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Abstract

These are notes attached to the talk “Galois representations associated to classical
modular forms of weight at least 2: Deligne’s theorem” given at the 29th Barcelona
Number Theory Seminar. The aim of these notes is to give a quick introduction to Galois
representations of modular forms, gathering the essential results from different sources to
be able to state Deligne’s theorem and give a sketch of the proof in the case k = 2 (case
due to Shimura).

The first section is intended to introduce the notion of Galois representation and give
some examples. After that, we motivate why in the case of Galois representations of
number fields it is necessary to have some kind of notion of compatible representations.
In section 2 we introduce modular forms and Hecke operators, and give the results that
will be needed later for our purpose. Section 3 is devoted to give a sketch of how one can
attach a Galois representation to a modular form of weight k£ = 2. The last section is just
a brief mention to the case k > 2.
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1 Introduction to /-adic (Galois representations

We start by giving some basic definitions and examples. Then we will continue by introducing
the notion of compatible systems of Galois representations. We will treat Galois representations
with ground field a number field. In this case, Frobenius elements are defined, and one has the
notion of rational (-adic Galois representation: one for which their characteristic polynomials
have rational coefficients (instead of merely /-adic ones). Two representations corresponding to
different primes are compatible if the characteristic polynomial of their Frobenius elements are
the same (at least almost everywhere). Most of this section can be found in [Se68] and [Di05].

1.1 Definitions and examples

Let G be a profinite group and k a topological field. An n-dimensional representation of
G is a continuous homomorphism of groups

p: G — GL,(k).

The representation is called an /-adic representation if £ C Q,. Let K be a field and denote
by Gk the absolute Galois group of K, i.e., the Galois group of the separable closure of K.
A representation of G over k is called a Galois representation.

A basic tool to provide examples of Galois representations is the Tate module. Let A denote
some abelian group an let ¢ be some fixed prime. Denote by A[¢"] the ¢"-torsion of A. One
may construct an inverse system v : A[{"T!] — A[("], and its inverse limit,

is known as the Tate module of A at /.
For the next examples, let K be a field of characteristic p, with p either a prime number or
0, and denote by K its separable closure. Let ¢ be some prime different from p.

Example 1.1 (The ¢-adic cyclotomic character). By choosing a compatible system of roots of
unity g, we have an inverse system pgn (K) — pn—1(K) given by  + 2, and we can define
the /-adic Tate module of FX,

Ty(K") = lim pn (K) = lim(Z/0"Z) = Zy.

n

The absolute Galois group G acts compatibly on g (K) for all n, so we can define a Galois
representation:

Xe: G — Aut(Ty(K™)) = Z) = GLy(Z) < GL1(Qy).
o = o

It is called the (-adic cyclotomic character (over K).

Example 1.2 (Galois representations and elliptic curves). Let E be an elliptic curve over K.
Consider the inverse system E[¢("] = E[¢("~!] given by P + {- P. The ¢(-adic Tate module of
E is the resulting inverse limit T,(E) = lgl(E[E"]), which turns out to satisfy T,(E) = Z7 as
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an abelian group. For each n, the field Q(E[¢"]) is a Galois number field, giving a restriction
map and an injection

Go — Gal(Q(E[("])/Q) — Aut(E[("]).
o = olomem)

These maps are compatible in the sense that, for each n, the following diagram commutes

/\

Aut(E[")) ¢+————— Aut(E[("H))

Choosing basis (P, Q) of E[¢"] for each n, compatible in the sense that each basis is a lift of the
predecessor, one can determine an isomorphism Aut(E[("]) = GLy(Z/¢"Z), and these combine
to give Aut(T,(E)) — GLa(Z,). Since Gg acts on Ty(E), we obtain a Galois representation

PES GQ — GLQ(Z[) C GLQ(Q[),
known as the 2-dimensional /-adic Galois representation associated to E.

Example 1.3 (Galois representations and abelian varieties). Let A be an abelian variety of
dimension g over K. Consider the inverse system A[("] — A[¢(""!] given by P + (- P and
define the (-adic Tate module of A, Ty(A) = @A[ﬁ”]. One can compatibly identify A[¢"]
with (Z/0"Z)%, yielding an isomorphism T,(A) = (Z)? of abelian groups.

In order to kill the torsion and make computations easier, one often considers the Q,-vector
space Vy(A) := Ty(A) @z, Q; = Q}¢. The Galois group G acts on Ty(A) and on Vy(A). This
yields to the (-adic Galois representation associated to A,

pae: G — Autg, (Vi(A)) = GLyy(Qp).

