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mod p Hecke algebras

Sk(N, &; C) space of modular forms f(z) = .;a,q" (q = €™*) of
level N > 1, weight k > 2 and Dirichlet character € : (Z/NZ)* — C*.
Moreover assume ag = 0.
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mod p Hecke algebras

Sk(N; C) space of cusp forms

Endc(Sk(N; C)) D Tk(N) finite-dimensional commutative Z-algebra
Sk(N;Fy) == Sk(N; Z) @7 Fy

T := Tx(N) ® Fy finite-dimensional commutative [F,-algebra

T ~I1,, T, where Ty, localisation of T at a maximal ideal m of T

Let us take f(z) =Y ,502,q" € Sk(N;F,) normalised Hecke
eigenform mod p

A :T—TF, T, 3,=a, mod p mys = ker \r
Tf:= Ty, assumem?=0

Tr = Fg[Xi, ..., Xm]/(XiXj)1<i j<m finite-dimensional local commutative
algebra, m = dimp ms
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Next we want to: attach a Galois representation to Tr.
Let f = ano a,q" € Sk(N;F,) given by \f : T — F,, T, — a,
Deligne, Shimura: We can attach to f a Galois representation
Br : Gal(Q/Q) — GLa(F,)
unramified outside Np and, for every ¢ Np:
tr(ps(Froby)) = Af(T¢) and det(p;(Frob,)) = 51
Let T¢ := Ty, as before, but without the operators T, with £ | Np.

Carayol: If p; is absolutely irreducible, then there exists a continuous
Galois representation

pr : Gal(Q/Q) — GLy(Ty)
unramified outside Np and, for every £t Np:
tr(ps(Froby)) = Ar(T;) and det(ps(Froby)) = ¢k~1

where \r : T — Ty. This representation is unique up to conjugation.
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GOAL: Compute the image of pr : Gal(Q/Q) — GLy(Ty).
Let D = Im(detop;) C
GLE(T¢) := {g € GLy(Ty) : det(g) € D}
GLE(F,) := {g € GLa(F,) : det(g) € D}
Assume that Tm(pf) € GLZ(T¥).
We have the following commutative diagram

Gal(@/Q) 5 GLE (Ty)

N,
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Image of pr
GOAL: Compute the image of pr : Gal(Q/Q) — GLy(Ty).
Let D = Im(detop;) C
GLE(T¢) := {g € GLy(Ty) : det(g) € D}
GLE(F,) := {g € GLy(F,) : det(g) € D}
Assume that Tm(pf) € GLZ(T¥).
We have the following commutative diagram
Gal(@/Q) 5 GLE (Ty)
x iﬂ
GLZ (Fy)
that gives us a short exact sequence:

1 — ker(r) — GLY(Tf) & GLY(F,) — 1
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Image of pr as a semi-direct product
Assumptions:

em2=0

e Im(p;) = GLZ(F,) The residual representation has big image

1 — ker(r) — GL2(Ty) 5 GLY(F,) — 1
ai+aymys by+bymy (31 bl)
a+oms di+doms a d

c+cms di+dams

Take g — (al+asz b1+b2mf) € GL2(Ty), with a;, by, c;, d; € F,. Then

g Eker(m) & g = (”"’me bamy ) and det(g) = 1+(ax+do)ms € D C .

oms  1+domy

Sg=1+ (asz bsz> and ay = —dy < ker(m) = 1 + M3(my)

Comy dsz

0 —  MjY(my) N GL2(T¢) 5 GQLI(F,) — 1
b
(Zme b)) = 1 (Zn )
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Image of pr as a semi-direct product
Let G :=Im(p;), and G := Im(ps). They fit in a short exact sequence:

0 — MY(ms) = GL(Tf) = GLYF,) — 1
T T |
H

0 — - G - GLY(F,) — 1

The first exact sequence splits, so GLY(Tr) ~ M3(my) x GL(F,).

Theorem 1. (A.) Assume g # 2,3,5. The second exact sequence is also
(non-trivially) split, so

G = Im(ps) ~ H x GL2(F,).
It is consequence of:
o HY(GLy (Wp),Fq) =0
o there is an injection H2(GLP(W,,), N) — H?(GL2(W,,), M)

N C M C ME(my) are F,[GL?(F,)]-submodules
W(F,) ring of Witt vectors of Fy and W, := W(F,)/p™
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m
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Explicit determination of Im(py)

We have
G ~ H x GLY(F,)
with H C M3(m¢) a submodule over F,[GLY(F,)].
Question: Which are the possible submodules H of M3(my)?
Tr >~ Fo[Xa,..., Xm]/(XiXj)1<ij<m and mf~F,&...®F,

MI(ms) ~ M3(Fy) @ ... @ M3(Fy) = M @ ... & M°
———

m m

Lemma 1 (one copy): If p # 2, MO is a simple module.
So the only possible submodules of M are (0) and M°.

