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Abstract. We prove that for any convex globally hyperbolic compact maximal (GHCM) anti-de
Sitter (AdS) 3-dimensional space-time N with particles (cone singularities of angles less than π along
time-like lines), the complement of the convex core in N admits a unique foliation by constant Gauss
curvature surfaces. This extends, and provides a new proof of, a result of [6]. We also describe a
parametrization of the space of convex GHCM AdS metrics on a given manifold, with particles of
given angles, by the product of two copies of the Teichmüller space of hyperbolic metrics with cone
singularities of fixed angles. Finally, we use the results on K-surfaces to extend to hyperbolic surfaces
with cone singularities of angles less than π a number of results concerning landslides, which are
smoother analogs of earthquakes sharing some of their key properties.
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1. Introduction

Let θ = (θ1, ..., θn0) ∈ (0, π)n0 . In this paper we consider an oriented closed surface Σ of genus g
with n0 marked points p1, ..., pn0 and suppose that

2π(2− 2g) +

n0∑
i=1

(θi − 2π) < 0.

This ensures that Σ can be equipped with a hyperbolic metric with cone singularities of angles
θi at the marked points pi for i = 1, ..., n0 (see e.g. [39]). Denote by TΣ,θ the Teichmüller space of
hyperbolic metrics on Σ with fixed cone angles, which is the space of hyperbolic metrics on Σ with
cone singularities of angle θi at pi, considered up to isotopies fixing each marked point (see more
precisely Section 2.1).

1.1. Hyperbolic and anti-de Sitter manifolds associated to a surface. There is a deep, and to
a large extend well-understood, connection between the space of conformal (or hyperbolic) structures
on a closed surface S of genus at least two, and the space of quasifuchsian hyperbolic structures on
S × R. A quasifuchsian hyperbolic structure on S × R is a complete hyperbolic structure g on S × R
such that S×R contains a non-empty, compact, geodesically convex subset. (We say that K ⊂ S×R
is geodesically convex if any geodesic segment in (S × R, g) with endpoints in K is contained in K.)
Given a quasifuchsian hyperbolic structure g on S ×R, its ideal boundary is the disjoint union of two
surfaces each homeomorphic to S, and each is equipped with a conformal structure well-defined up to
isotopy, that is, an element of the Teichmüller space TS of S.

The Bers Double Uniformization Theorem [8] asserts that any pair (c−, c+) ∈ TS × TS is obtained
in this manner for a unique quasifuchsian hyperbolic structure on S × R (considered up to isotopy).
This homeomorphism between the moduli space of quasifuchsian hyperbolic structure on S × R and
TS × TS can be used for instance to recover the Weil-Petersson complex structure on TS , see e.g. [2].
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We are interested here in a Lorentzian cousin of hyperbolic geometry, the anti-de Sitter (AdS)
geometry. The space AdS3 is a 3-dimensional Lorentzian space of constant curvature −1, see Section
2.2. We will consider 3-dimensional manifolds endowed with an AdS structure, that is, a geometric
structure locally modeled on AdS3. Those AdS manifolds are also called AdS spacetimes, since they
occur naturally in connection to gravitation. An AdS spacetime is globally hyperbolic compact (GHC)
if it contains a closed Cauchy surface, and it is globally hyperbolic compact maximal (GHCM) if in
addition any isometric embedding into a globally hyperbolic compact spacetime of the same dimension
is an isometry. GHCM AdS spacetimes have been shown by G. Mess [3, 26] to present remarkable
analogies with quasifuchsian hyperbolic manifolds, and they are now often called quasifuchsian AdS
spacetimes in the mathematics literature.

1.2. AdS spacetimes with particles. Cone singularities play a significant role in hyperbolic ge-
ometry, see e.g. [9, 14, 15]. For quasifuchsian hyperbolic manifolds, it is interesting to consider cone
singularities of angle less than π along infinite lines with endpoints on the two boundary components.
Those infinite cone singularities are called “particles” for a reason that should be clear below. There is
an extension of the Bers Double Uniformization Theorem to quasifuchsian hyperbolic manifolds with
particles [24, 27] of fixed angles, with the conformal structure at infinity now marked by the position
of the endpoints of the particles.

Here we are particularly interested in the AdS analogs of those quasifuchsian hyperbolic manifolds
with particles: quasifuchsian AdS spacetimes with particles, that is, cone singularities of angles less
than π along time-like lines. There is an extension of Mess’ AdS version of double uniformization to
this setting with particles, see [12].

Cone singularities of this type are used in the physics literature to model point particles in 3d
gravity, see e.g. [34, 35]. (More details on quasifuchsian AdS spacetimes with particles, including a
precise definition, can be found in Section 2.5.)

We say that a GHCM AdS spacetime with particles is convex if it contains a (locally) convex Cauchy
surface. It turns out that convex GHCM AdS spacetimes with particles contain a smallest non-empty
geodesically convex subset, called their convex core, see [12]. We denote by GHΣ,θ the space of convex
GHCM AdS metrics on Σ×R with cone singularities of angles θi along the lines {pi}×R, considered
up to isotopies fixing each singular line (see the definition in Section 2.5).

1.3. Foliations of AdS spacetimes by K-surfaces. Our main result (Theorem 1.1 below) asserts
that in any convex GHCM AdS spacetime with particles, the complement of the convex core admits
a unique foliation by constant Gauss curvature surfaces. This extends to spacetimes with particles a
result of Béguin, Barbot and Zeghib [6] for non-singular GHCM AdS spacetimes.

Theorem 1.1. Let (N, g) be a convex GHCM AdS spacetime with particles and let C(N) be the
convex core of N . Then N \C(N) admits a unique foliation by locally strictly convex, constant Gauss
curvature surfaces which are orthogonal to the singular lines.

By a strictly convex surface we mean, here and in the rest of the paper, a surface with a second
fundamental form which is either positive definite or negative definite.

Note that an analog of this result in the hyperbolic and de Sitter context was obtained in [17],
which can be considered as a continuation of the present paper (although it was published earlier).

We denote p = (p1, ..., pn0) and let MLΣ,n0 be the space of measured laminations on Σp = Σ \
{p1, ..., pn0}. It is shown in [12, Lemma 2.2] that for each g ∈ TΣ,θ, any λ ∈ MLΣ,n0 can be uniquely
realized as a geodesic lamination on (Σp, g).

1.4. Parameterization of the space of GHCM AdS spacetimes. It is known that GHΣ,θ can be
parameterized in several ways, such as the extension of Mess parameterization by TΣ,θ×TΣ,θ in terms
of the left and right metrics [12, Theorem 1.4], and the parameterization by TΣ,θ×MLΣ,n0 in terms of
the embedding data (the induced metric and the bending lamination) of the past (or future) boundary
of the convex core [12, Proposition 5.4, Proposition 5.8]. The first parameterization is equivalent to
Thurston’s Earthquake Theorem for hyperbolic metrics on Σ with cone singularities of fixed angles
less than π (see [12, Theorem 1.2]).
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Moreover, GHΣ,θ can also be parameterized by the cotangent bundle T ∗TΣ,θ of TΣ,θ, since T ∗TΣ,θ is
homeomorphic to the quotient of the space HΣ,θ of maximal surfaces in germs of AdS spacetimes with
particles by diffeomorphisms isotopic to the identity fixing each marked point of Σ (see [23, Theorem
5.11]) and there is a bijection between this quotient space and GHΣ,θ (see [37, Theorem 1.4]).

We give a new parameterization of GHΣ,θ by TΣ,θ × TΣ,θ in terms of constant Gauss curvature
surfaces. Specifically, we consider the map φK : TΣ,θ ×TΣ,θ → GHΣ,θ, for each K < −1, which assigns
to an element (τ, τ ′) ∈ TΣ,θ × TΣ,θ the isotopy class of the (unique) convex GHCM AdS spacetime
(N, g) with particles, such that it contains a future-convex, spacelike, constant curvature K surface
which is orthogonal to the singular lines, with induced metric I ∈ τ and third fundamental form
III ∈ τ ′.

Theorem 1.2. For any K ∈ (−∞,−1) and θ = (θ1, · · · , θn0) ∈ (0, π)n0, the map φK : TΣ,θ × TΣ,θ →
GHΣ,θ is a homeomorphism.

Furthermore, we find that this result provides a convenient tool to prove the existence and unique-
ness of the foliation of the complement of the convex core in a convex GHCM AdS spacetime with
particles by locally strictly convex constant (Gauss) curvature surfaces which are orthogonal to the
singular lines.

In the case of a non-singular 3-dimensional GHCM Lorentzian manifold of constant curvature, the
corresponding result about the foliation by constant Gauss curvature surfaces has been proved by
Barbot, Béguin and Zeghib (see Theorem 2.1 in [6]). For the existence part, the argument in [6]
depends on the construction of barriers (see Definition 3.1 in [6]) and a barriers theorem of Gerhardt
(see [20]) to find the surface of a given constant curvature from the barriers. Here by contrast,
Theorem 1.1 is obtained as a consequence of Theorem 1.2, and we obtain a simpler approach to prove
the existence of the foliation without using the barriers argument.

Remark 1.3. For convenience, constant Gauss curvature surfaces are called constant curvature sur-
faces, or simply K-surfaces, henceforth.

1.5. Landslides on hyperbolic surfaces with cone singularities. Finally, we use the results
obtained on K-surfaces in GHCM AdS spacetimes with particles to extend some recent results on the
landslide flow (see [10,11]) to hyperbolic surfaces with cone singularities of fixed angles less than π.

Landslides are transformations of hyperbolic structures on a closed surface S of genus at least two,
introduced in [10, 11] as “smoother” analogs of earthquakes. Earthquakes depend on the choice of a
measured lamination λ ∈MLS , so the earthquake flow can be defined as a map

E : TS ×MLS × R→ TS

(h, λ, t) 7→ Etλ(h) ,

which for fixed λ ∈MLS defines an action of R on TS .
Landslide transformations, on the other hand, can be described as an action of S1 on TS × TS .

For eiα ∈ S1 and (h, h′) ∈ TS × TS , we denote by Leiα(h, h′) ∈ TS × TS the image of (h, h′) by the
landslide flow, and L1

eiα
(h, h′) its projection on the first factor. If (tn)n∈N and (h′n)n∈N are sequences

in R>0 and TS , respectively, such that tnh
′
n → λ ∈ MLS , then L1

eitn
(h, h′n) → Eλ/2(h) as n → ∞,

see [10, Theorem 1.12].
In Section 5, we use Theorem 1.1 and other tools to extend the definition of landslide transformations

to hyperbolic surfaces with cone singularities of fixed angles less than π. We show that the analog
of Thurston’s Earthquake Theorem extends to landslides on those hyperbolic cone surfaces: for all
h1, h2 ∈ TΣ,θ and all eiα ∈ S1 \ {1}, there exists a unique h′1 ∈ TΣ,θ such that L1

eiα
(h1, h

′
1) = h2, see

Theorem 5.8.
We then go on to deduce from the properties of the landslide flow further results on the induced

metrics and third fundamental forms of different K-surfaces in a given GHCM AdS spacetime with
particles, see Theorem 5.15.
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1.6. Outline of the paper. Section 2 is devoted to background material on different notions nec-
essary for the rest of the paper: hyperbolic surfaces with cone singularities, AdS spacetimes with
particles, etc. In Section 3 we prove Theorem 1.2, while Section 4 is devoted to the proof of Theorem
1.1. Section 5 describes applications to the landslide flow on the space of hyperbolic metrics with cone
singuarities (of fixed angles) on a surface.

Acknowledgement. We are grateful to an anonymous referee for many smart and constructive
comments that helped improve the content and exposition of the paper.

2. Background material

2.1. Hyperbolic metrics with cone singularities. First we recall the local model of a hyperbolic
metric with a cone singularity of angle θ0.

Let H2 be the Poincaré model of the hyperbolic plane. Denote by H2
θ0

the space obtained from H2

by taking a wedge of angle θ0 bounded by two half-lines intersecting at the center 0 of H2 and gluing
the two half-lines by a rotation fixing 0. We call H2

θ0
the hyperbolic disk with cone singularity of angle

θ0, which is a singular disk (with the singular point at the center) with the induced metric

gθ0 = dr2 + sinh2(r)dα2,

where (r, α) ∈ R≥0 × R/θ0Z is a polar coordinate of H2
θ0

.

Definition 2.1. Let p = (p1, ..., pn0) and θ = (θ1, ..., θn0) ∈ (0, π)n0. A hyperbolic metric on Σ with
cone singularities of angle θ at p is a (singular) Riemannian metric which has constant curvature −1
on Σp and such that each pi has a neighborhood isometric to a neighborhood of the singular point in
H2
θ0

. Denote by Mθ
−1 the space of hyperbolic metrics on Σ with cone singularities of angle θ at p.

It is shown by Troyanov [39, Theorem A] and McOwen [25] that each conformal class of a metric on
the surface Σ with marked points p1, ..., pn0 admits a unique hyperbolic metric with cone singularities
of angle θi at the pi, as soon as

χ(Σ, θ) := χ(Σ) +

n0∑
i=1

(
θi
2π
− 1) < 0 .

For each g ∈Mθ
−1, there exists a conformal coordinate z in a neighborhood Ui of pi such that

g|Ui = e2ui(z)|z|2(βi−1)|dz|2,

where ui : Ui → R is C2 outside pi and Hölder continuous on Ui (see the proof of the main theorem
in [25]) and βi = θi/(2π).

Let Diff0(Σp) denote the space of diffeomorphisms on Σp which are isotopic to the identity (fixing
each marked point). They act by pull-back on Mθ

−1. We say that two metrics h1, h2 ∈ Mθ
−1 are

isotopic if there exists a map f ∈ Diff0(Σp) such that h1 is the pull back by f of h2.
Denote by TΣ,θ the Teichmüller space of hyperbolic metrics on Σ with fixed cone angle θ, which is

the space of isotopy classes of hyperbolic metrics on Σ with cone singularities of angle θ at p. Note
that TΣ,θ = Mθ

−1/Diff0(Σp) and Mθ
−1 is a differentiable submanifold of the manifold consisting of all

symmetric (0,2)-type C2 tensor fields on Σp. TΣ,θ is a finite-dimensional differentiable manifold which
inherits a natural quotient topology. See e.g. [19, 29,32,33] for more details.