Example 1.4 (Cohomology representations). Let Y be an algebraic variety over K, and put
X = Y®xK. In order to associate Galois representations to X one uses the étale cohomology of
Artin-Grothendieck. First attach to X the cohomology groups H'(X,;, Z/{"Z) for each integer
i, where X, denotes the étale site of X or the Grothendieck category and Z/¢"Z is thought as
the “system of constant sheaves with coefficients in Z/¢"Z ”. Then one defines

Wuzw:@Wu@mmm and H(X,Qy) := H(X, Z¢) ®z, Qs.

The group Hj(X,Qy) is a Q,-vector space on which G acts (via the action of G on X). It
is finite dimensional if char(K) = 0 or if X is proper. One thus gets an (-adic representation
of G associated to Hj(X,Qy), the i-th f-adic Galois representation associated to X, for
0 < i< 2dim(X).

Remark 1.5. For abelian varieties, the first /-adic cohomology group is the dual of the Tate
module, and the higher cohomology groups are given by its exterior powers. For curves, the
first cohomology group is the first cohomology group of its Jacobian.

Suppose K is a field of characteristic zero. Then one may find not one, but a family of
representations {pg}e. Since they come from the same object, they might be expected to be
compatible in some sense. We will discuss this in the next section.
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1.2 /-adic Galois representations of number fields. Compatible sys-
tems.

Let K be a number field and p a finite place of K. We denote by K, its completion with respect
to p, by Ok, = O, the discrete valuation ring of K, by p (or just p) its valuation ideal, and
by Fy = F,r = O,/p its residue field, with N(p) = ¢. Denote by X the set of all finite places
of K.

Let L/K be a finite Galois extension of number fields and 3/p/p prime ideals in these fields.
The decomposition group of B is defined as

D(B/p) = {0 € Gal(L/K) | o(P) = B}

We have the natural isomorphism D(B/p) = Gal(Ly/Ky). Whenever we have a Galois exten-
sion of local fields Ly /K, we can consider the reduction mod B of all field automorphisms in
Gal(Ly/K,), since each of them fixes the valuation rings. The reduction map

m(Lyp/Ky) = 7(B/p) : Gal(Lyp/K,) — Gal(Fy /F,)

is surjective. A canonical generator for Gal(F, /F,) is given by the (arithmetic) Frobenius
endomorphism, also called Frobenius element Frob(Ly/K,) = Frob(3/p), which is defined
as « — 2% The kernel of the reduction map is the inertia group /(Ly/K,) = I(B/p), so that
we have the exact sequence

0 — I(Ly/K,) — Gal(Ly/K,) " 25" Gal(F, /F,) — 0.

The field extension Ly/K, (or the prime B above p) is unramified if and only if I(Ly/K,)
is trivial. In this case the reduction map 7w(8/p) is an isomorphism, and we can consider
Frob(Ly/p) as an element of D(B/p). We have

Frob(o(B/p)) = o o Frob(P/p) o 07,

so the Frobenius elements of the primes lying over p form a conjugacy class in Gal(L/K). We
will write Frob, for either this conjugacy class or any element in it.

Now we pass to infinite Galois extensions. If L is an arbitrary algebraic extension of Q,
one defines Y7, to be the projective limit of the sets X, , where L, ranges over the finite sub-
extensions of L/Q. Consider L/K an arbitrary Galois extension of the number field K and
take B € ¥. One defines Dy, Iy and Frobg as before. If p is an unramified place of K and B
is a place of L extending p, we denote by Frob, the conjugacy class of Froby in G = Gal(L/K).

Definition 1.6. Let p : Gx — Aut(V') be an (-adic Galois representation of K, and let p € Y.
We say that p is unramified at p if Iy C kerp for any place B of K extending p.

If the representation p is unramified at p, then the restriction of p to Dy factors through
Dy /Iy for any B | p. Hence p(Froby) € Aut(V) is defined, and we call p(Frobg) the Frobenius
of B in the representation p, an we denote it by Froby , (or Froby). The conjugacy class of
Frobg , in Aut(V') depend only on p; it is denoted by Frob, , (or Frob,). If L/K is the extension
of K corresponding to H = Ker(p), then p is unramified at p if and only if p is unramified in
L/K.



Recall the Frobenius automorphism in characteristic p,
op  Fy = F, x— 2%

The action of Frob, on a number field K restricted to Ok descends to Fy, where it is the action
of the Frobenius automorphism o,. When p is unramified, making /I, trivial, Frob, is unique.

Let p be an ¢-adic Galois representation of a number field K. If p € Y is unramified with
respect to p, we define the characteristic polynomial of Frobenius of p at p as

P, ,(T) := det(1 — T Frob, ,) € Q[T].