Lemma 2 (several copies): If M is a simple module, any submodule
NCMa®...H M is isomorphic to some copies of M.
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If p=2: Tm(p) =~ (MI(Fy) @ ... M3(F,) @ G @ - @ G) x GLY(F,)
a B
t=q"-((g—1)2° +1),for0<a<m 0<3<d(m—a).

10 /17



Explicit determination of Im(py)

Theorem 1. (A.) Fq with g # 2,3,5.

(T, m) finite-dimensional local commutative Fg-algebra with T/m ~ F,.
Suppose that m? = 0.

p: Gal(Q/Q) — GLy(T) continuous representation such that

(a) Im(p) = GLY(F,), where 5 = p mod m and D := Im(det op)

(b) Im(p) € GLZ(T)

(c) T is generated as F4-algebra by the set of traces of p

Let m := dimp,m, and t = number of different traces in Im(p).

If p#2: Tm(p) =~ (M3(Fy) @ ... ® MS(F,)) x GLY(F,) and t = g™ 1.
If p=2: Tm(p) =~ (MI(Fy) @ ... M3(F,) @ G @ - @ G) x GLY(F,)
a B

t=q"-((g—1)2° +1), for 0 <a<m, 0<3<d(m—a). Moreover
Im(p) is determined uniquely by t up to isomorphism.
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How can we compute Im(pr) in concrete examples?

Fix a prime p, a level N > 1 coprime to p, and a weight k > 2.

With the function HeckeAlgebras ! implemented in Magma we obtain
every local mod p Hecke algebra T (up to Galois conjugacy) of level N

and weight k
T¢ = (T¢ Hecke operator | £ < Sturm bound, ¢{ Np).

Ut can be found in G. Wiese webpage http://math.uni.lu/ wiese/
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every local mod p Hecke algebra T (up to Galois conjugacy) of level N
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T¢ = (T¢ Hecke operator | £ < Sturm bound, ¢{ Np).

Example: p =2, N =133 and kK = 2. There are 3 such Hecke algebras.
For every Ty, let Fy := T¢/ms be its residue field. We check if the
residual image is Im(p;) = GLY(F,). If m2 # 0, we take Ty¢/m?2.

From the 3 Hecke algebras, only one satisfies Im(z;) = GLZ (F,).

— The field is Fy4
— D =1, so actually Im(p,) = SL>(Fg), and Im(pf) C SL»(Ty)
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How can we compute Im(pf) in concrete examples?

By Theorem 1: the number t of traces in G := Im(pr) determines G.

t = # different operators Ty, with ¢ < b bound

Since tr(pr(Froby)) = T, t = # different traces in G.  We have t < t.
bound = 1000.  We find t = 13

t=4%((4-1)22+1)=13

0 x 38,

1x12, (Y+a)x12 (X+Y+a)x10 (aX+aY +1)x13
ax10, (aY+2a%)x10 (X+2aY +a%)x7 (a°X+aY +a)x6
Z2x7, (PY+1)x13 (aX+Y+1)x16 (a®X+a%Y +a)x 11

where Fy = {0, 1, a, a%}.

It seems likely that t =t = 13. So, according to Theorem 1:

Im(pf) ~ (G @ Gy) x SLa(FF4) ~ SLa(F4[X, Y]/(X?, Y2, XY)).
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More examples in characteristic 2: m =1

1< N<1500, k=2,3

m:dimmqu/m%: 1
t=q% - ((q—1)2°+1), 0<a<land0<pB<d(l-a)

B
Fy2 0 ? 3 33 0T T ] 273
Lo a7[13 o [0 8 [ 1529 57

[T[16 ] -] - [T 64 ] - -
B

Fa 0 ! 2 3 z

[0 16 | 31 | 61 | 121 | 241

C T [25 | - | - - -

Table : Possible number of traces when m = 1.
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More examples in characteristic 2: m =1

1< N <1500, k=23
m = dimg,ms/m7 = 1
t=q* ((g—1)2°+1), 0<a<land0<pB<d(l-a)

Fp2 0 [13 Fy3 0 ! 4 2 3
o Lol 8 7 | 13 o LO 8 15 | 29 | 57
T (16 | - 1| 64 .
P 0 i % 3 | 4
o L0 16 31 | 61 | 121 | 241
T || 256 - - - B

Table : Possible number of traces when m = 1.
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More examples in characteristic 2: m =1

1< N <1500, k=23
m = dimg,ms/m7 = 1
t=q* ((g—1)2°+1), 0<a<land0<pB<d(l-a)

Fp2 0 [13 Fy3 0 ! 4 2 3
o Lol 8 7 | 13 o LO 8 15 | 29 | 57
T (16 | - 1| 64 .
P 0 i g 3 | 4
o L0 16 31 | 61 | 121 | 241
T || 256 - - - .

