
T E C H N I C A L R E P O RT S I N C O M P U T E R S C I E N C E

Technische Universität Dortmund

Proceedings of the

16th International Workshop
on Non-Monotonic Reasoning

(NMR 2016)
April 22 – 24, 2016

Cape Town, South Africa

Editors:
Gabriele Kern-Isberner, Lehrstuhl Informatik 1, Technische Universität Dortmund

Renata Wassermann, Computer Science Department, University of São Paulo

Number: 852

Technische Universität Dortmund — Fakultät für Informatik
Otto-Hahn-Str. 14, 44227 Dortmund



Gabriele Kern-Isberner, Renata Wassermann (Editors), Proceedings of the 16th
International Workshop on Non-Monotonic Reasoning (NMR 2016), Cape Town,
South Africa; April 22 – 24, 2016. ©2016.



G a b r i e l e K e r n - I s b e r n e r, R e n a t a W a s s e r m a n n : P R E FA C E

Nonmonotonicity is crucial for any formal approach to modelling human rea-
soning – most of the conclusions we draw in our everyday lives and on which
we base (sometimes important) decisions are defeasible, prone to be given up
if further information arrives. This is in clear contrast to classical – e.g., propo-
sitional or first-order – logics which are monotonic, i.e., their deductive con-
clusions are preserved for eternity. It is due to monotonicity that all (correct)
proofs in mathematics are still valid, regardless of whatever new theories are
being developed, but also that robots based on classical logics fail in uncertain,
incompletely specified environments.

Therefore, nonmonotonic reasoning (NMR) deals with important issues in
Artificial Intelligence, and has strong connections to other areas of knowledge
representation, in particular, to belief revision, action logics, argumentation,
logic programming, preference handling, and uncertain reasoning. The NMR
workshops are the premier forum for presenting results in this broad subfield
of knowledge representation and reasoning (KR). Their aim is to bring together
active researchers, and foster discussions and collaborations on theoretical foun-
dations, applications, and system development.

NMR has a long history – it started in 1984, and is held every two years.
Recent previous NMR workshops took place in Vienna (2014), Rome (2012),
Toronto (2010), and Sydney (2008). Following established and fruitful traditions,
NMR 2016 was co-located with the 15th International Conference on Principles
of Knowledge Representation and Reasoning (KR 2016) and the 29th International
Workshop on Description Logics (DL 2016). In particular, NMR 2016 shared a joint
session with DL 2016. We were happy to welcome Laura Giordano (Universitá
del Piemonte Orientale) and Leon van der Torre (University of Luxembourg) as
invited speakers, Laura’s talk was also invited by DL 2016.

This volume contains most of the accepted papers of NMR 2016. Some pa-
pers had been already published, or are meant to be published elsewhere, so
we could only provide URL’s in those cases. This collection of NMR papers
illustrate impressively both the depth and the breadth of NMR by dealing with
theoretical issues as well as connecting different subfields of knowledge repre-
sentation and reasoning.

In Studies on Brutal Contraction and Severe Withdrawal: Preliminary Report, Marco
Garapa, Eduardo Fermé, and Maurício Reis study different classes of con-
traction operators and provide axiomatic characterizations for them. Zhiqiang
Zhuang, James Delgrande, Abhaya Nayak, and Abdul Sattar deal with inter-
leaving two kinds of nonmonotonicity: in their paper A New Approach for Re-
vising Logic Programs, they also allow the logic underlying belief revision op-
erations to be nonmonotonic. Also Aaron Hunter’s paper Ordinal Conditional
Functions for Nearly Counterfactual Revision considers an interesting and often
neglected issue in belief revision: How can revision by (nearly) counterfactual
conditionals be carried out?

Two papers study belief revision in a probabilistic environment: Gavin Rens
proposes a unified model of quantitative belief change in his paper On Stochas-

iii



tic Belief Revision and Update and their Combination, and together with Thomas
Meyer and Giovanni Casini, he also contributes to this volume by Revising In-
completely Specified Convex Probabilistic Belief Bases. Moreover, another two pa-
pers deal with connections between nonmonotonic reasoning and belief revi-
sion, on the one hand, and ontological reasoning, on the other hand: Özgür
Özçep considers Iterated Ontology Revision by Reinterpretation, and Valentina
Gliozzi focusses on typicality operators in her paper A strengthening of ratio-
nal closure in DLs: reasoning about multiple aspects.

One of the most basic ideas of nonmonotonic reasoning is to order mod-
els or states by preference relations. In Preferential Modalities Revisited, Katarina
Britz and Ivan Varzinczak apply such semantic preference relations to modal
accessibility relations, while Kristijonas C̆yras and Francesca Toni consider pref-
erences in assumption-based argumentation (ABA) frameworks in their paper
Properties of ABA+ for Non-Monotonic Reasoning. Jesse Heyninck and Christian
Straßer also emphasize the strong Relations between assumption-based approaches
in nonmonotonic logic and formal argumentation. Ringo Baumann, Thomas Lins-
bichler, and Stefan Woltran deal with Verifiability of Argumentation Semantics
by elaborating on which specific information some well-known semantics of
abstract argumentation systems can be based. Jean-Guy Mailly’s paper Using
Enthymemes to Fill the Gap between Logical Argumentation and Revision of Abstract
Argumentation Frameworks is a first approach to tackle the problem that agents
cannot decode arguments correctly due to missing or different (background)
knowledge. Thomas Linsbichler, Jörg Pührer, and Hannes Strass aim at Char-
acterizing Realizability in Abstract Argumentation by presenting algorithmic ap-
proaches that are apt to build up knowledge bases of arguments from a given
set of interpretations. A somehow dual problem is considered in the context of
belief merging in the paper Distributing Knowledge into Simple Bases by Adrian
Haret, Jean-Guy Mailly, and Stefan Woltran: How can a knowledge base arise
by merging simpler knowledge bases in a given fragment of classical logic?

Zeynep Saribatur and Thomas Eiter present a high-level representation for-
malism that can be applied to model Reactive Policies with Planning for Action
Languages. In his extended abstract, Zoltán Ésik studies Equational properties of
stratified least fixed points associated with logic programs. Adrian Paschke and
Tara Athan show in their paper Law Test Suites for Semantically-Safe Rule Inter-
change how basic principles of nonmonotonic reasoning can be adapted to ver-
ify a particular semantics. In Static and Dynamic Views on the Algebra of Modular
Systems, Eugenia Ternovska elaborates on properties of a knowledge represen-
tation framework called Algebra of Modular Systems; in particular, she uses
the algebra for a high-level encoding of problem solving on graphs.
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Abstract

We propose a method for an agent to revise its incom-
plete probabilistic beliefs when a new piece of proposi-
tional information is observed. In this work, an agent’s
beliefs are represented by a set of probabilistic formulae
– a belief base. The method involves determining a rep-
resentative set of ‘boundary’ probability distributions
consistent with the current belief base, revising each of
these probability distributions and then translating the
revised information into a new belief base. We use a
version of Lewis Imaging as the revision operation. The
correctness of the approach is proved. The expressiv-
ity of the belief bases under consideration are rather
restricted, but has some applications. We also discuss
methods of belief base revision employing the notion
of optimum entropy, and point out some of the bene-
fits and difficulties in those methods. Both the boundary
distribution method and the optimum entropy method
are reasonable, yet yield different results.