2.2. The 3-dimensional anti-de Sitter space AdS3. Let R2,2 be R4 with the quadratic form
q(x) = x2

1 + x2
2 − x2

3 − x2
4. The anti-de Sitter (AdS) 3-space is defined as the quadric:

AdS3 = {x ∈ R2,2 : q(x) = −1}.

It is a 3-dimensional Lorentzian symmetric space of constant curvature −1 diffeomorphic to D × S1,
where D is a 2-dimensional disk.

Consider the projective map π : R2,2\{0} → RP3. The Klein model ADS3 of AdS 3-space is defined
as the image of AdS3 under the projection π. It is clear that ADS3 = π(AdS3) = AdS3/{±id}. The
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boundary ∂ADS3 is the image of the quadratic Q = {x ∈ R2,2 : q(x) = 0} under π, which is foliated
by two families of projective lines, called the left and right leaves, respectively.

Geodesics in the Klein model ADS3 are given by projective lines: the spacelike geodesics correspond
to the projective lines intersecting the boundary ∂ADS3 in two points, while lightlike geodesics are
tangent to ∂ADS3, and timelike geodesics do not intersect ∂ADS3.

The group Isom0(ADS3) of orienation and time-orientation preserving isometries of ADS3 can be
identified as PSL(2,R) × PSL(2,R). One simple way to see this is because the boundary of the
Klein model ADS3 is foliated by two families of lines, and those two foliations are invariant under any
orientation and time-orientation isometry of AdS3 since isometries act projectively in the Klein model.
The set of leaves of each foliation is equipped with a real projective structure by the intersections with
any leave of the other foliation, and the action of Isom0(ADS3) defines in this way two elements of
PSL(2,R).

More details about the geometry of AdS3 can be found in e.g. [3, 4, 26] or [18, Section 2.2].

2.3. The singular AdS 3-space. We now proceed to define the notion AdS spacetimes with cone
singularities, see Section 2.4 below.

Let θ0 > 0. Define the singular AdS 3-space of angle θ0 as

AdS3
θ0 := {(t, r, α) ∈ R× R≥0 × R/θ0Z} ,

with the metric

(1) − cosh2 (r)dt2 + dr2 + sinh2(r)dα2.

The set corresponding to r = 0 is called the singular line in AdS3
θ0

and θ0 is called the total angle
around this singular line.

In the neighbourhood of the totally geodesic plane P0 = {(t, r, α) ∈ AdS3
θ0

: t = 0} which consists
of the points at time-like distance less than π/2 from P0, this metric can also written (with different
variables) as

(2) −dt2 + cos2(t)(dr2 + sinh2(r)dα2) .

It is clear that AdS3
θ0

is a Lorentzian spacetime of constant curvature −1 outside the singular line,
that is, it is locally modelled on AdS3. Indeed, it is obtained from the complete hyperbolic surface
with a cone singularity of angle θ0 by taking a warped product with R (see e.g. [16, 23,37]).

There is a well-defined notion of totally geodesic plane orthogonal to the singular line in AdS3
θ0

.
Those planes are precisely the subsets of equation t = t0 in the expression (2). They are totally
geodesic outside the singular locus, and can be considered to be orthogonal to this singular locus.
There is one such plane going through each point of the singular locus.

2.4. AdS spacetimes with particles. An AdS spacetime with particles is a (singular) Lorentzian 3-
manifold in which any point x has a neighbourhood isometric to a subset of AdS3

θ0
for some θ0 ∈ (0, π).

Definition 2.2. Let S ⊂ AdS3
θ0

be a spacelike surface which intersects the singular line at a point x.
S is said to be orthogonal to the singular line at x if the time-like distance to the totally geodesic plane
P orthogonal to the singular line at x satisfies:

(3) lim
y→x,y∈S

d(y, P )

dS(x, y)
= 0 .

Here d(y, P ) is the length of the unique time-like geodesic segment through y orthogonal to P (this
is the natural notion of Lorentzian distance) which is well-defined if y is close enough to P , and dS(x, y)
is the distance between x and y along S. Note that dS(x, y) is finite since the expression (1) shows
that the length of any curve on S is bounded from above by the length of its orthogonal projection
on P .

Definition 2.3. Let S be a spacelike surface in an AdS spacetime M with particles which intersects a
singular line l at a point x′. S is said to be orthogonal to l at x′ if there exists a neighborhood U ⊂M
of x′ which is isometric to a neighborhood of a singular point in AdS3

θ0
such that the isometry sends

S ∩ U to a surface orthogonal to the singular line in AdS3
θ0

.
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2.5. Convex GHCM AdS spacetimes with particles. We can now define the notion of convex
GHCM spacetimes with particles appearing in Theorem 1.1.

Definition 2.4. An AdS spacetime M with particles is convex GHCM if

• M is convex GHC: it contains a closed Cauchy surface (i.e. a spacelike surface intersecting
each inextensible timelike curve exactly once) which is locally convex and orthogonal to the
singular lines.
• M is maximal: if any isometric embedding of M into a convex GHC AdS spacetime is an

isometry.

It is well-known that a globally hyperbolic spacetime (with particles or not) is topologically a
product of any of its Cauchy surfaces with an interval, see e.g. [7, Chapter 3] and [12, Proposition 2.4].

The convexity condition on Cauchy surfaces ensures the existence of convex core in a GHCM AdS
spacetime with particles [12, Lemma 4.9]. Note that the convexity condition might be technical,
since it is still unknown whether every GHCM AdS spacetime with particles always contains a convex
Cauchy surface. On the other hand, the orthogonality condition above ensures that the induced metric
on a Cauchy surface carries cone singularities of the same angle as the total angle around the singular
lines at the intersection with the singular locus [23, Section 5.1].

Let GH′Σ,θ be the space of convex GHCM AdS metrics on Σ × R with cone singularities of (total)

angles θi along the lines {pi} × R. Denote by Diff0(Σ × R) the space of diffeomorphisms on Σ × R
isotopic the identity fixing each singular line. We say that two metrics g1, g2 ∈ GH′Σ,θ are isotopic if

there exists a map f ∈ Diff0(Σ× R) such that g1 is the pull back by f of g2.
Denote by GHΣ,θ the space of convex GHCM AdS metrics on Σ×R with particles of fixed angle θ,

which is the space of isotopy classes of convex GHCM AdS metrics with cone singularities of angles
θi along the lines {pi} × R. Note that GHΣ,θ = GH′Σ,θ/Diff0(Σ × R) and it is a finite-dimensional

differentiable manifold with a natural quotient topology, see [12,23].

2.6. Convex spacelike surfaces in a convex GHCM AdS spacetime with particles. Let
(N, g) be a convex GHCM AdS spacetime with particles. Let S ⊂ N be an (embedded) spacelike
surface orthogonal to the singular lines with the induced metric I. The shape operator B : TS → TS
of S is defined as

B(u) = ∇un,
where n is the future-directed unit normal vector field on S and ∇ is the Levi-Civita connection of
(N, g). The second and third fundamental forms of S are defined respectively as

II(u, v) = I(Bu, v), III(u, v) = I(Bu,Bv).

Definition 2.5. Let S be a convex spacelike surface orthogonal to the singular lines in a convex GHCM
AdS spacetime N with particles. We say that S is future-convex (resp. past-convex) if its future I+(S)
(resp. its past I−(S)) is geodesically convex. We say that S is strictly future-convex (resp. strictly
past-convex) if I+(S) (resp. I−(S)) is strictly geodesically convex.

Note that if S is future-convex (resp. past-convex), then for each regular point x of S, both the
principal curvatures at x are non-negative (resp. non-positive). If S is strictly future-convex (resp.
strictly past-convex), then for each regular point x of S, both the principal curvatures at x are positive
(resp. negative).

2.7. The duality between strictly convex surfaces in convex GHCM AdS spacetimes with
particles. First we recall the duality between points and hyperplanes in AdS3 (see e.g. [6, 11]).

Observe that AdS3 is a quadric in R2,2. Every point x in AdS3 is exactly the intersection in R2,2

of AdS3 with a ray l starting from the origin 0 on which the quadratic form is negative definite.
Denote by l⊥ the hyperplane orthogonal to l in R2,2, with the induced metric of signature (2,1). The
intersection between l⊥ and AdS3 is the disjoint union of two totally geodesic spacelike planes P±x ,
where P+

x (resp. P−x ) is at a distance π/2 in the future (resp. in the past) of x.
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Conversely, every totally geodesic spacelike plane P in AdS3 is the intersection of AdS3 with a
hyperplane H of signature (2,1) in R2,2. The orthogonal H⊥ of H intersects AdS3 at two antipodal
points x±P , where x+

P (resp. x−P ) is at a distance π/2 in the future (resp. in the past) of P .

We define the dual P ∗ of P as the past (resp. future) intersection point x−P if the dual x∗ of x is
defined to be AdS3∩P+

x (resp. AdS3∩P−x ). The dual surface S∗ of a strictly convex surface S ⊂ AdS3

is defined as the set of points on the convex side of S which are the dual points of the support planes
of S. Equivalently, S∗ can be obtained by pushing S along orthogonal geodesics on the convex side
for a distance π/2 (see [6, Proposition 11.9]).

Note that AdS3
θ0

can be obtained from the universal cover of AdS3 by taking a wedge of angle θ0

bounded by two time-like totally geodesic half-planes and gluing the two half-planes by a rotation
fixing the common time-like geodesic. For a strictly convex spacelike surface S ⊂ AdS3

θ0
orthogonal

to the singular lines, there is a natural generalization for the dual surface S∗.
Since an AdS spacetime with particles is locally modelled on AdS3

θ0
for some θ0 ∈ (0, π), we can

generalize to the singular case the duality between strictly convex spacelike surfaces.

Definition 2.6. Let S be a strictly convex spacelike surface orthogonal to the singular lines in a convex
GHCM AdS spacetime N with particles. The dual surface S∗ of S is defined as the surface obtained
by pushing S along orthogonal geodesics on the convex side for a distance π/2.

Observe that the surface obtained by pushing a strictly convex surface S ⊂ N (which is orthogonal
to the singular lines) along orthogonal geodesics on the convex side for a distance t ∈ [0, π/2] is still
orthogonal to the singular lines. The strict convexity of S implies that S∗ is a smooth (outside the
singular locus), strictly convex surface. The relation between dual strictly convex surfaces in GHCM
AdS spacetimes (see [6, Section 9.1] or [11, Section 2.6]) can be directly generalized to the following
case with cone singularities.

Proposition 2.7. Let (N, g) be a convex GHCM AdS spacetime with particles. Assume that S ⊂ N
is a strictly convex spacelike surface of constant curvature K orthogonal to singular lines. Then

(1) S∗ is a strictly convex spacelike surface of constant curvature K∗ with the shape operator of opposite
definiteness, which is orthogonal to the singular lines in N , where K∗ = −K/(1 +K).

(2) The pull back of the induced metric on S∗ through the duality map is the third fundamental form
of S and vice versa.

(3) The dual surface (S∗)∗ of S∗ is exactly S.

2.8. Minimal Lagrangian maps between hyperbolic surfaces with cone singularities. The
construction of the parameterization of GHΣ,θ here depends strongly on minimal Lagrangian maps
between hyperbolic surfaces with cone singularities.

Definition 2.8. Given two hyperbolic metrics h, h′ on Σ with cone singularities. A minimal La-
grangian map m : (Σ, h) → (Σ, h′) is an area-preserving and orientation-preserving diffeomorphism
such that its graph is a minimal surface in (Σ× Σ, h⊕ h′).

The following result is [37, Theorem 1.3].

Theorem 2.9 (Toulisse). Let h, h′ ∈ Mθ
−1. Then there exists a unique minimal Lagrangian diffeo-

morphism m : (Σ, h)→ (Σ, h′) isotopic to the identity.

This is shown by proving the existence and uniqueness of maximal surfaces (see [37, Theorem 1.4])
in a convex GHCM AdS spacetime with particles.

Recall that a spacelike surface of a convex GHCM AdS spacetime (N, g) with particles is said to
be a maximal surface if it is a locally area-maximizing Cauchy surface which is orthogonal to the
singular lines. In particular, it has everywhere vanishing mean curvature and its principal curvatures
are everywhere in (−1, 1) (see [23, Lemma 5.15]) and tend to zero at the intersections with particles
(see [37, Proposition 3.7]). It is shown in [23, Definition 5.10] that the space HΣ,θ of maximal surfaces
in germs of AdS spacetimes with particles has the following convenient properties.
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Lemma 2.10. The space HΣ,θ is identified with the space of couples (g, h), where g is a smooth metric
on Σp with cone singularities of angle θi at the marked points pi for i = 1, ..., n0 and h is a symmetric
bilinear form on TΣ defined outside the marked points, such that

• trg(h) = 0.
• d∇h = 0, where ∇ is the Levi-Civita connection of g.
• Kg = −1− detg(h).
• detg(h) is bounded.

For the convenience of computation, we also introduce the following proposition, see [23, Proposition
3.12].

Proposition 2.11. Let Σ be a surface with a Riemann metric g. Let A : TΣ → TΣ be a bundle
morphism such that A is everywhere invertible and d∇A = 0, where ∇ is the Levi-Civita connection
of g. Let h be the symmetric (0,2)-tensor defined by h = g(A•, A•). Then the Levi-Civita connection
of h is given by

∇hu(v) = A−1∇u(Av),

and its curvature is given by

Kh =
Kg

det(A)
.

Minimal Lagrangian maps between hyperbolic surfaces with metrics in Mθ
−1 have an equivalent

description in terms of morphisms between tangent bundles (see e.g. [37, Proposition 6.3]).

Proposition 2.12. Let h, h′ ∈Mθ
−1. Then a diffeomorphism m : (Σ, h)→ (Σ, h′) fixing the singular

points is a minimal Lagrangian map if and only if there exists a bundle morphism b : TΣ → TΣ
defined outside the singular locus which satisfies the following properties:

• b is self-adjoint for h with positive eigenvalues.
• det(b) = 1.
• b satisfies the Codazzi equation: d∇b = 0, where ∇ is the Levi-Civita connection of h.
• h(b•, b•) is the pull back of h′ by m.
• Both eigenvalues of b tend to 1 at the cone singularities.