Table : Possible number of traces when m = 1.

This corresponds always to the group G ~ G, x SLy(Fy).
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t=q% ((g—1)2°+1), 0<a<2and0<B<d(?2-a)
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More examples in characteristic 2: m = 2

m = dim[pqu/m% =2
t=q" ((g-1)2" +1),

0<a<2and0<pB<dR2—a)

B
Fy 0 i 2 3 7
0 q 13| 25 | 49
o [T 16 | 28 | 52 | 100 | -
2 || 64 . = -
B
Fy3 0 T 2 3 Z 6
0 [ 15 29 57 | 113 | 225 | 449
a [T 64 | 120 | 232 | 456 - -
2 || 512 _ _ = _ _
]F4 ﬂ
2 0 1 2 3 7 5 6 7 8
0 16 31 61 121 241 | 481 | 916 | 1921 | 3841
a [T 256 | 496 | 976 | 1936 | 3856 Z - - »
2 || 4096 z - - - z - - -
Table :

. Possible number of traces when m = 2.
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More examples in characteristic 2: m = 2

m = dimg, ms/m? = 2
t=q" ((g—1)2° +1),

0<a<2and0<B<d(2—a)

B
Fz2 0 I 2 [ 3 7
0] 4 7 13 | 25 | 49
@ (1] 16| 28 | 52 | 100 | -
2 64 - - - -
B
Fas 0 I 2 | 3 Z 5 6
0] 8 15 29 | 57 | 113 | 225 | 449
o 64 | 120 | 232 | 456 | - - -
2 || 512 - - B - = _
F B
2 0 1 2 [ 3 4 5 6 7 8
16 | 31 | 61 | 121 | 241 | 481 | 916 | 1921 | 3841
o 256 | 496 | 976 | 1936 | 3856 | - - - -
4006 | - - - - - - - -

Table : Possible number of traces when m = 2.
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More examples in characteristic 2: m = 2
m = dimg,ms/m? = 2

t=g"-((g—1)2°+1), 0<a<2and0<B<d(2-a)

B
Fz2 0 I 2 | 3 2
offa] 7 13 | 25 | 49
o 16 | 28 | 52 | 100 | -
64 | - - - -
B
Fas 0 1 2 [ 3 [ 4 [ 5 6
o 8 15 29 | 57 | 113 | 225 | 449
o 64 | 120 | 232 | 456 | - - -
2 [ 512 - - - - - -
F B
Ll 0 1 2 [ 3 4 5 6 7 8
0 16 31 61 | 121 | 241 | 481 | 916 | 1921 | 3841
@ | 1| 256 | [496| | 976 | 1936 | 3856 | - - - -
2 [ 409 | - - - - - - - -

Table : Possible number of traces when m = 2.
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More examples in characteristic 2: m =3

m = diqumf/m% =3
t=q% ((¢—1)2° +1),

0<a<3and0<p<dB-a)

B
2 0 i 2 3 7 5 6
0 q 7 13 | 25 | 49 | 97 | 193
o | ][ 16 |28 | 52 | 100 | 196 B
2 64 | 112 | 208 | - E B .
3 (] 256 | - . n . . .
[E]
Fys 0 i 3 3 7 7 8 5
0 ] 15 29 57 | 113 | 225 | 449 | 897 | 1793 | 3585
o | I 6% | 120 | 232 | 456_| 904 | 1800 | 3592 | - . -
2 | 512 | 960 | 1856 | 3648 | - B s s -
3 | 4096 | - . . . - . . -
H“4 ﬁ
2 0 il 2 3 1 5 6 7 ]
0 16 31 61 121 241 781 961 1921 | 3841
T 256 796 976 1936 | 3856 | 7960 | 15376 | 30736 | 61456
@ [2 | 4096 | 7936 | 15616 | 30076 | 61696 s B . -
3 | 65536 - B . - B . . -
Table :

. Possible number of traces when m = 3.
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m = diqumf/m% =3
t=q% ((¢—1)2° +1),

