
Cumulative Aggregation

Diego Agust́ın Ambrossio Xavier Parent Leendert van der Torre

University of Luxembourg
6, rue Richard Coudenhove-Kalergi, Luxembourg

{diego.ambrossio,xavier.parent,leon.vandertorre}@uni.lu

Abstract

From any two conditional obligations “X if A” and “Y if B”, cumulative aggregation
derives the combined obligation “X ∪ Y if A ∪ (B \X)”, whereas simple aggregation
derives the obligation “X ∪ Y if A ∪ B”. We propose FC systems consisting of cu-
mulative aggregation together with factual detachment, and we give a representation
result for FC systems, as well as for FA systems consisting of simple aggregation to-
gether with factual detachment. We relate FC and FA systems to each other and to
input/output logics recently introduced by Parent and van der Torre.

Keywords: cumulative aggregation, abstract normative systems, input/output logic.

1 Introduction

In this paper, we contrast and study two different principles of aggregation for
norms in the context of the framework of Abstract Normative Systems (ANS)
due to Tosatto et al. [9].

This one is intended as a general framework to compare logics for norma-
tive reasoning. Only fragments of the standard input/output logics [5] are
covered by Tosatto et al., and so here we set ourselves the task of applying
the framework to the input/output logic recently introduced by Parent and
van der Torre [7]. (Cf. also [6].) Its most salient feature is the presence of a
non-standard form of cumulative transitivity, called “aggregative” (ACT, for
short). Such a rule is used in order to block the counter-examples usually given
to the principle known as “deontic detachment”: from the obligation of X and
the obligation of Y if X, infer the obligation of Y .

Our contribution is first and foremost technical. We acknowledge that the
benefits of using the theory of abstract normative systems may not be obvious
to the reader. We will not discuss the question of whether it has a reasonable
claim to be a general framework subsuming others, nor will we discuss the
question of whether aggregative cumulative transitivity is, ultimately, the right
form of transitivity.

A central feature of the Tosatto et al. account is that it abstracts away
from the language of propositional logic. We recall that as initially conceived

2 Cumulative Aggregation

input/output logic is an attempt to generalize the study of conditional obli-
gation from modal logic to the abstract study of conditional codes viewed as
relations between Boolean formulas. The underlying language is taken from
propositional logic. It contains truth-functional connectives, and is assumed to
be closed under application of these connectives. It is natural to ask if one can
extend the generality further, by working with an arbitrary language, viewed
as a collection of items, and without requiring that the items under consider-
ation be “given” or regimented in some special way. Similar programs have
been run for propositional logic and modal logic. Koslow [4]’s structuralist ap-
proach to logic is perhaps one of the best-known examples of such a program.
Unlike Koslow, we do not even assume that the items under consideration can
enter into some special implication relations with each other. There are schol-
ars who (rightly or wrongly) take the well-known Tarskian conditions for the
consequence relation to be objectionable on the grounds that, for reasons of
vagueness (or more), important consequence relations over natural languages
(however formalized) are, for instance, not generally transitive. (See, e.g., [8].)
The idea is just to investigate the possibility of a formal theory of normative
reasoning that avoids such commitments (be they justified or not). 1

Tosatto et al.’s account has no apparatus for handling conjunction of out-
puts, and our main purpose in this paper is to develop it to do so. We follow the
ideas of so-called “multiple-conclusion logic”, and treat normative consequence
as a relation between sets, whose elements are understood conjunctively. No
assumption about the inner structure of these elements is made.

Fig. 1. An Abstract Normative System

An example of an abstract normative system studied in this paper is given
in Figure 1. It should be read as follows. Conditionals A→ X,B → Y, . . . are
the norms of the normative system. Each of A,X,B and Y is a set of language
elements (whose inner structure remains unanalyzed). Sets are understood con-
junctively on both sides of →. The input I is a collection of language elements
representing the context. Rules are used to generate derivations and arguments
based on I. The set of detachments {X,Y, . . .} is the output consisting of all
detached obligations. The elements of Figure 1 are explained in more detail in
the next two sections.

The prime focus in [7] was the contrast between two forms of transitiv-
ity, called “cumulative transitivity” and “aggregative cumulative transitivity”.

1 This motivation for using ANS is ours.

Ambrossio, Parent and van der Torre 3

This paper shifts the emphasis on the contrast between the following two forms
of aggregation.

Simple aggregation If X is obligatory in context A, and Y is obligatory in
context B, then X ∪Y is obligatory in context A∪B. In other words, simple
aggregation derives the obligation “X∪Y if A∪B” from any two conditional
obligations “X if A” and “Y if B”. 2

Cumulative aggregation If X is obligatory in context A, and Y is obligatory
in context B, then X∪Y is obligatory in context A∪(B\X). In other words,
cumulative aggregation derives the combined obligation “X∪Y if A∪(B\X)”
from the same two conditional obligations.

