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Abstract 

Position uncertainty is inevitable in many force-guided robotic assembly tasks. Such uncertainty can cause a significant delay, extra energy 
expenditure, and may even results in detriments to the mated parts or the robot itself. This article suggests a strategy for identifying the accurate 
hole position in force-guided robotic peg-in-hole assembly tasks through employing only the captured wrench (the Cartesian forces and 
torques) signals of the manipulated. In the framework of using the Contact-State (CS) modeling for such robotic tasks, the identification of the 
hole position is realized through detecting the CS that corresponds for the phase of the peg-on-hole, that is the phase in which the peg is located 
precisely on the hole. Expectation Maximization-based Gaussian Mixtures Model (EM-GMM) CS modeling scheme is employed in detecting 
the CS corresponding for the peg-on-hole phase. Only the wrench signals are used in modeling and detecting the phases of the assembly 
process. The considered peg-in-hole assembly process starts from free space and as soon as the peg touches the environment with missing the 
hole, a spiral search path is followed that would survey the whole environment surface. When the CS of the peg-on-hole is detected, the hole 
position is identified.  Experiments are conducted on a KUKA Lightweight Robot (LWR) doing typical peg-in-hole assembly tasks. Multiple 
hole positions are considered and excellent performance of the proposed identification strategy is shown. 
© 2014 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Force-guided robotic assembly is desired in many 
situations like occluded parts assembly, unclean industrial 
environment, variable illumination cases, and other situations 
that make the vision systems useless. The realization of such 
robot systems requires adding control and recognition skills 
that empower the robot in having an abstract knowledge about 
its environment and handle possible uncertainties efficiently. 

One of the crucial elements of realizing force-guided 
robotic assembly is the accommodation of possible position 
uncertainty that would add a significant performance 
limitation if not well addressed. In [1], the authors proposed a 
search strategy for peg-in-hole assembly tasks that can 
accommodate the hole position uncertainty by using blind 
search within a certain circular area of a specific radius. The 

notion of six dimensional contact hyper-surface was employed 
in order to accommodate the position uncertainty in a peg-in-
hole assembly process and improved results were obtained [2]. 
Particle filter was efficiently used in localizing the hole 
position along with accommodating the high computational 
cost resulted from large dimensional data [3]. In [4,5], Kim 
et.al. proposed a strategy of finding the shape of the 
environment using the wrench (the Cartesian forces and 
torques) signals of the manipulated object and the 
accommodation of the hole position uncertainty would be 
feasible. 

Despite the promising performance reported in [3,4], the 
vast computational time and cost of determining the 
environment may hinder the implementation of such a position 
search strategy. Inspired from a blindfolded human behavior 
in finding a hole position, in this article we rely on the notion 
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of Contact-State (CS) modeling and propose a hole position 
identification strategy that uses the captured wrench readings 
of the manipulated object. The Expectation Maximization-
based Gaussian Mixtures Model (EM-GMM) CS recognition 
scheme proposed in [6] and a programmed spiral search path 
(in case of position uncertainty) are employed in building the 
proposed hole position identification algorithm. 

The rest of the article is organized as follows; in section 2 
force-guided robotic peg-in-hole assembly task is described. 
Section 3 explains the proposed hole position identification 
algorithm. Experimental validation is detailed in section 4 and 
the concluding remarks are summarized in section 5.          

2. Force-Guided Robotic Peg-in-Hole Assembly Tasks  

 Suppose that we are given the robotic peg-in-hole 
assembly task shown in Fig. 1. One can see that it is 
composed of three phases; phase 1 in which the robot is in 
free space, phase 2 in which the peg is sliding on the surface 
of the environment and searching for the hole, and phase 3 in 
which the peg is located straight on the hole (peg-on-hole 
phase). Phases 1 and 3 always happen when it is required to 
insert the peg into the hole. However, phase 2 happens when 
the peg misses the hole. Therefore, for the case of missing the 
hole, identification of the new hole position is required so that 
one can avoid the assembly process interruption or possible 
detriments.    

Fig. 1. Force-guided robotic peg-in-hole assembly tasks: (a) Phase 1 (free 
space); (b) Phase 2; (c) Zoomed image of phase 2; (d) Phase 3. 