More examples in characteristic 2: m =3

0<a<3and0<p<dB-a)

g
Fa2 0 T 2 3 ] 4 5] 6
o] 4 7 13 | 25 | 49 | 97 | 193
o | 1] 16 | 28 | 52 | 100 | 196 | - -
2 || 64 | 112 | 208 | - - - -
325 | - - - E - -
F B
2 0 I 2 3 | 4 5 6 7 8 9
0| 8 15 | 29 57 113 | 225 | 449 | 897 | 1793 | 3585
o [T 6 | 120 | 237 | 456 | 904 | 1800 | 3592 | - - -
2 | 512 | 960 | 1856 | 3648 - - - - - -
3 14096 | - - - - - - - - -
F B
2 0 I 2 3 [ 4 5 6 7 8
0| 16 31 61 121 241 | 481 | 961 | 1021 | 3841
o L[ 256 | 496 | O76 | 1036 | 3856 | 7969 | 15376 | 30736 | 61456
2 | 4096 | 7936 | 15616 | 30976 | 61696 | - - - B
3 | 65536 | - - - - - - - -
Table : Possible number of traces when m = 3.
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More examples in characteristic 2: m =3

m:diqumf/m%:3
t=q"((¢-1)2°+1), 0<a<3and0<B<d3-a)

]
Fa2 0 T 2 3 ] 4 5] 6
o 4 7 | 13 | 25 | 49 | o7 | 193
o | 1] 16 [ 28 | 52 | 100 | 196 | - | -
2 [ 64 | 112 | 208 | - - - -
3256 | - - - - - -
F B
2 0 I 2 3 | 4 5 6 7 8 9
8 15 29 57 | 113 | 225 | 449 | 897 | 1793 | 3585

0

1 64 120 232 456 904 1800 | 3592 - - -
2 512 960 1856 3648 - - B - - Z
3 [ 4096 - - - - - - N Z Z

0 1 2 3 4 5 6 7 8

16 31 61 121 241 481 961 1921 3841

0

1 256 496 976 1936 3856 7969 | 15376 | 30736 | 61456
2 4096 7936 | 15616 | 30976 | 61696 - - - -

3 | 65536 - - - - - - - Z

Table : Possible number of traces when m = 3.
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Conclusions

Conjecture. If dimg,ms/m? = 2, then
(C2 &3] C2) X SLQ(]Fq), or
n(pr) ~

(G Gd G) x SLy(Fy), or
(M(F,) & Go)  STa(F, ).
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Conclusions

Conjecture. If dimg,ms/m? = 2, then

(C2 (&) C2) X SLQ(]Fq), or
Im(pf) ~ (C2 DG Cg) X SL2(Fq), or
(M3(Fq) ® G2) » SLa(Fg).

Conjecture. If dimg, ms/m? = 3, then
(C2 G D Cg) X SLg(Fq), or
Im(pf) =~

(GD GG G) x SLy(Fy), or
(Mg(Fq) & G P G) x SLo(Fy).
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Application: existence of p-elementary abelian
extensions

Proposition. [F finite field of characteristic p # 2 with g > 7.

(T, mr) finite-dimensional local commutative Fg-algebra with residue
field T/mp ~ F, and m2 = 0.

m := dimp mr and t = #different traces in Im(p).

p: Gg — GLy(T) Galois representation unramified outside Np such that

(i) Tm(p) = GL2(F,), where 5 := Gy — GL2(F,) is the residual
representation and D = Im(det op).
(if) Tm(p) C GLE(T).
(iii) T is generated as F,-algebra by the set of traces of p.
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(T, mr) finite-dimensional local commutative Fg-algebra with residue
field T/mp ~ F, and m2 = 0.

m := dimp mr and t = #different traces in Im(p).

p: Gg — GLy(T) Galois representation unramified outside Np such that

(i) Im(p) = GLZ(F,), where 5 := Gy — GLZ(F,) is the residual
representation and D = Im(det op).
(if) Tm(p) C GLE(T).
(iii) T is generated as F,-algebra by the set of traces of p.

Then there are number fields L/K/Q with G = ker(p) and Gk = ker(p)
such that Gal(K/Q) = GLZ(F,) and

Gal(L/Q) = M3(Fy) @ ... @ M3(F,) xGal(K/Q),

m
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with Gal(K/Q) acting on Gal(L/K) by conjugation.
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Application: existence of p-elementary abelian
extensions

Proposition. F finite field of characteristic p # 2 with ¢ > 7.

(T, mr) finite-dimensional local commutative Fg-algebra with residue
field T/mp ~ F, and m2 = 0.

m := dimp mr and t = #different traces in Im(p).

p: Gg — GLy(T) Galois representation unramified outside Np such that

(i) Im(p) = GLZ(F,), where 5 := Gy — GLZ(F,) is the residual
representation and D = Im(det op).
(if) Tm(p) C GLE(T).
(iii) T is generated as F,-algebra by the set of traces of p.
Then there are number fields L/K/Q with G = ker(p) and Gk = ker(p)
such that Gal(K/Q) = GLZ(F,) and

Gal(L/Q) = M3(Fy) @ ... @ M3(F,) xGal(K/Q),

with Gal(K/Q) acting on Gal(L/K) by conjugation.
L/K is abelian of degree p3?™ unramified at all primes £ { pN, and cannot
be defined over Q.
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