The rule of simple aggregation gives the most straightforward way of col-
lecting items as detachments are performed. When A = B, simple aggrega-
tion gives the rule “If X is obligatory given A, and Y is obligatory given A,
then X ∪ Y is obligatory given A.” A drawback of simple aggregation is that
it does not capture transitive reasoning. Given the two conditional obliga-
tions “{x} if {}” and “{y} if {x}”, simple aggregation only yields “{x, y} if
{x}”. This motivates the rule of cumulative aggregation. In the particular
case where B = A ∪X, cumulative aggregation yields the form of transitivity
introduced by Parent and van der Torre [7] under the name ACT. This is the
rule (A,X), (A ∪X,Y)/(A,X ∪ Y). In our example, one gets “{x, y} if {}.” 3

To summarize, we adress the following issues:

• How to develop the theory of abstract normative systems to handle conjunc-
tion of outputs and the form of cumulative transitivity described in [7]?

• How to define the proof theory of the system? What are the most significant
properties of the framework?

• How to provide a semantical characterisation, along with a representation
result linking it with the proof theory?

The layout of this paper is as follows. In Section 2, we introduce FA systems
for simple aggregation. In Section 3, we introduce FC systems for cumulative
aggregation. We give representation results for both systems. In Section 4,
we show how FA and FC systems relate to one another, and we discuss some
properties of the systems. In Section 5 we show how FA and FC systems relate
with the input/output logics introduced by Parent and van der Torre [7].

Due to space limitation, we focus on the logical framework and the results,
and leave the proofs of the representation theorems to a technical report [1].
We would like to stress that these are not just a re-run of the proofs given
by Parent and van der Torre [7] in a classical logic setting. The two settings

2 Note that intersection as used in abstract normative systems does not correspond to dis-
junction in propositional logic. Take ({p}, {x}) and ({q}, {x}). The intersection of the two
contexts yields ({}, {x}). Reasoning by cases would yield ({p ∨ q}, {x}) instead.
3 As mentioned, it is not our purpose to discuss this rule in any greater depth. For more
details on it, see Parent and van der Torre [7].

4 Cumulative Aggregation

are very different. The question of whether the proofs of our representation
results can be adapted to yield a completeness result in a classical logic setting
remains an open problem.

2 FA systems for simple aggregation

In this section, we introduce abstract normative systems for simple aggregation,
and we give a representation result. Though FA systems may be interesting in
their own right, in this paper the main role of FA systems is to set the stage for
FC systems for cumulative aggregation, introduced in the next section. Thus,
although we talk about normative systems and use examples from normative
system it must be kept in mind that FA systems are not appropriate for all
kinds of normative reasoning.

In general, a system 〈L,C,R〉 consists of a language L, a set of conditionals
C defined over this language, and a set of rules R. The input is a set of sentences
from L. If 〈L,C,R〉 is a normative system, then a conditional A → X can be
read as the norm “if A, then obligatory X”. A normative system contains
at least one set of norms, the regulative norms from which obligations and
prohibitions can be detached. It may also contain permissive norms, from
which explicit permissions can be detached, and constitutive norms, from which
institutional facts can be detached. In this paper we do not consider permissive
and constitutive norms. In the present setting, a system generates or produces
an obligation set, a subset of the universe, reflecting the obligatory elements of
the universe.

All abstract normative systems we consider satisfy at least factual detach-
ment. To represent factual detachment, we write (A,X) for the argument for
X in context A, in other words, for input A the output contains X. Factual
detachment is the rule A→ X/(A,X), and says that if there is a rule with the
context as antecedent, then the output contains the consequent.

Besides factual detachment, FA systems have the rule of so-called simple
aggregation. This one is usually given the form (A,X), (A, Y)/(A,X ∪ Y). In
this paper aggregation is given the more general form (A,X), (B, Y)/(A∪B,X∪
Y). This more general form allows for the inputs not to be the same. Given
strengthening of the input, (A,X)/(A ∪ B,X), the two rules are equivalent.
Since we do not assume strengthening of the input, our rule is strictly stronger.

Definition 2.1 [FA system with input] A FA system is a triple 〈L,C,R〉 with
L a language, C ⊆ 2L × 2L a set of conditionals written as A → X, and R a
set of rules. For every conditional A→ X ∈ C, A and X are finite sets. A FA
system is a system 〈L,C,R〉 where R consists of the rule of factual detachment
(FD) and the rule of aggregation (AND):

A→ X
FD

(A,X)

(A,X) (B, Y)
AND

(A ∪B,X ∪ Y)

An input I ⊆ L for system 〈L,C,R〉 is a subset of the language.
Let FA = {FD,AND}. We write a(A → X) = A for the antecedent of a

conditional, and c(A→ X) = X for the consequent of a conditional. We write

Ambrossio, Parent and van der Torre 5

a(C) = ∪{a(A→ X) | A→ X ∈ C} for the union of the antecedents of all the
conditionals in C. We write c(C) = ∪{c(A→ X) | A→ X ∈ C} for the union
of the consequents of all the conditionals in C. 4

The following example is meant to exercise the notation. We build a lan-
guage, and introduce a set of conditionals and an input. The language L is the
domain (or universe) of discourse. For the purpose of the example, L is a set
of literals. Following Tosatto et al., we also introduce a complement function
e for the elements e of the language L.

