

Images of Galois representations with values in mod p Hecke algebras

Laia Amorós Carafí
Université du Luxembourg
Universitat de Barcelona

Images of Galois representations with values in mod p Hecke algebras

- mod p modular forms, mod p Hecke algebras

Images of Galois representations with values in mod p Hecke algebras

- mod p modular forms, mod p Hecke algebras
- Galois representations with values in these algebras

Images of Galois representations with values in mod p Hecke algebras

- mod p modular forms, mod p Hecke algebras
- Galois representations with values in these algebras
- Computation of the image of these Galois representations

Images of Galois representations with values in mod p Hecke algebras

- mod p modular forms, mod p Hecke algebras
- Galois representations with values in these algebras
- Computation of the image of these Galois representations
- Application

mod p Hecke algebras

mod p Hecke algebras

$S_k(N, \varepsilon; \mathbb{C})$ space of **modular forms** $f(z) = \sum_{n \geq 0} a_n q^n$ ($q = e^{2\pi iz}$) of level $N \geq 1$, weight $k \geq 2$ and Dirichlet character $\varepsilon : (\mathbb{Z}/N\mathbb{Z})^\times \rightarrow \mathbb{C}^\times$. Moreover assume $a_0 = 0$.

mod p Hecke algebras

$S_k(N, \varepsilon; \mathbb{C})$ space of **cuspidal modular forms** or **cusp forms**

mod p Hecke algebras

$S_k(N; \mathbb{C})$ space of **cusp forms**

mod p Hecke algebras

$S_k(N; \mathbb{C})$ space of **cusp forms**

$\text{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N) := \langle T_p \text{ Hecke operator} : p \text{ prime} \rangle$

mod p Hecke algebras

$S_k(N; \mathbb{C})$ space of **cusp forms**

$\text{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra

mod p Hecke algebras

$S_k(N; \mathbb{C})$ space of **cusp forms**

$\text{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra

$S_k(N; \mathbb{Z})$

mod p Hecke algebras

$S_k(N; \mathbb{C})$ space of **cusp forms**

$\text{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra

$S_k(N; \mathbb{F}_q) := S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_q$

mod p Hecke algebras

$S_k(N; \mathbb{C})$ space of **cusp forms**

$\text{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra

$S_k(N; \mathbb{F}_q) := S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_q$

$\bar{\mathbb{T}} := \mathbb{T}_k(N) \otimes \mathbb{F}_q$ finite-dimensional commutative \mathbb{F}_q -algebra

mod p Hecke algebras

$S_k(N; \mathbb{C})$ space of **cusp forms**

$\text{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra

$S_k(N; \mathbb{F}_q) := S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_q$

$\bar{\mathbb{T}} := \mathbb{T}_k(N) \otimes \mathbb{F}_q$ finite-dimensional commutative \mathbb{F}_q -algebra

$\bar{\mathbb{T}} \simeq \prod_{\mathfrak{m}} \bar{\mathbb{T}}_{\mathfrak{m}}$, where $\bar{\mathbb{T}}_{\mathfrak{m}}$ localisation of $\bar{\mathbb{T}}$ at a maximal ideal \mathfrak{m} of $\bar{\mathbb{T}}$

mod p Hecke algebras

$S_k(N; \mathbb{C})$ space of **cusp forms**

$\text{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra

$S_k(N; \mathbb{F}_q) := S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_q$

$\bar{\mathbb{T}} := \mathbb{T}_k(N) \otimes \mathbb{F}_q$ finite-dimensional commutative \mathbb{F}_q -algebra

$\bar{\mathbb{T}} \simeq \prod_{\mathfrak{m}} \bar{\mathbb{T}}_{\mathfrak{m}}$, where $\bar{\mathbb{T}}_{\mathfrak{m}}$ localisation of $\bar{\mathbb{T}}$ at a maximal ideal \mathfrak{m} of $\bar{\mathbb{T}}$

Let us take $f(z) = \sum_{n \geq 0} a_n q^n \in S_k(N; \mathbb{C})$, $q = e^{2\pi iz}$, simultaneous eigenvector for all Hecke operators, $a_1 = 1$

mod p Hecke algebras

$S_k(N; \mathbb{C})$ space of **cusp forms**

$\text{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra

$S_k(N; \mathbb{F}_q) := S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_q$

$\overline{\mathbb{T}} := \mathbb{T}_k(N) \otimes \mathbb{F}_q$ finite-dimensional commutative \mathbb{F}_q -algebra

$\overline{\mathbb{T}} \simeq \prod_{\mathfrak{m}} \overline{\mathbb{T}}_{\mathfrak{m}}$, where $\overline{\mathbb{T}}_{\mathfrak{m}}$ localisation of $\overline{\mathbb{T}}$ at a maximal ideal \mathfrak{m} of $\overline{\mathbb{T}}$

Let us take $f(z) = \sum_{n \geq 0} a_n q^n \in S_k(N; \mathbb{C})$ **normalised Hecke eigenform**

mod p Hecke algebras

$S_k(N; \mathbb{C})$ space of **cusp forms**

$\text{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra

$S_k(N; \mathbb{F}_q) := S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_q$

$\bar{\mathbb{T}} := \mathbb{T}_k(N) \otimes \mathbb{F}_q$ finite-dimensional commutative \mathbb{F}_q -algebra

$\bar{\mathbb{T}} \simeq \prod_{\mathfrak{m}} \bar{\mathbb{T}}_{\mathfrak{m}}$, where $\bar{\mathbb{T}}_{\mathfrak{m}}$ localisation of $\bar{\mathbb{T}}$ at a maximal ideal \mathfrak{m} of $\bar{\mathbb{T}}$

Let us take $\bar{f}(z) = \sum_{n \geq 0} \bar{a}_n q^n \in S_k(N; \mathbb{F}_q)$ **normalised Hecke eigenform mod p**

mod p Hecke algebras

$S_k(N; \mathbb{C})$ space of **cusp forms**

$\text{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra

$S_k(N; \mathbb{F}_q) := S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_q$

$\bar{\mathbb{T}} := \mathbb{T}_k(N) \otimes \mathbb{F}_q$ finite-dimensional commutative \mathbb{F}_q -algebra

$\bar{\mathbb{T}} \simeq \prod_{\mathfrak{m}} \bar{\mathbb{T}}_{\mathfrak{m}}$, where $\bar{\mathbb{T}}_{\mathfrak{m}}$ localisation of $\bar{\mathbb{T}}$ at a maximal ideal \mathfrak{m} of $\bar{\mathbb{T}}$

Let us take $\bar{f}(z) = \sum_{n \geq 0} \bar{a}_n q^n \in S_k(N; \mathbb{F}_q)$ **normalised Hecke eigenform mod p**

$\bar{\lambda}_f : \bar{\mathbb{T}} \rightarrow \mathbb{F}_q$, $T_n \mapsto \bar{a}_n = a_n \bmod p$ $\mathfrak{m}_f := \ker \bar{\lambda}_f$

mod p Hecke algebras

$S_k(N; \mathbb{C})$ space of **cusp forms**

$\text{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra

$S_k(N; \mathbb{F}_q) := S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_q$

$\bar{\mathbb{T}} := \mathbb{T}_k(N) \otimes \mathbb{F}_q$ finite-dimensional commutative \mathbb{F}_q -algebra

$\bar{\mathbb{T}} \simeq \prod_{\mathfrak{m}} \bar{\mathbb{T}}_{\mathfrak{m}}$, where $\bar{\mathbb{T}}_{\mathfrak{m}}$ localisation of $\bar{\mathbb{T}}$ at a maximal ideal \mathfrak{m} of $\bar{\mathbb{T}}$

Let us take $\bar{f}(z) = \sum_{n \geq 0} \bar{a}_n q^n \in S_k(N; \mathbb{F}_q)$ **normalised Hecke eigenform mod p**

$\bar{\lambda}_f : \bar{\mathbb{T}} \rightarrow \mathbb{F}_q$, $T_n \mapsto \bar{a}_n = a_n \bmod p$ $\mathfrak{m}_f := \ker \bar{\lambda}_f$

$\mathbb{T}_f := \bar{\mathbb{T}}_{\mathfrak{m}_f}$ assume $\mathfrak{m}_f^2 = 0$

mod p Hecke algebras

$S_k(N; \mathbb{C})$ space of **cusp forms**

$\text{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra

$S_k(N; \mathbb{F}_q) := S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_q$

$\bar{\mathbb{T}} := \mathbb{T}_k(N) \otimes \mathbb{F}_q$ finite-dimensional commutative \mathbb{F}_q -algebra

$\bar{\mathbb{T}} \simeq \prod_{\mathfrak{m}} \bar{\mathbb{T}}_{\mathfrak{m}}$, where $\bar{\mathbb{T}}_{\mathfrak{m}}$ localisation of $\bar{\mathbb{T}}$ at a maximal ideal \mathfrak{m} of $\bar{\mathbb{T}}$

Let us take $\bar{f}(z) = \sum_{n \geq 0} \bar{a}_n q^n \in S_k(N; \mathbb{F}_q)$ **normalised Hecke eigenform mod p**

$\bar{\lambda}_f : \bar{\mathbb{T}} \rightarrow \mathbb{F}_q$, $T_n \mapsto \bar{a}_n = a_n \bmod p$ $\mathfrak{m}_f := \ker \bar{\lambda}_f$

$\mathbb{T}_f := \bar{\mathbb{T}}_{\mathfrak{m}_f}$ assume $\mathfrak{m}_f^2 = 0$

$\mathbb{T}_f \simeq \mathbb{F}_q[X_1, \dots, X_m]/(X_i X_j)_{1 \leq i, j \leq m}$ finite-dimensional local commutative algebra, $m = \dim_{\mathbb{F}_q} \mathfrak{m}_f$

Galois representations

Next we want to: attach a Galois representation to \mathbb{T}_f .

Galois representations

Next we want to: attach a Galois representation to \mathbb{T}_f .

Let $\bar{f} = \sum_{n \geq 0} \bar{a}_n q^n \in S_k(N; \mathbb{F}_q)$ given by $\bar{\lambda}_f : \bar{\mathbb{T}} \rightarrow \mathbb{F}_q$, $T_n \mapsto \bar{a}_n$

Galois representations

Next we want to: attach a Galois representation to \mathbb{T}_f .

Let $\bar{f} = \sum_{n \geq 0} \bar{a}_n q^n \in S_k(N; \mathbb{F}_q)$ given by $\bar{\lambda}_f : \overline{\mathbb{T}} \rightarrow \mathbb{F}_q$, $T_n \mapsto \bar{a}_n$

Deligne, Shimura: We can attach to \bar{f} a **Galois representation**

$$\bar{\rho}_f : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\overline{\mathbb{F}}_p)$$

unramified outside Np and, for every $\ell \nmid Np$:

$$\mathbf{tr}(\bar{\rho}_f(\text{Frob}_\ell)) = \bar{\lambda}_f(T_\ell) \quad \text{and} \quad \mathbf{det}(\bar{\rho}_f(\text{Frob}_\ell)) = \ell^{k-1}$$

Galois representations

Next we want to: attach a Galois representation to \mathbb{T}_f .

