exp (next=else_if_exp
_LST _Elem)? ;
else _if _exp : elif’ else_test=test ’:’ else_suite=
suite ;
while _stmt : ’'while’ test=test ’:’ while_suite=suite
(Telse’ 7:7 else_suite=suite)?
UENDWHILE ;
for _stmt : ’for’ for_exprlist=exprlist ’in’ in_
testlist=testlist ’:’ in_suite=suite (’else’ ’:’ else._
suite=suite)?
"HFNDFOR” :
i try _stmt : (Vtry’? 7: try_suite=suite
( except_list _fst=except _exp _LST_Elem
( ’else’ 7:’ else_suite=suite)?
( ’finally’ ’:’ finally _suite=suite)?
| “finally’ ’:’ finally _suite=suite)
’#ENUI)RY’;
2l except _exp _LST_Elem : entry=except_exp (next=except_exp_
LST_Elem) 7;
except _exp : except_clause=except_clause ’':’ suite=
suite ;
with _stmt : ’with’ fst=with _item _LST_Elem 727 with _
suite=suite
FANDWITH ;
with _item _LST_Elem : entry=with_item (’,’ next=with_item
_LST_Elem) ?;
7| with _item : test=test (’as’ as_expression=expr)?;
except_clause : {except_clause} ’except’ (except_test=
test (’as’ as_name=NAME)?)?;
suite : simple_stmt | (nl=NEWLINE fst=stmt_LST_Elem
)
test : (or_test ({test.fst=current} ’if’ if_test=
or_test ’else’ else_test=test)?)
| lambdef=lambdef;
test _nocond : or_test | lambdef_nocond;
lambdef : 'lambda’ ( varargslist=varargslist)? ’:’
test=test;
lambdef _nocond : ’lambda’ ( varargslist=varargslist)?
’:7 test _nocond=test _nocond;
or_test : and_test ({or_test.fst=current} ’or’
next=or _operand -LST _Elem ) ?;
or _operand _LST_Elem : entry=and_test (’or’ next=or._
operand _LST _Elem) 7;
and_test : not_test ({and_test.fst=current} ’and’
next=and _operand _LST _Elem ) ?;
and _operand .LST_Elem : entry=not_test (’and’ next=and._

operand _LST _Elem) 7;
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not_test : ((negations=negation _LST_Elem) entry=
comparison) | comparison;

negation -LST_Elem : {negation _LST_Elem} ’'not’ (next=
negation -LST_Elem) ?;

comparison : expr ( {comparison. fst=current} next=
comparison _Cond _LST _Elem) ?;

2/ comparison _Cond _LST _Elem: comp_op=comp_op snd=expr (next=

comparison _Cond _LST _Elem) ?;

+| comp._op Cop=( () =)= (= () ] = ] i
| ’is’) | notIn?=("not’) ’in’ | ’is’ isNot?=(’not’);
star _expr X7 expression=expr;
expr : xor _expr ({expr.fst=current} ’|’ next_xor=
xor _expr _LST_Elem ) ?;
xor _expr _LST _Elem : entry=xor_expr (’|’ next=xor_expr _LST
_Elem) ?;
7 XOor _expr : and _expr ({xor_expr.fst=current} ’°’ next

_and=and _expr _LST _Elem ) 7;

and _expr _LST _Elem : entry=and _expr (’°’ next=and_expr _LST
_Elem) ?;
and _expr : shift _expr ({and_expr.fst=current} ’&’
next_shift=shift _expr _LST_Elem ) ?;
shift _expr _LST_Elem : entry=shift _expr (’&’ next=shift _
expr _LST_Elem) 7;
shift _expr : arith _expr ({shift _expr.fst=current}
next_arith _expr=arith _expr _LST_Elem) ?;
arith _expr _LST_Elem : shift _Symbol=("((’|’))’) operand=
arith _expr (next=arith _expr_LST_Elem) ?;
arith _expr : term ({arith _expr.fst=current} arith._
exp -Symbol=("+"|’-’) (nl=NEWLINE)? next_term=term _LST_
Elem) ?;
term _LST _Elem : operand=term ( arith_exp_Symbol=("+"]"-
") (nl=NEWLINE) ? next=term _LST _Elem) ?;
5| term : factor ({term.fst=current} next_factor=
factor _.LST_Elem ) 7;
i factor _.LST _Elem : term _Symbol="*"|"/"1"%"|"//")
operand=factor (next=factor _LST_Elem) ?;
| factor : (factor _symbols=factor _symbol _LST _Elem
base=powerOrSPELL) | powerOrSPELL;
factor _symbol LST_Elem : entry=("+'|’-"]’"") (next=factor._
symbol _LST _Elem)? ;
powerOrSPELL : power;
power : atomOrSPELL ({power.value=current}
( (trailer _fst=trailer _LST_Elem) (’**’
factor=factor)? )
| (7** factor=factor) )75
atomOrSPELL : atom |SPELL_Exp;
SPELL _Exp : SPELL_Constant | SPELL_Modifier | SPELL._