Example 2.2 [Sing and dance, adapted from Goble [3]] Given a language L0

which does not contain formulas of the form ∼a, the language L is L0 ∪ {∼a |
a ∈ L0}. For a ∈ L, if a ∈ L0 then a =∼a, and otherwise a = b for the b ∈ L0

such that a =∼b.
Let L0 be {x, y, d, s}. Intuitively: “it is Spring” (x); “it is Sunday” (y);

“a dance is performed” (d); and “a song is performed” (s). The language L
adds classical negation to the language, L = L0 ∪ {∼y,∼x,∼d,∼s}. The
complement function says x̄ =∼x, ∼x = x, and so on.

Suppose the conditionals C1 = {y → d, x → s} apply to a wedding party.
This says that on Sundays one ought to dance, and in Spring one ought to sing.
The antecedents of the conditionals are: a(y → d) = y; a(x→ s) = x; a(C1) =
{x, y}. Their consequents are: c(y → d) = d; c(x→ s) = s; c(C1) = {s, d}.

We distinguish three related kinds of output from a system and an input,
called derivations, arguments and detachments, respectively. A derivation is a
finite tree, whose leaves are elements from the set of conditionals and whose
root is a pair (A,X) obtained by successive applications of the rules, with the
further constraint that A ⊆ I. 5 An argument is a pair (A,X) for which such
a derivation exists, and X is a detachment for which such an argument (A,X)
exists. 6

Definition 2.3 [Derivations der, Arguments arg, and Detachments det]
Given a system 〈L,C,R〉 and an input I,

• a derivation of (A,X) on the basis of I in system 〈L,C〉 is a finite tree 7

using the rules R, with as leaves elements of C, and as root the pair (A,X)
where A ⊆ I and X ⊆ L.

4 To ease readability we will omit curly braces when referring to singleton sets, and we write
a→ x for {a} → {x}.
5 Alternatively, we could add the condition A ⊆ I only to the definitions of arguments and
detachments, or only to the definition of detachments. There are pros and cons to both
choices. For example, the advantage of our definition is that the set of derivations is smaller,
but the disadvantage is that the set of derivations is not closed under sub-derivations, which
complicates the proofs of the formal results.
6 Note the special feature of our formal framework that weakening of the output can be added
in different ways. For example, one can add a rule (A,X ∪ Y)/(A,X), or one can adapt the
definition of detachment such that X is detached for input I if there is an argument (A, Y)
such that A ⊆ I and X ⊆ Y . The same holds for other properties added to the formal
system. We leave the formal analysis of such kinds of extensions to further research.
7 By a finite tree, we mean one with finitely many nodes.

6 Cumulative Aggregation

• an argument is a pair (A,X), such that there exists a derivation d with
root(d) = (A,X).

• a detachment is a set X such that there is an argument (A,X).

We write der(L,C, I,R) for the set of all the derivations which can be con-
structed in this way, we write arg(L,C, I,R) for the set of all such arguments,
and we write det(L,C, I,R) for the set of all such detachments.

We write leaves(d) for the set of all the leaves of derivation d, i((A,X)) = A
for the input of a pair (A,X) and o((A,X)) = X for the output of a pair (A,X).
Also we write i(D) = ∪{i((A,X)) | (A,X) ∈ D} and o(D) = ∪{o((A,X)) |
(A,X) ∈ D} for the inputs and outputs of sets of such pairs.

The derivation rules take one datatype, norms, and outputs another, argu-
ments. Nonetheless, the main idea is that derivations are always based on an
input. This is reflected by the constraint i(root(d)) ⊆ I. But we stress that
such a constraint is put on the root of the derivation only, and that all the
other nodes need not verify this constraint. Otherwise we would not be able
to chain conditionals together. Because of this, the property of closure under
sub-derivations does not always hold. It depends on the rules being used. We
will see an example of this phenomenon with system FC in Section 3. This also
makes the proof of the representation theorem for FC trickier. The standard
method of induction over the length of derivations is not available any more.

A derivation is a relative notion, since it is meant to represent the inner
structure of an argument. As argued before derivations are tied to the context
giving a justification for the argument put forward based on what is, or is not,
the case. In the literature, the notion of argument is defined in two ways.
Either an argument is viewed as either a pair whose first element is a set of
formulas (the support) and second element a formula (the conclusion), or as
a derivation in a logical proof system, i.e. a sequence, tree or graph of logical
formulas. Here we choose the first definition. In the context of this study,
the pair itself denotes a norm. However, it could represent any conditional
statement. We use the term argument rather than norm, just to emphasize
that we are interested in the relationship between a set of premises and its set
of conclusions.

We now can briefly explain the notion of abstraction at stake in the theory
of abstract normative systems. Intuitively, the detachment system treats the
elements of L as atomic, in the sense that detachments have no relation with
the logical structure of language L. Formally, we can replace one language L
by another one L′, define a one-to-one function f between elements of L and
L′, and extend f to subsets of L and C. Then we have f(det(L,C, I,R)) =
det(f(L), f(C), f(I), R). In this sense, it is an abstract theory.