Let $\bar{f} = \sum_{n \geq 0} \bar{a}_n q^n \in S_k(N; \mathbb{F}_q)$ given by $\bar{\lambda}_f : \bar{\mathbb{T}} \rightarrow \mathbb{F}_q$, $T_n \mapsto \bar{a}_n$

Deligne, Shimura: We can attach to \bar{f} a **Galois representation**

$$\bar{\rho}_f : \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\bar{\mathbb{F}}_p)$$

unramified outside Np and, for every $\ell \nmid Np$:

$$\mathbf{tr}(\bar{\rho}_f(\text{Frob}_\ell)) = \bar{\lambda}_f(T_\ell) \quad \text{and} \quad \mathbf{det}(\bar{\rho}_f(\text{Frob}_\ell)) = \ell^{k-1}$$

Let $\mathbb{T}_f := \bar{\mathbb{T}}_{\mathfrak{m}_f}$ as before, but without the operators T_ℓ with $\ell \mid Np$.

Galois representations

Next we want to: attach a Galois representation to \mathbb{T}_f .

Let $\bar{f} = \sum_{n \geq 0} \bar{a}_n q^n \in S_k(N; \mathbb{F}_q)$ given by $\bar{\lambda}_f : \bar{\mathbb{T}} \rightarrow \mathbb{F}_q$, $T_n \mapsto \bar{a}_n$

Deligne, Shimura: We can attach to \bar{f} a **Galois representation**

$$\bar{\rho}_f : \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\bar{\mathbb{F}}_p)$$

unramified outside Np and, for every $\ell \nmid Np$:

$$\mathbf{tr}(\bar{\rho}_f(\text{Frob}_\ell)) = \bar{\lambda}_f(T_\ell) \quad \text{and} \quad \mathbf{det}(\bar{\rho}_f(\text{Frob}_\ell)) = \ell^{k-1}$$

Let $\mathbb{T}_f := \bar{\mathbb{T}}_{m_f}$ as before, but without the operators T_ℓ with $\ell \mid Np$.

Carayol: If $\bar{\rho}_f$ is absolutely irreducible, then there exists a continuous Galois representation

$$\rho_f : \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{T}_f)$$

unramified outside Np and, for every $\ell \nmid Np$:

$$\mathbf{tr}(\rho_f(\text{Frob}_\ell)) = \lambda_f(T_\ell) \quad \text{and} \quad \mathbf{det}(\rho_f(\text{Frob}_\ell)) = \ell^{k-1}$$

where $\lambda_f : \bar{\mathbb{T}} \rightarrow \mathbb{T}_f$. This representation is unique up to conjugation.

Image of ρ_f

Image of ρ_f

GOAL: Compute the image of $\rho_f : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{T}_f)$.

Image of ρ_f

GOAL: Compute the image of $\rho_f : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{T}_f)$.

Let $D = \text{Im}(\det \circ \bar{\rho}_f) \subseteq \mathbb{F}_q^\times$

$\text{GL}_2^D(\mathbb{T}_f) := \{g \in \text{GL}_2(\mathbb{T}_f) : \det(g) \in D\}$

$\text{GL}_2^D(\mathbb{F}_q) := \{g \in \text{GL}_2(\mathbb{F}_q) : \det(g) \in D\}$

Image of ρ_f

GOAL: Compute the image of $\rho_f : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{T}_f)$.

Let $D = \text{Im}(\det \circ \bar{\rho}_f) \subseteq \mathbb{F}_q^\times$

$\text{GL}_2^D(\mathbb{T}_f) := \{g \in \text{GL}_2(\mathbb{T}_f) : \det(g) \in D\}$

$\text{GL}_2^D(\mathbb{F}_q) := \{g \in \text{GL}_2(\mathbb{F}_q) : \det(g) \in D\}$

Assume that $\text{Im}(\rho_f) \subseteq \text{GL}_2^D(\mathbb{T}_f)$.

Image of ρ_f

GOAL: Compute the image of $\rho_f : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{T}_f)$.

Let $D = \text{Im}(\det \circ \bar{\rho}_f) \subseteq \mathbb{F}_q^\times$

$\text{GL}_2^D(\mathbb{T}_f) := \{g \in \text{GL}_2(\mathbb{T}_f) : \det(g) \in D\}$

$\text{GL}_2^D(\mathbb{F}_q) := \{g \in \text{GL}_2(\mathbb{F}_q) : \det(g) \in D\}$

Assume that $\text{Im}(\rho_f) \subseteq \text{GL}_2^D(\mathbb{T}_f)$.

We have the following commutative diagram

$$\begin{array}{ccc} \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) & \xrightarrow{\rho_f} & \text{GL}_2^D(\mathbb{T}_f) \\ & \searrow \bar{\rho}_f & \downarrow \pi \\ & & \text{GL}_2^D(\mathbb{F}_q) \end{array}$$

Image of ρ_f

GOAL: Compute the image of $\rho_f : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{T}_f)$.

Let $D = \text{Im}(\det \circ \bar{\rho}_f) \subseteq \mathbb{F}_q^\times$

$\text{GL}_2^D(\mathbb{T}_f) := \{g \in \text{GL}_2(\mathbb{T}_f) : \det(g) \in D\}$

$\text{GL}_2^D(\mathbb{F}_q) := \{g \in \text{GL}_2(\mathbb{F}_q) : \det(g) \in D\}$

Assume that $\text{Im}(\rho_f) \subseteq \text{GL}_2^D(\mathbb{T}_f)$.

We have the following commutative diagram

$$\begin{array}{ccc} \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) & \xrightarrow{\rho_f} & \text{GL}_2^D(\mathbb{T}_f) \\ & \searrow \bar{\rho}_f & \downarrow \pi \\ & & \text{GL}_2^D(\mathbb{F}_q) \end{array}$$

that gives us a short exact sequence:

$$1 \rightarrow \ker(\pi) \rightarrow \text{GL}_2^D(\mathbb{T}_f) \xrightarrow{\pi} \text{GL}_2^D(\mathbb{F}_q) \rightarrow 1$$

Image of ρ_f as a semi-direct product

Image of ρ_f as a semi-direct product

Assumptions:

- $\mathfrak{m}_f^2 = 0$

Image of ρ_f as a semi-direct product

Assumptions:

- $\mathfrak{m}_f^2 = 0$
- $\text{Im}(\bar{\rho}_f) = \text{GL}_2^D(\mathbb{F}_q)$

Image of ρ_f as a semi-direct product

Assumptions:

- $\mathfrak{m}_f^2 = 0$
- $\text{Im}(\bar{\rho}_f) = \text{GL}_2^D(\mathbb{F}_q)$ The residual representation has **big image**

Image of ρ_f as a semi-direct product

Assumptions:

- $\mathfrak{m}_f^2 = 0$
- $\text{Im}(\bar{\rho}_f) = \text{GL}_2^D(\mathbb{F}_q)$ The residual representation has **big image**

$$1 \rightarrow \ker(\pi) \rightarrow \text{GL}_2^D(\mathbb{T}_f) \xrightarrow{\pi} \text{GL}_2^D(\mathbb{F}_q) \rightarrow 1$$
$$\begin{pmatrix} a_1 + a_2 \mathfrak{m}_f & b_1 + b_2 \mathfrak{m}_f \\ c_1 + c_2 \mathfrak{m}_f & d_1 + d_2 \mathfrak{m}_f \end{pmatrix} \mapsto \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$$

Image of ρ_f as a semi-direct product

Assumptions:

- $\mathfrak{m}_f^2 = 0$
- $\text{Im}(\bar{\rho}_f) = \text{GL}_2^D(\mathbb{F}_q)$ The residual representation has **big image**

$$1 \rightarrow \ker(\pi) \rightarrow \text{GL}_2^D(\mathbb{T}_f) \xrightarrow{\pi} \text{GL}_2^D(\mathbb{F}_q) \rightarrow 1$$
$$\begin{pmatrix} a_1 + a_2 \mathfrak{m}_f & b_1 + b_2 \mathfrak{m}_f \\ c_1 + c_2 \mathfrak{m}_f & d_1 + d_2 \mathfrak{m}_f \end{pmatrix} \mapsto \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$$

Take $g = \begin{pmatrix} a_1 + a_2 \mathfrak{m}_f & b_1 + b_2 \mathfrak{m}_f \\ c_1 + c_2 \mathfrak{m}_f & d_1 + d_2 \mathfrak{m}_f \end{pmatrix} \in \text{GL}_2^D(\mathbb{T}_f)$, with $a_i, b_i, c_i, d_i \in \mathbb{F}_q$.

Image of ρ_f as a semi-direct product

Assumptions:

- $\mathfrak{m}_f^2 = 0$
- $\text{Im}(\bar{\rho}_f) = \text{GL}_2^D(\mathbb{F}_q)$ **The residual representation has big image**

$$1 \rightarrow \ker(\pi) \rightarrow \text{GL}_2^D(\mathbb{T}_f) \xrightarrow{\pi} \text{GL}_2^D(\mathbb{F}_q) \rightarrow 1$$
$$\begin{pmatrix} a_1 + a_2 \mathfrak{m}_f & b_1 + b_2 \mathfrak{m}_f \\ c_1 + c_2 \mathfrak{m}_f & d_1 + d_2 \mathfrak{m}_f \end{pmatrix} \mapsto \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$$

Take $g = \begin{pmatrix} a_1 + a_2 \mathfrak{m}_f & b_1 + b_2 \mathfrak{m}_f \\ c_1 + c_2 \mathfrak{m}_f & d_1 + d_2 \mathfrak{m}_f \end{pmatrix} \in \text{GL}_2^D(\mathbb{T}_f)$, with $a_i, b_i, c_i, d_i \in \mathbb{F}_q$. Then

$$g \in \ker(\pi) \Leftrightarrow g = \begin{pmatrix} 1 + a_2 \mathfrak{m}_f & b_2 \mathfrak{m}_f \\ c_2 \mathfrak{m}_f & 1 + d_2 \mathfrak{m}_f \end{pmatrix} \text{ and } \det(g) = 1 + (a_2 + d_2) \mathfrak{m}_f \in D \subseteq \mathbb{F}_q^\times.$$

Image of ρ_f as a semi-direct product

Assumptions:

- $\mathfrak{m}_f^2 = 0$
- $\text{Im}(\bar{\rho}_f) = \text{GL}_2^D(\mathbb{F}_q)$ **The residual representation has big image**

$$1 \rightarrow \ker(\pi) \rightarrow \text{GL}_2^D(\mathbb{T}_f) \xrightarrow{\pi} \text{GL}_2^D(\mathbb{F}_q) \rightarrow 1$$
$$\begin{pmatrix} a_1 + a_2 \mathfrak{m}_f & b_1 + b_2 \mathfrak{m}_f \\ c_1 + c_2 \mathfrak{m}_f & d_1 + d_2 \mathfrak{m}_f \end{pmatrix} \mapsto \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$$

Take $g = \begin{pmatrix} a_1 + a_2 \mathfrak{m}_f & b_1 + b_2 \mathfrak{m}_f \\ c_1 + c_2 \mathfrak{m}_f & d_1 + d_2 \mathfrak{m}_f \end{pmatrix} \in \text{GL}_2^D(\mathbb{T}_f)$, with $a_i, b_i, c_i, d_i \in \mathbb{F}_q$. Then

$$g \in \ker(\pi) \Leftrightarrow g = \begin{pmatrix} 1 + a_2 \mathfrak{m}_f & b_2 \mathfrak{m}_f \\ c_2 \mathfrak{m}_f & 1 + d_2 \mathfrak{m}_f \end{pmatrix} \text{ and } \det(g) = 1 + (a_2 + d_2) \mathfrak{m}_f \in D \subseteq \mathbb{F}_q^\times.$$

$$\Leftrightarrow g = 1 + \begin{pmatrix} a_2 \mathfrak{m}_f & b_2 \mathfrak{m}_f \\ c_2 \mathfrak{m}_f & d_2 \mathfrak{m}_f \end{pmatrix} \text{ and } a_2 = -d_2$$