Definition 1.7. An (-adic representation p is said to be rational (resp. integral) if there
exists a finite subset S C Y g such that:

(a) any element of ¥ x — S is unramified with respect to p,
(b) if p ¢ S, the coefficients of B, ,(T") belong to Q (resp. to Z).

We will consider from now on rational ¢-adic representations, so we will be able to compare
different rational representations (even over different completions) just by comparing those
polynomials.

Examples 1.8. The /-adic representations of Gx given in examples 1,2,3 are integral repre-
sentations. In the first example one can take as S the set Sy of places v in K such that p, = /.
The corresponding Frobenius is N(v), the norm of v.

In examples 2 and 3 one can take for S the union of S, and the set S4, where A has bad
reduction. The fact that the corresponding Frobenius has an integral characteristic polynomial
(which is independent of ¢) is a consequence of Weil’s results on endomorphisms of abelian
varieties.

Example 4 is true if K = Fq (Weil’s conjectures), and it is a well known open question in
general.

Definition 1.9. Let ¢’ be a prime, and consider an ¢-adic Galois representation p’ of G.
Assume that p and p’ are rational. Then p and p’ are said to be compatible if there exists a
finite subset S C Yk such that p and p’ are unramified outside S and

B, ,(T) =P, y(T), forallpeXyx—>5.

(In other words, the characteristic polynomials of the Frobenius elements are the same for p
and p’ for almost all p).

If p: Gxg — Aut(V) is a rational f-adic Galois representation, then V has a composition
series 0 =V, C ... C V4 C Vj =V of p-invariant subspaces with V;/V;;; simple. The ¢'-adic
representation p’ of Gk defined by V' = Z?;Ol V:/Viy1 is semi-simple, rational, and compatible
with p. It is called the semi-simplification of p.

Theorem 1.10. There exists a unique (up to isomorphism) rational, semisimple (-adic repre-
sentation compatible with p.

Let’s finally define a compatible system of rational representations of G as a col-
lection {p,}, such that any two p, and py are compatible for all primes ¢, ¢'. The system {p;}¢
is said to be strictly compatible if there exists a finite subset S C ¥ such that:



(a) If we let Sy = {v | p, = {}, then for every v ¢ S U Sy the representation p, is unramified

at v and P, ,,(T) has rational coefficients.
(b) PV,PZ(T) = PV,PQ (T) if v §§ SuU Sg U Sgl.

When a system {py}, is strictly compatible, there is a smallest finite set S having properties
(a) and (b). We call it the exceptional set of the system.

The idea behind this notion is that a compatible system of representations does not depend
on ¢ at the end. We are constructing a bunch of representations, one for each ¢, of some Galois
group G to end up with an object, which is the same for almost all representations, namely the
characteristic polynomial.

Examples 1.11. The systems of /-adic representations given in examples 1,2 and 3 are strictly
compatible. The exceptional set of the first one is empty. The exceptional set of example 2
(resp. 3) is the set of places where the elliptic curve (resp. abelian variety) has bad reduction.

We can summarise the results that we have seen until here for the 2 first examples.

Theorem 1.12. Let y, be the cyclotomic character over Q. It is a 1-dimensional global Galois
representation, which is unramified at all primes p # € and is characterised there by

Xe(Frob,) = p.

Theorem 1.13. Let ¢ be a prime and let E be an elliptic curve over Q with conductor N. The
Galois representation

PE GQ — GLQ(QZ)

is unramified at every prime p t {N. For any such p, let p C Z be any mazximal ideal over p.
Then the characteristic equation of pg ¢(Froby) is

2 —a,(E)x+p=0, wherea,=p+1—#E(F,)
The Galois representation is irreducible.

Proof. Unramified: Let p{ ¢N and let p lie over p. There is a commutative diagram

D, ! Aut(E[e"])
Gr, ; Aut(E[")

where f restricts the action of Gg on E to D,, and f’ is given by the action of G, on E.
The inertia group I, is contained in ker(f’ o g). The map ¢’ is an isomorphism, since the
condition p 1 N means that E has good reduction at p and the reduction preserves ¢"-torsion
structure. Consequently I, is contained in the kernel of f. Since n is arbitrary, this means that
I, C kerpgy, i.e., pp e is unramified at every p{ N¢.

Characteristic polynomial: We need to compute detpg ((Frob,) and trpg (Frob,) for
p 1 LN. For the determinant, let p, : Gg — GL2(Z/¢"Z) be the nth entry of pg, for n € Z*.