Proof. Note that Proposition 6.3 in [37] provides the equivalence between the existence of a minimal
Lagrangian map m : (Σ, h) → (Σ, h′) and the existence of a bundle morphism b which satisfies the
first three properties. It suffices to check that given a minimal Lagrangian map m : (Σ, h)→ (Σ, h′),
the bundle morphism b also satisfies the last property. Set

I ′ =
1

4
h((E + b)•, (E + b)•).

Denote by J ′ the complex structure of I ′ and set

B′ = −J ′(E + b)−1(E − b).
Moreover, J ′ = (E + b)−1J(E + b), where J is the complex structure of h.

Note that J ′B′ = (E+b)−1(E−b). It is not hard to check that B′ satisfies the following conditions:

• B′ is self-adjoint for I ′. Indeed, choosing a suitable basis such that b is diagonal and using the
fact that det(b) = 1, we have

tr(J ′B′) = 0,

which implies that B′ is self-adjoint for I ′.
• tr(B′) = 0. This follows from the fact that J ′B′ is self-adjoint for I ′, since E± b is self-adjoint

for h and E + b commutes with E − b.
• d∇

′
B′ = 0, where ∇′ is the Levi-Civita connection of I ′. Indeed, by Proposition 2.11 and a

direct computation, we obtain that

d∇
′
(J ′B′) = (E + b)−1d∇(E − b) = 0.

Note that J ′ is parallel for ∇′ , it follows that d∇
′
B′ = 0.
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• KI′ = −1− det(B′). Indeed, by computation, we have

E + J ′B′ = 2(E + b)−1.

By Proposition 2.11, it follows that

KI′ =
Kh

det(1
2(E + b))

= −det(2(E + b)−1) = −det(E + J ′B′) = −1− det(B′).

Set II ′ = I ′(B′•, •). By Lemma 2.10, the couple (I ′, II ′) is exactly the first and second fundamental
form of a maximal surface S′ in a GHCM AdS spacetime (N ′, g′) with particles, where (N ′, g′) has
the left metric

I ′((E + J ′B′)•, (E + J ′B′)•) = h,

and the right metric

I ′((E − J ′B′)•, (E − J ′B′)•) = h′.

Note that the eigenvalues of B′ tend to zero at the intersections of S′ with the particles (see [37,
Proposition 3.7]) and B′ = −J ′(E + b)−1(E − b). Then both eigenvalues of b tend to 1 at the cone
singularities.

We now prove that (N ′, g′) is convex, using a remark appearing already in e.g. [13, Section 4.1].
Since the eigenvalues of B′ tend to 0 at the intersections of S′ with the particles, the absolute value of
the eigenvalues are less than 1 over S′, see [23, Lemma 3.11]. As a consequence, the GHCM spacetime
(N ′, g′) containing S′ also contains the surfaces Sr equidistant from S′ at oriented distance r ∈
(−π/4, π/4). Those surfaces are smooth (outside the singular points) and, if the principal curvatures
of S′ at a point x are equal to ± tan(t), then the principal curvatures of Sr at the corresponding point
are tan(t+ r) and tan(t− r), where t ∈ [0, π/4). (This follows from the Riccatti equation satisfied by
the equdistant surfaces in AdS spacetimes.) As a consequence, both S−π/4 and Sπ/4 are convex, with
convexities in opposite directions, and (N ′, g′) is therefore convex GHCM. �

Corollary 2.13. Let h, h′ ∈Mθ
−1. Then there exists a unique bundle morphism b : TΣ→ TΣ defined

outside the singular locus, which is self-adjoint for h with positive eigenvalues, has determinant 1 and
satisfies the Codazzi equation: d∇b = 0, where ∇ is the Levi-Civita connection of h, such that h(b•, b•)
is isotopic to h′. Moreover, both eigenvalues of b tend to 1 at the cone singularities.

Definition 2.14. We say that a pair of hyperbolic metrics (h, h′) is normalized if there exists a bundle
morphism b : TΣ→ TΣ defined outside the singular locus, which is self-adjoint for h, has determinant
1, and satisfies the Codazzi equation, such that h′ = h(b•, b•), or equivalently if the identity from (Σ, h)
to (Σ, h′) is a minimal Lagrangian diffeomorphism.

Remark 2.15. By Corollary 2.13, for any (τ, τ ′) ∈ TΣ,θ ×TΣ,θ, we can realize (τ, τ ′) as a normalized
representative (h, h′). Note that the normalized representative of (τ, τ ′) is unique up to isotopies acting
diagonally on both h and h′.

3. Parameterization of GHΣ,θ in terms of constant curvature surfaces.

3.1. The definition of the map φK . For the construction of the map φK , we introduce the following
proposition which ensures the existence and the uniqueness (up to isometries) of the maximal extension
of a convex GHC AdS spacetime with particles (see [16, Proposition 2.6]).

Proposition 3.1. Let (N, g) be a convex GHC AdS spacetime with particles. There exists a unique
(considered up to isometries) convex GHCM AdS spacetime (N ′, g′) with particles, called the maximal
extension of (N, g), in which (N, g) can be isometrically embedded.

Lemma 3.2. Let K ∈ (−∞,−1) and let (h, h′) ∈Mθ
−1 ×Mθ

−1 be a pair of normalized metrics. Then
there exists a unique GHCM AdS spacetime (N, g) that contains a future-convex, spacelike, constant
curvature K surface which is orthogonal to the singular lines, with the induced metric I = (1/|K|)h
and the third fundamental form III = (1/|K∗|)h′, where K∗ = −K/(1 +K).
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Proof. Let b : TΣ → TΣ be the bundle morphism associated to h and h′ by Definition 2.14, so that
h′ = h(b•, b•).

Let I = (1/|K|)h. We equip Σ with the metric I and consider a bundle morphism B : TΣ → TΣ,
which is defined by B =

√
−1−Kb. By the properties of h and b, it follows that

• (Σ, I) has constant curvature K.
• B is self-adjoint for I with positive eigenvalues.

• B satisfies the Codazzi equation: d∇
I
B = 0, where ∇I is the Levi-Civita connection of I.

• B satisfies the Gauss equation: K = −1− det(B).

Consider the manifold Σ× [0, π2 ) with the following metric:

g0 = −dt2 + I((cos(t)E + sin(t)B)•, (cos(t)E + sin(t)B)•) ,
where E is the identity isomorphism on TΣ and t ∈ [0, π2 ). Note that for each t ∈ [0, π2 ), the surface
Σ × {t} is the equidistant surface at distance t from the surface Σ × {0} on the convex side. The
Lorentzian metric g0 is a convex GHC AdS metric on Σ × [0, π2 ) with cone singularities of angle θi
along the line {pi} × [0, π2 ). (Note that g0 is convex since the surface Σ × {0} is locally convex by
construction.)

By Proposition 3.1, there exists a unique maximal extension (N, g) of the AdS spacetime (Σ ×
[0, π2 ), g0) with particles, which is a convex GHCM AdS spacetime with particles, such that the re-
striction of g to the subset Σ× [0, π2 ) of N is exactly g0.

Since B has positive eigenvalues, the embedded surface Σ×{0} is future-convex. Hence, N contains
a future-convex, spacelike, constant curvature K surface which is orthogonal to the singular lines, with
the induced metric I = (1/|K|)h and the third fundamental form

III = I(B•, B•) =
1

|K|
h(
√
−1−Kb•,

√
−1−Kb•) =

1

|K∗|
h′,

where K∗ = −K/(1 +K). This shows the existence of the required manifold (N, g).
Now we show the uniquess of (N, g). Suppose that (N1, g1) is another convex GHCM AdS spacetime

with particles which contains a prescribed surface S1. Then S1 has the induced metric I1 = (1/|K|)h =
I with shape operator B1 and third fundamental form

III1 = I(B1•, B1•) =
1

|K∗|
h′ = I(B•, B•) = III.

Since S1 is future-convex, then B1 is positive definite. Therefore, the shape operator B1 of S1 in
(N1, g1) is equal to B. Note that the embedding data (Σ, I, B) is exactly (Σ, I1, B1), then (N1, g1) =
(N, g). This completes the proof. �

Lemma 3.3. Let K ∈ (−∞,−1). For any (τ, τ ′) ∈ TΣ,θ × TΣ,θ, let (h, h′) and (h1, h
′
1) be two

normalized representatives of (τ, τ ′). Let (N, g) and (N1, g1) be the convex GHCM AdS spacetimes
with particles associated to (h, h′) and (h1, h

′
1), as described in Lemma 3.2. Then (N, g) is isotopic to

(N1, g1).

Proof. Note that (h, h′), (h1, h
′
1) are normalized representatives of (τ, τ ′). By Remark 2.15, there

exists a diffeomorphism ϕ from Σ to Σ which is isotopic to the identity (the isotopy fixes the marked
points), such that h1 = ϕ∗h and h′1 = ϕ∗h′.

Let (Σ, I, B, III) and (Σ, I1, B1, III1) be the corresponding data of the surface contained in (N, g)
and (N1, g1), as described in Lemma 3.2, respectively. Then I = (1/|K|)h, III = (1/|K∗|)h′ and
I1 = (1/|K|)h1, III1 = (1/|K∗|)h′1. It follows that

(4) I1 = ϕ∗(I), III1 = ϕ∗(III).

To see (N1, g1) is isotopic to (N, g), it suffices to prove that II1 = ϕ∗(II), where II is the second
fundamental form of (Σ, I) in (N, g) and II1 is the second fundamental form of (Σ, I1) in (N1, g1).

By (4), we have

III1 = ϕ∗(III) = ϕ∗(I(B•, B•)) = ϕ∗(I(B2•, •)) = I(B2dϕ•, dϕ•),
where dϕ denotes the differential map (or the Jacobian matrix) of ϕ.
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Note that

III1 = I1(B1•, B1•) = (ϕ∗I)(B1•, B1•) = (ϕ∗I)(B2
1•, •) = I(dϕB2

1•, dϕ•)
Hence, B2 = (dϕ)B2

1(dϕ)−1. Denote A = (dϕ)B1(dϕ)−1 and hence B2 = A2. Since both A and
B are self-adjoint with positive eigenvalues, an elementary argument shows that A = B, that is,
(dϕ)B1 = B(dϕ). Therefore,

ϕ∗(II) = ϕ∗(I(B•, •)) = I(Bdϕ•, dϕ•) = I(dϕB1•, dϕ•) = (ϕ∗I)(B1•, •) = I1(B1•, •) = II1.

This completes the proof of Lemma 3.3. �

Definition 3.4. For any K ∈ (−∞,−1), define the map φK : TΣ,θ×TΣ,θ → GHΣ,θ by assigning to an
element (τ, τ ′) ∈ TΣ,θ×TΣ,θ the isotopy class of the convex GHCM AdS spacetime (N, g) with particles
satisfying the prescribed property in Lemma 3.2. As a consequence of Lemma 3.2 and Lemma 3.3, this
map is well-defined.

Remark 3.5. For convenience, for each pair (τ, τ ′) ∈ TΣ,θ × TΣ,θ, we always represent it by a pair
of normalized hyperbolic metrics (h, h′) and represent φK(τ, τ ′) by the convex GHCM AdS spacetime
(N, g) with particles as constructed in the proof of Lemma 3.2.

3.2. The injectivity of the map φK . We prove this property by applying the Maximum Principle
outside the singular locus and a specialized analysis near cone singularities.

Proposition 3.6. Let (N, g) ∈ GH′Σ,θ be a convex GHCM AdS spacetime with particles. Assume
that S is a future-convex, spacelike, constant curvature K surface which is orthogonal to the singular
lines. Then for each intersection point pi of the surface S with the singular line li in N , both principal
curvatures on S tend to k =

√
−1−K at pi for i = 1, ..., n0.

Proof. Let I and B be the induced metric and the shape operator of S in (N, g), respectively. Then
we have

I =
1

|K|
h, III =

1

|K∗|
h′,

where h, h′ ∈Mθ
−1 and K∗ = −K/(1 +K).

We claim that id : (S, h)→ (S, h′) is minimal Lagrangian. Indeed, set

b =
1√

−1−K
B.

Note that S is future-convex, then B is positive definite. One can easily check that

• b is self-adjoint for h with positive eigenvalues.
• det(b) = 1.
• d∇b = 0, where ∇ is the Levi-Civita connection of h.
• h′ = h(b•, b•).

Moreover, by Proposition 2.12, both eigenvalues of b tend to 1 at cone singularities. Hence, both
eigenvalues of B =

√
−1−Kb tend to k =

√
−1−K at the intersections of S with the singular lines.

This implies the conclusion. �

Let (N, g) be a convex GHCM AdS spacetime with particles. Recall that a geodesically convex
subset Ω of N is a subset of N such that any geodesic segment in N with endpoints in Ω is contained
in N . It is proved in [16, Lemma 4.5, Lemma 4.9] that the following properties still hold for the case
of convex GHCM AdS spacetimes with particles.

Lemma 3.7. Each convex GHCM AdS spacetime (N, g) with particles contains a convex core C(N),
that is, the smallest non-empty geodesically convex subset of N . Moreover, for any point x ∈ N \C(N),
the maximal timelike geodesic segment connecting x to C(N) has length less than π/2.

Remark 3.8. The boundary of C(N) is the union of two (possibly identified) surfaces, called the
future boundary ∂+C(N) and the past boundary ∂−C(N). In the Fuchsian case (i.e. the two metrics
of the Mess parameterization are equal), C(N) = ∂+(N) = ∂−(N) is a totally geodesic spacelike
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surface orthogonal to the singular lines. In the non-Fuchsian case, each boundary component of C(N)
is a spacelike surface orthogonal to the singular lines and is “pleated” along a measured geodesic
lamination. In both cases, the induced metric on each boundary component of C(N) is hyperbolic,
with each cone singularity of angle equal to that of corresponding particle, as in [16, Lemma 1.5].
Moreover, the maximal geodesic segment starting from x ∈ ∂+C(N) (resp. ∂−C(N)) in the direction
of a past-oriented (resp. future-oriented) normal vector at x has length π/2, see [16, Lemma 1.6].

The following corollary is an immediate consequence of Lemma 3.7.

Corollary 3.9. Let (N, g) be a convex GHCM AdS spacetime with particles.