We continue Example 2.2 to illustrate factual detachment and aggregation,
as well as the distinction between derivations, arguments and detachments. In
the absence of the rule of strengthening of the antecedent, one cannot derive
that X is obligatory in context A ∪ B from the fact that X is obligatory in
context A. This reflects the idea that arguments are minimal, in the sense that

Ambrossio, Parent and van der Torre 7

one cannot add irrelevant elements like B to their support. For example, if the
input is {A,B} and the sole conditional is A→ X, then there is no argument
(A∪B,X). But X will be detached, since the input set triggers the conditional
in question. The absence of the rule of strengthening of the antecedent does
not reflect the fact that rules may leave room for exceptions.

Example 2.4 [Example 2.2 - Continued] Given L = L0 ∪ {∼ a | a ∈ L0}, we
say that an element a ∈ I is a violation if there is a detachment containing a,
and this detachment is called a violated obligation. Moreover, we say that a
detachment is a cue for action if it is not a violated obligation.

The derivations for C1 = {y → d, x → s} and I1 = {x, y} are
der(L,C1, I1, FA) ={

y → d
d1 = FD

(y, d)
,

x→ s
d2 = FD

(x, s) ,
x→ d

FD
(x, d)

y → s
FD

(y, s)
d3 = AND

({x, y}, {s, d})

}
,

the arguments are arg(L,C1, I1, FA) = {(y, d), (x, s), ({x, y}, {s, d})} and the
detachments are det(L,C1, I1, FA) = {{d}, {s}, {s, d}}, which are all cues for
action. Thus I1 does not contain violations. Factual detachment derives d and
s, and aggregation combines them to {d, s}. First, note that some strengthen-
ing of the input is built in the aggregation inference rule AND, as we derive
the conditional norm ({x, y}, {s, d}) whose antecedent is stronger than the an-
tecedent of the conditional norms in C1. Second, note that, for the context
where there is no singing I2 = {x, y, s̄}, we obtain exactly the same deriva-
tions, arguments and detachments. However, now s̄ is a violation, and the
detachments {s} and {s, d} are violated obligations, and only {d} is a cue for
action.

Now consider C2 = {{x, y} → {s, d}} and, e.g., I2. The derivation is

der(L,C2, I2, FA) =
{

{x, y} → {s, d}
d4 = FD

({x, y}, {s, d})

}
,

the arguments are arg(L,C2, I2, FA) = {({x, y}, {s, d})} and the detachments
are det(L,C2, I2, FA) = {{s, d}}.

It should not come as a surprise that the set of detachments is syntax-
dependent. This follows at once from letting the rule of weakening of the output
go. This phenomenon is familiar from the literature on belief revision. 8

Theorem 2.5 gives a representation result for FA systems. The left-hand
side of the bi-conditional pertains to the proof theory, while the right-hand side
of it provides a semantic characterization in terms of subset selection. For X
to be derivable from a set of conditionals C on the basis of input I, X must be
the union of the consequents of finitely many conditionals in C, which are all
‘triggered’ by the input set I. 9

8 For more on the rule of weakening of the output, and the reason why it may be considered
counter-intuitive, we refer the reader to the discussion in Goble [3] (see also Parent and van
der Torre [7].)
9 In FA systems, we call ‘triggered’ those conditionals whose antecedents are in I.

8 Cumulative Aggregation

Theorem 2.5 (Representation result, FA) X ∈ det(L,C, I, FA) if and
only if there is some non-empty and finite C ′ ⊆ C such that a(C ′) ⊆ I and
X = c(C ′).

Proof. See [1]. 2

Corollary 2.6 (Monotonicity of det) det(L,C, I, FA) ⊆ det(L,C ′, I, FA)
whenever C ⊆ C ′.

The following example illustrates how to calculate the detachments using
the semantic characterization described in the statement of Theorem 2.5.

Example 2.7 [Example 2.2 - Continued] We calculate det(L,C1, I1, FA), now
using Theorem 2.5. The set of conditionals C1 has three non-empty subsets:
C1.1 = {y → d}, C1.2 = {x → s}, and C1.3 = {y → d, x → s}. Here
a(C1.1) ⊆ I1, a(C1.2) ⊆ I1 and a(C1.3) ⊆ I1. Also c(C1.1) = {d}, c(C1.2) =
{s} and c(C1.3) = {s, d}. So det(L,C1, I1, FA) = {c(C1.1), c(C1.2), c(C1.3)} =
{{d}, {s}, {s, d}}.

3 FC systems for cumulative aggregation

In this section we introduce FC systems for cumulative aggregation. FC is
much alike FA except that the rule of aggregation AND is replaced with that
of cumulative aggregation CAND.

Definition 3.1 [FC system with input] A FC system is a triple 〈L,C,R〉 where
R consists of the following rule of factual detachment (FD), and the rule of
cumulative aggregation (CAND). We write FC = {FD,CAND}.

A→ X
FD =

(A,X)

(A,X) (B, Y)
CAND =

(A ∪ (B \X), X ∪ Y)

To illustrate the difference between FA and FC systems, we use the same
example as the one that Parent and van der Torre [7] use in order to motivate
their rule ACT. We reckon that, compared to the framework described in [7],
the present framework does not yield any new insights into the analysis of the
example itself.