Suppose an agent represents its probabilistic knowledge
with a set of statements; every statement says something
about the probability of some features the agent is aware of.
Ideally, the agent would want to have enough information
to, at least, identify one probability distribution over all the
situations (worlds) it deems possible. However, if the agent
could not gather sufficient data or if it was not told or given
sufficient information, it would not be able to pinpoint ex-
actly one probability distribution. An agent with this sort of
ignorance, can be thought of as having beliefs compatible
with a set of distributions. Now, this agent might need to re-
vise its beliefs when new (non-probabilistic) information is
received, even though the agent’s beliefs do not characterize
a particular probability distribution over its current possible
worlds.

Several researchers argue that using a single proba-
bility distribution requires the agent to make unrealisti-
cally precise uncertainty distinctions (Grove and Halpern,
1998; Voorbraak, 1999; Yue and Liu, 2008).1 “One widely-
used approach to dealing with this has been to consider

⇤Centre for Artificial Intelligence Research
Copyright c� 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1See also the references in these cited papers concerning criti-
cisms against traditional probability theory.

sets of probability measures as a way of modeling uncer-
tainty,” (Grove and Halpern, 1998). However, simply apply-
ing standard probabilistic conditioning to each of the mea-
sures/distributions in the set individually and then combin-
ing the results is also not recommended. The framework pre-
sented in this paper proposes two ways to go from one ‘prob-
abilistically incomplete’ belief base to another when new in-
formation is acquired.

Both belief revision methods presented, essentially follow
this process: From the original belief base, determine a rel-
atively small set of belief states / probability distributions
‘compatible’ with the belief base which is, in a sense, rep-
resentative of the belief base. (We shall use the terms belief
state, probability distribution, probability function and dis-
tribution interchangeably). Then revise every belief state in
this representative set. Finally, induce a new, revised belief
base from the revised representative set.

We shall present two approaches to determine the repre-
sentative set of belief states from the current belief base:
(i) The approach we focus on involves finding belief states
which, in a sense, are at the boundaries of the constraints im-
plied by the belief base. These ‘boundary belief states’ can
be thought of as drawing the outline of the convex space of
beliefs. This outline is then revised to form a new outline
shape, which can be translated into a new belief base. (ii)
As a possible alternative approach, the representative set is a
single belief state which can be imagined to be at the center
of the outline of the first approach. This ‘central’ belief state
is found by determining the one in the space of beliefs which
is least biased or most entropic in terms of information the-
ory (Jaynes, 1978; Cover and Thomas, 1991).

For approach (i) – where the canonical set is the set of
boundary belief states – we shall prove that the revised
canonical set characterizes the set of all belief states which
would have resulted from revising all (including interior) be-
lief states compatible with the original belief base.

The relevant background theory and notations are now in-
troduced.

We shall work with classical propositional logic. Let P
be the finite set of atomic propositional variables (atoms,
for short). Formally, a world is a unique assignment of truth
values to all the atoms in P . There are thus 2n conceivable
worlds. An agent may consider some non-empty subset W
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of the conceivable worlds called the possible worlds. Often,
in the exposition of this paper, a world will be referred to
by its truth vector. For instance, if the vocabulary is placed
in order hq, ri and w3 � ¬q ^ r, then w3 may be referred
to as 01.2 Let L be all propositional formulae which can be
formed from P and the logical connectives ^ and ¬, with >
abbreviating tautology and ? abbreviating contradiction.

Let � be a sentence in L. [�] denotes the set of �-worlds,
that is, the elements of W satisfying �. The worlds satisfying
all sentences in a set of sentences K are denoted by [K].

We define the probabilistic language Lprob
= {(↵) ./ x |

↵ 2 L, ./2 {,=,�}, x 2 [0, 1]}. Sentences with strict
inequalities (<,>) are excluded from the language for now.
Such sentences are more challenging to deal with and their
inclusion is left for future work. We propose a belief base
(BB) to be a consistent (logically satisfiable) subset of Lprob .
A BB specifies an agent’s knowledge.

The basic semantic element of an agent’s beliefs is a prob-
ability distribution or a belief state

b = {(w1, p1), (w2, p2), . . . , (wn, pn)},
where pi is the probability that wi is the actual world
in which the agent is.

P

(w,p)2b p = 1. We may also
use c to refer to a belief state. For parsimony, let b =

hp1, . . . , pni be the probabilities that belief state b assigns to
w1, . . . , wn where hw1, w2, w3, w4i = h11, 10, 01, 00i, and
hw1, w2, . . . , w8i= h111, 110, . . . , 000i. Let ⇧ be the set of
all belief states over W .

b(↵) abbreviates
P

w2W,w�↵ b(w). b satisfies formula
(↵) ./ x (denoted b � (↵) ./ x) iff b(↵) ./ x. If B is
a set of formulae, then b satisfies B (denoted b � B) iff
8� 2 B, b � �. If B and B0 are sets of formulae, then B
entails B0 (denoted B |= B0) iff for all b 2 ⇧, b � B0 when-
ever b � B. If B |= {�} then we simply write B |= �. B
is logically equivalent to B0 (denoted B ⌘ B0) iff B |= B0

and B0 |= B.
Instead of an agent’s beliefs being represented by a sin-

gle belief state, a BB B represents a set of belief-states: Let
⇧

B
:= {b 2 ⇧ | b � B}. A BB B is satisfiable (consistent)

iff ⇧B 6= ;.

The technique of Lewis imaging for the revision of belief
states, requires a notion of distance between worlds to be
defined. We use a pseudo-distance measure between worlds,
as defined by Lehmann, Magidor, and Schlechta (2001) and
adopted by Chhogyal et al. (2014).

We add a ‘faithfulness’ condition, which we feel is lack-
ing from the definition of Lehmann, Magidor, and Schlechta
(2001): without this condition, a pseudo-distance measure
would allow all worlds to have zero distance between them.
Boutilier (1998) mentions this condition, and we use his ter-
minology: “faithfulness”.
Definition 1. A pseudo-distance function d : W ⇥ W !
Z satisfies the following four conditions: for all worlds
w,w0, w00 2 W ,

1. d(w,w0
) � 0 (Non-negativity)

2w � ↵ is read ‘w is a model for/satisfies ↵’.