Function Name | SPELL_Fun;
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SPELL_Fun : Abort | BuildTC | CreateDictionary |
ChangeLanguageConfig | DisableAlarm
| DisableUserAction | DismissUserAction |

Display | DisplayStep | EnableAlarm
| EnableUserAction | Event | Finish |
GetResource | GetTM | GetLimits

| IsAlarmed | OpenDisplay | Pause |

PrintDisplay
| Prompt | Var | SaveDictionary | Send |
SetGroundParameter | SetUserAction

| SetResource | SetLimits | StartProc |
Verify | WaitFor | WaitForComplex
| Goto | Step | Paragraph;

SPELL_Function _Name : nameF=(’LoadDictionary’);
Prompt : ’Prompt’ (7 args=arglist ’)’;
GetTM : 'GetTM”’ "(’ args=arglist ’)’;
5| Verify : ?Verify’ 7(7 [’ verifyL=verifyEntry _LST_
Elem ]’ (7, (nl=NEWLINE)? args=arglist)? ’)’;
verifyEntry _LST_Elem : entry=atom (’,’ nl=NEWLINE
next=verifyEntry _LST_Elem) 7;
Var : 'Var’ (7 'Type’ ’=’ varType=SPELL_Constant
(7, 'Range’ ’=’ varRange=test)?
(7,7 ’'Default’ =’ varDefault=test)?
(7,7 ’Confirm’ ’=’ varConfirm=test)?
(7,” ’Expected’ ’=’ varExpected=test)? ')
Display : "Display’ (7 args=arglist 7)7;
DisplayStep : "DisplayStep’ (7 args=arglist 7)7;
BuildTC : 'BuildTC’ (7 args=arglist 7)’;
Send : ’Send’ (7 ’command’ ’=’ command
=atom (’,’ (nl=NEWLINE)? args=arglist)? 7)’;

WaitFor : "WaitFor’ "(’ args=arglist ’)’;
WaitForComplex : "WaitFor _TimeOut’ ’(’ ’condition’ ’=’
7«77 condition=test *“’’ ()’ | (7,  nl=NEWLINE

"ForDelay’ ’'=’ delay=test ’)’)
)
SetGroundParameter : ’SetGroundParameter’ (' args=
arglist 7)7;
GetLimits : 'GetLimits’ (7 args=arglist 7)’;
SetLimits : 'SetLimits’ (7 args=arglist ’)’;
EnableAlarm : ’EnableAlarm’ (7 args=arglist 7)7;
DisableAlarm : 'DisableAlarm’ (7 args=arglist )
IsAlarmed : ’IsAlarmed’ (7 args=arglist 7)7;
Event : "Event’ (7 args=arglist 7)’;
SetResource : ’'SetResource’ "(7 args=arglist 7)’;
GetResource : ’GetResource’ 7(7 args=arglist ’)’;

OpenDisplay : "OpenDisplay’ (7 args=arglist 7)7;
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PrintDisplay : 'PrintDisplay’ (7 args=arglist )
Pause : 'Pause’ (7 args=arglist ’)’;
Abort : "Abort’ "(7 args=arglist ’)’;
Finish : ’Finish’ (7 args=arglist 7)7;
SetUserAction : ’SetUserAction’ (7 args=arglist )
75) EnableUserAction : "EnableUserAction’ (7 args=
arglist ’)7;
DisableUserAction : ’'DisableUserAction’ (7 args=
arglist 7)’;
7| DismissUserAction : "DismissUserAction’ (7 args=
arglist 7)7;
CreateDictionary : ’CreateDictionary’ (7 args=
arglist ’)7;
| SaveDictionary : ’SaveDictionary’ "(’ args=arglist
7)’;
StartProc : 'StartProc’ (7 args=arglist ’)’;
ChangeLanguageConfig : ’'ChangeLanguageConfig’ ’(’ args=
arglist ’)7;
Goto : "Goto’ "(7 args=arglist 7)7;
Step : ’Step’ (7 args=arglist 7)7;
Paragraph : 'Paragraph’ (7 args=arglist 7)’;
SPELL_Constant : nameC=('NOW’ | 'TODAY’ | '"TOMORROW’ |
"YESTERDAY’ | 'HOUR’ | ’MINUTE’ | ’'SECOND’ | ’DATE’
| 'DATETIME’ | ’RELTIME’ | ’ABSTIME’
| '/RAW’ | ’ENG’ | ’SKIP’ | 'LONG’ | ’STRING’
| ’BOOLEAN’
| "TIME’ | ’'FLOAT’ | °DEC’ | 'HEX’ | ’OCT’ |
'BIN’ | °VALUE’ | ’ALL’
| ACTIVE’ | ’'LIST’ | 'NUM’ | ’OK’ | ’ALPHA’
| "OK_CANCEL’
| "CANCEL’ | 'YES’ | 'NO’ | ’YESNO’ | ~’
INFORMATION’ | 'WARNING’
| "ERROR’ | ’NOACTION’ | ’ABORT’ | ’'REPEAT’ |
'RESEND’ | ’RECHECK’
| 'FIXME_unknownConstant ’) ;
SPELL_Modifier : nameM=( ’AdjLimits’ | ’'Automatic’ | ~’
Block’ | ’Blocking’ | ’Confirm’ | ’'Default’
| 'Delay’ | ’HandleError’ | ’'HiBoth’ | ’HiRed
| "HiYel’ | ’'Host’ | ’IgnoreCase’ | ’Interval
> | ’LoadOnly’ | ’LoBoth’
| 'LoRed’ | ’'LoYel’ | ’Message’ | ’Midpoint’
| "Notify’ | ’OnFailure’
| "OnTrue’ | ’OnFalse’ | ’Printer’ | ~’