(1) If S is a strictly future-convex spacelike surface orthogonal to the singular lines in N , then S is
in the past of the convex core C(N) and stays at distance less than π/2 from ∂+C(N).

(2) If S be a strictly past-convex spacelike surface orthogonal to the singular lines in N , then S is in
the future of the convex core C(N) and stays at distance less than π/2 from ∂−C(N).

The following theorem is an alternative version of the Maximum Principle Theorem (see [5, Lemma
2.3], [6, Proposition 4.6]) for the case of convex GHCM AdS spacetimes with particles.

Theorem 3.10. (Maximum Principle) Let (N, g) be a convex GHCM AdS spacetime with particles.
Let S and S′ be two future-convex spacelike surfaces in N which are orthogonal to the singular lines.
Assume that S and S′ intersect at a point p which is not a singularity, and assume that S′ is contained
in the future of S. Then the principal curvatures of S′ at p are greater than or equal to those of S.

We will also use the following lemma on equidistant surfaces in AdS spacetimes, which follows by
a direct computation, see e.g. [23, Lemma 3.22] and [6, Proposition 9.10]. Note that the signs of the
principal curvatures here are opposite to those in [6], due to a sign difference of the definition of the
second fundamental form.

Lemma 3.11. Let (N, g) be a convex GHCM AdS spacetime with particles. Let S be a future-convex,
spacelike surface in N orthogonal to the singular lines and let ψt : S → N be a map defined by
ψt(x) = expx(t · n(x)), where n(x) is the future-directed unit normal vector at x of S in N . Then for
each x ∈ S which is a regular point, we have

(1) ψt is an embedding in a neighbourhood of x if t satisfies that λ(x) tan(t) 6= −1 and µ(x) tan(t) 6=
−1, where λ(x) and µ(x) are the principal curvatures of S at x.

(2) The principal curvatures of ψt(S) at the point ψt(x) are given by

λt(ψt(x)) =
λ(x)− tan(t)

1 + λ(x) tan(t)
, µt(ψt(x)) =

µ(x)− tan(t)

1 + µ(x) tan(t)
.

(3) Fix x ∈ S, λt(ψt(x)) and µt(ψt(x)) are both strictly decreasing in t ∈ (t0(x) − π/2, π/2), where
t0(x) = min{arctanλ(x), arctanµ(x)}.

The following lemma gives a comparison between the principal curvatures at a common singular
point p of two spacelike surfaces (orthogonal to the singular lines) which behave umbilically (i.e.
principal curvatures extend and coincide) at p and locate at particular positions near p, which can be
viewed as a “singular” version of the Maximum Principle Theorem.

Lemma 3.12. Let (N, g) be a convex GHCM AdS spacetime with particles. Let S, S′ be two spacelike
surfaces in N which are orthogonal to the singular lines. Assume that S and S′ intersect at a singular
point p such that the limits of both principal curvatures of S at p are equal to k > 0, and the limits of
both principal curvatures of S′ at p are equal to k′ > 0. If there exists a neighbourhood U of p in S
and a neighbourhood U ′ of p in S′ such that U ′ is in the future of U , then k′ ≥ k.

Proof. Let li be the singular line through p in N with total angle θi. Note that S, S′ are orthogonal
to li at p. By Definition 2.3, there is a sufficiently small neighbourhood V of p in N isometric to
a neighbourhood W of a singular point x ∈ AdS3

θi
such that the isometry sends S ∩ V ⊂ U and

S′ ∩ V ⊂ U ′ to surfaces X and X ′ orthogonal to the singular line say l in AdS3
θi

at x.
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Recall that AdS3
θi

is obtained from the universal cover ÃdS3 of AdS3 by taking a wedge W̃ of angle
θi bounded by two totally geodesic time-like half-planes P1, P2 and gluing P1, P2 by a rotation fixing
the common time-like geodesic l̃ := P1 ∩ P2. Restricted to the picture before gluing, the surfaces X,

X ′ correspond to the surfaces say X̃, X̃ ′ in ÃdS3 ∩ W̃ respectively, which are tangent to the totally
geodesic plane P orthogonal to l̃ at x̃, where x̃ corresponds to x ∈ AdS3

θi
. This picture is simple thanks

to the assumptions on S and S′: X̃ and X̃ ′ behave umbilically at the common point x̃, and X̃ ′ lies in
the future of X̃. Similarly to the regular case (see [5, Lemma 2.3]), we can now write the surfaces X̃,

X̃ ′ as the graphs of two functions f , f ′ over their common (sectorial) tangent plane P ∩ W̃ at x̃. The
limit of the second fundamental form of S (resp. S′) at p is equal to the Hessian of f (resp. f ′) at x̃
and, since f ′ ≥ f in the neighborhood of x̃ by construction, k′ ≥ k. �

Lemma 3.13. Let Si be a future-convex spacelike surface of constant curvature Ki which is orthogonal
to the singular lines in a convex GHCM AdS spacetime with particles for i = 1, 2. Then we have the
following statements:

(1) K1 = K2 if and only if S1 coincides with S2.
(2) K1 > K2 if and only if S1 is strictly in the future of S2.
(3) K1 < K2 if and only if S1 is strictly in the past of S2.

Proof. First we claim that if some part of S1 lies strictly in the future of S2, then K1 > K2. To
see this, set t0 = sup{d(x, S1) : x ∈ S2 is in the past of S1}, where d(x, S1) is the maximum of the
Lorentzian lengths of causal segments connecting x to S1. It is clear that t0 > 0 by assumption.

Note that d(x, S1) is continuous (see Lemma 4.3 in [16]) and S1, S2 are compact, thus t0 is attained
at some point x0 ∈ S2. In particular, if x0 is a regular point, the distance t0 is realized by a geodesic
segment with the endpoints orthogonal to S1 and S2 which avoids the singularities. If x0 is a singular
point, the distance t0 is realized by the segment contained in the singular line through x0 which
connects x0 to S1.

Denote St2 = ψt(S2), where ψt is the map defined in Lemma 3.11. Consider St02 , it intersects S1 at
the point y0 = ψt0(x0) and it is in the future of S1. We discuss it in the following two cases.

Case 1: x0 is a regular point. By Corollary 3.9, t0 ∈ (0, π/2). By Statement (3) of Lemma 3.11,
λt2(ψt(x0)) and µt2(ψt(x0)) are both strictly decreasing in t ∈ (0, π/2). Then we have

(5) λt02 (y0)µt02 (y0) < λ2(x0)µ2(x0) = −1−K2.

On the other hand, Theorem 3.10 implies that

(6) λt02 (y0)µt02 (y0) ≥ λ1(y0)µ1(y0) = −1−K1,

where λt02 (y0) ≥ λ1(y0) > 0 and µt02 (y0) ≥ µ1(y0) > 0. Combining (5) and (6), we get K1 > K2.

Case 2: x0 is a singularity. We first claim that St2 is orthogonal to the singular lines in N for any
t ∈ [0, π/2). By assumption, S2 is orthogonal to each singular line (say li) at a singular point (say
xi). Denote xti = ψt(xi). We will show that St2 is orthogonal to li at xti. Let Pi be the totally geodesic
plane in N orthogonal to li at xi, and P ti be obtained by pushing along geodesics orthogonal to Pi
in the future direction for a distance t. Let Qti denote the set of points in the future of xi lying at a
constant timelike distance t from xi. By definition, it is not hard to check that P ti and Qti are both
spacelike surfaces orthogonal to li at xti. Since S2 intersects Pi at xi and lies in the future of Pi near
xi, S

t
2 intersects P ti at xti and lies in the future of P ti near xti. Moreover, the Lorentzian length of any

timelike geodesic segment starting from a point (near xti) in Qti and ending in S2 orthogonally is at
least t (equal to t exactly when it starts from xti ), which implies that St2 intersects Qti at xti and lies in
the past of Qti near xti. Therefore, near each singular point xti, S

t
2 lies between two surfaces P ti and Qti

(which are orthogonal to li at xti), and is thus orthogonal to li at xti. In particular, St02 is orthogonal
to the singular lines.

By Proposition 3.6 and Lemma 3.11, the limits of both principal curvatures of S2 at the singularity
x0 are equal to

λ2(x0) = µ2(x0) := k2,
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and the limits of both principal curvatures of St02 at y0 = ψt0(x0) are equal to

(7) λt02 (y0) = µt02 (y0) := kt02 < k2

where k2 =
√
−1−K2 and kt02 = (k2 − tan(t0))/(1 + k2 tan(t0)). Moreover, S1 and St02 intersects at a

singularity y0 and St02 is in the future of S1. By Lemma 3.12, we have

(8) kt02 ≥ k1 =
√
−1−K1.

Combining (7) and (8), we have K1 > K2. The claim follows. Similarly, we can show that if some
part of S2 lies strictly in the future of S1 (equivalently, some part of S1 lies strictly in the past of S2),
then K2 > K1.

Now we are ready to show Statement (1). The sufficiency is obvious. It suffices to show the necessity.
Suppose by contradiction that S1 does not coincide with S2, then either some part of S1 lies strictly
in the future of S2, or some part of S1 lies strictly in the past of S2. In the first case K1 > K2, while
in the second case K2 < K1. Statement (1) follows.

By the symmetry between Statement (2) and Statement (3), it suffices to prove Statement (2). The
sufficiency is clear by the above claim. We are left to prove that if K1 > K2, then S1 lies strictly in
the future of S2. Indeed, no part of S1 lies strictly in the past of S2, otherwise, by the above result,
K1 < K2. Therefore, if S1 is not strictly in the future of S2, there must be some common point say
p of S1 and S2 near which S1 is in the future of S2. By Theorem 3.10 and Lemma 3.12, the (limit
of) principal curvatures of S1 at p are greater than or equal to those of S2 at p. This implies that
K1 ≤ K2, which contradicts our assumption. As a consequence, S1 is strictly in the future of S2. The
lemma follows.

�

Lemma 3.14. For any K ∈ (−∞,−1), the map φK : TΣ,θ × TΣ,θ → GHΣ,θ is injective.

Proof. Assume that (h, h′), (h1, h
′
1) ∈ TΣ,θ × TΣ,θ satisfy that φK(h, h′) = φK(h1, h

′
1) := (N, g). Then

(N, g) contains a future-convex, spacelike surface S of constant curvature K orthogonal to the singular
lines, with the induced metric I = (1/|K|)h and the third fundamental form III = (1/|K∗|)h′ and a
future-convex, spacelike surface S1 of constant curvature K orthogonal to the singular lines, with the
induced metric I1 = (1/|K|)h1 and the third fundamental form III = (1/|K∗|)h′1. By Lemma 3.13,
we have S = S1. Then h = h1 and h′ = h′1, which implies that (h, h′) = (h1, h

′
1). �

3.3. The continuity of the map φK . To see this, we relate minimal Lagrangian maps to harmonic
maps and use some basic facts on the properties of harmonic maps and energy.

Let f : (M, g) → (N,h) be a C1 map between two closed Riemannian surfaces (possibly with
punctures). The differential df of f is a section of T ∗M ⊗ f∗(TN) with the metric g∗⊗ f∗h, where g∗

is the metric on T ∗M dual to g. The energy of f is defined as

E(f, g, h) =

∫
M
e(f) dσg,

where dσg is the area element of (M, g), and e(f) = 1
2 ||df ||

2
g∗⊗f∗h is called the energy density of f . We

call f a harmonic map if it is a critical point of the energy E.
It is known that the value of the energy functional E at such a triple (f, g, h) depends only on

the conformal class of g. In particular, set M = N = Σ and g, h ∈ Mθ
−1, the energy functional E

depends only on the conformal class c of g (see [21, equality (3.4)]). This implies that the harmonicity
is conformally invariant on the domain.

The Hopf differential of f is defined as the (2,0) part of the pull-back by f of h in the conformal
coordinate of c, which is denoted by Φ(f). It measures the difference between the conformal class of
f∗(h) and c. It is shown (cf. [21, Lemma 5.1]) that for f harmonic, Φ(f) is a meromorphic quadratic
differential on (Σ, c) with at most simple poles at cone singularities.

Theorem 3.15. (J. Gell-Redman [21, Theorem 2]) Given g ∈Mθ
−1 and c ∈ TΣ,θ, there exists a unique

harmonic map uc,g : (Σ, c) → (Σ, g) isotopic to the identity fixing each marked point, and uc,g is a
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diffeomorphism on Σp. Moreover, the harmonic maps uc,g vary smoothly with respect to the target
metric g.

Minimal Lagrangian maps between hyperbolic surfaces (with cone singularities of angles less than
π) are related to harmonic maps (see e.g. [10, 31,37]).

Theorem 3.16. (Toulisse [37, Theorem 6.4]) Let h1, h2 ∈Mθ
−1. Then there exists a unique conformal

structure c on Σ such that

Φ(u1) + Φ(u2) = 0,

where Φ(ui) is the Hopf differential of the unique harmonic map ui : (Σ, c) → (Σ, hi) isotopic to the
identity for i = 1, 2. Moreover, the map u2 ◦ u−1

1 : (Σ, h1) → (Σ, h2) is minimal Lagrangian and
isotopic to the identity.

It is known that (see [36, Proposition 2.14]) for each c ∈ TΣ,θ, the tangent space TcTΣ,θ of TΣ,θ

at c consists of those trace free, divergence free symmetric (0,2)-tensors on Σp of class C2. It is
identified with the space QDc(Σ) of meromorphic quadratic differentials (with respect to the complex
structure c) on Σ with at most simple poles at singularities, by assigning q ∈ QDc(Σ) to the real part
<(q) ∈ TcTΣ,θ.

Recall that the L2-metric defined on TcTΣ,θ is given by the inner product:

〈〈h, k〉〉c =
1

2

∫
M

tr(HK)dµg,

where H, K are the (1,1)-tensors on Σp obtained from h and k via the representative (hyperbolic)
metric g of c (by raising an index), µg is the volume element induced on Σp by g.

Let ξdz2, ηdz2 ∈ QDc(Σ) and write g = λ|dz|2 under the conformal coordinate z = x+ iy of c. As
for the Teichmüller space of non-singular closed surfaces (see [38, Section 2.6] and [33, Definition 3.1]),
the Weil-Petersson metric on TΣ,θ is defined as

〈ξ, η〉WP = <
∫

Σ

ξη̄

λ
dxdy.