The Weil pairing shows that the action of 0 € Gg on the root of unity pem is given by the
determinant, but by definition we also have

o detpn (o nlo
/J/Z’”:/’l’enp():/*’tz(’f ()‘

That is, detp, (o) = xen(0) in (Z/0"Z)* for all n, so detpg (o) = x¢(0) in Z;. In particular,
detpp ¢(Frob,) = p.

For the trace, let A = pg(Frob,) and recall that a square matrix satisfies its characteristic
polynomial. Since det A = p, the characteristic equation is A2—tr A+pIy = 0, where I = (7).
SotrA = A+ pA~'. We know that ' 0,, + 0} = a,(F), and that 0, acts as 0, and o}, acts

as po, . The previous diagram shows that o, acts on E["] as Frob, acts on E[¢"]. That is,
A+pAt =a,(E) ], (mod ("), Vn.
Since this holds for all n, it follows that tr A = a,(E), that is,
tr pgo(froby) = a,(E).

Irreducible: Too difficult to prove in these notes. O

2 Introduction to modular forms

In this section we introduce some notation and results on modular forms that we will use in
the following sections. We will state the moduli interpretation for elliptic curves, and we will
introduce two important operators, the diamond operators (d) and the Hecke operators T),
which play a crucial role in what follows. All the definitions and results of this section can be

found in [Di05].

2.1 Definitions and examples

To begin with, recall that the modular group SLy(Z) acts on the upper half plane h =

{r € C:Im(7) > 0} as
_ar+b
c d (T)—m, TE[).

Let C be a projective curve over F,. Then the Frobenius automorphism defines a morphism from C' to
itself, since C?» = C. The Frobenius map on C' is

IS
[yl

op([To, ... xn]) = [2f, ..., 28]
The forward map of o, on C acts on the divisors of C as
UP,*(P) = UP(P)>

and the reverse induced map acts as



Definition 2.1. Let k£ be an integer. A meromorphic function f : h — C is weakly modular
of weight k if

f(y(1)) = (et +d)*f(1), fory= (a8%) € SLy(Z) and 7 € b.

An holomorphic weakly modular function f of weight k has a Fourier expansion at oo

(e 9]

F) = ang", q=e"".

n=0

An holomorphic weakly modular function f : h — C is called a modular form of weight &
if moreover f is holomorphic at co. If ag = 0 then f is called a cusp form of weight k. The
set of modular forms of weight k is denoted by M} (SLy(Z)). It is in fact a finite-dimensional
vector space over C, and the sum

M(SLy(Z)) = € Mi(SLy(Z

kEZ

forms a graded ring. The set of cusp forms is denoted by Sy(SLy(Z)). It forms a vector subspace
of My(SLy(Z)) and the graded ring

SL2 @ Sk SL2
kEZ

is an ideal in M (SLy(Z)).

Example 2.2 (Trivial examples). The zero function on h is a modular form of every weight,
and every constant function on b is a modular form of weight 0.

Example 2.3 (Eisenstein series). For nontrivial examples of modular forms, let £ > 2 be an
even integer. Define the Eisenstein series of weight k to be a 2-dimensional analog of the
Riemann zeta function (k) = > 5, 1/d",

Gk(T) = Z (;k’ T € f)

e CU)

It is a modular form of weight k, and its Fourier expansion is

7
Gu(r) = 24(6) + 27 Yo

where the coefficient oj_1(n) is the function o4—1(n) = >_,,, 20 mk-1

Example 2.4 (Discriminant function). Let go(7) = 60G4(7) and g3(7) = 140G¢(7). Define the
discriminant function A : h — C as

A(r) = (g2(7))” = 27(gs(7))*.

Then A is weakly modular of weight 12 and holomorphic on §, and ay = 0, so it is a cusp form.



Replacing the modular group SLy(Z) by a subgroup I' generalises the notion of weak mod-
ularity. Let N be a positive integer. The principal congruence subgroup of level N
is

D(N) = {(28) € SLa(Z) = (2 2) = (57) (mod N)}.

A subgroup I' C SLy(Z) is a congruence subgroup if I'(NV) C T for some N € Z*, in which
case I is a congruence subgroup of level N.
Besides the principal congruence subgroups, the most important congruence subgroups are

Po(N) = {(23) € SLa(Z) = (27) = (5%) (mod N)}
and

[ (V) ={(23) € SLa(Z) = (24) = (1) (mod N)},
which satisfy T'(N) C I';(N) C I'o(N) C SLy(Z).