Example 3.2 [Exercise, from Broome [2]] C contains two conditionals. One
says that you ought to exercise hard everyday: {} → x. The other says that,
if you exercise hard everyday, you ought to eat heartily: x→ h. Intuitively, in
context {}, we would like to be able to derive {x, h}, but not {h}.

FA systems do not allow us to do it.
Let I = {}. With simple aggregation the set of deriva-

tions is der(L,C, I, FA) =
{

{} → x
d1 = FD

({}, x)

}
, the set of arguments is

arg(L,C, I, FA) = {({}, x)} and the set of detachments is det(L,C, I, FA) =
{{x}}. Thus the desired obligation is not detached. Norms can be chained
together only in so far as the input set contains their antecedent. Let I ′ = {x}.

Ambrossio, Parent and van der Torre 9

Then the set of derivations is der(L,C, I ′, FA) ={
{} → x

d1 = FD
({}, x)

,
x→ h

d2 = FD
(x, h)

,
{} → x

FD
({}, x)

x→ h
FD

(x, h)
d3 = AND

(x, {x, h})

}
,

the set of arguments is arg(L,C, I ′, FA) = {({}, x), (x, h), (x, {x, h})} and the
detachments are det(L,C, I ′, FA) = {{x}, {h}, {x, h}}.

With cumulative aggregation, the derivations for C and I = {} are
der(L,C, I, FC) ={

{} → x
d1 = FD

({}, x)
,

{} → x
FD

({}, x)
x→ h

FD
(x, h)

d2 = CAND
({}, {x, h})

}
The arguments are arg(L,C, I, FC) = {({}, x), ({}, {x, h})} and the detach-
ments are det(L,C, I, FC) = {{x}, {x, h}}. Factual detachment allows us to
detach {x}, and cumulative aggregation allows us to detach {x, h} in addition.
Like in [7], h cannot be derived without x. Intuitively, the obligation to eat
heartily no longer holds, if you take no exercise.

Definition 3.3 introduces the functions f and g, to be used later on in the
semantic characterization of cumulative aggregation. Intuitively, given a set
D ⊆ L, the function f(C,D) gathers all the consequents of the conditionals in
C that are triggered by D. The function g(C, I) gathers all the sets D that
extend the input set I and are closed under f(C,D).

Definition 3.3 [f and g] We define

f(C,D) =
⋃
{X | A→ X ∈ C;A ⊆ D}

g(C, I) = {D | I ⊆ D ⊇ f(C,D)}

We illustrate the calculation of functions f and g continuing Example 3.2.

Example 3.4 [Example 3.2 - Continued] Consider the following table. The
left-most column shows the relevant subsets C ′ of C. The middle column
shows what consequents can be detached depending on what set D is used as
input. The right-most column shows the sets D extending I and closed under
f(C ′, D), for each subset C ′.

C ′ f(C ′, D) g(C ′, {})
{} → x {x} {D | x ∈ D}

x→ h
{} if x 6∈ D,
{h} if x ∈ D

{D | x 6∈ D or
{x, h} ⊆ D}

{} → x,
x→ h

{x} if x 6∈ D,
{x, h} if x ∈ D

{D | {x, h} ⊆ D}

Theorem 3.5 gives a representation result for FC systems. For X to be
derivable from a set of conditionals C on the basis of input I, X must be the
union of the consequents of finitely many conditionals in C, which are either

10 Cumulative Aggregation

directly triggered by the input set I (in the sense of Footnote 9), or indirectly
triggered by the input set I (via a chain of norms).

Theorem 3.5 (Representation result, FC) X ∈ det(L,C, I, FC) if and
only if there is some non-empty and finite C ′ ⊆ C such that, for all
D ∈ g(C ′, I), we have a(C ′) ⊆ D and X = f(C ′, D).

Proof. See [1]. 2

We show with an example how to calculate the detachments using the se-
mantic characterization given in the statement of Theorem 3.5.

Example 3.6 [Example 3.4 - Continued] We again calculate det(L,C, I, FC),
now using Theorem 3.5. We use the Table shown in Example 3.4.

The top row tells us that, {x} ∈ det(L,C, I, FC). This is because, for all D
in g(C ′, {}), f(C ′, D) = {x}.

The bottom row tells us that, {x, h} ∈ det(L,C, I, FC). This is because,
for all D in g(C ′, {}), f(C ′, D) = {x, h}.

We can also conclude that, {h} 6∈ det(L,C, I, FC) because, for all C ′, there
is a D in g(C ′, {}) such that f(C ′, D) 6= {h}.

Finally, the set of detachments is det(L,C, I, FC) = {{x}, {x, h}}.

4 Some properties of FA systems and FC systems

We start by showing how FA systems and FC systems relate to each other.

Definition 4.1 [Argument subsumption] Argument (A,X) subsumes argu-
ment (B, Y) if A ⊆ B and X = Y . Given two sets of arguments S and T ,
we say that T subsumes S (notation: S v T), if for all (B, Y) ∈ S there is an
argument (A,X) ∈ T such that (A,X) subsumes (B, Y).

