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mod p Hecke algebras

EndC(Sk(N;C)) ⊃ Tk(N)

T := Tk(N)⊗ Fq finite-dimensional commutative Fq-algebra

T '
∏

m Tm, where Tm localisation of T at a maximal ideal m of T

λf : T→ Fq, Tn 7→ an = an mod p mf := ker λf

Tf := Tmf
assume m2

f = 0

Tf ' Fq[X1, . . . ,Xm]/(XiXj)1≤i,j≤m finite-dimensional local commutative
algebra, m = dimFqmf
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Galois representations

Next we want to: attach a Galois representation to Tf .

Let f =
∑

n≥0 anq
n ∈ Sk(N;Fq) given by λf : T→ Fq, Tn → an

Deligne, Shimura: We can attach to f a Galois representation

ρf : Gal(Q/Q)→ GL2(Fp)

unramified outside Np and, for every ` - Np:

tr(ρf (Frob`)) = λf (T`) and det(ρf (Frob`)) = `k−1

Let Tf := Tmf
as before, but without the operators T` with ` | Np.

Carayol: If ρf is absolutely irreducible, then there exists a continuous
Galois representation

ρf : Gal(Q/Q)→ GL2(Tf )

unramified outside Np and, for every ` - Np:

tr(ρf (Frob`)) = λf (T`) and det(ρf (Frob`)) = `k−1

where λf : T→ Tf . This representation is unique up to conjugation.
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Image of ρf

GOAL: Compute the image of ρf : Gal(Q/Q)→ GL2(Tf ).

Let D = Im(det ◦ρf ) ⊆ F×
q

GLD
2 (Tf ) := {g ∈ GL2(Tf ) : det(g) ∈ D}

GLD
2 (Fq) := {g ∈ GL2(Fq) : det(g) ∈ D}

Assume that Im(ρf ) ⊆ GLD
2 (Tf ).

We have the following commutative diagram

that gives us a short exact sequence:

1→ ker(π)→ GLD
2 (Tf )

π→ GLD
2 (Fq)→ 1
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Image of ρf as a semi-direct product

Assumptions:

• m2
f = 0

• Im(ρf ) = GLD
2 (Fq) The residual representation has big image

1 → ker(π) → GLD
2 (Tf )

π→ GLD
2 (Fq) → 1(

a1+a2mf b1+b2mf

c1+c2mf d1+d2mf

)
7→

(
a1 b1
c1 d1

)
Take g =

(
a1+a2mf b1+b2mf

c1+c2mf d1+d2mf

)
∈ GLD

2 (Tf ), with ai , bi , ci , di ∈ Fq. Then

g ∈ ker(π)⇔ g =
(

1+a2mf b2mf

c2mf 1+d2mf

)
and det(g) = 1+(a2+d2)mf ∈ D ⊆ F×

q .

⇔ g = 1 +
(

a2mf b2mf

c2mf d2mf

)
and a2 = −d2 ⇔ ker(π) = 1 + M0

2(mf )

0 → M0
2(mf )

ι→ GLD
2 (Tf )

π→ GLD
2 (Fq) → 1(

a2mf b2mf
c2mf −a2mf

)
7→ 1 +

(
a2mf b2mf
c2mf −a2mf

)
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Image of ρf as a semi-direct product

Let G := Im(ρf ), and G := Im(ρf ). They fit in a short exact sequence:

The first exact sequence splits, so GLD
2 (Tf ) ' M0

2(mf ) oGLD
2 (Fq).

Theorem 1. (A.) Assume q 6= 2, 3, 5. The second exact sequence is also
(non-trivially) split, so

G = Im(ρf ) ' H oGLD
2 (Fq).

It is consequence of:

• H1(GLD
n (Wm),Fq) = 0

• there is an injection H2(GLD
n (Wm),N) ↪→ H2(GLD

n (Wm),M)

N ⊆ M ⊆ M0
2 (mf ) are Fp[GLD

n (Fq)]-submodules
W (Fq) ring of Witt vectors of Fq and Wm := W (Fq)/pm
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Explicit determination of Im(ρf )

We have
G ' H oGLD

2 (Fq)

with H ⊆ M0
2(mf ) a submodule over Fp[GLD

2 (Fq)].

Question: Which are the possible submodules H of M0
2(mf ) ?

