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Abstract. Many approaches for forgetting in Answer Set Program-
ming (ASP) have been proposed in recent years, in the form of spe-
cific operators, or classes of operators, following different principles
and obeying different properties. Whereas each approach was devel-
oped to somehow address some particular view on forgetting, thus
aimed at obeying a specific set of properties deemed adequate for
such view, only a recently published comprehensive overview of ex-
isting operators and properties provided a uniform and complete pic-
ture, including many novel (even surprising) results on relations be-
tween properties and operators. Yet, this overview ignored to a large
extent a different set properties for forgetting in ASP, and in this pa-
per we close this gap. It turns out that, while some of these properties
are closely related to the properties previously studied, four of them
are distinct providing novel results and insights further strengthening
established relations between existing operators.

1 Introduction
Forgetting – or variable elimination – is an operation that allows
the removal, from a knowledge base, of middle variables no longer
deemed relevant, whose importance is witnessed by its application to
cognitive robotics [35, 36, 39], resolving conflicts [26, 54, 11, 27],
and ontology abstraction and comparison [50, 25, 23, 24]. With its
early roots in Boolean Algebra [32], it has been extensively studied
within classical logic [3, 26, 28, 29, 37, 38, 51].

Only more recently, the operation of forgetting began to receive
attention in the context of logic programming and non-monotonic
reasoning, notably of Answer Set Programming (ASP). It turns out
that the rule-based nature and non-monotonic semantics of ASP
create very unique challenges to the development of forgetting op-
erators, – just as it happened with the development of other be-
lief change operators such as those for revision and update, cf.
[31, 2, 10, 30, 40, 41, 42, 8, 43, 44] – making it a special endeavour
with unique characteristics distinct from those for classical logic.

Over the years, many have proposed different approaches to for-
getting in ASP, through the characterization of the result of forget-
ting a set of atoms from a given program up to some equivalence
class, and/or through the definition of concrete operators that pro-
duce a program given an input program and atoms to be forgotten
[54, 11, 53, 48, 47, 21, 49, 9].

All these approaches were typically proposed to obey some spe-
cific set of properties deemed adequate by their authors, some
adapted from the literature on classical forgetting [55, 48, 49], oth-
ers specifically introduced for the case of ASP [11, 53, 48, 47, 21, 9].
Examples of properties include strengthened consequence, which re-
quires that the answer sets of the result of forgetting be bound to the
answer sets of the original program modulo the forgotten atoms, or
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the so-called existence, which requires that the result of forgetting
belongs to the same class of programs admitted by the forgetting op-
erator, so that the same reasoners can be used and the operator be
iterated, among many others.

The result is a complex landscape filled with operators and prop-
erties, of difficult navigation. This problem was tackled in [17] by
presenting a systematic study of forgetting in ASP, thoroughly inves-
tigating the different approaches found in the literature, their proper-
ties and relationships, giving rise to a comprehensive guide aimed at
helping users navigate this topic’s complex landscape and ultimately
assist them in choosing suitable operators for each application.

However, [17] ignores to a large extent the postulates on forgetting
in ASP introduced by Wong in [53].2 In this paper, we close this gap
by thoroughly investigating them, their relationships with other prop-
erties and existing operators, concluding that, while some of them are
straightforwardly implied by one of the previously studied proper-
ties, hence ultimately weaker than these and thus of less importance,
others turn out to be distinct and provide additional novel results fur-
ther strengthening the relations between properties and classes of op-
erators as established previously.

Besides space considerations, the main reason why these postu-
lates were left out of [17] was the fact that, thus far, they had not
played a significant role in the literature on forgetting. Whereas com-
pleting the picture presented in [17] would be sufficient reason to
thoroughly investigate these postulates, recent findings in [18] made
it even more relevant. It was shown in [18] that it is not always possi-
ble to forget while preserving so-called strong persistence – an essen-
tial property for forgetting in ASP that encodes the required preserva-
tion, under forgetting, of all relations between non-forgotten atoms –
shifting the attention to the question of when (and how) it is possible
to forget, which is to some extent related to some of Wong’s pos-
tulates. In particular, investigating Wong’s postulates led us to prove
that it may be impossible to step-wise iteratively forget a set of atoms
that can be forgotten as a whole, while preserving strong persistence.

To make the presentation self-contained, we first adapt part of
the material presented in [17]. Namely, we present general nota-
tion on HT-models, logic programs, answer sets, and on forgetting in
ASP, recall existing properties of forgetting, as discussed in [17], the
classes of operators existing in the literature, and results on relations
of properties and classes of operators. Subsequently, we introduce
the postulates from [53] and present our results on relations w.r.t.
previously established properties and on which classes of operators
satisfy which postulates. We then investigate possible generalisations
of Wong’s postulates, and the novel impossibility result concerning
step-wise iterative forgetting, before concluding.

2 We use the term postulate to follow [53] and easily distinguish them from
the properties discussed in [17]. However, their role is the same as the role
of other properties.