PromptUser’ | ’'Radix’ | ’Retries’
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200 | ’SendDelay’ | ’Severity’ | ’Time’ | ~’
Timeout’ | ’'Tolerance’

201 | "Type’ | ’'Units’ | ’Until’ | ’ValueFormat’
| 'ValueType’ | ’Visible’

202 | "Wait’

203 | ’Extended’ | ’args’ | ’command’ | ’
ReleaseTime’

204 | "ConfirmCritical’ | ’sequence’ | ’group’ |
"Group’ | ’addInfo’ | ’verify’

205 | "Select’ | ’Nominal’ | *Warning’ | ’'Error’
| 'Ignore’

206 | 'Delta’ | 'Format’ | ’FIXME_
ModifierUnknown’

207 ),
208
200 yield _expr (OR_testlist _comp : yield _expr | testlist _comp;

210

211 atom : (round _brackets?="(" (entry = yield _expr_OR
_testlist _comp)? )’
212 | square_brackets?="[" (testlist _comp=
testlist _comp)? ]’
213 | curly_brackets?="{’ (dictorsetmaker=
dictorsetmaker)? '}’
214 | atom _name=NAME | number=NUMBER
215 | string LST_Elem | basic=’...’ | basic="None
’ | basic="True’ | basic=’False’ );
216| string _LST _Elem : entryS=STRING (NL nextS=string LST_
Elem)? ;
217| testlist _comp : test _Or_star _exp=test _Or_star _exp (
218 ( comp_for=comp_for | (’,’ next_exp =test _
Or_star _exp_LST_Elem (’,’)7? ) ) )7;
219/ trailer _LST _Elem : trailer ({trailer _LST_Elem.entry=

current} mnext=trailer _LST_Elem) 7;

220 trailer (2 arglist 7)” ) | ( [’ subscript_LST
_Elem ']’ ) | ( ’.’ Name_Node );

221| Name _Node : nameN=NAME;

222/ subscript -LST _Elem : entry=subscript (’,’ (nl=NEWLINE)?
next=subscript _LST_Elem) ?;

223 subscript : {subscript} ( ( test_fst=test (colon?=":"
(test _snd=test)? (sliceop=sliceop)? )? )

224 | ( colon?=":" (test_snd=test)? (

sliceop=sliceop)? ) );

225 sliceop : {sliceop} ’:’7 (test=test)?;

226| exprlist : exp_Or_star _exp ( {exprlist.fstexp=
current} ’,’ next_expr=exp_Or_star_exp_LST_Elem )7;

27| exp _Or_star _exp LST_Elem: entry=exp _Or_star _exp (’,’ next=
exp-Or_star _exp _LST_Elem ) 7;
205/ exp _Or_star _exp : (expr|star_expr);
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220 testlist : test ({testlist.fst_test=current} ’,’
next _test=test _LST_Elem ) ?;

230| test _LST _Elem : entry=test (’,’ next=test _LST_Elem) ?;

231 dictorsetmaker . fst=test ( ( ’:’ test_to=test ( (comp
_for=comp_for | (', (nl=NEWLINE)? next_range=test _
range LST_Elem)) )? ) // removed (’,’)? from end

232 | (comp_for=comp_for | (’,’ next_test=

test _LST_Elem) ) );

233| test _range : test _from=test ’:’ test_to=test;

231| test _range _LST _Elem : entry=test_range (’,’ (nl=NEWLINE)?
next=test _range LST_Elem) ?;

235 classdef : ’class’ name_class=NAME (’'(’ (arglist=
arglist) ’)’)? ’:’ suite=suite '#ENDCLASS’;

236 arglist : (argument _list ( {arglist.argument_list=
current }

) 9

,’ star_test_arg_list=star_test_arg_list )?
| star_test_arg_list=star_test_arg_list );

230 star _test _arg _list : '*7 test _one_star=test (’,’ one_
star _arguments _fst=argument LST_Elem)?

240 (7,7 7**7 test_two_stars=test)? |

VE*C test _two_stars=test ;

a1 argument _list : {argument _list} (fst=argument_LST_Elem)
2 .