Tf ' Fq[X1, . . . ,Xm]/(XiXj)1≤i,j≤m and mf ' Fq ⊕ . . .⊕ Fq︸ ︷︷ ︸
m

M0
2(mf ) ' M0

2(Fq)⊕ . . .⊕M0
2(Fq)︸ ︷︷ ︸

m

= M0 ⊕ . . .⊕M0︸ ︷︷ ︸
m

Lemma 1 (one copy): If p 6= 2, M0 is a simple module.

So the only possible submodules of M0 are (0) and M0.

Lemma 2 (several copies): If M is a simple module, any submodule
N ⊆ M ⊕ . . .⊕M is isomorphic to some copies of M.
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Explicit determination of Im(ρf )

⇒ If p 6= 2: H ' M0 ⊕ . . .⊕M0︸ ︷︷ ︸
α

with 0 ≤ α ≤ m.
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Explicit determination of Im(ρf )

Theorem 1. (A.) Fq with q 6= 2, 3, 5.

(T,m) finite-dimensional local commutative Fq-algebra with T/m ' Fq.
Suppose that m2 = 0.
ρ : Gal(Q/Q)→ GL2(T) continuous representation such that

(a) Im(ρ) = GLD
2 (Fq), where ρ = ρ mod m and D := Im(det ◦ρ)

(b) Im(ρ) ⊆ GLD
2 (T)

(c) T is generated as Fq-algebra by the set of traces of ρ

Let m := dimFqm, and t = number of different traces in Im(ρ).

If p 6= 2: Im(ρ) ' (M0
2(Fq)⊕ . . .⊕M0

2(Fq)︸ ︷︷ ︸
m

) oGLD
2 (Fq) and t = qm+1.

If p = 2: Im(ρ) ' (M0
2(Fq)⊕ . . .⊕M0

2(Fq)︸ ︷︷ ︸
α

⊕C2 ⊕ · · · ⊕ C2︸ ︷︷ ︸
β

) oGLD
2 (Fq)

t = qα · ((q − 1)2β + 1), for 0 ≤ α ≤ m, 0 ≤ β ≤ d(m − α). Moreover
Im(ρ) is determined uniquely by t up to isomorphism.
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How can we compute Im(ρf ) in concrete examples?

Fix a prime p, a level N ≥ 1 coprime to p, and a weight k ≥ 2.

With the function HeckeAlgebras 1 implemented in Magma we obtain
every local mod p Hecke algebra Tf (up to Galois conjugacy) of level N
and weight k

Tf = 〈T` Hecke operator | ` ≤ Sturm bound, ` - Np〉.

Example: p = 2, N = 133 and k = 2. There are 3 such Hecke algebras.

For every Tf , let Fq := Tf /mf be its residue field. We check if the

residual image is Im(ρf ) = GLD
2 (Fq). If m2

f 6= 0, we take Tf /m
2
f .

From the 3 Hecke algebras, only one satisfies Im(ρf ) = GLD
2 (Fq).

− The field is F4

− D = 1, so actually Im(ρf ) = SL2(Fq), and Im(ρf ) ⊆ SL2(Tf )
− Tf /m

2
f ' F4[X ,Y ]/(X 2,Y 2,XY )

1It can be found in G. Wiese webpage http://math.uni.lu/ wiese/
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How can we compute Im(ρf ) in concrete examples?

By Theorem 1: the number t of traces in G := Im(ρf ) determines G .

t̃ = # different operators T`, with ` < b bound

Since tr(ρf (Frob`)) = T`, t̃ = # different traces in G . We have t̃ ≤ t.

bound = 1000. We find t̃ = 13

0× 38,
1× 12, (Y + a)× 12 (X + Y + a2)× 10 (aX + aY + 1)× 13
a× 10, (aY + a2)× 10 (X + a2Y + a2)× 7 (a2X + aY + a)× 6
a2 × 7, (a2Y + 1)× 13 (aX + Y + 1)× 16 (a2X + a2Y + a)× 11

where F4 = {0, 1, a, a2}.