Image of ρ_f as a semi-direct product

Assumptions:

- $\mathfrak{m}_f^2 = 0$
- $\text{Im}(\bar{\rho}_f) = \text{GL}_2^D(\mathbb{F}_q)$ **The residual representation has big image**

$$1 \rightarrow \ker(\pi) \rightarrow \text{GL}_2^D(\mathbb{T}_f) \xrightarrow{\pi} \text{GL}_2^D(\mathbb{F}_q) \rightarrow 1$$
$$\begin{pmatrix} a_1 + a_2 \mathfrak{m}_f & b_1 + b_2 \mathfrak{m}_f \\ c_1 + c_2 \mathfrak{m}_f & d_1 + d_2 \mathfrak{m}_f \end{pmatrix} \mapsto \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$$

Take $g = \begin{pmatrix} a_1 + a_2 \mathfrak{m}_f & b_1 + b_2 \mathfrak{m}_f \\ c_1 + c_2 \mathfrak{m}_f & d_1 + d_2 \mathfrak{m}_f \end{pmatrix} \in \text{GL}_2^D(\mathbb{T}_f)$, with $a_i, b_i, c_i, d_i \in \mathbb{F}_q$. Then

$$g \in \ker(\pi) \Leftrightarrow g = \begin{pmatrix} 1 + a_2 \mathfrak{m}_f & b_2 \mathfrak{m}_f \\ c_2 \mathfrak{m}_f & 1 + d_2 \mathfrak{m}_f \end{pmatrix} \text{ and } \det(g) = 1 + (a_2 + d_2) \mathfrak{m}_f \in D \subseteq \mathbb{F}_q^\times.$$

$$\Leftrightarrow g = 1 + \begin{pmatrix} a_2 \mathfrak{m}_f & b_2 \mathfrak{m}_f \\ c_2 \mathfrak{m}_f & d_2 \mathfrak{m}_f \end{pmatrix} \text{ and } a_2 = -d_2 \Leftrightarrow \ker(\pi) = 1 + M_2^0(\mathfrak{m}_f)$$

Image of ρ_f as a semi-direct product

Assumptions:

- $\mathfrak{m}_f^2 = 0$
- $\text{Im}(\bar{\rho}_f) = \text{GL}_2^D(\mathbb{F}_q)$ **The residual representation has big image**

$$1 \rightarrow \ker(\pi) \rightarrow \text{GL}_2^D(\mathbb{T}_f) \xrightarrow{\pi} \text{GL}_2^D(\mathbb{F}_q) \rightarrow 1$$

$$\begin{pmatrix} a_1 + a_2 \mathfrak{m}_f & b_1 + b_2 \mathfrak{m}_f \\ c_1 + c_2 \mathfrak{m}_f & d_1 + d_2 \mathfrak{m}_f \end{pmatrix} \mapsto \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$$

Take $g = \begin{pmatrix} a_1 + a_2 \mathfrak{m}_f & b_1 + b_2 \mathfrak{m}_f \\ c_1 + c_2 \mathfrak{m}_f & d_1 + d_2 \mathfrak{m}_f \end{pmatrix} \in \text{GL}_2^D(\mathbb{T}_f)$, with $a_i, b_i, c_i, d_i \in \mathbb{F}_q$. Then

$$g \in \ker(\pi) \Leftrightarrow g = \begin{pmatrix} 1 + a_2 \mathfrak{m}_f & b_2 \mathfrak{m}_f \\ c_2 \mathfrak{m}_f & 1 + d_2 \mathfrak{m}_f \end{pmatrix} \text{ and } \det(g) = 1 + (a_2 + d_2) \mathfrak{m}_f \in D \subseteq \mathbb{F}_q^\times.$$

$$\Leftrightarrow g = 1 + \begin{pmatrix} a_2 \mathfrak{m}_f & b_2 \mathfrak{m}_f \\ c_2 \mathfrak{m}_f & d_2 \mathfrak{m}_f \end{pmatrix} \text{ and } a_2 = -d_2 \Leftrightarrow \ker(\pi) = 1 + \text{M}_2^0(\mathfrak{m}_f)$$

$$0 \rightarrow \text{M}_2^0(\mathfrak{m}_f) \xrightarrow{\iota} \text{GL}_2^D(\mathbb{T}_f) \xrightarrow{\pi} \text{GL}_2^D(\mathbb{F}_q) \rightarrow 1$$

$$\begin{pmatrix} a_2 \mathfrak{m}_f & b_2 \mathfrak{m}_f \\ c_2 \mathfrak{m}_f & -a_2 \mathfrak{m}_f \end{pmatrix} \mapsto 1 + \begin{pmatrix} a_2 \mathfrak{m}_f & b_2 \mathfrak{m}_f \\ c_2 \mathfrak{m}_f & -a_2 \mathfrak{m}_f \end{pmatrix}$$

Image of ρ_f as a semi-direct product

Let $\overline{G} := \text{Im}(\overline{\rho}_f)$, and $G := \text{Im}(\rho_f)$. They fit in a short exact sequence:

Image of ρ_f as a semi-direct product

Let $\overline{G} := \text{Im}(\overline{\rho}_f)$, and $G := \text{Im}(\rho_f)$. They fit in a short exact sequence:

$$\begin{array}{ccccccc} 0 & \rightarrow & M_2^0(\mathfrak{m}_f) & \xrightarrow{\iota} & \text{GL}_2^D(\mathbb{T}_f) & \xrightarrow{\pi} & \text{GL}_2^D(\mathbb{F}_q) & \rightarrow & 1 \\ & & \uparrow & & \uparrow & & \uparrow & & \\ 0 & \rightarrow & H & \rightarrow & G & \rightarrow & \overline{G} & \rightarrow & 1 \end{array}$$

Image of ρ_f as a semi-direct product

Let $\overline{G} := \text{Im}(\overline{\rho}_f)$, and $G := \text{Im}(\rho_f)$. They fit in a short exact sequence:

$$\begin{array}{ccccccc} 0 & \rightarrow & M_2^0(\mathfrak{m}_f) & \xrightarrow{\iota} & \text{GL}_2^D(\mathbb{T}_f) & \xrightarrow{\pi} & \text{GL}_2^D(\mathbb{F}_q) & \rightarrow & 1 \\ & & \uparrow & & \uparrow & & \parallel & & \\ 0 & \rightarrow & H & \rightarrow & G & \rightarrow & \text{GL}_2^D(\mathbb{F}_q) & \rightarrow & 1 \end{array}$$

Image of ρ_f as a semi-direct product

Let $\overline{G} := \text{Im}(\overline{\rho}_f)$, and $G := \text{Im}(\rho_f)$. They fit in a short exact sequence:

$$\begin{array}{ccccccc} 0 & \rightarrow & M_2^0(\mathfrak{m}_f) & \xrightarrow{\iota} & GL_2^D(\mathbb{T}_f) & \xrightarrow{\pi} & GL_2^D(\mathbb{F}_q) & \rightarrow & 1 \\ & & \uparrow & & \uparrow & & \parallel & & \\ 0 & \rightarrow & H & \rightarrow & G & \rightarrow & GL_2^D(\mathbb{F}_q) & \rightarrow & 1 \end{array}$$

The first exact sequence splits, so $GL_2^D(\mathbb{T}_f) \simeq M_2^0(\mathfrak{m}_f) \rtimes GL_2^D(\mathbb{F}_q)$.

Image of ρ_f as a semi-direct product

Let $\overline{G} := \text{Im}(\overline{\rho}_f)$, and $G := \text{Im}(\rho_f)$. They fit in a short exact sequence:

$$\begin{array}{ccccccc} 0 & \rightarrow & M_2^0(\mathfrak{m}_f) & \xrightarrow{\iota} & GL_2^D(\mathbb{T}_f) & \xrightarrow{\pi} & GL_2^D(\mathbb{F}_q) & \rightarrow & 1 \\ & & \uparrow & & \uparrow & & \parallel & & \\ 0 & \rightarrow & H & \rightarrow & G & \rightarrow & GL_2^D(\mathbb{F}_q) & \rightarrow & 1 \end{array}$$

The first exact sequence splits, so $GL_2^D(\mathbb{T}_f) \simeq M_2^0(\mathfrak{m}_f) \rtimes GL_2^D(\mathbb{F}_q)$.

Image of ρ_f as a semi-direct product

Let $\overline{G} := \text{Im}(\overline{\rho}_f)$, and $G := \text{Im}(\rho_f)$. They fit in a short exact sequence:

$$\begin{array}{ccccccc} 0 & \rightarrow & M_2^0(\mathfrak{m}_f) & \xrightarrow{\iota} & GL_2^D(\mathbb{T}_f) & \xrightarrow{\pi} & GL_2^D(\mathbb{F}_q) & \rightarrow & 1 \\ & & \uparrow & & \uparrow & & \parallel & & \\ 0 & \rightarrow & H & \rightarrow & G & \rightarrow & GL_2^D(\mathbb{F}_q) & \rightarrow & 1 \end{array}$$

The first exact sequence splits, so $GL_2^D(\mathbb{T}_f) \simeq M_2^0(\mathfrak{m}_f) \rtimes GL_2^D(\mathbb{F}_q)$.

Theorem 1. (A.) Assume $q \neq 2, 3, 5$. The second exact sequence is also **(non-trivially)** split, so

$$G = \text{Im}(\rho_f) \simeq H \rtimes GL_2^D(\mathbb{F}_q).$$

Image of ρ_f as a semi-direct product

Let $\overline{G} := \text{Im}(\overline{\rho}_f)$, and $G := \text{Im}(\rho_f)$. They fit in a short exact sequence:

$$\begin{array}{ccccccc} 0 & \rightarrow & M_2^0(\mathfrak{m}_f) & \xrightarrow{\iota} & \text{GL}_2^D(\mathbb{T}_f) & \xrightarrow{\pi} & \text{GL}_2^D(\mathbb{F}_q) & \rightarrow & 1 \\ & & \uparrow & & \uparrow & & \parallel & & \\ 0 & \rightarrow & H & \rightarrow & G & \rightarrow & \text{GL}_2^D(\mathbb{F}_q) & \rightarrow & 1 \end{array}$$

The first exact sequence splits, so $\text{GL}_2^D(\mathbb{T}_f) \simeq M_2^0(\mathfrak{m}_f) \rtimes \text{GL}_2^D(\mathbb{F}_q)$.

Theorem 1. (A.) Assume $q \neq 2, 3, 5$. The second exact sequence is also **(non-trivially)** split, so

$$G = \text{Im}(\rho_f) \simeq H \rtimes \text{GL}_2^D(\mathbb{F}_q).$$

It is consequence of:

- $H^1(\text{GL}_n^D(W_m), \mathbb{F}_q) = 0$
- there is an injection $H^2(\text{GL}_n^D(W_m), N) \hookrightarrow H^2(\text{GL}_n^D(W_m), M)$

Image of ρ_f as a semi-direct product

Let $\overline{G} := \text{Im}(\overline{\rho}_f)$, and $G := \text{Im}(\rho_f)$. They fit in a short exact sequence:

$$\begin{array}{ccccccc} 0 & \rightarrow & M_2^0(\mathfrak{m}_f) & \xrightarrow{\iota} & \text{GL}_2^D(\mathbb{T}_f) & \xrightarrow{\pi} & \text{GL}_2^D(\mathbb{F}_q) & \rightarrow & 1 \\ & & \uparrow & & \uparrow & & \parallel & & \\ 0 & \rightarrow & H & \rightarrow & G & \rightarrow & \text{GL}_2^D(\mathbb{F}_q) & \rightarrow & 1 \end{array}$$

The first exact sequence splits, so $\text{GL}_2^D(\mathbb{T}_f) \simeq M_2^0(\mathfrak{m}_f) \rtimes \text{GL}_2^D(\mathbb{F}_q)$.