2 Preliminaries

We assume a propositional language LA over a signature A, a fi-
nite set of propositional atoms. The formulas of LA are inductively
defined using connectives ⊥, ∧, ∨, and ⊃:

ϕ ::= ⊥ | p | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ⊃ ϕ (1)

where p ∈ A. In addition, ¬ϕ and > are resp. shortcuts for ϕ ⊃ ⊥
and ⊥ ⊃ ⊥. Given a finite set S of formulas,

∨
S and

∧
S denote

resp. the disjunction and conjunction of all formulas in S. In particu-
lar,

∨
∅ and

∧
∅ stand for resp.⊥ and>, and ¬S and ¬¬S represent

resp. {¬ϕ | ϕ ∈ S} and {¬¬ϕ | ϕ ∈ S}. We assume that the under-
lying signature for a particular formula ϕ is A(ϕ), the set of atoms
appearing in ϕ.

HT-models Regarding the semantics of propositional formulas,
we consider the monotonic logic here-and-there (HT) and equilib-
rium models [33]. An HT -interpretation is a pair 〈H,T 〉 s.t. H ⊆
T ⊆ A. The satisfiability relation in HT, denoted |=HT, is recursively
defined as follows for p ∈ A and formulas ϕ and ψ:

• 〈H,T 〉 |=HT p if p ∈ H;
• 〈H,T 〉 6|=HT ⊥;
• 〈H,T 〉 |=HT ϕ ∧ ψ if 〈H,T 〉 |=HTϕ and 〈H,T 〉 |=HTψ;
• 〈H,T 〉 |=HT ϕ ∨ ψ if 〈H,T 〉 |=HT ϕ or 〈H,T 〉 |=HT ψ;
• 〈H,T 〉 |=HT ϕ ⊃ ψ if both (i) T |= ϕ ⊃ ψ,3 and (ii)
〈H,T 〉 |=HT ϕ implies 〈H,T 〉 |=HT ψ.

An HT -interpretation is an HT -model of a formula ϕ if
〈H,T 〉 |=HT ϕ. We denote by HT (ϕ) the set of all HT-models of
ϕ. In particular, 〈T, T 〉 ∈ HT (ϕ) is an equilibrium model of ϕ if
there is no T ′ ⊂ T s.t. 〈T ′, T 〉 ∈ HT (ϕ).

Given two formulas ϕ and ψ, ifHT (ϕ) ⊆ HT (ψ), then ϕ entails
ψ in HT, written ϕ |=HT ψ. Also, ϕ and ψ are HT-equivalent, written
ϕ ≡HT ψ, ifHT (ϕ) = HT (ψ).

For sets of atoms X,Y and V ⊆ A, Y ∼V X denotes that Y \
V = X\V . ForHT -interpretations 〈H,T 〉 and 〈X,Y 〉, 〈H,T 〉 ∼V

〈X,Y 〉 denotes that H ∼V X and T ∼V Y . For a setM of HT -
interpretations, M†V denotes the set {〈X,Y 〉 | 〈H,T 〉 ∈ M and
〈X,Y 〉 ∼V 〈H,T 〉}.

Logic Programs An (extended) logic program P is a finite set of
rules, i.e., formulas of the form∧

¬¬D ∧
∧
¬C ∧

∧
B ⊃

∨
A , (2)

where all elements in A = {a1, . . . , ak}, B = {b1, . . . , bl}, C =
{c1, . . . , cm}, D = {d1, . . . , dn} are atoms.4 Such rules r are also
commonly written as

a1 ∨ . . . ∨ ak ← b1, ..., bl, not c1, ..., not cm,

not not d1, ..., not not dn , (3)

and we use both forms interchangeably. Given r, we distinguish its
head, head(r) = A, and its body, body(r) = B ∪ ¬C ∪ ¬¬D ,
representing a disjunction and a conjunction.

As shown by Cabalar and Ferraris [6], any set of (propositional)
formulas is HT-equivalent to an (extended) logic program which is
why we can focus solely on these.

3 |= is the standard consequence relation from classical logic.
4 Extended logic programs [34] are actually more expressive, but this form is

sufficient here.

This class of logic programs, Ce, includes a number of special
kinds of rules r: if n = 0, then we call r disjunctive; if, in addi-
tion, k ≤ 1, then r is normal; if on top of that m = 0, then we call
r Horn, and fact if also l = 0. The classes of disjunctive, normal
and Horn programs, Cd, Cn, and CH , are defined resp. as a finite set
of disjunctive, normal, and Horn rules. We also call extended rules
with k ≤ 1 non-disjunctive, thus admitting a non-standard class Cnd,
called non-disjunctive programs, different from normal programs.
We have CH ⊂ Cn ⊂ Cd ⊂ Ce and also Cn ⊂ Cnd ⊂ Ce.