Adapting the previous definitions of modular and cusp forms, we can define the notion of
modular (or cusp) form of weight & with respect to a congruence subgroup I', and
denote them by M (") and Si(I"), respectively. For a Dirichlet character y modulo N, define
the y-eigenspace of My(I';(N)) as

Mi(N, x) = {f € Mp(I'/(N)) : f[7] = x(dy) f, for all v € 't (N)},

and denote by Sk(IV, x) the corresponding subspace of cusp forms.

2.2 Modular curves, moduli spaces and modularity

A complex torus is a quotient of the complex plane by a lattice,
C/A={z+A:z€C}.

A nonzero holomorphic homomorphism between two complex tori is called an isogeny.
For any positive integer N and any lattice A, the multiply-by-N map

[N]: C/A — CJ/A
z4+ A — Nz-+A.

is an isogeny. Its kernel is the set of N-torsion points of C/A, a subgroup isomorphic to
ZJ/NZ x Z/NZ. If we denote the torus C/A by E, this subgroup is denoted by E[N].
Let C be a cyclic subgroup of E[N]. As a set, C forms a superlattice of A. The cyclic
quotient map
7. C/N — C/C
24+ AN — NZ+C

is an isogeny with kernel C'.
Every isogeny ¢ : C/A — C/A’ is a composition of the examples already given:

p:C/A L C/A s C/nk 5 C/N,

where K denotes the kernel of ¢ and K = Z/nZ x 7/nn'Z.



The dual isogeny of ¢ is denoted by ¢ : C/A" — C/A and satisfies

Pop=pop=I[deg(p)] = [deg(¥)].

A complex torus C/A can also be viewed as an elliptic curve, denoted by E, using the
Weierstrass P-function.

Two elliptic curves C/A and C/A’ are holomorphically group-isomorphic if and only if
mA = A’ for some m € C. Viewing to such curves as equivalent gives a quotient set of
equivalence classes of complex elliptic curves. Similarly, two points 7,7’ € b are considered
equivalent if and only it v(7) = 7’ for some v € SLy(Z). Consider the resulting quotient as
well. Then there is a bijection from the first quotient to the second. That is, the equivalence
classes of points in the upper half plane under the action of the modular group are described
by the isomorphism classes of complex elliptic curves.

Let N be a positive integer. An enhanced elliptic curve for I'((N) is an ordered pair
(E,C) where E is a complex elliptic curve and C' is a cyclic subgroup of E of order N. Two
such pairs (E,C) and (E', C") are equivalent, (E,C) ~ (E',C"), if some isomorphism E = E'
takes C' to C’. The set of equivalence classes is denoted by

So(N) = {enhanced elliptic curves for I'g(N)}/ ~ .

An enhanced elliptic curve for I'i(NV) is a pair (E,Q) where E is a complex elliptic
curve and @ is a point of E of order N. Two such pairs (E, Q) and (E’, Q') are equivalent if
some isomorphism F = E’ takes @ to Q'. The set of equivalence classes is denoted by

S1(N) = {enhanced elliptic curves for I'y(N)}/ ~ .

For any congruence subgroup I' C SLy(Z) acting on bh form the left, the modular curve
Y (') is defined as the quotient space of orbits under I'; Y/(I') = I' \ . The modular curves for
Lo(N),I'1(N) and I'(N) are denoted

Yo(N) =To(N)\b, Yi(N)=T1(N)\h, Y(N)=T(N)\b.

It turns out that modular curves are Riemann surfaces and they can be compactified. The
resulting compact Riemann surfaces for Yy(N), Y1 (N) and Y (V) are denoted by Xo(N), X1 (N)
and X(N).

Theorem 2.5. Let N be a positive integer.
(a) The moduli space for I'o(N) is
So(N) ={[E+ (1/N+A;)]: 7 €b}.

Two points [E;,( 1/N + A;)] and [E.,( 1/N + Ay)] are equal if and only if To(N)T =
Co(N)T'. Thus there is a bijection

So(N) — Yo(N)
[C/Ar, (1/N +A;)] = To(N)7.
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(b) The moduli space for T'y(N) is
S$1(N) = {[E-, 1/N +A]: 7 € b}.

Two points [E., 1/N+A.] and [E., 1/N+A,] are equal if and only if T1(N)7 = T'1(N)7'.
Thus there is a bijection

Si(N) — Yi(N)
[C/A;,1/N +A,] — Ty(N)r.

Proof. [Di05] pg. 38. O

Every elliptic curve E has a well defined modular invariant, denoted by j(F). Complex
analytically, the Modularity Theorem says that all elliptic curves with rational invariants come
from such modular curves via holomorphic maps, viewing both kinds of curves as compact
Riemann surfaces.

Theorem 2.6. Let E be a complex elliptic curve with j(E) € Q. Then for some positive integer
N there exists a surjective holomorphic function of compact Riemann surfaces

Xo(N) = E.