Example 4.2 Consider the following derivation.

(A,X) (A ∪B ∪X,X ∪ Y)
d = CAND

(A ∪B,X ∪ Y)

The argument (A ∪B,X ∪ Y) subsumes the argument (A ∪B ∪X,X ∪ Y).

Proposition 4.3 arg(L,C, I, FA) v arg(L,C, I, FC).

Proof. Let (A,X) ∈ arg(L,C, I, FA), where A ⊆ I. Let d be the derivation of
(A,X) on the basis of I using the rules FD and AND. Let leaves(d) = {A1 →
X1, . . . , An → Xn}. We have A =

⋃n
i=1 Ai and X =

⋃n
i=1 Xi.

10 That is,

(A,X) = (

n⋃
i=1

Ai,

n⋃
i=1

Xi)

One may transform d into a derivation d′ of (A′, X) on the basis of I using the
rules FD and CAND. Keep the leaves and their parent nodes (obtained using

10Strictly speaking, this follows from a lemma used in the proof of the representation result
for FA systems, Lemma 1 in [1].

Ambrossio, Parent and van der Torre 11

FD) as they are in d, and replace any application of AND by an application of
CAND. The result will be a tree whose root is

(A′, X) = (A1 ∪
n⋃

i=2

(Ai \
i−1⋃
j=1

Xj),

n⋃
i=1

Xi)

We have

A1 ∪
n⋃

i=2

(Ai \
i−1⋃
j=1

Xj) ⊆
n⋃

i=1

Ai ⊆ I and

n⋃
i=1

Xi =

n⋃
i=1

Xi

On the one hand, (A′, X) ∈ arg(L,C, I, FC). On the other hand, (A′, X)
subsumes (A,X). 2

Corollary 4.4 det(L,C, I, FA) ⊆ det(L,C, I, FC)

Proof. This follows at once from Proposition 4.3. 2

We now point out a number of other properties of FA and FC systems.

Proposition 4.5 (Applicability) The rules AND and CAND can be applied
to any arguments (A,X) and (B, Y).

Proof. Trivial. Assume arguments (A,X) and (B, Y). By definition of an
argument, A ⊆ I, B ⊆ I, X ⊆ L and Y ⊆ L. Thus, A∪B ⊆ I, A∪ (B \X) ⊆ I
and X ∪ Y ⊆ L. 2

Proposition 4.6 (Premises permutation, FA) AND can be applied to two
arguments (A,X) and (B, Y) in any order.

Proof. Straightforward. 2

It is noteworthy that Proposition 4.6 fails for CAND, as shown by the
following counterexample, where A 6= B:

(A,B) (B,A)
CAND

(A,A ∪B)
6⇐⇒ (B,A) (A,B)

CAND
(B,A ∪B)

The arguments (A,A ∪B) and (B,A ∪B) are distinct.
Proposition 4.7 considers two successive applications of AND, or of CAND.

Proposition 4.7 (Associativity) Each of AND and CAND is associative,
in the sense of being independent of the grouping of the pairs to which it is
applied.

Proof. The argument for AND is straightforward, and is omitted. For CAND,
it suffices to show that the pairs appearing at the bottom of the following two
derivations are equal:

.

.

.

(A,X)

.

.

.

(B, Y)

.

.

.

(C,Z)

(B ∪ (C \ Y), Y ∪ Z)

(A ∪ ((B ∪ (C \ Y)) \X), X ∪ Y ∪ Z)

.

.

.

(A,X)

.

.

.

(B, Y)

(A ∪ (B \X), X ∪ Y)

.

.

.

(C,Z)

(A ∪ (B \X) ∪ (C \ (X ∪ Y)), X ∪ Y ∪ Z)

12 Cumulative Aggregation

The fact that the two pairs in question are equal follows at once from the
following two laws from set-theory:

(A ∪B) \X = (A \X) ∪ (B \X) (1)

B \ (X ∪ Y) = (B \X) \ Y (2)

We have:

A ∪ ((B ∪ (C \ Y)) \X) = A ∪ (B \X) ∪ ((C \ Y) \X) [by law (1)]

= A ∪ (B \X) ∪ (C \ (X ∪ Y)) [by law (2)]

2

Proposition 4.8 FA systems are closed under sub-derivations in the following
sense: given a derivation d ∈ der(L,C, I, FA), for all sub-derivations d′ of d,
d′ ∈ der(L,C, I, FA)–that is, i(root(d′)) ⊆ I.

Proof. Let d ∈ der(L,C, I, FA) with root(d) = (A,X) and A = A1∪. . .∪An ⊆
I and X = X1∪ . . .∪Xn. Without loss of generality, we can assume that n > 1.
By Proposition 4.7, d can be given the form:

A1 → X1
FD

(A1, X1)

A2 → X2
FD

(A2, X2)
AND

(A1 ∪A2, X1 ∪X2)

...
FD

(A3, X3)
AND

(A1 ∪A2 ∪A3, X1 ∪X2 ∪X3)
...

