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Abstract. This article explores the length and number of systoles associated to holomorphic

1-forms on surfaces. In particular, we show that up to homotopy, there are at most 10

systolic loops on such a genus two surface and that the bound is realized by a unique

translation surface up to homothety. We also provide sharp upper bounds on the the

number of homotopy classes of systoles for a holomorphic 1-form with a single zero in

terms of the genus.

1. Introduction

The systolic length of a length space (X, d) is the infimum of the lengths of non-contractible

loops in X. If a non-contractible loop γ achieves this infimum, then we will call γ a systole.

The systolic length and systoles have received a great deal of attention beginning with work

of Loewner who is credited [PuPu] with proving that among unit area Riemannian surfaces of

genus one, the unit area hexagonal torus has the largest systolic length, 2/
√

3, and is the

unique such surface that achieves this value.

The hexagonal torus has another extremal property: Among all Riemannian surfaces of

genus one, it has the maximum number of distinct homotopy classes of systoles, three.

With respect to this property, the hexagonal torus is not the unique extremal among all

genus one Riemannian surfaces, but it is the unique extremal among quotients of C by

lattices Λ equipped with the metric |dz|2.

The form dz on C/Λ is an example of a holomorphic 1-form on a Riemann surface. More

generally, given a holomorphic 1-form ω on a Riemann surface X, one integrates |ω| over

arcs to obtain a length metric dω on X. On the complement of the zero set of ω the metric is

locally Euclidean, and each zero of order n is a conical singularity with angle 2π · (n + 1).

The length space (X, dω) determined by (X, ω) is the basic object of study in the burgeoning

field of Teichmüller dynamics. See, for example, the recent surveys of [Forni-MatheusForni-Matheus] and
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[WrightWright].

In this paper we prove the following.

Theorem 1.1. Let ω be a holomorphic 1-form on a closed Riemann surface X of genus two. The
number of distinct homotopy classes of systolic minimizers on (X, dω) is at most 10. Moreover,
up to homothety, there a unique metric space of the form (X, dω) for which there exist exactly 10
distinct homotopy classes of systoles.

In other words, among the unit area surfaces (X, dω) of genus two, there exists a unique

surface (X10, dω10) that has the maximum number of systolic homotopy classes. The surface

obtained by multiplying this metric by 4
√

3 is described in Figure 11. The surface (X10, dω10)

has two conical singularities each of angle 4π corresponding to the vertices of the polygon

pictured in Figure 11. In other words, the 1-form ω10 has simple zeros corresponding to

these vertices. Four of the ten systolic homotopy classes consists of geodesics that lie in

an embedded Euclidean cylinders. Each of the other six systolic homotopy classes has a

unique geodesic representative that necessarily passes through one of the two zeros of ω10.

It is interesting to note that some of the latter systoles intersect twice. Both intersections

necessarily occur at zeros of ω10. Indeed, if two curves intersect twice and one of the

intersection points is a smooth point of the Riemannian metric, then a standard perturbation

argument produces a curve of shorter length.

√
3

1

1

1

Figure 1: A pair (X, ω) that has ten systoles: By identifying parallel sides of the same
color, we obtain a Riemann surface X. The one form dz in the plane defines a holomorphic
1-form on X.

Perhaps surprisingly, (X10, dω10) does not maximize the systolic length among all unit area,

genus two surfaces of the form (X, dω). To discuss this, it will be convenient to introduce

the systolic ratio: the square of the systolic length divided by the area of the surface. A
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surface maximizes the systolic length among unit area surfaces if and only if it maximizes

systolic ratio among all surfaces.

A genus two surface (X, dω) that has ten systoles has systolic ratio equal to 1/
√

3 =

.57735 . . .. On the other hand, the surface described in Figure 22 has systolic ratio equal to

2 ·
(√

13− 3
)2

√
3 · (1− 3

4 (
√

13− 3)2)
= .58404 . . . (1)

We believe that this surface has maximal systolic ratio.

Conjecture 1.2. The supremum of the systolic ratio over surfaces (X, dω) of genus two equals the
constant in (11). Moreover, up to homothety, the surface described in Figure 22 is the unique surface
that achieves this systolic ratio.

2
1

Figure 2: A surface (X, dω) whose systolic ratio equals the constant in (11). The surface is
obtained from gluing parallel sides of two isometric cyclic hexagons in C. Each hexagon
has a rotational symmetry of order 3. The 1-form ω corresponds to dz in the plane.

By the Riemann-Roch theorem, the total number of zeros, including multiplicities, of a

holomorphic 1-form on a Riemann surface of genus g equals 2g− 2. In particular, a 1-form

ω on a genus two Riemann surface X consists of either two simple zeros or one double zero.

Thus, we have a partition of the moduli space of pairs (X, ω) into the stratum, H(1, 1),

of those for which dω has two conical singularities of angle 4π and the complementary

stratum,H(2), those for which dω has a single conical singularity of angle 6π.
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In order to prove Theorem 1.11.1, we study both strata separately, and it turns out that the

stratum H(2) is considerably easier to analyse. Indeed, forH(2) we are able to prove sharp

bounds on both the systolic ratio and on the number of systolic homotopy classes. We will

say that a surface (X, dω) is tiled by an equilateral triangle T if there exists a triangulation of

X such that each triangle is isometric to T and each vertex is a zero of ω.

Theorem 1.3. If (X, ω) ∈ H(2), then (X, dω) has at most 7 homotopy classes of systoles, and
the systolic ratio of (X, dω) is at most 2/(3

√
3) = .3849 . . . Furthermore, either inequality is an

equality if and only if (X, dω) is tiled by an equilateral triangle.

The unique surface that attains both optimal bounds is illustrated in Figure 33.

Figure 3: The genus two surface with a single cone point and tiled by equilateral triangles

To obtain the maximum systolic ratio, we adapt an argument of Fejes Tóth that he used to

prove that the hexagonal lattice Λ0 gives the optimal packing [Fejes TóthFejes Tóth]. This method

applies to (X, ω) ∈ H(2g− 2), the space of holomorphic 1-forms on a genus g surface that

have a single zero. The more general result about the systolic ratio of surfaces in these

strata is the following.

Theorem 1.4. The supremum of the systolic ratio of (X, dω) as (X, ω) varies over H(2g − 2)

equals 2
√

3
9g−9 . This supremum is achieved if and only if the surface is obtained by gluing equilateral

triangles.

Note that a more general (but non-optimal) bound for the systole was identified by Smillie

and Weiss [Smillie-WeissSmillie-Weiss].

We are also able to identify optimal bounds for the number of homotopy classes of systoles

of surfaces in H(2g− 2). We also show that the optimal bounds cannot be attained by

hyperelliptic surfaces in these strata. A condensed version of our results is the following

(Proposition 3.13.1 and Theorem 3.33.3):

Theorem 1.5. If ω be a holomorphic 1-form on X that has exactly one zero, then (X, dω) has at
most 6g− 3 homotopy classes of systoles. If in addition ω is hyperelliptic, then (X, dω) has at most
6g− 5 homotopy classes of systoles. Both bounds are sharp.

Note that as all genus two surfaces are hyperelliptic, this implies the bound on the number

of homotopy classes in Theorem 1.31.3 above.
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Although these questions have not been studied much in the context of translation surfaces,

they have been studied in the context of hyperbolic and Riemannian surfaces. As hinted

at above, smooth surfaces have systoles that intersect at most once, and from this one can

deduce that there are at most 12 homotopy classes of systole in genus two (see for instance

[Malestein-Rivin-TheranMalestein-Rivin-Theran]). This bound is sharp. Indeed, among hyperbolic surfaces of

genus two, there is a unique surface, called the Bolza surface, with exactly 12 systoles. It

can be obtained by gluing opposite edges of a regular hyperbolic octagon with all angles
π
4 . This same surface is also optimal (again among hyperbolic surfaces) for systolic ratio,

a result of Jenni [JenniJenni]. Either optimal quantities are unknown in higher genus although

there are bounds. Interestingly, Katz and Sabourau [Katz-SabourauKatz-Sabourau] showed that among

CAT(0) genus two surfaces, the optimal surface is an explicit flat surface with cone point

singularities, conformally equivalent to the Bolza surface. This singular surface cannot be

optimal among all Riemannian surfaces however, as by a result of Sabourau, the optimal

surface in genus two necessarily has a region with positive curvature [SabourauSabourau]. The

optimal systolic ratio among all Riemannian surfaces is still not known.
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2. Facts concerning the geometry of (X, dω)

We collect here some relevant facts about the geometry of the surface (X, dω) some-

times called a ‘translation surface’. Much of this material can be found in, for example,

[Masur-SmillieMasur-Smillie], [Gutkin-JudgeGutkin-Judge], and [Broughton-JudgeBroughton-Judge].

2.1. Integrating the 1-form

By integrating the 1-form ω along a piecewise differentiable path α : [a, b]→ X, we obtain

a path in α : [a, b]→ C defined by

α(t) =
∫

α|[a,t]

ω. (2)

Since ω is closed, if two paths α, β in X are homotopic rel endpoints, then α and β are

homotopic rel endpoints. Thus, if U ⊂ X is simply connected neighborhood of a point x,
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then

µx,U(y) :=
∫

αy

ω (3)

is independent of the path αy joining x to y. Note that µx,U is a holomorphic map from U
into C. If x is not a zero of ω, then it follows from the inverse function theorem that there

exists a neighborhood U so that µx,U is a biholomorphism onto its image.

2.2. The metric

The norm, |ω|, of ω defines an arc length element on X. We will let `ω(α) denote the length

of a path on X, and we will let dω denote the metric obtained by taking the infimum of

lengths of paths joining two points.