Theorem 1. (A.) Assume $q \neq 2, 3, 5$. The second exact sequence is also **(non-trivially)** split, so

$$G = \text{Im}(\rho_f) \simeq H \rtimes \text{GL}_2^D(\mathbb{F}_q).$$

It is consequence of:

- $H^1(\text{GL}_n^D(W_m), \mathbb{F}_q) = 0$
- there is an injection $H^2(\text{GL}_n^D(W_m), N) \hookrightarrow H^2(\text{GL}_n^D(W_m), M)$

$N \subseteq M \subseteq M_2^0(\mathfrak{m}_f)$ are $\mathbb{F}_p[\text{GL}_n^D(\mathbb{F}_q)]$ -submodules

$W(\mathbb{F}_q)$ ring of Witt vectors of \mathbb{F}_q and $W_m := W(\mathbb{F}_q)/p^m$

Explicit determination of $\text{Im}(\rho_f)$

Explicit determination of $\text{Im}(\rho_f)$

We have

$$G \simeq H \rtimes \text{GL}_2^D(\mathbb{F}_q)$$

with $H \subseteq M_2^0(\mathfrak{m}_f)$ a submodule over $\mathbb{F}_p[\text{GL}_2^D(\mathbb{F}_q)]$.

Explicit determination of $\text{Im}(\rho_f)$

We have

$$G \simeq H \rtimes \text{GL}_2^D(\mathbb{F}_q)$$

with $H \subseteq M_2^0(\mathfrak{m}_f)$ a submodule over $\mathbb{F}_p[\text{GL}_2^D(\mathbb{F}_q)]$.

Question: Which are the possible submodules H of $M_2^0(\mathfrak{m}_f)$?

Explicit determination of $\text{Im}(\rho_f)$

We have

$$G \simeq H \rtimes \text{GL}_2^D(\mathbb{F}_q)$$

with $H \subseteq M_2^0(\mathfrak{m}_f)$ a submodule over $\mathbb{F}_p[\text{GL}_2^D(\mathbb{F}_q)]$.

Question: Which are the possible submodules H of $M_2^0(\mathfrak{m}_f)$?

$$\mathbb{T}_f \simeq \mathbb{F}_q[X_1, \dots, X_m]/(X_i X_j)_{1 \leq i, j \leq m}$$

Explicit determination of $\text{Im}(\rho_f)$

We have

$$G \simeq H \rtimes \text{GL}_2^D(\mathbb{F}_q)$$

with $H \subseteq M_2^0(\mathfrak{m}_f)$ a submodule over $\mathbb{F}_p[\text{GL}_2^D(\mathbb{F}_q)]$.

Question: Which are the possible submodules H of $M_2^0(\mathfrak{m}_f)$?

$$\mathbb{T}_f \simeq \mathbb{F}_q[X_1, \dots, X_m]/(X_i X_j)_{1 \leq i, j \leq m} \quad \text{and} \quad \mathfrak{m}_f \simeq \underbrace{\mathbb{F}_q \oplus \dots \oplus \mathbb{F}_q}_m$$

Explicit determination of $\text{Im}(\rho_f)$

We have

$$G \simeq H \rtimes \text{GL}_2^D(\mathbb{F}_q)$$

with $H \subseteq M_2^0(\mathfrak{m}_f)$ a submodule over $\mathbb{F}_p[\text{GL}_2^D(\mathbb{F}_q)]$.

Question: Which are the possible submodules H of $M_2^0(\mathfrak{m}_f)$?

$$\mathbb{T}_f \simeq \mathbb{F}_q[X_1, \dots, X_m]/(X_i X_j)_{1 \leq i, j \leq m} \quad \text{and} \quad \mathfrak{m}_f \simeq \underbrace{\mathbb{F}_q \oplus \dots \oplus \mathbb{F}_q}_m$$

$$M_2^0(\mathfrak{m}_f) \simeq \underbrace{M_2^0(\mathbb{F}_q) \oplus \dots \oplus M_2^0(\mathbb{F}_q)}_m$$

Explicit determination of $\text{Im}(\rho_f)$

We have

$$G \simeq H \rtimes \text{GL}_2^D(\mathbb{F}_q)$$

with $H \subseteq M_2^0(\mathfrak{m}_f)$ a submodule over $\mathbb{F}_p[\text{GL}_2^D(\mathbb{F}_q)]$.

Question: Which are the possible submodules H of $M_2^0(\mathfrak{m}_f)$?

$$\mathbb{T}_f \simeq \mathbb{F}_q[X_1, \dots, X_m]/(X_i X_j)_{1 \leq i, j \leq m} \quad \text{and} \quad \mathfrak{m}_f \simeq \underbrace{\mathbb{F}_q \oplus \dots \oplus \mathbb{F}_q}_m$$

$$M_2^0(\mathfrak{m}_f) \simeq \underbrace{M_2^0(\mathbb{F}_q) \oplus \dots \oplus M_2^0(\mathbb{F}_q)}_m = \underbrace{M^0 \oplus \dots \oplus M^0}_m$$

Explicit determination of $\text{Im}(\rho_f)$

We have

$$G \simeq H \rtimes \text{GL}_2^D(\mathbb{F}_q)$$

with $H \subseteq M_2^0(\mathfrak{m}_f)$ a submodule over $\mathbb{F}_p[\text{GL}_2^D(\mathbb{F}_q)]$.

Question: Which are the possible submodules H of $M_2^0(\mathfrak{m}_f)$?

$$\mathbb{T}_f \simeq \mathbb{F}_q[X_1, \dots, X_m]/(X_i X_j)_{1 \leq i, j \leq m} \quad \text{and} \quad \mathfrak{m}_f \simeq \underbrace{\mathbb{F}_q \oplus \dots \oplus \mathbb{F}_q}_m$$

$$M_2^0(\mathfrak{m}_f) \simeq \underbrace{M_2^0(\mathbb{F}_q) \oplus \dots \oplus M_2^0(\mathbb{F}_q)}_m = \underbrace{M^0 \oplus \dots \oplus M^0}_m$$

Lemma 1 (one copy): If $p \neq 2$, M^0 is a simple module.

Explicit determination of $\text{Im}(\rho_f)$

We have

$$G \simeq H \rtimes \text{GL}_2^D(\mathbb{F}_q)$$

with $H \subseteq M_2^0(\mathfrak{m}_f)$ a submodule over $\mathbb{F}_p[\text{GL}_2^D(\mathbb{F}_q)]$.

Question: Which are the possible submodules H of $M_2^0(\mathfrak{m}_f)$?

$$\mathbb{T}_f \simeq \mathbb{F}_q[X_1, \dots, X_m]/(X_i X_j)_{1 \leq i, j \leq m} \quad \text{and} \quad \mathfrak{m}_f \simeq \underbrace{\mathbb{F}_q \oplus \dots \oplus \mathbb{F}_q}_m$$

$$M_2^0(\mathfrak{m}_f) \simeq \underbrace{M_2^0(\mathbb{F}_q) \oplus \dots \oplus M_2^0(\mathbb{F}_q)}_m = \underbrace{M^0 \oplus \dots \oplus M^0}_m$$

Lemma 1 (one copy): If $p \neq 2$, M^0 is a simple module.

So the only possible submodules of M^0 are (0) and M^0 .

Explicit determination of $\text{Im}(\rho_f)$

We have

$$G \simeq H \rtimes \text{GL}_2^D(\mathbb{F}_q)$$

with $H \subseteq M_2^0(\mathfrak{m}_f)$ a submodule over $\mathbb{F}_p[\text{GL}_2^D(\mathbb{F}_q)]$.

Question: Which are the possible submodules H of $M_2^0(\mathfrak{m}_f)$?

$$\mathbb{T}_f \simeq \mathbb{F}_q[X_1, \dots, X_m]/(X_i X_j)_{1 \leq i, j \leq m} \quad \text{and} \quad \mathfrak{m}_f \simeq \underbrace{\mathbb{F}_q \oplus \dots \oplus \mathbb{F}_q}_m$$

$$M_2^0(\mathfrak{m}_f) \simeq \underbrace{M_2^0(\mathbb{F}_q) \oplus \dots \oplus M_2^0(\mathbb{F}_q)}_m = \underbrace{M^0 \oplus \dots \oplus M^0}_m$$

Lemma 1 (one copy): If $p \neq 2$, M^0 is a simple module.

So the only possible submodules of M^0 are (0) and M^0 .

Lemma 2 (several copies): If M is a simple module, any submodule $N \subseteq M \oplus \dots \oplus M$ is isomorphic to some copies of M .

Explicit determination of $\text{Im}(\rho_f)$

\Rightarrow If $p \neq 2$: $H \simeq \underbrace{M^0 \oplus \dots \oplus M^0}_{\alpha}$ with $0 \leq \alpha \leq m$.

Explicit determination of $\text{Im}(\rho_f)$

\Rightarrow If $p \neq 2$: $H \simeq \underbrace{M^0 \oplus \dots \oplus M^0}_{\alpha}$ with $0 \leq \alpha \leq m$.

Lemma 3 (one copy): If $p = 2$, M^0 has $\mathcal{S} = \{\lambda \text{Id}_2 : \lambda \in \mathbb{F}_q\}$ as a submodule.

Let $N \subseteq M^0$. Then either $N \subseteq \mathcal{S}$ subgroup or $N = M^0$.

Explicit determination of $\text{Im}(\rho_f)$

\Rightarrow If $p \neq 2$: $H \simeq \underbrace{M^0 \oplus \dots \oplus M^0}_{\alpha}$ with $0 \leq \alpha \leq m$.

Lemma 3 (one copy): If $p = 2$, M^0 has $\mathcal{S} = \{\lambda \text{Id}_2 : \lambda \in \mathbb{F}_q\}$ as a submodule.

Let $N \subseteq M^0$. Then either $N \subseteq \mathcal{S}$ subgroup or $N = M^0$.

Lemma 4 (several copies): Let $N \subseteq \overbrace{M^0 \oplus \dots \oplus M^0}^m$. Then $N \simeq N_1 \oplus \dots \oplus N_n$, with $N_i \subseteq M^0$ submodule.

Explicit determination of $\text{Im}(\rho_f)$

\Rightarrow If $p \neq 2$: $H \simeq \underbrace{M^0 \oplus \dots \oplus M^0}_{\alpha}$ with $0 \leq \alpha \leq m$.

Lemma 3 (one copy): If $p = 2$, M^0 has $\mathcal{S} = \{\lambda \text{Id}_2 : \lambda \in \mathbb{F}_q\}$ as a submodule.

Let $N \subseteq M^0$. Then either $N \subseteq \mathcal{S}$ subgroup or $N = M^0$.

Lemma 4 (several copies): Let $N \subseteq \overbrace{M^0 \oplus \dots \oplus M^0}^m$. Then $N \simeq N_1 \oplus \dots \oplus N_n$, with $N_i \subseteq M^0$ submodule.