242| argument _LST _Elem : entry=argument (’,’ (nl=NEWLINE)?
next=argument _LST _Elem) ?;

243| argument : test ( {argument.test=current} ( arg_
comp_for=comp_for | assigment=Value_Assignment) )7;

214) Value _ Assignment : symbol= =’ value=test ;

245/ comp_iter : comp_for | comp_if;

246| comp _ for : 'for’ for=exprlist ’in’ in=or_test (comp._
iter=comp_iter)?;

247/ comp _ if : 7if’ if=test _nocond (comp_iter=comp_iter)

215 yield _expr : {yield _expr} ’yield’ (testlist=testlist
)?

210 NUMBER : integer | real |octal]|hex;

250| octal : val=_SCAL_OCTAL_;

251| hex : val=_SCAL_HEX_;

252 integer : value=_SCAL_INT_;

253| real : (value=decimal (exponent=Exponent)?)

254 | value=integer exponent=Exponent;

255| decimal : value=_SCAL_REAL_;

256| Exponent : (PE?) (sign=(+"|’-"))? value=_SCAL_INT._

257 NAME : ID;

255| Comment _LST _Elem : valC=(SL_COMMENT | ML_COMMENT) (NL+

nextC=Comment _LST_Elem) 7;

250 NEWLINE : {NEWLINE} (NL+ (comment=Comment_LST_

Elem NL+)?7)
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| (comment=Comment _LST_
Elem NL+);
terminal ID s (a2 AT L0Z0) (a2 | A L2
777|7#7|’0".797)*

terminal _SCAL_INT. (707..797)+;
terminal _SCAL_REAL_ : (_SCAL INT_)? 7.7 _SCAL_INT_;
terminal _SCAL_HEX_ 07 (’x’|’X?) (707..°97|’A’..'F’|’a
7.. 7f7)+,
5 terminal _SCAL_OCTAL_ : 0’ o’ (’07..°97)+;
266 terminal STRING . » 919 ( AT ( 7|ata|7n7|7fa|ara|7777
|77777|744ua> | !<7uua|wa77) )>|< 9 99

| 79 ) ( RN (7b?|7t7|’n?|’f7|7r7|7”’|”777|7(446

7) ‘ '(7“(47|7?77) )* 29

)
terminal SL_COMMENT : (’#  // every comment not
starting with "#END” and not containing a separator ”((”
C CCCE 77 7] 7((7) | "E’H(N| 7 n
‘ « 7| 7<<7) | 7EN7!(7D’|7“n7|’“r3| 7<
(")
) MO e ()
)
| B’
Y2 )y /) (C¢r’? ¢n’)?; NL is used for
parsing - no white space
terminal ML.COMMENT . 777’7 ) 777277
i\ //// Only for Parser
terminal WS S I T S L S (R I S (R
CLLC(LH“I.7;
terminal ANY_OTHER S

)W b3 P13

terminal NL n’|’“r’ | “r“n

// For TGG: super type for target language

// rules that inherit from Targel already transitively do
not occur here

SourceSPELL: file _input

b P14 13 ) .
| “nsr s

;| | stmt _LST _Elem

| decorator | decorator _LST_Elem

| parameters | typedargslist | typedarg LST_Elem | typedarg | tfpdef
| varargslist | vararg _LST_Elem

| vararg | stmt

7/ | small _stmt _LST_Elem

| assignment -Exp_LST_Elem | assignment _Exp

| test _Or_star _exp_LST_Elem

|import _as _name

| dotted _as _name|import_as_names |import_as _name _LST _Elem |
dotted _as _names|dotted _as_name_LST_Elem

| dotted -name | dotted _name _LST_Elem

| name _LST _Elem

|else _if _exp _LST_Elem | else_if _exp

| except _exp _LST _Elem | except _exp
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| with _item LST_Elem | with _item | except _clause

| suite

| test _nocond

| lambdef

| or _operand -LST_Elem

|and _operand _LST _Elem

| negation _LST _Elem

| comparison _Cond _LST _Elem | comp _op

| xor _expr _LST_Elem

| and - expr _LST _Elem

| shift _expr _LST_Elem

| arith _expr _LST_Elem

| term _LST_Elem

| factor _.LST_Elem

| factor _symbol _LST_Elem

| verifyEntry _LST_Elem

| yield _expr _OR_testlist _comp

| trailer _.LST_Elem| trailer

| subscript | sliceop | exprlist

|exp_Or_star _exp _LST_Elem| testlist | test -LST_Elem |
dictorsetmaker

| test _range | test _range LST_Elem

| star _test _arg_list

| argument LST _Elem

| argument | Value - Assignment |comp_iter

|NUMBER;

247

Listing A.1: SPELL Xtext grammar
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B A.2. SPELL meta-model

Figure A.1: SPELL meta-model, screenshot of Eclipse ecore diagram file
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w @ platferm:/resource/lu.unisnt.spell. Spell/model/generated /SPELL. ecore
v 8 sPELL