We now recall the answer set semantics [14] for logic programs.
Given a program P and a set I of atoms, the reduct P I is P I =
{A ← B : r of the form (3) in P,C ∩ I = ∅,D ⊆ I}. A set I ′ of
atoms is a model of P I if, for each r ∈ P I , I ′ |= B implies I ′ |= A.
I is minimal in a set S, denoted by I ∈ MIN (S), if there is no
I ′ ∈ S s.t. I ′ ⊂ I . I is an answer set of P iff I is a minimal model
of P I . Note that, for Cnd and its subclasses, this minimal model is
in fact unique. The set of all answer sets of P is denoted byAS(P ).
Note that, for Cd and its subclasses, all I ∈ AS(P ) are pairwise
incomparable. If P has an answer set, then P is consistent. The V -
exclusion of a set of answer setsM, denotedM‖V , is {X \V | X ∈
M}. Two programs P1, P2 are equivalent if AS(P1) = AS(P2)
and strongly equivalent if P1 ≡HT P2. It is well-known that answer
sets and equilibrium models coincide [33].

We also recall notions on forgetting from [17]. Given a class of
logic programs C over A, a forgetting operator is a partial function
f : C × 2A → C s.t. f(P, V ) is a program over A(P ) \ V , for each
P ∈ C and V ∈ 2A. We call f(P, V ) the result of forgetting about
V from P . Furthermore, f is called closed for C′ ⊆ C if, for every
P ∈ C′ and V ∈ 2A, we have f(P, V ) ∈ C′. A class F of forgetting
operators is a set of forgetting operators.

3 Forgetting

The principal idea of forgetting in logic programming is to remove
or hide certain atoms from a given program, while preserving its se-
mantics for the remaining atoms. [17].

Example 1 Consider the following program P = {d← not c; a←
e; e← b; b←}. The result of forgetting about atom e from P should
be a program over the remaining atoms of P , i.e., it should not con-
tain e. Intuitively, in the result, the fact b ← should persist since it
is independent of e. In addition, the link between a and b should be
preserved in some way, even if e is absent. Also, d should still follow
from the result of forgetting as the original rule d ← not c does not
contain e.

As the example indicates, preserving the semantics for the remain-
ing atoms is not necessarily tied to one unique program. Rather often,
a representative up to some notion of equivalence between programs
is considered. In this sense, many notions of forgetting for logic pro-
grams are defined semantically, i.e., they introduce a class of opera-
tors that satisfy a certain semantic characterization. Each single oper-
ator in such a class is then a concrete function that, given a program
P and a set of atoms V to be forgotten, returns a unique program, the
result of forgetting about V from P .

Definition 1 Given a class of logic programs C over A, a forgetting
operator is a partial function f : C × 2A → C s.t. f(P, V ) is a
program over A(P ) \ V , for each P ∈ C and V ∈ 2A. We call
f(P, V ) the result of forgetting about V from P . Furthermore, f is
called closed for C′ ⊆ C if, for every P ∈ C′ and V ∈ 2A, we have
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f(P, V ) ∈ C′. A class F of forgetting operators is a set of forgetting
operators.

Note that the requirement for being a partial function is a natural one
given the existing notions in the literature, where some are not closed
for certain classes of programs.

To remain as general and uniform as possible, we focus on classes
of operators. Whenever a notion of forgetting in the literature is de-
fined through a concrete forgetting operator only, we consider the
class containing that single operator.

4 Properties of Forgetting

Previous work on forgetting in ASP has introduced a variety of de-
sirable properties which we recall next. Unless stated otherwise, F is
a class of forgetting operators, and C the class of programs overA of
a given f ∈ F.

(sC) F satisfies strengthened Consequence if, for each f ∈ F, P ∈ C
and V ⊆ A, we have AS(f(P, V )) ⊆ AS(P )‖V .

(wE) F satisfies weak Equivalence if, for each f ∈ F, P, P ′ ∈ C
and V ⊆ A, we have AS(f(P, V )) = AS(f(P ′, V )) whenever
AS(P ) = AS(P ′).

(SE) F satisfies Strong Equivalence if, for each f ∈ F, P, P ′ ∈ C
and V ⊆ A: if P ≡HT P

′, then f(P, V ) ≡HT f(P ′, V ).
(W) F satisfies Weakening if, for each f ∈ F, P ∈ C and V ⊆ A,

we have P |=HT f(P, V ).
(PP) F satisfies Positive Persistence if, for each f ∈ F, P ∈ C and
V ⊆ A: if P |=HT P

′, with P ′ ∈ C and A(P ′) ⊆ A \ V , then
f(P, V ) |=HT P

′.
(NP) F satisfies Negative Persistence if, for each f ∈ F, P ∈ C and
V ⊆ A: if P 6|=HT P

′, with P ′ ∈ C and A(P ′) ⊆ A \ V , then
f(P, V ) 6|=HT P

′.
(SI) F satisfies Strong (addition) Invariance if, for each f ∈ F, P ∈
C and V ⊆ A, we have f(P, V ) ∪ R ≡HT f(P ∪ R, V ) for all
programs R ∈ C with A(R) ⊆ A \ V .

(EC) F satisfies Existence for C, i.e., F is closed for a class of pro-
grams C if there exists f ∈ F s.t. f is closed for C.