2. d(w,w) = 0 (Identity)
3. d(w,w0

) = d(w0, w) (Symmetry)
4. d(w,w0

)+d(w0, w00
) � d(w,w00

) (Triangular Inequality)
5. if w 6= w0, then d(w,w0

) > 0 (Faithfulness)

Presently, the foundation theory, or paradigm, for study-
ing belief change operations is commonly known as AGM
theory (Alchourrón, Gärdenfors, and Makinson, 1985;
Gärdenfors, 1988). Typically, belief change (in a static
world) can be categorized as expansion, revision or contrac-
tion, and is performed on a belief set, the set of sentences K
closed under logical consequence. Expansion (denoted +)
is the logical consequences of K [ {↵}, where ↵ is new in-
formation and K is the current belief set. Contraction of ↵
is the removal of some sentences until ↵ cannot be inferred
from K. It is the reduction of beliefs. Revision is when ↵ is
(possibly) inconsistent with K and K is (minimally) modi-
fied so that the new K remains consistent and entails ↵. In
this view, when the new information is consistent with the
original beliefs, expansion and revision are equivalent.

The next section presents a generalized imaging method
for revising probabilistic belief states. Then we describe the
application of generalized imaging in our main contribution;
revising boundary belief states instead of all belief states.
The subsequent section explain another approaches of revis-
ing our belief bases, which prepares us for discussions in
the rest of the paper. The latter method finds a single rep-
resentative belief state through maximum entropy inference.
Both the boundary belief state method and the maximum en-
tropy method are reasonable, yet yield different results – a
seeming paradox is thus uncovered. Then future possible di-
rections of research are discussed. We end with a section on
the related work and the concluding section.

Generalized Imaging
It is not yet universally agreed what revision means in a
probabilistic setting. One school of thought says that prob-
abilistic expansion is equivalent to Bayesian conditioning.
This is evidenced by Bayesian conditioning (BC) being de-
fined only when b(↵) 6= 0, thus making BC expansion
equivalent to BC revision. In other words, one could define
expansion (restricted revision) to be

b BC ↵ = {(w, p) | w 2 W, p = b(w | ↵), b(↵) 6= 0}.
To accommodate cases where b(↵) = 0, that is, where ↵

contradicts the agent’s current beliefs and its beliefs need to
be revised in the stronger sense, we shall make use of imag-
ing. Imaging was introduced by Lewis (1976) as a means of
revising a probability function. It has also been discussed
in the work of, for instance, Gärdenfors (1988); Dubois
and Prade (1993); Chhogyal et al. (2014); Rens and Meyer
(2015). Informally, Lewis’s original solution for accommo-
dating contradicting evidence ↵ is to move the probability
of each world to its closest, ↵-world. Lewis made the strong
assumption that every world has a unique closest ↵-world.
More general versions of imaging allows worlds to have sev-
eral, equally proximate, closest worlds.
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Gärdenfors (1988) calls one of his generalizations of
Lewis’s imaging general imaging. Our method is also a gen-
eralization. We thus refer to his as Gärdenfors’s general
imaging and to our method as generalized imaging to dis-
tinguish them. It should be noted that all three these imag-
ing methods are general revision methods and can be used in
place of Bayesian conditioning for expansion. “Thus imag-
ing is a more general method of describing belief changes
than conditionalization,” (Gärdenfors, 1988, p. 112).

Let Min(↵, w, d) be the set of ↵-worlds closest to w with
respect to pseudo-distance d. Formally,

Min(↵, w, d) :=

{w0 2 [↵] | 8w00 2 [↵], d(w0, w)  d(w00, w)},
where d(·) is some pseudo-distance measure between
worlds (e.g., Hamming or Dalal distance).
Example 1. Let the vocabulary be {q, r, s}. Let ↵ be (q ^
r) _ (q ^ ¬r ^ s). Suppose d is Hamming distance. Then

Min((q ^ r) _ (q ^ ¬r ^ s), 111, d) = {111}
Min((q ^ r) _ (q ^ ¬r ^ s), 110, d) = {110}
Min((q ^ r) _ (q ^ ¬r ^ s), 101, d) = {101}
Min((q ^ r) _ (q ^ ¬r ^ s), 100, d) = {110, 101}
Min((q ^ r) _ (q ^ ¬r ^ s), 011, d) = {111}
Min((q ^ r) _ (q ^ ¬r ^ s), 010, d) = {110}
Min((q ^ r) _ (q ^ ¬r ^ s), 001, d) = {101}
Min((q ^ r) _ (q ^ ¬r ^ s), 000, d) = {110, 101}

⇤
Definition 2 (GI). Then generalized imaging (denoted GI) is
defined as

b GI ↵ := {(w, p) | w 2 W, p = 0 if w 62 [↵],

else p =

X

w02W
w2Min(↵,w0,d)

b(w0
)/|Min(↵, w0, d)|}.

In words, b GI ↵ is the new belief state produced by tak-
ing the generalized image of b with respect to ↵. Notice how
the probability mass of non-↵-worlds is shifted to their clos-
est ↵-worlds. If a non-↵-world w⇥ with probability p has n
closest ↵-worlds (equally distant), then each of these closest
↵-worlds gets p/n mass from w⇥.

We define b�↵ := b � ↵ so that we can write b�↵(w), where
� is a revision operator.
Example 2. Continuing on Example 1: Let b =

h0, 0.1, 0, 0.2, 0, 0.3, 0, 0.4i.
(q ^ r) _ (q ^ ¬r ^ s) is abbreviated as ↵.

bGI↵ (111) =

P

w02W
1112Min(↵,w0,d)

b(w0
)/|Min(↵, w0, d)|

= b(111)/|Min(↵, 111, d)| + b(011)/|Min(↵, 011, d)| =

0/1 + 0/1 = 0.

bGI↵ (110) =

P

w02W
1102Min(↵,w0,d)

b(w0
)/|Min(↵, w0, d)|

= b(110)/|Min(↵, 110, d)| + b(100)/|Min(↵, 100, d)| +

b(010)/|Min(↵, 010, d)| + b(000)/|Min(↵, 000, d)| =

0.1/1 + 0.2/2 + 0.3/1 + 0.4/2 = 0.7.

bGI↵ (101) =

P

w02W
1012Min(↵,w0,d)

b(w0
)/|Min(↵, w0, d)|

= b(101)/|Min(↵, 101, d)| + b(100)/|Min(↵, 100, d)| +
b(001)/|Min(↵, 001, d)| + b(000)/|Min(↵, 000, d)| =

0/1 + 0.2/2 + 0/1 + 0.4/2 = 0.3.