B file_input -> SourceSPELL

H stmt_LST_Elem -> SourceSPELL

H decorator -> SourceSPELL

H decorator_LST_Elem -> SourceSPELL
H decorated -> compound_stmt

H funcdef -> compound_stmt

H parameters -» SourceSPELL

H typedargslist -> SourceSPELL

H typedarg_LST_Elem -> SourceSPELL
H typedarg -> SourceSPELL

H tfpdef -= SourceSPELL

H warargslist -> SourceSPELL

H wvararg_LST_Elem -> SourceSPELL
vararg -> SourceSPELL

stmit -> SourceSPELL

simple_stmt -> stmt, suite
small_stmt_LST_Elem -> SourceSPELL
small_stmt -> simple_stmt
expr_stmt -> small_stmt
assignment_Exp_LST_Elem -> SourceSPELL
assignment_Exp -> SourceSPELL

[ 00 00 [0 07 00 00 00 00

testlist_star_expr -> expr_stmt

[ test_Or_star_exp_LST_Elem -» SourceSPELL
test_Or_star_exp - » testlist_star_expr
del_stmt -> small_stmt

pass_stmt -> small_stmt

flow_stmt -> small_stmt

break_stmt -> flow_stmt

continue_stmt -> flow_stmt

return_stmt -> flow_stmt

yield_stmt -» flow_stmt

raise_stmt - > flow_stmt

import_stmt -» small_stmt
import_name -> import_stmt
import_from -» import_stmt
import_as_name -> SourceSPELL
dotted_as_name -> SourceSPELL
import_as_names -> SourceSPELL
import_as_name_LST_Elem -» SocurceSPELL
dotted_as_names -> SourceSPELL
dotted_as_name_LST_Elem -» SourceSPELL
dotted_narme -» SourceSPELL
dotted_name_LST_Elem -> SourceSPELL
global_stmt -> small_stmt
name_LST_Elemn - SourceSPELL
nonlocal_stmt -» small_stmt
assert_stmt -» small_stmt
compound_stmt -> stmt

if_stmt -» compound_stmt
else_if_exp_LST_Elem -> ScurceSPELL
else_if_exp -» SourceSPELL

while_stmt -> compeound_stmt

[ 0 0] 00 07 00 00 00 00 00 01 00 00 00 00 00 00 [0 00 00 00 00 00 00 00 00 00 00 00

H for_stmt -> compound_stmt
H try_stmt -» compound_stmt
H except_exp_LST_Elem -» SourceSPELL

249

Figure A.2: SPELL meta-model, screenshot of Eclipse ecore file, part 1
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Figure A.3: SPELL meta-model, screenshot of Eclipse ecore file, part 2
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except_exp L5ST_Elem -> SourceSPELL
except_exp -> SourceSPELL
with_stmt -» compound_stmt
with_itermn_LST_Elem -> SourceSPELL
with_item -> SourceSPELL
except_clause -» SourceSPELL

suite -> SourceSPELL

test -» test_Or_star_exp, testlist, argument
test_nocond -> SourceSPELL

lambdef - Source5PELL
lambdef_nocond -» test_nocond
or_test -> test, test_nocond
or_operand_LST_Elem -» SourceSPELL
and_test -» or_test
and_ocperand_LST_Elem -» SourceSPELL
not_test -> and_test
negation_LST_Elem -» SourceSPELL
comparison -> not_test
comparison_Cond_L5T_Elem -» SourceSPELL
comp_op -* SourceSPELL

star_expr -= test_Or_star_exp, exp_Or_star_exp
expr -> comparison, exp_Or_star_exp
xor_expr_LST_Elem -= SourceSPELL
HOT_EXPI - > expr

and_expr_LST_Elem -» SourceSPELL
and_expr -> xor_expr
shift_expr_L5T_Elem -> SourceSPELL
shift_expr -» and_expr
arith_expr_LST_Elem -» SocurceSPELL
arith_expr -» shift_expr
term_LST_Elem -> SourceSPELL

term -» arith_expr

factor_LST_Elem -» SourceSPELL
factor -» term
factor_symbol_LST_Elem -» SourceSPELL
powerOrSPELL -= factor

power -> powerOrSPELL
atormOrSPELL - power

SPELL_Exp -= atomOrSPELL
SPELL_Fun -= SPELL_Exp
SPELL_Function_Mame -» SPELL_Exp
Prompt -> SPELL_Fun

GetTM -» SPELL_Fun

Verify -> SPELL_Fun
wverifyEntry_L5T_Elem -> SourceSPELL
Var -» SPELL_Fun

Display -= SPELL_Fun

DisplayStep -» SPELL_Fun

BuildTC -> SPELL_Fun

Send -> SPELL_Fun

WaitFor -> SPELL_Fun
WaitForComplex -» SPELL_Fun
SetGroundParameter -» SPELL_Fun
GetLimits -» SPELL_Fun

SetLimits -> SPELL_Fun

EnableAlarm -= SPELL_Fun
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DisableAlarm -» SPELL_Fun
IzAlarmed -> SPELL_Fun

