
1

Supplementary Material
DistributedFBA.jl is part of COBRA.jl (see Fig. 1). The COBRA module wraps load.jl, distributedFBA.jl, and solve.jl. The input to the COBRA module is
a .mat file that contains data of a COBRA model as defined in (Schellenberger et al., 2011). This HDF5 model is loaded using the MAT.jl module (Kornblith
et al., 2012). Additionally, solver configuration parameters that are set in solverCfg.jl. are input to the COBRA module.

!"#$%&'()*+#

!!,'()*+#-"..%-/*+#

#"01*+# !"#$%*+#

*20/34#%

15!/&567/%189:*+#

2"17#%3';9<:

<%!7#/!

-,%-=>%/7?*+#

,"!/

@%$%&AB,%&%

C=)*/%!/DE

&7./%!/!*+#
F1&5$%&G*+#3

"&3<HCI3

';9<:*+#

2"17#%3J:K3

DLM8NE

2"17#%!

J0/,C&")90!%

O3!"#$%&

Fig. 1. Overview of the COBRA.jl package.

A parallel pool with either local or remote workers (using connect.jl) may be created using either the Julia REPL or a driver. The COBRA module
and its dependencies, such as MathProgBase.jl (Lubin et al., 2015) and solver interfaces, are spawned from the host node to each worker with the macro
@everywhere. This ensures that the full model and the solver interfaces are available on each worker (including the host), although only a subset of the
FBA problems are solved on each worker. The results are assembled on the host and fetched from the workers independent of the size of the parallel pool.

The core functions for distributing and solving multiple FBA problems are defined in the COBRA module. The main function within the COBRA
module is distributedFBA() defined in distributedFBA.jl, which loads the model from file (load.jl: loadModel()), builds the LP model (solve.jl:
buildCobraLP()), and maximises or minimises the LP problem (solve.jl: solveCobraLP()) on the spawned processes with a different set of FBA problems
using distributedFBA.jl: loopFBA(). Before the LP problems are solved, additional constraints may be added to the model using distributedFBA.jl:
preFBA!(). The FBA problems are distributed using distributedFBA.jl: splitRange() according to the splitting strategy s, which is based on the sorted
column density vector ρc of the stoichiometric matrix S:

• s = 0 : Blind splitting: default random distribution
• s = 1 : Extremal dense-and-sparse splitting: every thread receives dense and sparse reactions, starting from extremal indices of ρc
• s = 2 : Central dense-and-sparse splitting: every thread receives dense and sparse reactions, starting from the central indices of ρc

The COBRA module may be tested using runtests.jl, which also checks the computing node configuration (checkSetup.jl), and confirms that a compatible
and working solver installation is present.

References
Kornblith, S. et al. (2012) Support for reading and writing MATLAB files in Julia, GitHub code.
Lubin, M. et al. (2015) Computing in Operations Research using Julia, INFORMS Journal on Computing, 27(2), 238–248, doi:10.1287/ijoc.2014.0623.
Schellenberger, J. et al. (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0, Nature protocols,

6, 1290–1307.