...

(A1 ∪ . . . ∪An−1, X1 ∪ . . . ∪Xn−1)

An → Xn
FD

(An, Xn)
AND

(A1 ∪ . . . ∪An, X1 ∪ . . . ∪Xn)

Let d′ be a sub-derivation of d with root (A′, X ′). Clearly, A′ ⊆ A, and so
A′ ⊆ I, since A ⊆ I. 2

Proposition 4.9 FC systems are not closed under sub-derivations.

Proof. We prove this proposition by giving a counterexample. Let C be the
set of conditionals {A→ X,X → Y } and let I = {A}. Consider the following
derivation:

d =

A→ Xd1 =
(A,X)

X → Y = d2
(X,Y)

(A,X ∪ Y)

We have i(root(d)) ⊆ I, so that d ∈ der(L,C, I, FC). Since i(root(d2)) = X
and X 6⊆ I, d2 6∈ der(L,C, I, FC). 2

Proposition 4.10 (Non-repetition) For every d ∈ der(L,C, I, FA) with
root (A,X) and leaves leaves(d), there exists a derivation d′ ∈ der(L,C, I, FA)
with the same root and the same set of leaves, such that each leaf in leaves(d′) is
used at most once. The same holds for every derivation d ∈ der(L,C, I, FC).

Ambrossio, Parent and van der Torre 13

Proof. We only consider the case of FC systems (the argument for FA sys-
tems is similar). Assume we have a derivation d with root(d) = (A,X) and
leaves(d) = {A1 → X1, . . . An → Xn}. By Proposition 4.7, one can transform
d into a derivation d′ of the form

A1 → X1
FD

(A1, X1)

A2 → X2
FD

(A2, X2)
AND

...

A3 → X3
FD

(A3, X3)
AND

...
...

...
An → Xn

FD
(An, Xn)

AND
(A,X)

Suppose that in d′ some Al → Xl decorates at least two distinct leaves. We
show that we can eliminate the second one. To aid comprehension, let B be
mnemonic for the following union, where l ≤ j:

A1 ∪ (A2 \X1) ∪ (A3 \ (X1 ∪X2)) ∪ ... ∪ (Aj \ (X1 ∪ ... ∪Xj−1))

Suppose we have the step:

A1 → X1

(A1, X1)

A2 → X2

(A2, X2)

(A1 ∪ (A2 \X1), X1 ∪X2)

A3 → X3

(A3, X3)

(A1 ∪ (A2 \X1) ∪ (A3 \ (X1 ∪X2)), X1 ∪X2 ∪X3)

...
...

Aj → Xj

(Aj , Xj)

(B,
⋃j

i=1 Xi)

Al → Xl

(Al, Xl)

(B ∪ (Al \
⋃j

i=1 Xi),
⋃j

i=1 Xi ∪Xl)

where the sub-derivation with root (B,
⋃j

i=1 Xi) contains a leaf carrying Al →
Xl. That is, Al → Xl is one of A1 → X1, ... and Aj → Xj , and it is re-used

immediately after Aj → Xj . Since Xl is one of X1, ... and Xj ,
⋃j

i=1 Xi ∪Xl =⋃j
i=1 Xi. On the other hand, (Al \

⋃j
i=1 Xi) ⊆ (Al \

⋃l−1
i=1 Xi) ⊆ B , so that

B ∪ (Al \
⋃j

i=1 Xi) = B. Thus, we can remove from d′ all the re-occurrences of
the leaves as required.

2

5 Related research

As mentioned in Section 1, the present paper extends the framework described
by Tosatto et al. [9] in order to handle conjunction of outputs along with the
form of cumulative transitivity introduced by Parent and van der Torre [7].

At the time of writing this paper, we are not able to report any formal result
showing how the Tosatto et al. framework relates with the present one. Care
should be taken here. On the one hand, the present account does not validate
the rule of strengthening of the input, while the Tosatto et al. one does in

14 Cumulative Aggregation

the following restricted form: from (>, x), infer (y, x). On the other hand, in
order to relate the proof-theory with the semantics, the authors make a detour
through the notion of deontic redundancy [10]. A more detailed comparison
between the two accounts is left as a topic for future research.

There are close similarities between the systems described in this paper
and the systems of I/O logic introduced by Parent and van der Torre [7]. As
explained in the introductory section, our rule CAND is the set-theoretical
counterpart of their rule ACT. In both systems, weakening of the output goes
away. At the same time there are also important differences between the two
settings. First, the present setting remains neutral about the specific language
to be used. This one need not be the language of propositional logic. Second,
the present account does not validate the rule of strengthening of the input.

Tosatto et al. explain how to instantiate the ANS with propositional logic
to obtain fragments of the standard input/output logics [5]. In this section we
rerun the same exercise for the systems studied in [7]. Unlike Tosatto et al., we
argue semantically, and not proof-theoretically, because of the problem alluded
to above: derivations in FC are not closed under sub-derivations.