Event -» SPELL_Fun

SetResource -» SPELL_Fun
GetResource -» SPELL_Fun
OpenDisplay -» SPELL_Fun
PrintDisplay -> SPELL_Fun

Pause -» SPELL_Fun

Abort -» SPELL_Fun

Finish -> SPELL_Fun

Setlserfction -» SPELL_Fun
EnableUserfction -» SPELL_Fun
DisableUserfiction -» SPELL_Fun
DismissUserfction -» SPELL_Fun
CreateDictionary -> SPELL_Fun
SaveDictionary -» SPELL_Fun
StartProc -» SPELL_Fun
ChangelanguageConfig -» SPELL_Fun
Goto -» SPELL_Fun

Step -» SPELL_Fun

Paragraph -=> SPELL_Fun
SPELL_Constant -» SPELL_Exp
SPELL_Modifier -» SPELL_Exp
yield_expr_OR_testlist_comp -> SourceSPELL
atom -> atomOrSPELL
string_LST_Elem -»= atom
testlist_comp -» yield_expr_OR_testlist_comp
trailer_L5T_Elem -» SourceSPELL
trailer -> trailer_LST_Elem
MName_Mode -> trailer
subscript_L5T_Elemn -» trailer
subscript -> SourceSPELL

sliceop -» SourceSPELL

exprlist - SourceSPELL
exp_Or_star_exp_L5T_Elem -> SourceSPELL
exp_Or_star_exp -> exprlist

testlist -» SourceSPELL
test_LST_Elem -» SourceSPELL
dictorsetmaker -» SourceSPELL
test_range -» SourceSPELL
test_range_LST_Elem -> SourceSPELL
classdef -» compound_stmt

arglist -» trailer

star_test_arg_list -> SourceSPELL
argument_list -> arglist
argument_L5T_Elem -> SourceSPELL
argument -> SourceSPELL
Value_Assignment - Source5PELL
comp_iter -> SourceSPELL

comp_for -> comp_iter

comp_if -» comp_iter

yield_expr -> yield_expr_OR_testlist_comp
NUMBER -> SourceSPELL

octal -» NUMBER

hex -> NUMBER

integer -> MUMBER

real -> NUMBER

251

Figure A.4: SPELL meta-model, screenshot of Eclipse ecore file, part 3
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H real -> NUMBER

B decimal

H Exponent

H Comment_LST_Elem
H MEWLIME

H SourceSPELL

H CORR_SRC

H CORRCMT_SRC

Figure A.5: SPELL meta-model, screenshot of Eclipse ecore file, part 4
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B A.3. SPELL-Flow meta-model

Figure A.6: SPELL-Flow meta-model, screenshot of Eclipse ecore diagram
file
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Figure A.7: SPELL-Flow meta-model, screenshot of expanded Eclipse ecore

file, part 1
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v ] platform:/resource/lu.unisnt.spell flow/model/SpellFlowhModel.ecore

v # SpellFlowlanguage
~ H Root

<
NN MIDNONODv 0o

=t to_StartNode : StartNode
= to_EndMode: EndNode
=+ to_Element : Element

2 te_Connector: Connector
= hasCemment : Comment
= to_FirstElement : Element
= valueXMIID : EString
TargetSpellFlow

=t tgt_opp: CORR_TGT
Statermnent -> TargetSpellFlow
o ishActive : EBoolean

= isExecuted : Eint

= startlineNumber : Elnt

= endLineMumber : Elnt

= XMIID : EString

= sourceCode: EString
Element -» Statement, Root
=+ next : Element

= toEnd : EndMNode

=, group: Elnt

Activity -> Element

= id : EString

= description : EString

=+ arguments : Argument

= comments : EString
StartMode -> Statement, Root
= firstElement : Element

= procedureMame: EString
EndNede -» Element

= infotext : EString
FinishMNode -» EndMode
AbortMode -> EndMede
ReturnMode -» EndMode
Loop -»= ComplexElement

= executeloop : Element
WhileLoop -» Loop

ForLoop -> Loop

ifCondition -»> ComplexElement
= yes: Element

=+ no : Element

= else: Element

2= elif 1 ifElifCondition
tryStatement -> ComplexElement
= try: Element

= catch : Element
AssignmentActivity -> Activity
= complexExpression : Expression
= fstValue: EString

= binaryOperator : EString
= sndValue: EString

= simpleExpression : EString
Expression -> Element

= has: Element

o expressionText : EString



A.3. SPELL-FLOW META-MODEL

<

[MIIIMINIMINODIMINOM v 0 v 00 v 0

[0 0 0™

B
B
B

= expressionText : EString

= top: Element

Operator -> Element

= second : Element

=+ first : Element

= type: EString

Parenthesis -» Element

= typeleft: EString

= typeRight : EString

= parenthesises : Element

=+ top: Element

SimpleElement -> Element

= nameS: EString

StepActivity -> Activity

= number : EString
ParagraphActivity -> Activity

= number: EString
VerifyActivity -> Activity
PromptActivity -> Activity
PauseActivity -» Activity
GetTMActivity -» Activity
WaitForActivity -> Activity
SendActivity -> Activity
DisplayStepActivity -> Activity
Comment -> TargetSpellFlow