If x is not a zero of ω and U is a simply connected neighborhood of x, then µx,U is a local

isometry from U into C equipped with its usual Euclidean metric |dz|2. If, in addition, U is

star convex at x, then µx,U is an isometry onto its image.

If x is a zero of ω of order k, then there exists a neighborhood V of x and a chart ν : V → C

such that ω = (k + 1) · ν∗(zkdz)) = ν∗(d(zk+1)) and ν(x) = 0. If V is sufficently small, the

map ν is an isometry from (V, dω) to (ν(V), dd(zk+1)). In turn, the map z 7→ zk+1 is a local

isometry from (ν(V)− {0}, dd(zk+1)) to a neighborhood of the origin with the Euclidean

metric |dz|2. Since the branched covering z 7→ zk+1 has degree k + 1, the arc length of the

boundary of an ε-neighborhood of x is 2π(k + 1) · ε. Therefore, we refer to x as a cone point
of angle 2π(k + 1). Thus, the set of zeros of ω, denoted Zω, will be regarded as the set of

cone points of (X, dω).

2.3. Universal cover, developing map and holonomy

Let p : X̃ → X be the universal covering map, and let ω̃ = p∗(ω). If we let dω̃ be the

associated metric on X̃, then p is a local isometry from (X̃, dω̃) onto (X, dω). Since X̃ is

simply connected, we may fix x̃0 ∈ X̃ and integrate ω̃ as in (33) to obtain a map dev : X̃ → C

called the developing map. The restriction of dev to X̃− Zω̃ is a local biholomorphism and a

local isometry. Each zero of ω̃ is a branch point whose degree equals the order of the zero.

If C is the closure of a convex subset of X̃− Zω̃, then the restriction of dev to C is injective.

Let x0 = p(x̃0), and consider loops α in x based at x0. The assignment α → α defines a

homomorphism from π1(X, x0) to the additive group C. Moreover, for each [α] ∈ π1(X, x0)

and x̃ ∈ X̃ we have

dev([α] · x̃) = dev(x̃) + hol([α]) (4)

where α · x̃ denotes action by covering transformations and hol([α]) is the holonomy of [α].
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2.4. Geodesics

If a geodesic γ on (X, dω) passes through a zero of ω, then γ will be called indirect and

otherwise direct. If γ is a direct simple geodesic loop, then, since Zω is finite, for sufficiently

small ε > 0, the ε-tubular neighborhood, N, of γ is disjoint from Zω. Each lift Ñ ⊂ X̃
of N is convex and hence the restriction of the developing map to Ñ is an isometry onto

dev(Ñ). Since Ñ is stabilized by the cyclic subgroup 〈γ〉 of the deck group generated by γ,

it follows from (44) that dev(Ñ) is the convex hull of two parallel lines, and, moreover, the

map dev determines an isometry from N to dev(Ñ)/〈hol(γ)〉. In particular, N is isometric

to a Euclidean cylinder [0, w]×R/`Z where ` = |hol(γ)| and w is the distance between

the parallel lines. If Zω 6= 0, then the union of all Euclidean cylinders embedded in X− Zω

that contain γ is a cylinder called the maximal cylinder associated to γ. Each component of

the frontier of a maximal cylinder consists of finitely many indirect geodesics.

Proposition 2.1. If ω has at least one zero, then each homotopy class of loops is represented by a
geodesic loop that passes through a zero of ω.

Proof. Since X is compact, a homotopy class of simple loops has a geodesic representative

γ. If γ does not pass through a zero, then γ lies in a maximal cylinder. The boundary of the

maximal cylinder contains a geodesic representative that passes through a zero.

Proposition 2.2. If two simple geodesic loops are homotopic, then they lie in the closure of the same
maximal cylinder.

Proof. Because the angle at each cone point z̃ ∈ Zω̃ is greater than 2π, the length space

(X̃, dω̃) is CAT(0). If two geodesic loops γ and γ′ are homotopic, then they have have lifts

that are asymptotic in (X̃, dω̃). By the flat strip theorem [Bridson-HaefligerBridson-Haefliger], the convex

hull of the two lifts is isometric to a strip [0, w]×R. Thus, since each cone point has angle

larger than 2π, the interior I of the convex hull contains no cone points. The developing

map restricted to I is an isometry onto a strip in C, and, moreover, it induces an isometry

from I/〈g〉 to the cylinder dev(I)/〈hol(g)〉 where g is the deck transformation associated

to the common homotopy class of γ and γ′. Since the lifts are boundary components of I,

the loops γ and γ′ lie in the boundary of the cylinder dev(I)/〈hol(g)〉.

2.5. The Delaunay cell decomposition

The Delaunay decomposition is well-known in the context of complete constant curvature

geometries. Thurston observed that the construction also applies to constant curvature

metrics with conical singularities [ThurstonThurston].
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We will first describe the Delaunay decomposition of the universal cover X̃. Given x̃ ∈
X̃− Zω̃, let Dx̃ be the largest open disk centered at x̃ that does not intersect Zω̃. Since Dx̃ is

convex, the restriction of dev to the closure Dx̃ is an isometry onto a closed Euclidean disk

in C. Since Zω̃ is discrete, the intersection Zω̃ ∩ Dx̃ is finite. Let V be the set of x̃ ∈ X̃− Zω̃

such that Zω̃ ∩ Dx̃ contains at least three points. Because three points determine a circle,

the set V is discrete.

For each x̃ ∈ V , let Px̃ denote the convex hull of Zω̃ ∩Dx̃. It is isometric to a convex polygon

in the plane. Again, because three points determine a circle, if x̃, ỹ ∈ V and x̃ 6= ỹ, then the

set Zω̃ ∩ Dx̃ ∩ Dỹ consists of at most two points, and hence Px̃ ∩ Pỹ is either empty, a point,

or a geodesic arc lying in both the boundary of Px̃ and the boundary of Pỹ. The interior of

Px̃ is called a Delaunay 2-cell and the boundary edges are called Delaunay edges. The vertex

set of this decomposition of X̃ is the set of zeros of ω̃.

The deck group of the universal covering map p permutes the cells of the Delaunay

decomposition, and so we obtain a decomposition of X. Note the restriction of p to each 2-

cell P is an isometry onto its image. Indeed, if not then there exists a covering transformation

γ, a lift P̃ of P, and x̃ ∈ P̃ such that γ · x̃ ∈ P̃. Since P̃ is convex, it follows that for some

vertex of z̃ ∈ P̃, we would have γ · z̃ ∈ P̃. But γ maps Zω̃ to itself.

Our interest in the Delaunay decomposition stems from the following.

Proposition 2.3. If α is a shortest non-null homotopic arc with both endpoints in Zω, then α is a
Delaunay edge.

Proof. Since the universal covering map p preserves the length of arcs, it suffices to prove

that the analogous statement holds for the universal cover X̃. Because α is a shortest arc,

if m is the midpoint of α, then the largest disc D centered at m has diameter equal to `(α)

and D ∩ Zω̃ consists of exactly two points, the endpoints z and z′ of α. The circle dev(∂D)

belongs to the pencil of circles containing dev(z) and dev(z′). Since X is compact, by

varying over this pencil, we find a disk D′ so that D′ ∩ Zω̃ contains z, z′, and at least one

other point. The center c of D′ belongs to V and α is a boundary edge of the polygon Pc.

Proposition 2.4. Let ω be a holomorphic 1-form on a closed surface of genus g. If ω has v zeros,
then the Delaunay decomposition of X has at most 6g− 6 + 3 · v edges and the number of 2-cells is
4g− 4 + 2 · v. Equality holds if and only if each 2-cell is a triangle.

Proof. By dividing the Delaunay 2-cells (convex polygons) into triangles, we obtain a

triangulation with v vertices. By Euler’s formula and the fact that there are 3 oriented edges
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for each triangle, we find that each triangulation has 6g− 6 + 3v edges and 4g− 4 + 2 · v
triangles.

3. Systoles of 1-forms inH(2g− 2)

In this section, we consider holomorphic 1-forms with a single zero. In the first part of the

section we give the optimal bound on the number of homotopy classes of systoles of such

surfaces as well as the optimal bound for the hyperelliptic surfaces with one zero. In the

second part, we provide the optimal estimate on the systolic ratio of such surfaces.

3.1. Bounds on the number of systoles

Proposition 3.1. If ω be a holomorphic 1-form on X that has exactly one zero, then (X, dω) has at
most 6g− 3 homotopy classes of systoles.

Proof. By Proposition 2.12.1, each homotopy class of systoles contains a representative that

passes through the zero. Proposition 2.32.3 implies that each such systole is a Delaunay edge.

By Proposition 2.42.4, there are at most 6g − 3 Delaunay edges and hence at most 6g − 3

homotopy classes of systoles.

The bound in Proposition 3.13.1 is sharp if the genus g of X is at least 3. For example, if

g = 3, 4, 5, then consider the surfaces described in Figures 44, 55, and 66. Moreover, given a

holomorphic 1-form ωg on a surface Xg of genus g with one zero that achieves the bound

6g − 3, one can construct a holomorphic 1-form ωg+3 with one zero on a surface Xg+3

of genus g + 3 that achieves the bound 6(g + 3)− 3. Indeed, remove a Delaunay edge

from (Xg, dωg) to obtain a surface X′g with one boundary component that consists of two

segments F and F′, and then glue the surface described in Figure 77.

Figure 4: Glue the edges of the polygon according to the colors to obtain the Delaunay
triangulation associated a holomorphic 1-form on a surface of genus three. Each edge is a
systole, the 1-form ω has exactly one zero, and no two Delaunay edges are homotopic.