It seems likely that t = t̃ = 13. So, according to Theorem 1:

Im(ρf ) ' (C2 ⊕ C2)× SL2(F4) ' SL2(F4[X ,Y ]/(X 2,Y 2,XY )).
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More examples in characteristic 2: m = 1

1 ≤ N ≤ 1500, k = 2, 3
m = dimFqmf /m

2
f = 1

t = qα · ((q − 1)2β + 1), 0 ≤ α ≤ 1 and 0 ≤ β ≤ d(1− α)

F22
β

0 1 2

α
0 4 7 13
1 16 - -

F23
β

0 1 2 3

α
0 8 15 29 57
1 64 - - -

F24
β

0 1 2 3 4

α
0 16 31 61 121 241
1 256 - - - -

Table : Possible number of traces when m = 1.

13 / 17



More examples in characteristic 2: m = 1

1 ≤ N ≤ 1500, k = 2, 3
m = dimFqmf /m

2
f = 1

t = qα · ((q − 1)2β + 1), 0 ≤ α ≤ 1 and 0 ≤ β ≤ d(1− α)

F22
β

0 1 2

α
0 4 7 13
1 16 - -

F23
β

0 1 2 3

α
0 8 15 29 57
1 64 - - -

F24
β

0 1 2 3 4

α
0 16 31 61 121 241
1 256 - - - -

Table : Possible number of traces when m = 1.

13 / 17



More examples in characteristic 2: m = 1

1 ≤ N ≤ 1500, k = 2, 3
m = dimFqmf /m

2
f = 1

t = qα · ((q − 1)2β + 1), 0 ≤ α ≤ 1 and 0 ≤ β ≤ d(1− α)

F22
β

0 1 2

α
0 4 7 13
1 16 - -

F23
β

0 1 2 3

α
0 8 15 29 57
1 64 - - -

F24
β

0 1 2 3 4

α
0 16 31 61 121 241
1 256 - - - -

Table : Possible number of traces when m = 1.

13 / 17



More examples in characteristic 2: m = 1

1 ≤ N ≤ 1500, k = 2, 3
m = dimFqmf /m

2
f = 1

t = qα · ((q − 1)2β + 1), 0 ≤ α ≤ 1 and 0 ≤ β ≤ d(1− α)

F22
β

0 1 2

α
0 4 7 13
1 16 - -

F23
β

0 1 2 3

α
0 8 15 29 57
1 64 - - -

F24
β

0 1 2 3 4

α
0 16 31 61 121 241
1 256 - - - -

Table : Possible number of traces when m = 1.

This corresponds always to the group G ' C2 × SL2(Fq).

12 / 17



More examples in characteristic 2: m = 1

1 ≤ N ≤ 1500, k = 2, 3
m = dimFqmf /m

2
f = 1

t = qα · ((q − 1)2β + 1), 0 ≤ α ≤ 1 and 0 ≤ β ≤ d(1− α)

F22
β

0 1 2

α
0 4 7 13
1 16 - -

F23
β

0 1 2 3

α
0 8 15 29 57
1 64 - - -

F24
β

0 1 2 3 4

α
0 16 31 61 121 241
1 256 - - - -

Table : Possible number of traces when m = 1.

This corresponds always to the group G ' C2 × SL2(Fq).

12 / 17



More examples in characteristic 2: m = 2
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More examples in characteristic 2: m = 3
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2
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14 / 17



More examples in characteristic 2: m = 3

m = dimFqmf /m
2
f = 3

t = qα · ((q − 1)2β + 1), 0 ≤ α ≤ 3 and 0 ≤ β ≤ d(3− α)

F22
β

0 1 2 3 4 5 6

α

0 4 7 13 25 49 97 193
1 16 28 52 100 196 - -
2 64 112 208 - - - -
3 256 - - - - - -

F23
β

0 1 2 3 4 5 6 7 8 9

α

0 8 15 29 57 113 225 449 897 1793 3585
1 64 120 232 456 904 1800 3592 - - -
2 512 960 1856 3648 - - - - - -
3 4096 - - - - - - - - -

F24
β

0 1 2 3 4 5 6 7 8

α

0 16 31 61 121 241 481 961 1921 3841
1 256 496 976 1936 3856 7969 15376 30736 61456
2 4096 7936 15616 30976 61696 - - - -
3 65536 - - - - - - - -

Table : Possible number of traces when m = 3.