And bGI↵ (100) = bGI↵ (011) = bGI↵ (010) = bGI↵ (001) =

bGI↵ (000) = 0. ⇤

Revision via GI and boundary belief states
Perhaps the most obvious way to revise a given belief base
(BB) B is to revise every individual belief state in ⇧B and
then induce a new BB from the set of revised belief states.
Formally, given observation ↵, first determine a new belief
state b↵ for every b 2 ⇧B via the defined revision operation:

⇧

B↵

= {b↵ 2 ⇧ | b↵ = b GI ↵, b 2 ⇧B}.
If there is more than only a single belief state in ⇧B , then
⇧

B contains an infinite number of belief states. Then how
can one compute ⇧B↵

? And how would one subsequently
determine B↵ from ⇧B↵

?
In the rest of this section we shall present a finite method

of determining⇧B↵

. What makes this method possible is the
insight that ⇧B can be represented by a finite set of ‘bound-
ary’ belief states – those belief states which, in a sense, rep-
resent the limits or the convex hull of ⇧B . We shall prove
that the set of revised boundary belief states defines ⇧B↵

.
Inducing B↵ from ⇧

B↵

is then relatively easy, as will be
seen.

Let W perm be every permutation on the ordering of
worlds in W . For instance, if W = {w1, w2, w3, w4},
then W perm

= {hw1, w2, w3, w4i, hw1, w2, w4, w3i,
hw1, w3, w2, w4i, . . ., hw4, w3, w2, w1i}. Given an ordering
W# 2 W perm , let W#

(i) be the i-th element of W#; for
instance, hw4, w3, w2, w1i(2) = w3. Suppose we are given
a BB B. We now define a function which, given a permuta-
tion of worlds, returns a belief state where worlds earlier in
the ordering are assigned maximal probabilities according to
the boundary values enforced by B.
Definition 3. MaxASAP(B,W#

) is the b 2 ⇧

B such
that for i = 1, . . . , |W |, 8b0 2 ⇧

B , if b0 6= b, then
Pi

j=1 b(W
#
(j)) � Pi

k=1 b
0
(W#

(k)).

Example 3. Suppose the vocabulary is {q, r} and B1 =

{(q) � 0.6}. Then, for instance, MaxASAP(B1, h01,
00, 11, 10i) = {(01, 0.4), (00, 0), (11, 0.6), (10, 0)} =

{(11, 0.6), (10, 0), (01, 0.4), (00, 0)}. ⇤
Definition 4. We define the boundary belief states of BB B
as the set

⇧

B
bnd := {b 2 ⇧B |

W# 2 W perm , b = MaxASAP(B,W#
)}

Note that |⇧B
bnd |  |W perm |.
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Example 4. Suppose the vocabulary is {q, r} and B1 =

{(q) � 0.6}. Then

⇧

B1
bnd = {{(11, 1.0), (10, 0.0), (01, 0.0), (00, 0.0)},

{(11, 0.0), (10, 1.0), (01, 0.0), (00, 0.0)},
{(11, 0.6), (10, 0.0), (01, 0.4), (00, 0.0)},
{(11, 0.6), (10, 0.0), (01, 0.0), (00, 0.4)},
{(11, 0.0), (10, 0.6), (01, 0.4), (00, 0.0)},
{(11, 0.0), (10, 0.6), (01, 0.0), (00, 0.4)}}.

⇤
Next, the revision operation is applied to every belief state

in ⇧B
bnd . Let (⇧B

bnd)
GI
↵ := {b0 2 ⇧ | b0 = bGI↵ , b 2 ⇧B

bnd}.
Example 5. Suppose the vocabulary is {q, r} and B1 =

{(q) � 0.6}. Let ↵ be (q ^ ¬r) _ (¬q ^ r). Then

(⇧

B1
bnd)

GI
↵ = {{(11, 0.0), (10, 0.5), (01, 0.5), (00, 0.0)},

{(11, 0.0), (10, 1.0), (01, 0.0), (00, 0.0)},
{(11, 0.0), (10, 0.3), (01, 0.7), (00, 0.0)},
{(11, 0.0), (10, 0.6), (01, 0.4), (00, 0.0)},
{(11, 0.0), (10, 0.8), (01, 0.2), (00, 0.0)}}.

(Two revision operations produce
{(11, 0), (10, 0.5), (01, 0.5), (00, 0)}.) ⇤

To induce the new BB B↵
bnd from (⇧

B
bnd)

GI
↵ , the following

procedure is executed. For every possible world, the pro-
cedure adds a sentence enforcing the upper (resp., lower)
probability limit of the world, with respect to all the revised
boundary belief states. Trivial limits are excepted.

For every w 2 W , (�w)  y 2 B↵, where y =

maxb2(⇧B
bnd )

GI
↵
b(w), except when y = 1, and (�w) �

y 2 B↵, where y = minb2(⇧B
bnd )

GI
↵
b(w), except when

y = 0.

The intention is that the procedure specifies B↵ to repre-
sent the upper and lower probability envelopes of the set of
revised boundary belief states – B↵ thus defines the entire
revised belief state space (cf. Theorem 1).
Example 6. Continuing Example 5, using the translation
procedure just above, we see that B↵

1bnd = {(�11)  0,
(�10) � 0.3, (�01)  0.7, (�00)  0.0}.

Note that if we let B0
= {((q ^ ¬r) _ (¬q ^ r)) = 1,

(q ^ ¬r) � 0.3}, then ⇧B0
= ⇧

B↵
1bnd . ⇤

Example 7. Suppose the vocabulary is {q, r} and B2 =

{(¬q ^ ¬r) = 0.1}. Let ↵ be ¬q. Then

⇧

B2
bnd = {{(11, 0.9), (10, 0), (01, 0), (00, 0.1)},

{(11, 0), (10, 0.9), (01, 0), (00, 0.1)},
{(11, 0), (10, 0), (01, 0.9), (00, 0.1)}},

(⇧

B2
bnd)

GI
↵ = {{(11, 0), (10, 0), (01, 0.9), (00, 0.1)},

{(11, 0), (10, 0), (01, 0), (00, 1)}} and

B↵
2bnd = {(�11)  0, (�10)  0, (�01)  0.9, (�00) �

0.1}.
Note that if we let B0

= {(¬q) = 1, (¬q^r)  0.9}, then
⇧

B0
= ⇧

B↵
2bnd . ⇤

Let WMin(↵,d) be a partition of W such
that {wi

1, . . . , w
i
ni} is a block in WMin(↵,d) iff

|Min(↵, wi
1, d)| = · · · = |Min(↵, wi

ni, d)|. Denote an
element of block {wi

1, . . . , w
i
ni} as wi, and the block of

which wi is an element as [wi
]. Let i = |Min(↵, wi, d)|,

in other words, the superscript in wi indicates the size of
Min(↵, wi, d). Let m := maxw2W |Min(↵, w, d)|.
Observation 1. Let �1, �2, . . . , �m be positive integers such
that i < j iff �i < �j . Let ⌫1, ⌫2, . . . , ⌫m be values in [0, 1]
such that

Pm
k=1 ⌫k = 1. Associate with every ⌫i a maximum

value it is allowed to take: most(⌫i). For every ⌫i, we define
the assignment value

av(⌫i) :=

⇢

most(⌫i) if
Pi

k=1  1

1�Pi�1
k=1 otherwise

Determine first av(⌫1), then av(⌫2) and so on. Then

av(⌫1)

�1
+ · · ·+ av(⌫m)

�m
>
⌫01
�1

+ · · ·+ ⌫0m
�m

whenever ⌫0i 6= av(⌫i) for some i. ⇤
For instance, let �1 = 1, �2 = 2, �3 = 3, �4 = 4.