\Rightarrow If $p = 2$: $H \simeq \underbrace{M^0 \oplus \dots \oplus M^0}_{\alpha} \oplus \underbrace{C_2 \oplus \dots \oplus C_2}_{\beta}$, with $C_2 \subset \mathcal{S}$.

Explicit determination of $\text{Im}(\rho_f)$

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$.

Explicit determination of $\text{Im}(\rho_f)$

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$.

$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$.

Explicit determination of $\text{Im}(\rho_f)$

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$.

$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$.
Suppose that $\mathfrak{m}^2 = 0$.

Explicit determination of $\text{Im}(\rho_f)$

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$.

$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$.

Suppose that $\mathfrak{m}^2 = 0$.

$\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{T})$ continuous representation such that

Explicit determination of $\text{Im}(\rho_f)$

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$.

$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$.

Suppose that $\mathfrak{m}^2 = 0$.

$\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{T})$ continuous representation such that

(a) $\text{Im}(\overline{\rho}) = \text{GL}_2^D(\mathbb{F}_q)$, where $\overline{\rho} = \rho \bmod \mathfrak{m}$ and $D := \text{Im}(\det \circ \overline{\rho})$

Explicit determination of $\text{Im}(\rho_f)$

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$.

$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$.

Suppose that $\mathfrak{m}^2 = 0$.

$\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{T})$ continuous representation such that

- (a) $\text{Im}(\overline{\rho}) = \text{GL}_2^D(\mathbb{F}_q)$, where $\overline{\rho} = \rho \bmod \mathfrak{m}$ and $D := \text{Im}(\det \circ \overline{\rho})$
- (b) $\text{Im}(\rho) \subseteq \text{GL}_2^D(\mathbb{T})$

Explicit determination of $\text{Im}(\rho_f)$

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$.

$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$.

Suppose that $\mathfrak{m}^2 = 0$.

$\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{T})$ continuous representation such that

- (a) $\text{Im}(\overline{\rho}) = \text{GL}_2^D(\mathbb{F}_q)$, where $\overline{\rho} = \rho \bmod \mathfrak{m}$ and $D := \text{Im}(\det \circ \overline{\rho})$
- (b) $\text{Im}(\rho) \subseteq \text{GL}_2^D(\mathbb{T})$
- (c) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ

Explicit determination of $\text{Im}(\rho_f)$

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$.

$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$.

Suppose that $\mathfrak{m}^2 = 0$.

$\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{T})$ continuous representation such that

- (a) $\text{Im}(\overline{\rho}) = \text{GL}_2^D(\mathbb{F}_q)$, where $\overline{\rho} = \rho \bmod \mathfrak{m}$ and $D := \text{Im}(\det \circ \overline{\rho})$
- (b) $\text{Im}(\rho) \subseteq \text{GL}_2^D(\mathbb{T})$
- (c) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ

Let $m := \dim_{\mathbb{F}_q} \mathfrak{m}$, and $t = \text{number of different traces in } \text{Im}(\rho)$.

Explicit determination of $\text{Im}(\rho_f)$

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$.

$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$.

Suppose that $\mathfrak{m}^2 = 0$.

$\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{T})$ continuous representation such that

- (a) $\text{Im}(\bar{\rho}) = \text{GL}_2^D(\mathbb{F}_q)$, where $\bar{\rho} = \rho \bmod \mathfrak{m}$ and $D := \text{Im}(\det \circ \bar{\rho})$
- (b) $\text{Im}(\rho) \subseteq \text{GL}_2^D(\mathbb{T})$
- (c) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ

Let $m := \dim_{\mathbb{F}_q} \mathfrak{m}$, and $t = \text{number of different traces in } \text{Im}(\rho)$.

If $p \neq 2$: $\text{Im}(\rho) \simeq \underbrace{(\text{M}_2^0(\mathbb{F}_q) \oplus \dots \oplus \text{M}_2^0(\mathbb{F}_q))}_m \rtimes \text{GL}_2^D(\mathbb{F}_q)$

Explicit determination of $\text{Im}(\rho_f)$

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$.

$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$.

Suppose that $\mathfrak{m}^2 = 0$.

$\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{T})$ continuous representation such that

- (a) $\text{Im}(\bar{\rho}) = \text{GL}_2^D(\mathbb{F}_q)$, where $\bar{\rho} = \rho \bmod \mathfrak{m}$ and $D := \text{Im}(\det \circ \bar{\rho})$
- (b) $\text{Im}(\rho) \subseteq \text{GL}_2^D(\mathbb{T})$
- (c) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ

Let $m := \dim_{\mathbb{F}_q} \mathfrak{m}$, and $t = \text{number of different traces in } \text{Im}(\rho)$.

If $p \neq 2$: $\text{Im}(\rho) \simeq \underbrace{(\text{M}_2^0(\mathbb{F}_q) \oplus \dots \oplus \text{M}_2^0(\mathbb{F}_q))}_m \rtimes \text{GL}_2^D(\mathbb{F}_q)$ and $t = q^{m+1}$.

Explicit determination of $\text{Im}(\rho_f)$

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$.

$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$.

Suppose that $\mathfrak{m}^2 = 0$.

$\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{T})$ continuous representation such that

- (a) $\text{Im}(\bar{\rho}) = \text{GL}_2^D(\mathbb{F}_q)$, where $\bar{\rho} = \rho \bmod \mathfrak{m}$ and $D := \text{Im}(\det \circ \bar{\rho})$
- (b) $\text{Im}(\rho) \subseteq \text{GL}_2^D(\mathbb{T})$
- (c) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ

Let $m := \dim_{\mathbb{F}_q} \mathfrak{m}$, and $t = \text{number of different traces in } \text{Im}(\rho)$.

If $p \neq 2$: $\text{Im}(\rho) \simeq \underbrace{(\text{M}_2^0(\mathbb{F}_q) \oplus \dots \oplus \text{M}_2^0(\mathbb{F}_q))}_m \rtimes \text{GL}_2^D(\mathbb{F}_q)$ and $t = q^{m+1}$.

If $p = 2$: $\text{Im}(\rho) \simeq \underbrace{(\text{M}_2^0(\mathbb{F}_q) \oplus \dots \oplus \text{M}_2^0(\mathbb{F}_q))}_\alpha \oplus \underbrace{C_2 \oplus \dots \oplus C_2}_\beta \rtimes \text{GL}_2^D(\mathbb{F}_q)$

Explicit determination of $\text{Im}(\rho_f)$

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$.

$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$.

Suppose that $\mathfrak{m}^2 = 0$.

$\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{T})$ continuous representation such that

- (a) $\text{Im}(\bar{\rho}) = \text{GL}_2^D(\mathbb{F}_q)$, where $\bar{\rho} = \rho \bmod \mathfrak{m}$ and $D := \text{Im}(\det \circ \bar{\rho})$
- (b) $\text{Im}(\rho) \subseteq \text{GL}_2^D(\mathbb{T})$
- (c) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ

Let $m := \dim_{\mathbb{F}_q} \mathfrak{m}$, and $t = \text{number of different traces in } \text{Im}(\rho)$.

If $p \neq 2$: $\text{Im}(\rho) \simeq \underbrace{(\text{M}_2^0(\mathbb{F}_q) \oplus \dots \oplus \text{M}_2^0(\mathbb{F}_q))}_m \rtimes \text{GL}_2^D(\mathbb{F}_q)$ and $t = q^{m+1}$.

If $p = 2$: $\text{Im}(\rho) \simeq \underbrace{(\text{M}_2^0(\mathbb{F}_q) \oplus \dots \oplus \text{M}_2^0(\mathbb{F}_q))}_\alpha \oplus \underbrace{C_2 \oplus \dots \oplus C_2}_\beta \rtimes \text{GL}_2^D(\mathbb{F}_q)$

$$t = q^\alpha \cdot ((q-1)2^\beta + 1),$$

Explicit determination of $\text{Im}(\rho_f)$

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$.

$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$.

Suppose that $\mathfrak{m}^2 = 0$.

$\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{T})$ continuous representation such that

- (a) $\text{Im}(\bar{\rho}) = \text{GL}_2^D(\mathbb{F}_q)$, where $\bar{\rho} = \rho \bmod \mathfrak{m}$ and $D := \text{Im}(\det \circ \bar{\rho})$
- (b) $\text{Im}(\rho) \subseteq \text{GL}_2^D(\mathbb{T})$
- (c) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ

Let $m := \dim_{\mathbb{F}_q} \mathfrak{m}$, and $t = \text{number of different traces in } \text{Im}(\rho)$.

If $p \neq 2$: $\text{Im}(\rho) \simeq \underbrace{(\text{M}_2^0(\mathbb{F}_q) \oplus \dots \oplus \text{M}_2^0(\mathbb{F}_q))}_m \rtimes \text{GL}_2^D(\mathbb{F}_q)$ and $t = q^{m+1}$.

If $p = 2$: $\text{Im}(\rho) \simeq \underbrace{(\text{M}_2^0(\mathbb{F}_q) \oplus \dots \oplus \text{M}_2^0(\mathbb{F}_q))}_\alpha \oplus \underbrace{C_2 \oplus \dots \oplus C_2}_\beta \rtimes \text{GL}_2^D(\mathbb{F}_q)$

$t = q^\alpha \cdot ((q-1)2^\beta + 1)$, for $0 \leq \alpha \leq m$, $0 \leq \beta \leq d(m-\alpha)$.

Explicit determination of $\text{Im}(\rho_f)$

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$.

$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$.

Suppose that $\mathfrak{m}^2 = 0$.

$\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{T})$ continuous representation such that

- (a) $\text{Im}(\bar{\rho}) = \text{GL}_2^D(\mathbb{F}_q)$, where $\bar{\rho} = \rho \bmod \mathfrak{m}$ and $D := \text{Im}(\det \circ \bar{\rho})$
- (b) $\text{Im}(\rho) \subseteq \text{GL}_2^D(\mathbb{T})$
- (c) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ

Let $m := \dim_{\mathbb{F}_q} \mathfrak{m}$, and $t = \text{number of different traces in } \text{Im}(\rho)$.

If $p \neq 2$: $\text{Im}(\rho) \simeq \underbrace{(\text{M}_2^0(\mathbb{F}_q) \oplus \dots \oplus \text{M}_2^0(\mathbb{F}_q))}_m \rtimes \text{GL}_2^D(\mathbb{F}_q)$ and $t = q^{m+1}$.

If $p = 2$: $\text{Im}(\rho) \simeq \underbrace{(\text{M}_2^0(\mathbb{F}_q) \oplus \dots \oplus \text{M}_2^0(\mathbb{F}_q))}_\alpha \oplus \underbrace{C_2 \oplus \dots \oplus C_2}_\beta \rtimes \text{GL}_2^D(\mathbb{F}_q)$

$t = q^\alpha \cdot ((q-1)2^\beta + 1)$, for $0 \leq \alpha \leq m$, $0 \leq \beta \leq d(m-\alpha)$. Moreover $\text{Im}(\rho)$ is determined uniquely by t up to isomorphism.

How can we compute $\text{Im}(\rho_f)$ in concrete examples?

Fix a prime p , a level $N \geq 1$ coprime to p , and a weight $k \geq 2$.