2.3 Hecke operators and their modular interpretation

Definition 2.7. For congruence subgroups I'y, Ty C SLy(Z) and a € GL; (Q), the weight k
['yal'y operator takes functions f € My (I';) to

flTials], = Z f1Bik

where {;} are orbit representatives.

The map
Lo(N) — (Z/NZ)
(¢%) +— d(mod N)
is a surjective homomorphism with kernel I';(N). This shows that I';(N) is normal in Ty(N)
and induces an isomorphism

[o(N)/Ty(N) — (Z/NZ)*
(¢%) = d (mod N).

d
To define the first type of operator, take any o € T'o(IV), set I'y = 'y = I'1(IV), and consider the
weight-k double coset operator [I'yal's]y. Since I'} (V) <y (N), the operator is an isomorphism

fIl1als), = flalk, o € Ty(N).

Thus the group I'g(N) acts on My (I'1(NN)), and since its subgroup I';(N) acts trivially, this is
really an action of the quotient (Z/NZ)*. The action of @ = (2Y), determined by d (mod N)
and denoted by (d), is
) MTY(N) = My(Ty(V))
[ Ad)f = flalk,
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for any a = (24) € Io(N) with 6 = d (mod N). It is called a diamond operator.
The second type of operator is also a weight k& double coset operator [['yal'sg, where again

Iy =Ty =I'1(N), but now o = (§9) with p prime. This operator is called Hecke operator

and denoted by T,. Thus, T}, is given by

Ty o Mp(Th(N))

f Tpf = fIT1(N) (6 )T1(N)]x-

The double coset here is
Li(N)(6p)T1(N) ={y € My(Z) : v = (5}) mod N,dety = p}.
The modular curve interpretation of 7, is

T, : Div(Xy(N)

with the matrices 3; taken as
B; = ((1];) for0<j<p, Po= (%Z)(g?) if pt N, where mp —nN = 1.
The moduli space interpretation is

T,: Div(Si(N)) — Div(S1(N))

[E7 Q] = ZC[E/Cv Q + C]?
where the sum is taken over all order p subgroups C' C E such that C' N (Q) = {0g}.

3 Galois representations and modular forms of weight
k=2

In this section we relate the world of Galois representations and the one of modular forms
(of weight 2). We will sketch how one can associate a Galois representations (with certain
properties) to a (normalised, cuspidal) modular form of weight 2. In this section we mostly
follow the proof done in [Di05].

3.1 The Eichler-Shimura Relation

Here we give a description of the Hecke operator 7}, at the level of Picard groups of reduced
modular curves, with p{ N,

T, : Pic’(X1(N)) = Pic®(X;(N)).

The resulting description of Tp is called the Eichler-Shimura relation.
Denote by
UPZFP%FP, x> aP
the Frobenius map on Fp. We can extend it to a Frobenius map on a projective curve C'
over [,
0,:C = C%, [xg,...,25) > [xh,... 2P].
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This map acts on the divisors as
Tp + (P) = (0p(P)).

Since o, is bijective and is ramified everywhere with ramification degree p, the reverse induced
map acts on divisors of C' as
oy, (P) = p(a, ' (P)).

p -

Proposition 3.1. Let E be an elliptic curve over Q and let p be a prime such that E has good
reduction modulo p. Let oy, and o, be the forward and reverse maps of Pic’(E) induced by o,,.
Then

ap(E) = opu + 0,

as endomorphisms of PiCO(E) (where the left side means multiplication by a,(E)).
Proof. [Di05], pg. 325. O

The Diamond operator (d) on X;(N) reduces modulo p and passes to Picard groups to give
a commutative diagram

Pic® (X, (V) ~27 Picd (X, (V)

Pic’ (X (N)) ., Pic® (X, (V).

For the Hecke operator T}, on X;(/N) we want a similar diagram

Pic®(X1(N)) —2= Pic®(X,(N))

l |

Pic®(X1(N)) —2 Pic®(X, (N)).
We want to compute the reduction of 7). The expression for CIN}) is what is known as the
Eichler-Shimura relation.
Theorem 3.2 (Eichler-Shimura Relation). Let pt N. The following diagram commutes

Pic® (X, (N)) —— 2 Pic® (X, (N))

|

opxH(p)oy

Pic®(X;(N)) ——2, Pic® (X1 (N)).
Proof. [Di05], pg. 354. O

3.2 Shimura’s construction

We will see in this section that one may associate a 2-dimensional Galois representation of
Gal(Q/Q) to each normalised cuspidal eigenform. The following theorem is due to Shimura for
k = 2 and due to Deligne for k > 2.
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Theorem 3.3. Let f € Sip(N,x) be a normalised eigenform with number field Ky. Let { be
prime. For each maximal ideal A of Ok, lying over { there is an irreducible 2-dimensional
Galois representation

PFX GQ — GLQ(KJ"’)\).