Remark 3.2. The problem of constructing surfaces that saturate the bound in Proposition

3.13.1 is equivalent to the problem of constructing two fixed-point free elements σ, τ in the

symmetric group Sg−1 = Sym({1, . . . , 2g− 1}) such that σ · τ has no fixed points and the

commutator [σ, τ] is a (2g− 1)-cycle. Indeed, let P1, . . . Pg be 2g− 1 disjoint copies of the
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Figure 5: Glue the edges of the polygon according to the colors to obtain the Delaunay
triangulation associated a holomorphic 1-form on a surface of genus four. Each edge is a
systole, the 1-form ω has exactly one zero, and no two Delaunay edges are homotopic.

Figure 6: Glue the edges of the polygon according to the colors to obtain the Delaunay
triangulation associated a holomorphic 1-form on a surface of genus five. Each edge is a
systole, the 1-form ω has exactly one zero, and no two Delaunay edges are homotopic.

convex hull of {0, 1, eπi/3, 1 + eπi/3}. Given σ, τ ∈ S2g−1, glue the left side of Pi to the right

side of Pσ(i) and the top side of Pi to the bottom side of Pτ(i) to obtain a surface with a

holomorphic 1-form ω. If [σ, τ] is an n-cycle, then it follows that ω has one zero, and if σ, τ,

and σ · τ have no fixed points, then it follows that (X, dω) has no cylinder with girth equal

to the systole. Thus, by Proposition 2.22.2, no two systolic edges are homotopic.

Conversely, suppose that a holomorphic 1-form surface saturates the bound, then the

necessarily equilateral Delaunay triangles can be paired to form parallelograms as above

that are glued according to permutations σ and τ. One verifies that σ and τ satisfy the

desired properties.

The surface constructed in Figure 44 corresponds to the pair σ = (12345), τ = (15243), the

surface constructed in Figure 55 corresponds to the pair σ = (1234567), τ = (1364527), and

surface in Figure 44 corresponds to σ = (123456789), τ = (146379285). We thank Marston

Condor for finding these examples for us.

If the genus of the surface is two, then one can show that the maximum number of homotopy

classes of systoles is 7 = 6g− 5. More generally, the following is true.

Theorem 3.3. Let ω be a holomorphic 1-form on a surface with a hyperelliptic involution τ. If
ω has exactly one zero, then (X, dω) has at most 6g− 5 homotopy classes of systoles. Moreover,
(X, dω) has exactly 6g− 5 homotopy classes of systoles if and only if each Delaunay edge is a systole
and there exist exactly four Delaunay 2-cells each of which have two edges that are preserved by the
hyperelliptic involution.
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Figure 7: Glue the edges of the polygon according to the labels to obtain the Delaunay
triangulation associated a holomorphic 1-form on a surface of genus two having two
boundary components.

For each g ≥ 2, the bound given in Theorem 3.33.3 is achieved by, for example, the surface

described in Figure 88.

Figure 8: Glue the colored edges of the polygon according to the labels to obtain the
Delaunay triangulation associated to a holomorphic 1-form on a surface of genus g. The
surface is hyperelliptic, the 1-form ω has exactly one zero, and there are exactly 6g− 5
homotopy classes of systoles.

Proof. Each homotopy class of systole is represented by at least one systolic Delaunay edge.

Since ω has exactly one zero z0, the number of Delaunay edges is at most 6g− 3. Thus, we

wish to show that if there are 6g− 3 or 6g− 4 systolic Delaunay edges, then there exist at

least two homotopic pairs of systolic edges and that if there are 6g− 5 systolic edges, then

there is at least one pair of homotopic edges.

6g− 3 systolic edges: Suppose that there are exactly 6g− 3 systolic Delaunay edges. Then

each Delaunay 2-cell is an equilateral triangle and there are 4g − 2 such cells. Since τ

is an isometry, it preserves the Delaunay partition. In particular, since z0 is the unique

0-cell, we have τ(z0) = z0, and since an equilateral triangle has no (orientation preserving)

involutive isometry, the involution τ has no fixed points on the interior of each 2-cell. Thus,

the remaining 2g + 1 fixed points of τ lie on 1-cells. In particular, τ fixes exactly 2g + 1

Delaunay edges.

Suppose that T is a 2-cell with two fixed edges. Then T ∪ τ(T) is a cylinder whose boundary

components are the ‘third’ edges of T and τ(T), and, in particular, these ‘third’ edges are

not fixed by τ. Thus, a 2-cell has either zero, one, or two fixed edges. Note that the number

of 2-cells that have two fixed edges is even.
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We claim that there exist at least four 2-cells that each have two fixed edges. Indeed, if, on

the contrary, there are at most two such 2-cells, then there are at least 4g− 4 remaining

2-cells that each have at most one fixed edge. There are at most 2g− 2 of edges associated

to these 2-cells, and at most 2 edges associated to the 2-cells that have two fixed edges. But,

there are 2g + 1 > (2g− 2) + 2 fixed edges, and we have a contradiction.

The four 2-cells form two cylinders each bounded by two systolic edges. Thus, there are

at most 6g− 5 homotopy classes of systoles. If there are exactly 6g− 5 homotopy classes

cylinders, then there are two maximal cylinders each bounded by two systolic edges. The

integral of ω over the middle curve of each cylinder is nonzero, and hence the middle curve

is not null-homologous. The induced action of a hyperelliptic involution on H1(X) is the

antipodal map, and so τ preserves each cylinder and has exactly two fixed points on the

interior of each cylinder. It follows that the there are four 2-cells each having two fixed

edges.

6g− 4 systolic edges: Suppose that there are exactly 6g− 4 systolic Delaunay edges. It

follows that exactly 4g− 4 Delaunay 2-cells are equilateral triangles. The complement, K,

of the union of these equilateral triangles is (the interior of) a rhombus.

Since τ is an isometry, τ preserves K. In particular, the center c of the rhombus is a fixed

point of τ, and so exactly 2g systolic edges are fixed by τ. Thus, since K is a rhombus, none

of the edges of K are not fixed by τ. Indeed, if a boundary edge of K were fixed by τ, then

the segment in K joining the midpoint of e to c would be ‘rotated’ by τ to a segment joining

c to the midpoint of the edge e′ opposite to e. Hence the midpoint of e would equal the

midpoint of e′, a contradiction.

As in in the case when there are 6g− 3 systolic edges, each equilateral triangle has at most

two fixed edges and the number of equilateral triangles that have two fixed edges is even.

We claim that there are at least four equilateral triangles that each have two fixed edges.

Indeed, if not, then there would be at least 4g− 6 equilateral triangles with at most one

fixed edge. The fixed edges of these triangles do not lie in the boundary of K, and so there

are 2g − 3 fixed edges associated to these triangles. There are at most two fixed edges

associated to the triangles that each have two fixed edges. But there are 2g > 2g− 3 + 2

fixed systolic edges, and we have a contradiction.

Each pair of equilateral triangles with two fixed edges determines a cylinder bounded by

systolic edges. Hence, in this case, there are at most 6g− 6 homotopy classes of systoles.

6g− 5 systolic edges: Suppose that there are exactly 6g− 5 systolic edges. Then there are

4g− 6 Delaunay 2-cells that are equilateral triangles. The complement, K, of the union of
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these equilateral triangles consists of either an equilateral hexagon or two disjoint rhombi.

Suppose that K is an equilateral hexagon. Then since τ preserves the Delaunay partition,

we have τ(K) = K. Hence K contains exactly one fixed point c and K is convex. Thus,

arguing as above, we find that if a boundary edge of K is fixed by τ, then the edge equals

an opposite edge. Since X/〈τ〉 is connected and the genus of X is at least two, all six edges

can not be indentified, and hence there are at most 3 fixed points in K.

We claim that at least one pair of equilateral triangles each have exactly two fixed edges.

If not, then each of the 4g− 6 equilateral triangles contains at most one fixed edge. Thus,

there are at most 2g− 3 such edges, and hence 2g(2g− 3) + 3 + 1 = 2g + 1 fixed points

in total. But the total number of fixed points is 2g + 2. Thus, we have a pair of equilateral

triangles that share a pair of fixed edges. The union is a cylinder bounded by two systolic

edges, and so we have at most 6g− 6 homotopy classes of systoles in this case.

Finally suppose that K is the disjoint union of two rhombi R+ and R−. Since τ preserves

the Delaunay partition, either τ(R±) = R± or τ(R±) = R∓.

If τ(R±) = R±, then each rhombus contains a fixed point. If an edge of R± is fixed, then R±
is a cylinder bounded by systolic edges and so there are at most 6g− 6 homotopy classes of

systoles. If neither rhombus has boundary edges fixed by τ, then K contains exactly two

fixed points. If there is not a pair of equilateral triangles that share fixed boundary edges,

then each of the 4g− 6 equilateral triangles would have at most one fixed edge, and so

there would be at most 2g− 3 + 2 + 1 = 2g fixed points, a contradiction. Hence we have a

systolic cylinder and at most 6g− 6 homotopy classes of systoles.

If τ(R±) = R∓, then they do not contain fixed points. If a R± has a fixed boundary edge,

then it shares this edge with R∓, and so there are at most three fixed points in K. Arguing

as in the case of the hexagon, we find that there are at most 6g− 6 homotopy classes of

systoles.

Since each genus two surface is hyperelliptic, we have the following corollary.

Corollary 3.4. Let X be a surface of genus two. If ω is a holomorphic 1-form on X that has exactly
one zero, then the number of homotopy classes of systoles of (X, dω) is at most 7.

3.2. Lengths of systoles

Although our main concern is the number of systoles, we observe in this section that it is

quite straightforward to find a sharp upper bound on the length of systoles of translation

surfaces provided they have a single cone point singularity. One of the ingredients is the
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Delaunay triangulation described in §2.52.5. The other ingredient is a result due to Fejes Tóth

which we state in the form of the following lemma.