= content : EString

5 tgtemt_opp : CORRCMT_TGT
= nextC : Comment
Otherfctivity -> Activity
Databaselctivity - Activity
InputOutputActivity -»> Activity
GotoActivity -> Activity

= toStepMumber : EString

= toStepConnector : Connector
SpellFunctienCallActivity -> Activity
= toFunctionName : EString

= toFunction : Connector
MativeFunctionCallActivity -= Activity
= nameF : EString

Connector -> TargetSpellFlow
=+ toElement : Activity

= toNumber : EString
ComplexElement -> Activity

= simpleExpression : EString

= complexExpression @ BExpression
Argument -> Element

= walue : EString

=+ nexthrg @ Argument

= split: EBooclean

= splitsymbol : EString

=+ list : Parenthesis

CORR_TGT

5 tgt: TargetSpellFlow
CORRCMT_TGT

=t tgtemt: Comment
ifElifCondition -> ComplexElement

255

Figure A.8: SPELL-Flow meta-model, screenshot of expanded Eclipse ecore

file, part 2
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M A.4. Correspondence meta-model

B Cort B Corremt B CorrCmt2Tgt B CorrNL2Tgt B Dict_SPELL_Modifier| B Dict_atom_basic E Dict_SPELL_Constant E Dict_augassign
toHelper
0.1
H Helper E DictionarySPELL2Flow
= value : EString © value : EString

Figure A.9: Correspondence meta-model, screenshot of Eclipse ecore dia-
gram file

v &) platform:/resource/lu.uni.snt.spell flow.correspondence/model/CORR.ecore

v [ Correspondence

~v [H Corr-» CORR_SRC, CORR_TGT

= toHelper: Helper
Cerremt -» CORRCMT_SRC, CORRCMT_TGT
CorrCmt2Tgt -» CORRCMT_SRC, CORR_TGT
CorhLZTgt -» CORRML_SRC, CORR_TGT
DicticnarySPELLZFlow
= value: EString
Dict_SPELL_Medifier -» DictionarySPELLZFlow
Dict_atom_basic -» DictionarySPELL2Flow
Dict_SPELL_Constant -> DicticnarySPELL2Flow
Dict_augassign -> Dictionary5PELL2Flow

[0 00 00 [0 00 OO 00 00 00

<

Helper
= value: EString

Figure A.10: Correspondence meta-model, screenshot of expanded Eclipse
ecore file
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M A5. Correspondence Flow2Flow meta-model

H corrR EH CORRCMT|

o foHelperC

toHelper.
H Helper
0.1 | = value: EString
= string : EString
= number : EInt

Figure A.11: Helper correspondence meta-model for SPELL-Flow to
SPELL-Flow, screenshot of Eclipse ecore diagram file

w ] platform:/resource/lu.unisnt.spell flow.correspondence-flow2flow/model/CORRFlow2Flow.ecore
v # CorrespondenceFlow2Flow

w B CORR-» CORR_TGT
= toHelper: Helper

v [ CORRCMT -> CORRCMT_TGT
= toHelperC : Helper

v [H Helper
= value: EString
= string : EString
= number: Elnt

Figure A.12: Helper correspondence Flow2Flow meta-model, screenshot of
expanded Eclipse ecore file
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Triple Graph of Running Example in Chap. 5

H A.6.
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Figure A.13: Running example: triple graph that corresponds to Fig. 5.5,

some attributes are omitted
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B A.8. Formal Details

In the following, we cite interesting formal details, to which we referred in
previous chapters.

Remark A.8.1 (Execution of Non-Deterministic Forward Propagation (cf.
Rem. 3.16 in [GHNT13b])). In the first step of operation fPpg in Fig. 4.19,
the dangling correspondences are removed by the forward alignment oper-
ation fAln leading to a new integrated model DS <> GT. This first step
s performed via a pullback construction according to Fig. 4.18, which vi-
sualises the details of the construction of the auxilary operations fAln, Del
and fAdd. The second step via operation Del marks all elements of the
integrated model that are still consistent prepares for the deletion of the re-
maining inconsistent elements. This leads to a corresponding triple sequence
(@ RN Gy) with consistent integrated model Gy. The construction of this
sequence is performed by taking the current integrated model D° < GT,
marking all elements with translation markers tr = F and applying the
rules in TRoco as long as possible. Since we do not require that the set
TRcoc is deterministic, the derived transformation sequence is in general
not unique. Due to the composition and decomposition result for triple graph
grammars [EEEY 07, HEO" 11a, HEO™ 15], there is a corresponding forward

sequence Gy % G}, with Gy = (Gf «— & — ). This sequence is extended

in the third step via operation fAdd to G’y g G’y % G.,, where
Gy = (G° « G¢ — GT). Due to non-determinism of the operational
rules, this sequence is not always source consistent. In that case, it does
not specify a valid forward model transformation sequence. Therefore, we
have to apply backtracking. This backtracking is successful, because the com-
pleteness result for model transformations based on forward rules ensures

. . tr
that there is a source consistent forward sequence sy = (G'o == G").