This representation is unramified at all primes p { {N. For any p C Z lying over such p, the
characteristic equation of pg(Froby) is

2® — a(f)z + x(p)p* ' = 0.

We will sketch here the construction of py ) in the case of weight k = 2. Let N be a positive
integer and let ¢ be a prime. The modular curve X;(N) is a projective nonsingular algebraic
curve over Q. Let g denote its genus. The curve X;(N)¢ over C defined by the same equations
can also be viewed as a compact Riemann surface. The Jacobian of the modular curve is a
g-dimensional complex torus

JU(N) = Jac(X1(N)e) Z Sy(Is () Hy(X:(N)e, Z) =2 C/A,,
The Picard group of X;(N) is the abelian group of divisor classes on the points of X;(N),
Pic’(X;(N)) = Div?(X;(N))/DivP(X;(N)).

We can think of Pic’(X;(V)) as a subgroup of Pic’(X;(N)c¢), and using Abel’s theorem we have
a natural isomorphism

Pic’(X;(N)c) = Jac(X1(N)c).
Thus, there is an inclusion of ¢"-torsion,
in : Pic’ (X1 (N))[0"] = Pic® (X1 (N)c)[0"] = (Z/0"Z)>.

Denote by Xl(N) the reduction of Xi(N) at p. By Igusa’s theorem we know that X;(N)
has good reduction at primes p f N, so there is a natural surjective map Pic’(X;(N)) —
Pic’(X,(N)) restricting to

T Pic® (X1 (N)[0"] — Pic®( X (N))[€"].
We will use without proof the following facts:
e the inclusion i, is in fact an isomorphism.

e the surjection 7, is also a surjection, for p 1 ¢N.

e If a curve X over a field k has genus g and M is coprime to char(k), then Pic’(X)[M] =
(Z/MZ)*.

e If a curve X over Q has good reduction at a prime p t M, then the reduction map is
injective on Pic’(X)[M].
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Consider the ¢-adic Tate module of X;(V),
Ty (Pic” (X1 ())) = Im{Pic’(X;(N))[¢"]}.

Similarly as before, choosing bases of Pic’(X;(N)) compatibly for all n shows that
T (Pic’ (X, (N))) = Z;°.

Any automorphism o € G defines an automorphism of Div"(X;(N)),

(> np(P)>U =S np(P7).
Since div(f)” = div(f?) for any f € Q(X;(NV)), the automorphism descends to Pic’(X;(N)),
Pic’(X1(N)) x Gg — Pic’(X1(N)).

The diagram

/\

Aut(Pic (X, (N))["]) +————— Aut(Pic’ (X1 (N))[¢"1])
commutes for each n. Again as before, this leads to a continuous homomorphism

px (W), - Go — Gligg(Ze) C GLgg(Qy).

This is the 2g-dimensional representation associated to X;(/N). This representation has
the following properties.

Theorem 3.4. Let ¢ be a prime and let N be a positive integer. The Galois representation
px.(n)e 5 unramified at every prime p { {N. For any such p, let p C Z be any mazimal ideal
over p. Then px,(nye(Froby) satisfies the polynomial equation

z® — Tyx + (p)p = 0.
Proof. Let pt{N and let p liec over p. There is a commutative diagram

D, —— Aut(Pic®( X, (N))[¢"])

| lﬂ

Gy, — Aut(Pic® (X, (N))[¢7]).
The map 7 is an isomorphism and I, C kerpx, (ny,¢. This proves the ramification statement.
For the second part, the Eichler-Shimura relation restricts to ¢"-torsion,

Pic®(X; (V) [£] ———— Pic’(X:(N)) ("]

| l

PicO(, (N)[07] 2775, picd (%, ()],
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The diagram

Pict (X, (M) 20 o (x, () ]

Pic (X, (V)] 20, picd (X, (V) [ev)
also commutes. Since the vertical arrows are isomorphisms,
T, = Frob, + (p)pFrob, ' < Frob? — T,Frob, + (p)p = 0.
on Pic®(X;(N))[¢"]. This holds for all n, so we can extend the equality to Ta,(Pic?(X;(N))).
The result follows. O

To proceed from Picard groups to modular forms, consider a normalised eigenform f €
S3(N, x) and denote by Ay the abelian variety associated to f (cf. Appendix I). There is an
isomorphism

Tz/If = Of = Z[{an(f) n e Z+}]

Under this isomorphism, each Fourier coefficient a,(f) acts on Ay as T, + I;. The ring Oy
generates the number field of f, denoted by K;. The extension degree d = [K; : Q] is also
the dimension of A; as a complex torus. Consider the ¢-adic Tate module of Ay

Ty(Ay) = Um{ A"} = Zj".
The action of O; on Ay is defined on /-power torsion and thus extends to an action on Ty(Ay).