Let most(⌫1) = 0.5, most(⌫2) = 0.3, most(⌫3) = 0.2,
most(⌫4) = 0.3. Then av(⌫1) = 0.5, av(⌫2) = 0.3,
av(⌫3) = 0.2, av(⌫4) = 0 and

0.5

1

+

0.3

2

+

0.2

3

+

0

4

= 0.716.

But
0.49

1

+

0.3

2

+

0.2

3

+

0.01

4

= 0.709.

And
0.5

1

+

0.29

2

+

0.2

3

+

0.01

4

= 0.714.

Lemma 1 essentially says that the belief state in⇧B which
causes a revised belief state to have a maximal value at world
w (w.r.t. all belief states in ⇧B), will be in ⇧B

bnd .
Lemma 1. For all w 2 W ,
argmaxbX2⇧B

P

w02W
w2Min(↵,w0,d)

bX(w0
)/|Min(↵, w0, d)| is

in ⇧B
bnd .

Proof. Note that
X

w02W
w2Min(↵,w0,d)

b(w0
)/|Min(↵, w0, d)|

can be written in the form
P

w02[w1]
w2Min(↵,w0,d)

b(w0
)

1

+ · · ·+

P

w02[wm]
w2Min(↵,w0,d)

b(w0
)

m
.

Observe that there must be a W# 2 W perm such that
W#

= hw1
1, . . . , w

1
n1, . . . , w

m
1 , . . . , wm

nmi. Then by the
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definition of the set of boundary belief states (Def. 4),
MaxASAP(B,W#

) will assign maximal probability mass
to [w1

] = {w1
1, . . . , w

1
n1}, then to [w2

] = {w2
1, . . . , w

m
n2}

and so on.
That is, by Observation 1, for some bx 2 ⇧B

bnd , bx(w) =
maxbX2⇧B

P

w02W
w2Min(↵,w0,d)

bX(w0
)/|Min(↵, w0, d)|

for all w 2 W . Therefore,
argmaxbX2⇧B

P

w02W
w2Min(↵,w0,d)

bX(w0
)/|Min(↵, w0, d)| is

in ⇧B
bnd .

Let
xw

:= maxb2⇧B
bnd

b(w) X
w
:= maxb2⇧B b(w)

yw := maxb2(⇧B
bnd )

GI
↵

b(w) Y
w
:= maxb2(⇧B)GI

↵
b(w)

xw
:= minb2⇧B

bnd
b(w) Xw

:= minb2⇧B b(w)

yw := minb2(⇧B
bnd )

GI
↵

b(w) Y w
:= minb2(⇧B)GI

↵
b(w)

Lemma 2 states that for every world, the upper/lower
probability of the world with respect to ⇧B

bnd is equal to the
upper/lower probability of the world with respect to⇧B . The
proof requires Observation 1 and Lemma 1.

Lemma 2. For all w 2 W , yw = Y
w

and yw = Y w.

Proof. Note that if w 62 [↵], then yw = Y
w
= 0 and yw =

Y w
= 0.

We now consider the cases where w 2 [↵].

yw = Y
w

iff
max

b2(⇧B
bnd )

b(w) = max

b2(⇧B)
b(w)

iff

max

bx2⇧B
bnd

X

w02W
w2Min(↵,w0,d)

bx(w
0
)/|Min(↵, w0, d)|

= max

bX2⇧B

X

w02W
w2Min(↵,w0,d)

bX(w0
)/|Min(↵, w0, d)|

if
bx(w) = bX(w), where

bx(w) := max

bx2⇧B
bnd

X

w02W
w2Min(↵,w0,d)

bx(w
0
)/|Min(↵, w0, d)|

and

bX(w) := max

bX2⇧B

X

w02W
w2Min(↵,w0,d)

bX(w0
)/|Min(↵, w0, d)|.

Note that
X

w02W
w2Min(↵,w0,d)

b(w0
)/|Min(↵, w0, d)|

can be written in the form
P

w02[w1]
w2Min(↵,w0,d)

b(w0
)

1

+ · · ·+

P

w02[wm]
w2Min(↵,w0,d)

b(w0
)

m
.

Then by Observation 1, bX(w) is in ⇧B
bnd . And also by

Lemma 1, the belief state in ⇧B
bnd identified by bX(w) must

be the one which maximizes
X

w02W
w2Min(↵,w0,d)

bx(w
0
)/|Min(↵, w0, d)|,

where bx 2 ⇧B
bnd . That is, bx = bX .

With a symmetrical argument, it can be shown that yw =

Y w.

In intuitive language, the following theorem says that the
BB determined through the method of revising boundary be-
lief states captures exactly the same beliefs and ignorance as
the belief states in ⇧B which have been revised. This corre-
spondence relies on the fact that the upper and lower prob-
ability envelopes of ⇧B can be induce from ⇧

B
bnd , which is

what Lemma 2 states.

Theorem 1. Let (⇧B
)

GI
↵ := {bGI↵ 2 ⇧ | b 2 ⇧B}. Let B↵

bnd

be the BB induced from (⇧

B
bnd)

GI
↵ . Then ⇧B↵

bnd
= (⇧

B
)

GI
↵ .

Proof. We show that 8b02⇧, b02⇧B↵
bnd () b02(⇧

B
)

GI
↵ .

()) b0 2 ⇧B↵
bnd implies 8w 2 W , yw  b0(w)  yw

(by definition of B↵
bnd ). Lemma 2 states that for all w 2 W ,

yw = Y
w

and yw = Y w. Hence, 8w 2 W , Y w  b0(w) 
Y

w
Therefore, b0(w) 2 (⇧

B
)

GI
↵ .

(() b0(w) 2 (⇧

B
)

GI
↵ implies 8w 2 W , Y w  b0(w) 

Y
w

. Hence, by Lemma 2, 8w 2 W , yw  b0(w)  yw.
Therefore, by definition of B↵

bnd , b02⇧B↵
bnd .