Lemma 3.5. Let T be a Euclidean triangle embedded in the plane and let r be the maximal positive
real number so that the open balls of radius r around the three vertices are disjoint. Then

r2 ≤ Area(T)√
3

with equality if and only if T is equilateral.

This can be stated differently in terms of ratios of areas. Consider the area Ar of a triangle

found at distance r from the vertices of T and so that the interior of the three wedges don’t

overlap. Then the ratio Ar/T never exceeds that of the equilateral triangle with r equal to

half the length of a side.

With this in hand, the following is immediate.

Theorem 3.6. Let X ∈ H(2g− 2). Then

sys2(X)

area(X)
≤ 2

√
3

9g− 9

with equality if and only if X is obtained by gluing equilateral triangles.

Proof. Given X ∈ H(2g− 2), we consider a Delaunay triangulation of X formed of triangles

T1, . . . , T6g−6. All systolic paths passing through the cone point singularity belong to the

triangulation. We now consider the r ball around the cone point singularity. For small

enough r it is embedded and we set r0 to be the first value for which the closed r0 ball is no

longer embedded. Clearly r0 = sys(X)
2 .

Maximizing systolic ratio is the same as minimizing its inverse, so we have

area(X)

sys2(X)
=

area(X)

4r2
0

=
1
4

6g−6

∑
k=1

area(Tk)

r2
0

which by the previous lemma satisfies

1
4

6g−6

∑
k=1

area(Tk)

r2
0

≥ 1
4
(6g− 6)

√
3

and thus
sys2(X)

area(X)
≤ 2

√
3

9g− 9
as claimed.

If one of the triangles has a smaller ratio, then the above inequality is strict and thus equality

only occurs if the Delaunay triangulation consisted of equilateral triangles.
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We note that there is a unique surface (up to homothety) in H(2) tiled by equilateral

triangles (illustrated previously in Figure 33). This property of having a unique surface be

the maximum for both the number of systoles and the maximal ratio is something that is

no longer true in H(1, 1) as we’ll show in what follows.

4. Geodesics on a surface inH(1, 1)

In this section, X will denote a H(1, 1) surface of genus two equipped with a translation

structure with two cone points c+ and c− each of angle 4π. The tangent bundle of a

translation surface is parallelizable. In particular, each oriented segment has a direction.

The hyperelliptic involution τ : X → X is an isometry that reverses the direction of each

oriented segment. The isometry τ has exactly six fixed points, the Weierstrass points.

Lemma 4.1. The hyperellipic involution τ interchanges cone points: τ(c±) = c∓

Proof. Since τ is an isometry the set {c+, c−} is permuted. If τ(c+) = c+, then in a neigh-

borhood of c+, the isometry τ acts as a rotation of π radians. But the cone angle is 4π, and

hence it is impossible for τ2 to be the identity.

By Lemma 4.14.1, the quotient X/〈τ〉 is a sphere with one cone point c∗ with angle 4π and six

cone points {c1, . . . , c6} each of angle π. Let p : X → X/〈τ〉 denote the degree 2 covering

map branched at {c1, . . . , c6}. If γ is a simple geodesic loop, then either γ passes through

two Weierstrass points in which case p maps γ onto a geodesic arc joining two distinct π

cone points, or p ◦ γ is a simple geodesic loop that misses the π cone points.

A flat torus is a closed translation surface (necessarily of genus one). A slit torus is a flat

torus with finitely many disjoint simple geodesic arcs removed. Each removed arc is called

a slit. The completion of a slit torus (with respect to the natural length space structure) is

obtained by adding exactly two geodesic segments for each removed disk. The interior

angle between each pair of segments is 2π. This property characterizes slit tori.

Lemma 4.2. Let Y be a topological torus with finitely many disjoint closed discs removed. If Y is
equipped with a translation structure such that each boundary11 component consists of at most two
geodesic segments, then Y is isometric to a slit torus.

Remark 4.3. Figure 99 shows that Lemma 4.24.2 is false if one replaces the assumption of

translation structure with the assumption of flat structure.

1By boundary we mean the set of points added by taking the metric completion of the length structure associated
to the translation structure.
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θ+θ−

θ−

θ−

Figure 9: Identify the edges of the same color (except for black) via elements of Isom(R2)

to obtain a torus with a disc removed equipped with a flat structure such that the boundary
consists of exactly two geodesics. The angles between the geodesics are not both π though
they sum to 4π.

Proof of Lemma 4.24.2. Let Z be a connected component of ∂Y. Let A be the intersection of the

maximal geodesic segments in Z. By assumtion A is either empty, contains one point, or

contains two points. Let α : [0, 1]→ Z be a parameterization of Z such that if A is nonempty,

then α(0) = α(1) ∈ A. Let α be the develoment of α into the plane C as discussed in §22.

Since [α] ∈ π1(Y) is a commutator and C is abelian, the holonomy of [α] equals 0. Hence

by (44), we have α(1)− α(0) = dev([α] · α̃(0)) = 0, and therefore α(1) = α(0).

If A is empty or consists of one point, then α is a line segment, but this is impossible

nontrivial line segments in C have distinct endpoints. If A consists of two points, then

the curve α consists of two line segments. Since α(1) = α(0), the line segments coincide.

Removing this segment and its translates by hol(π1(Y)) and quotienting it by hol(π1(Y))
gives a surface isometric to Y.

As a corollary, we have the following sharpening of Theorem 1.7 in [McMullenMcMullen].

Corollary 4.4. If α is a separating simple closed geodesic on X, then X− α is the disjoint union of
two slit tori. Moreover, each slit torus contains exactly three Weierstrass points, and the hyperelliptic
involution τ preserves α.

Proof. Since α is separating and X is closed of genus two, the complement of α consists

of two one-holed tori Y+ and Y−. Since α is geodesic, the boundaries of Y+ and Y− are
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piecewise geodesic. Since α is simple and there are only two cone points, the number of

geodesic pieces of Y± is at most two. Lemma 4.24.2 implies that each component is a slit torus.

The restriction of τ to a slit torus component determines an elliptic involution τ of the torus.

The endpoints of each slit correspond to the cone points c+ and c−, and so the are preserved

by the induced elliptic involution. Since τ preserves the cone points, the map τ preserves

the slit, and hence α is preserved by τ. In particular, the midpoint of the slit is fixed by τ

and the three other fixed points of τ are fixed points of τ.

A cylinder of girth ` and width w is an isometrically embedded copy of (R/`Z)× [−w/2, w/2].

Each cylinder is foliated by geodesics indexed by t ∈ [−w/2, w/2]. We will refer to the

geodesic that corresponds to t = 0 as the middle geodesic. By Corollary 4.44.4, if a simple closed

geodesic lies in a cylinder, then it is nonseparating.

A cylinder C is said to be maximal if it is not properly contained in another cylinder. If a

closed translation surface has a cone point, then each geodesic that does not pass through a

cone point lies in a unique maximal cylinder.

Because the hyperelliptic involution τ reverses the orientation of isotopy classes of simple

curves, the map τ restricts to an orientation reversing isometry of each maximal cylinder C,

and thus it restricts to an orientation reversing isometry of the middle geodesic γ ⊂ C. In

particular, it contains two Weierstrass points.

Proposition 4.5. If γ is a nonseparating simple closed geodesic, then γ is homotopic to a unique
geodesic γ′ such that the restriction of τ to γ′ is an isometric involution of γ′.

Proof. If γ does not contain a cone point, then γ belongs to a maximal cylinder. If γ belongs

to a maximal cylinder C, then it is homotopic to the middle geodesic γ′ ⊂ C.

If γ does not belong to a cylinder, then γ is the unique geodesic in its homotopy class. Since

τ reverses the orientation of the homotopy classes of simple loops, it acts like an orientation

reversing isometry on γ.

Proposition 4.54.5 reduces the counting of homotopy classes of nonseparating systoles to a

count of nonseparating systoles that pass through exactly two Weierstrass points. In the

next two sections we analyse such geodesics.

5. Direct Weierstrass arcs

If γ is a simple closed geodesic on X that passes through two Weierstrass points, then the

projection p(γ) is an arc on X/〈τ〉 that joins one angle π cone point to another angle π
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cone point. We will call each such an arc a Weierstrass arc. Note that the p inverse image

of a Weierstrass arc is a geodesic and so we obtain a one-to-one correspondence between

homotopy classes of nonseparating simple geodesic loops on X and Weierstrass arcs on

X/〈τ〉. A Weierstrass arc that is the image of a systole will be called a systolic Weierstrass
arc.

The Weierstrass arcs come in two flavors. We will say that a Weierstrass arc is indirect if it

passes through the angle 4π cone point, and otherwise we will call it direct.

Lemma 5.1. There is at most one direct systolic Weierstrass arc joining two angle π cone points.

Proof. Suppose to the contrary that there exist two distinct direct systolic Weirestrass arcs

that both join the angle π cone point c to the angle π cone point c′ 6= c. These arcs

lift to closed systoles γ+ and γ− that interesect tranversally at two Weierstrass points

corresponding to c and c′. In particular, the Weierstrass points divide each geodesic into

two arcs. By concatenating a shorter22 arc of γ+ with a shorter arc of γ− we construct a

piecewise geodesic closed curve α that has length at most the systole. Since the angle

between the arcs is strictly between 0 and π, we can perturb α to obtain a shorter curve

whose length is strictly less than the systole. This contradicts the assumption that γ+ and

γ− are both systoles.