The following lemma shows that Gg acts on Ty(Ay) as well.

Lemma 3.5. The map
Pic’(X1(N))[("] — Az[0"]

is a surjection. Its kernel is stable under G, and Gg operates on the kernel.

So Gg acts on A¢[¢"] and therefore on T;(Ay). The action commutes with the action of Oy
since the Gg-action and the Tz-action commute on Ty(Pic”(X;(N))). Choosing coordinates
appropriately gives a Galois representation

pase: Go — GLaa(Qp).
The representation p4, ¢ has the following properties:
e It is continuous because px, (), is continuous and
P}}(N),E(U(”ag)) C PZ;,Z(U(TL’ d)),
where U(n, g) = ker(GLqyy(Z¢) = GLoy(Z/0"Z)).
e It is unramified at all primes p { /N since its kernel contains kerpx, vy e-

e For any unramified prime p, let p C Z be any maximal ideal over p. At the level of
Abelian varieties, since T}, acts as a,(f) and (p) acts as x(p), pa,«(Froby,) satisfies the
polynomial equation

z® — a,(f)z + x(Frob,)p = 0.
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The Tate module T;(A¢) has rank 2d over Z,. Since it is an Op-module, the tensor product
Vi(Ay) ®Q is a module over Oy ® Q; = Ky ®g Q. It turns out that G acts Ky ®¢g Q-linearly
on Vy(Ay), and Vi(A;) = (K; ®g Qv)?. Choose a basis of Vy(A4;) to get a homomorphism
Go — GLy(Kf ®g Q¢). We have that

Ky ®qQ =[] Ka,
YV

so for each A we can compose the homomorphism with a projection to get a continuous Galois
representation
PFX - GQ — GLQ(Kﬁ)\).

We have proved the following.

Theorem 3.6. Let f € Sy(N,x) be a normalised eigenform with number field K;. Let ¢
be a prime. For each mazimal ideal A of O, lying over { there is a 2-dimensional Galois
representation

PFA - GQ — GLQ(Kf7)\).

This representation is unramified at every prime p t {N. For any such p let p C Z be any
mazimal ideal lying over p. Then py(Froby) satisfies the polynomial equation

72 — a,(f)z + x(p)p = 0.

In particular, if f € So(Do(N)), the relation is 2> — a,(f)z +p = 0.

3.3 Appendix II: The abelian variety associated to a modular form

Let f € S3(I'o(N)) be a normalised eigenform f = > " a,¢". Then the eigenvalues a,(f) are
algebraic integers. The field K; := Q({a,}) is called the number field of f.
The eigenvalue map of f is

)\f: Tf — C
Tf — X(T)f,

and its kernel is Iy = ker(A\;) = {T" € T; : Tf = 0}. The map 7"+ A¢(T") induces a Z-module
isomorphism

Tz/Iy — Z[{an()}].
Since Ty acts on the Jacobian J; (M), the subgroup I;.J;(My) C J1(My) makes sense.

Definition 3.7. The abelian variety associated to f is defined as
Ay i= Jo(My) /15 Jo(My).

The Z-module Tz /I acts on Ay, and thus also the Z-module Z[{a,(f)}] does. The following
diagram commutes

T(My) — Ty (M;)

| L, |

Afap—>Af

We have the following theorem.
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Theorem 3.8. The Jacobian associated to I'g(N) is isogenus to a direct sum of abelian varieties
associated to equivalent classes of newforms

Ji(N) — € AT
!

Here the sum is taken over a set of representatives f € Sy(I'o(My)) at levels My dividing N,
and each my is the number of divisors of N/Mjp.

Proof. [Di05], pg. 244. O

4 Galois representations and modular forms of weight
k> 2

4.1 Deligne’s construction

For k > 2, the idea of the proof is similar than the & = 2 case, but some generalisations have to
be made. For example, in the case k > 2, the Jacobian variety .J; (V) is changed by a Kuga-Sato
variety Wi(N); the abelian variety associated to the modular form f is changed by the Scholl
motif My associated to f, and T,,(J;(NNV)) is changed by the étale cohomology of W; (V).

For a sketch of the general construction see [Wil3].
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