One can check that the Weil-Petersson metric on TcTΣ,θ is equal to the L2-metric :

〈ξ, η〉WP = 〈〈<(ξ),<(η)〉〉c.

Fix g0 ∈Mθ
−1. Let E(•, g0) : TΣ,θ → R be a map which assigns to c ∈ TΣ,θ the energy of the (unique)

harmonic map uc,g0 as indicated in Theorem 3.15. Similarly, we can define E(c0, •) by fixing a point
c0 in the source space of harmonic maps. Note that E(•, g0) and E(c0, •) are both smooth functions,
see e.g. [38, Chapter 3.1] and [40, Remarks (iv) and Theorem 5.7]. The following lemma provides the
properties of E(•, g0) we need, see [36, Theorem 3.2], [38, Chapter 3.1 and Theorem 3.1.3].

Lemma 3.17. E(•, g0) has the following properties:

(1) E(•, g0) is proper.
(2) The Weil-Petersson gradient ∇E(•, g0) of E(•, g0) at g ∈ TΣ,θ is (up to a factor) <(Φ(ug,g0)).
(3) The second derivative of E(•, g0) at a critical point is (up to a positive factor) Weil-Petersson

metric (hence, positive definite).
(4) The isotopy class associated to g0 is the only critical point of E(•, g0).

Let h1, h2 ∈Mθ
−1. Define the functional Eh1,h2(•) = E(•, h1) +E(•, h2) over TΣ,θ. By Lemma 3.17,

Eh1,h2(•) is proper and has a unique critical point c ∈ TΣ,θ such that Φ(uc,h1) + Φ(uc,h2) = 0. As a
consequence, we have the following proposition.

Proposition 3.18. The conformal structure c in Theorem 3.16 is the unique critical (minimum) point
of the functional Eh1,h2(•) : TΣ,θ → R.

We are now ready to prove the following lemma.

Lemma 3.19. For any K ∈ (−∞,−1), the map φK : TΣ,θ × TΣ,θ → GHΣ,θ is continuous.
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Proof. It suffices to prove that if the sequence (hk, h
′
k)k∈N converges to (h, h′) ∈ TΣ,θ × TΣ,θ, then

the sequence (φK(hk, h
′
k))k∈N converges to φK(h, h′) ∈ GHΣ,θ. Denote by mk the unique minimal

Lagrangian map between (Σ, hk) and (Σ, h′k) isotopic to the identity and by m the unique minimal
Lagrangian map between (Σ, h) and (Σ, h′) isotopic to the identity.

We claim that the sequence (mk)k∈N converges to m. Indeed, by Proposition 3.18, denote by ck the
unique critical point of Ehk,h′k(•) and by c the unique critical point of Eh,h′(•).

Now we prove that ck converges to c. Note that both E(•, g0) and E(c0, •) are smooth functions
on TΣ,θ. By the assumption that (hk, h

′
k)k∈N → (h, h′), we have

Ehk,h′k(•)→ Eh,h′(•),
and

∇Ehk,h′k(•) = C<(Φ(u•,hk) + Φ(u•,h′k))→ C<(Φ(u•,h) + Φ(u•,h′)) = ∇Eh,h′(•),
in the sense of compact-open topology as k → ∞, where C is a non-zero constant. Note that
∇Ehk,h′k(ck) = 0, ∇Eh,h′(c) = 0 and Eh,h′(•) has non-degenerate second derivative at c. By the

Implicit Function Theorem on Banach spaces (see [1, Theorem 2.5.7]), c is the limit of the critical
points ck of Ehk,h′k(•). By a closeness result for harmonic maps (see Theorem 7.1 in [21]), uck,hk
(resp. uck,h′k) converges to the harmonic map uc,h (resp. uc,h′). Combined with Theorem 3.16,

mk = uck,hk ◦ (uck,h′k)−1 converges to uc,h ◦ (uc,h′)
−1 = m.

Let bk : TΣ → TΣ be the bundle morphism defined outside the singular locus which is described
in Proposition 2.12 with the property that m∗k(h

′
k) = hk(bk•, bk•). Then bk converges to a bundle

morphism from TΣ to TΣ, which is denoted by b.
Let Ik = (1/|K|)hk and Bk =

√
−1−Kbk. Then (Σ, Ik, Bk)k∈N converges to (Σ, I, B), in the sense

that Ik, Bk converges to I = (1/|K|)h, B =
√
−1−Kb, respectively. This implies that (φK(hk, h

′
k))k∈N

converges to φK(h, h′) in GHΣ,θ. The proof is complete. �

Proposition 3.20. For any K ∈ (−∞,−1), the map φK : TΣ,θ ×TΣ,θ → GHΣ,θ is a local homeomor-
phism.

Proof. By the extension of Mess parameterization (see [16, Theorem 1.4]), GHΣ,θ is homeomorphic to
TΣ,θ × TΣ,θ. Thus, TΣ,θ × TΣ,θ and GHΣ,θ have the same dimension and have no boundary. Moreover,
it follows from Lemma 3.14 and Lemma 3.19 that φK is injective and continuous. By the invariance
of domain theorem for manifolds, φK is a local homeomorphism. �

3.4. The properness of the map φK . To prove this property of φK , we recall some elementary
facts about hyperbolic surfaces with cone singularities of angles less than π.

First we introduce the following Collar Lemma for hyperbolic cone surfaces (see [19, Theorem 3]).

Lemma 3.21. (Collar Lemma) Let S be a hyperbolic cone-surface of genus g with n0 cone points
p1, ..., pn0 with cone angles θ1, ..., θn0 ∈ (0, π) and (g, n0) ≥ (0, 4). Let α be the largest cone angle.
Let {γ1, ..., γm} be a maximal collection of mutually disjoint simple closed geodesics on S, where
m = 3g− 3 + n0. Then the collars

C(γk) = {x ∈ S : d(x, γk) ≤ arcsinh

(
cosα/ sinh

`(γk)

2

)
}

and
C(pl) = {x ∈ S : d(x, pl) ≤ arccosh(1/ sin θl)}

are pairwise disjoint for k = 1, ...,m and l = 1, ..., n0, where `(γk) is the length of the geodesic γk.

Lemma 3.22. Let (τi)i∈N ⊂ TΣ,θ be a sequence which escape from any compact subset of TΣ,θ. Then
there exists a simple closed curve γ on Σ such that, up to extracting a subsequence, the length of γ
under τi tends to infinity.

Proof. Note that the underlying surface Σ we consider satisfies the condition χ(Σ, θ) < 0. Each marked

hyperbolic cone-surface in TΣ,θ admits a pants decomposition P = {Ci}3g−3+n0
i=1 such that each pair

of pants obtained from P is either a hyperbolic pair of pants with three boundary components or a
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generalized hyperbolic pair of pants with exactly one or two boundary components degenerating into
cone points of the given angles. In the latter case, the pair of pants is uniquely determined by the
lengths of the non-degenerate boundary components and the cone angles at the cone points.

With the angles of the cone points fixed, TΣ,θ has Fenchel-Nielsen coordinates analogous to those
of the usual Teichmüller space of non-singular hyperbolic surfaces, see e.g. [29, Section 3]. Moreover,
the twist parameter along each pant curve Ci is determined by the length of the shortest simple closed
geodesic αi which intersects Ci and the length of the geodesics T kCi(αi) obtained by taking a positive
k times Dehn-twist along Ci along αi for k = 1, 2. This line of arguments can be used to show that
there exist finitely many simple closed curves on Σ whose lengths completely determine an element in
TΣ,θ, see [29, Theorem A].

By assumption, (τi)i∈N escapes from any compact subset of TΣ,θ. Therefore there must be some
simple closed curve γ whose length under τi tends to either infinite or zero (in the latter case, it follows
from Lemma 3.21 that any simple closed curve intersecting γ is becoming infinitely long). Therefore,
there always exists a simple closed curve (still denoted by γ) on Σ such that, up to extracting a
subsequence, the length of γ under τi tends to infinity. This completes the proof. �

The following lemma gives a comparison between the lengths of simple closed geodesics in the same
isotopy class on the past boundary ∂−C(N) of the convex core and on a spacelike surface in its past
in a convex GHCM AdS spacetime (N, g).

Lemma 3.23. Let (N, g) be a convex GHCM AdS spacetime with particles. Let S be a spacelike
surface in the past of ∂−C(N) which is orthogonal to the singular lines in N . Then for any closed
geodesic γ on ∂−C(N), the length of γ is larger than the length of any closed minimizing geodesic γ′

on S homotopic to γ.

Proof. Let λ− be the bending lamination of ∂−C(N). The set of isotopy classes of weighted non-trivial
simple closed curves is dense in the spaceMLΣ,n0 of measured laminations on Σp (see [16, Proposition
3.1]). It suffices to consider the case where λ− is a disjoint finite union of weighted simple closed
geodesics on ∂−C(N). Assume that supp(λ−) = ∪mi=1αi, where αi is a simple closed geodesic on
∂−C(N) disjoint from αj for j 6= i. Then ∂−C(N) \ suppλ− is a disjoint finite union of spacelike
subsurfaces of ∂−C(N) which are totally geodesic in N .

Let Σ0 = ∂−C(N), and let h0 be the induced metric on Σ0. First we construct a family (Σt)t∈[0,π/2]

of future-convex equidistant surfaces from Σ0 in I−(Σ0). For each t ∈ (0, π/2], let

Ωt = {x ∈ I−(Σ0) | d(x,Σ0) ≤ t} ,

and let

Σt = ∂Ωt ∩ I−(Σ0) .

Note that Σt is a future-convex (non-smooth) spacelike surface orthogonal to the singular lines (see
e.g. [16, Lemma 4.2]) and Σt can be disconnected when it is close to the past singularity of N and
even empty when t tends to π/2. It is clear that ∪t∈(0,π/2)Σt = I−(Σ0).

Let x ∈ Σt, for some t ∈ (0, π/2), and let n be a unit future-oriented vector orthogonal to a support
plane of Σt at x. Let γx,n be the intersection with I−(Σ0) ∪ Σ0 of the geodesic starting from x with
velocity n. Since Σt is future-convex, the γx,n are disjoint. We define an “orthonormal projection” pt
to Σt, sending a point y ∈ I+(Σt) ∩ (I−(Σ0) ∪ Σ0) to x ∈ Σt if y ∈ γx,n for a certain time-like unit
vector n orthogonal to a support plane of Σt at x. Since Σt is future-convex, x is then the unique
point on Σt realizing the distance to x. Denote by Dom(pt) the domain of pt, which is a subset of
I+(Σt) ∩ (I−(Σ0) ∪ Σ0).

Let r, s > 0 and let y ∈ Dom(pr+s). Then pr+s(y) = ps(pr(y)), because the time-like geodesic
segment between y and pr+s(y) must intersect Σr at a point which maximizes both the distance
between y and Σr and the distance between pr(y) and pr+s(y).

It follows that there exists a flow (φt)t∈[0,π/2], defined for each t on a subset of I−(Σ0), such that
if y ∈ Σr ∩Dom(pr+s), then pr+s(y) = φs(y). By definition, (φt)t∈[0,π/2] is the flow of a past-oriented
unit time-like vector field X, which is however not continuous. At each point x ∈ Σr, for r ∈ [0, π/2),
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X is normal to a support plane of Σr. Although X is discontinuous, it follows from its definition that
the flow of X exists (but the flow of −X is not well-defined).

A direct examination shows that the restriction of pr to Σ0 is distance-decreasing. In fact, regions
near a pleating line of Σ0 are typically sent to a line, and the length along pleating geodesics is
contracted by a factor cos(r). Similarly, on flat regions of Σ0 which are sent to smooth regions on
Σr, lengths are contracted by a factor cos(r). So, if we denote by hr the pull-back on Σ0 by pr of the
induced metric on Σr, then (hr)r∈(0,π/2) is a decreasing family of pseudo-metrics (each defined on a
subset of Σ0, this subset being also decreasing with r).

We now consider the map φ : Σ0 → S, with φ(x) defined by following the flow of X from x to the
first intersection point with S. For all x ∈ Σ0, we also denote by t(x) the time needed to reach φ(x),
so that φ(x) ∈ Σt(x). Finally we denote by h the pseudo-metric obtained on Σ0 as the pull-back by φ
of the induced metric on S. (Note that h is defined on the whole of Σ0 because φ is defined on the
whole of Σ0 since any integral curve of X starting from Σ0 must intersect S. For the same reason,
ht(x) is well-defined at x.)

Let x ∈ Σ0. At φ(x), the tangent plane Tφ(x)S can be identified to the tangent P to any support
plane of Σt(x) by projection along the normal to P . Under this identification, the induced metric on

Tφ(x)S is smaller than the induced metric on P (the difference being dt2, where t denotes now the
distance to Σ0).

It follows that, at all x ∈ Σ0, h ≤ ht(x), and therefore h ≤ h0.
Let γ be a closed geodesic on Σ0, and let γ′ = φ(γ) ⊂ S. The length of γ for h is smaller than the

length of γ for h0, so that the length of γ′ for the induced metric on S is less than the length of γ for
the induced metric on Σ0. It follows that the length on S of any minimizing geodesic homotopic to γ′

(and therefore to γ) is smaller than the length of γ. �

Note that a much simpler proof of the Lemma 3.23 can be given if S is a future-convex spacelike
surface (orthogonal to the singular lines) of constant curvature and if there is a foliation of the region
between ∂−C(N) and S by smooth (outside the singular locus) future-convex surfaces (orthogonal to
the singular lines). The existence of such a foliation clearly follows from Theorem 1.1. However, at
this point of the proof, we couldn’t find a simple way to prove the existence of such a foliation by
smooth future-convex surfaces. Therefore, we give an alternative method, which also generalizes the
case of a future-convex surface S (orthogonal to the singular lines) to the case of a spacelike surface
(orthogonal to the singular lines) in the past of ∂−C(N).

The following corollary is an analogue of Lemma 3.23.

Corollary 3.24. Let (N, g) be a convex GHCM AdS spacetime with particles. Let S be a spacelike
Cauchy surface in the future of ∂+C(N) which is orthogonal to the singular lines in N . Then for any
closed geodesic γ on ∂+C(N), the length of γ is larger than the length of the closed geodesic γ′ on S
homotopic to γ.

Proposition 3.25. For any K ∈ (−∞,−1), the map φK : TΣ,θ × TΣ,θ → GHΣ,θ is proper.