(CP) F satisfies Consequence Persistence if, for each f ∈ F, P ∈ C
and V ⊆ A, we have AS(f(P, V )) = AS(P )‖V .

(SP) F satisfies Strong Persistence if, for each f ∈ F, P ∈ C and
V ⊆ A, we have AS(f(P, V ) ∪ R) = AS(P ∪ R)‖V , for all
programs R ∈ C with A(R) ⊆ A \ V .

(wC) F satisfies weakened Consequence if, for each f ∈ F, P ∈ C
and V ⊆ A, we have AS(P )‖V ⊆ AS(f(P, V )).

Throughout the paper, whenever we write that a single operator f
obeys some property, we mean that the singleton class composed of
that operator, {f}, obeys such property.

Some notions of forgetting do only require that atoms to be for-
gotten be irrelevant:

(IR) f(P, V ) ≡HT P
′ for some P ′ not containing any v ∈ V .

However, this is not a restriction, as argued in [17], and, implicitly,
any F satisfies (IR).

The following proposition establishes all known relevant relations
between them.

Proposition 1 The following relations hold for all F:5

5 To ease the reading, here “(P)” stands for “F satisfies (P)”.

1. (CP) is incompatible with (W) as well as with (NP) (for F closed
for C, where C contains normal logic programs); [47]

2. (W) is equivalent to (NP); [20]
3. (SP) implies (PP); [20]
4. (SP) implies (SE); [21]
5. (W) and (PP) together imply (SE); [17]
6. (CP) and (SI) together are equivalent to (SP); [17]
7. (sC) and (wC) together are equivalent to (CP); [17]
8. (CP) implies (wE); [17]
9. (SE) and (SI) together imply (PP). [17]

5 Operators of Forgetting
We now review existing approaches to operators of forgetting in ASP
following [17].
Strong and Weak Forgetting The first proposals are due to Zhang
and Foo [54] introducing two syntactic operators for normal logic
programs, termed Strong and Weak Forgetting. Both start by comput-
ing a reduction corresponding to the well-known weak partial evalu-
ation (WGPPE) [4], defined as follows: for a normal logic program
P and a ∈ A, R(P, a) is the set of all rules in P and all rules of the
form head(r1) ← body(r1) \ {a} ∪ body(r2) for each r1, r2 ∈ P
s.t. a ∈ body(r1) and head(r2) = a. Then, the two operators dif-
fer on how they subsequently remove rules containing a, the atom to
be forgotten. In Strong Forgetting, all rules containing a are simply
removed:

fstrong(P, a) = {r ∈ R(P, a) | a 6∈ A(r)}

In Weak Forgetting, rules containing not a in their bodies are kept,
without the not a.

fweak(P, a) = {head(r)← body(r) \ {not a} |
r ∈ R(P, a), a 6∈ head(r) ∪ body(r)}

The motivation for this difference is whether such not a is seen
as support for the rule head (Strong) or not (Weak). In both cases,
the actual operator for a set of atoms V is defined by the sequential
application of the respective operator to each a ∈ V . Both operators
are closed for Cn. The corresponding singleton classes are defined as
follows.

Fstrong = {fstrong} Fweak = {fweak}

Semantic Forgetting Eiter and Wang [11] proposed Semantic For-
getting to address some shortcomings of the two purely syntax-based
operators fstrong and fweak. Semantic Forgetting introduces the fol-
lowing class of operators for consistent disjunctive programs:6

Fsem = {f | AS(f(P, V )) =MIN (AS(P )‖V )}

The basic idea is to characterize a result of forgetting just by its
answer sets, obtained by considering only the minimal sets among
the answer sets of P ignoring V . Three concrete algorithms are pre-
sented, two based on semantic considerations and one syntactic. Un-
like the former, the latter is not closed for classes7 C+d and C+n , since
double negation is required in general.
Semantic Strong and Weak Forgetting Wong [53] argued that se-
mantic forgetting should not focus on answer sets only, as they do
not contain all the information present in a program, and defined two
classes of forgetting operators for disjunctive programs, building on

6 Actually, classical negation can occur in scope of not , but due to the re-
striction to consistent programs, this difference is of no effect [14], so we
ignore it here.

7 Here, + denotes the restriction to consistent programs.
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HT-models.8 For program P and atom a, the set of consequences of
P is Cn(P, a) = {r | r disjunctive, P |=HT r, A(r) ⊆ A(P )}. We
obtain PS(P, a) and PW (P, a), the results of strongly and weakly
forgetting atom a from P , as follows:

1. Obtain P1 by removing from Cn(P, a): (i) r with a ∈ body(r),
(ii) a from the head of each r with not a ∈ body(r).

2. Obtain PS(P, a) and PW (P, a) from P1 by replacing/removing
rules r as follows:

r with not a in body r with a in head
S (remove) (remove)
W remove only not a remove only a

The generalization to sets of atoms V , i.e., PS(P, V ) and PW (P, V ),
can be obtained by simply sequentially forgetting each a ∈ V , yield-
ing the following classes of operators.