For the reader’s convenience, we first briefly recall the definitions of O1 and
O3 given by Parent and van der Torre [7]. Given a set X of formulas, and
a set N of norms (viewed as pairs of formulas), N(X) denotes the image of
N under X, i.e., N(X) = {x : (a, x) ∈ N for some a ∈ X}. Cn(X) is the
consequence set of X in classical propositional logic. And x a` y is short for
x ` y and y ` x. We have x ∈ O1(N, I) whenever there is some finite M ⊆ N
such that M(Cn(I)) 6= {} and x a` ∧M(Cn(I)). We have x ∈ O3(N, I) if and
only if there is some finite M ⊆ N such that M(Cn(I)) 6= {} and for all B, if
I ⊆ B = Cn(B) ⊇M(B), then x a` ∧M(B). 11

Theorem 5.1 (Instantiation) Let 〈L,C,R〉 be a FA system, or a FC sys-
tem, with L the language of propositional logic (without >) and C a set of
conditionals whose antecedents and consequents are singleton sets. Define
N = {(a, x) | {a} → {x} ∈ C}. The following applies:

i) If X ∈ det(L,C, I, FA), then ∧X ∈ O1(N, I), where ∧X is the conjunction
of all the elements of X;

ii) If X ∈ det(L,C, I, FC), then ∧X ∈ O3(N, I).

Proof. See [1]. 2

6 Summary and future work

We have extended the Tosatto et al. framework of abstract normative systems
in order to handle conjunction of outputs along with the aggregative form of
cumulative transitivity introduced by the last two co-authors of the present

11The proof-system corresponding to O1 has three rules: from (a, x) and b ` a, infer (b, x)
(SI); from (a, x) and (a, y), infer (a, x ∧ y) (AND); from (a, x) and b a` a, infer (b, x) (EQ).
The proof-system corresponding to O3 may be obtained by replacing (AND) with (ACT).
This is the rule: from (a, x) and (a ∧ x, y), infer (a, x ∧ y).

Ambrossio, Parent and van der Torre 15

paper. We have introduced two abstract normative systems, the FA and FC
systems. We have illustrated these two systems with examples from literature,
and presented two representation theorems for these systems. We have also
shown how they relate to the original I/O systems.

FA systems. They supplement factual detachment with the rule of simple
aggregation, taking unions of inputs and outputs. The representation the-
orem shows that the sets of formulas that can be detached in FA precisely
correspond to sets of conditionals that generate this output.

FC systems. They supplement factual detachment with the rule of cumu-
lative aggregation, a subtle kind of transitivity or reuse of the output, as
introduced in [7]. The representation theorem shows how the cumulative
aggregation rule corresponds to the reuse of the detached formulas.

Besides the issues mentioned in the previous section, we are currently investi-
gating the question of how to use FA and FC systems as a basis for a Dung-style
argumentation framework.

Acknowledgments We thank three anonymous referees for valuable com-
ments. Leendert van der Torre has received funding from the European Union’s
H2020 research and innovation programme under the Marie Skodowska-Curie
grant agreement No. 690974 for the project “MIREL: MIning and REasoning
with Legal texts”.

References

[1] Ambrossio, D. A., X. Parent and L. van der Torre, A representation theorem for abstract
cumulative aggregation, Technical report, University of Luxembourg (2016).
URL http://hdl.handle.net/10993/27364

[2] Broome, J., “Rationality Through Reasoning,” Wiley-Blackwell, 2013.
[3] Goble, L., A logic of good, should, and would. Part I, Journal of Philosophical Logic 19

(1990), pp. 169–199.
[4] Koslow, A., “A Structuralist Theory of Logic,” Cambridge University Press, Cambridge,

2001.
[5] Makinson, D. and L. van der Torre, Input-output logics, Journal of Philosophical Logic

29 (2000), pp. 383–408.
[6] Parent, X. and L. van der Torre, Aggregative deontic detachment for normative

reasoning, in: Principles of Knowledge Representation and Reasoning: Proceedings of
KR 2014, Vienna, Austria, July 20-24, 2014.

[7] Parent, X. and L. van der Torre, “Sing and dance!”, in: F. Cariani, D. Grossi, J. Meheus
and X. Parent, editors, Deontic Logic and Normative Systems, DEON 2014, Lecture
Notes in Computer Science, pp. 149–165.

[8] Ripley, D., Paradoxes and failures of cut, Australasian Journal of Philosophy 91 (2013),
pp. 139–164.

[9] Tosatto, S., G. Boella, L. van der Torre and S. Villata, Abstract normative systems, in:
Principles of Knowledge Representation and Reasoning: Proceedings of KR 2012, pp.
358–368.

[10] van der Torre, L., Deontic redundancy, in: G. Governatori and G. Sartor, editors, Deontic
Logic in Computer Science: Proceedings of DEON 2010 (2010), pp. 11–32.

http://hdl.handle.net/10993/27364

	DEON00001 14
	DEON00001 15
	DEON00001 16
	DEON00001 17
	DEON00001 18
	DEON00001 19
	DEON00001 20
	DEON00001 21
	DEON00001 22
	DEON00001 23
	DEON00001 24
	DEON00001 25
	DEON00001 26
	DEON00001 27
	DEON00001 28