Proof. Let (Nk, gk) := φK(hk, h
′
k). It suffices to verify that if a sequence (hk, h

′
k)k∈N escape from any

compact subset of TΣ,θ × TΣ,θ, then (Nk, gk)k∈N escape from any compact subset of GHΣ,θ. Indeed, if
(hk, h

′
k)k∈N escape from any compact subset of TΣ,θ × TΣ,θ, then (hk)k∈N or (h′k)k∈N escape from any

compact subset of TΣ,θ. We discuss in the following two cases.

Case 1: If (hk)k∈N escape from any compact subset of TΣ,θ. By Lemma 3.22, there is a simple
closed curve γ on Σ, such that up to extracting a subsequence, `hk(γ)→∞.

Denote by Sk the future-convex, constant curvature K surface which is orthogonal to the singular
lines with the induced metric Ik = (1/|K|)hk in (Nk, gk). Denote the induced metric on ∂−C(Nk) by
I−k . It is shown in [16, Lemma 5.4] that I−k is a hyperbolic metric with cone singularities of angles
equal to the given angles at the intersections with the corresponding singular lines. By Lemma 3.23,
`I−k

(γ) ≥ `Ik(γ) → ∞. Note that GHΣ,θ can be parameterized by the embedding data (including the

induced metric and the bending lamination) of the past (or future) boundary of the convex core (see
e.g. [16]). This implies that (Nk, gk)k∈N are not contained in any compact subset of GHΣ,θ.



SPACETIMES WITH PARTICLES 19

Case 2: If (h′k)k∈N escape from any compact subset of TΣ,θ. By Lemma 3.2, the future-convex
constant curvature K surface Sk in (Nk, gk) has third fundamental form IIIk = (1/|K∗|)h′k, where
K∗ = −K/(1 +K). By Proposition 2.7, the dual surface S∗k of Sk is a past-convex constant curvature
K∗ surface which is orthogonal to the singular lines with the induced metric I∗k such that the pull
back of I∗k on S∗k through the duality map is IIIk.

Using a similar argument as in the first case and applying Corollary 3.24, there exists a simple closed
curve γ′ on Σ, such that up to extracting a subsequence, `I+k

(γ′) ≥ `I∗k (γ′)→∞, where I+
k denotes the

induced metric on ∂+C(Nk). This implies that (Nk, gk)k∈N are not contained in any compact subset
of GHΣ,θ.

Combining these two cases, the proof is complete. �

Proof of Theorem 1.2. Note that TΣ,θ ×TΣ,θ and GHΣ,θ are simply connected. By Proposition 3.20
and Proposition 3.25, for each K < −1, φK is both a local homeomorphism and a proper map, which
implies that φK is a homeomorphism.

4. The existence and uniqueness of foliations.

In this section, we prove Theorem 1.1, as an application of Theorem 1.2. Let (N, g) be a convex
GHCM AdS spacetime with particles. Denote by B+ and B− the future and the past component of
N \ C(N).

To prove Theorem 1.1, we first show that B− admits a unique foliation by future-convex constant
curvature surfaces orthogonal to the singular lines. Note that there is a duality between future-convex
and past-convex surfaces orthogonal to the singular lines in GHCM AdS spacetimes with particles
(see Proposition 2.7). It is a direct consequence that B+ admits a unique foliation by past-convex
constant curvature surfaces orthogonal to the singular lines.

Indeed, Theorem 1.2 says that for each K ∈ (−∞,−1), the map φK : TΣ,θ × TΣ,θ → GHΣ,θ is
a homeomorphism. In particular, φK is a surjection. This implies that there exists an embedded
future-convex spacelike surface SK of constant curvature K which is orthogonal to the singular lines
in N . Moreover, it follows from the injectivity of φK and Corollary 3.9 that this surface SK is unique
and contained in B−. This implies that the union of SK over all K ∈ (−∞,−1) is contained in B−.
It remains to show that the union of SK over all K ∈ (−∞,−1) is exactly B−.

To prove this, we first generalize the notion of the uniformly spacelike (see Definition 3.7 in [6])
property of a sequence of spacelike surfaces to the case with cone singularities as follows.

Definition 4.1. A sequence (Sk)k∈N of spacelike surfaces orthogonal to the singular lines in N is said
to be uniformly spacelike if, for every sequence (xk)k∈N with xk ∈ Sk, it falls into exactly one of the
following two classes:

(1) xk ∈ Sk escapes from any compact subset of N .
(2) Up to extracting a subsequence, the sequence (xk, Pk)k∈N converges to a limit (x, P ), with x ∈ N

and P a totally geodesic spacelike plane through x (and orthogonal to the singular line through x
if x is a singular point).

Here Pk is the tangent plane of Sk at xk if xk is a regular point, and Pk is the totally geodesic plane
orthogonal to the singular line through xk if xk is a singular point. For convenience, we call Pk the
support plane of Sk at xk whether xk is regular or not.

Let (Sk)k∈N be a sequence of future-convex spacelike surfaces orthogonal to the singular lines in N ,
such that Sk+1 is strictly in the past of Sk for all k ∈ N. Denote by Ω the union of the future I+(Sk)
of Sk over all k ∈ N and denote by S∞ = ∂Ω the boundary of Ω (that is contained in the past of the
convex core C(N)).

Note that after pushing along geodesics orthogonal to a future-convex spacelike surface S (orthog-
onal to the singular lines) in the future direction for the distance t ∈ [0, π/2], the obtained surface
is still orthogonal to the singular lines. In the case Ω 6= N , the property of ∂Ω and the uniformly
spacelike property of (Sk)k∈N (see Theorem 3.6 and Corollary 3.8 in [6]) can be directly generalized
to the case with cone singularities as follows.
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Lemma 4.2. Let Ω and S∞ be the domain and the surface in N as described above. Assume that
Ω 6= N , then

(1) S∞ is the set of limits in N of sequences (xk)k∈N with xk ∈ Sk.
(2) S∞ is a future-convex spacelike surface which is orthogonal to the singular lines in N .
(3) (Sk)k∈N is uniformly spacelike.

To prove Theorem 1.1, we need the following compactness result, which is an elementary fact about
TΣ,θ. In the case of hyperbolic metrics on closed surfaces, we refer to Lemma 9.4 in [11]. In our case
with cone singularities, it is a direct consequence of Lemma 3.22.

Lemma 4.3. Let C > 1 and h ∈ TΣ,θ. Let B(h) be the set consisting of h′ ∈ TΣ,θ such that for all
simple closed curves γ on Σ, `γ(h′) ≤ C`γ(h). Then B(h) is compact.

Proposition 4.4. Let (N, g) be a convex GHCM AdS spacetime with particles. Let (Si)i∈N+ be a
sequence of future-convex spacelike surfaces of constant curvatures Ki which are orthogonal to the
singular lines in N such that Ki+1 < Ki for all i ∈ N+. Then the following statements hold.

(1) If Ki → −∞, then the union of I+(Si) over i ∈ N+ is exactly the whole manifold N .
(2) If Ki → K with −∞ < K < −1, then the sequence (Si)i∈N+ converges to a future-convex spacelike

surface S∞ of constant curvature K (which is orthogonal to the singular lines) in the C2-topology
outside the singular locus.

Proof. Proof of Statement (1): assume that the union Ω of I+(Si) over all i ∈ N+ is not N . By Lemma
4.2, the boundary S∞ = ∂Ω of Ω is a future-convex spacelike surface. Moreover, (Si)i∈N+ is uniformly
spacelike. Therefore, the area of Si does not tend to zero as i → ∞. However, by the Gauss-Bonnet
formula for surfaces with cone singularities (see e.g. [39, Proposition 1]), the area of Si is equal to
2πχ(Σ, θ)/Ki, where Σ is the surface such that N is homeomorphic to Σ× R. Since Ki → −∞, this
implies that the area of Si tends to zero, which leads to a contradiction.

Proof of Statement (2): Denote by Ω the union of I+(Si) over all i ∈ N+. First we claim that Ω is
not the whole manifold N , and more specifically that Ω is contained in the future of a Cauchy surface
of N . To see this, we take a number K ′ < K, it follows from Theorem 1.2 and Lemma 3.13 that
there exists an embedded future-convex spacelike surface SK′ ⊂ N of constant curvature K ′ (which is
orthogonal to the singular lines), such that SK′ is strictly in the past of the surfaces Si for all i ∈ N+.
Hence, the closure of Ω is contained in the closure of I+(SK′).

Denote by S∞ = ∂Ω the boundary of Ω. By Lemma 4.2, S∞ is a future-convex spacelike surface
which is orthogonal to the singular lines in N . Moreover, it is the C0 limit of (Si)i∈N+ . We claim
that S∞ is a Cauchy surface. Indeed, as the boundary of a future domain Ω (i.e. any future-directed
timelike curve starting from a point of Ω is contained in Ω), S∞ is a closed achronal subset of N (see
e.g. [28, Corollary 27] and [6, Section 7] ). Hence, there is no timelike curve in N meeting S∞ more
than once. Combined with the fact that S∞ is spacelike, it suffices to show that S∞ intersects each
inextensible timelike curve in N . But if l is an inextensible timelike curve in N , each Si intersects l
in a unique point xi ∈ l. Since Si → S∞, the sequences (xi)i∈N>0 converges to a limit x ∈ S∞, so that
S∞ ∩ l 6= ∅.

Let S0 = ∂−C(N). Then S0 is a spacelike surface of constant curvature K0 = −1 which is orthogonal
to the singular lines. Denote by gi, g∞ the metrics induced on Si, S∞ by the Lorentzian metric g on
N for all i ∈ N.

Note that all the surfaces Si are orthogonal to the singular lines lk (corresponding to {pk} × R)
and the cone angle of the singularity on Si at the intersection with lk is θk ∈ (0, π) for k = 1, ..., n0.
Therefore, the metrics gi can be written as follows:

gi = (1/|Ki|)ĝi,
where ĝi ∈Mθ

−1 for all i ∈ N.
By Lemma 3.23, for any simple closed curve γ on Σ, if γi denotes the closed geodesic on Si which

is homotopic to γ then
`γi(gi) ≤ `γ0(g0),
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for all i ∈ N. As a consequence,

`γi(ĝi) = `γi(|Ki|gi) =
√
|Ki|`γi(gi) ≤

√
|K| `γ0(g0) =

√
K/K0 `γ0(ĝ0),

for all i ∈ N. Here K/K0 > 1. Lemma 4.3 therefore shows that the isotopy classes of the hyperbolic
metrics ĝi remain in a compact subset of TΣ,θ and, after extracting a subsequence, they converge to a
limit τ ∈ TΣ,θ.

The same result can be applied to the dual surfaces S∗i , which are past-convex surfaces in N of
constant curvature K∗i = −Ki/(Ki + 1). The isotopy classes of their induced metrics suitably to have
curvature −1, say ĝi

∗, converge, after extracting a subsequence, to a limit τ∗ ∈ TΣ,θ. Since the ĝi
∗ are

the third fundamental forms of the Si (up to a scaling factor), the duality map δi between (Si, ĝi) and
(S∗i , ĝi

∗) is the unique minimal Lagrangian diffeomorphism in its isotopy class. It therefore converges
to the minimal Lagrangian diffeomorphism between τ and τ∗ (see the proof of Lemma 3.19). As a
consequence, the norms of the differentials of the δi (with respect to ĝi and ĝi

∗) are uniformly bounded.
This means that ĝi

∗ = ĝi(bi·, bi·), where the bi : TSi → TSi are Codazzi tensors of determinant 1 which
are uniformly bounded. It follows that the shape operators of the Si, and therefore their principal
curvatures, are uniformly bounded.

Since the surfaces Si are Cauchy surfaces with uniformly bounded principal curvatures, and they
are in the future of a Cauchy surface, they converge in the C1,1 topology to S∞. Since the induced
metric on S∞ is the limit of that of the Si, and the Si have constant curvature Ki → K, this surface
S∞ has constant curvature K.

Since the Si and S∞ have constant curvature, the elliptic regularity shows that Si → S∞ in the C2

topology (outside the singular locus). �

Recall that the cosmological time of a spacetime (M, g) is the function τ : M → [0,+∞] associating
to x ∈ M the supremum of the Lorentzian lengths of all past-oriented inextensible causal curves
starting from x. It is said to be regular if τ(x) < +∞ for all x ∈ M and for each past-oriented
inextensible causal curve γ : [0,+∞)→M , the limit τ(γ(t))→ 0 as t→ +∞.

Replace “past-oriented” by “future-oriented” in the definition of the cosmological time τ , we define
the reverse of the cosmological time τ̆ .

In general, the cosmological time of a spacetime is not regular (e.g. Minkowski space and de Sitter
space). In our case, a convex GHCM AdS spacetime (N, g) with particles has a regular cosmological
time τ . By Remark 3.8, we have B+ = {x ∈ N : τ(x) > π/2} and B− = {x ∈ N : τ̆(x) > π/2}.

Proposition 4.5. Let (N, g) be a convex GHCM AdS spacetime with particles. Then B− is exactly
the union of the surface SK over K ∈ (−∞,−1), where SK is the future-convex spacelike surface of
constant curvature K which is orthogonal to the singular lines in N .

Proof. Denote by V the union of the surface SK over K ∈ (−∞,−1). Moreover, Lemma 3.13 implies
that SK is disjoint from SK′ for all K 6= K ′ ∈ (−∞,−1). Note that V is contained in B−. We only
need to prove that B− is contained in V .

Fix a number K1 < −1. Consider the union V1 of the surfaces SK over K ∈ (−∞,K1). By
Proposition 4.4, we have V1 ∩B− = I−(SK1) ∩B−. Let V2 = V \ V1, that is, the union of the surface
SK over K ∈ [K1,−1). It is enough to show that B− \ V1 ⊂ V2. The argument is similar to that of
Claim 11.14 in [6]. For completeness, we include the proof as follows.

Denote by V ∗2 the union of the surfaces S∗K dual to SK over all K ∈ [K1,−1). By Proposition 2.7,
the surface S∗K is a past-convex spacelike surface in B+ of constant curvature K∗ = −K/(1 + K),
which is orthogonal to the singular lines in N . Observe that K∗ → −∞ iff K → −1.