FS = {f | f(P, V ) ≡HT PS(P, V )}
FW = {f | f(P, V ) ≡HT PW (P, V )}

While both steps are syntactic, different strongly equivalent rep-
resentations of Cn(P, a) exist, thus providing different instances.
Wong [53] defined one construction based on inference rules for HT-
consequence, closed for Cd.
HT-Forgetting Wang et al. [48, 49] introduced HT-Forgetting, build-
ing on properties introduced by Zhang and Zhou [55] in the context
of modal logics, with the aim of overcoming problems with Wongs
notions, namely that each of them did not satisfy one of the proper-
ties (PP) and (W). HT-Forgetting is defined for extended programs
and uses representations of sets of HT-models directly.

FHT = {f | HT (f(P, V )) = HT (P )†V }

A concrete operator is presented [49] that is shown to be closed for
Ce and CH , and it is also shown that no operator exists that is closed
for either Cd or Cn.
SM-Forgetting Wang et al. [47] introduced SM-Forgetting for ex-
tended programs, aiming at preserving the answer sets of the original
program (modulo forgotten atoms).

FSM = {f | HT (f(P, V )) is a maximal subset of

HT (P )†V s.t. AS(f(P, V )) = AS(P )‖V }

A concrete operator is provided that, like for FHT, is shown to be
closed for Ce and CH . It is also shown that no operator exists that is
closed for either Cd or Cn.
Strong AS-Forgetting Knorr and Alferes [21] introduced Strong
AS-Forgetting with the aim of preserving not only the answer sets
of P itself but also those of P ∪R for anyR over the signature with-
out the atoms to be forgotten. The notion is defined abstractly for
classes of programs C.

FSas = {f | AS(f(P, V ) ∪R) = AS(P ∪R)‖V for all

programs R ∈ C with A(R) ⊆ A(P ) \ V }

A concrete operator is defined for Cnd, but not closed for Cn and only
defined for certain programs with double negation.
SE-Forgetting Delgrande and Wang [9] recently introduced SE-
Forgetting based on the idea that forgetting an atom from program
P is characterized by the set of those SE-consequences, i.e., HT-
consequences, of P that do not mention atoms to be forgotten. The
notion is defined for disjunctive programs building on an inference

8 Without loss of generality, we consider HT-models instead of SE-models
[46] as in [53].

system by Wong [52] that preserves strong equivalence. Given that
`s is the consequence relation of this system, CnA(P ) is {r ∈ LA |
r disjunctive, P `s r}. The class is defined by:

FSE = {f | f(P, V ) ≡HT CnA(P ) ∩ LA(P )\V }

An operator is provided, which is closed for Cd.
To ease later comparisons, we also include in Fig. 1 the results on

satisfaction of properties for known classes of forgetting operators
obtained in [17].

6 Wongs Properties of Forgetting
With all concepts and notation in place regarding forgetting in ASP,
the properties commonly considered, and the existing classes of for-
getting operators, we can now turn our attention to the postulates in-
troduced by Wong [53]. These postulates were defined in a somewhat
different way when compared to the properties presented in Sec. 4.
Namely, they only considered forgetting a single atom, were defined
for disjunctive programs (the maximal class of programs considered
in [53]), and used a generic formulation which allowed different no-
tions of equivalence. Here, we only consider HT-equivalence, i.e.,
strong equivalence, as, in the literature, this is clearly the more rel-
evant of the two notions considered in [53] (the other one being the
non-standard T-equivalence) and in line with previously presented
material here and in [17].

We start by recalling these postulates9 adjusting them to our nota-
tion and extending them to the most general class of extended logic
programs considered here, but maintaining, for now, the restriction
to forgetting only single atoms.

(F0) F satisfies (F0) if, for each f ∈ F, P, P ′ ∈ C and a ∈ A: if
P ≡HT P

′, then f(P, {a}) ≡HT f(P ′, {a}).
(F1) F satisfies (F1) if, for each f ∈ F, P, P ′ ∈ C and a ∈ A: if
P |=HT P

′, then f(P, {a}) |=HT f(P ′, {a}).
(F2) F satisfies (F2) if, for each f ∈ F, P, P ′ ∈ C and a ∈ A: if a

does not appear in R, then f(P ∪ R, {a}) ≡HT f(P ′, {a}) ∪ R
for all R ∈ C.

(F2-) F satisfies (F2-) if, for each f ∈ F, P ∈ C, and a ∈ A: if
P |=HT r and a does not occur in r, then f(P, {a}) |=HT r for all
rules r expressible in C.

(F3) F satisfies (F3) if, for each f ∈ F, P ∈ C and a ∈ A: f(P, {a})
does not contain any atoms that are not in P .

(F4) F satisfies (F4) if, for each f ∈ F, P ∈ C and a ∈ A:
if f(P, {a}) |=HT r, then f({r′}, {a}) |=HT r for some r′ ∈
CnA(P ).