Proposition 5.2. If c is a cone point on X/〈τ〉 with angle π, then at most two direct systolic
Weierstrass arcs have an endpoint at c. Thus, there are at most six direct systolic Weierstrass arcs.

Proof. Suppose to the contrary that there exist three direct systolic Weierstrass arcs each

having c as an endpoint. Let θ1 ≤ θ2 ≤ θ3 denote the angles between the arcs at c. Since

c is an angle π cone point, we have θ1 + θ2 + θ3 = π. Label the arcs αi, i ∈ Z/3Z, so that

the angle between αi−1 and αi equals θi. By Lemma 5.15.1, the other endpoints of the αi are

all distinct. Label the other endpoint of αi with ci. Let c4 and c5 denote the two remaining

angle π cone points.

The lift, α̃i, of each αi to X is a non-separating direct simple closed geodesic on X. The

involution preserves G := α̃1 ∪ α̃2 ∪ α̃3 and hence the complement A := X − G. We have

χ(A) = χ(X) − χ(G) = 2− 2 = 0, and since A contains the fixed points c4 and c5, it

follows that A is connected and, moreover, is homeomorphic to an annulus.

Let γ be a shortest geodesic in X that represents the free homotopy class corresponding

to a generator of π1(A) ⊂ π1(X). Because θi < π and each α̃i is a geodesic, the geometric

2If the arcs have the same length, then choose either arc.
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intersection number of γ and each α̃i is zero. In particular, γ can not coincide with some α̃i

as the intersection number i(α̃i, α̃j) = 2 for i 6= j. Therefore, α̃i and γ are disjoint for each

i ∈ Z/3Z, and γ lies in A.

In the remainder of the proof, we will consider separately the two cases: (1) the closed

geodesic γ is direct and (2) γ passes through an angle 4π cone point.

γ is direct: If γ is direct, then it belongs to a maximal cylinder C. Without loss of generality,

γ is the middle geodesic of this cylinder. Since γ is nonseparating, τ preserves C and γ,

and in particular, the fixed points c4 and c5 lie on γ. To obtain the desired contradiction in

this case, it suffices to show that the length of γ is less than sys(X).

Each component of ∂C consists of a direct geodesic segment β± joining an angle 4π cone

point c∗± to itself. The geometric intersection number of β± and each α̃i equals zero, and

hence β± does not intersect any of the α̃i. Hence the complement A− C consists of two

topological annuli K+ and K− with β± ⊂ ∂K±. Because τ preserves each maximal cylinder

as well as A, we have τ(K±) = τ(K∓). Thus, we will now limit our attention to only one of

the two annuli, K := K+. One boundary component of K is the direct geodesic segment

β := β+ joining an angle 4π cone point, c∗ := c∗+, to itself. The other boundary component,

β′, of K consists of three geodesic segments α1, α2, and α3 corresponding respectively to α̃1,

α̃2, and α̃3. Moreover, the interior angle between αi−1 and αi is equal to θi. See the left hand

side of Figure 1010.

c∗

β

θ1

θ2 θ3

α1

α2

α3

θ2 θ3

dev(α1)

dev(α2)

dev(α3)

Figure 10: On the left is the topological annulus K case when the closed geodesic γ is
direct. The right side shows the development of β′ = α1 ∪ α2 ∪ α3.

Since β and γ are parallel geodesics in the same cylinder C, it suffices to show that the
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length of β is less than sys(X). Since β is a direct geodesic segment, the length of β equals

the length of the holonomy vector associated to β. Since β and β′ are homotopic, their

holonomy vectors have the same length. Thus, it suffices to show that the length of the

holonomy vector associated to β′ is less than sys(X).

Since, by assumption, each α̃i is a systole, the length of β′ is b := 3 · sys(X). Let β′ : [0, b]→
∂± be a parameterization of β′ so that β′(0) = α3 ∩ α1 = β′(1). The development, β

′
,

consists of three line segments each of length sys(X) joined end to end with consecutive

angles θ2 and θ3. See the right hand side of Figure 1010.

Since 2π/3 ≤ θ2 + θ3 < π and the three sides of β
′

have the same length, an elementary

fact from Euclidean geometry applies to give that the distance between dev(β′(0)) and

dev(β′(1)) is less than sys(X). Thus the holonomy vector of β′ has length less than sys(X)

as desired.

γ is indirect: In the remainder of the proof we consider the case in which π1(A) is not

generated by a direct simple closed geodesic. In this case, the shortest geodesic γ that

generates π1(A) is unique in its homotopy class. In particular, since τ induces a nontrivial

automorphism of π1(A) ∼= Z, the isometry τ preserves γ and reverses its orientation. It

follows that γ is a union of two geodesic segments each joining the two 4π angle cone

points, and each segment contains as its midpoint one of the remaining two Weierstrass

points. Let σ+ denote the segment containing c4, and let σ− denote the segment containing

c5.

The complement of γ consists of two topological annuli K+ and K− that are isometric via τ.

We limit our attention to one of the annuli, K. One boundary component of K consists of

the geodesic segments α1, α2, and α3 with the interior angle between αi−1 and αi equal to θi.

The other boundary component consists of σ+ and σ−. See Figure 1111.

Let c∗+ and c∗− denote the angle 4π cone points. Let θ± denote the interior angle between σ+

and σ− at c∗±. Because τ interchanges the two components of A− γ, we have θ+ + θ− = 4π.

Since γ is not direct, there is no direct geodesic segment joining c4 and c5 inside K. Indeed,

if there were such a segment δ, then δ ∪ τ(δ) would be a direct simple closed geodesic that

generates π1(A) contradicting our assumption. It follows that θ± ≥ π.

We claim that θ1 < π/3. Indeed if not, then since θ1 + θ2 + θ3 = π and θ1 ≤ θ2 ≤ θ3 , we

would have θi = π/3 for each i and in particular, the holonomy of β = α̃1 ∪ α̃2 ∪ α̃3 would

be zero. Thus, since σ+ ∪ σ− is homotopic to β, the holonomy of σ+ ∪ σ− would be trivial.

Since σ± is a geodesic segment, the angle at c∗± would equal 2π and the lengths of σ= and

σ− would be equal. It would follow that the developing map would map K onto the an
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Figure 11: The topological annulus K.

equilateral triangle T having sidelengths sys(X). Moreover, dev(σ+) = dev(σ−) would

be a segment σ in the interior of T and the restriction of dev to K − (σ+ ∪ σ−) would be

injective. By elementary Euclidean geometry, the distance from each interior point of T to

the set of midpoints of the sides of T is less than sys(X)/2. In particular, it would follow

that there would be a direct geodesic segment in K joining the set {c4, c5} and {c1, c2, c3}
having length less than sys(X)/2. This would contradict the definition of sys(X).

Thus, in the remainder of the proof, we may assume that θ1 < π/3. Our next goal is the

show that this implies that there exists a direct geodesic joining v1 to one of the two 4π

cone points, c∗±.

Let V be the set of points x ∈ K such that there exists a direct geodesic segment in K joining

v1 to x. By lifting to X̃ and applying the developing map, the set V is mapped injectively

onto a subset of the Euclidean sector S of angle θ1. In particular, v1 is mapped to the vertex

v1 of S. The bounding rays of S contain the respective images, c1 and c3, of the points c1

and c3.

Let T be the convex hull of {v1, c1, c3} The set T is an isoceles triangle with |v1c1| =
sys(X)/2 = |v1c3|, and the angle ∠c1v1c3 is less than π/3. In particular, the side of T that

joins c1 and c3 has length less than sys(X)/2, and the distance from v1 to any other point of

T is at most sys(X)/2.

Let x∗ ∈ S−V be a point such that dist(x∗, v1) equals the distance between v1 and the

S−V. We claim that x∗ is the image of an angle 4π cone point, and hence that there exists

a direct geodesic joining v1 and this angle 4π cone point. See Figure 1212.

To verify the claim, we first note that x∗ lies in the interior of T. Indeed if it did not, then
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Figure 12: The point x∗ in the triangle T.

since the developing map is injective on V, the side of T that joins c1 to c3 would be the

image of a direct geodesic segment joining c1 and c3 having length less than sys(X)/2. This

would contradict the definition of sys(X).

Because θ1 ≤ θ2 ≤ θ3, the distance between v1 and α̃2 is at least sys(X)/2, and hence the

point x∗ can not belong to dev(α̃i). Thus, x∗ is the image of a point in σ+ or σ−. Thus, it

suffices to show that x∗ is not the image of an interior point of σ±.

Suppose to the contrary that x∗ were the image of an interior point. Then dev(σ±) would

be perpendicular to the segment joining v1 and x∗, and hence parallel to the side of T
that opposes v1. The segment dev(σ±) does not intersect either dev(α̃1) or dev(α̃3), and

hence the midpoint of dev(σ±) would lie in T. The segment joining the midpoint and v1

corresponds to a direct geodesic segment joining v1 to either c4 or c5. Since this segment

has length less than sys(X)/2, we would obtain a contradiction.

Thus, x∗ is the image of either c∗− or c∗+. By relabeling if necessary, we may assume that

dev(c∗+) = x∗. Let δ denote the direct geodesic joining v1 and c∗−.

Let P denote the metric completion of X− δ. The space P is a topological disk bounded by

seven geodesic segments. In particular, we have two vertices, p±, corresponding to c∗+, one

vertex, q, corresponding to c∗−, two vertices, v±, corresponding to v1, as well as vertices v2

and v3.