14 / 17



More examples in characteristic 2: m = 3

m = dimFqmf /m
2
f = 3

t = qα · ((q − 1)2β + 1), 0 ≤ α ≤ 3 and 0 ≤ β ≤ d(3− α)

F22
β

0 1 2 3 4 5 6

α

0 4 7 13 25 49 97 193
1 16 28 52 100 196 - -
2 64 112 208 - - - -
3 256 - - - - - -

F23
β

0 1 2 3 4 5 6 7 8 9

α

0 8 15 29 57 113 225 449 897 1793 3585
1 64 120 232 456 904 1800 3592 - - -
2 512 960 1856 3648 - - - - - -
3 4096 - - - - - - - - -

F24
β

0 1 2 3 4 5 6 7 8

α

0 16 31 61 121 241 481 961 1921 3841
1 256 496 976 1936 3856 7969 15376 30736 61456
2 4096 7936 15616 30976 61696 - - - -
3 65536 - - - - - - - -

Table : Possible number of traces when m = 3.

14 / 17



More examples in characteristic 2: m = 3

m = dimFqmf /m
2
f = 3

t = qα · ((q − 1)2β + 1), 0 ≤ α ≤ 3 and 0 ≤ β ≤ d(3− α)

F22
β

0 1 2 3 4 5 6

α

0 4 7 13 25 49 97 193

1 16 28 52 100 196 - -
2 64 112 208 - - - -
3 256 - - - - - -

F23
β

0 1 2 3 4 5 6 7 8 9

α

0 8 15 29 57 113 225 449 897 1793 3585
1 64 120 232 456 904 1800 3592 - - -
2 512 960 1856 3648 - - - - - -
3 4096 - - - - - - - - -

F24
β

0 1 2 3 4 5 6 7 8

α

0 16 31 61 121 241 481 961 1921 3841
1 256 496 976 1936 3856 7969 15376 30736 61456
2 4096 7936 15616 30976 61696 - - - -
3 65536 - - - - - - - -

Table : Possible number of traces when m = 3.

14 / 17



More examples in characteristic 2: m = 3

m = dimFqmf /m
2
f = 3

t = qα · ((q − 1)2β + 1), 0 ≤ α ≤ 3 and 0 ≤ β ≤ d(3− α)

F22
β

0 1 2 3 4 5 6

α

0 4 7 13 25 49 97 193

1 16 28 52 100 196 - -
2 64 112 208 - - - -
3 256 - - - - - -

F23
β

0 1 2 3 4 5 6 7 8 9

α

0 8 15 29 57 113 225 449 897 1793 3585

1 64 120 232 456 904 1800 3592 - - -
2 512 960 1856 3648 - - - - - -
3 4096 - - - - - - - - -

F24
β

0 1 2 3 4 5 6 7 8

α

0 16 31 61 121 241 481 961 1921 3841

1 256 496 976 1936 3856 7969 15376 30736 61456
2 4096 7936 15616 30976 61696 - - - -
3 65536 - - - - - - - -

Table : Possible number of traces when m = 3.
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Conclusions

Conjecture. If dimFqmf /m
2
f = 2, then

Im(ρf ) '

 (C2 ⊕ C2)× SL2(Fq), or
(C2 ⊕ C2 ⊕ C2)× SL2(Fq), or
(M0

2(Fq)⊕ C2) o SL2(Fq).
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Application: existence of p-elementary abelian
extensions

Proposition. Fq finite field of characteristic p 6= 2 with q ≥ 7.
(T,mT) finite-dimensional local commutative Fq-algebra with residue
field T/mT ' Fq and m2

T = 0.
m := dimFqmT and t = #different traces in Im(ρ).
ρ : GQ → GL2(T) Galois representation unramified outside Np such that

(i) Im(ρ) = GLD
2 (Fq), where ρ := GQ → GLD

2 (Fq) is the residual
representation and D = Im(det ◦ρ).

(ii) Im(ρ) ⊆ GLD
2 (T).

(iii) T is generated as Fq-algebra by the set of traces of ρ.

Then there are number fields L/K/Q with GL = ker(ρ) and GK = ker(ρ)
such that Gal(K/Q) = GLD

2 (Fq) and

Gal(L/Q) = M0
2(Fq)⊕ . . .⊕M0

2(Fq)︸ ︷︷ ︸
m

oGal(K/Q),

with Gal(K/Q) acting on Gal(L/K ) by conjugation.
L/K is abelian of degree p3dm unramified at all primes ` - pN, and cannot
be defined over Q.
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Gràcies!