(F5) F satisfies (F5) if, for each f ∈ F, P ∈ C and a ∈ A: if
f(P, {a}) |=HT A ← B ∪ ¬C ∪ ¬¬D , then P |=HT A ←
B ∪ ¬C ∪ {¬a} ∪ ¬¬D .

(F6) F satisfies (F6) if, for each f ∈ F, P ∈ C and a, b ∈ A:
f(f(P, {b}), {a}) ≡HT f(f(P, {a}), {b}).

These postulates represent the following: Forgetting about atom a
from HT-equivalent programs preserves HT-equivalence (F0); if a
program is an HT-consequence of another program, then forgetting
about atom a from both programs preserves this HT-consequence
(F1); when forgetting about an atom a, it does not matter whether we
add a set of rules over the remaining language before or after forget-
ting (F2); any consequence of the original program not mentioning
atom a is also a consequence of the result of forgetting about a (F2-);

9 As mentioned before, we use the term postulate to follow [53] and ease
readability. Technically, they are treated as every other property.
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sC wE SE W PP NP SI CP SP wC ECH ECn ECd ECnd
ECe

Fstrong × × × X × X X × × × X X - - -
Fweak × × × × X × X × × × X X - - -
Fsem X X × × × × × × × × X X X - -
FS × × X X X X × × × × X × X - -
FW X X X × X × X × × × X X X - -
FHT × × X X X X X × × × X × × × X
FSM X X X × X × × X × X X × × × X
FSas X X X × X × X X X X X × × × ×
FSE × × X X X X × × × × X × X - -

Figure 1. Satisfaction of properties for known classes of forgetting operators. For class F and property P, ’X’ represents that F satisfies P, ’×’ that F does not
satisfy P, and ’-’ that F is not defined for the class C in consideration.

the result of forgetting about an atom from a program only contains
atoms occurring in the original program (F3); any rule which is a
consequence of the result of forgetting about an atom from program
P is a consequence of the result of forgetting about that atom from a
single rule among the HT-consequences of P (F4); a rule obtained by
extending with not a the body of a rule which is an HT-consequence
of the result of forgetting about an atom a from program P is an
HT-consequence of P (F5); and the order is not relevant when se-
quentially forgetting two atoms (F6).

Note that CnA(P ) for (F4) is defined over the class of programs
considered in each operator, and, likewise, that the kind of rules con-
sidered in (F5) is restricted according to the class of programs con-
sidered in a given operator.

The following proposition relates these postulates and the proper-
ties in Sec. 4.

Proposition 2 The following relations hold for all F:

1. (F1) implies (F0); [53]
2. (F2) and (F1) imply (F2-); [53]
3. (SE) implies (F0);
4. (W) and (PP) together imply (F1);
5. (SI) implies (F2);
6. (PP) implies (F2-);
7. (W) implies (F5).

Postulates (F0), (F2), (F2-), and (F5) are implied by existing prop-
erties presented in [17], while (F1) is implied by a pair of these. We
discuss this in more detail next, while investigating which operators
from Sec. 5 satisfy which of the new postulates.

We start with (F0), which can readily be seen as a special case of
(SE), obtained by only considering forgetting one atom instead of a
set. It shares with (SE) the intuition that forgetting the same atom(s)
should preserve strong equivalence of programs.

Proposition 3 FS , FW , FHT, FSM, FSas and FSE satisfy (F0).
Fstrong , Fweak and Fsem do not satisfy (F0).

The fact that classes FS , FW , FHT, FSM, FSas and FSE satisfy
(F0) follows from Prop. 2 and Fig. 1, since they all satisfy (SE). In
[53], Fstrong and Fweak are shown to not satisfy (F0). For Fsem, the
argument given in [11] to show that Fsem does not satisfy (SE) also
applies to (F0). Hence, even though (F0) is weaker than (SE), the
results for all considered classes of operators coincide with those for
(SE) (see Fig.1).

As per (F1), forgetting the same atom(s) should preserve HT-
consequence between two programs. As argued in [53], this postulate
can be seen as a strengthening of (F0).

Proposition 4 FS , FW , FHT and FSE satisfy (F1). Fstrong , Fweak,
Fsem, FSM and FSas do not satisfy (F1).

The fact that FS and FW satisfy (F1) was proved in [53]. For FHT and
FSE , this result follows from Prop. 2 and Fig. 1 and because FHT and
FSE satisfy both (W) and (PP).

For the negative results, Fstrong , Fweak and Fsem cannot satisfy
(F1), since they do not satisfy (F0). For FSM and FSas, consider the
following programs P = {a← not p; p← not a} and P ′ = {a←
not p}. Then, clearly P |=HT P ′, but since f(P, p) ≡HT {a ←
not not a} and f(P ′, p) ≡HT {a ←}, for any f ∈ FSM ∪ FSas, we
have that f(P, p) 6|=HT f(P ′, p).