Revising via a Representative Belief State
Another approach to the revision of a belief base (BB) is to
determine a representative of ⇧B (call it brep), change the
representative belief state via the the defined revision op-
eration and then induce a new BB from the revised repre-
sentative belief state. Selecting a representative probability
function from a family of such functions is not new (Gold-
szmidt, Morris, and Pearl, 1990; Paris, 1994, e.g.). More for-
mally, given observation ↵, first determine brep 2 ⇧B , then
compute its revision b↵rep , and finally induce B↵ from b↵rep .

We shall represent ⇧B (and thus B) by the single ‘least
biased’ belief state, that is, the belief state in ⇧B with high-
est entropy:

Definition 5 (Shannon Entropy).

H(b) := �
X

w2W

b(w) ln b(w),

where b is a belief state.
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Definition 6 (Maximum Entropy). Traditionally, given
some set of distributions ⇧, the most entropic distribution
in ⇧ is defined as

bH := argmax

b2⇧
H(b).

Suppose B2 = {(¬q ^ ¬r) = 0.1}. Then the belief state
b 2 ⇧B2 satisfying the constraints posed by B2 for which
H(b) is maximized is brep = bH = h0.3, 0.3, 0.3, 0.1i.

The above distribution can be found directly by applying
the principle of maximum entropy: The true belief state is
estimated to be the one consistent with known constraints,
but is otherwise as unbiased as possible, or “Given no other
knowledge, assume that everything is as random as possible.
That is, the probabilities are distributed as uniformly as pos-
sible consistent with the available information,” (Poole and
Mackworth, 2010). Obviously world 00 must be assigned
probability 0.1. And the remaining 0.9 probability mass
should be uniformly spread across the other three worlds.

Applying GI to brep on evidence ¬q results in b¬q
rep = h0,

0, 0.6, 0.4i.
Example 8. Suppose the vocabulary is {q, r}, B1 =

{(q) � 0.6} and ↵ is (q ^ ¬r) _ (¬q ^ r). Then brep =

argmaxb2⇧B1 H(b) = h0.3, 0.3, 0.2, 0.2i. Applying GI to
brep on ↵ results in b↵rep = h0, 0.61, 0.39, 0i. b↵rep can be
translated into B↵

1rep as {(q^¬r) = 0.61, (¬q^r) = 0.39}.
⇤

Still using ↵ = (q ^ ¬r) _ (¬q ^ r), notice that
⇧

B↵
1rep 6= ⇧B↵

1bnd . But how different are B↵
1rep = {(q^¬r) =

0.61, (¬q ^ r) = 0.39} and B↵
1bnd = {(q ^ r)  0,

(q^¬r) � 0.3, (¬q^ r)  0.7, (¬q^¬r)  0.0}? Perhaps
one should ask, how different B↵

1rep is from the representa-
tive of B↵

1bnd : The least biased belief state satisfying B↵
1bnd

is h0, 0.5, 0.5, 0i. That is, How different are h0, 0.61, 0.39, 0i
and h0, 0.5, 0.5, 0i?

In the case of B2, we could compare B¬q
2bnd = {(�11) 

0, (�10)  0, (�01)  0.9, (�00) � 0.1} with b¬q
rep = h0, 0,

0.6, 0.4i. Or if we take the least biased belief state satisfying
B¬q

2bnd , we can compare h0, 0, 0.5, 0.5i with h0, 0, 0.6, 0.4i.
It has been extensively argued (Jaynes, 1978; Shore and

Johnson, 1980; Paris and Vencovsk, 1997) that maximum
entropy is a reasonable inference mechanism, if not the most
reasonable one (w.r.t. probability constraints). And in the
sense that the boundary belief states method requires no
compression / information loss, it also seems like a very rea-
sonable inference mechanism for revising BBs as defined
here. Resolving this misalignment in the results of the two
methods is an obvious task for future research.

Future Directions
Some important aspects still missing from our framework
are the representation of conditional probabilistic informa-
tion such as is done in the work of Kern-Isberner, and the
association of information with its level of entrenchment.
On the latter point, when one talks about probabilities or
likelihoods, if one were to take a frequentist perspective, in-
formation observed more (less) often should become more

(less) entrenched. Or, without considering observation fre-
quencies, an agent could be designed to have, say, one or
two sets of deeply entrenched background knowledge (e.g.,
domain constraints) which does not change or is more im-
mune to change than ‘regular’ knowledge.

Given that we have found that the belief base result-
ing from revising via the boundary-belief-states approach
differs from the belief base resulting from revising via
the representative-belief-state approach, the question arises,
When is it appropriate to use a representative belief state de-
fined as the most entropic belief state of a given set ⇧B?
This is an important question, especially due to the popular-
ity of employing the Maximum Entropy principle in cases of
undespecified probabilistic knowledge (Jaynes, 1978; Gold-
szmidt, Morris, and Pearl, 1990; Hunter, 1991; Voorbraak,
1999; Kern-Isberner, 2001; Kern-Isberner and Rdder, 2004)
and the principle’s well-behavedness (Shore and Johnson,
1980; Paris, 1994; Kern-Isberner, 1998).

Katsuno and Mendelzon (1991) modified the eight AGM
belief revision postulates (Alchourrón, Gärdenfors, and
Makinson, 1985) to the following six (written in the nota-
tion of this paper), where ⇤ is some revision operator.3

• B↵
⇤ |= (↵) = 1.

• If B[{(↵) = 1} is satisfiable, then B↵
⇤ ⌘ B[{(↵) = 1}.

• If (↵) = 1 is satisfiable, then B↵
⇤ is also satisfiable.

• If ↵ ⌘ �, then B↵
⇤ ⌘ B�

⇤ .
• B↵

⇤ [ {(�) = 1} |= B↵^�
⇤ .

• If B↵
⇤ [ {(�) = 1} is satisfiable, then B↵^�

⇤ |= B↵
⇤ [

{(�) = 1}.
Testing the various revision operations against these postu-
lates is left for a sequel paper.

An extended version of maximum entropy is minimum
cross-entropy (MCE) (Kullback, 1968; Csiszár, 1975):
Definition 7 (Minimum Cross-Entropy). The ‘directed di-
vergence’ of distribution c from distribution b is defined as

R(c, b) :=
X

w2W

c(w) ln
c(w)

b(w)
.

R(c, b) is undefined when b(w) = 0 while c(w) > 0; when
c(w) = 0, R(c, b) = 0, because limx!0 ln(x) = 0. Given
new evidence � 2 Lprob , the distribution c satisfying � di-
verging least from current belief state b is

argmin

c2⇧,c��
R(c, b).

Definition 8 (MCI). Then MCE inference (denoted (MCI))
is defined as

bMCI ↵ := argmin

b02⇧,b0�(↵)=1

R(b0, b).

In the following example, we interpret revision as MCE
inference.