Consider that the Cartesian force signals of the 
manipulated object to be: 

],,[ zyx fffF                                                                   (1) 

Assume that the corresponding torque signals to be: 

],,[ zyxT                                                                    (2) 

One can combine (1) and (2) in a vector to obtain the wrench 
signal of the manipulated object as: 

],,,,,[ zyxzyx fffw                                                 (3) 

The main objective of this article is to use the wrench signals 
described in (3) for identifying the hole position of Fig. 1 
when the peg misses the hole during the insertion process.  

3. Hole Position Identification Strategy  

In order to precisely identify the hole position, we need to 
add the CS recognition skills and program the robot to move 
in a certain search path in case the peg misses the hole. 
Therefore, in the following two subsections both items will be 
detailed so that the proposed hole identification strategy 
explained in section 3.3 would be feasible. 

3.1. Contact-State (CS) Modeling 

In the framework of CS modeling, one would aim to use 
the captured wrench signals (3) in detecting the different 
phases of the peg-in-hole assembly process. Expectation 
Maximization-based Gaussian Mixtures Model (EM-GMM) 
CS modeling scheme is considered one of the most efficient 
approaches in detecting the different CS phases in force-
guided robotic assembly tasks [6]. The superiority of the EM-
GMM CS modeling scheme stems from the use of the 
Gaussian Mixtures Model (GMM) in modeling the likelihood 
of the captured signals and the employment of the Expectation 
Maximization (EM) algorithm in finding the optimal 
parameters that fit the given data to the developed models. 
Thus, the non-stationary behavior, the signals abnormal 
distribution, of the captured signals is accommodated that 
result in an optimal modeling performance.   

 Consider the wrench signal (3) and suppose that each 
sample of this vector belongs to one of the phases 
yk={c1,ck,…,cC}. One can say that w(k) belongs to ci implies 
that: 

)()|()()|( jjii cpckwpcpckwp                           (4)

for i j.  The best approximation of the likelihood function 
p(w(k)|ci) results in the best modeling of w(k) using (4).  
GMM can be used in building the likelihood p(w(k)|ci) that 
would result in efficient modeling of the captured signals [7]. 
The GMM likelihood of p(w(k)|ci) can be described as: 

M
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M is the total number of Gaussian mixtures; q=( q, q, q) is 
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the GMM parameter vector; q, q, and q are the qth

Gaussian component weight, mean, and covariance 
respectively. Nq(w(k),μq, q) is the qth Gaussian distribution 
that is characterized by:  
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| q| is the determinant of q and D is the width of the 
considered vector, i.e. D=6 for the case of the wrench vector. 
Suppose that =[ 1, 2, …, M]T. One can use the EM 
algorithm in finding the optimal parameters of . In order to 
summarize the EM algorithm, consider the log-likelihood to 
be: 
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The parameters  that maximizes (7) can be described as: 

)});|(arg(max{ icXL                                             (8) 

The EM algorithm is employed in solving the optimization 
problem of (8) and as explained below: 
Step 1: Initialize the parameter vector q=( q, q, q).
Initialize the convergence parameters  and .
Step 2: (E-Step) Use the current parameter vector q for 
computing the responsibilities that are:   
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Step 3: (M-Step) Re-estimate the parameters using the current 
responsibilities: 
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with: 
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Step 4: Compute the log-likelihood: 
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Step 5: Check for the convergence: 
If | new- |   or |ln p(X; new)-ln p(X; )|  then stop. 
Otherwise go to Step 2.

Fig. 2. Cross sectional diagram of a peg-in-hole assembly process showing 
the peg (the gray), the inlay of the hole (the outer circle), and the clearance d.