Thus, (F1) is distinct per se, as it provides a unique set of classes
of operators of forgetting for which it is satisfied. In particular, unlike
the weaker property (F0) and the related (SE), FSM and FSas do not
satisfy (F1), most likely because the premise in the condition for
satisfying (F1) is weaker than that of (F0).

As argued in [53], it should not matter whether we add new rules
before or after forgetting, as long as these rules do not refer to the
forgotten atom(s). Similar to (F0), postulate (F2) is a special case of
one of the properties considered in Sec. 4.

Proposition 5 Fstrong , Fweak, FW , FHT and FSas satisfy (F2). FS ,
Fsem, FSM and FSE do not satisfy (F2).

It was proved in [53] that FW satisfies (F2). The classes Fstrong ,
Fweak, FHT and FSas do satisfy (F2), since they satisfy (SI) and by
Prop. 2 and Fig. 1. Regarding the negative results, it was proved in
[53] that FS and Fsem do not satisfy (F2). For FSM and FSE , the
counterexample given in [17] for (SI) also applies for (F2). Thus, all
results coincide with those of (SI).

In [53], (F2-) was introduced as a weakening of (F2). Surprisingly,
it turns out to be a special case of (PP) by definition of both these
properties.

Proposition 6 Fweak, FS , FW , FHT, FSM, FSas and FSE satisfy
(F2-). Fstrong and Fsem do not satisfy (F2-).

The positive results follow from Prop. 2 and Fig. 1. Regarding the
two negative results, the counterexamples given in [49] for (PP) also
apply for (F2-). Thus, all results coincide with those of (PP).

In [53], two variations of (F2) are considered. One, (F2’), is dis-
carded right away as being insufficient to solve the incompatibility
between FS and (F2). The other, (F2*) restricts the program R to a
single rule, only for the sake of FS satisfying this restricted version
of (F2). But in our view, permitting only the addition of single rules
is of little value, which is why we have omitted this variant from our
considerations.
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Postulate (F3) encodes that forgetting is meant to simplify the lan-
guage of a program by removing unwanted atoms. This is reasonable,
otherwise, if atoms not occurring in a program were allowed in the
result of forgetting, a trivial solution for forgetting would be to sim-
ply rename the atoms to be forgotten using such extra atoms.

Proposition 7 All classes of operators Fstrong , Fweak, Fsem, FS ,
FW , FHT, FSM, FSas and FSE satisfy (F3).

Our definition of (classes of) forgetting operators ensures satisfac-
tion of (F3). Hence, similar to (IR) (see Sec. 4), it can be omitted
from further considerations.

The postulate (F4) states that every rule which is an HT-
consequence of the result of forgetting about atom a from P is an
HT-consequence of the result of forgetting about a from a single rule
which is itself an HT-consequence of P .

Proposition 8 Fstrong , Fweak, FS , FW , FHT, and FSE satisfy (F4).
Fsem, FSM and FSas do not satisfy (F4).

The positive result for FS , FW and FSE was shown in [53].
For FHT, this follows directly from the alternative definition of HT-
forgetting in [49]. For Fstrong and Fweak, the result follows from
the fact that this postulate is already shown to hold for a stronger no-
tion of equivalence in [53], and since the additional derivation rules
distinguishing this notion of equivalence and HT-equivalence do not
affect the result.

The negative results for FSas and FSM can be shown with a coun-
terexample based on program P = {a ← p; p ← not not p}. For
any operator in either class of forgetting operators, the result of for-
getting about p from P is strongly equivalent to a ← not not a.
However, neither this nor any other rule over {a}, which has this rule
as an HT-consequence, appears in CnA(P ). In the case of Fsem,
the negative result follows from the rather relaxed definition of the
class and the fact that for satisfying (F4) any operator in Fsem has to
satisfy it: we can easily define an operator that is still in Fsem, but
returns an arbitrary program – then (F4) clearly does not hold.

Therefore, this postulate turns out to be of interest as no previously
studied property is satisfied by precisely the same set of classes of
forgetting operators.

The intuition of (F5), according to [53], is that any rule which
is an HT-consequence of the result of forgetting must be an HT-
consequence of the program itself in the situations where the atom
to be forgotten is not known.

Proposition 9 Fstrong , Fweak, FS , FW , FHT and FSE satisfy (F5).
Fsem, FSM and FSas do not satisfy (F5).

The positive result for FS , FW and FSE was shown in [53]. A
similar argument can be used for Fweak. For Fstrong and FHT, the
result follows from Prop. 2 and the fact that these classes satisfy (W)
(cf. Fig. 1). The negative result for Fsem was shown in [53]. For FSM

and FSas, consider the program P = {a ← p; p ← not not p}.
Then, for f ∈ FSM or f ∈ FSas, we have that f(P, {p}) ≡HT {a ←
not not a}. Therefore, f(P, {p}) |=HT a ← not not a, but it is not
the case that P |=HT a← not not a, not p.