Note that this means that we may also have to backtrack steps of se-
t *
quence s1 = (G'y RSN G'k) obtained from step 2 wia operation Del.

This means that we derive from s1 a separation into two sub-sequences

s1a = (G'o g G';) and sy = (G g G'k), where s14 1s the part
that is preserved in sy and sy1p s the part that was reverted due to possible
backtracking. From these sequences, we directly derive the required modifi-
cations af: G£—>G’S and by G£—>G’T. AN
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B A.9. More details on evaluation results

In this section, we provide more details of the time measurments we pre-
sented in Sec. 6.2.2. In Fig. 6.44, we illustrated the time measurements of
the three translation step via (triple) graph grammars in one diagram. The
following diagrams provide the same data but separated in three diagrams.
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Figure A.14: Translation step 1: TGG

Time for refactoring via flat GG
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Figure A.15: Translation step 2: Refactoring via flat GG
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Figure A.16: Translation step 3: Hierarchies via flat GG
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Numbers With Regard to Implementation

The following diagrams and tables summarise numbers with regard to the

implementation of:

e Meta-Models:

SPELL, SPELL-Flow,

the correspondence model

(CORR) which mediates between SPELL and SPELL-Flow and the
correspondence model (CORRFlow2Flow) which includes helper nodes
for both refactoring phases

e SPELL-Flow visualisation tool

e Eclipse-plugin for automated translation from SPELL source code files
to SPELL-Flow models (i.e., XMI files)

1000
900

Comparison of Meta-Models

SPELL-Flow

| # LOC (generated XMI)

CORR
| # LOC (Xtext)
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Figure A.17: Comparison of meta-models: number of nodes, number of lines
of code in corresponding XMI file, number of lines of code in corresponding

Xtext file
Meta-Model # Nodes in Ecore | # LOC (XMI) | # LOC (Xtext)
SPELL 175 860 320
SPELL-Flow 42 165 0
CORR 10 22 0
CORRFlow2Flow 3 16 0
In sum 230 1063 320

Table A.2: Comparison of meta-models: numbers
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SPELL-Flow Visualisation Tool:

Number of files per package
(in sum: 403 files)

Figure A.18: Number of files per package in SPELL-Flow Visualisation Tool

Package # files in package
SpellFlowLanguage.diagram.edit.commands 73
SpellFlowLanguage.diagram.edit.helpers 34
SpellFlowLanguage.diagram.edit.parts 112
SpellFlowLanguage.diagram.edit.policies 72
SpellFlowLanguage.diagram.helperClasses 11
SpellFlowLanguage.diagram.helperClasses.actions 5
SpellFlowLanguage.diagram.helperClasses.edit.parts 3
SpellFlowLanguage.diagram.helperClasses.requests 1
SpellFlowLanguage.diagram.navigator 11
SpellFlowLanguage.diagram.parsers 2
SpellFlowLanguage.diagram.part 22
SpellFlowLanguage.diagram.preferences 6
SpellFlowLanguage.diagram.providers 7
SpellFlowLanguage.diagram.providers.assistants 42
SpellFlowLanguage.diagram.sheet 2
In sum 403

Table A.3: Number of files per package
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Number of LOC in SPELL-Flow Visualisation Tool
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Figure A.19: Lines of code written for SPELL-Flow visualisation tool

File #LOC
ActivityHelper.java 93
FancyTooltip.java 110
GoDeeperContextMenuProvider.java 103
GotoButton.java 164
GoUpContextMenuProvider.java 71
ISpellFlowOutlinePage.java 13
NavigationHistory.java 70
ParseSpell2SyntaxHighlightinglabel.java 303
SpellFlowContentOutline.java 44
SpellFlowThubnailEx.java 725
StepContextMenuProvider.java 88
GoDeeperAction.java 119
GotoAction.java 281
GotoReferences.java 12
GoUpAction.java 92
Task_.java 35
Changed AnchorEditPart.java 161
DiamondAnchorEditPart.java 90
SpellFlowNodeToolBar.java 102
OpenDiagramSelectionRequest.java 64
EditParts 1840
SpellFlowModelDiagramEditor.java 450
OpenDiagramEditPolicy.java 115
other files 35
In sum 5180

Table A.4: #LOC written for SPELL-Flow visualisation tool
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Number of LOC in Plugin for Automated Translation
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Figure A.20: Lines of code written for plugin for automated translation from

SPELL to SPELL-Flow

Package # files in package
Activator.java 50
ExecutionJob.java 1028
ExecutionJobFlat.java 495
ExecutionJobTGG.java 790
HenshinApplicationMonitor.java 58
TranslateButton.java 334
ModifyXMIFile.java 324
DOMRead.java 3
Children.java 18
In sum 3100

Table A.5: #LOC written for automated translation plugin
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