We claim that the developing map dev : P→ C is an injection. To see this, let x, x′ ∈ P, and
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Figure 13: The polygon P.

let η be the unique geodesic in P joining x and x′. To prove the claim it suffices to show

that the endpoints of dev ◦ η are distinct. If η is a direct geodesic segment, then dev ◦ η

is a single Euclidean line segment and so dev(x) 6= dev(x′). If η is not direct, then η is a

concatenation of a finite number direct geodesic segments, γ1, . . . , γn, such that γi ∩ γi+1 is

a vertex vi and the angle ψi between γi and γi+1 satisfies π ≤ ψ ≤ θv where θv is the angle

between boundary segments at v. Since the angles at v±, v2, and v3 are less than π, the

geodesic η can only pass through the vertices p+, p−, or q. Since η is minimal, each of these

vertices can appear at most once. Since the angles θp± and θq are strictly less than 2π, we

have π ≤ ψi < 2π. Since the angle at c∗ is 4π, the sum θp+ + θp− + θq = 4π. It follows that

if η passes through two vertices, then ψ1 + ψ2 < 3π and if η passes through three vertices,

then ψ1 + ψ2 + ψ3 < 4π. An elementary Euclidean geometry argument shows that dev ◦ γ

has distinct endpoints. Thus the claim holds.

In what follows, we will identify the polygon P with its image in C. See Figure 1313.

Our next goal is to show that the minimal geodesic joining c3 to c5 is direct. Towards

proving this, we first show that that the shortest geodesic γ1 joining c1 to p+ is direct. To do

this, we refer to the triangle T described in Figure 1212. The point p+ corresponds to x∗ = c∗+,

and so if the shortest geodesic joining c4 and p+ were not direct, then the shortest geodesic

in X joining c1 to would also pass through c∗−. Hence c∗− would also belong to the triangle

T described above, and so either the image of σ+ or the image of σ− would lie in T. But

then the midpoint c4 of σ+ or the midpoint c5 of σ− would belong to T. Hence |v1c4| or

|v1c5| would be less than sys(X)/2, a contradiction. (A similar argument shows that the

shortest geodesic from c3 to p+ is direct.)
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Figure 14: The segment that joins c3 to c5 belongs to P.

Because x∗ belongs to the interior of T, we have ∠v1c1x∗ < ∠v1c1c3. Since T is isoceles, we

have 2∠v1c1c3 + θ = π. Thus, it follows that

∠ v+ c1 p+ <
π − θ

2
. (5)

(A similar argument shows that ∠ v−c3 p− < (π − θ)/2.)

We now prove that the minimal geodesic joining c3 to c5 is direct. Let `1 be the line parallel

to p+p− that passes through c3, and let `2 be the line `′2 parallel to v−v3 and passing through

v+. Since θ2 < π/2, the points v2 and v3 lie in distinct components of C− `2. Because p−
lies in the component of C− `′2 that contains v2 and p+p− is a translate of v+v−, the point

p+ lies in the component H2 of C− `2 that contains v2. See Figure 1414.

Let x be the point of intersection of `1 and `2, and let `3 be the line passing through c1 and

x. Since |v+x| = |v−c3| = sys(X)/2 = |v+c1|, the triangle 4c1xv+ is isoceles. Moreover,

∠c1v+x = θ1, and so ∠v+c1x = (π − θ)/2. Therefore, if follows from (55) that p+ lies in the

component H3 of C− `3 that lies

Because θ2 ≤ θ3 and θ2 + θ3 < π, the intersection H2 ∩ H3 lies in the component H1 of

C− `1 that contains v+. Thus, p+ ∈ H1 and since p+p− is parallel to `1, we have that

p− ∈ H1. Hence, the angle ∠c3 p−p+ is less than π. Therefore, because the interior angle θ−
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Figure 15: The segment that joins c1 to c4 belongs to P.

at q is greater than π, we find that the angle ∠c3 p−q < π. It follows that there is a direct

segment from c3 to c5 as desired.

Our next goal is to show that the shortest geodesic that joins c1 to c4 is direct. Let `1 be the

line passing through c1 that is parallel to v+v−. Let H1 be the the component C− `1 that

contains v+. If the point p+ ∈ H1, then since p+p− is parallel to ell1 and the angle θ− < π,

it follows that the minimal geodesic joining c1 to c4 is direct.

Suppose that p+ belongs to C− H1. Then then since p−p+ is parallel to `1 = ∂(C− H1),

the point p− also belongs to C− H1. Moreover, since the angle θ− at q is larger than π, we

also have c5 ∈ C− H1.

Let `2 be the line through v− that is parallel to v+p+, and let x be the intersection point of

`1 and `2. Let `3 be the line that passes through x and c3. The triangle4xc3v− is isoceles,

and in particular, ∠xc3v− equals (π− θ)/2. The argument analogous to that used to derive

(55) gives the inequality ∠p−c3v− < (π − θ)/2. Therefore, p− lies in the component H3 of

C− `3 that contains v−.
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If we let `′3 denote the line parallel to `3 that passes through c1, then, since p+p− is a

translate of c1x, the point p+ lies in the component H′3 of C− `′3 that contains v−. Thus, to

prove that there is a direct segment from c1 to c4, it suffices to show that q lies in C− H3 for

then ∠c1 p+c4 < π.

Let m be the midpoint of c1x, and let `′′3 be the line parallel to `3 that passes through m. To

show that q ∈ C− H′3, it suffices to show that c5 lies in the closure of the component H′′3 of

C− `′′3 that contains v2. Indeed, c5 is the midpoint of p−q and we know that p− lies in H3.

Since there is a direct segment joining c5 to c3, the point c5 lies outside the ball B of

radius sys(X)/2 with center at c3. We also know that c5 lies in Q, the convex hull of

{v+, v2, v3, v−} and that c5 belongs to C− H1. An elementary geometric argument shows

that (Q− B) ∩ (C− H1) lies in H′′3 . Thus, c5 ∈ H′′3 and there exists a direct segment joining

c1 to c4 as desired.

Given that there are direct segments between c1 and c4 and between c3 c5, we derive a

contradiction and thus complete the proof as follows.

Let `+ be the line that passes through v= and c4, let `− denote the line that passes through

v− and c5, and let x be the intersection of `+ and `−. See Figure 1616. An elementary argument

shows that the point c4 is the midpoint of v+x. Since c1 is the midpoint of v+v2, we have

|xv2| = 2 · |c1c4|. Since the geodesic from c1 to c4 is direct, we have |c1c4| ≥ sys(X)/2 and

hence |xv2| ≥ sys(X)/2. Similarly, since the geodesic from c3 to c5 is direct, we find that

|xv3| ≥ sys(X).

In other words, if we let B+ (resp. B−) be the ball of radius sys(X) about v2 (resp. v3), then

x lies outside B+ ∪ B−. Note that {v+, v2, v3, v−} belongs to B+ ∪ B−. It follows that P is

contained in the convex hull of B+ ∪ B−.

Let y : C → R denote the real linear 1-form such that |y(z)| is the distance from z to the

line `23 that joins v2 to v3 and such that y(v1) > 0. Because θ2 ≤ θ3 < π, we also have

y(v−) > 0. It follows that y(z) ≥ 0 for each z ∈ P.

Note that that y(x) < y(q). Indeed, since ∠c1v+p+ < θ1 and θ1 + θ2 < π, it follows that

y(v+) > y(p+). The segment xq is the reflection of v+p+ about the point c4, and hence

y(x) < y(q).

Let `23 be the line passing through v2 and v3, and let x′ be the intersection point of `23 and

the line passing through x and q. The point x′ lies in the line segment v2v3. Indeed, because

θ2 + θ3 < π, line through v+ and v2 and the line through v− and v3 intersect at a unique

point z, and moreover, the polygon P lies in the convex hull T′ of {z, v2, v3}. Because p−v−
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Figure 16: The distances |xv2| and |xv3| are at least sys(X).
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and p+v+ are parallel, p+ and p− lie in T′, and v+ lies in zv2 and v− lies in zv3, any line

parallel to p+v+ that intersects T′ must intersect `23 at a point in the segment v2v3. In

particular, the point x′ lies in v2v3.

We claim that y(x) > 0. Indeed, suppose not. Then x′ would lie in the segment xq. Thus,

|x′x| ≤ |xq| = |v±p±| ≤ sys(X)/2, and hence x would belong to the set, A, of points whose

distance from v2v3 is at most sys(X)/2. Elementary geometry shows that A ⊂ B ∪ B+, but

x lies in the complement of B− ∪ B+, a contradiction.

Let Q be the convex hull of {v+, v2, v3, v−}. We have P ⊂ Q and hence q ∈ Q. Since

0 < y(x) < y(q) and the line through x and q meets `23 = ker(y) at x′ ∈ v2v3, the point

x also belongs to Q. The set Q is contained in the convex hull of B+ ∪ B−. Therefore, x
lies inside the convex hull of B+ ∪ B− and outside B+ ∪ B−. Since x′ ∈ v2v3 it follows that

π/4 ≤ ∠v2x′x ≤ 3π/4, and, therefore, since y(q) > y(x), we find that q is also outside

B+ ∪ B−.

Since x and q both lies inside the convex hull of B+ ∪ B− but outside B+ ∪ B−, we have

y(q)− y(x) < (1−
√

3/2) · sys(X). Since π/4 ≤ ∠v2x′x ≤ 3π/4, we have |xq| ≤
√

2 ·
|y(q)− y(x)| and hence

|v±p±| ≤
√

2 ·
(

1−
√

3
2

)
· sys(X) <

sys(X)

4
. (6)

Let `p be the line through p+ and p− and let `v be the line through v+ and v−. Let `± denote

the line passing through v± and p±. Because the interior angle θ− at q ∈ P is greater than

π, the point q lies in the component of C− `p that contains the segment v2v3, and hence q
lies in the component of C− `v that contains v2v3. Since q lies outside B+ ∪ B−, it follows

that q lies in the bounded component of C− (`23 ∪ `v ∪ `+ ∪ `−).