3In these postulates, it is sometimes necessary to write an ob-
servation ↵ as a BB, i.e., as {(↵) = 1} – in the present framework,
observations are regarded as certain.
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Example 9. Suppose the vocabulary is {q, r} and B1 =

{(q) � 0.6}. Let ↵ be (q ^ ¬r) _ (¬q ^ r). Then

⇧

B1
bnd = {{(11, 1.0), (10, 0.0), (01, 0.0), (00, 0.0)},

{(11, 0.0), (10, 1.0), (01, 0.0), (00, 0.0)},
{(11, 0.6), (10, 0.0), (01, 0.4), (00, 0.0)},
{(11, 0.6), (10, 0.0), (01, 0.0), (00, 0.4)},
{(11, 0.0), (10, 0.6), (01, 0.4), (00, 0.0)},
{(11, 0.0), (10, 0.6), (01, 0.0), (00, 0.4)}},

(⇧

B1
bnd)

MCI
↵ = {{(11, 0), (10, 0), (01, 1), (00, 0)},

{(11, 0), (10, 1), (01, 0), (00, 0)},
{(11, 0), (10, 0.6), (01, 0.4), (00, 0)}} and

B↵
1bnd = {(�11)  0, (�00)  0}.
Note that if we let B0

= {((q ^ ¬r) _ (¬q ^ r)) = 1},
then ⇧B0

= ⇧

B↵
1bnd . ⇤

Recall from Example 6 that B0 included (q ^
¬r) � 0.3. Hence, in this particular case, combining
the boundary belief states approach with MCI results in
a less informative revised belief base than when GI is
used. The reason for the loss of information might be
due to R(·, {(11, 1.0), (10, 0.0), (01, 0.0), (00, 0.0)}) and
R(·, {(11, 0.6), (10, 0.0), (01, 0.0), (00, 0.4)}) being unde-
fined: Recall that R(c, b) is undefined when b(w) = 0 while
c(w) > 0. But then there is no belief state c for which c � ↵
and R(·) is defined (with these two belief states as argu-
ments). Hence, there are no revised counterparts of these two
belief states in (⇧

B1
bnd)

MCI
↵ . We would like to analyse MCI

more within this framework. In particular, in the future, we
would like to determine whether a statement like Theorem 1
holds for MCI too.

In MCE inference, b-consistency of evidence � is defined
as: There exists a belief state c such that c � � and c is
totally continuous with respect to b (i.e., b(w) = 0 implies
c(w) = 0). MCE is undefined when the evidence is not b-
consistent. This is analogous to Bayesian conditioning be-
ing undefined for b(↵) = 0. Obviously, this is a limitation
of MCE because some belief states may not be considered
as candidate revised belief states. Admittedly, we have not
searched the literature on this topic due to it being out of the
present scope.

As far as we know, imaging for belief change has never
been applied to (conditional) probabilistic evidence. Due to
issues with many revision methods required to be consistent
with prior beliefs, and imaging not having this limitation, it
might be worthwhile investigating.

The translation from the set of belief states back to a be-
lief base is a mapping from every belief state to a probabil-
ity formula. The size of the belief base is thus in the order
of |W perm |, where |W | is already exponential in the size of
P , the set of atoms. As we saw in several examples in this
paper, the new belief base often has a more concise equiva-
lent counterpart. It would be useful to find a way to consis-
tently determine more concise belief bases than our present
approach does.

The computational complexity of the process to revise a
belief base is at least exponential. This work focused on the-
oretical issues. If the framework presented here is ever used
in practice, computations will have to be optimized.

The following example illustrates how one might deal
with strict inequalities.

Example 10. Suppose the vocabulary is {q, r} and B3 =

{(q) > 0.6}. Let ↵ be (q ^ ¬r) _ (¬q ^ r). Let ✏ be a real
number which tends to 0. Then ⇧B3

bnd =

{{(11, 1.0), (10, 0.0), (01, 0.0), (00, 0.0)},
{(11, 0.0), (10, 1.0), (01, 0.0), (00, 0.0)},
{(11, 0.6 + ✏), (10, 0.0), (01, 0.4� ✏), (00, 0.0)},
{(11, 0.6 + ✏), (10, 0.0), (01, 0.0), (00, 0.4� ✏)},
{(11, 0.0), (10, 0.6 + ✏), (01, 0.4� ✏), (00, 0.0)},
{(11, 0.0), (10, 0.6 + ✏), (01, 0.0), (00, 0.4� ✏)}},

(⇧

B3
bnd)

GI
↵ =

{{(11, 0.0), (10, 0.5), (01, 0.5), (00, 0.0)},
{(11, 0.0), (10, 1.0), (01, 0.0), (00, 0.0)},
{(11, 0.0), (10, 0.3 + ✏), (01, 0.7� ✏), (00, 0.0)},
{(11, 0.0), (10, 0.6 + ✏), (01, 0.4� ✏), (00, 0.0)},
{(11, 0.0), (10, 0.8 + ✏), (01, 0.2� ✏), (00, 0.0)} and

B↵
3bnd = {(�11)  0, (�10) � 0.3 + ✏, (�01)  0.7 � ✏,

(�00)  0.0}.
Note that if we let B0

= {((q ^ ¬r) _ (¬q ^ r)) = 1,
(q ^ ¬r) > 0.3}, then ⇧B0

= ⇧

B↵
3bnd . ⇤

It has been suggested by one of the reviewers that GI could
be an affine map (i.t.o. geometry), thus allowing the proof of
Theorem 1 to refer to existing results in the study of affine
maps to significantly simplify the proof. The authors are not
familiar with affine maps and thus leave investigation of the
suggestion to other researchers.

Related Work
Voorbraak (1999) proposed the partial probability theory
(PTT), which allows probability assignments to be partially
determined, and where there is a distinction between prob-
abilistic information based on (i) hard background evidence
and (ii) some assumptions. He does not explicitly define the
“constraint language”, however, from his examples and dis-
cussions, one can infer that he has something like the lan-
guage LPTT in mind: it contains all formulae which can
be formed with sentences in our Lprob in combination with
connectives ¬,^ and _. A “belief state” in PTT is defined
as the quadruple h⌦,B,A, Ci, where ⌦ is a sample space,
B ⇢ LPTT is a sets of probability constraints, A ⇢ LPTT is
a sets of assumptions and C ✓ W “represents specific infor-
mation concerning the case at hand” (an observation or evi-
dence).4 Our epistemic state can be expressed as a restricted
PTT “belief state” by letting ⌦ = W , B = B, A = ; and

4Voorbraak (1999)’s “belief state” would rather be called and
epistemic state or knowledge structure in our language.
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C = {w 2 W | w � ↵}, where B is a belief base and ↵ is
an observation in our notation.