With the function `HeckeAlgebras`¹ implemented in *Magma* we obtain every local mod p Hecke algebra \mathbb{T}_f (up to Galois conjugacy) of level N and weight k

$$\mathbb{T}_f = \langle T_\ell \text{ Hecke operator } \mid \ell \leq \text{ Sturm bound, } \ell \nmid Np \rangle.$$

¹It can be found in G. Wiese webpage <http://math.uni.lu/~wiese/>

How can we compute $\text{Im}(\rho_f)$ in concrete examples?

Fix a prime p , a level $N \geq 1$ coprime to p , and a weight $k \geq 2$.

With the function `HeckeAlgebras`¹ implemented in *Magma* we obtain every local mod p Hecke algebra \mathbb{T}_f (up to Galois conjugacy) of level N and weight k

$$\mathbb{T}_f = \langle T_\ell \text{ Hecke operator } \mid \ell \leq \text{ Sturm bound, } \ell \nmid Np \rangle.$$

Example: $p = 2$, $N = 133$ and $k = 2$.

¹It can be found in G. Wiese webpage <http://math.uni.lu/~wiese/>

How can we compute $\text{Im}(\rho_f)$ in concrete examples?

Fix a prime p , a level $N \geq 1$ coprime to p , and a weight $k \geq 2$.

With the function `HeckeAlgebras`¹ implemented in *Magma* we obtain every local mod p Hecke algebra \mathbb{T}_f (up to Galois conjugacy) of level N and weight k

$$\mathbb{T}_f = \langle T_\ell \text{ Hecke operator } \mid \ell \leq \text{ Sturm bound, } \ell \nmid Np \rangle.$$

Example: $p = 2$, $N = 133$ and $k = 2$. There are 3 such Hecke algebras.

¹It can be found in G. Wiese webpage <http://math.uni.lu/~wiese/>

How can we compute $\text{Im}(\rho_f)$ in concrete examples?

Fix a prime p , a level $N \geq 1$ coprime to p , and a weight $k \geq 2$.

With the function `HeckeAlgebras`¹ implemented in *Magma* we obtain every local mod p Hecke algebra \mathbb{T}_f (up to Galois conjugacy) of level N and weight k

$$\mathbb{T}_f = \langle T_\ell \text{ Hecke operator } \mid \ell \leq \text{ Sturm bound, } \ell \nmid Np \rangle.$$

Example: $p = 2$, $N = 133$ and $k = 2$. There are 3 such Hecke algebras.

For every \mathbb{T}_f , let $\mathbb{F}_q := \mathbb{T}_f/\mathfrak{m}_f$ be its residue field. We check if the residual image is $\text{Im}(\bar{\rho}_f) = \text{GL}_2^D(\mathbb{F}_q)$.

¹It can be found in G. Wiese webpage <http://math.uni.lu/~wiese/>

How can we compute $\text{Im}(\rho_f)$ in concrete examples?

Fix a prime p , a level $N \geq 1$ coprime to p , and a weight $k \geq 2$.

With the function `HeckeAlgebras`¹ implemented in *Magma* we obtain every local mod p Hecke algebra \mathbb{T}_f (up to Galois conjugacy) of level N and weight k

$$\mathbb{T}_f = \langle T_\ell \text{ Hecke operator } \mid \ell \leq \text{Sturm bound}, \ell \nmid Np \rangle.$$

Example: $p = 2$, $N = 133$ and $k = 2$. There are 3 such Hecke algebras.

For every \mathbb{T}_f , let $\mathbb{F}_q := \mathbb{T}_f/\mathfrak{m}_f$ be its residue field. We check if the residual image is $\text{Im}(\bar{\rho}_f) = \text{GL}_2^D(\mathbb{F}_q)$. If $\mathfrak{m}_f^2 \neq 0$, we take $\mathbb{T}_f/\mathfrak{m}_f^2$.

¹It can be found in G. Wiese webpage <http://math.uni.lu/~wiese/>

How can we compute $\text{Im}(\rho_f)$ in concrete examples?

Fix a prime p , a level $N \geq 1$ coprime to p , and a weight $k \geq 2$.

With the function `HeckeAlgebras`¹ implemented in *Magma* we obtain every local mod p Hecke algebra \mathbb{T}_f (up to Galois conjugacy) of level N and weight k

$$\mathbb{T}_f = \langle T_\ell \text{ Hecke operator } \mid \ell \leq \text{Sturm bound}, \ell \nmid Np \rangle.$$

Example: $p = 2$, $N = 133$ and $k = 2$. There are 3 such Hecke algebras.

For every \mathbb{T}_f , let $\mathbb{F}_q := \mathbb{T}_f/\mathfrak{m}_f$ be its residue field. We check if the residual image is $\text{Im}(\bar{\rho}_f) = \text{GL}_2^D(\mathbb{F}_q)$. If $\mathfrak{m}_f^2 \neq 0$, we take $\mathbb{T}_f/\mathfrak{m}_f^2$.

From the 3 Hecke algebras, only one satisfies $\text{Im}(\bar{\rho}_f) = \text{GL}_2^D(\mathbb{F}_q)$.

¹It can be found in G. Wiese webpage <http://math.uni.lu/~wiese/>

How can we compute $\text{Im}(\rho_f)$ in concrete examples?

Fix a prime p , a level $N \geq 1$ coprime to p , and a weight $k \geq 2$.

With the function `HeckeAlgebras`¹ implemented in *Magma* we obtain every local mod p Hecke algebra \mathbb{T}_f (up to Galois conjugacy) of level N and weight k

$$\mathbb{T}_f = \langle T_\ell \text{ Hecke operator } \mid \ell \leq \text{Sturm bound}, \ell \nmid Np \rangle.$$

Example: $p = 2$, $N = 133$ and $k = 2$. There are 3 such Hecke algebras.

For every \mathbb{T}_f , let $\mathbb{F}_q := \mathbb{T}_f/\mathfrak{m}_f$ be its residue field. We check if the residual image is $\text{Im}(\bar{\rho}_f) = \text{GL}_2^D(\mathbb{F}_q)$. If $\mathfrak{m}_f^2 \neq 0$, we take $\mathbb{T}_f/\mathfrak{m}_f^2$.

From the 3 Hecke algebras, only one satisfies $\text{Im}(\bar{\rho}_f) = \text{GL}_2^D(\mathbb{F}_q)$.

– The field is \mathbb{F}_4

¹It can be found in G. Wiese webpage <http://math.uni.lu/~wiese/>

How can we compute $\text{Im}(\rho_f)$ in concrete examples?

Fix a prime p , a level $N \geq 1$ coprime to p , and a weight $k \geq 2$.

With the function `HeckeAlgebras`¹ implemented in *Magma* we obtain every local mod p Hecke algebra \mathbb{T}_f (up to Galois conjugacy) of level N and weight k

$$\mathbb{T}_f = \langle T_\ell \text{ Hecke operator } \mid \ell \leq \text{Sturm bound}, \ell \nmid Np \rangle.$$

Example: $p = 2$, $N = 133$ and $k = 2$. There are 3 such Hecke algebras.

For every \mathbb{T}_f , let $\mathbb{F}_q := \mathbb{T}_f/\mathfrak{m}_f$ be its residue field. We check if the residual image is $\text{Im}(\bar{\rho}_f) = \text{GL}_2^D(\mathbb{F}_q)$. If $\mathfrak{m}_f^2 \neq 0$, we take $\mathbb{T}_f/\mathfrak{m}_f^2$.

From the 3 Hecke algebras, only one satisfies $\text{Im}(\bar{\rho}_f) = \text{GL}_2^D(\mathbb{F}_q)$.

- The field is \mathbb{F}_4
- $D = 1$, so actually $\text{Im}(\bar{\rho}_f) = \text{SL}_2(\mathbb{F}_q)$, and $\text{Im}(\rho_f) \subseteq \text{SL}_2(\mathbb{T}_f)$

¹It can be found in G. Wiese webpage <http://math.uni.lu/~wiese/>

How can we compute $\text{Im}(\rho_f)$ in concrete examples?

Fix a prime p , a level $N \geq 1$ coprime to p , and a weight $k \geq 2$.

With the function `HeckeAlgebras`¹ implemented in *Magma* we obtain every local mod p Hecke algebra \mathbb{T}_f (up to Galois conjugacy) of level N and weight k

$$\mathbb{T}_f = \langle T_\ell \text{ Hecke operator } \mid \ell \leq \text{Sturm bound}, \ell \nmid Np \rangle.$$

Example: $p = 2$, $N = 133$ and $k = 2$. There are 3 such Hecke algebras.

For every \mathbb{T}_f , let $\mathbb{F}_q := \mathbb{T}_f/\mathfrak{m}_f$ be its residue field. We check if the residual image is $\text{Im}(\bar{\rho}_f) = \text{GL}_2^D(\mathbb{F}_q)$. If $\mathfrak{m}_f^2 \neq 0$, we take $\mathbb{T}_f/\mathfrak{m}_f^2$.

From the 3 Hecke algebras, only one satisfies $\text{Im}(\bar{\rho}_f) = \text{GL}_2^D(\mathbb{F}_q)$.

- The field is \mathbb{F}_4
- $D = 1$, so actually $\text{Im}(\bar{\rho}_f) = \text{SL}_2(\mathbb{F}_q)$, and $\text{Im}(\rho_f) \subseteq \text{SL}_2(\mathbb{T}_f)$
- $\mathbb{T}_f/\mathfrak{m}_f^2 \simeq \mathbb{F}_4[X, Y]/(X^2, Y^2, XY)$

¹It can be found in G. Wiese webpage <http://math.uni.lu/~wiese/>

How can we compute $\text{Im}(\rho_f)$ in concrete examples?

By Theorem 1: the number t of traces in $G := \text{Im}(\rho_f)$ determines G .

How can we compute $\text{Im}(\rho_f)$ in concrete examples?

By Theorem 1: the number t of traces in $G := \text{Im}(\rho_f)$ determines G .

$\tilde{t} = \#$ different operators T_ℓ , with $\ell < b$ bound

How can we compute $\text{Im}(\rho_f)$ in concrete examples?

By Theorem 1: the number t of traces in $G := \text{Im}(\rho_f)$ determines G .

$\tilde{t} = \#$ different operators T_ℓ , with $\ell < b$ bound

Since $\mathbf{tr}(\rho_f(\text{Frob}_\ell)) = T_\ell$, $\tilde{t} = \#$ different traces in G .

How can we compute $\text{Im}(\rho_f)$ in concrete examples?

By Theorem 1: the number t of traces in $G := \text{Im}(\rho_f)$ determines G .

$\tilde{t} = \#$ different operators T_ℓ , with $\ell < b$ bound

Since $\mathbf{tr}(\rho_f(\text{Frob}_\ell)) = T_\ell$, $\tilde{t} = \#$ different traces in G . We have $\tilde{t} \leq t$.

How can we compute $\text{Im}(\rho_f)$ in concrete examples?

By Theorem 1: the number t of traces in $G := \text{Im}(\rho_f)$ determines G .

$\tilde{t} = \#$ different operators T_ℓ , with $\ell < b$ bound

Since $\mathbf{tr}(\rho_f(\text{Frob}_\ell)) = T_\ell$, $\tilde{t} = \#$ different traces in G . We have $\tilde{t} \leq t$.
bound = 1000. We find $\tilde{t} = 13$

How can we compute $\text{Im}(\rho_f)$ in concrete examples?

By Theorem 1: the number t of traces in $G := \text{Im}(\rho_f)$ determines G .