Let `q be the line through q that it parallel to `v. Let A be the parallelogram that is the

bounded component of C− (`q ∪ `v ∪ `+ ∪ `−). Let b± be the intersection of `± and q. Then

A is the convex hull of {b+, b−, v+, v−}. Because q lies in the component of C− `p that

contains x2x3, the point p± lies in v±b±.

The line m through x and q is parallel to the sides corresponding to `+ and `−. Let x′′ be

the intersection of m with the side v+v− of A corresponding to `v. Since v± ∈ B+ ∪ B−, the

point x′′ lies in the convex hull of B+ ∪ B−. By applying the argument that led to (66) to this

situation, we find that |x′′q| < sys(X)/4.

We have |bb′| = |vv′| < sys(X) and hence either |b+q| < sys(X)/2 or |b−q| < sys(X)/2.

Suppose that |b+q| < sys(X)/4. The midpoint, c4, of p+q lies in A. Let a+ be the point of
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intersection of `+ and the line through c4 that is parallel to `q. Then a+ lies in the segment

p+b+.

By the triangle inequality, we have

|v+p+|+ |p+c4| ≤ |v+a+| + |a+c4| <
sys(X)

4
+

sys(X)

4
=

sys(X)

2

But v+ and c4 are both Weierstrass points, and hence we would have a curve of length less

than sys(X)/2. A similar contradiction is obtained in the case when |b−q| < sys(X)/2.

The following is immediate.

Corollary 5.3. There are at most six homotopy classes of nonseparating systoles.

6. Indirect Weierstrass arcs

The angle 4π cone point c∗ divides each systolic indirect Weierstrass arc into two subarcs.

We will call each such subarc a prong. The prongs cut a radius ε circle about c∗ into disjoint

arcs. Two prongs are said to be adjacent if they are joined by one of these arcs, and the angle
between two adjacent arcs is 2π · ε divided by the length of the arc that joins them.

If a systolic indirect Weierstrass arc is the union of two adjacent prongs then the angle

between the two prongs must be at least π. Indeed, otherwise one can shorten the arc by

perturbing it near c∗.

If the length of the shortest prong is `, then the other prongs have length sys(X)/2− `.

Thus, all but at most one of the prongs have the same length. If all of the prongs have the

same length, then each pair of adjacent prongs determines a systolic Weierstrass arc. Since

the angle between each adjacent pair is at least π and c∗ has total angle 4π, there are at

most four adjacent pairs and if there are exactly four pairs, then each angle equals π. In

sum, we have

Proposition 6.1. If all of the prongs have the same length, then the number of prongs is at most
four and the angle between each pair of adjacent prongs is exactly π.

We will show below that if one of the prongs is shorter than the the others then there are at

most five prongs. To do this we will use the following lemma.

Lemma 6.2. Two distinct prongs can not end at the same angle π cone point, c′.

Proof. Suppose not. Then the concatenation, α, of the two prongs would be a closed curve

that divides the sphere X/〈τ〉 into two discs. Since there are five other cone points, one of
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the discs, D, would contain at most two cone points. There are no Euclidean bigons and so

D would have to contain at least one cone point.

If D were to contain two angle π cone points, then α would be homotopic to the concate-

nation of the two oriented minimal arcs joining the two cone points. The length of the

unoriented minimal arc is at least sys(X)/2, and hence, since the length of each prong is

less than sys(X)/2, we would have a contradiction.

If D were to contain one angle π cone point c, then α would be homotopic to the the

concatenation of the two oriented minimal arcs joining c and c′. We would then arrive at a

contradiction as in the case of two cone points.

Since there are exactly six Weierstrass points, Lemma 6.26.2 implies that there are at most five

prongs. In fact, we have the following.

Proposition 6.3. There are at most five prongs.

Proof. Suppose to the contrary that there are six prongs. Let e1 denote the unique shortest

prong, let ` be its length, and let c1 denote its endpoint. Let e1, . . . , e6 be a cyclic ordering of

the remaining prongs, let L = sys(X)/2− ` denote their common length, and let c2, . . . , c6

denote their respective endpoints.

Since `(e1 + e2) = sys(X)/2 = `(e1 + e6), the angles ∠c1c∗c2 and ∠c1c∗c2 are each at

least π. (Otherwise, by perturbation near the 4π cone point we could construct a direct

Weierstrass arc with length less than sys(X)/2.) Each of the other four angles between

adjacent prongs is greater than π/3. Indeed, otherwise, since L < sys(X)/2, we would

have a segment joining two angle π cone points having length less than sys(X)/2 which

contradicts the definition of systole. Since ∠c1c∗c2 + ∠c1c∗c6 ≥ 2π it follows that each

of these four angles is less than π. Moreover, since the angle at c∗ equals 4π, the sum

∠c1c∗c2 +∠c1c∗c6 < 8π/3 < 3π and individually ∠c1c∗c2 < 5π/3 and ∠c1c∗c6 < 5π/3.

By cutting along the prongs and taking the length space completion, we obtain a closed

topological disc D whose boundary consists of a topological disc bounded by six geodesic

segments. The midpoint of each segment corresponds to an end point of a prong. The

developing map provides an immersion of D into the Euclidean plane. Since ∠ckc∗ck+1 +

∠c1c∗c2 < 3π and ∠cic∗ci+1 < π for i = 2, . . . , 5, this immersion is an embedding. In other

words, we may regard D as Euclidean hexagon.

Let vi donote the vertex of D corresponding to c∗ that lies between ci−1 and ci. The length of

the side v1v2 is 2`, and the common length of the other sides is 2L. From above, the interior
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angles at v1 and v6 are between π and 5π/3, and the angles at the other four vertices lie

between π/3 and π. Without loss of generality, c1 = (0, 0), v1 = (`, 0), v6 = (−`, 0) and an

H-neighborhood of c1 lies in the upper half plane (see Figure ????).

v1
v2

v3
v4

v5
v6

Figure 17: The points vi, i = 1, . . . , 6

Since the angle at v2 (resp. v5) is greater than π/3, and the edges v1v2 and v2v3 (resp.v4v5

and v5v6) have length 2L, the vertex v3 (resp. v4) lies outside the ball of radius 2L centered

at v1 (resp. v6). It follows that if both v4 and v3 both lie in the lower half plane then the

shortest arc in H that joins v4 to v3 has distance at least 2L+ 2`. This contradicts the equality

|v3v4| = 2L.

Since the angle at v1 (resp. v6) is at least π and the angle at v2 (resp. v5) is greater

than π/3, if v3 (resp. v4) lies in the upper half plane, then v3 (resp. v4) lies in the half

plane V+ = {(x1, x2) | x1 > ` + L} (resp. V− = {(x1, x2) | x1 < −` − L}). Since the

distance between U+ and U− equals 2L + 2`, if v3 and v4 both lie in U, then we contradict

|v3v4| = 2L.

If v3 lies in the upper half plane and that v4 lies in the lower half plane but not in U−, then

v4 lies in the half plane that is bounded by the line trough v3 and v6 and contains v1. In

particular, the shortest path in D between v3 and v4 passes through v6. But the distance

from v6 to U+ is equal to 2L + `, and the distance form v6 to v4 is greater than 2L. Thus, we

contradict |v3v4| = 2L.

A symmetric argument rules out the remaining case in which the rôles of v3 and v4 are

reversed.

Theorem 6.4. There are at most six systolic indirect Weierstrass arcs. Equality occurs if and only
if the angle 4π cone point bisects each arc.

Proof. If the prongs are not all of the same length, then one prong has length less than

sys(X)/4 and hence the others have length greater than sys(X)/4. Therefore, concatena-

tions of none of the others constitute a systolic Weierstrass arcs. By Proposition 6.36.3, there

31



are at most five prongs and hence at most five systolic indirect Weierstrass arcs.

If the prongs all have the same length—namely sys(X)/4—then by Proposition 6.16.1 there

are at n ≤ 4 prongs. Each concatentation of a pair prongs constitutes a systolic Weierstrass

arc, and so there are exactly n · (n− 1)/2 prongs and hence at most six.

7. A separating systole

In this section we wish to prove the following:

Theorem 7.1. If X has a separating systole, then X has at most nine homotopy classes of closed
curves with systolic representatives.

We first observe the following.

Lemma 7.2. X has at most one separating systole.

Proof. The angle of intersection between two systoles must be at least π for otherwise

one could construct a shorter curve in the same homotopy class. Thus any two systoles

must intersection occurs at an angle 4π cone point. But there are only two angle 4π cone

points.

Lemma 7.3. If α is a separating systole, and γ is direct systolic Weierstrass arc, then p(α)∩ γ = ∅.

Proof. Suppose not. The lift, γ̃, of γ to X is a systole that does not pass through an angle

4π cone point. Since α is separating, the curve γ̃ intesersects α at least twice. Let p− and

p+ be two of the intersection points. The points p+ and p− divides α (resp. γ̃) into a pair

of arcs. One of the arcs, α− (resp. γ̃−), has length at most sys(X)/2. By concatenating α−

and γ̃−, we obtain a non null homotopic closed curve β of length at most sys(X). Since

each intersection point is not a cone point and the geodesics are distinct, the angle at each

intersection point γ̃− is less than π. Thus, a perturbation of β near an intersection point

produces a curve homotopic to β that has shorter length, a contradiction.

Lemma 7.4. If X has a separating systole α, then each prong has length equal to sys(X)/4.
Moreover, the angle between p(α) and each prong is at least π.