Thus, surprisingly, even though the postulate is implied by the ex-
isting property (W), the set of classes of forgetting operators that
satisfy it does not coincide with that of the stronger property, which
makes (F5) also a property of interest in the context of distinguish-
ing existing classes of forgetting operators. Also, notably, while the
properties (F4) and (F5) are different, they turn out to be satisfied by

the same set of known operators. We conjecture that this is so be-
cause both are rather closely tied to the concrete definitions of FS

and FW along which they were introduced.
Finally, (F6) encodes the irrelevance of the order in which two

atoms are forgotten.

Proposition 10 Fstrong , Fweak, Fsem, FS , FW , FHT, FSM and FSE

satisfy (F6). FSas does not satisfy (F6).

The positive result for each operator was proved in the paper where
the operator was defined (cf. Sec. 5). The negative result for FSas

follows from the fact that FSas satisfies (SP) which, as shown in
[18], implies that in certain cases it is not possible to forget certain
atoms. Take P = {p ← not not p; a ← p; b ← not p}. Forgetting
about b from P first is strongly equivalent to removing the third rule,
and subsequently forgetting about p is strongly equivalent to {a ←
not not a}. However, forgetting about p from P first while satisfying
(SP) is simply not allowed. Hence, the order of forgetting matters for
FSas. This postulate is succinct and there is no property considered
in [17] which is satisfied by all classes but FSas. In fact, we will see
in the next section that (F6) and its generalizations are of interest
for open questions related to the property (SP) recently investigated
in detail in [18], where it was shown that forgetting is not always
possible in a meaningful way, shifting the focus to investigating what
can be forgotten.

7 Conclusions
We have studied eight postulates of forgetting in ASP introduced
in [53], to fill a gap in a recent comprehensive guide on properties
and classes of operators for forgetting in ASP, and relations between
these [17].

It turns out that four of them are actually directly implied by previ-
ously considered single properties and for three among these, the sets
of classes of forgetting operators which satisfy the stronger and the
weaker properties precisely coincide. This suggests that these three,
(F0), (F2), and (F2-) can safely be ignored. Postulate (F3) can also
be safely ignored as it is always satisfied by definition of forgetting
operators.

Three of the remaining four properties, (F1), (F4), and (F5), are
in fact distinct (even though (F5) is implied by an existing property),
and no other already existing property is satisfied by precisely the
same set of classes of forgetting operators in each of these cases.
They are worth being considered for inclusion in the set of relevant
properties as not only they would provide further distinguishing cri-
teria for existing classes of operators, as they would help further clar-
ify the relation between properties (SE), (W), and (PP) considered
before, and even provide additional means to axiomatically charac-
terieze many classes of forgetting operators.

Finally, postulate (F6) is not always satisfied, but it seems that this
is solely tied to the incompatibility with the crucial property, (SP).
Though not fundamental to distinguish known classes of operators, it
helped establishing one of the fundamental results of this paper: that
even if it is possible to forget a set of atoms, it may be impossible to
step-wise iteratively forget its subsets.

Left open, for future work, is the investigation of these postulates
for forgetting for semantics other than ASP, such as [49] based on the
FLP-semantics [45], or [1, 21] based on the well-founded semantics
[13], as well as forgetting in the context of hybrid theories such as
[22, 15, 44] and reactive/evolving multi-context systems [16, 5], as
well as the development of concrete syntactical forgetting operators
that can be integrated in reasoning tools such as [12, 19, 7].
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cho, Elena Simperl, Markus Strohmaier, Mathieu d’Aquin, Kavitha
Srinivas, Paul T. Groth, Michel Dumontier, Jeff Heflin, Krishnaprasad
Thirunarayan, and Steffen Staab, volume 9366 of LNCS, pp. 569–586.
Springer, (2015).

[8] James P. Delgrande, Torsten Schaub, Hans Tompits, and Stefan
Woltran, ‘A model-theoretic approach to belief change in answer set
programming’, ACM Trans. Comput. Log., 14(2), 14, (2013).

[9] James P. Delgrande and Kewen Wang, ‘A syntax-independent approach
to forgetting in disjunctive logic programs’, in Procs. of AAAI, eds.,
Blai Bonet and Sven Koenig, pp. 1482–1488. AAAI Press, (2015).

[10] Thomas Eiter, Michael Fink, Giuliana Sabbatini, and Hans Tompits,
‘On properties of update sequences based on causal rejection’, Theory
and Practice of Logic Programming (TPLP), 2(6), 721–777, (2002).

[11] Thomas Eiter and Kewen Wang, ‘Semantic forgetting in answer set pro-
gramming’, Artif. Intell., 172(14), 1644–1672, (2008).

[12] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Os-
trowski, Torsten Schaub, and Marius Thomas Schneider, ‘Potassco: The
potsdam answer set solving collection’, AI Commun., 24(2), 107–124,
(2011).

[13] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf, ‘The well-
founded semantics for general logic programs’, J. ACM, 38(3), 620–
650, (1991).

[14] Michael Gelfond and Vladimir Lifschitz, ‘Classical negation in logic
programs and disjunctive databases’, New Generation Comput., 9(3-4),
365–385, (1991).
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