$\tilde{t} = \#$ different operators T_ℓ , with $\ell < b$ bound

Since $\mathbf{tr}(\rho_f(\text{Frob}_\ell)) = T_\ell$, $\tilde{t} = \#$ different traces in G . We have $\tilde{t} \leq t$.

bound = 1000. We find $\tilde{t} = 13$

$t = q^\alpha \cdot ((q-1)2^\beta + 1)$, for some $0 \leq \alpha \leq 2$ and $0 \leq \beta \leq 2(2-\alpha)$,

How can we compute $\text{Im}(\rho_f)$ in concrete examples?

By Theorem 1: the number t of traces in $G := \text{Im}(\rho_f)$ determines G .

$\tilde{t} = \#$ different operators T_ℓ , with $\ell < b$ bound

Since $\mathbf{tr}(\rho_f(\text{Frob}_\ell)) = T_\ell$, $\tilde{t} = \#$ different traces in G . We have $\tilde{t} \leq t$.

bound = 1000. We find $\tilde{t} = 13$

$$t = 4^0 \cdot ((4-1)2^2 + 1) = 13$$

How can we compute $\text{Im}(\rho_f)$ in concrete examples?

By Theorem 1: the number t of traces in $G := \text{Im}(\rho_f)$ determines G .

$\tilde{t} = \#$ different operators T_ℓ , with $\ell < b$ bound

Since $\mathbf{tr}(\rho_f(\text{Frob}_\ell)) = T_\ell$, $\tilde{t} = \#$ different traces in G . We have $\tilde{t} \leq t$.

bound = 1000. We find $\tilde{t} = 13$

$$t = 4^0 \cdot ((4-1)2^2 + 1) = 13$$

$$0 \times 38,$$

$$1 \times 12, \quad (Y + a) \times 12 \quad (X + Y + a^2) \times 10 \quad (aX + aY + 1) \times 13$$

$$a \times 10, \quad (aY + a^2) \times 10 \quad (X + a^2Y + a^2) \times 7 \quad (a^2X + aY + a) \times 6$$

$$a^2 \times 7, \quad (a^2Y + 1) \times 13 \quad (aX + Y + 1) \times 16 \quad (a^2X + a^2Y + a) \times 11$$

where $\mathbb{F}_4 = \{0, 1, a, a^2\}$.

How can we compute $\text{Im}(\rho_f)$ in concrete examples?

By Theorem 1: the number t of traces in $G := \text{Im}(\rho_f)$ determines G .

$\tilde{t} = \#$ different operators T_ℓ , with $\ell < b$ bound

Since $\mathbf{tr}(\rho_f(\text{Frob}_\ell)) = T_\ell$, $\tilde{t} = \#$ different traces in G . We have $\tilde{t} \leq t$.

bound = 1000. We find $\tilde{t} = 13$

$$t = 4^0 \cdot ((4-1)2^2 + 1) = 13$$

$$0 \times 38,$$

$$1 \times 12, \quad (Y + a) \times 12 \quad (X + Y + a^2) \times 10 \quad (aX + aY + 1) \times 13$$

$$a \times 10, \quad (aY + a^2) \times 10 \quad (X + a^2Y + a^2) \times 7 \quad (a^2X + aY + a) \times 6$$

$$a^2 \times 7, \quad (a^2Y + 1) \times 13 \quad (aX + Y + 1) \times 16 \quad (a^2X + a^2Y + a) \times 11$$

where $\mathbb{F}_4 = \{0, 1, a, a^2\}$.

It seems likely that $t = \tilde{t} = 13$. So, according to Theorem 1:

$$\text{Im}(\rho_f) \simeq (C_2 \oplus C_2) \times \text{SL}_2(\mathbb{F}_4) \simeq \text{SL}_2(\mathbb{F}_4[X, Y]/(X^2, Y^2, XY)).$$

More examples in characteristic 2: $m = 1$

More examples in characteristic 2: $m = 1$

$$1 \leq N \leq 1500, \quad k = 2, 3$$

$$m = \dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 1$$

$$t = q^\alpha \cdot ((q-1)2^\beta + 1), \quad 0 \leq \alpha \leq 1 \text{ and } 0 \leq \beta \leq d(1-\alpha)$$

More examples in characteristic 2: $m = 1$

$$1 \leq N \leq 1500, \quad k = 2, 3$$

$$m = \dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 1$$

$$t = q^\alpha \cdot ((q-1)2^\beta + 1), \quad 0 \leq \alpha \leq 1 \text{ and } 0 \leq \beta \leq d(1-\alpha)$$

		β		
		0	1	2
α	0	4	7	13
	1	16	-	-

		β			
		0	1	2	3
α	0	8	15	29	57
	1	64	-	-	-

		β				
		0	1	2	3	4
α	0	16	31	61	121	241
	1	256	-	-	-	-

Table : Possible number of traces when $m = 1$.

More examples in characteristic 2: $m = 1$

$$1 \leq N \leq 1500, \quad k = 2, 3$$

$$m = \dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 1$$

$$t = q^\alpha \cdot ((q-1)2^\beta + 1), \quad 0 \leq \alpha \leq 1 \text{ and } 0 \leq \beta \leq d(1-\alpha)$$

		β		
		0	1	2
α	0	4	7	13
	1	16	-	-

		β			
		0	1	2	3
α	0	8	15	29	57
	1	64	-	-	-

		β				
		0	1	2	3	4
α	0	16	31	61	121	241
	1	256	-	-	-	-

Table : Possible number of traces when $m = 1$.

More examples in characteristic 2: $m = 1$

$$1 \leq N \leq 1500, \quad k = 2, 3$$

$$m = \dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 1$$

$$t = q^\alpha \cdot ((q-1)2^\beta + 1), \quad 0 \leq \alpha \leq 1 \text{ and } 0 \leq \beta \leq d(1-\alpha)$$

		β		
		0	1	2
α	0	4	7	13
	1	16	-	-

		β			
		0	1	2	3
α	0	8	15	29	57
	1	64	-	-	-

		β				
		0	1	2	3	4
α	0	16	31	61	121	241
	1	256	-	-	-	-

Table : Possible number of traces when $m = 1$.

This corresponds always to the group $G \simeq C_2 \times \mathrm{SL}_2(\mathbb{F}_q)$.

More examples in characteristic 2: $m = 2$

More examples in characteristic 2: $m = 2$

$$m = \dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 2$$

$$t = q^\alpha \cdot ((q-1)2^\beta + 1), \quad 0 \leq \alpha \leq 2 \text{ and } 0 \leq \beta \leq d(2-\alpha)$$

More examples in characteristic 2: $m = 2$

$$m = \dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 2$$

$$t = q^\alpha \cdot ((q-1)2^\beta + 1), \quad 0 \leq \alpha \leq 2 \text{ and } 0 \leq \beta \leq d(2-\alpha)$$

		β				
		0	1	2	3	4
α	0	4	7	13	25	49
	1	16	28	52	100	-
	2	64	-	-	-	-

		β						
		0	1	2	3	4	5	6
α	0	8	15	29	57	113	225	449
	1	64	120	232	456	-	-	-
	2	512	-	-	-	-	-	-

		β								
		0	1	2	3	4	5	6	7	8
α	0	16	31	61	121	241	481	916	1921	3841
	1	256	496	976	1936	3856	-	-	-	-
	2	4096	-	-	-	-	-	-	-	-

Table : Possible number of traces when $m = 2$.

More examples in characteristic 2: $m = 2$

$$m = \dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 2$$

$$t = q^\alpha \cdot ((q-1)2^\beta + 1), \quad 0 \leq \alpha \leq 2 \text{ and } 0 \leq \beta \leq d(2-\alpha)$$

		β				
		0	1	2	3	4
α	0	4	7	13	25	49
	1	16	28	52	100	-
	2	64	-	-	-	-

		β						
		0	1	2	3	4	5	6
α	0	8	15	29	57	113	225	449
	1	64	120	232	456	-	-	-
	2	512	-	-	-	-	-	-

		β								
		0	1	2	3	4	5	6	7	8
α	0	16	31	61	121	241	481	916	1921	3841
	1	256	496	976	1936	3856	-	-	-	-
	2	4096	-	-	-	-	-	-	-	-

Table : Possible number of traces when $m = 2$.

More examples in characteristic 2: $m = 2$

$$m = \dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 2$$

$$t = q^\alpha \cdot ((q-1)2^\beta + 1), \quad 0 \leq \alpha \leq 2 \text{ and } 0 \leq \beta \leq d(2-\alpha)$$

		β				
		0	1	2	3	4
α	0	4	7	13	25	49
	1	16	28	52	100	-
	2	64	-	-	-	-

		β						
		0	1	2	3	4	5	6
α	0	8	15	29	57	113	225	449
	1	64	120	232	456	-	-	-
	2	512	-	-	-	-	-	-

		β								
		0	1	2	3	4	5	6	7	8
α	0	16	31	61	121	241	481	916	1921	3841
	1	256	496	976	1936	3856	-	-	-	-
	2	4096	-	-	-	-	-	-	-	-

Table : Possible number of traces when $m = 2$.

More examples in characteristic 2: $m = 3$

More examples in characteristic 2: $m = 3$

$$m = \dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 3$$

$$t = q^\alpha \cdot ((q-1)2^\beta + 1), \quad 0 \leq \alpha \leq 3 \text{ and } 0 \leq \beta \leq d(3-\alpha)$$

More examples in characteristic 2: $m = 3$

$$m = \dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 3$$

$$t = q^\alpha \cdot ((q-1)2^\beta + 1), \quad 0 \leq \alpha \leq 3 \text{ and } 0 \leq \beta \leq d(3-\alpha)$$

		β						
		0	1	2	3	4	5	6
α	0	4	7	13	25	49	97	193
	1	16	28	52	100	196	-	-
	2	64	112	208	-	-	-	-
	3	256	-	-	-	-	-	-

		β									
		0	1	2	3	4	5	6	7	8	9
α	0	8	15	29	57	113	225	449	897	1793	3585
	1	64	120	232	456	904	1800	3592	-	-	-
	2	512	960	1856	3648	-	-	-	-	-	-
	3	4096	-	-	-	-	-	-	-	-	-

		β									
		0	1	2	3	4	5	6	7	8	
α	0	16	31	61	121	241	481	961	1921	3841	
	1	256	496	976	1936	3856	7969	15376	30736	61456	
	2	4096	7936	15616	30976	61696	-	-	-	-	
	3	65536	-	-	-	-	-	-	-	-	

Table : Possible number of traces when $m = 3$.

More examples in characteristic 2: $m = 3$

$$m = \dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 3$$

$$t = q^\alpha \cdot ((q-1)2^\beta + 1), \quad 0 \leq \alpha \leq 3 \text{ and } 0 \leq \beta \leq d(3-\alpha)$$

		β						
		0	1	2	3	4	5	6
α	0	4	7	13	25	49	97	193
	1	16	28	52	100	196	-	-
	2	64	112	208	-	-	-	-
	3	256	-	-	-	-	-	-

		β									
		0	1	2	3	4	5	6	7	8	9
α	0	8	15	29	57	113	225	449	897	1793	3585
	1	64	120	232	456	904	1800	3592	-	-	-
	2	512	960	1856	3648	-	-	-	-	-	-
	3	4096	-	-	-	-	-	-	-	-	-

		β								
		0	1	2	3	4	5	6	7	8
α	0	16	31	61	121	241	481	961	1921	3841
	1	256	496	976	1936	3856	7969	15376	30736	61456
	2	4096	7936	15616	30976	61696	-	-	-	-
	3	65536	-	-	-	-	-	-	-	-

Table : Possible number of traces when $m = 3$.