Note that Proposition 4.4 is applicable to the family {SK∗ := S∗K}K∗∈(−∞,K∗1 ] ⊂ B+ (it follows

directly from reversing the time orientation of N), where K∗1 = −K1/(1 +K1). This implies that

lim
K∗→−∞

sup
x∈SK∗

τ̆(x) = lim
K→−1

sup
x∈S∗K

τ̆(x) = 0.

where τ̆ is the reverse cosmological time of (N, g).
By Proposition 2.7, the dual surface S∗K of SK is obtained by pushing SK along orthogonal geodesics

in the future direction for a distance π/2. Then the length of a timelike curve joining SK to S∗K is at
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most π/2. Hence,

lim
K→−1

sup
x∈SK

τ̆(x) ≤ π/2.

Note that B− = {x ∈ N : τ̆(x) > π/2} and SK is contained in B− for all K < −1. Therefore,

(9) lim
K→−1

sup
x∈SK

τ̆(x) = π/2.

For any point x ∈ B− \V1, we have τ̆(x) > π/2. By (9), there exists a future-convex surface SKx of
constant curvature Kx ∈ [K1,−1) such that x is in the past of SKx . Therefore, x ∈ V2. This completes
the proof. �

Proposition 4.6. Let (N, g) be a convex GHCM AdS spacetime with particles. Then B− admits a
unique foliation by future-convex spacelike surfaces of constant curvature. Moreover, the curvature
varies from −1 near the past boundary component of C(N) to −∞ near the past singularity of N .

Proof. By Lemma 3.13, the future-convex spacelike surface SK of constant curvature K (which is
orthogonal to the singular lines) is unique. Moreover, SK and SK′ are disjoint for all K 6= K ′ ∈
(−∞,−1). Combining this and Proposition 4.5, we obtain the existence and uniqueness. �

By Proposition 2.7, the corresponding result of Proposition 4.6 also holds for B+ as follows.

Corollary 4.7. Let (N, g) be a convex GHCM AdS spacetime with particles. Then B+ admits a unique
foliation of past-convex spacelike surfaces of constant curvature. Moreover, the curvature varies from
−1 near the upper boundary component of C(N) to −∞ near the future singularity of N .

Proof of Theorem 1.1. It follows directly from Proposition 4.6 and Corollary 4.7.

Remark 4.8. It follows from Statement (2) of Proposition 4.4 and Proposition 2.7 that the future-
convex (resp. past-convex) spacelike surface SK of constant curvature K (which is orthogonal to the
singular lines) depends continuously on K ∈ (−∞,−1). This implies that the (unique) foliation of
B− (resp. B+) by K-surfaces is a continuous foliation. In particular, it provides a C2 foliation of the
regular part of B− (resp. B+).

5. Applications.

In this section, we use the results obtained above on K-surfaces in convex GHCM AdS spacetimes
with particles to extend to hyperbolic surfaces with cone singularities (of fixed angles less than π) a
number of results concerning the landslide flow (see e.g. [10]). Hence we give a partial answer to the
last question posed in Section 9 of [10].

Using Theorem 2.12 and Proposition 2.12, we extend the definition of a landslide action of S1 on
TΣ,θ × TΣ,θ. Moreover, as an application of Theorem 1.1, we extend to hyperbolic surfaces with cone
singularities an analog of Thurston’s Earthquake Theorem for the landslide flow on TΣ,θ×TΣ,θ. Finally,
we show that the relation between the AdS geometry and landslides provides more details about the
parametrization map φK .

5.1. The landslide action of S1 on TΣ,θ × TΣ,θ. First we define the landslide transformation on
TΣ,θ × TΣ,θ.

Let (h, h′) ∈ Mθ
−1 ×Mθ

−1, let b : TΣ → TΣ be the bundle morphism associated to h and h′ by
Corollary 2.13, and let α ∈ R. Set

βα = cos
(α

2

)
E + sin

(α
2

)
Jb,

where E : TΣ→ TΣ is the identity morphism and J is the complex structure induced by h.
Let hα = h(βα•, βα•) and define

Leiα(h, h′) := (hα, hα+π).

In particular, we have L1(h, h′) = (h, h′), and L−1(h, h′) = (h′, h). Denote by L1
eiα

(resp. L2
eiα

) the
composition of Leiα with the projection on the first (resp. second) factor.
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Proposition 5.1. For all α ∈ R, hα is a hyperbolic metric with cone singularities of the same angles
as h.

Proof. It can be checked (as in the proof of Lemma 3.2 in [10]) that d∇βα = 0 and det(βα) = 1, where
∇ is the Levi-Civita connection of h. By Theorem 2.11, the Levi-Civita connection ∇α of hα is given
by ∇αuv = β−α∇u(βαv). The curvature of hα outside the singular locus is

(10) Kα =
Kh

det(βα)
= −1.

Note that βα = cos (α2 )E+sin(α2 )Jb, where b : TΣ→ TΣ is a bundle morphism associated to (h, h′)
by Corollary 2.13. In particular, the bundle morphism b → E at the marked points of Σ. Therefore,
near the cone singularities of h, βα → cos(α/2)E + sin(α/2)J , and as a consequence

hα = h(βα·, βα·)
→ h((cos(α/2)E + sin(α/2)J)·, (cos(α/2)E + sin(α/2)J)·)
= h .

Since hα is asymptotic to h at the cone singularities, the cone angle of hα is equal to the cone angle
of h at those points. �

The following lemma shows that the landslide flow is well-defined on TΣ,θ × TΣ,θ.

Lemma 5.2. Let (τ, τ ′) ∈ TΣ,θ × TΣ,θ, and let (h, h′), (h̄, h̄′) be two normalized representatives of
(τ, τ ′). Then hα = L1

eiα
(h, h′) and h̄α = L1

eiα
(h̄, h̄′) are isotopic in TΣ,θ for all α ∈ R.

Proof. By definition, for all α ∈ R,

hα = h(βα•, βα•), h̄α = h̄(β̄α•, β̄α•),
where βα = cos(α2 ) + sin(α2 )Jb, and β̄α = cos(α2 ) + sin(α2 )J̄ b̄. Here b (resp. b̄) is the bundle morphism

associated to h, h′ (resp. h̄, h̄′) by Corollary 2.13. J (resp. J̄) is the complex structure induced by h
(resp. h̄).

By Remark 2.15, there exists a diffeomorphism f from Σ to Σ, which is isotopic to the identity (the
isotopy fixes each marked point) such that h̄ = f∗h, h̄′ = f∗h′. Using a similar argument as in the
proof of Lemma 3.3, we can prove that

(11) b̄ = (df)−1b(df) , J̄ = (df)−1J(df) ,

where df is the differential of f . Applying (11) to the expression of β̄α, we obtain that

(12) β̄α = (df)−1(cos(
α

2
) + sin(

α

2
)Jb)(df) = (df)−1βα(df).

Substituting (12) and h̄ = f∗h into h̄α = h̄(β̄α•, β̄α•), we see that h̄α = f∗(hα). This implies that h̄α
is isotopic to hα for all α ∈ R. �

Remark 5.3. For simplicity, henceforth we denote by (h, h′) both a pair of normalized metrics in
Mθ
−1 ×Mθ

−1 and its equivalence class in TΣ,θ × TΣ,θ.

Definition 5.4. For all α ∈ R, the map Leiα : TΣ,θ × TΣ,θ → TΣ,θ × TΣ,θ sending an element (h, h′) ∈
TΣ,θ × TΣ,θ to the pair of isotopy classes of hα, hα+π is well-defined. We call Leiα the landslide
(transformation) of parameter α.

Note that the argument for the flow property of landslides on the product of two copies of the
Teichmüller space of a closed surface (see Theorem 1.8 in [10]) can be directly applied to the case with
cone singularities. It leads to the following proposition.

Proposition 5.5. The landslide Leiα given by Definition 5.4 is a flow: for any α, α′ ∈ R,

Leiα′ ◦ Leiα = Lei(α+α′) .

In other words, the map L : TΣ,θ × TΣ,θ × S1 → TΣ,θ × TΣ,θ associating to (h, h′, eiα) the image
Leiα(h, h′) defines an action of S1 on TΣ,θ×TΣ,θ. We call L the landslide flow, or the landslide action
on TΣ,θ × TΣ,θ.
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5.2. The extension of Thurston’s Earthquake Theorem. In this section we extend to hyperbolic
surfaces with cone singularities (of fixed angles less than π) an analog of the Earthquake Theorem,
already proved for the landslide flow on non-singular hyperbolic surfaces in [10]. To prove this theorem,
we give the following lemma, as a generalization of Lemma 1.9 in [10] to the case with cone singularities.

Lemma 5.6. Let (h, h′) ∈Mθ
−1×Mθ

−1 be a pair of normalized metrics and let α ∈ (0, π). Then there
exists a unique GHCM AdS spacetime (N, g) with particles which contains a future-convex spacelike
surface orthogonal to the singular lines with the induced metric Iα = cos2(α2 )h and the third funda-

mental form IIIα = sin2(α2 )h′. Moreover, L1
eiα

(h, h′) and L1
e−iα(h, h′) are the left and right metrics of

(N, g), respectively.

Proof. Note that cos2(α2 ), sin2(α2 ) ∈ (0, 1). The first statement is a direct consequence of Lemma 3.2

applied with K = −1/ cos2(α2 ) and K∗ = −1/ sin2(α2 ).
Denote by Bα the shape operator of the future-convex spacelike surface of constant curvature K in

(N, g) and denote by Jα the complex structure of Iα. A simple computation shows that Bα = tan(α2 )b,
where b is the bundle morphism associated to h, h′ by Corollary 2.13, and Jα = J , where J is the
complex structure of h. By the extension of Mess’ parametrization (see Theorem 1.4 in [16]), the left
and right metrics of (N, g) can be expressed as

(13) µl = Iα((E + JαBα)•, (E + JαBα)•), µr = Iα((E − JαBα)•, (E − JαBα)•).

Substituting Bα = tan(α2 )b and Jα = J into (13), we obtain that

µl = h(βα•, βα•) = L1
eiα(h, h′).

Similarly, we can prove that the right metric of (N, g) is

µr = h(β−α•, β−α•) = L1
e−iα(h, h′).

This completes the proof. �

Corollary 5.7. Let (µl, µr) ∈ TΣ,θ × TΣ,θ and α ∈ (0, π). There exists a unique (h, h′) ∈ TΣ,θ × TΣ,θ

such that

L1
eiα(h, h′) = µl, L1

e−iα(h, h′) = µr.

Proof. Given µl and µr, by the extension of Mess’ parametrization (see Theorem 1.4 in [16]), there
exists a unique convex GHCM AdS spacetime (N, g) with particles which has the left and right metrics
µl and µr. By Theorem 1.1, (N, g) contains a unique future-convex surface SK of constant curvature
K = −1/ cos2(α2 ). Denote by I and III the first and third fundamental form on SK . Then III has

constant curvature K∗ = −1/ sin2(α2 ). Set h = |K|I and h′ = |K∗|III. It can be checked that (h, h′)

is a pair of normalized metrics. It follows from Lemma 5.6 that L1
eiα

(h, h′) = µl, L
1
e−iα(h, h′) = µr.

This shows the existence.
Now we show the uniqueness. Suppose (h̄, h̄′) ∈ TΣ,θ × TΣ,θ is another pair such that

(14) L1
eiα(h̄, h̄′) = µl, L1

e−iα(h̄, h̄′) = µr.

By Lemma 5.6, there exists a unique GHCM AdS spacetime (N̄ , ḡ) with particles which contains
a future-convex spacelike surface orthogonal to the singular lines, with the induced metric cos2(α2 )h̄

and the third fundamental form sin2(α2 )h̄′. Moreover, by (14), the left and right metrics of (N̄ , ḡ) are

µl and µr, respectively. The extension of Mess’ parametrization implies that (N̄ , ḡ) is (N, g) up to
isotopy. The uniqueness in Theorem 1.1 shows that (h̄, h̄′) = (h, h′) in TΣ,θ × TΣ,θ. �

Now we are ready to prove the extension of Thurston’s Earthquake Theorem to the case with cone
singularities, which generalizes Theorem 1.14 in [10].

Theorem 5.8. Let h1, h2 ∈ TΣ,θ and let eiα ∈ S1 \ {1}. Then there exists a unique h′1 ∈ TΣ,θ such
that L1

eiα
(h1, h

′
1) = h2.
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Proof. First we show the existence. Corollary 5.7 applied with µl = h2, µr = h1 and ϕ = α/2 shows
that there exists a unique (h0, h

′
0) ∈ TΣ,θ × TΣ,θ such that L1

eiϕ
(h0, h

′
0) = h2 and L1

e−iϕ(h0, h
′
0) = h1.

Set h′1 = L2
e−iϕ(h0, h

′
0). Then we get

L1
eiα(h1, h

′
1) = L1

ei2ϕ(Le−iϕ(h0, h
′
0)) = h2.

Assume that h̄′1 is another element in TΣ,θ such that L1
eiα

(h1,h̄′1) = h2. Set (h, h′) = Leiα/2(h1, h̄
′
1).

By computation, we have L1
eiα/2

(h, h′) = h2, and L1
e−iα/2

(h, h′) = h1. The uniqueness in Corollary

5.7 implies that (h0, h
′
0) = (h, h′). Hence h̄′1 = L2

e−iϕ(h, h′) = L2
e−iϕ(h0, h

′
0) = h′1. This completes the

proof. �

5.3. The landslide flow in terms of harmonic maps. Recall that in the non-singular case, land-
slides can also be defined in terms of multiplication of the Hopf differential of harmonic maps by
complex numbers of modulus 1 (see Definition 1.2 in [10]).

Consider a map Φ : TΣ,θ → QDc(Σ), which associates to g ∈ TΣ,θ the Hopf differential (with respect
to the conformal structure c) of the harmonic map uc,ḡ from (Σ, c) to (Σ, ḡ) isotopic to the identity,
where ḡ is a representative of g. By the uniqueness in Theorem 3.15 and the fact that harmonic maps
remain harmonic when composed from the left with isometries, Φ is well-defined (i.e. independent of
the choice of the representatives of g).