3.2.      The Spiral Search Path 

When the peg misses the hole, then a search path is 
followed in order to find its accurate position. Before 
explaining the search path, we need to mention that inspired 
from a blindfolded human action, one can look for a certain 
position with closing the eyes if the search is limited to a 
certain area of a prescribed radius, otherwise the searching 
objective would be infeasible. Likewise to the force-guided 
robotic assembly task, the search of the accurate position will 
be restricted within a certain search area. Suppose that the 
clearance of the peg-in-hole assembly task, the distance 
between the peg and the inlay of the hole when centering the 
peg, is d (Fig. 2 shows the clearance of a peg-in-hole 
assembly task). In case the peg misses the hole, then the robot 
moves the peg in a spiral path on the surface of the 
environment. Archimedean spiral is used as a search path in 
order to facilitate the computations of the spiral parameter 
since the spanning distance between the consecutive turns is 
constant. Fig. 3 shows a spiral of starting radius a and 
spanning distance b. The x,y coordinates of the Archimedean 
spiral shown in Fig. 3 can be described as: 

ttrtx cos                                                        (15)

ttrty sin                                                         (16) 

r(t) is the radius of the spiral turns, (t) is the polar angle 
swept by the path curve, a is a parameter specifying the outer 
radius of the spiral path, b is a parameter specifying the 
spanning distance between two consecutive turns. It is worth 
noting that (0)=0 and it increases linearly with time. The 
equation of r(t) is: 

tbatr                                                                (17) 
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provided that:  

0tr                                                                               (18) 
        

Fig. 3. Archimedean spiral path with spanning distance b and starting radius 
of a.

Hence, the search path will follow concentric circular shapes 
with linearly decaying radii spanned by a distance of b and 
included in circular search zone of radius a. Thus both b and a 
will determine the shape of the spiral path to be followed. It is 
worth noting that the value of b should be chosen such that: 

db 2                                                                                (19) 

The constraint of (19) will ensure that the hole is swept 
properly wherever it is located inside the outer circle of Fig. 3. 

3.3. The Proposed Position Identification Algorithm 

As soon as the CS models of the three phases are 
developed, then one can use them in finding the accurate hole 
position along with the spiral search path explained above. 
More specifically, if we start from free space (CS1) then the 
robot is moved towards the hole. In case of touching the 
environment with missing the hole, the robot is entered into 
the searching mode (CS2) until it finds the hole. As soon as 
CS3 is detected, then the accurate hole position is determined. 
The proposed search strategy can be summarized by the 
following algorithm: 

Step 1: Enter the assembly clearance d and search radius a;
 
Step 2: Enter the CS models of the assembly phases; 
Step 3: Capture the wrench signals (3); 
Step 4: If CS1 is detected: 

Step 5: If CS2 is detected: 

Step 6: If CS3 is detected: 

Fig. 4 shows the flow chart of the proposed hole position 
identification strategy. One can see that the positioning of the 
hole relies only on the captured wrench signals of the 
manipulated As soon as the models of the three CSs are 
developed, then one can use them in finding the accurate hole 
position along with the use of the spiral search path explained 
above. More specifically, if we start from free space (CS1) 
then the robot is moved towards the hole. In case of touching 
the environment with missing the hole, the robot is entered 
into the searching mode (CS2) until it finds the hole. As soon 
as CS3 is detected, then the accurate hole position is 
determined.  

Fig. 4. The flow chart of the proposed hole position identification algorithm. 

4. Experimental Validation 

    In order to evaluate the performance of the proposed 
position identification strategy, a test stand is built that is 
composed of a KUKA Lightweight Robot (LWR) doing 
force-guided peg-in-hole assembly task. The clearance of the 
considered peg-in-hole assembly is 6.25 mm. Fig. 1 shows the 
test stand built for this experiment. More description on the 
KUKA LWR can be found in [8]. The robot is equipped with 
a Fast Research Interface (FRI) port that allows researchers of 
capturing the wrench and pose readings of the manipulated 
object measured by sensors installed within the robot. The 
FRI port is connected to a remote PC that performs the 
computational aspects of the modeling process. The feature of 
the PC that was used in this test stand is of Intel (R) Core 
(TM) i5-2540 CPU with 2.6 GHz speed and 4 GB RAM 
running under a Linux environment. The rate of the 
communication between the remote PC and the robot, through 

Approach the uncertain hole position; 
Go to Step3;

Implement the spiral search path using (15)-(17); 
Go to Step3;

Hole is reached;  
Stop; 
Otherwise go to Step3;