Proof. If not, then by the discussion at the beginning of §66, there would exist a prong of

length strictly less than sys(X)/4. The preimage of a prong under p is an arc γ of length

sys(X)/2 that joins one angle 4π cone point c∗− to the other angle 4π cone point c∗+. By

Corollary 4.44.4, the separating systole α passes through both c∗− and c∗+, and the complement
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α \ {c∗−, c∗+} consists of two arcs α+ and α− each of length sys(X)/2. By concatenating α±

with γ we would obtain a non-null homotopic closed curve having length less than sys(X),

a contradiction.

If the angle between the prong and p(α) were less than π, then one could perturb the

concatenation of α± and γ to obtain a non-null homotopic closed curve whose length

would be less than sys(X)/2, a contradiction.

Proof of Theorem 7.17.1. Let α denote the separating systole to X/〈τ〉 which is unique by

Lemma 7.27.2. By Lemma 7.47.4, each prong has length equal to sys(X)/4 and the angle between

p(α) and each prong is at least π. Thus, since the total angle at c∗ is 4π, there are at most

two prongs. Hence there are at most two indirect systolic Weierstrass arcs.

By Proposition 5.25.2, there are at most six direct systolic Weierstrass arcs. Thus, by Proposition

4.54.5 and the discussion at the beginning of §55, there are at most eight homotopy classes

of non-separating closed curves that have systolic representatives. Since α is the unique

separating systole, the claim is proven.

8. Crossing systoles

In this section we prove the following:

Theorem 8.1. If X/〈τ〉 has four prongs of equal length, then X has at most ten homotopy classes
of closed curves that are represented by systoles. Moreover, if X has ten homotopy classes of systoles,
then X is homothetic to the surface described in Figure 11, and otherwise X has at most eight
homotopy classes of systoles.

Proof. By Lemma 7.47.4, the surface X has no separating systole. By Theorem 6.46.4, there are

exactly six indirect systolic Weierstrass arcs. Thus, by Proposition 4.54.5 and the discussion at

the beginning of §55, it suffices to show that there are at most four direct systolic Weierstrass

arcs.

By Proposition 6.16.1, the angle between adjacent prongs equals π. Thus, by cutting along the

four prongs we obtain a topological disc D bounded by a geodesic β with no corners. The

geodesic β has length 8 · (sys(X)/4) = 2 · sys(X) and contains one point corresponding

to each of the angle 4π cone points that are endpoints of the four prongs. Label those

cone points in cyclic order c1, c2, c3, and c4. For each i, there is a unique point c∗i on β lying

between ci and ci+1 that corresponds to c∗. The distances satisfy dist(ci, c∗i ) = sys(X)/4 =

dist(c∗i , ci+1). The interior angle at each ci, c∗i is π.
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The two remaining angle π cone points, c5 and c6, lie in the interior of the disc D. Because

β is a geodesic (without corners), the disk in geodesically convex, and there exists a direct

Weierstrass arc γ joining c5 and c6. By cutting along γ we obtain a topological annulus

A with geodesic boundary components β and β′. Since X is a translation surface, A is

a Euclidean cylinder isometric to [0, h]× (R/` ·Z) where ` = 2 · sys(X) is the common

length of β and β′.

The length of γ equals (1/2) · `, and hence γ is not systolic. The distance between c5 (resp.

c6) and {c1, c2, c3, c4} is at least sys(X)/2. It follows that the height h of the cylinder A is at

least (
√

3/4) · sys(X). As a consequence, there does not exist a direct systolic Weierstrass

arc joining two distinct points in {c1, c2, c3, c4}.

In sum, if δ is a direct systolic Weierstrass arc, then δ joins a point in {c5, c6} to a point in

{c1, c2, c3, c4}. Since A is a Euclidean annulus, there are at most two direct systolic Weier-

strass arcs joining c5 (resp. c6) to {c1, c2, c3, c4}, and hence at most ten systolic Weierstrass

arcs in total.

Moreover, since the points {c1, c2, c3, c4} are evenly spaced around β and {c1, c2} are evenly

spaced about β′, there are exactly four systolic arcs only if the respective shortest segments,

σ− and σ6, joining c5 and c6 to β bisect arcs joining successive points in {c1, c2, c3, c4}, that

is, only if σ− and σ6 have endpoints in {c∗1 , c∗2 , c∗3 , c∗4}. In this case, h = (
√

3/4) · sys(X). It

follows that X is homothetic to the surface described in Figure 11.

Finally, if there is only one direct systolic Weierstrass arc joining c5 (resp. c6) to {c1, c2, c3, c4},
then there is only one direct systolic Weierstrass arc joining c6 (resp. c5). Hence, if X is not

homothetic to the surface described in Figure 11, then X has at most eight homotopy classes

of simple closed curves with systolic representatives.

9. One short prong

In this section we prove the following:

Theorem 9.1. If X/〈τ〉 has one short prong, then X has at most nine homotopy classes of closed
curves that are represented by sytoles.

Proof. By Lemma 7.47.4, the surface X has no separating systole. By Proposition 6.36.3, there

are at most five prongs, and so by assumption there is one prong of length ` < sys(X)/4

and four prongs of length L = sys(X)/2− `. Thus, there are at most four indirect systolic

Weierstrass arcs. Thus, it suffices to show that X has at most five direct systolic Weierstrass

arcs.
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By cutting X/〈τ〉 along the five prongs, we obtain a topological disc D with one angle

π cone point in the interior. The boundary consists of five geodesic arcs each of whose

endpoints—vertices—corresponds to the angle 4π cone point. The midpoint of each arc

corresponds to an angle π cone point on X/〈τ〉. Choose an orientation of the boundary,

and let c∗1 and c∗2 denote the endpoints of the oriented arc that corresponding to the short

prong. Label the other vertices c∗3 , c∗4 , and c∗5 according to the orientation. Denote by ci, the

midpoint of the arc with endpoints c∗i and c∗i+1. There remains one angle π cone point, c6,

that belongs to the interior of D.

By Lemma 5.25.2, for each angle π cone point ci, there are at most two direct systolic Weier-

strass arcs ending at ci. Thus, to prove the claim, it suffices to show that c1 is the endpoint

of at most one direct systolic Weierstrass arc. We will show that if c1 is the endpoint of a

direct systolic Weierstrass arc, then the other endpoint must be c6.

Since systolic Weirstrass arcs can not intersect except at a cone point, a direct Weierstrass arc

joing c1 to another angle π cone point can not pass through the boundary of D. In particular,

if α is a direct Weierstrass arc joining c1 to either c2, c3, c4, or c5, then the complement of α

consists of two disks, one that contains c6 and one that does not.

Suppose that α is a direct geodesic segment that joins c1 and c2. Consider the component,

D′, of D \ α, containing c∗1 . If D′ does not contains c6, then D′ is a flat surface bounded by

three geodesic segments. Since the angle at c∗1 is at least π, the Gauss-Bonet formula implies

that the angles at c1 and c2 are both zero, and hence α is not direct.

If D′ contains c6, then by cutting D′ along the geodesic segment joining c6 and c∗1 we obtain

a quarilateral Q with a side corresponding to α. The endpoints of α correspond to c1 and c2.

Let x− and x+ denote the vertices of Q distinguished by |x−c1| = ` and |x+c2| = L. If α is

systolic, then, by the triangle inequality, |c1x+| ≤ L + sys(X)/2 with equality if and only if

c1, c2 and x+ are colinear. The midpoint of x−x+ is c6, and thus by the triangle inequality

|c1c6| ≤
|c1x−|

2
+
|c1x+|

2
≤ `+ L =

sys(X)

2
with equality c1, c6, and c2 are colinear. Thus, either |c1c6| < sys(X)/2 or |c2c6| < sys(X)/2,

a contradiction. Therefore, there is no direct systolic Weierstrass arc joining c1 and c2.

Similarly, there is no direct systolic Weierstrass arc joining c1 and c5.

Suppose that α is a direct geodesic segment that joins c1 to c3. Let D′ denote the component

of X \ α that contains c2. If D′ does not contain c6, then D′ is a quadrilateral with vetices

c1, c∗1 , c∗2 , and c3. Since |c2c∗2 | = L = |c∗2c3|, the angle ∠c3c2c∗2 is less than π/2, and thus

∠c∗1c2c3 > π/2. Therefore |c∗1c3| > |c2c3| ≥ sys(X)/2. Because |c∗1c∗2 | = 2L and |c∗2c3| = L,

the angle 〈c2c∗1c3 is acute. Thus, since the interior angle at c∗1 is at least π, the angle ∠c1c∗1c3
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greater than π. In particular, |c1c3| > |c∗1c3|, and so, in sum, the length of α is greater than

sys(X)/2.

If D′ contains c6, then the other component of D \ α, is a pentagon with vertices c1, c3, c∗3 ,

c∗4 , and c∗5 . Using the triangle inequality, we have

L + |c3c∗5 | ≥ |c3c∗3 |+ |c∗3c∗5 | ≥ |c∗3c∗5 | = 2|c4c5| ≥ sys(X) = 2`+ 2L,

and therefore |c3c∗5 | ≥ 2` + L > ` + L = sys(X)/2. Since |c∗3c∗5 | ≥ sys(X) > 2L =

|c∗3c∗4 | = |c∗4c∗3 |, the angle ∠c∗3c∗5c3 is less than π/3. Because |c∗3c∗5 | > 2L = |c∗3c3|, we have

∠c∗3c∗5c3 < π/6. Thus, since the interior angle at c∗5 is at least π, the angle ∠c1c∗5c3 is greater

than π/2. Therefore, |c1c3| > |c3c∗5 |. In sum, |c1c3| > sys(X)/2, and hence α is not systolic.

Therefore, there is no direct systolic Weierstrass arc joining c1 to c3. A similar argument

shows that there is no direct systolic Weierstrass arc joining c1 to c4.
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