For simplicity, we use the same notation for both g ∈ TΣ,θ and its representative henceforth. We
want to show that Φ is a homeomorphism. The argument is similar to that for Theorem 3.1 (the
well-known Wolf’s parameterization of Teichmüller space of hyperbolic closed surfaces without cone
singularities) in [40], but we need to analyze the behaviour near the cone singularities particularly by
analysing the regularity of the map at the singular points.

Define the map E : TΣ,θ → R as E(g) = E(uc,g). Before showing Φ is a homeomorphism, we first
prove the following lemma.

Lemma 5.9. The map E is proper.

Proof. It is enough to show that B = {g ∈ TΣ,θ : E(g) < C0} is compact. By Lemma 4.3, it suffices
to show that

(15) `γ(g) ≤ C`γ(g0),

for all g ∈ B and all simple closed curves γ on Σ.
By Lemma 3.21, there exists a uniform lower bound for the injectivity radius of the singularities

over TΣ,θ. Denote by Σ
g0 (resp. Σ

g
) the metric completion of (Σp, g0) (resp. (Σp, g)) by adding the set

p and denote by inj(g0) the injectivity radius of Σ
g0 . Then inj(g0) > 0. Let c1(g0) = min{1, (inj(g0))2}.

The Courant-Lebesgue Lemma (see [40, Proposition 3] and [22, Lemma 3.1]) can be applied to the

harmonic map u : Σ
g0 → Σ

g
, that is, for any x1, x2 ∈ Σ

g0 with dg0(x1, x2) < δ < c1(g0), we have

dg(u(x1), u(x2)) < 4
√

2πC0
1/2(log(1/δ))−1/2.

This implies (15), where C depends on g0 and C0. The proof is complete. �

Proposition 5.10. The map Φ is a homeomorphism.

Proof. Observe that TΣ,θ and QDc(Σ) are both 6g−6+2n-dimensional cells. By Brouwer’s Invariance
of Domain Theorem, it suffices to show that Φ is continuous, injective and proper.

The continuity is obvious, since the harmonic maps uc,g vary smoothly with respect to the target
metric g (see Theorem 3.15).

For the injectivity of Φ, we use the maximum principle as applied in [40, Theorem 3.1]. Suppose
that g1, g2 ∈ TΣ,θ satisfy that Φ(g1) = Φ(g2). Denote Φ(gi) = Φi (i always takes values in {1, 2} in
this proof), so that Φ1 = Φ2. Let z be a conformal coordinate on (Σ, c). Set c = g0 = σ(z)|dz|2,

gi = ρi(ui(z))|dui|2, where ui = uc,gi . By computation, we obtain that Φi = ρi(ui(z))(ui)z(ui)z̄.
Set Hi = σ−1(z)ρi(ui(z))|(ui)z|2, and Li = σ−1(z)ρi(ui(z))|(ui)z̄|2. We have the following quantities
(see [40, Section 2]):

(a) The energy density ei = Hi + Li.
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(b) The Jacobian Ji = Hi − Li > 0.
(c) The norm of the quadratic differential |Φi|2/σ2 = HiLi.
(d) The Beltrami differential νi = (ui)z̄/(ui)z = Φi/σHi.
(e) The pull-bak metric of gi by ui is ui

∗(gi) = 2<(Φidz
2) + σeidzdz̄.

Set hi = logHi and ∆ = 4σ−1∂2
zz̄. We claim that h1 = h2. Indeed, near the cone singularity pk of

angle θk, it is known (see [21, Form 2.3] and [36, Section 4.2])) that the harmonic map ui is expressed
as ui(z) = ξiz + r1+εfi(z), where z is the conformal coordinate centered at pk, ξi ∈ C \ {0}, r = |z|,
ε > 0 and fi ∈ C2,γ(D(R)), where D(R) = {z ∈ C, |z| ∈ [0, R)} for some small R > 0 and γ ∈ (0, 1).

Moreover, σ(z) = eλ(z)|z|2(βk−1), ρi(ui(z)) = eζi(ui(z))|ui(z)|2(βk−1) in D(R), where βk = θk/(2π), and
λ(z), ζi(ui(z)) are continuous functions on D(R). It is computed in [36, Section 4.2] that

(16) Hi = σ−1(z)eζi(ui(z))|ξi|2βkr2(βk−1)(1 +O(rε)).

Substituting σ(z) = eλ(z)|z|2(βk−1) into (16), we obtain that

(17) Hi = eζi(ui(z))−λ(z)|ξi|2βk(1 +O(rε)).

Note that we can make a metric completion of the punctured surfaces (Σp, g0) and (Σp, gi) by
directly adding the set p. Then h1 − h2 = log(H1/H2) is continuous on a compact surface Σ and
achieves its maximum at a point of Σ, called x0. Indeed, h1 − h2 ∈ C2(Σp) ∩ C0,δ(Σ) for a number
δ ∈ (0, 1). This follows from (17), the regularity of ui at cone singularities, and the fact that the
functions λ, ζi are in the class of C2(Σp) ∩ C0,δ(Σ) (see the proof of the main theorem in [25]).

It is well-known that the following identity (see [30, Section 1, equation (16)]) holds on Σp:

(18) ∆hi = 2(Hi − Li − 1) = 2(ehi − σ−2|Φi|2e−hi − 1).

We claim that h1 − h2 ≤ 0. Otherwise, h1 − h2 > 0 at the maximum point x0. By (18) and the
continuity of hi, ∆(h1 − h2) = 2{(eh1 − eh2) − σ−2|Φ|2(e−h1 − e−h2)} > 0 in a small neighbourhood
U of x0, here Φ = Φ1 = Φ2. If x0 is a regular point, ∆(h1 − h2) ≤ 0 at x0, which is a contradiction.
Hence x0 is a singular point. Recall that a function f ∈ C2(U \{x0})∩C0,δ(U) with ∆f ≥ 0 in U \{x0}
has the property that ∆f ≥ 0 in U in the sense of distribution and the mean value inequality holds in
U (i.e. the average of the integral of f over any ball Br(x) ⊂ U centered at x is not less than f(x)).
Hence, h1 − h2 is subharmonic in U . Note that h1 − h2 achieves its maximum at an interior point x0

of U , then h1 − h2 ≡ (h1 − h2)(x0) > 0 in U and thus h1 − h2 also achieves a maximum at a regular
point, which contradicts the above result.

Therefore, h1 ≤ h2. Symmetrically, we have h2 ≤ h1. Hence, h1 = h2, which implies that H1 = H2.
By equality (c) and (a), L1 = L2 and e1 = e2. Combined with equality (e), we get u1

∗(g1) = u2
∗(g2).

Note that u1, u2 are isotopic to identity, then g1 = g2 ∈ TΣ,θ.
To show the properness of Φ, we first state the fact that ||Φ(g)|| → ∞ iff E(g) → ∞. Indeed,

applying equalities (b),(c),(d) and the Gauss-Bonnet formula for surfaces with cone singularities (see
e.g. [39, Proposition 1]): ∫

Jσdzdz̄ = Areag(Σ) = −2πχ(Σ, θ),

as in [40, Theorem 3.1], we have∫
Hσdzdz̄ + 2πχ(Σ, θ) =

∫
Lσdzdz̄ ≤

∫
|Φ(g)|dzdz̄ ≤

∫
Hσdzdz̄ =

∫
Lσdzdz̄ − 2πχ(Σ, θ).

Adding the first two and last two integrals and applying equality (a), we obtain

E(g) + 2πχ(Σ, θ) ≤ 2

∫
|Φ(g)|dzdz̄ ≤ E(g)− 2πχ(Σ, θ).

Combined with Lemma 5.9, Φ is proper. The proof is complete. �

Proposition 5.10 shows that given a meromorphic quadratic differential q ∈ QDc(Σ) with at most
simple poles at singularities, there exists a unique h ∈ TΣ,θ such that the identity map id : (Σ, c) →
(S, h) is harmonic with Hopf differential q.
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This statement, combined with Lemma 3.15, makes it possible to generalize the definition of the
landslide flow in terms of harmonic maps to hyperbolic surfaces with cone singularities as follows.

Definition 5.11. Let c, h ∈ TΣ,θ and let eiα ∈ S1. Define Rc,α(h) as the (unique) metric hα ∈ TΣ,θ

such that if f : (Σ, c) → (Σ, h) and fα : (Σ, c) → (Σ, hα) are the harmonic maps isotopic to the
identity (fixing each marked point), then Φ(fα) = eiαΦ(f).

Let h, h′ ∈ TΣ,θ. Recall that if hα is used to denote L1
eiα

(h, h′), then Leiα(h, h′) = (hα, hα+π).
Denote by cα the conformal structure of the metric hα+m∗α(hα+π), where mα : (Σ, hα)→ (Σ, hα+π) is
the unique minimal Lagrangian map isotopic to the identity, which is called the center of (hα, hα+π).
Applying the analogous argument as Theorem 1.10 in [10] to the case with cone singularities, we have
the following proposition.

Proposition 5.12. Let h, h′ ∈ TΣ,θ and let cα be the center of (hα, hα+π). Then

(1) The identity id : (Σ, hα)→ (Σ, hα+π) is minimal Lagrangian.
(2) cα is independent of α — we denote it by c.
(3) For any α ∈ R, Φ(fα) = eiαΦ(f), where fα : (Σ, c)→ (Σ, hα) is the unique harmonic map isotopic

to the identity.

The following corollary is a direct consequence of Definition 5.11, Proposition 5.10 and Proposition
5.12.

Corollary 5.13. Let (h, h′) ∈ TΣ,θ × TΣ,θ be a normalized representative, and let c be the conformal
class of h+ h′. Then for any eiα ∈ S1, we have

Leiα(h, h′) = (Rc,α(h), Rc,α+π(h)).

5.4. An application of the landslide flow. We now go in the reverse direction, and use the
properties of the landslide flow to obtain new results on the geometry of K-surfaces in convex GHCM
AdS spacetimes with particles. We first state a lemma on landslides on hyperbolic surfaces with cone
singularities, and then use it to obtain Theorem 5.15 below on K-surfaces.

Lemma 5.14. Let (h, h′) ∈ TΣ,θ × TΣ,θ be a normalized representative. Define the map L•(h, h
′) :

S1 → TΣ,θ × TΣ,θ by associating Leiα(h, h′) to eiα ∈ S1. Then the following two statements hold:

(1) If h 6= h′, then the map eiα 7→ Leiα(h, h′) is injective.
(2) If h = h′, then this map eiα 7→ Leiα(h, h′) is constant, that is, Leiα(h, h′) = (h, h) for all eiα ∈ S1.

Proof. First we show the first statement. Assume that h 6= h′ and Leiα1 (h, h′) = Leiα2 (h, h′). By
Corollary 5.13, we have

(19) Rc,α1(h) = Rc,α2(h), Φ(fαi) = eiαiΦ(f),

for i = 1, 2, where f : (Σ, c)→ (Σ, h) and fαi : (Σ, c)→ (Σ, Rc,αi(h)) are the (unique) harmonic maps
isotopic to the identity, c is the conformal structure of h+h′. Moreover, (19) implies Φ(fα1) = Φ(fα2),
that is,

ei(α1−α2)Φ(f) = 0.

Note that Φ(f) 6= 0 since h 6= h′. This implies that α1 = α2.
Assume that h = h′, then c is the conformal structure of h. It follows that the harmonic map

f : (Σ, c)→ (Σ, h) isotopic to the identity is exactly the identity by choosing the representative metric
h of c. Hence, Φ(f) = 0 and Φ(fα) = eiαΦ(f) = 0 for all α ∈ S1. By Proposition 5.10, Definition 5.11
and Corollary 5.13, we obtain

Leiα(h, h′) = (Rc,α(h), Rc,α+π(h)) = (h, h),

for all eiα ∈ S1. �

Theorem 5.15. Let (N, g) ∈ GHΣ,θ and K1,K2 ∈ (∞,−1). Then the following two statements are
equivalent:

(1) The preimages under φK1 and φK2 of (N, g) are the same point in TΣ,θ × TΣ,θ.
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(2) K1 = K2 or (N, g) is Fuchsian.

Proof. First we show Statement (1) implies Statement (2). Denote by (h, h′) the same preimage under
φK1 and φK2 of (N, g). Let αi ∈ (0, π) such that Ki = −1/ cos2 αi for i = 1, 2. From the definition of
φKi , (N, g) contains a future-convex spacelike surface SKi orthogonal to the singular lines, with the
induced metric (1/|Ki)|h and the third fundamental form (1/|K∗)|h′, where K∗i = −Ki/(1 + Ki) =
−1/ sin2 αi for i = 1, 2. Apply Lemma 5.6 with (h, h′) ∈ TΣ,θ × TΣ,θ and αi ∈ (0, π), the left and right
metrics of (N, g) are respectively

(20) µl = L1
eiα1 (h, h′) = L1

eiα2 (h, h′), µr = L1
e−iα1 (h, h′) = L1

e−iα2 (h, h′).

We claim that if (N, g) is not Fuchsian, then h 6= h′. Otherwise, by (20) and Statement (2) of
Lemma 5.14, h = h′ implies that µl = µr and hence (N, g) is Fuchsian. This leads to contradiction.
By Statement (1) of Lemma 5.14, we have α1 = α2. This implies that K1 = K2.

Now it suffices to prove that Statement (2) implies Statement (1). (2) is clear if K1 = K2 since
then φK1 = φK2 . If (N, g) is Fuchsian, denote by (h1, h

′
1) and (h2, h

′
2) the preimages under the maps

φK1 and φK2 of (N, g). Note that αi ∈ (0, π). By Lemma 5.6, we have

µl = L1
eiα1 (h1, h

′
1) = L1

e−iα1 (h1, h
′
1) = µr, µl = L1

eiα2 (h2, h
′
2) = L1

e−iα2 (h2, h
′
2) = µr.

By Statement (1) of Lemma 5.14, we obtain h1 = h′1 and h2 = h′2. By Statement (2) of Lemma 5.14,
we get that

h1 = L1
eiα1 (h1, h

′
1) = µl = L1

eiα2 (h2, h
′
2) = h2 .

This implies that (h1, h
′
1) = (h2, h

′
2). The proof is complete. �

Remark 5.16. Note that Theorem 5.15 also holds for the non-singular case. This implies that for a
non-Fuchsian convex GHCM AdS spacetime N (with particles or not), any two spacelike surfaces of
distinct constant curvatures are not isotopic.
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