More examples in characteristic 2: $m = 3$

$$m = \dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 3$$

$$t = q^\alpha \cdot ((q-1)2^\beta + 1), \quad 0 \leq \alpha \leq 3 \text{ and } 0 \leq \beta \leq d(3-\alpha)$$

		β						
		0	1	2	3	4	5	6
α	0	4	7	13	25	49	97	193
	1	16	28	52	100	196	-	-
	2	64	112	208	-	-	-	-
	3	256	-	-	-	-	-	-

		β									
		0	1	2	3	4	5	6	7	8	9
α	0	8	15	29	57	113	225	449	897	1793	3585
	1	64	120	232	456	904	1800	3592	-	-	-
	2	512	960	1856	3648	-	-	-	-	-	-
	3	4096	-	-	-	-	-	-	-	-	-

		β									
		0	1	2	3	4	5	6	7	8	
α	0	16	31	61	121	241	481	961	1921	3841	
	1	256	496	976	1936	3856	7969	15376	30736	61456	
	2	4096	7936	15616	30976	61696	-	-	-	-	
	3	65536	-	-	-	-	-	-	-	-	

Table : Possible number of traces when $m = 3$.

Conclusions

Conjecture. If $\dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 2$, then

$$\text{Im}(\rho_f) \simeq \begin{cases} (C_2 \oplus C_2) \times \text{SL}_2(\mathbb{F}_q), \text{ or} \\ (C_2 \oplus C_2 \oplus C_2) \times \text{SL}_2(\mathbb{F}_q), \text{ or} \\ (\text{M}_2^0(\mathbb{F}_q) \oplus C_2) \rtimes \text{SL}_2(\mathbb{F}_q). \end{cases}$$

Conclusions

Conjecture. If $\dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 2$, then

$$\text{Im}(\rho_f) \simeq \begin{cases} (C_2 \oplus C_2) \times \text{SL}_2(\mathbb{F}_q), \text{ or} \\ (C_2 \oplus C_2 \oplus C_2) \times \text{SL}_2(\mathbb{F}_q), \text{ or} \\ (\text{M}_2^0(\mathbb{F}_q) \oplus C_2) \rtimes \text{SL}_2(\mathbb{F}_q). \end{cases}$$

Conjecture. If $\dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 3$, then

$$\text{Im}(\rho_f) \simeq \begin{cases} (C_2 \oplus C_2 \oplus C_2) \times \text{SL}_2(\mathbb{F}_q), \text{ or} \\ (C_2 \oplus C_2 \oplus C_2 \oplus C_2) \times \text{SL}_2(\mathbb{F}_q), \text{ or} \\ (\text{M}_2^0(\mathbb{F}_q) \oplus C_2 \oplus C_2) \rtimes \text{SL}_2(\mathbb{F}_q). \end{cases}$$

Application: existence of p -elementary abelian extensions

Application: existence of p -elementary abelian extensions

Proposition. \mathbb{F}_q finite field of characteristic $p \neq 2$ with $q \geq 7$.

$(\mathbb{T}, \mathfrak{m}_{\mathbb{T}})$ finite-dimensional local commutative \mathbb{F}_q -algebra with residue field $\mathbb{T}/\mathfrak{m}_{\mathbb{T}} \simeq \mathbb{F}_q$ and $\mathfrak{m}_{\mathbb{T}}^2 = 0$.

$m := \dim_{\mathbb{F}_q} \mathfrak{m}_{\mathbb{T}}$ and $t = \#\text{different traces in } \text{Im}(\rho)$.

$\rho : G_{\mathbb{Q}} \rightarrow \text{GL}_2(\mathbb{T})$ Galois representation unramified outside Np such that

- (i) $\text{Im}(\bar{\rho}) = \text{GL}_2^D(\mathbb{F}_q)$, where $\bar{\rho} := G_{\mathbb{Q}} \rightarrow \text{GL}_2^D(\mathbb{F}_q)$ is the residual representation and $D = \text{Im}(\det \circ \bar{\rho})$.
- (ii) $\text{Im}(\rho) \subseteq \text{GL}_2^D(\mathbb{T})$.
- (iii) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ .

Application: existence of p -elementary abelian extensions

Proposition. \mathbb{F}_q finite field of characteristic $p \neq 2$ with $q \geq 7$.

$(\mathbb{T}, \mathfrak{m}_{\mathbb{T}})$ finite-dimensional local commutative \mathbb{F}_q -algebra with residue field $\mathbb{T}/\mathfrak{m}_{\mathbb{T}} \simeq \mathbb{F}_q$ and $\mathfrak{m}_{\mathbb{T}}^2 = 0$.

$m := \dim_{\mathbb{F}_q} \mathfrak{m}_{\mathbb{T}}$ and $t = \#\text{different traces in } \text{Im}(\rho)$.

$\rho : G_{\mathbb{Q}} \rightarrow \text{GL}_2(\mathbb{T})$ Galois representation unramified outside Np such that

- (i) $\text{Im}(\bar{\rho}) = \text{GL}_2^D(\mathbb{F}_q)$, where $\bar{\rho} := G_{\mathbb{Q}} \rightarrow \text{GL}_2^D(\mathbb{F}_q)$ is the residual representation and $D = \text{Im}(\det \circ \bar{\rho})$.
- (ii) $\text{Im}(\rho) \subseteq \text{GL}_2^D(\mathbb{T})$.
- (iii) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ .

Then there are number fields $L/K/\mathbb{Q}$ with $G_L = \ker(\rho)$ and $G_K = \ker(\bar{\rho})$ such that $\text{Gal}(K/\mathbb{Q}) = \text{GL}_2^D(\mathbb{F}_q)$

Application: existence of p -elementary abelian extensions

Proposition. \mathbb{F}_q finite field of characteristic $p \neq 2$ with $q \geq 7$.

$(\mathbb{T}, \mathfrak{m}_{\mathbb{T}})$ finite-dimensional local commutative \mathbb{F}_q -algebra with residue field $\mathbb{T}/\mathfrak{m}_{\mathbb{T}} \simeq \mathbb{F}_q$ and $\mathfrak{m}_{\mathbb{T}}^2 = 0$.

$m := \dim_{\mathbb{F}_q} \mathfrak{m}_{\mathbb{T}}$ and $t = \#\text{different traces in } \text{Im}(\rho)$.

$\rho : G_{\mathbb{Q}} \rightarrow \text{GL}_2(\mathbb{T})$ Galois representation unramified outside Np such that

- (i) $\text{Im}(\bar{\rho}) = \text{GL}_2^D(\mathbb{F}_q)$, where $\bar{\rho} := G_{\mathbb{Q}} \rightarrow \text{GL}_2^D(\mathbb{F}_q)$ is the residual representation and $D = \text{Im}(\det \circ \bar{\rho})$.
- (ii) $\text{Im}(\rho) \subseteq \text{GL}_2^D(\mathbb{T})$.
- (iii) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ .

Then there are number fields $L/K/\mathbb{Q}$ with $G_L = \ker(\rho)$ and $G_K = \ker(\bar{\rho})$ such that $\text{Gal}(K/\mathbb{Q}) = \text{GL}_2^D(\mathbb{F}_q)$ and

$$\text{Gal}(L/\mathbb{Q}) = \underbrace{\text{M}_2^0(\mathbb{F}_q) \oplus \dots \oplus \text{M}_2^0(\mathbb{F}_q)}_m \rtimes \text{Gal}(K/\mathbb{Q}),$$

Application: existence of p -elementary abelian extensions

Proposition. \mathbb{F}_q finite field of characteristic $p \neq 2$ with $q \geq 7$.

$(\mathbb{T}, \mathfrak{m}_{\mathbb{T}})$ finite-dimensional local commutative \mathbb{F}_q -algebra with residue field $\mathbb{T}/\mathfrak{m}_{\mathbb{T}} \simeq \mathbb{F}_q$ and $\mathfrak{m}_{\mathbb{T}}^2 = 0$.

$m := \dim_{\mathbb{F}_q} \mathfrak{m}_{\mathbb{T}}$ and $t = \#\text{different traces in } \text{Im}(\rho)$.

$\rho : G_{\mathbb{Q}} \rightarrow \text{GL}_2(\mathbb{T})$ Galois representation unramified outside Np such that

- (i) $\text{Im}(\bar{\rho}) = \text{GL}_2^D(\mathbb{F}_q)$, where $\bar{\rho} := G_{\mathbb{Q}} \rightarrow \text{GL}_2^D(\mathbb{F}_q)$ is the residual representation and $D = \text{Im}(\det \circ \bar{\rho})$.
- (ii) $\text{Im}(\rho) \subseteq \text{GL}_2^D(\mathbb{T})$.
- (iii) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ .

Then there are number fields $L/K/\mathbb{Q}$ with $G_L = \ker(\rho)$ and $G_K = \ker(\bar{\rho})$ such that $\text{Gal}(K/\mathbb{Q}) = \text{GL}_2^D(\mathbb{F}_q)$ and

$$\text{Gal}(L/\mathbb{Q}) = \underbrace{\text{M}_2^0(\mathbb{F}_q) \oplus \dots \oplus \text{M}_2^0(\mathbb{F}_q)}_m \rtimes \text{Gal}(K/\mathbb{Q}),$$

with $\text{Gal}(K/\mathbb{Q})$ acting on $\text{Gal}(L/K)$ by conjugation.

Application: existence of p -elementary abelian extensions

Proposition. \mathbb{F}_q finite field of characteristic $p \neq 2$ with $q \geq 7$.

$(\mathbb{T}, \mathfrak{m}_{\mathbb{T}})$ finite-dimensional local commutative \mathbb{F}_q -algebra with residue field $\mathbb{T}/\mathfrak{m}_{\mathbb{T}} \simeq \mathbb{F}_q$ and $\mathfrak{m}_{\mathbb{T}}^2 = 0$.

$m := \dim_{\mathbb{F}_q} \mathfrak{m}_{\mathbb{T}}$ and $t = \#\text{different traces in } \text{Im}(\rho)$.

$\rho : G_{\mathbb{Q}} \rightarrow \text{GL}_2(\mathbb{T})$ Galois representation unramified outside Np such that

- (i) $\text{Im}(\bar{\rho}) = \text{GL}_2^D(\mathbb{F}_q)$, where $\bar{\rho} := G_{\mathbb{Q}} \rightarrow \text{GL}_2^D(\mathbb{F}_q)$ is the residual representation and $D = \text{Im}(\det \circ \bar{\rho})$.
- (ii) $\text{Im}(\rho) \subseteq \text{GL}_2^D(\mathbb{T})$.
- (iii) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ .

Then there are number fields $L/K/\mathbb{Q}$ with $G_L = \ker(\rho)$ and $G_K = \ker(\bar{\rho})$ such that $\text{Gal}(K/\mathbb{Q}) = \text{GL}_2^D(\mathbb{F}_q)$ and

$$\text{Gal}(L/\mathbb{Q}) = \underbrace{\text{M}_2^0(\mathbb{F}_q) \oplus \dots \oplus \text{M}_2^0(\mathbb{F}_q)}_m \rtimes \text{Gal}(K/\mathbb{Q}),$$

with $\text{Gal}(K/\mathbb{Q})$ acting on $\text{Gal}(L/K)$ by conjugation.

L/K is abelian of degree p^{3dm} unramified at all primes $\ell \nmid pN$, and cannot be defined over \mathbb{Q} .

Gràcies!