Voorbraak (1999) mentions that he will only consider
conditioning where the evidence does not contradict the cur-
rent beliefs. He defines the set of belief states corresponding
to the conditionalized PPT “belief state” as {b(· | C) 2 ⇧ |
b 2 ⇧B[A, b(C) > 0}. In our notation, this corresponds to
{(b BC ↵) 2 ⇧ | b 2 ⇧B , b(↵) > 0}, where ↵ corresponds
to C.

Voorbraak (1999) proposes constraining as an alternative
to conditioning: Let � 2 Lprob be a probability constraint.
In our notation, constraining ⇧B on � produces ⇧B[{�}.

Note that expanding a belief set reduces the number of
models (worlds) and expanding a PPT ”belief state” with
extra constraints also reduces the number of models (belief
states / probability functions).

In the context of belief sets, it is possible to obtain any
belief state from the ignorant belief state by a series of
expansions. In PPT, constraining, but not conditioning,
has the analogous property. This is one of the main rea-
sons we prefer to constraining and not conditioning to
be the probabilistic version of expansion. (Voorbraak,
1999, p. 4)

But Voorbraak does not address the issue that C and � are
different kinds of observations, so constraining, as defined
here, cannot be an alternative to conditioning. C cannot be
used directly for constraining and � cannot be used directly
for conditioning.

W.l.o.g., we can assume C is represented by ↵. If we take
b GI ↵ to be an expansion operation whenever b(↵) > 0,
then one might ask, Is it possible to obtain any belief base
B0 from the ignorant belief base B = ; by a series of expan-
sions, using our approach? The answer is, No. For instance,
there is no observation or series of observations which can
change B = {} into B0

= {(q) � 0.6}. But if we were
to allow sentences (constraints) in Lprob to be observations,
then we could obtain any B0 from the ignorant B.

Grove and Halpern (1998) investigate what “update” (in-
corporation of an observation with current beliefs, such that
the observation does not contradict the beliefs) means in a
framework where beliefs are represented by a set of belief
states. They state that the main purpose of their paper is
to illustrate how different the set-of-distributions framework
can be, “technically”, from the standard single-distribution
framework. They propose six postulates characterizing what
properties an update function should have. They say that
some of the postulates are obvious, some arguable and one
probably too strong. Out of seven (families of) update func-
tions only the one based on conditioning (Updcond(·)) and
the one based on constraining (Updconstrain(·)) satisfy all
six postulates, where Updcond(⇧

B ,↵) := {(b BC ↵) 2 ⇧ |
b 2 ⇧

B , b(↵) > 0} and where they interpret Voorbraak’s
(1999) constraining as Updconstrain(⇧

B ,↵) := {b 2 ⇧B |
b(↵) = 1}. Grove and Halpern (1998) do not investigate the
case when an observation must be incorporated while it is
(possibly) inconsistent with the old beliefs (i.e., revision).

Kern-Isberner (2001) develops a new perspective of prob-
abilistic belief change. Based on the ideas of Alchourrón,

Gärdenfors, and Makinson (1985) and Katsuno and Mendel-
zon (1991) (KM), the operations of revision and update, re-
spectively, are investigated within a probabilistic framework.
She employs as basic knowledge structure a belief base
(b,R), where b is a probability distribution (belief state) of
background knowledge and R is a set of probabilistic con-
ditionals of the form A  B[x] meaning ‘The probability
of B, given A, is x. A universal inference operation – based
on the techniques of optimum entropy – is introduced as an
“adequate and powerful method to realize probabilistic be-
lief change”.

By having a belief state available in the belief base, min-
imum cross-entropy can be used. The intention is then that
an agent with belief base (b, T ) should always reason w.r.t.
belief state bT := argminc2⇧,c�T R(c, b). Kern-Isberner
(2001) then defines the probabilistic belief revision of (b,R)

by evidence S as (b,R [ S). And the probabilistic belief
update of (b,R) by evidence S is defined as (bR,S).5 She
distinguishes between revision as a knowledge adding pro-
cess, and updating as a change-recording process. Kern-
Isberner (2001) sets up comparisons of maximum cross-
entropy belief change with AGM revision and KM update.
Cases where, for update, new information R is inconsistent
with the prior distribution b, or, for revision, is inconsistent
with b or the context R, are not dealt with (Kern-Isberner,
2001, p. 399, 400).

Having a belief state available for modification when new
evidence is to be adopted is quite convenient. As Voorbraak
(1999) argues, however, an agent’s ignorance can hardly be
represented in an epistemic state where a single belief state
must always be chosen.

The reader may also refer to a later paper (Kern-Isberner,
2008) in which many of the results of the work just reviewed
are generalized to belief bases of the form ( ,R), where  
denotes a general epistemic state. In that paper, she consid-
ers two instantiations of , namely as a probability distribu-
tion and as an ordinal conditional function (first introduced
by Spohn (1988)).

Yue and Liu (2008) propose a probabilistic revision op-
eration for imprecise probabilistic beliefs in the framework
of Probabilistic Logic Programming (PLP). New evidence
may be a probabilistic (conditional) formula and needs not
be consistent with the original beliefs. Revision via imaging
(e.g., GI) also overcomes this consistency issue.

Essentially, their probabilistic epistemic states  are in-
duced from a PLP program which is a set of formulae, each
formula having the form ( | �)[l, u], meaning that the prob-
ability of the conditional ( | �) lies in the interval [l, u].

The operator they propose has the characteristic that if an
epistemic state represents a single probability distribution,
revising collapses to Jeffrey’s rule and Bayesian condition-
ing.

They mention that it is required that the models (distribu-
tions) of  is a convex set. There might thus be an oppor-
tunity to employ their revision operation on a representative
set of boundary distributions as proposed in this paper.

5This is a very simplified version of what she presents. Please
refer to the paper for details.
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Conclusion
In this paper, we propose an approach how to generate a new
probabilistic belief base from an old one, given a new piece
of non-probabilistic information, where a belief base is a fi-
nite set of sentences, each sentence stating the likelihood of
a proposition about the world. In this framework, an agent’s
belief base represents the set of belief states compatible with
the sentences in it. In this sense, the agent is able to repre-
sent its knowledge and ignorance about the true state of the
world.

We used a version of the so-called imaging approach to
implement the revision operation.

Two methods were proposed: revising a finite set of
‘boundary belief states’ and revising a least biased belief
state. We focussed on the former and showed that the lat-
ter gives different results.

There were two main contribution of this paper. The first
was to prove that the set of belief states satisfying Bnew is
exactly those belief states satisfying the original belief base,
revised. The second was to uncover an interesting conflict
in the results of the two belief base revision methods. It is
worth further understanding the reasons behind such a dif-
ference, as such an investigation could give more insight
about the mechanisms behind the two methods and indicate
possible pros and cons of each.
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