Enter the value of b according to (19); 
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the FRI, is 100 Hz. The programming is done through a C++ 
platform.  
    From Fig. 1, one can see that the considered peg-in-hole 
assembly process is composed of three phases; phase 1 in 
which the robot is in free space, phase 2 that is resulted when 
the robot misses the hole and implementing the spiral search 
path, and phase 3 in which the robot places the peg precisely 
on the hole (peg-on-hole). At the beginning, the robot is 
programmed to move along those three phases while 
capturing the wrench signals of the manipulated object. Fig. 5 
shows the signals that was obtained when programming the 
robot to move from free space, to the spiral search path, and 
finally to the hole. It is worth noting that in capturing the 
signals of Fig. 5, the spiral path was programmed to last 
significantly enough to have good and accurate models of the 
considered phases. The models of those three phases were 
developed using the EM-GMM CS modeling scheme and then 
two experiments were conducted as detailed below:  

4.1. Experiment 1 

     In this experiment, the hole is moved in the x-y plane to an 
arbitrary unknown position (all Cartesian values are with 
respect to the robot base). Since the clearance of the assembly 
is 6.25 mm, then one can take b to be any value satisfying 
(19). In this experiment, b was taken to be 5 mm. The outer 
radius a was taken to be 20 mm and the hole is assumed to be 
within the circle formed by such a radius. Implementing the 
position identification strategy described in section 3, the 
values of x and y were found to be 490.665 mm and -337.926 
mm respectively. The scenario of finding the hole position 
started in moving the robot from free space and as soon as 
CS2 is detected then the spiral search path is followed until 
CS3 is recognized and then the robot stops and the x-y values 
are stored/reported for further possible actions. Fig. 6 shows 
the signals during this experiment and the instant at which 
CS3 is detected. One can see the excellent CS detection 
performance resulted in excellent hole position identification. 
It is worth noting that the choice of a has a direct effect on the 
speed of finding out the hole position since larger radius of 
the search results in more time to survey the whole area. The 
time measured for finding the hole was found to be 11.96 sec. 

4.2. Experiment 2 

     The hole is placed arbitrarily in a larger circle of 
uncertainty and the outer radius a is chosen to be 40 mm. The 
value of b is kept at 5 mm. Using the proposed position 
identification strategy the values of x and y were found to be 
502.276 mm and -380.943 mm respectively. The captured 
signals of this experiment along with the model output of 
phase 3 are shown in Fig. 7. One can notice that as soon as the 
model of phase 3 is triggered with 1 at the output, the robot is 
stopped and the values of the x and y coordinates are stored. 
The time required to find the hole in this experiment was 
measured to be 37.81 sec. and comparing the time of this 
experiment with that of experiment 1, one can notice that the 
searching time was significantly increased when increasing 
the outer radius of the search circle. Therefore and for the 
sake of reducing the time required for such position search 
objective, it is recommended to reduce the radius of the search 
circle as much as possible so that the searching time is 
reduced accordingly.  

5. Conclusion 

The problem of the hole position identification in force-
guided robotic assembly tasks was addressed. A position 
identification strategy was proposed for such robotic tasks 
employing the captured wrench (the Cartesian force and 
torque) signals of the manipulated object. The proposed 
identification strategy is composed of two main aspects; 
detecting the Contact-State (CS) of the robot using the 
Expectation Maximization-based Gaussian Mixtures 
Modeling (EM-GMM CS) modeling scheme and a spiral 
search path. The EM-GMM CS modeling scheme adds the 
required abstract knowledge of the environment and the spiral 
search path helps in finding the hole position if the peg misses 
the hole during the mating process by sliding on the surface of 
the environment until the peg-on-hole phase is detected. 
Experiments are carried out on a KUKA Lightweight Robot 
(LWR) doing a typical peg-in-hole assembly process. Two 
distinct positions are studied and the excellent performance of 
the hole position identification is shown.

Fig. 5. The models training signals: (a) Cartesian forces; (b) Torques around the Cartesian axes. 
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Fig. 6. Experiment 1 signals: (a) Cartesian forces; (b) Torques around the Cartesian axes; (c) Phase 3 model output. 

Fig. 7. Experiment 2 signals: (a) Cartesian forces; (b) Torques around the Cartesian axes; (c) Phase 3 model output. 
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